Science.gov

Sample records for actuated pin puller

  1. Reusable Mechanical Pin Puller

    NASA Technical Reports Server (NTRS)

    Ngo, Son; Farley, Rodger; Devine, ED

    1991-01-01

    Reusable mechanical pin puller relatively simple spring-loaded trigger mechanism. Designed to save money and increase safety as substitute for costly and potentially dangerous pyrotechnic pin pullers used in development and testing of deployment mechanisms.

  2. Pin puller impact shock attenuation

    NASA Technical Reports Server (NTRS)

    Auclair, G. F.; Leonard, B. S.; Robbins, R. E.; Proffitt, W. L.

    1976-01-01

    Design of a pin arresting mechanism for a pyrotechnically actuated pin puller is reviewed. The investigative approach is discussed and the impact shock test results for various candidate designs are presented. The selected pin arresting design reduced the peak value of the shock response spectrum by five to one.

  3. Lever-Arm Pin Puller

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1994-01-01

    Mechanism holds retaining pins in place except when actuated to release pins quickly. Mechanism is integral part of cover designed to be removed with simple downward motion of hand. Before removal, mechanism secures cover in place. After removal, mechanism holds retaining pins for reuse.

  4. Lightweight Memory-Metal Pin Puller

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.; Johnson, Michael R.; Johnson, A. David

    1991-01-01

    Memory-metal pin puller designed for use in aperture-cover mechanism of camera aboard spacecraft adapted to small-volume instrument environments that must be kept free of contamination. Includes memory-metal wires pulling pin when heated. Small and light in weight, uses relatively simple electronic drive circuitry consisting of timed source of current. Adapted to operate at cryogenic temperatures and in vacuum as well as in normal-temperature environment, cycled large number of times without degradation of performance.

  5. Choked flow effects in the NSI driven pin puller

    NASA Technical Reports Server (NTRS)

    Gonthier, Keith A.; Powers, Joseph M.

    1994-01-01

    This paper presents an analysis for pyrotechnic combustion and pin motion in the NASA Standard Initiator (NSI) actuated pin puller. The conservation principles and constitutive relations for a multi-phase system are posed and reduced to a set of eight ordinary differential equations which are solved to predict the system performance. The model tracks the interactions of the unreacted, incompressible solid pyrotechnic, incompressible condensed phase combustion products, and gas phase combustion products. The model accounts for multiple pyrotechnic grains, variable burn surface area, and combustion product mass flow rates through an orifice located within the device. Pressure-time predictions compare favorably with experimental data. Results showing model sensitivity to changes in the cross-sectional area of the orifice are presented.

  6. Pyrotechnic modeling for the NSI and pin puller

    NASA Technical Reports Server (NTRS)

    Powers, Joseph M.; Gonthier, Keith A.

    1993-01-01

    A discussion concerning the modeling of pyrotechnically driven actuators is presented in viewgraph format. The following topics are discussed: literature search, constitutive data for full-scale model, simple deterministic model, observed phenomena, and results from simple model.

  7. NIH Abroad: Pictures Are Crowd Pullers

    MedlinePlus

    ... Pictures Are Crowd Pullers …" Art, culture, and the Internet combine to intervene against malaria in Uganda NLM's ... Services Division collaborated on the project through the Internet. "We wanted to see if such a 'health ...

  8. Design of a smart bidirectional actuator for space operation

    NASA Astrophysics Data System (ADS)

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarbini, Marco; Magni, Marianna; Biffi, Carlo Alberto; Tuissi, Ausonio

    2017-03-01

    A common need for space borne instruments, satellites and planetary exploration payloads is the usage of compact, light and low power actuators. In the recent years, this need has been partially solved by the development of customized solutions with an increasing usage of smart materials. A linear bidirectional actuator based on shape memory alloy technology is presented in this work. The device has been conceived to lock the double-pendulum scanning mechanism of a miniaturized Fourier transform spectrometer for planetary observation. The mechanism class is that of pin pullers, with the pin locking the movable components of the spectrometer during launch and landing phases. The proposed mechanism, differently from available off-the-shelf devices, allows multiple actuations without the need of manual resetting. Moreover, the device requires to be powered only to change its status. An appealing feature of the adopted concept is that the actuation is intrinsically shock-less, a key requirement for deployment of devices sensitive to mechanical vibration and shocks. All these characteristics, in addition to the design flexibility of the proposed concept in terms of achievable forces and strokes, make the designed actuator promising for many different applications, from space to ground. The designed bidirectional actuator provides 0.6 mm stroke and a 50 N preload but it represents just an example of implementation for the proposed concept. Structural design of the functional elastic components and SMA alloy characterization have guided the actuator development. A mockup of the actuator has been manufactured and the predicted performances preliminary validated.

  9. A new moving-coil microelectrode puller.

    PubMed

    Ensor, D R

    1979-03-01

    This paper describes an improved electrode puller for the manufacture of glass microelectrodes or micropipettes. The instrument resembles a conventional horizontal two-stage, solenoid-powered electrode puller but the pull is now developed by a light moving-coil and a fixed permanent magnet, using the principle of the moving-coil loudspeaker. In a conventional puller the force is generated by a solenoid with a massive moving-iron core. In this new puller the moving-coil solenoid responds much more rapidly to changing currents because of its greatly reduced inductance, and a substantial reduction in mass to 25 g, gives more acceleration from a comparable force. The sudden discharge of a capacitor bank through the coil accelerates the glass quickly during the last stage of the pull. This rapid acceleration is of importance in the formation of good electrodes with fine tips. For the prototype, an electronic control unit was constructed which allows the parameters necessary for the manufacture of electrodes to be set and regulated accurately and repeatedly, so that series of electrodes of constant shapes can be made. The length of the electrode shank may be predetermined over a wide range and tip diameters down to 0.08 micron have already been measured. The angle of the taper that supports the tip may be varied from less than 1 to over 6 degrees. The mechanical design of the instrument is comparatively simple, as it has only one moving part, while the relative complexity of the electronic control section should not present any manufacturing difficulties. Although this puller has been used mainly to make single-barrel fine electrodes from borosilicate glass, it is adaptable for other purposes. The extent of the control over the shape of the shank of the electrode renders it particularly suitable for the manufacture of composite, ion-sensitive electrodes.

  10. Pin-Retraction Mechanism On Quick-Release Cover

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1994-01-01

    Quick-release cover includes pin-retraction mechanism releasing cover quickly from lower of two sets of pin connections holding cover. Cover released at top by pulling lever as described in "Lever-Arm Pin Puller" (NPO-18788). Removal of cover begins when technician or robot pulls upper-pin-release lever. Cover swings downward until tabs on lower pins are pulled through slots in their receptacles. Lower pins are then free.

  11. Controlling flow in microfluidic channels with a manually actuated pin valve.

    PubMed

    Brett, Marie-Elena; Zhao, Shuping; Stoia, Jonathan L; Eddington, David T

    2011-08-01

    There is a need for a simple method to control fluid flow within microfluidic channels. To meet this need, a simple push pin with a polydimethylsiloxane (PDMS) tip has been integrated into microfluidic networks to be placed within the microchannel to obstruct flow. This new valve design can attain on/off control of fluid flow without an external power source using readily-available, low-cost materials. The valve consists of a 14 gauge (1.6 mm) one inch piece of metal tubing with a PDMS pad at the tip to achieve a fluidic seal when pressed against a microfluidic channel's substrate. The metal tubing or pin is then either manually pushed down to block or pulled up to allow fluid flow. The valve was validated using a pressure transducer and fluorescent dye to determine the breakthrough pressure the valve can withstand over multiple cycles. In the first cycle, the median value for pressure withstood by the valve was 8.8 psi with a range of 17.5-2.7 psi. The pressure the valves were able to withstand during each successive trial was lower suggesting they may be most valuable as a method to control the initial introduction of fluids into a microfluidic device. These valves can achieve flow regulation within microfluidic devices, have a small dead volume, and are simple to fabricate and use, making this technique widely suitable for a range of applications.

  12. An automated pipette puller for fabrication of glass micropipettes.

    PubMed

    Tamizhanban, R; Sreejith, K R; Jayanth, G R

    2014-05-01

    Glass micropipettes are versatile probing tools for performing micro- and nano-manipulation tasks. This paper presents the design and development of an automated pipette puller system for fabrication of glass micropipettes. The pipette puller employs a new strategy for fabrication of micropipettes that enables achieving independent control of their taper, tip diameter, and bend-angle, and also facilitates theoretical derivation of simple, approximate relationships between the pipette shape and the pulling parameters. Subsequently, the design and fabrication of the pipette puller is described, which include that of the pipette heating system, the mechanical motion stages, and the control electronics of the pipette puller. The fabricated pipette puller is experimentally evaluated to demonstrate control of the taper, tip diameter, and the bend-angle of the micropipette. Further, the dependence of the taper and tip diameter on the pulling parameters is evaluated and is shown to be in alignment with the proposed theoretical relationships.

  13. An automated pipette puller for fabrication of glass micropipettes

    NASA Astrophysics Data System (ADS)

    Tamizhanban, R.; Sreejith, K. R.; Jayanth, G. R.

    2014-05-01

    Glass micropipettes are versatile probing tools for performing micro- and nano-manipulation tasks. This paper presents the design and development of an automated pipette puller system for fabrication of glass micropipettes. The pipette puller employs a new strategy for fabrication of micropipettes that enables achieving independent control of their taper, tip diameter, and bend-angle, and also facilitates theoretical derivation of simple, approximate relationships between the pipette shape and the pulling parameters. Subsequently, the design and fabrication of the pipette puller is described, which include that of the pipette heating system, the mechanical motion stages, and the control electronics of the pipette puller. The fabricated pipette puller is experimentally evaluated to demonstrate control of the taper, tip diameter, and the bend-angle of the micropipette. Further, the dependence of the taper and tip diameter on the pulling parameters is evaluated and is shown to be in alignment with the proposed theoretical relationships.

  14. Health and Social Security Needs of Rickshaw Pullers in Ranchi.

    PubMed

    Kumar, Anant; Thomas, Joe; Wadhwa, Sonal S; Mishra, Aprajita; Dasgupta, Smita

    2016-07-01

    A significant number of "marginalized" population groups are denied their health rights, healthcare access, benefits of government health programs, and other health-related social security benefits. These population groups, particularly the rickshaw pullers of India, are vulnerable because of their poor social and economic status, migration history, lack of permanent settlements, lack of social capital, and so on. These reasons, coupled with other social-political reasons, lead to no or limited access to health services and poor health conditions. This study intends to explore and understand the context and health seeking behavior of rickshaw pullers in Ranchi, the capital city of Jharkhand state in India, with special reference to wider social determinants of health such as, access, affordability, and delivery of health services. The data was collected from 1,000 rickshaw pullers from 40 "rickshaw garages" in Ranchi. The findings of the study show that rickshaw pullers can't afford to "attach" much importance to their health due to various reasons and suffer from a variety of occupational and other illnesses. The health conditions of the rickshaw pullers are affected by poverty, negligence, illiteracy, lack of awareness and unavailability of affordable, quality health services. These are only a symptom of the larger structural issues affecting health. The study suggests that rickshaw pullers, being a marginalized and excluded population group, require special health and social security programs that include safe, affordable, and accessible services along with a special focus on health education, behavior change, and promotion of appropriate health-seeking behavior.

  15. Effective viscosity of puller-like microswimmers: a renormalization approach

    PubMed Central

    Gluzman, Simon; Karpeev, Dmitry A.; Berlyand, Leonid V.

    2013-01-01

    Effective viscosity (EV) of suspensions of puller-like microswimmers (pullers), for example Chlamydamonas algae, is difficult to measure or simulate for all swimmer concentrations. Although there are good reasons to expect that the EV of pullers is similar to that of passive suspensions, analytical determination of the passive EV for all concentrations remains unsatisfactory. At the same time, the EV of bacterial suspensions is closely linked to collective motion in these systems and is biologically significant. We develop an approach for determining analytical EV estimates at all concentrations for suspensions of pullers as well as for passive suspensions. The proposed methods are based on the ideas of renormalization group (RG) theory and construct the EV formula based on the known asymptotics for small concentrations and near the critical point (i.e. approaching dense packing). For passive suspensions, the method is verified by comparison against known theoretical results. We find that the method performs much better than an earlier RG-based technique. For pullers, the validation is done by comparing them to experiments conducted on Chlamydamonas suspensions. PMID:24068178

  16. Spring loaded beaded cable makes efficient wire puller

    NASA Technical Reports Server (NTRS)

    1965-01-01

    An efficient wire puller consists of a steel probe with a hole in one end fastened to a steel cable which is strung with metal beads compressed by spring loaded ferrules. This device allows cables to be pulled or forced around bends and elbows in pipes or tubes.

  17. Development of shape memory metal as the actuator of a fail safe mechanism

    NASA Technical Reports Server (NTRS)

    Ford, V. G.; Johnson, M. R.; Orlosky, S. D.

    1990-01-01

    A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described.

  18. Flagellar swimmers oscillate between pusher- and puller-type swimming

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Friedrich, Benjamin M.

    2015-12-01

    Self-propulsion of cellular microswimmers generates flow signatures, commonly classified as pusher and puller type, which characterize hydrodynamic interactions with other cells or boundaries. Using experimentally measured beat patterns, we compute that the flagellated green alga Chlamydomonas oscillates between pusher and puller, rendering it an approximately neutral swimmer, when averaging over its full beat cycle. Beyond a typical distance of 100 μ m from the cell, inertia attenuates oscillatory microflows. We show that hydrodynamic interactions between cells oscillate in time and are of similar magnitude as stochastic swimming fluctuations. From our analysis, we also find that the rate of hydrodynamic dissipation varies in time, which implies that flagellar beat patterns are not optimized with respect to this measure.

  19. An efficient optical fiber cable installation system using self-controlling cable pullers

    NASA Astrophysics Data System (ADS)

    Watanabe, Takanobu; Mitsuke, Hitoshi; Enami, Makoto

    1986-11-01

    In this paper, an efficient cable installation system using self-controlling cable pullers is discussed. This system is based on a computer simulation carried out to identify the cable installation system most cost efficient for conduits. These simulation results indicate that a distributed cable pulling system with a pulling force of 200 kgf can reduce cable line construction (installation and jointing) costs below that of one-end cable pulling systems. Up until now, an optical fiber cable puller with a pulling force of 200 kgf has been employed in NTT's distributed cable pulling system. Now, a self-controlling puller is being developed to improve this present puller operation. This newly developed puller can control its own pulling force and speed as well as automatically adjust the clearance between its two rubber caterpillars which arises from differences in rope or cable diameters. Its additional features of smaller size and lighter weight make it possible to set up the puller in manholes more easily. Consequently, the distributed cable pulling system employing newly developed self-controlling pullers at present appears to be the most efficient system for installing optical fiber cables in conduits.

  20. Random walk of microswimmers: puller and pusher cases

    NASA Astrophysics Data System (ADS)

    Rafai, Salima; Peyla, Philippe; Dyfcom Team

    2014-11-01

    Swimming at a micrometer scale demands particular strategies. Indeed when inertia is negligible as compared to viscous forces (i.e. Reynolds number Re is lower than unity), hydrodynamics equations are reversible in time. To achieve propulsion a low Reynolds number, swimmers must then deform in a way that is not invariant under time reversal. Here we investigate the dispersal properties of self propelled organisms by means of microscopy and cell tracking. Our systems of interest are, on the one hand, the microalga Chlamydomonas Reinhardtii, a puller-type swimmer and on the other hand, Lingulodinium polyedrum, a pusher. Both are quasi-spherical single celled alga. In the case of dilute suspensions, we show that tracked trajectories are well modelled by a correlated random walk. This process is based on short time correlations in the direction of movement called persistence. At longer times, correlations are lost and a standard random walk characterizes the trajectories. Finally we show how drag forces modify the characteristics of this particular random walk.

  1. Pip pin reliability and design

    NASA Technical Reports Server (NTRS)

    Skyles, Lane P.

    1994-01-01

    Pip pins are used in many engineering applications. Of particular interest to the aerospace industry is their use in various mechanism designs. Many payloads that fly aboard our nation's Space Shuttle have at least one actuated mechanism. Often these mechanisms incorporate pip pins in their design in order to fasten interfacing parts or joints. Pip pins are most often used when an astronaut will have a direct interface with the mechanism. This interfacing can be done during Space Shuttle mission EVA's (ExtraVehicular Activity). The main reason for incorporating pip pins is convenience and their ability to provide a quick release for interfacing parts. However, there are some issues that must be taken into account when using them in a design. These issues include documented failures and quality control problems when using substandard pip pins. A history of pip pins as they relate to the aerospace industry as well as general design features is discussed.

  2. ESD testing of the 8S actuator (u)

    SciTech Connect

    Mchugh, Douglas C

    2010-12-03

    The 8S actuator is a hot-wire initiated explosive component used to drive the W76-1 2X Acorn 1V valve. It is known to be safe from human electrostatic discharge (ESD) pin-to-pin and all pin-to-cup stimuli as well as 1 amp/1 watt safe. However low impedance (furniture) ESD stimuli applied pin-to-pin has not been evaluated. Components were tested and the results analyzed. The 8S actuator has been shown to be immune to human and severe furniture ESD, whether applied pin-to-pin or pin-to-cup.

  3. Quick-Release Pin With Lever Action

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    1995-01-01

    Lever-action quick-release pin operated more easily. Mechanism operated with gloved hand. In modified version, lever added to handle to facilitate actuation. Lever action reduces actuation force. Lever-action pin operated by squeezing on any point of moveable ends of lever and handle together between thumb and forefinger or by simply grasping and squeezing handle and lever with entire hand in more natural grasp.

  4. Pin care

    MedlinePlus

    There are different types of pin-cleaning solutions. The 2 most common solutions are: Sterile water A mixture of half normal saline and half hydrogen peroxide Use the solution that your surgeon recommends. Supplies you will need to ...

  5. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  6. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Dowel pin

    DOEpatents

    Wojcik, Thaddeus A.

    1978-01-01

    Two abutting members are locked together by reaming a hole entirely through one member and at least partly through the other, machining a circular groove in each through hole just below the surface of the member, press fitting a dowel pin having a thin wall extension on at least one end thereof into the hole in both members, a thin wall extension extending into each through hole, crimping or snapping the thin wall extension into the grooves to positively lock the dowel pin in place and, if necessary, tack welding the end of the thin-wall extension in place.

  9. Modelling of melt motion in a Czochralski crystal puller with an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Hjellming, L. N.; Walker, J. S.

    1986-12-01

    The use of matched asymptotic expansions provide analytical solutions for the bulk flow in a Czochralski crystal puller in a strong axial magnetic field. Treating the crystal as a slight electrical conductor alters the radial and axial flows driven by centrifugal pumping. The motion due to buoyancy and thermocapillarity are found by considering the temperature as a known function and solving the non-linear heat equation numerically for different magnetic field strengths and melt depths. This note presents a summary of the analysis and results that are detailed in two papers.

  10. Fully redundant mechanical release actuator

    NASA Technical Reports Server (NTRS)

    Lucy, Melvin H. (Inventor)

    1987-01-01

    A system is described for performing a mechanical release function exhibiting low shock. This system includes two pyrotechnic detents fixed mounted in opposing axial alignment within a cylindrical housing having two mechanical bellows. Two mechanical bellow assemblies, each having one end hermetically bonded to the housing and the other to the respective actuator pin extending from either end of the housing, ensure that all outgassing and contamination from the operation of the pyrotechnic devices will be contained within the housing and bellows. The pin on one end of the assembly is fixed mounted and supported, via a bolt or ball-and-socket joint so that when the charge corresponding to that pin ignites, the entire assembly will exhibit rectilinear movement, including the opposing pin providing the unlatching motion. The release detent pin is supported by a linear bearing and when its corresponding pyrotechnic charge ignites the pin is retracted within the housing producing the same unlatching motion without movement of the entire assembly, thus providing complete mechanical, electrical and pyrotechnic redundancy for the unlatching pin.

  11. Pediatric safety pin ingestion.

    PubMed

    Sarihan, H; Kaklikkaya, I; Ozcan, F

    1998-08-01

    Fifteen consecutive children with ingested safety pins were evaluated retrospectively. Eight patients were males and seven were girls. The mean age of the patients was 5.4 years ranging from 7 months to 16 years. Two of 15 patients were mentally retarded Seven safety pins ingestion were noted by parents, three older children applied with safety pin swallowing. Three infants referred with hypersalivation and swallowing difficulty. One of two mentally retarded patients had recurrent aspiration pneumonia, the other had neck abscess. These patients' lesions were detected incidentally by thoracic X-ray. Nine safety pins were at the level of the cricopharyngeus, one at the level of the aortic arch and five at the esophagogastric junction. A right esophagoscopy was used for extraction of safety pins under general anesthesia and endotracheal intubation were used. Before esophagoscopy control plain X-ray was obtained for location of safety pin. Nine safety pins were extracted by esophagoscopy. Three safety pins spontaneously and three during anesthesia induction passed through the esophagus falling down the stomach. Five of these six safety pins were spontaneously extracted without complication. However one open safety pin lodged at the duodenum and laparotomy was required. In this article, etiology and management of safety pin ingestion in children are discussed.

  12. Actuator assembly including a single axis of rotation locking member

    DOEpatents

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  13. Electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Bigham, J.

    1982-01-01

    Materials illustrating a presentation on the development of electromechanical actuators (EMA) for electric flight systems are presented. Technology issues are identified, and major steps relative to EMA development, NASA's role, and a technology procurement plan are outlined.

  14. Pin-Height Gauge

    NASA Technical Reports Server (NTRS)

    Sumrall, Daniel R.; Nichols, Vincent P.

    1992-01-01

    Gauge aligns itself and retains indication for later reading. Measuring tool indicates height of protrusion of pin from flat surface. Tool surrounds pin and holds itself square with flat surface, ensuring proper alignment and accuracy of measurement. Used in hard-to-see and hard-to-reach places. Holds indication of height until read. Metal scale slides in and out through slot in top plate. Scale value at slot gives height of pin under piston. Dimensions in inches.

  15. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  16. Straight SU-8 pins

    NASA Astrophysics Data System (ADS)

    Safavieh, R.; Pla Roca, M.; Qasaimeh, M. A.; Mirzaei, M.; Juncker, D.

    2010-05-01

    SU-8 can be patterned with high resolution, is flexible and tough. These characteristics qualify SU-8 as a material for making spotting pins for printing DNA and protein microarrays, and it can potentially replace the commonly used silicon and steel pins that are expensive, brittle in the case of silicon and can damage the substrate during the printing process. SU-8, however, accumulates large internal stress during fabrication and, as a consequence, thin and long SU-8 structures bend and coil up, which precludes using it for long, freestanding structures such as pins. Here we introduce (i) a novel fabrication process that allows the making of 30 mm long, straight spotting pins that feature (ii) a new design and surface chemistry treatments for better capillary flow control and more homogeneous spotting. A key innovation for the fabrication is a post-processing annealing step with slow temperature ramping and mechanical clamping between two identical substrates to minimize stress buildup and render it symmetric, respectively, which together yield a straight SU-8 structure. SU-8 pins fabricated using this process are compliant and resilient and can buckle without damage during printing. The pins comprise a novel flow stop valve for accurate metering of fluids, and their surface was chemically patterned to render the outside of the pin hydrophobic while the inside of the slit is hydrophilic, and the slit thus spontaneously fills when dipped into a solution while preventing droplet attachment on the outside. A single SU-8 pin was used to print 1392 protein spots in one run. SU-8 pins are inexpensive, straightforward to fabricate, robust and may be used as disposable pins for microarray fabrication. These pins serve as an illustration of the potential application of ultralow stress SU-8 for making freestanding microfabricated polymer microstructures.

  17. PINS Spectrum Identification Guide

    SciTech Connect

    A.J. Caffrey

    2012-03-01

    The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

  18. Wire Retrieves Broken Pin

    NASA Technical Reports Server (NTRS)

    Burow, G. H.

    1984-01-01

    Safety wire retains pieces of broken tool. Retrieval wire running through shaft of tool used to pull pieces of tool out of hole, should tool break during use. Safety wire concept suitable for pins subject to deflection or breakage.

  19. Spring loaded locator pin assembly

    DOEpatents

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  20. Spring loaded locator pin assembly

    DOEpatents

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  1. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  2. PINS-3X Operations

    SciTech Connect

    E.H. Seabury

    2013-09-01

    Idaho National Laboratory’s (INL’s) Portable Isotopic Neutron Spectroscopy System (PINS) non-intrusively identifies the chemical fill of munitions and sealed containers. The PINS-3X variant of the system is used to identify explosives and uses a deuterium-tritium (DT) electronic neutron generator (ENG) as the neutron source. Use of the system, including possession and use of the neutron generator and shipment of the system components requires compliance with a number of regulations. This report outlines some of these requirements as well as some of the requirements in using the system outside of INL.

  3. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  4. Retractable Trunnion Pin Mechanism

    NASA Technical Reports Server (NTRS)

    Jermstad, Wayne; Landeck, Mark

    2001-01-01

    The X-38 is a technology demonstration project for the proposed International Space Station Crew Return Vehicle. The project consists of several atmospheric flight vehicles and an unmanned spacecraft. This paper will discuss the design, development, and testing of a Retractable Trunnion Pin Mechanism used to mount the spacecraft in the payload bay of the space shuttle orbiter for launch.

  5. System Identification and Control of a Joint-Actuated Buoy

    DTIC Science & Technology

    2014-05-09

    26 5 List of Appendices Appendix A: Arduino ...IMU, wireless transmitter, and the actuators. 2.2.2 Processor An Arduino Mega 2560 was the processor of choice. It has 54 digital input/output pins...the Arduino Mega 2560 were the deciding factor in choosing this processor; no other Arduino has as many serial ports to interface with other

  6. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  7. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  8. Connector pin and method

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A (Inventor); Askew, R. Scott (Inventor)

    2011-01-01

    An electrical connector and method includes a connector and a conforming element proximate to or in contact with the mating end of the connector so as to prevent distortion of a matable end. The matable end of the connector may be of a female or male type and may be of a post, tube, blade, pin, or other configuration. An element made of conforming material, for example, an elastomer, epoxy or rubber type material, is configured and positioned in contact with the matable end of the connector, providing support during assembly to prevent distortion of the matable end. The conforming element may be rectangular, wedge, cylindrical, conical, annular, or of another configuration as required to provide support to the connector pin. The conforming element may be fastened with an adhesive to the matable end to further prevent distortion.

  9. SIMULATE-4 pin power calculations

    SciTech Connect

    Bahadir, T.; Lindahl, S. Oe

    2006-07-01

    A new pin power reconstruction module has been implemented in Studsvik Scandpower's next generation nodal code, SIMULATE-4. Heterogeneous pin powers are calculated by modulating multi-group pin powers from the sub-mesh solver of SIMULATE-4 with pin form factors from single-assembly CASMO-5 lattice calculations. The multi-group pin power model captures instantaneous spectral effects, and actinide tracking on the assembly sub-mesh describes exposure-induced pin power variations. Model details and verification tests against high order multi-assembly transport methods are presented. The accuracy of the new methods is also demonstrated by comparing SIMULATE-4 calculations with measured critical experiment pin powers. (authors)

  10. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  11. Bimaterial lattices as thermal adapters and actuators

    NASA Astrophysics Data System (ADS)

    Toropova, Marina M.; Steeves, Craig A.

    2016-11-01

    The goal of this paper is to demonstrate how anisotropic biomaterial lattices can be used in thermal actuation. Compared to other lattices with tailored thermal expansion, the anisotropy of these bimaterial lattices makes them uniquely suitable for use as thermal actuators. Each individual cell, and hence lattices consisting of such cells, can be designed with widely different predetermined coefficients of thermal expansion (CTE) in different directions, enabling complex shape changes appropriate for actuation with either passive or active control. The lattices are composed of planar non-identical cells that each consist of a skewed hexagon surrounding an irregular triangle. The cells and all members of any cell are connected to each other by pins so that they have no rotational constraints and are able to expand or contract freely. In this case, the skew angles of the hexagon and the ratio of the CTEs of the two component materials determine the overall performance of the lattice. At its boundaries, the lattice is connected to substrates by pins and configured such that the CTE between two neighboring lattice vertices coincides with the CTE of the adjacent substrate. Provided the boundary behavior of the lattice is matched to the thermal properties of the substrates, temperature changes in the structure produce thermal strains without producing any corresponding stresses. Such lattices can be used in three different ways: as adaptive elements for stress-free connection of components with different CTEs; for fine tuning of structures; and as thermally driven actuators. In this paper, we demonstrate some concepts for lattice configurations that produce thermally-driven displacements that enable several actuators: a switch, a valve and tweezers.

  12. Lightning Pin Injection Testing on MOSFETS

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  13. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  14. PIN it on auxin

    PubMed Central

    Kharshiing, Eros V; Kumar, G Pavan

    2010-01-01

    The growth and development of plants is regulated by several external and internal factors including auxin. Its distribution regulates several developmental processes in plants. Auxin molecules function as mobile signals and are involved in the spatial and temporal coordination of plant morphogenesis and in plant responses to their environment. The intercellular transport of auxin is facilitated by transport proteins and the disruption of polar auxin flow results in various developmental abnormalities. In this review, we discuss the developmental and physiological significance of over-accumulation of PIN1 auxin transport facilitator protein in tomato as seen in the enhanced polar auxin transport pct1-2 mutant. PMID:20980815

  15. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  16. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  17. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  18. Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays

    NASA Astrophysics Data System (ADS)

    Gu, Wei; Chen, Hao; Tung, Yi-Chung; Meiners, Jens-Christian; Takayama, Shuichi

    2007-01-01

    Pneumatic actuation with multilayer soft lithography enables operation of up to thousands of valves in parallel using far fewer control lines. However, it is dependent on macroscopic switches and external pressure sources that require interconnects and limit portability. The authors present a more portable and multiplexed valve actuation strategy that uses a grid of mechanically actuated Braille pins to hydraulically, rather than pneumatically, deform elastic actuation channels that act as valves. Experimental and theoretical analyses show that the key to reliable operation of the hydraulic system is the use of nonvolatile ionic liquids as the hydraulic fluid.

  19. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  20. Stepped-Pin Clevis Resists Jamming

    NASA Technical Reports Server (NTRS)

    Killgrove, T. O.

    1985-01-01

    Pin modification allows pyrotechnic release devices to operate more smoothly. New clevis pin has stepped diameters to prevent bending as it exits yoke. In contrast, conventional unstepped clevis pin bends and jams as it is withdrawn. Stepped pin design suitable for explosive and possible hammer driven pin sullers.

  1. In Situ Control of Underwater-Pinning of Organic Droplets on a Surfactant-Doped Conjugated Polymer Surface.

    PubMed

    Xu, Wei; Xu, Jian; Choi, Chang-Hwan; Yang, Eui-Hyeok

    2015-11-25

    Controlling the pinning of organic droplets on solid surfaces is of fundamental and practical interest in the field of material science and engineering, which has numerous applications such as surface cleaning, water treatment, and microfluidics. Here, a rapid in situ control of pinning and actuation of organic droplets is demonstrated on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) surfaces in an aqueous environment via an electrochemical redox process. A dramatic change of the pinning results from the transport of DBS(-) molecules between the PPy(DBS) surface and the aqueous environment, as well as from a simultaneous alternation of the surface oleophobicity to organic liquids during the redox process. This in situ control of the droplet pinning enables a stop-and-go droplet actuation, applicable to both polar and apolar organic droplets, at low voltages (∼0.9 V) with an extremely low roll-off angle (∼0.4°).

  2. Nondestrucive analysis of fuel pins

    DOEpatents

    Stepan, I.E.; Allard, N.P.; Suter, C.R.

    1972-11-03

    Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

  3. The Bowling Pin Pal Reunion

    ERIC Educational Resources Information Center

    Berman, Michele Heide

    2007-01-01

    Seeing different retrospectives, which show the progression of works by an artist during their lifetime, inspired the author to organize a retrospective showcasing a progression of student works. In November of 2005, the author and her visual art colleagues celebrated the first Bowling Pin Pal Reunion. For 30 years, the bowling pin pals have been…

  4. Plastic Clamp Retains Clevis Pin

    NASA Technical Reports Server (NTRS)

    Cortes, R. G.

    1983-01-01

    Plastic clamp requires no special installation or removal tools. Clamp slips easily over end of pin. Once engaged in groove, holds pin securely. Installed and removed easily without special tools - screwdriver or putty knife adequate for prying out of groove. Used to retain bearings, rollers pulleys, other parts that rotate. Applications include slowly and intermittently rotating parts in appliances.

  5. Shock characterization of TOAD pins

    SciTech Connect

    Weirick, L.J.; Navarro, N.J.

    1995-08-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degrees}, 60{degrees}, and 80{degrees}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degrees}C (125{degrees}F) for approximately two hours and then impacted at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degrees}C for nine weeks and then heated to 50.2{degrees}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves.

  6. Shock characterization of toad pins

    SciTech Connect

    Weirick, L.J.; Navarro, M.J.

    1996-05-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degree}, 60{degree} and 80{degree}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degree}C (125{degree}F) for approximately two hours and then impacted at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degree}C for nine weeks and then heated to 50.2{degree}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves. {copyright} {ital 1996 American Institute of Physics.}

  7. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1983-12-16

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, is described which consist of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel an/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  8. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1986-01-28

    Disclosed is an improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients. 2 figs.

  9. Fuel pin cladding

    DOEpatents

    Vaidyanathan, Swaminathan; Adamson, Martyn G.

    1986-01-01

    An improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.

  10. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  11. Biodegradable and edible gelatine actuators for use as artificial muscles

    NASA Astrophysics Data System (ADS)

    Chambers, L. D.; Winfield, J.; Ieropoulos, I.; Rossiter, J.

    2014-03-01

    The expense and use of non-recyclable materials often requires the retrieval and recovery of exploratory robots. Therefore, conventional materials such as plastics and metals in robotics can be limiting. For applications such as environmental monitoring, a fully biodegradable or edible robot may provide the optimum solution. Materials that provide power and actuation as well as biodegradability provide a compelling dimension to future robotic systems. To highlight the potential of novel biodegradable and edible materials as artificial muscles, the actuation of a biodegradable hydrogel was investigated. The fabricated gelatine based polymer gel was inexpensive, easy to handle, biodegradable and edible. The electro-mechanical performance was assessed using two contactless, parallel stainless steel electrodes immersed in 0.1M NaOH solution and fixed 40 mm apart with the strip actuator pinned directly between the electrodes. The actuation displacement in response to a bias voltage was measured over hydration/de-hydration cycles. Long term (11 days) and short term (1 hour) investigations demonstrated the bending behaviour of the swollen material in response to an electric field. Actuation voltage was low (<10 V) resulting in a slow actuation response with large displacement angles (<55 degrees). The stability of the immersed material decreased within the first hour due to swelling, however, was recovered on de-hydrating between actuations. The controlled degradation of biodegradable and edible artificial muscles could help to drive the development of environmentally friendly robotics.

  12. Automated fuel pin loading system

    DOEpatents

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  13. Automated fuel pin loading system

    DOEpatents

    Christiansen, David W.; Brown, William F.; Steffen, Jim M.

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  14. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  15. Series elastic actuators

    NASA Astrophysics Data System (ADS)

    Williamson, Matthew M.

    1995-01-01

    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  16. Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws

    DTIC Science & Technology

    2007-11-02

    5c. PROGRAM ELEMENT NUMBER I-ioh Bandwidth Actiintorv and Actuator 9clinp Iaw-, 65502F 6. AUTHOR(S) 5d. PROJECT NUMBER A. B. Cain, G. R. Raman , and E...of possible applications include the high frequency excitation for supprc~sion of flow induced resonance in weapons bay cavities (see Raman et al...systems. Adaptive high bandwidth actuators are required to adapt to changes in flow speed and conditions during flight. Raman et al. (2000) and Stanek et

  17. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-01-01

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  18. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, D.J.

    1984-05-30

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.

  19. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-02-03

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  20. Paddle-pin alinement test

    NASA Technical Reports Server (NTRS)

    Gilliam, D. M.; Foster, J. A.

    1977-01-01

    Segmented insulated test bar speeds up patch distributor paddle-pin test. Device eliminates need to disconnect cables or remove distributor. Printed circuit cable and connector reduces weight on bar, adding to tester portability.

  1. Hydraulic Actuator Project

    DTIC Science & Technology

    2003-11-01

    Hydraulic Actuator Project Stakeholder meeting held 7- 8 October in Los Angeles; 58 attendees representing aircraft and actuator OEMs, seal...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Ave., SW ,Washington,DC,20375 8 . PERFORMING ORGANIZATION REPORT...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8 -98) Prescribed by ANSI Std Z39-18 Actuator JTP: Coupon Testing Substrate

  2. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  3. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  4. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  5. 49 CFR 230.97 - Crank pins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Crank pins. 230.97 Section 230.97 Transportation... § 230.97 Crank pins. (a) General provisions. Crank pins shall be securely applied. Securing the fit of a loose crank pin by shimming, prick punching, or welding is not permitted. (b) Maintenance. Crank...

  6. 49 CFR 230.97 - Crank pins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Crank pins. 230.97 Section 230.97 Transportation... § 230.97 Crank pins. (a) General provisions. Crank pins shall be securely applied. Securing the fit of a loose crank pin by shimming, prick punching, or welding is not permitted. (b) Maintenance. Crank...

  7. 49 CFR 230.97 - Crank pins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Crank pins. 230.97 Section 230.97 Transportation... § 230.97 Crank pins. (a) General provisions. Crank pins shall be securely applied. Securing the fit of a loose crank pin by shimming, prick punching, or welding is not permitted. (b) Maintenance. Crank...

  8. 49 CFR 230.97 - Crank pins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Crank pins. 230.97 Section 230.97 Transportation... § 230.97 Crank pins. (a) General provisions. Crank pins shall be securely applied. Securing the fit of a loose crank pin by shimming, prick punching, or welding is not permitted. (b) Maintenance. Crank...

  9. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  10. Remotely controllable actuating device

    NASA Technical Reports Server (NTRS)

    McKillip, Jr., Robert M. (Inventor)

    1998-01-01

    An actuating device can change a position of an active member that remains in substantially the same position in the absence of a force of a predetermined magnitude on the active member. The actuating device comprises a shape-memory alloy actuating member for exerting a force when actuated by changing the temperature thereof, which shape-memory alloy actuating member has a portion for connection to the active member for exerting thereon a force having a magnitude at least as large as the predetermined magnitude for moving the active member to a desired position. Actuation circuitry is provided for actuating the shape-memory alloy actuating member by changing the temperature thereof only for the time necessary to move the active member to the desired position. The invention is particularly useful for changing the position of a camber-adjusting tab on a helicopter rotor blade by using two shape-memory alloy members that can act against each other to adjust dynamic properties of the rotor blade as it is rotating.

  11. Massively Redundant Electromechanical Actuators

    DTIC Science & Technology

    2014-08-30

    date of determination). DoD Controlling Office is (insert controlling DoD office). "Massively Redundant Electromechanical Actuators" August... electromechanical systems) processes are used to manufacture reliable and reproducible stators and sliders for the actuators. These processes include

  12. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  13. Macro-Fiber Composite actuated simply supported thin airfoils

    NASA Astrophysics Data System (ADS)

    Bilgen, Onur; Kochersberger, Kevin B.; Inman, Daniel J.; Ohanian, Osgar J., III

    2010-05-01

    A piezoceramic composite actuator known as Macro-Fiber Composite (MFC) is used for actuation in the design of a variable camber airfoil intended for a ducted fan aircraft. The study focuses on response characterization under aerodynamic loads for circular arc airfoils with variable pinned boundary conditions. A parametric study of fluid-structure interaction is employed to find pin locations along the chordwise direction that result in high lift generation. Wind tunnel experiments are conducted on a 1.0% thick, 127 mm chord MFC actuated bimorph airfoil that is simply supported at 5% and 50% of the chord. Aerodynamic and structural performance results are presented for a flow rate of 15 m s - 1 and a Reynolds number of 127 000. Non-linear effects due to aerodynamic and piezoceramic hysteresis are identified and discussed. A lift coefficient change of 1.46 is observed, purely due to voltage actuation. A maximum 2D L/D ratio of 17.8 is recorded through voltage excitation.

  14. Enhanced pinning in superconducting thin films with graded pinning landscapes

    NASA Astrophysics Data System (ADS)

    Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.

    2013-05-01

    A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].

  15. Membrane-less variable focus liquid lens with manual actuation

    NASA Astrophysics Data System (ADS)

    Patra, Roshan; Agarwal, Shivam; Kondaraju, Sasidhar; Bahga, Supreet Singh

    2017-04-01

    We present a tunable, membrane-less, mechanical-wetting liquid lens that can be actuated manually using a linear actuator such as screw or piston. The operation of the liquid lens is based on deforming the interface separating two immiscible liquids with different refractive indices, while pinning the three-phase contact line at the sharp edge of lens aperture. Our lens design improves upon the existing designs of mechanical-wetting lenses by eliminating the use of complex actuation mechanisms, without compromising on the optical performance. We demonstrate the operation of the liquid lens by tuning its power back and forth from negative to positive by simple rotation of a screw. We also present an analytical description of the focal length of the lens and validate it with detailed experimental measurements. Our experiments show that the focal length of the liquid lens can be tuned repeatably without any adverse effects of hysteresis and gravity.

  16. PinBus Interface Design

    SciTech Connect

    Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

    2009-12-30

    On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins’ functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

  17. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  18. Core-free rolled actuators for Braille displays using P(VDF-TrFE-CFE)

    NASA Astrophysics Data System (ADS)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Rahn, Christopher D.; Zhang, Q. M.

    2012-01-01

    Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF-TrFE-CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m-1). A novel Braille cell is designed and fabricated using six of these actuators.

  19. PVDF core-free actuator for Braille displays: design, fabrication process, and testing

    NASA Astrophysics Data System (ADS)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Gorny, Lee J.; Rahn, Christopher D.; Zhang, Q. M.

    2011-04-01

    Refreshable Braille displays require many, small diameter actuators to move the pins. The electrostrictive P(VDF-TrFECFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required of this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%). A novel Braille cell is designed and fabricated using six of these actuators.

  20. Cryogenically cooled detector pin mount

    SciTech Connect

    Hunt, Jr., William E; Chrisp, Michael P

    2014-06-03

    A focal plane assembly facilitates a molybdenum base plate being mounted to another plate made from aluminum. The molybdenum pin is an interference fit (press fit) in the aluminum base plate. An annular cut out area in the base plate forms two annular flexures.

  1. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  2. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  3. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  4. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  5. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  6. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  7. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  8. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  9. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  10. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  11. New design for a rotatory joint actuator made with shape memory alloy contractile wire

    NASA Astrophysics Data System (ADS)

    Wang, Guoping; Shahinpoor, Mohsen

    1996-05-01

    A design approach for a rotatory joint actuator using a contractile shape memory alloy (SMA) wire is presented and an example design is followed. In this example, the output torque of the actuator is 18 Newton-meters, and its angular range is 30 degrees. Compared with a SMA spring type actuating component, a SMA wire type actuating component uses less SMA material and uses less electrical energy when it is electrically powered. On the other hand, a SMA wire type actuating component must have a large SMA wire length to produce a required amount of angular rotation of the joint. When pulleys are used to arrange a lengthy SMA wire in a small space, the friction between pulleys and pins is introduced and the performance of the joint actuator is degenerated to some degree. The investigated joint actuator provides a good chance for developing powered orthoses with SMA actuators for disabled individuals. It can relieve the weight concern with hydraulic and motor-powered orthoses and the safety concern with motor-powered orthoses. When electrically powered, a SMA actuator has the disadvantage of low energy efficiency.

  12. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  13. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  14. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  15. Adjustably Preloaded Quick-Release Pin

    NASA Technical Reports Server (NTRS)

    Reimers, Harold W.

    1992-01-01

    Modified adjustable-grip-length quick-release pin holds two bodies together. Threaded shaft of pin threaded in floating nut to pretension fastener. Pin connects and disconnects rapidly and adjusted to accommodate small differences between thicknesses of nominally identical sets of parts to be attached to each other.

  16. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  17. Pinning control of chimera states

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Frasca, Mattia

    2016-08-01

    The position of the coherent and incoherent domain of a chimera state in a ring of nonlocally coupled oscillators is strongly influenced by the initial conditions, making nontrivial the problem of confining them in a specific region of the structure. In this paper we propose the use of spatial pinning to induce a chimera state where the nodes belonging to one domain, either the coherent or the incoherent, are fixed by the control action. We design two different techniques according to the dynamics to be forced in the region of pinned nodes, and validate them on FitzHugh-Nagumo and Kuramoto oscillators. Furthermore, we introduce a suitable strategy to deal with the effects of finite size in small structures.

  18. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  19. Folded dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Salaris, Claudio; DeRossi, Danilo

    2007-04-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on a couple of helical compliant electrodes alternated with a couple of helical dielectrics. The fabrication of both these configurations presents some specific drawbacks today, arising from the peculiarity of each structure. Accordingly, the availability of simpler solutions may boost the short-term use of contractile actuators in practical applications. For this purpose, a new configuration is here described. It consists of a monolithic structure made of an electroded sheet, which is folded up and compacted. The resulting device is functionally equivalent to a multi-layer stack with interdigitated electrodes. However, with respect to a stack the new configuration is advantageously not discontinuous and can be manufactured in one single phase, avoiding layer-by-layer multi-step procedures. The development and preliminary testing of prototype samples of this new actuator made of a silicone elastomer are presented here.

  20. Hydraulically actuated artificial muscles

    NASA Astrophysics Data System (ADS)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  1. Flux Pinning and Enhanced Critical Current in Magnetic Field by Artificial Pinning Centers.#

    NASA Astrophysics Data System (ADS)

    Wang, J.-Q.; Rizzo, N. D.; McCambridge, J. D.; Prober, D. E.; Motowidlo, L. R.; Zeitlin, B. A.

    1996-03-01

    Flux pinning to enhance critical currents (Jc) in type II superconductors (NbTi) in a magnetic field was studied, using nanometer sized artificial pins. From consideration of free energy and proximity effects, we compare pinning by various materials, ranging from weak superconductors (Nb), normal metals (Ti, Cu), to ferromagnets (Ni, Fe). A trade-off is found between induced superconductivity in the pin and a reduction of superconductivity in the NbTi. Thus, a normal metal can have stronger pinning than a similar-sized void. This idea is supported by our finding that Ti provides the strongest pinning in multilayer film systems. Pinning mechanisms by ferromagnetic (FM) pins are also discussed, along with results of Jc for NbTiTa wires with FM artificial pinning centers. #Support by CT Dept. Econ. Dev. Grant 94G014 and IGC-AS. *present address: Westinghouse STC, Pittsburgh, PA

  2. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  3. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J [Knoxville, TN; Lind, Randall F [Loudon, TX

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  4. Tetherless thermobiochemically actuated microgrippers

    PubMed Central

    Leong, Timothy G.; Randall, Christina L.; Benson, Bryan R.; Bassik, Noy; Stern, George M.; Gracias, David H.

    2009-01-01

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy). PMID:19139411

  5. Alignment Pins for Assembling and Disassembling Structures

    NASA Technical Reports Server (NTRS)

    Campbell, Oliver C.

    2008-01-01

    Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw

  6. Fabrication of Polyurethane Dielectric Actuators

    DTIC Science & Technology

    2005-01-01

    a summary of a 3 year Technology Investment Fund Project entitled “Dielectric Polymer Actuators for Active/ Passive Vibration Isolation”, which was...completed in March 2005. The purpose of this project was to investigate dielectric polymer materials for potential use in active/ passive vibration...devices and systems based on dielectric polymer actuators. Keywords: dielectric actuators, electroactive polymers , Technology Investment Fund 1

  7. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  8. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  9. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  10. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  11. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  12. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  13. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  14. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  15. Antibiotic-coated pins for prevention of pin-tract infection: a rabbit study.

    PubMed

    Rahimnia, A R; Abbaspour, A; Rezaei, Yadollah; Khodadadi, A; Alizadeh, A M; Mohagheghi, M A; Semeyari, H; Imani Fooladi, A A; Izadi, M; Keshavarz, P; Yasui, N

    2013-08-01

    PURPOSE. To evaluate the efficacy of antibiotic-coated pins for prevention of pin tract infection in a rabbit model. METHODS. 10 rabbits were divided into 2 groups. A unilateral external fixator was applied to the tibia with 4 self-taping 1.8-mm pins. In the test group, pins were coated with hydroxyapatite and antibiotic. In the control group, pins were not coated. All pins were then placed in Staphylococcus aureus- containing media. At postoperative day 5, all 40 pin sites were subcutaneously inoculated with S aureus. The sites were clinically examined for signs of pin tract infection. Nine days later, a piece of soft tissue around the pin site was harvested for microbiologic examination. RESULTS. In the test group, all except one pin sites appeared clean and without clinical infection, and the culture media remained clear. In the control group, all pin sites showed evidence of clinical infection and yielded positive cultures, and the culture media became dark indicating growth of S aureus. CONCLUSION. Antibiotic-coated pins were effective in preventing pin tract infection.

  16. Tool Blunts Cotter Pin Legs for Safety

    NASA Technical Reports Server (NTRS)

    Stein, J. A.; Helble, D. R.

    1982-01-01

    Jaws on new insertion tool contain upset point and anvil. Point forces cotter-pin legs into loop as it engages anvil. Cotter pin before insertion consists of loop and straight shaft composed of two legs welded together as tips. After insertion, welded legs have been shaped into loop. Tool used to prevent bent loose ends of cotter pins from scratching workers' fingers or cutting and entangling wires.

  17. Heat Exchanger With Internal Pin Elements

    DOEpatents

    Gerstmann, Joseph; Hannon, Charles L.

    2004-01-13

    A heat exchanger/heater comprising a tubular member having a fluid inlet end, a fluid outlet end and plurality of pins secured to the interior wall of the tube. Various embodiments additionally comprise a blocking member disposed concentrically inside the pins, such as a core plug or a baffle array. Also disclosed is a vapor generator employing an internally pinned tube, and a fluid-heater/heat-exchanger utilizing an outer jacket tube and fluid-side baffle elements, as well as methods for heating a fluid using an internally pinned tube.

  18. Magnetic pinning in superconductor-ferromagnet multilayers

    SciTech Connect

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  19. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  20. A double-mode piezoelectric single-crystal ultrasonic micro-actuator.

    PubMed

    Guo, Mingsen; Dong, Shuxiang; Ren, Bo; Luo, Haosu

    2010-11-01

    Ternary Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) single crystals with higher coercive field (E(C) ~9 kV/cm) and higher ferroelectric-transition temperature (T(R-T) = 108°C) were grown, and correspondingly, a double-mode piezoelectric ultrasonic micro-actuator made of PIN-PMN-PT crystal brick (5 x 1.5 x 1.32 mm) and operated in the first longitudinal and the second bending modes was developed. The ferroelectric, dielectric, electromechanical, and resonance displacement properties of the micro-actuator were characterized for miniature linear piezo-motor applications. The longitudinal displacement of the actuator is ~0.11 μm (with an applied voltage of 5 V), which is comparable to that of a multilayer piezoelectric-ceramic actuator of the same size. This crystal micro-actuator was successfully used to drive a slider moving linearly.

  1. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  2. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  3. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  4. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  5. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  6. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  7. Dissolution actuated sample container

    SciTech Connect

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  8. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  9. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  10. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  11. Shape Memory Actuator System

    DTIC Science & Technology

    1998-07-31

    The advantage in utilizing 15 shape-memory cables made of Nitinol for size reduction of the remote control actuator system is 1 Fi well suited for...a submarine environment because of its non-magnetic and corrosion resistance 17 properties. Use of thermoelastic Nitinol introduces other...problems because of the cooling and 18 resetting properties of Nitinol cables. It is therefore an important object of the present invention 19 on to

  12. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  13. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  14. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  15. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  16. Pin potential effect on vortex pinning in YBa2Cu3O7-δ films containing nanorods: Pin size effect and mixed pinning

    NASA Astrophysics Data System (ADS)

    Horide, Tomoya; Matsukida, Naoki; Ishimaru, Manabu; Kita, Ryusuke; Awaji, Satoshi; Matsumoto, Kaname

    2017-01-01

    The pin size effect and mixed pinning of nanorods and matrix defects are discussed for YBa2Cu3O7-δ films containing nanorods. BaSnO3 nanorods with a diameter of 11 nm and BaHfO3 nanorods with a diameter of 7 nm were prepared, and critical current density (Jc) and resistivity were measured in the films. When the coherence length was larger than the nanorod size at high temperatures near the critical temperature, the trapping angle and activation energy of the vortex flow depended on the nanorod diameter. At a moderate temperature of 65-77 K, the pin size effect on Jc disappeared since the coherence length became smaller than the nanorod size. At a low temperature of 20 K, the contribution from matrix pinning became comparable to that of nanorods in a high magnetic field due to the small coherence length. Thus, the temperature-dependent coherence length caused the pin potential situation to vary significantly, namely, the pin size effect and mixed pinning, which strongly affected vortex pinning in YBa2Cu3O7-δ containing nanorods.

  17. Failure Analysis of Electrical Pin Connectors

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Smith, Stephen W.; Herath, Jeffrey A.

    2008-01-01

    A study was initiated to determine the root cause of failure for circuit board electrical connection pins that failed during vibRatory testing. The circuit board is part of an unmanned space probe, and the vibratory testing was performed to ensure component survival of launch loading conditions. The results of this study show that the pins failed as a result of fatigue loading.

  18. Pinning impulsive control algorithms for complex network

    SciTech Connect

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  19. Detail of "pin" or large bolt used to assemble the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of "pin" or large bolt used to assemble the truss pieces. This "pin" is on pony truss; similar pins were used on movable span. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA

  20. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  1. Nanoscale pinning effect evaluated from deformed nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Nishiyama, Takashi; Takahashi, Koji

    2017-01-01

    Classical thermodynamics theory predicts that nanosized bubbles should disappear in a few hundred microseconds. The surprisingly long lifetime and stability of nanobubbles are therefore interesting research subjects. It has been proposed that the stability of nanobubbles arises through pinning of the three-phase contact line, which results from intrinsic nanoscale geometrical and chemical heterogeneities of the substrate. However, a definitive explanation of nanobubble stability is still lacking. In this work, we examined the stability mechanism by introducing a "pinning force." We investigated nanobubbles at a highly ordered pyrolytic graphite/pure water interface by peak force quantitative nano-mechanical mapping and estimated the pinning force and determined its maximum value. We then observed the shape of shrinking nanobubbles. Because the diameter of the shrinking nanobubbles was pinned, the height decreased and the contact angle increased. This phenomenon implies that the stability results from the pinning force, which flattens the bubble through the pinned three-phase contact line and prevents the Laplace pressure from increasing. The pinning force can also explain the metastability of coalesced nanobubbles, which have two semispherical parts that are joined to form a dumbbell-like shape. The pinning force of the semispherical parts was stronger than that of the joint region. This result demonstrates that the contact line of the semispherical parts is pinned strongly to keep the dumbbell-like shape. Furthermore, we proposed a nanobubble generation mechanism for the solvent-exchange method and explained why the pinning force of large nanobubbles was not initially at its maximum value, as it was for small nanobubbles.

  2. Nanoscale pinning effect evaluated from deformed nanobubbles.

    PubMed

    Teshima, Hideaki; Nishiyama, Takashi; Takahashi, Koji

    2017-01-07

    Classical thermodynamics theory predicts that nanosized bubbles should disappear in a few hundred microseconds. The surprisingly long lifetime and stability of nanobubbles are therefore interesting research subjects. It has been proposed that the stability of nanobubbles arises through pinning of the three-phase contact line, which results from intrinsic nanoscale geometrical and chemical heterogeneities of the substrate. However, a definitive explanation of nanobubble stability is still lacking. In this work, we examined the stability mechanism by introducing a "pinning force." We investigated nanobubbles at a highly ordered pyrolytic graphite/pure water interface by peak force quantitative nano-mechanical mapping and estimated the pinning force and determined its maximum value. We then observed the shape of shrinking nanobubbles. Because the diameter of the shrinking nanobubbles was pinned, the height decreased and the contact angle increased. This phenomenon implies that the stability results from the pinning force, which flattens the bubble through the pinned three-phase contact line and prevents the Laplace pressure from increasing. The pinning force can also explain the metastability of coalesced nanobubbles, which have two semispherical parts that are joined to form a dumbbell-like shape. The pinning force of the semispherical parts was stronger than that of the joint region. This result demonstrates that the contact line of the semispherical parts is pinned strongly to keep the dumbbell-like shape. Furthermore, we proposed a nanobubble generation mechanism for the solvent-exchange method and explained why the pinning force of large nanobubbles was not initially at its maximum value, as it was for small nanobubbles.

  3. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  4. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  5. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  6. Direct drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  7. Electrolysis-based diaphragm actuators

    NASA Astrophysics Data System (ADS)

    Pang, C.; Tai, Y.-C.; Burdick, J. W.; Andersen, R. A.

    2006-02-01

    This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 µm of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability.

  8. Pinning controllability of complex networks with community structure.

    PubMed

    Miao, Qingying; Tang, Yang; Kurths, Jürgen; Fang, Jian-an; Wong, W K

    2013-09-01

    In this paper, we study the controllability of networks with different numbers of communities and various strengths of community structure. By means of simulations, we show that the degree descending pinning scheme performs best among several considered pinning schemes under a small number of pinned nodes, while the degree ascending pinning scheme is becoming more powerful by increasing the number of pinned nodes. It is found that increasing the number of communities or reducing the strength of community structure is beneficial for the enhancement of the controllability. Moreover, it is revealed that the pinning scheme with evenly distributed pinned nodes among communities outperforms other kinds of considered pinning schemes.

  9. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  10. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  11. Erie Canal Technology: Stump Pullers

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2013-10-01

    Many years ago I saw a picture of a huge set of wheels that was used to remove tree stumps during the construction of the Erie Canal (1817-1825) and was intrigued by its use of leverage, mechanical advantage, and torque. Figure 1 is a scale model of the device based on my memory of the (lost) picture and published accounts.

  12. Erie Canal Technology: Stump Pullers

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2013-01-01

    Many years ago I saw a picture of a huge set of wheels that was used to remove tree stumps during the construction of the Erie Canal (1817-1825) and was intrigued by its use of leverage, mechanical advantage, and torque. Figure 1 is a scale model of the device based on my memory of the (lost) picture and published accounts.

  13. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  14. Motor actuated vacuum door

    NASA Astrophysics Data System (ADS)

    Hanagud, A. V.

    1986-10-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  15. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  16. Remotely-actuated biomedical switch

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1969-01-01

    Remotely-actuated biomedical switching circuit using transistors consumes no power in the off position and can be actuated by a single-frequency telemetry pulse to control implanted instrumentation. Silicon controlled rectifiers permit the circuit design which imposes zero drain on supply batteries when not in use.

  17. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  18. The problem of the open safety pin.

    PubMed

    Marsh, B R

    1975-01-01

    The open safety pin lodged in the stomach or esophagus presents a challenge to surgical judgment and technical skill. Most foreign bodies causing trouble lodge in the esophagus. Once in the stomach, uneventful passage can be expected in 80 to 90% of cases. Active intervention is reserved for those where intestinal performation is likely or where there is failure to progress. We have used the fiberesophagoscope to remove three open safety pins from the stomachs of two patients whose symptoms and threat of perforation required intervention. The microbiopsy forceps was used successfully to retrieve the open pins, but a newly developed grasping forceps for use with the fiberesophagoscope now provides a more secure hold on such foreign bodies. Rigid instruments retain their value for selected cases, but the flexible equipment now provides an important advance in the management of the open safety pin in the stomach.

  19. Nucleophosmin Interacts with PIN2/TERF1-interacting Telomerase Inhibitor 1 (PinX1) and Attenuates the PinX1 Inhibition on Telomerase Activity

    PubMed Central

    Cheung, Derek Hang-Cheong; Ho, Sai-Tim; Lau, Kwok-Fai; Jin, Rui; Wang, Ya-Nan; Kung, Hsiang-Fu; Huang, Jun-Jian; Shaw, Pang-Chui

    2017-01-01

    Telomerase activation and telomere maintenance are critical for cellular immortalization and transformation. PIN2/TERF1-interacting telomerase inhibitor 1 (PinX1) is a telomerase regulator and the aberrant expression of PinX1 causes telomere shortening. Identifying PinX1-interacting proteins is important for understanding telomere maintenance. We found that PinX1 directly interacts with nucleophosmin (NPM), a protein that has been shown to positively correlate with telomerase activity. We further showed that PinX1 acts as a linker in the association between NPM and hTERT, the catalytic subunit of telomerase. Additionally, the recruitment of NPM by PinX1 to the telomerase complex could partially attenuate the PinX1-mediated inhibition on telomerase activity. Taken together, our data reveal a novel mechanism that regulates telomerase activation through the interaction between NPM, PinX1 and the telomerase complex. PMID:28255170

  20. Open safety pin in the nasal cavity.

    PubMed

    Sen, I; Sikder, B; Sinha, R; Paul, R

    2004-04-01

    Foreign bodies in the nasal cavity are common-day occurrences in Otolaryngologic practice. But an open safety pin in nose with it' s sharp end directed towards roof is a rare incidence, and available literature is silent about this presentation; it is probably, the first of it' s kind being reported. Two cases of safety pins inside the nasal cavity, one open and the other closed, have been presented here with a brief review of literature.

  1. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure.

    PubMed

    Bennett, Tom; Brockington, Samuel F; Rothfels, Carl; Graham, Sean W; Stevenson, Dennis; Kutchan, Toni; Rolf, Megan; Thomas, Philip; Wong, Gane Ka-Shu; Leyser, Ottoline; Glover, Beverley J; Harrison, C Jill

    2014-08-01

    The plant hormone auxin is a conserved regulator of development which has been implicated in the generation of morphological novelty. PIN-FORMED1 (PIN) auxin efflux carriers are central to auxin function by regulating its distribution. PIN family members have divergent structures and cellular localizations, but the origin and evolutionary significance of this variation is unresolved. To characterize PIN family evolution, we have undertaken phylogenetic and structural analyses with a massive increase in taxon sampling over previous studies. Our phylogeny shows that following the divergence of the bryophyte and lycophyte lineages, two deep duplication events gave rise to three distinct lineages of PIN proteins in euphyllophytes. Subsequent independent radiations within each of these lineages were taxonomically asymmetric, giving rise to at least 21 clades of PIN proteins, of which 15 are revealed here for the first time. Although most PIN protein clades share a conserved canonical structure with a modular central loop domain, a small number of noncanonical clades dispersed across the phylogeny have highly divergent protein structure. We propose that PIN proteins underwent sub- and neofunctionalization with substantial modification to protein structure throughout plant evolution. Our results have important implications for plant evolution as they suggest that structurally divergent PIN proteins that arose in paralogous radiations contributed to the convergent evolution of organ systems in different land plant lineages.

  2. Computer simulation of vortex pinning in type II superconductors. II. Random point pins

    NASA Astrophysics Data System (ADS)

    Brandt, E. H.

    1983-10-01

    Pinning of vortices in a type II superconductor by randomly positioned identical point pins is simulated using the two-dimensional method described in a previous paper (Part I). The system is characterized by the vortex and pin numbers ( N v , N p ), the vortex and pin interaction ranges ( R v , R p ), and the amplitude of the pin potential A p . The computation is performed for many cases: dilute or dense, sharp or soft, attractive or repulsive, weak or strong pins, and ideal or amorphous vortex lattice. The total pinning force F as a function of the mean vortex displacement X increases first linearly (over a distance usually much smaller than the vortex spacing and than R p ) and then saturates, fluctuating about its averagebar F. We interpretbar F as the maximum pinning force j c B of a large specimen. For weak pins the prediction of Larkin and Ovchinnikov for two-dimensional collective pinning is confirmed:bar F=const·bar W/ R p c 66, wherebar W is the mean square pinning force and c 66 is the shear modulus of the vortex lattice. If the initial vortex lattice is chosen highly defective (“amorphous”) the constant is 1.3 3 times larger than for the ideal triangular lattice. This finding may explain the often observed “history effect”. The functionbar F( A p ) exhibits a jump, which for dilute, sharp, attractive pins occurs close to the “threshold value” predicted for isolated pins by Labusch. This jump reflects the onset of plastic deformation of the vortex lattice, and in some cases of vortex trapping, but is not a genuine threshold. For strong pinsbar F˜( N p bar W)1/2 approaches the direct summation limit. For both weak and strong pinning j c B is related to the mean square actual (not maximum) force of each pin. This mean square in general is not proportional to A {/p 2} but, due to relaxation of the vortex lattice, may be smaller or larger than its rigid-lattice limit. Therefore, simple power laws j c ˜ n p A {/p 2} or j c ˜ n p A p in

  3. Flux-pinning mechanism of proximity-coupled planar defects in conventional superconductors: Evidence that magnetic pinning is the dominant pinning mechanism in niobium-titanium alloy

    NASA Astrophysics Data System (ADS)

    Cooley, L. D.; Lee, P. J.; Larbalestier, D. C.

    1996-03-01

    We propose that a magnetic pinning mechanism is the dominant flux-pinning mechanism of proximity-coupled, planar defects when the field is parallel to the defect. We find compelling evidence that this pinning mechanism is responsible for the strong flux-pinning force exerted by ribbon-shaped α-Ti precipitates and artificial pins in Nb-Ti superconductors, instead of the core pinning mechanism as has been hitherto widely believed. Because the elementary pinning force fp(H) is nonmonotonic when it is optimum (i.e., when the defect thickness t and the proximity length ξN have comparable dimensions), the total pinning force Fp(H) generally does not show temperature scaling. Characteristic changes in the magnitude and shape of Fp(H) at constant T but at different t/ξN (e.g., different Nb-Ti wire diameters) are also direct consequences of the pinning mechanism. The optimum flux-pinning state is a compromise between maximizing fp and getting the highest number density of pins. For a given defect composition this state is reached when t~ξN/3, while for varying defect composition the peak Fp gets higher when ξN is made shorter. Artificial pinning center Nb-Ti wires having short ξN pins appear to be vital for obtaining high Jc at high fields because only then is the elementary pinning force optimized at small pin thicknesses which permit a high number density of vortex-pin interactions and a large bulk pinning force. We find verification of our predictions in experimental Fp(H,T,t) data obtained on special laboratory-scale artificial pinning-center Nb-Ti wires.

  4. Improved Quick-Release Pin Mechanism

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    2007-01-01

    An improved quick-release pin mechanism supplants a prior such mechanism in which the pin bears a shear load to hold two objects together. The prior mechanism, of a ball-locking design, can fail when vibrations cause balls to fall out. The load-bearing pin is an outer tube with a handle at one end (hereafter denoted the near end). Within the outer tube is a spring-loaded inner tube that includes a handle at its near end and a pivoting tab at its far end. The pin is inserted through holes in the objects to be retained and the inner tube is pushed against an offset pivot inside the outer tube to make the tab rotate outward so that it protrudes past the outer diameter of the outer tube, and the spring load maintains this configuration so that the pin cannot be withdrawn through the holes. Pushing the handles together against the spring load moves the locking tab out far enough that the tab becomes free to rotate inward. Then releasing the inner-tube handle causes the tab to be pulled into a resting position inside the outer tube. The pin can then be pulled out through the holes.

  5. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  6. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  7. Application Actuation Trade Study

    DTIC Science & Technology

    1982-01-01

    Rectifier Unit 3 1..5 37.5 Battery 40 A-Hr 1 76 75 Battery Charger 1 6.8 6.8 Static Inverter I 12.C 13.C AC Power Pelay 3 PDT 1 1.2 1.2 AC Povmr Relay 3 PD)T...Weight 0.7 pounds Total Weight 4.7 pounds Both actuators are Vowered by 28V DC brush type motors so that the system can be operated from battery pover in... DC -AC Inverter 2 34 68 Battery (2 @ 4C A-Hr) 2 75 150 AC Power Contactor 6POT 2 18 36 AC Power Contactor 6PST 2 12 24 AC Power Contactor SPST 4 1

  8. Polypyrrole actuators for tremor suppression

    NASA Astrophysics Data System (ADS)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse; West, Keld

    2003-07-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers exemplify "soft actuator" technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants for the change of length and for the stiffness change are significantly different; the stiffness change being about 10 times faster. Both force measurements and Electrochemical Quartz Crystal Microbalance measurements indicate that the actuation process is complex and involves at least two different processes. The EQCM results make it possible to formulate a hypothesis for the two different time constants: Sodium ions enter the polymer correlated with a fast mass change that probably involves a few (~4) strongly bound water molecules as well. On further reduction, about 10 additional water molecules enter the polymer in a slower process driven by osmotic pressure. Earlier work has tended to focus on achieving the maximum length change, therefore taking the time needed to include all processes. However, since the slower process described above is associated with the lowest strength of the actuator, concentrating on the faster stiffness change results in only a small reduction in the work done by the actuator. This may make actuation at higher frequencies feasible.

  9. Actuator design using electroactive polymers

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-07-01

    In order to make EAP actuators technology scalable a design methodology for polymer actuators is required. Design variables, optimization formulas and a general architecture are required as it is usual in electromagnetic or hydraulic actuators design. This will allow the development of large EAP actuators from micro-actuator units, specifically designed for a particular application. It will also help to enhance the EAP material final performance. This approach is not new, since it is found in Nature. Skeletal muscle architecture has a profound influence on muscle force-generating properties and functionality. Based on existing literature on skeletal muscle biomechanics, the Nature design philosophy is inferred. Formulas and curves employed by Nature in the design of muscles are presented. Design units such as fiber, tendon, aponeurosis, and motor units are compared with the equivalent design units to be taken into account in the design of EAP actuators. Finally a complete design methodology for the design of actuators based on multiple EAP fiber/sheets is proposed. In addition, the procedure gives an idea of the required parameters that must be clearly modeled and characterized at EAP material level prior to attempt the design of complex Electromechanical Systems based on Electroactive Polymers.

  10. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  11. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  12. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  13. Evidence of domain wall pinning in aluminum substituted cobalt ferrites

    NASA Astrophysics Data System (ADS)

    Maurya, J. C.; Janrao, P. S.; Datar, A. A.; Kanhe, N. S.; Bhoraskar, S. V.; Mathe, V. L.

    2016-08-01

    In the present work spinel structured cobalt ferrites with aluminum substitution having composition CoAlxFe2-xO4 (x=0.0, 0.1, 0.2 and 0.3) have been synthesized using chemical co-precipitation method. Their microstructural, magnetic, magnetostriction and magnetoimpedance properties have been investigated. The piezomagnetic coefficient (dλ/dH) obtained from magnetostriction data is found to enhance with 0.1 Al substitutions in place of iron which decreases with further increase of Al content. It is noticed that 0.3 Al substitutions in place of Fe introduces domain wall pinning as evidenced from magnetostriction, magnetoimpedance and dc magnetization data. It is noted that ferrites so prepared using a simple procedure are magnetostrictive in good measure and with the addition of very small amount of non-magnetic aluminum their magnetostriction has shown saturation at relatively low magnetic fields. Such magnetostrictive ferrites find their applications in magnetic sensors and actuators.

  14. The Maize PIN Gene Family of Auxin Transporters.

    PubMed

    Forestan, Cristian; Farinati, Silvia; Varotto, Serena

    2012-01-01

    Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell to cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN) and P-glycoprotein (ABCB/PGP), have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a-d) cluster, one gene homologous to AtPIN2 (ZmPIN2), three orthologs of PIN5 (ZmPIN5a-c), one gene paired with AtPIN8 (ZmPIN8), and three monocot-specific PINs (ZmPIN9, ZmPIN10a, and ZmPIN10b) were cloned and the phylogenetic relationships between early-land plants, monocots, and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the 12 maize PIN genes, 2 PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed together with protein localization and auxin accumulation patterns in normal conditions and in response to drug applications. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the shoot apical meristem and inflorescence meristem during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots.

  15. The Maize PIN Gene Family of Auxin Transporters

    PubMed Central

    Forestan, Cristian; Farinati, Silvia; Varotto, Serena

    2012-01-01

    Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell to cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN) and P-glycoprotein (ABCB/PGP), have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a–d) cluster, one gene homologous to AtPIN2 (ZmPIN2), three orthologs of PIN5 (ZmPIN5a–c), one gene paired with AtPIN8 (ZmPIN8), and three monocot-specific PINs (ZmPIN9, ZmPIN10a, and ZmPIN10b) were cloned and the phylogenetic relationships between early-land plants, monocots, and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the 12 maize PIN genes, 2 PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed together with protein localization and auxin accumulation patterns in normal conditions and in response to drug applications. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the shoot apical meristem and inflorescence meristem during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots. PMID:22639639

  16. Dynamics and Stability of Pinned-Clamped and Clamped-Pinned Cylindrical Shells Conveying Fluid

    NASA Astrophysics Data System (ADS)

    Misra, A. K.; Wong, S. S. T.; Païdoussis, M. P.

    2001-11-01

    The paper examines the dynamics and stability of fluid-conveying cylindrical shells having pinned-clamped or clamped-pinned boundary conditions, where ``pinned'' is an abbreviation for ``simply supported''. Flügge's equations are used to describe the shell motion, while the fluid-dynamic perturbation pressure is obtained utilizing the linearized potential flow theory. The solution is obtained using two methods - the travelling wave method and the Fourier-transform approach. The results obtained by both methods suggest that the negative damping of the clamped-pinned systems and positive damping of the pinned-clamped systems, observed by previous investigators for any arbitrarily small flow velocity, are simply numerical artefacts; this is reinforced by energy considerations, in which the work done by the fluid on the shell is shown to be zero. Hence, it is concluded that both systems are conservative.

  17. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  18. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  19. Radon measurements with a PIN photodiode.

    PubMed

    Martín-Martín, A; Gutiérrez-Villanueva, J L; Muñoz, J M; García-Talavera, M; Adamiec, G; Iñiguez, M P

    2006-01-01

    Silicon photodiodes are well suited to detect alphas coming from different sources as neutron reactions or radon daughters. In this work a radon in air detecting device, using an 18x18 mm silicon PIN photodiode is studied. The ionized airborne decay products formed during radon diffusion were focused by an accelerating high voltage to the PIN surface. Several conducting rings were disposed inside a cylindrical PVC vessel in such a way that they reproduced the electric field created by a punctual charge located behind PIN position. Alpha spectra coming from the neutral and ionized species deposited on the PIN surface, dominated by 218Po and 214Po progeny peaks, were recorded for varying conditions. Those include radon concentration from a Pylon source, high voltage (thousands of volts) and PIN inverse bias voltage. Different parameters such as temperature and humidity were also registered during data acquisition. The increase in the particle collection efficiency with respect to zero electric field was compared with the corresponding to a parallel plates configuration. A discussion is made in terms of the most appropriate voltages for different radon concentrations.

  20. Statistics of dislocation pinning at localized obstacles

    SciTech Connect

    Dutta, A.; Bhattacharya, M. Barat, P.

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  1. Spent fuel pin temperature PC code

    SciTech Connect

    Fischer, L.E.

    1985-03-01

    During an annual outage, a Pressurized Water Reactor (PWR) may discharge 60 or more spent fuel bundles into its storage pool. Most early PWRs were built to store 3 to 5 years of spent fuel in their pools and are beginning to exceed their capacities. One method currently being developed and licensed for expanding spent fuel storage capabilities is the dry storage of spent fuel in large casks. To reduce the probability of gross failures of fuel cladding during dry storage in casks, the fuel pin temperatures must be shown to remain within acceptable limits. LLNL has developed, for the Nuclear Regulatory Commission, a personal computer (PC) code for calculating fuel pin temperatures on the IBM PC. The code uses the Wooton-Epstein Correlation to calculate the pin temperatures and has been benchmarked against test data. An iterative type of solution is used to calculate the fuel pin temperatures for specified heat fluxes and pin configurations. The PC code is useful in performing confirmatory analyses and comparing the results with those submitted by applicants applying for storage licenses. 5 references, 2 tables.

  2. Potential of pin-by-pin SPN calculations as an industrial reference

    SciTech Connect

    Fliscounakis, M.; Girardi, E.; Courau, T.; Couyras, D.

    2012-07-01

    This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. The validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)

  3. A double tuned rail damper—increased damping at the two first pinned-pinned frequencies

    NASA Astrophysics Data System (ADS)

    Maes, J.; Sol, H.

    2003-10-01

    Railway-induced vibrations are a growing matter of environmental concern. The rapid development of transportation, the increase of vehicle speeds and vehicle weights have resulted in higher vibration levels. In the meantime vibrations that were tolerated in the past are now considered to be a nuisance. Numerous solutions have been proposed to remedy these problems. The majority only acts on a specific part of the dynamic behaviour of the track. This paper presents a possible solution to reduce the noise generated by the 'pinned-pinned' frequencies. Pinned-pinned frequencies correspond with standing waves whose nodes are positioned exactly at the sleeper supports. The two first pinned-pinned frequencies are situated approximately at 950 and 2200 Hz (UIC60-rail and sleeper spacing of 0.60 m). To attenuate these vibrations, the Department of MEMC at the VUB has developed a dynamic vibration absorber called the Double Tuned Rail Damper (DTRD). The DTRD is mounted between two sleepers on the rail and is powered by the motion of the rail. The DTRD consists of two major parts: a steel plate which is connected to the rail with an interface of an elastic layer, and a rubber mass. The two first resonance frequencies of the steel plate coincide with the targeted pinned-pinned frequencies of the rail. The rubber mass acts as a motion controller and energy absorber. Measurements at a test track of the French railway company (SNCF) have shown considerable attenuation of the envisaged pinned-pinned frequencies. The attenuation rate surpasses 5 dB/m at certain frequency bands.

  4. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  5. Analog actuator-piston memory

    NASA Technical Reports Server (NTRS)

    Sable, B. A.

    1980-01-01

    Simple analog control system of digitally controlled acuator uses 'stopped' position of actuator as 'memory' and potentiometer as sensing element during power failure to reload drive circuit to value equal to its last position preceding power loss.

  6. Acoustic actuation of bioinspired microswimmers.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2017-01-31

    Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.

  7. High torque miniature rotary actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  8. The effect of temperature on pinning mechanisms in HTS composites

    NASA Astrophysics Data System (ADS)

    Sotnikova, A. P.; Rudnev, I. A.

    2016-09-01

    Pinning mechanism in samples of second generation tapes (2G) of high-temperature superconductors (HTS) was studied The critical current and the pinning force were calculated from the magnetization curves measured in the temperature range of 4.2 - 77 K in magnetic fields up to 14 Tesla using vibration sample magnetometer. To determine the pinning mechanism the dependences of pinning force on magnetic field were constructed according to the Dew-Hughes model and Kramer's rule. The obtained dependences revealed a significant influence of the temperature on effectiveness of different types of pinning. At low temperatures the 2G HTS tapes of different manufacturers demonstrated an equal efficiency of the pinning centers but with temperature increase the differences in pinning mechanisms as well as in properties and effectiveness of the pinning centers become obvious. The influence of the pinning mechanism on the energy losses in HTS tapes was shown.

  9. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  10. Thermally actuated piston micromirror arrays

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Bright, Victor M.

    1997-07-01

    This paper reports design and characterization testing of thermally actuated piston micromirror arrays. The micromirrors were fabricated in the DARPA-sponsored MUMPs polysilicon surface micromachining process. The power averaging characteristic of thermal actuation is exploited in a novel line addressing scheme which reduces wiring for an n2 array to 2n wires. Mirror deflections were measured with a microscope laser interferometer system equipped with a vacuum chamber. Data presented includes device uniformity, frequency response, and deflection versus drive power for varied ambient pressure. Initial test results confirm that thermally actuated piston micromirrors offer several advantages over more common electrostatic designs. Thermally actuated micromirrors offer greater deflections at drive voltages compatible with CMOS circuitry. Measured thermal piston micromirror deflection versus drive voltage is nonlinear, but does not exhibit the 'snap through instability' characteristic of electrostatic devices. Operation of thermally actuated devices in rarefied ambient significantly decreases power dissipation. For a given deflection range, the power reduction facilitated by vacuum operation makes large arrays feasible. Frequency response of thermally actuated devices is limited by the ability of the device to dissipate heat, but operation at 1 kHz rates is feasible.

  11. Intrafocal pinning for distal radius metaphyseal fractures in children.

    PubMed

    Parikh, Shital N; Jain, Viral V; Youngquist, Jeffrey

    2013-06-01

    The purpose of this retrospective case control study was to evaluate the results of intrafocal pinning for distal radius metaphyseal fractures in children and to compare these results with conventional pinning. Data were collected from medical records and radiographs from patients who underwent closed reduction and percutaneous pinning for distal radius fracture in a Level I trauma center at the authors' institution between 2008 and 2010. Inclusion criteria included a dorsally angulated metaphyseal fracture without physeal involvement, an open distal radius physis, and a follow-up to radiographic union. A total of 10 patients with intrafocal pinning were compared to 26 patients with conventional pinning. Preoperatively, angulation was greater in patients who received intrafocal pinning than conventional pinning based on anteroposterior radiographs. Postoperatively, the 2 groups did not differ in angulation on either anteroposterior or lateral radiographs. One malunion and 2 pin-related complications occurred in the conventional pinning group, and 1 pin-related complication occurred in the intrafocal pinning group. The 2 groups did not differ by age, sex, side of injury, days to surgery, or initial shortening. This study affirms that the intrafocal pinning technique is an alternative to the conventional pinning technique for the stabilization of displaced metaphyseal distal radius fractures in children. Intrafocal pinning can also be used as a reduction tool for fractures that cannot be reduced by closed manipulation. The complications are comparable between the 2 techniques.

  12. A division in PIN-medicated patterning during lateral organ initiation in grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using phlyogenic and gene synteny analysis we identified an angiosperm PIN clade sister to PIN1, here termed SISter-of-PIN1 (soPIN1), which is present in all sampled angiosperms except for Brassicaceae. Additionally, we identified a conserved duplication of PIN1 in the grasses: PIN1a and PIN1b. In...

  13. PINS Testing and Modification for Explosive Identification

    SciTech Connect

    E.H. Seabury; A.J. Caffrey

    2011-09-01

    The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.

  14. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  15. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  16. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  17. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  18. Broken safety pin in bronchus - Anaesthetic considerations.

    PubMed

    Shad, Roona; Agarwal, Aditya

    2012-11-01

    Safety pins are not commonly aspirated objects in infants and form only a small fraction of all the metallic foreign body (FB) which accounts for 4.4% of all foreign bodies found in tracheobronchial tree. Bronchoscopy procedure has various complications, in addition to failure to remove FB due to its impaction, especially with metallic pointed objects ending up in open surgical removal. Infant with inhaled foreign body are always a challenge to anaesthetist. We had one such case of broken safety pin impacted in the wall of right bronchus of an infant with failure to remove on repeated attempts at rigid bronchoscopy.

  19. Broken safety pin in bronchus - Anaesthetic considerations

    PubMed Central

    Shad, Roona; Agarwal, Aditya

    2012-01-01

    Safety pins are not commonly aspirated objects in infants and form only a small fraction of all the metallic foreign body (FB) which accounts for 4.4% of all foreign bodies found in tracheobronchial tree. Bronchoscopy procedure has various complications, in addition to failure to remove FB due to its impaction, especially with metallic pointed objects ending up in open surgical removal. Infant with inhaled foreign body are always a challenge to anaesthetist. We had one such case of broken safety pin impacted in the wall of right bronchus of an infant with failure to remove on repeated attempts at rigid bronchoscopy. PMID:23325944

  20. Self-Pinning on a Liquid Surface.

    PubMed

    Antoine, C; Irvoas, J; Schwarzenberger, K; Eckert, K; Wodlei, F; Pimienta, V

    2016-02-04

    We report on the first experimental evidence of a self-pinning liquid drop on a liquid surface. This particular regime is observed for a miscible heavier oil drop (dichloromethane) deposited on an aqueous solution laden by an ionic surfactant (hexadecyltrimethylammonium bromide). Experimental characterization of the drop shape evolution coupled to particle image velocimetry points to the correlation between the drop profile and the accompanying flow field. A simple model shows that the observed pinned stage is the result of a subtle competition between oil dissolution and surfactant adsorption.

  1. Effective pinning energy landscape perturbations for propagating magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Burn, D. M.; Atkinson, D.

    2016-10-01

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping ’quasi-static’ and low damping ’dynamic’ regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated.

  2. Effective pinning energy landscape perturbations for propagating magnetic domain walls

    PubMed Central

    Burn, D. M.; Atkinson, D.

    2016-01-01

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping ’quasi-static’ and low damping ’dynamic’ regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated. PMID:27694953

  3. Effective pinning energy landscape perturbations for propagating magnetic domain walls.

    PubMed

    Burn, D M; Atkinson, D

    2016-10-03

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping 'quasi-static' and low damping 'dynamic' regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated.

  4. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    SciTech Connect

    Olson Reichhardt, Cynthia Jane; Wang, Y. L.; Xiao, Z. L.; Kwok, W. K.; Ray, Dipanjan; Reichhardt, Charles; Jankó, B.

    2016-05-31

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.

  5. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    DOE PAGES

    Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; ...

    2017-02-01

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction ofmore » the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.« less

  6. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; Kwok, W. K.; Ray, D.; Reichhardt, C.; Jankó, B.

    2017-02-01

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. We find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.

  7. Effect of the number of pins and inter-pin distance on somatosensory evoked magnetic fields following mechanical tactile stimulation.

    PubMed

    Onishi, Hideaki; Sugawara, Kazuhiro; Yamashiro, Koya; Sato, Daisuke; Suzuki, Makoto; Kirimoto, Hikari; Tamaki, Hiroyuki; Murakami, Hiroatsu; Kameyama, Shigeki

    2013-10-16

    Magnetoencephalography (MEG) recordings were collected to investigate the effect of the number of mechanical pins and inter-pin distance on somatosensory evoked magnetic fields (SEFs) following mechanical stimulation (MS). We used a 306-ch whole-head MEG system. SEFs were elicited through tactile stimuli with 1-, 2-, 3-, 4- and 8-pins using healthy participants. Tactile stimuli were applied to the tip of the right index finger. SEF following electrical stimulation of the index finger was recorded in order to compare the activity in the primary somatosensory cortex (S1) following MS. Prominent SEFs were recorded from the contralateral hemisphere approximately 54 ms (P50m) and 125 ms (P100m) after MS regardless of the number of pins. Equivalent current dipoles were located in the S1. The source activities for P50m and P100m significantly increased in tandem with the number of pins for MS. However, the increased ratios for the source activities according to the increase in the number of pins were significantly smaller than that induced by electrical stimulation, and when the number of the pins doubled from 1-pin to 2-pins, from 2-pins to 4-pins, and from 4-pins to 8-pins, S1 activities increased by only 130%. Additionally, source activities significantly increased when the inter-pin distance increased from 2.4 to 7.2 mm. The number of stimulated receptors was considered to have increased with an increase in the inter-pin distance as well as an increase in the number of pins. These findings clarified the effect of the number of pins and inter-pin distance for MS on SEFs.

  8. Attempting a classification for electrical polymeric actuators

    NASA Astrophysics Data System (ADS)

    Otero, T. F.; López Cascales, J.; Fernández-Romero, A. J.

    2007-04-01

    Polymeric actuators, electroactive polymer actuators, electromechanical polymeric actuators, artificial muscles, and other, are usual expressions to name actuators developed during the last 15-20 years based on interactions between the electric energy and polymer films. The polymeric actuators can be divided into two main fields: electromechanical actuators working by electrostatic interactions between the polymer and the applied electric fields, and electrochemomechanical actuators, or reactive actuators, working by an electrochemical reaction driven by the flowing electric current. The electromechanical actuators can be classified into electrostrictive, piezoelectric, ferroelectric, electrostatic and electrokinetic. They can include a solvent (wet) or not (dry), or they can include a salt or not. Similitude and differences related to the rate and position control or to the possibility or not to include sensing abilities are discussed.

  9. Two SMA-Actuated Miniature Mechanisms

    NASA Technical Reports Server (NTRS)

    Willey, Cliff E.

    2005-01-01

    lowtorque rotary actuation through a finite angular range. As shown here, the mechanism is used to rotate a coverlatch pin to a release position. In this case, a straight and flat SMA strip is torsionally deformed to a twist angle of about 90deg by use of a torsion bias spring. When the SMA strip is heated, it rotates to its original straight and flat condition.

  10. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  11. Jorge Rivera congratulated for spotting misplaced pin

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jorge Rivera (with microphone) shares his thoughts after receiving congratulations for his observatory powers from NASA Administrator Dan Goldin (right). A NASA external tank mechanical engineer, Rivera is the one who spotted the misplaced lock pin on Shuttle Discovery Oct. 10, shortly before the intended launch of mission STS-92, causing a scrub for safety reasons.

  12. Duodenocolic fistula due to safety pin ingestion.

    PubMed

    Cay, Ali; Imamoğlu, Mustafa; Sarihan, Haluk; Sayil, Ozgür

    2004-01-01

    The authors describe the case of a 16-month-old boy with benign duodenocolic fistula due to safety pin ingestion who presented with abdominal pain, diarrhea and weight loss. Etiology, symptomatology, diagnosis and management are discussed and the literature is reviewed. Early diagnosis and surgical management are necessary to avoid serious morbidity.

  13. Jorge Rivera congratulated for spotting misplaced pin

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jorge Rivera (center) receives a plaque and congratulations for his observatory powers from Shuttle Launch Director Mike Leinbach (right). A NASA external tank mechanical engineer, Rivera is the one who spotted the misplaced lock pin on Shuttle Discovery Oct. 10, shortly before the intended launch of mission STS-92, causing a scrub for safety reasons.

  14. Vortex pinning properties in Fe-chalcogenides

    NASA Astrophysics Data System (ADS)

    Leo, A.; Grimaldi, G.; Guarino, A.; Avitabile, F.; Nigro, A.; Galluzzi, A.; Mancusi, D.; Polichetti, M.; Pace, S.; Buchkov, K.; Nazarova, E.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.

    2015-12-01

    Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se{}1-xTe x ) and FeSe samples by current-voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, {U}0(H), whereas the activation energy as a function of temperature, U(T), is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications.

  15. Rotary pin-in-maze discriminator

    DOEpatents

    Benavides, Gilbert L.

    1997-01-01

    A discriminator apparatus and method that discriminates between a unique signal and any other (incorrect) signal. The unique signal is a sequence of events; each event can assume one of two possible event states. Given the unique signal, a maze wheel is allowed to rotate fully in one direction. Given an incorrect signal, both the maze wheel and a pin wheel lock in position.

  16. Pinned emission from ultrasmall cadmium selenide nanocrystals.

    PubMed

    Dukes, Albert D; Schreuder, Michael A; Sammons, Jessica A; McBride, James R; Smith, Nathanael J; Rosenthal, Sandra J

    2008-09-28

    We report pinning of the emission spectrum in ultrasmall CdSe nanocrystals with a diameter of 1.7 nm and smaller. It was observed that the first emission feature ceased to blueshift once the band edge absorption reached 420 nm, though the band edge absorption continued to blueshift with decreasing nanocrystal diameter.

  17. Valve for fuel pin loading system

    DOEpatents

    Christiansen, David W.

    1985-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  18. 49 CFR 230.97 - Crank pins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Crank pins. 230.97 Section 230.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Driving...

  19. Valve for fuel pin loading system

    DOEpatents

    Christiansen, D.W.

    1984-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  20. Temporary cavity created by free-flying projectiles propelled from a powder-actuated nail gun.

    PubMed

    Frank, Matthias; Schönekeß, Holger C; Jäger, Frank; Hertel, Heinz; Ekkernkamp, Axel; Bockholdt, Britta

    2012-09-01

    Nails and driving pins discharged from powder-actuated fastening tools bear some special ballistic characteristics. Compared to the usual pistol or revolver projectiles, the sectional density (S) of fastening pins is extremely high. The general prevailing opinion is that the kinetic energy delivered by fastening tools is not high enough to cause a temporary cavity. Therefore, it was the aim of this study to investigate the wound morphology due to fastening bolts discharged from a powder-actuated direct-acting nail gun (where, in contrast to modern piston-type tools, the expanding gases act directly on the fastener) using ballistic soap blocks as simulants. For test shots, a direct-acting powder-actuated nail gun which features three interchangeable barrels (caliber (cal.) 6, 8, and 10 mm) was used. The average kinetic energy was 537, 532, and 694 J for the 6-, 8-, and 10-mm cal. bolts, respectively. Test shots on the ballistic soap blocks demonstrated that free-flying projectiles discharged from direct-acting fastening tools are able to create a temporary cavity.

  1. Mechanics of Actuated Disc Cutting

    NASA Astrophysics Data System (ADS)

    Dehkhoda, Sevda; Detournay, Emmanuel

    2017-02-01

    This paper investigates the mechanics of an actuated disc cutter with the objective of determining the average forces acting on the disc as a function of the parameters characterizing its motion. The specific problem considered is that of a disc cutter revolving off-centrically at constant angular velocity around a secondary axis rigidly attached to a cartridge, which is moving at constant velocity and undercutting rock at a constant depth. This model represents an idealization of a technology that has been implemented in a number of hard rock mechanical excavators with the goal of reducing the average thrust force to be provided by the excavation equipment. By assuming perfect conformance of the rock with the actuated disc as well as a prescribed motion of the disc (perfectly rigid machine), the evolution of the contact surface between the disc and the rock during one actuation of the disc can be computed. Coupled with simple cutter/rock interaction models that embody either a ductile or a brittle mode of fragmentation, these kinematical considerations lead to an estimate of the average force on the cartridge and of the partitioning of the energy imparted by the disc to the rock between the actuation mechanism of the disc and the translation of the cartridge on which the actuated disc is attached.

  2. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  3. 8. DETAIL VIEW OF PIN CONNECTION, NORTH WEB, SHOWING FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF PIN CONNECTION, NORTH WEB, SHOWING FLOOR BEAM, STRINGERS, LATTICE BRACING, EYEBARS, AND PIN, LOOKING SOUTH - Four Mile Bridge, Spanning Elk River on County Road 42, Steamboat Springs, Routt County, CO

  4. Vortex creep and thermal depinning within strong pinning theory

    NASA Astrophysics Data System (ADS)

    Willa, Roland; Buchacek, Martin; Geshkenbein, Vadim B.; Blatter, Gianni

    Vortex pinning in type-II superconductors can occur through the collective action of many pins (weak collective pinning scenario) or through plastic deformations induced by a low density of defects (strong pinning scenario). For the latter case, a new formalism has recently be developed to provide a quantitative link between the microscopic pinning landscape and experimentally accessible quantities describing pinning on a macroscopic level. Examples are the critical current density jc, the I- V characteristics, or the ac Campbell length λC. Inspired by the original work of Larkin and Brazovskii on density wave pinning, we have extended the strong pinning formalism to account for thermal depinning of flux lines and vortex creep.

  5. Nanowall pinning for enhanced pinning force in YBCO films with nanofabricated structures

    NASA Astrophysics Data System (ADS)

    Palau, A.; Rouco, V.; Luccas, R. F.; Obradors, X.; Puig, T.

    2014-11-01

    High resolution nanofabrication tools (Focused Ion Beam and Electron Beam Lithography) have been used to fabricate nano-metric milled structures in high critical current YBCO thin films able to further increase their vortex pinning capabilities. We have demonstrated that pinning forces at 77 K and 3 T are increased by a 70-80% by proper nanostructure designs. Model systems with linear trenches and triangular blind antidots of different sizes, distribution and density have been generated and studied. We demonstrate that specific milled nanostructures can increase the total current through the system at expenses of a limited decrease of cross section. We have identified the length of fabricated nano-walls as the main parameter controlling the pinning potential of nanostructures and thus defined the optimised milling conditions and nanostructure morphology to maximise pinning efficiency.

  6. Formation of Ceramic Nanoparticle Patterns Using Electrohydrodynamic Jet Printing with Pin-to-Pin Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Young; Yu, Jae-Hun; Shin, Yun-Soo; Park, Dongho; Yu, Tae-U.; Hwang, Jungho

    2008-03-01

    As one of the direct write technologies, electrohydrodynamic jet printing was used in obtaining fine ceramic lines. We used pin electrodes of various diameters, each of which was located below the substrate, and analyzed the effects of pin diameter on Al2O3 nanoparticle one- and two-dimensional patterns formed with pin (nozzle)-to-pin (ground) electrodes. The onset voltage required to start the formation of a pattern for a 1-µm-diameter electrode was fourfold lower than the voltage required for a 1000-µm-diameter electrode. Additionally, an Al2O3 nanoparticle pattern with a uniform width as fine as 25 µm was obtained despite using the very large diameter of the nozzle (920 µm) used.

  7. Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays

    SciTech Connect

    Siw, Sin Chien; Chyu, Minking K.; Shih, Tom I. -P.; Alvin, Mary Anne

    2012-01-01

    Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W=76.2 mm, E=25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D=6.35 mm=¼E, three different pin-fin height-to-diameter ratios, H/D=4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D=0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D=1, i.e., H/D=3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D=0 and C/D=2, i.e., H/D=4 or 2, respectively.

  8. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition

    PubMed Central

    Keuskamp, Diederik H.; Pollmann, Stephan; Voesenek, Laurentius A. C. J.; Peeters, Anton J. M.; Pierik, Ronald

    2010-01-01

    Plants grow in dense vegetations at the risk of being out-competed by neighbors. To increase their competitive power, plants display adaptive responses, such as rapid shoot elongation (shade avoidance) to consolidate light capture. These responses are induced upon detection of proximate neighbors through perception of the reduced ratio between red (R) and far-red (FR) light that is typical for dense vegetations. The plant hormone auxin is a central regulator of plant development and plasticity, but until now it has been unknown how auxin transport is controlled to regulate shade-avoidance responses. Here, we show that low R:FR detection changes the cellular location of the PIN-FORMED 3 (PIN3) protein, a regulator of auxin efflux, in Arabidopsis seedlings. As a result, auxin levels in the elongating hypocotyls are increased under low R:FR. Seedlings of the pin3-3 mutant lack this low R:FR-induced increase of endogenous auxin in the hypocotyl and, accordingly, have no elongation response to low R:FR. We hypothesize that low R:FR-induced stimulation of auxin biosynthesis drives the regulation of PIN3, thus allowing shade avoidance to occur. The adaptive significance of PIN3-mediated control of shade-avoidance is shown in plant competition studies. It was found that pin3 mutants are outcompeted by wild-type neighbors who suppress fitness of pin3-3 by 40%. We conclude that low R:FR modulates the auxin distribution by a change in the cellular location of PIN3, and that this control can be of great importance for plants growing in dense vegetations. PMID:21149713

  9. Solar Sail Control Actuator Concepts

    NASA Technical Reports Server (NTRS)

    Mangus, David; Heaton, Andy

    2004-01-01

    The thrust produced by a solar sail is a direct function of its attitude. Thus, solar sail thrust vector control is a key technology that must be developed for sailcraft to become a viable form of deep-space transportation. The solar sail community has been studying various sail Attitude Control System (ACS) actuator designs for near Earth orbit as well as deep space missions. These actuators include vanes, spreader bars, two-axis gimbals, floating/locking gimbals with wheels, and translating masses. This paper documents the various concepts and performs an assessment at the highest level. This paper will only compare the various ACS actuator concepts as they stand at the publication time. This is not an endorsement of any particular concept. As concepts mature, the assessments will change.

  10. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  11. A Parylene Bellows Electrochemical Actuator

    PubMed Central

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2011-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized through a careful examination of geometrical factors. Overall, a maximum pump efficiency of 90% was achieved in the case of electroplated electrodes, and a deflection of over 1.5 mm was demonstrated. Real-time wireless operation was achieved. The complete fabrication process and the materials used in this actuator are bio-compatible, which makes it suitable for biological and medical applications. PMID:21318081

  12. Pin Load Control Applied to Retractable Pin Tool Technology and Its Characterization

    NASA Technical Reports Server (NTRS)

    Olegoetz, P.

    1999-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase IIA RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  13. Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter

    2000-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893.507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  14. Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A.

    2000-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  15. Detail of "pin" or large bolt used to assemble the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of "pin" or large bolt used to assemble the truss pieces. This "pin" is on pony truss; similar pins were used on movable span. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  16. 21 CFR 872.3740 - Retentive and splinting pin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retentive and splinting pin. 872.3740 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3740 Retentive and splinting pin. (a) Identification. A retentive and splinting pin is a device made of austenitic alloys or alloys containing...

  17. 21 CFR 872.3740 - Retentive and splinting pin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retentive and splinting pin. 872.3740 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3740 Retentive and splinting pin. (a) Identification. A retentive and splinting pin is a device made of austenitic alloys or alloys containing...

  18. 18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ON THE TURBINE ARE EACH EQUIPPED WITH A SHEAR PIN AND OIL PRESSURE GAUGE. IF A GATE JAMS, THE PIN SMEARS AND THE CHANGE IN OIL PRESSURE TRIGGERS AN ALARM, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  19. Functional Analysis of the Hydrophilic Loop in Intracellular Trafficking of Arabidopsis PIN-FORMED Proteins.

    PubMed

    Ganguly, Anindya; Park, Minho; Kesawat, Mahipal Singh; Cho, Hyung-Taeg

    2014-04-01

    Different PIN-FORMED proteins (PINs) contribute to intercellular and intracellular auxin transport, depending on their distinctive subcellular localizations. Arabidopsis thaliana PINs with a long hydrophilic loop (HL) (PIN1 to PIN4 and PIN7; long PINs) localize predominantly to the plasma membrane (PM), whereas short PINs (PIN5 and PIN8) localize predominantly to internal compartments. However, the subcellular localization of the short PINs has been observed mostly for PINs ectopically expressed in different cell types, and the role of the HL in PIN trafficking remains unclear. Here, we tested whether a long PIN-HL can provide its original molecular cues to a short PIN by transplanting the HL. The transplanted long PIN2-HL was sufficient for phosphorylation and PM trafficking of the chimeric PIN5:PIN2-HL but failed to provide the characteristic polarity of PIN2. Unlike previous observations, PIN5 showed clear PM localization in diverse cell types where PIN5 is natively or ectopically expressed and even polar PM localization in one cell type. Furthermore, in the root epidermis, the subcellular localization of PIN5 switched from PM to internal compartments according to the developmental stage. Our results suggest that the long PIN-HL is partially modular for the trafficking behavior of PINs and that the intracellular trafficking of PIN is plastic depending on cell type and developmental stage.

  20. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  1. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  2. Soft electrothermal actuators using silver nanowire heaters.

    PubMed

    Yao, Shanshan; Cui, Jianxun; Cui, Zheng; Zhu, Yong

    2017-03-17

    Low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible silver nanowire (AgNW) based heaters, which exhibited a fast heating rate of 18 °C s(-1) and stable heating performance with large bending. The actuators offered the largest bending angle (720°) or curvature (2.6 cm(-1)) at a very low actuation voltage (0.2 V sq(-1) or 4.5 V) among all types of bimorph actuators that have been reported to date. The actuators can be designed and fabricated in different configurations that can achieve complex patterns and shapes upon actuation. Two applications of this type of soft actuators were demonstrated towards biomimetic robotics - a crawling robot that can walk spontaneously on ratchet surfaces and a soft gripper that is capable of manipulating lightweight and delicate objects.

  3. Method and apparatus for actuating vehicle transmission

    SciTech Connect

    Ishida, H.; Ishihara, M.; Uriuhara, M.

    1988-11-15

    This patent describes a method of actuating a vehicle parallel-gear transmission having gears and an internal lever for moving shift blocks connected with shift rods and shift forks for changing gear ratios of the transmission, a hydraulically controlled select actuator operatively connected to the internal lever for moving the internal lever in a select direction, a hydraulically controlled shift actuator operatively connected to the internal lever for moving the internal lever in a shift direction substantially normal to the select direction, a hydraulically controlled clutch actuator for connecting and disconnecting a clutch of the transmission, and a common fluid discharge passage connected to fluid discharge ports of the select and shift actuators and a fluid discharge port of the clutch actuator, the select and shift actuators being alternately actuatable to effect a gear changing operation.

  4. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  5. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  6. Difference between conventional head-pin and Dispo-pin in the Sugita multipurpose head frame system.

    PubMed

    Goto, Tetsuya; Hongo, Kazuhiro

    2013-01-01

    Head fixation devices are commonly used in neurosurgical procedures and are considered essential tools for microneurosurgery. The Sugita multipurpose head frame system is one of such systems and has been used for more than 30 years worldwide. It is important to understand how to fix a patient's head with head-pins safely, because there are no numerical parameters for head-pin screwing in the Sugita frame. Recently, the Dispo-pin has been available for disposable use as a head-pin in the Sugita frame. In contrast to the conventional head-pin, the tip of the Dispo-pin is separable from the body. Although their appearance is similar, the torque for adequate fixation is different. The relationships between torque and vertical force were analyzed. The torque of the head-pin was linearly correlated with vertical force for both types of head-pin. Different conditions caused different torque increase against a specific increase of vertical force with the conventional head-pin. In contrast, torque increase against a specific increase of vertical force with the Dispo-pin was the same regardless of the situation. The torque originates from friction between the scalp and tip of the conventional head-pin. As friction is different for each patient's condition, the torque at this part is different. The friction between the tip and body of the Dispo-pin is lower than that between the scalp and tip of the head-pin. In consequence, the torque generated from the tip of the Dispo-pin is the same in each situation. It is important to understand the difference between the Dispo-pin and conventional head-pin.

  7. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  8. Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth.

    PubMed

    Xie, Xiaodong; Qin, Guangyong; Si, Ping; Luo, Zhaopeng; Gao, Junping; Chen, Xia; Zhang, Jianfeng; Wei, Pan; Xia, Qingyou; Lin, Fucheng; Yang, Jun

    2017-01-27

    The plant-specific PIN-FORMED (PIN) auxin efflux proteins have been well characterized in many plant species, where they are crucial in the regulation of auxin transport in various aspects of plant development. However, little is known about the exact roles of the PIN genes during plant development in Nicotiana species. This study investigated the PIN genes in tobacco (N. tabacum) and in two ancestral species (N. sylvestris and N. tomentosiformis). Genome-wide analysis of the N. tabacum genome identified 20 genes of the PIN family. An in-depth phylogenetic analysis of the PIN genes of N. tabacum, N. sylvestris and N. tomentosiformis was conducted. NtPIN4 expression was strongly induced by the application of exogenous IAA, but was downregulated by the application of ABA, a strigolactone analogue, and cytokinin, as well as by decapitation treatments, suggesting that the NtPIN4 expression level is likely positively regulated by auxin. Expression analysis indicated that NtPIN4 was highly expressed in tobacco stems and shoots, which was further validated through analysis of the activity of the NtPIN4 promoter. We used CRISPR-Cas9 technology to generate mutants for NtPIN4 and observed that both T0 and T1 plants had a significantly increased axillary bud growth phenotype, as compared with the wild-type plants. Therefore, NtPIN4 offers an opportunity for studying auxin-dependent branching processes.

  9. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    PubMed

    Liu, Yuan; Wei, Haichao

    2017-03-17

    Soybean is one of the most important crop plants, wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, seed coat development, these characters may be related to auxin biology. The PIN family is an essential auxin polar transport gene, but little research on soybean PINs (GmPINs) has been done, especially with respect to evolution and the differences between wild and cultivated soybean. In this study, we retrieved 23 GmPINs from the latest updated G. max genome database; six GmPINs protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPINs have been involved in segment duplication. Three pairs of GmPINs arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPINs retained similar expression patterns. All the duplicated GmPINs experienced purifying selection (Ka/Ks<1) to prevent accumulation of non-synonymous mutations and so became more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPINs were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPINs.

  10. Pre-actuation and post-actuation in control applications

    NASA Astrophysics Data System (ADS)

    Iamratanakul, Dhanakorn

    This research proposes a direct approach to solve the output-transition problem in linear systems. The objective is to find an input that changes the system output from an initial value to a final value during a specified output-transition time-interval. It is noted that the output-transition problem (i.e., changing the output of a system from one value to another) is a fundamental control problem, which appears in a wide range of flexible structure applications. When performing fast maneuvers with such flexible structures, it is critical to suppress residual vibrations (at the end of the maneuver) that cause a loss of positioning precision. For example, in disk-drive applications, read and write operations cannot be performed (before and after the output transition) if the output position is not precisely maintained at the desired track. This research studies such residual-vibration-free (rest-to-rest) output transitions, where the output is maintained at a constant value outside the output-transition time-interval. The novelty of the proposed approach is that inputs are not applied just during the output-transition time-interval; rather, inputs are also applied outside the output-transition time-interval, i.e., before the beginning of and after the end of the output-transition time-interval (these inputs are called pre-actuation and post-actuation, respectively). The advantage of using pre-actuation and post-actuation when compared to standard methods that do not use such pre- and post-actuation is studied in this research.

  11. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  12. Optimization of a magnetic disk drive actuator with small skew actuation

    NASA Astrophysics Data System (ADS)

    He, Zhimin; Ong, Eng Hong; Guo, Guoxiao

    2002-05-01

    Currently the utilization of the voice-coil motor for actuating read/write head elements in magnetic hard disk drives results in a skewed actuation, which necessitates an involved microjogging process and thus a complicated servo system. Furthermore, in perpendicular recording systems, a small skew actuation will relax the requirement on pole trimming. This article presents a magnetic hard disk drive actuator and suspension assembly with small skew actuation. In the present study, the distance from the actuator pivot to the read/write head is chosen so that the skew angle variation is minimized. After that, the suspension head is assembled to the actuator arm at a slant angle with respect to the actuator longitudinal direction to achieve an absolute small skew actuation. Finite element modeling and experimental measurements reveal that there are no significant changes of the actuator assembly dynamic performance with and without the slant angle.

  13. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented.

  14. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  15. Active Flow Control with Thermoacoustic Actuators

    DTIC Science & Technology

    2014-01-31

    dielectric barrier discharge ( DBD ) plasma actuators [4], or combustion powered actuators [5]. Compared to passive flow control techniques, such as vortex...space nor adding significant weight, which is similar to how DBD plasma actuators can be installed. 3 The sound generation mechanism, known as

  16. Influence of Through-Thickness Pinning on Composite Shear Properties

    NASA Astrophysics Data System (ADS)

    Maurin, Romain; Baley, Christophe; Cartié, Denis D. R.; Davies, Peter

    2012-12-01

    This paper describes results from tests to examine the influence of through-thickness pinning on in-plane shear behaviour, measured by tensile loading of ±45° specimens. Samples were produced by both aeronautical and marine manufacturing processes. As few previous studies have investigated pinning of marine composites these were also subjected to out-of-plane shear delamination tests. For both carbon/epoxy laminates the pins reduce the apparent in-plane shear modulus and strength. Pins modify the strain field measured by full-field image analysis, and slow damage development. A new damage mechanism, transverse pin cracking, was observed.

  17. Prevention and management of external fixator pin track sepsis.

    PubMed

    Ferreira, Nando; Marais, Leonard Charles

    2012-08-01

    Pin track-associated complications are almost universal findings with the use of external fixation. These complications are catastrophic if it leads to the failure of the bone-pin interface and could lead to pin loosening, fracture non-union and chronic osteomyelitis. Strategies proposed for the prevention and management of pin track complications are diverse and constantly changing. Prevention of external fixation pin track infection is a complex and ongoing task that requires attention to detail, meticulous surgical technique and constant vigilance.

  18. Quenched pinning and collective dislocation dynamics

    PubMed Central

    Ovaska, Markus; Laurson, Lasse; Alava, Mikko J.

    2015-01-01

    Several experiments show that crystalline solids deform in a bursty and intermittent fashion. Power-law distributed strain bursts in compression experiments of micron-sized samples, and acoustic emission energies from larger-scale specimens, are the key signatures of the underlying critical-like collective dislocation dynamics - a phenomenon that has also been seen in discrete dislocation dynamics (DDD) simulations. Here we show, by performing large-scale two-dimensional DDD simulations, that the character of the dislocation avalanche dynamics changes upon addition of sufficiently strong randomly distributed quenched pinning centres, present e.g. in many alloys as immobile solute atoms. For intermediate pinning strength, our results adhere to the scaling picture of depinning transitions, in contrast to pure systems where dislocation jamming dominates the avalanche dynamics. Still stronger disorder quenches the critical behaviour entirely. PMID:26024505

  19. Nb3Sn Artificial Pinning Microstructures

    SciTech Connect

    Dietderich, D.R.; Scanlan, R.M.

    1996-12-12

    Extension of the APC approach to Nb{sub 3}Sn requires that a second phae be incorporated into the Nb{sub 3}Sn layer. The second phase would increase pinning strength by either reducing the grain size or by the second phase pinning the flux itwelf. The following criteria for elements to be candidates for the APC approach are: (1) they must form intermetallic compounds with Cu or Sn and (2) they must have negligible solubility in Cu and Nb or they must be strong oxide formers. many of the rare earth elements satisfy these criteria. To circumvent the large strains required to produce wires with a fine distribution of the second phase, film deposition techniques have been used. Critical current densities for Nb films doped with Ti and Y are about 4,000 A/mm{sup 2} at 6T and 4.2 K.

  20. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  1. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  2. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  3. Multilayer piezoelectric stack actuator characterization

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-03-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180°C to +200°C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  4. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  5. Understanding the role of PIN1 in hepatocellular carcinoma

    PubMed Central

    Cheng, Chi-Wai; Leong, Ka-Wai; Tse, Eric

    2016-01-01

    PIN1 is a peptidyl-prolyl cis/trans isomerase that binds and catalyses isomerization of the specific motif comprising a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) in proteins. PIN1 can therefore induce conformational and functional changes of its interacting proteins that are regulated by proline-directed serine/threonine phosphorylation. Through this phosphorylation-dependent prolyl isomerization, PIN1 fine-tunes the functions of key phosphoproteins (e.g., cyclin D1, survivin, β-catenin and x-protein of hepatitis B virus) that are involved in the regulation of cell cycle progression, apoptosis, proliferation and oncogenic transformation. PIN1 has been found to be over-expressed in many cancers, including human hepatocellular carcinoma (HCC). It has been shown previously that overexpression of PIN1 contributes to the development of HCC in-vitro and in xenograft mouse model. In this review, we first discussed the aberrant transcription factor expression, miRNAs dysregulation, PIN1 gene promoter polymorphisms and phosphorylation of PIN1 as potential mechanisms underlying PIN1 overexpression in cancers. Furthermore, we also examined the role of PIN1 in HCC tumourigenesis by reviewing the interactions between PIN1 and various cellular and viral proteins that are involved in β-catenin, NOTCH, and PI3K/Akt/mTOR pathways, apoptosis, angiogenesis and epithelial-mesenchymal transition. Finally, the potential of PIN1 inhibitors as an anti-cancer therapy was explored and discussed. PMID:28018099

  6. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  7. Channelized coplanar waveguide pin-diode switches

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Simons, R. N.

    1989-01-01

    Three different types of p-i-n diode, reflective CPW switches are presented. The first two switches are the series and the shunt mounted diode switches. Each has achieved greater than 15 dB of isolation over a broad bandwidth. The third switch is a narrow band, high isolation switched filter which has achieved 19 dB of isolation. Equivalent circuits and measured performance for each switch is presented.

  8. Timing analysis of PWR fuel pin failures

    SciTech Connect

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. ); Straka, M. )

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report.

  9. Rotary pin-in-maze discriminator

    DOEpatents

    Benavides, G.L.

    1997-05-06

    A discriminator apparatus and method that discriminates between a unique signal and any other (incorrect) signal are disclosed. The unique signal is a sequence of events; each event can assume one of two possible event states. Given the unique signal, a maze wheel is allowed to rotate fully in one direction. Given an incorrect signal, both the maze wheel and a pin wheel lock in position. 4 figs.

  10. FFTF/IEM cell fuel pin removal equipment

    SciTech Connect

    Greenwell, R.K.

    1987-01-01

    This paper describes a fuel pin removal device used for pin removal from irradiated fuel assemblies at the Fast Flux Test Facility (FFTF). After irradiation in the FFTF, selected fuel assemblies are remotely disassembled in the Interim Examination and Maintenance (IEM) cell. The remote disassembly, following sodium removal, consists of slitting and removing the duct and then removing the fuel pins one-at-a-time by sliding the pins from parallel attachment rails. All pins are removed from one rail before starting on the next. The new pin removal equipment has been used very successfully on the last three fuel experiments disassembled in the IEM cell, including one assembly containing residual sodium. Pin removal time has been cut in half, and this once tedious and time-consuming activity has been turned into an almost effortless evolution.

  11. Composite flight-control actuator development

    NASA Technical Reports Server (NTRS)

    Bott, Richard; Ching, Fred

    1992-01-01

    The composite actuator is 'jam resistant', satisfying a survivability requirement for the Navy. Typically, the push-pull force needed to drive through the wound area of the composite actuator is 73 percent less than that of an all-metal actuator. In addition to improving the aircraft's combat survivability, significant weight savings were realized. The current design of the survivable, composite actuator cylinder is 36 percent lighter than that of the production steel cylinder, which equates to a 15 percent overall actuator weight savings.

  12. A bidirectional shape memory alloy folding actuator

    NASA Astrophysics Data System (ADS)

    Paik, Jamie K.; Wood, Robert J.

    2012-06-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype.

  13. Characterization and modeling of CNT based actuators

    NASA Astrophysics Data System (ADS)

    Riemenschneider, Johannes

    2009-10-01

    In order to get an understanding of the general characteristics of carbon nanotube (CNT) based actuators, the system response of the actuator was analyzed. Special techniques were developed in order to generate a reproducible characteristic measure for the material: the R-curve. In addition, the dynamic response of the system was evaluated in different states of the actuator. A model was generated to capture the general behavior of the system. Finally an actuator incorporating a solid electrolyte was built and tested, showing similar characteristics to an actuator with an aqueous electrolyte.

  14. A piezoelectric pseudo-bimorph actuator

    NASA Astrophysics Data System (ADS)

    Shi, Huaduo; Chen, Jianguo; Liu, Guoxi; Xiao, Wenlei; Dong, Shuxiang

    2013-06-01

    We report a piezoelectric pseudo-bimorph actuator, which is made of only one single plate with interdigitated electrodes on both sides and polarized alternately in longitudinal direction. Like a bimorph actuator, it can also produce a large bending actuation based on anti-symmetrically longitudinal piezoelectric d33 strain effect under an applied electric field. The presented pseudo-bimorph actuator shows much better temperature stability than conventional piezoelectric bimorph actuators from room temperature to the depolarization temperature of the material due to lacking of interface strain loss.

  15. Parallel-coupled micro-macro actuators

    SciTech Connect

    Morrell, J.B.; Salisbury, J.K.

    1998-07-01

    This paper presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the parallel-coupled micro-macro actuator, or PaCMMA. In this system, the micro-actuator is capable of high-bandwidth force control owing to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft, and increases the dynamic range of force. Performance improvement over single-actuator systems was expected in force control, impedance control, force distortion, and transient impact force reduction. Several theoretical performance limits are derived from the saturation limits of the system. A control law is presented. A prototype test bed was built and an experimental comparison was performed between this actuator concept and two single-actuator systems. A set of quantitative measures is proposed and the actuator system is evaluated against them with the following results: force bandwidth of 56 Hz, torque dynamic range of 800:1, peak torque of 1,040 mNm, and minimum torque of 1.3 mNm. Peak impact force, force distortion, and back-driven impedance of the PaCMMA system are shown to be better than either of the single-actuator configurations considered.

  16. Mars Science Laboratory Rover Actuator Thermal Design

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Liu, Yuanming; Lee, Chern-Jiin; Hendricks, Steven

    2010-01-01

    NASA will launch a 900 kg rover, part of the Mars Science Laboratory (MSL) mission, to Mars in October of 2011. The MSL rover is scheduled to land on Mars in August of 2012. The rover employs 31, electric-motor driven actuators to perform a variety of engineering and science functions including: mobility, camera pointing, telecommunications antenna steering, soil and rock sample acquisition and sample processing. This paper describes the MSL rover actuator thermal design. The actuators have stainless steel housings and planetary gearboxes that are lubricated with a "wet" lubricant. The lubricant viscosity increases with decreasing temperature. Warm-up heaters are required to bring the actuators up to temperature (above -55 C) prior to use in the cold wintertime environment of Mars (when ambient atmosphere temperatures are as cold as -113 C). Analytical thermal models of all 31 MSL actuators have been developed. The actuators have been analyzed and warm-up heaters have been designed to improve actuator performance in cold environments. Thermal hardware for the actuators has been specified, procured and installed. This paper presents actuator thermal analysis predicts, and describes the actuator thermal hardware and its operation. In addition, warm-up heater testing and thermal model correlation efforts for the Remote Sensing Mast (RSM) elevation actuator are discussed.

  17. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  18. Enhanced IPMC actuation by thermal cycling

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2012-04-01

    IPMCs are bi-polar actuators capable of large, rapid actuation in flexural configurations. The limit of actuation is defined by the maximal voltage that can be applied to the IPMC, above which electrolysis of the electrolyte and damage to the IPMC may occur. In this paper we present preliminary results that indicate how this actuation limit could be tuned and even exceeded through controlled thermal cycling of gold-plated Nafion IPMCs. Thermal cycling is used to move the centre point of the actuation stroke. Subsequent voltage stimulation actuates the structure around this new centre point. It is shown that by further thermal cycling this centre point naturally returns to its initial position. By exploiting this shape memory characteristic as part of a control system it is expected that more sophisticated IPMC actuation will be achievable.

  19. Impact of Pin-by-Pin Thermal-Hydraulic Feedback Modeling on Steady-State Core Characteristics

    SciTech Connect

    Yamamoto, Akio; Ikeno, Tsutomu

    2005-02-15

    In this paper, the effect of a pin-by-pin thermal-hydraulic feedback treatment on the core characteristics at a steady-state condition is investigated using a three-dimensional fine-mesh core calculation code. Currently, advanced nodal codes treat the inside of an assembly as homogeneous, and the temperature distribution inside a node is usually ignored. Namely, the fuel temperature is estimated from the assembly average power density, and the moderator temperature is calculated from the nodewise closed-channel model. However, the validity of a flat temperature distribution inside a node has not yet been investigated, because a three-dimensional pin-by-pin whole-core calculation must be done for comparison. A three-dimensional pin-by-pin nodal-transport code for a pressurized water reactor (PWR) core analysis, SCOPE2, was used in this study since it can directly treat the pin-by-pin feedback effect. A whole-core subchannel analysis code was developed to enhance the thermal-hydraulic capability of SCOPE2. The pin-by-pin feedback models for fuel and moderator temperature were established, and their impact on the core characteristics was investigated in a 3 x 3 multiassembly and the whole PWR core geometries. The calculations showed that modeling of the pin-by-pin temperature distribution revealed a negligible effect on core reactivity and only a slight impact on the radial peaking factor. The difference in the radial peaking factor that is exposed by the pin-by-pin temperature modeling is less than 0.005 in the test calculations.

  20. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  1. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  2. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  3. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  4. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  5. Simulating Magneto-Aerodynamic Actuator

    DTIC Science & Technology

    2007-12-20

    2005. 19. Boeuf, J.P., Lagmich, Y., Callegari, Th., and Pitchford , L.C., Electro- hydrodynamic Force and Acceleration in Surface Discharge, AIAA 2006...Plasmadynamics and Laser Award, 2004 AFRL Point of Contact Dr. Donald B. Paul , AFRL/VA WPAFB, OH 937-255-7329, met weekly. Dr. Alan Garscadden, AFRL/PR...validating database for numerical simulation of magneto-aerodynamic actuator for hypersonic flow control. Points of contact at the AFRL/VA are Dr. D. Paul

  6. Actuation performances of anisotropic gels

    NASA Astrophysics Data System (ADS)

    Nardinocchi, P.; Teresi, L.

    2016-12-01

    We investigated the actuation performances of anisotropic gels driven by mechanical and chemical stimuli, in terms of both deformation processes and stroke-curves, and distinguished between the fast response of gels before diffusion starts and the asymptotic response attained at the steady state. We also showed as the range of forces that an anisotropic hydrogel can exert when constrained is especially wide; indeed, changing fiber orientation allows us to induce shear as well as transversely isotropic extensions.

  7. Microspoiler Actuation for Guided Projectiles

    DTIC Science & Technology

    2016-01-06

    between the Georgia Institute of Technology (Georgia Tech ) and the Army Research Laboratory (ARL) for DARPA.  Objective 1: Perform Trade Studies to...required. These prototypes were fabricated at the Georgia Tech Mechanical Engineering machine shop. A detailed description of the selected actuator... Tech fabricated the projectiles according to a detailed specification of the Army-Navy Finner (30mm). Projectile manufacturing methods drew on existing

  8. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  9. Strength of the pin-bone interface of external fixation pins in the iliac crest. A biomechanical study.

    PubMed

    Liu, J; Lai, K A; Chou, Y L

    1995-01-01

    The iliac crest is a frequent insertion site for external fixation pins in treating unstable pelvic or acetabular fractures and in iliofemoral distraction for superiorly dislocated hips. The pin-bone interface is critical for the success of treatment, but studies of the iliac crest are lacking. The purpose of this study was to investigate the strength of the pin-bone interface of different pins and different insertion methods. Four types of commercial pins, Wagner pins, Orthofix cortical and cancellous screws, and AO pins, were driven into sheep iliac crests by 2 methods: the intercortical and the transcortical. Specimens were tested for pullout and bending with an Instron testing machine (Model 1343) at a extension rate of 0.02 mm/sec to failure. The results revealed that the intercortical method had a stronger pullout force than the transcortical in all types of screws (p < 0.05), probably caused by longer insertion in the bone. In the pullout tests, the Wagner pins were the strongest and the Orthofix cancellous screws were the weakest. There were no differences in bending. In the iliac crest, the intercortical method was the better way of driving pins, and the new Orthofix screws were not proven to be stronger than the Wagner pins, nor were the cancellous screws more suitable than the cortical ones.

  10. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  11. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  12. A mechanism to pin skyrmions in chiral magnets.

    PubMed

    Liu, Ye-Hua; Li, You-Quan

    2013-02-20

    We propose a mechanism to pin skyrmions in chiral magnetic thin films by introducing local maxima of magnetic exchange strength as pinning centers. The local maxima can be realized by engineering the local density of itinerant electrons. The stationary properties and the dynamical pinning and depinning processes of an isolated skyrmion around a pinning center are studied. We carry out numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equation and find a way to control the position of an isolated skyrmion in a pinning center lattice using electric current pulses. The results are verified by a Thiele equation analysis. We also find that the critical current to depin a skyrmion, which is estimated to have order of magnitude 10(7)-10(8) A m(-2), has linear dependence on the pinning strength.

  13. Contact stresses in pin-loaded orthotropic plates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.

    1984-01-01

    The effects of pin elasticity, friction, and clearance on the stresses near the hole in a pin-loaded orthotropic plate are described. The problem is modeled as a contact elasticity problem using complex variable theory, the pin and the plate being two elastic bodies interacting through contact. This modeling is in contrast to previous works which assumed that the pin is rigid or that it exerts a known cosinusoidal radial traction on the hole boundary. Neither of these approaches explicitly involves a pin. A collocation procedure and iteration were used to obtain numerical results for a variety of plate and pin elastic properties and various levels of friction and clearance. Collocation was used to enforce the boundary and iteration was used to find the contact and no-slip regions on the boundary. Details of the numerical scheme are discussed.

  14. Principles of intramedullary pin and wire fixation.

    PubMed

    Howard, P E

    1991-02-01

    Knowledge and experience in the proper use of IM pins, K-wires, and orthopedic wire is a valuable asset to the veterinarian's ability to successfully repair a variety of long bone fractures. Most long bone fractures are amenable to repair with this form of fixation. When the principles of application are violated or the implants are used when contraindicated, complications often occur. Proper use of these implants results in the successful management of complex fractures to the satisfaction of both the animal owner and the veterinarian (Fig 10).

  15. STS-92 Closeup of locking pin on ET

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- A locking pin can be seen in the background, almost as a shadow, next to the orbiter aft ET attachment. Locking pins are used to secure handrails on the platforms while work is being performed. The misplaced pin was noticed during an inspection prior to launch, causing the decision to scrub about 90 minutes before liftoff. Launch was rescheduled for Oct. 11 at 7:17 p.m.

  16. Retractable pin dual in-line package test clip

    DOEpatents

    Bandzuch, Gregory S.; Kosslow, William J.

    1996-01-01

    This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  17. Retractable pin dual in-line package test clip

    SciTech Connect

    Bandzuch, G.S.; Kosslow, W.J

    1993-12-31

    This invention is a Dual In-line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  18. Pinning synchronization of discrete dynamical networks with delay coupling

    NASA Astrophysics Data System (ADS)

    Cheng, Ranran; Peng, Mingshu; Zuo, Jun

    2016-05-01

    The purpose of this paper is to investigate the pinning synchronization analysis for nonlinear coupled delayed discrete dynamical networks with the identical or nonidentical topological structure. Based on the Lyapunov stability theory, pinning control method and linear matrix inequalities, several adaptive synchronization criteria via two kinds of pinning control method are obtained. Two examples based on Rulkov chaotic system are included to illustrate the effectiveness and verification of theoretical analysis.

  19. Pinning of a single Abrikosov vortex in superconducting Nb thin films using artificially induced pinning sites

    SciTech Connect

    Breitwisch, M.; Finnemore, D. K.

    2000-07-01

    Artificial structures were intentionally introduced into Nb films in order to study the interaction of a single Abrikosov vortex with pinning sites caused by these known defects. A vortex trapped on one of these structures or defects can be induced to move either by thermal depinning or by pushing on the vortex with a transport current in one of the films. The resulting motion, in turn, can be followed by observing the changes in the Fraunhofer-like interference pattern of a cross-strip Josephson junction having the thin film as one leg of the junction. Artificial pinning sites were successfully created by depositing Fe balls on the surface of a previously characterized thin film. Attempts to create artificial pinning sites by depressing the order parameter with a thin strip of Au on the surface of the Nb were not successful. There was no correlation between the location of trapped vortices and the location of the Au line. In a separate measurement, Lorentz-force-depinning studies for several intrinsic pinning sites in the thin film show that a transport current in the top film will depin a vortex in the top film with about one-tenth the current needed in the bottom film to depin the same vortex. (c) 2000 The American Physical Society.

  20. Pinning of a single Abrikosov vortex in superconducting Nb thin films using artificially induced pinning sites

    NASA Astrophysics Data System (ADS)

    Breitwisch, M.; Finnemore, D. K.

    2000-07-01

    Artificial structures were intentionally introduced into Nb films in order to study the interaction of a single Abrikosov vortex with pinning sites caused by these known defects. A vortex trapped on one of these structures or defects can be induced to move either by thermal depinning or by pushing on the vortex with a transport current in one of the films. The resulting motion, in turn, can be followed by observing the changes in the Fraunhofer-like interference pattern of a cross-strip Josephson junction having the thin film as one leg of the junction. Artificial pinning sites were successfully created by depositing Fe balls on the surface of a previously characterized thin film. Attempts to create artificial pinning sites by depressing the order parameter with a thin strip of Au on the surface of the Nb were not successful. There was no correlation between the location of trapped vortices and the location of the Au line. In a separate measurement, Lorentz-force-depinning studies for several intrinsic pinning sites in the thin film show that a transport current in the top film will depin a vortex in the top film with about one-tenth the current needed in the bottom film to depin the same vortex.

  1. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    SciTech Connect

    Zhang, B.; Mayhue, L.; Huria, H.; Ivanov, B.

    2012-07-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. The mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)

  2. [Ingestion of an open safety pin--challenging treatment].

    PubMed

    DeRowe, Ari; Fishman, Gadi; Avni, Hadas; Reider, Ivgeny; Ogorek, Daniel

    2003-11-01

    A 9 month old girl at the emergency room appeared with an acute onset of restlessness, drooling and suspected foreign body ingestion. An X-Ray revealed an open safety pin in the child's upper aero-digestive tract. The source of the safety pin was a "Hamsah" good luck charm that was attached to her bed. Open safety pins in the aero-digestive tract are difficult to manage and great care must be taken during removal to prevent further injury. Parents should be counseled regarding the presence of safety pins in the child's surroundings in order to prevent such hazards.

  3. Positioning and locking device for fuel pin to grid attachment

    DOEpatents

    Frick, Thomas M.; Wineman, Arthur L.

    1976-01-01

    A positioning and locking device for fuel pin to grid attachment provides an inexpensive means of positively positioning and locking the individual fuel pins which make up the driver fuel assemblies used in nuclear reactors. The device can be adapted for use with a currently used attachment grid assembly design and insures that the pins remain in their proper position throughout the in-reactor life of the assembly. This device also simplifies fuel bundle assembly in that a complete row of fuel pins can be added to the bundle during each step of assembly.

  4. Heat transfer in a fuel pin shipping container. [IDENT 1578

    SciTech Connect

    Ingham, J.G.

    1980-11-11

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33% of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.

  5. Epigallocatechin-gallate Suppresses Tumorigenesis by Directly Targeting Pin1

    SciTech Connect

    Urusova, Darya V.; Shim, Jung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Zykova, Tatyana A.; Carper, Andria; Bode, Ann M.; Dong, Zigang

    2011-09-01

    The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). The human peptidyl prolyl cis/trans isomerase (Pin1) plays a critical role in oncogenic signaling. Herein, we report the X-ray crystal structure of the Pin1/EGCG complex resolved at 1.9 Å resolution. Notably, the structure revealed the presence of EGCG in both the WW and PPIase domains of Pin1. The direct binding of EGCG with Pin1 was confirmed and the interaction inhibited Pin1 PPIase activity. In addition, proliferation of cells expressing Pin1 was inhibited and tumor growth in a xenograft mouse model was suppressed. The binding of EGCG with Arg17 in the WW domain prevented the binding of c-Jun, a well-known Pin1 substrate. EGCG treatment corresponded with a decreased abundance of cyclin D1 and diminution of 12-O-tetradecanoylphorbol-l3-acetate–induced AP-1 or NF-κB promoter activity in cells expressing Pin1. Overall, these results showed that EGCG directly suppresses the tumor-promoting effect of Pin1.

  6. An automatic detection system for flatness of integrated circuit pins

    NASA Astrophysics Data System (ADS)

    Deng, Shichao; Liu, Tiegen; Xiao, Zexin; Li, Xiuyan

    2008-12-01

    The flatness of pins is an important quality indicator for integrated circuit packaging. Almost all of the detection methods which are currently used can't be successful on efficiency and precision. In this system, the image of IC pins was captured by an properly optical systems and corresponding CCD sensor. To detect the edge of each pin, traditional algorithmic, such as Sobel operator and Roberts operator, have some disadvantages: the edge is too thick for system to accurately measure and the edge show directional character. An image segmentation and border extracting algorithm focus on the extreme of neighborhood image intensity change was adopted. The advantage of this algorithm was each pixel's neighborhood image intensity information was considered, so the algorithm is more suitable for accurately measure. After edge was extracted, how to identify the useful spots is cast as a binary classification task. The support vector machine (SVM) would be used to identify pin's spots. After proper image characteristics are obtained and a certain amount of training, SVM provides higher discrimination ratio to distinguish spots of the IC pins. To measure the flatness of pin, a particular line which can be identified easily should be put in the image as a baseline. Through calculating the distance between the pins spot and baseline, the flatness of pins is obtained accurately. In this system, the flatness of IC pins can be accurately and quickly measured, which is worthy of broad application prospect in IC packaging.

  7. Development of the Toggle Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Brown, Christopher W.

    1994-01-01

    The Toggle Deployment Mechanism (TDM) is a two fault tolerant, single point, low shock pyro/mechanical releasing device. Many forms of releasing are single fault tolerant and involve breaking of primary structure. Other releasing mechanisms, that do not break primary structure, are only pyrotechnically redundant and not mechanically redundant. The TDM contains 3 independent pyro actuators, and only one of the 3 is required for release. The 2 separating members in the TDM are held together by a toggle that is a cylindrical stem with a larger diameter spherical shape on the top and flares out in a conical shape at the bottom. The spherical end of the toggle sits in a socket with the top assembly and the bottom is held down by 3 pins or hooks equally spaced around the conical shaped end. Each of the TDM's 3 independent actuators shares a third of the separating load and does not require as much pyrotechnic energy as many single fault tolerant actuators. Other single separating actuators, i.e., separating nuts or pin pullers, have the pyrotechnic energy releasing the entire preload holding the separating members together. Two types of TDM's ,described in this paper, release the toggle with pin pullers, and the third TDM releases the toggle with hooks. Each design has different advantages and disadvantages. This paper describes the TDM's construction and testing up to the summer of 1993.

  8. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  9. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  10. Series Elastic Actuators for legged robots

    NASA Astrophysics Data System (ADS)

    Pratt, Jerry E.; Krupp, Benjamin T.

    2004-09-01

    Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.

  11. Actuation fluid adapter for hydraulically-actuated electronically-controlled fuel injector and engine using same

    DOEpatents

    Keyster, Eric S.; Merchant, Jack A.

    2002-01-01

    A fuel injector adapter consists of a block defining a pressure communication passage therethrough and an actuation fluid passage. The actuation fluid passage includes three separate branches that open through an outer surface of the block at three separate locations.

  12. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  13. Surface Control of Actuated Hybrid Space Mirrors

    DTIC Science & Technology

    2010-10-01

    precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal

  14. Advanced Actuation Systems Development. Volume 2

    DTIC Science & Technology

    1989-08-01

    servovalve was constructed with discrete high-speed solenoid valve , Ito cotroI thie flow to a control actuator, The solenoid valves were a poppet design...was constructed with discrete high-speed solenoid valves to control the flow to a control actuator. The solenoih vaIlves were a poppet design using a...controlled high-speed solenoid valves , (3) the performance evaltiation of an F- 15 rudder actuator tinder applied loads, (4) the performance

  15. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  16. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  17. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  18. Direct-drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  19. Serpentine Geometry Plasma Actuators for Flow Control

    DTIC Science & Technology

    2013-08-23

    Serpentine geometry plasma actuators for flow control Mark Riherd and Subrata Roy Citation: J. Appl. Phys. 114, 083303 (2013); doi: 10.1063...DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Serpentine geometry plasma actuators for flow control 5a. CONTRACT NUMBER 5b...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Serpentine geometry plasma actuators for flow

  20. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Xie, Xin; Livermore, Carol

    2016-12-01

    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µm and 29 µm respectively, in good agreement with analytical predictions of 17.3 µm and 34.2 µm and FEA predictions of 17.1 µm and 25.8 µm. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments.

  1. Modeling and Synthesis Methods for Retrofit Design of Submarine Actuation Systems. Energy Storage for Electric Actuators

    DTIC Science & Technology

    2011-12-15

    for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage , simulation-based design

  2. Two position optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  3. A thermokinetically driven metal-hydride actuator

    NASA Astrophysics Data System (ADS)

    Jung, Kwangmok; Kim, Kwang J.

    2008-03-01

    The purpose of this study is to develop a novel thermokinetically-driven actuator technology based on the physics of metal hydrides (MH's). A metal hydride absorbs and desorbs hydrogen due to the imposed temperature swing(s). The MH can also work as an effective thermally-driven hydrogen compressor producing more than 5,000 psia net pressure swing. The MH actuation system can be built in a simple structure, exhibits high power, produces soft actuating, and is essentially noiseless. Moreover, it is much more powerful and compact than conventional pneumatic systems that require bulky auxiliary systems. It is our belief that the MH actuators are useful for many emerging industrial, biorobotic, and civil structural applications. In this paper, we report the recent preliminary experimental results for a laboratory-prototyped MH actuation system. In particular, the dynamic response characteristics, enhanced controllability, thermodynamic performances, and reliability of the metal hydride actuator were studied in order to estimate the actuation capability of the MH actuator. A unique design of the MH actuator was created. It encases a so-called "porous metal hydride (PMH)" in the reactor to effectively achieve desirable performance by improving overall thermal conductance.

  4. Performance of dielectric elastomer actuators and materials

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Peter; Kofod, Guggi; Shridhar, M. H.; Benslimane, Mohammed; Gravesen, Peter

    2002-07-01

    Dielectric elastomer actuators performance depends on their construction and the way they are driven. We describe the governing equations for the dynamic performance of actuators and show examples of their use. Both the properties of the base elastomer material and the compliant electrodes influence the actuators performance. The mechanical and electrical properties of elastomers are discussed with a focus on an acrylate pressure sensitive adhesive from 3M, which is used by a number of groups. The influence of these properties on the actuator properties is analyzed.

  5. Dual output variable pitch turbofan actuation system

    NASA Technical Reports Server (NTRS)

    Griswold, R. H., Jr.; Broman, C. L. (Inventor)

    1976-01-01

    An improved actuating mechanism was provided for a gas turbine engine incorporating fan blades of the variable pitch variety, the actuator adapted to rotate the individual fan blades within apertures in an associated fan disc. The actuator included means such as a pair of synchronizing ring gears, one on each side of the blade shanks, and adapted to engage pinions disposed thereon. Means were provided to impart rotation to the ring gears in opposite directions to effect rotation of the blade shanks in response to a predetermined input signal. In the event of system failure, a run-away actuator was prevented by an improved braking device which arrests the mechanism.

  6. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  7. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  8. Surface micromachined sensors and actuators

    SciTech Connect

    Sniegowski, J.J.

    1995-08-01

    A description of a three-level mechanical polysilicon surface-micromachining technology including a discussion of the advantages of this level of process complexity is presented. This technology is capable of forming mechanical elements ranging from simple cantilevered beams to complex, interconnected, interactive, microactuated micromechanisms. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Additional features of the Sandia three-level process include the use of Chemical-Mechanical Polishing (CMP) for planarization, and the integration of micromechanics with the Sandia CMOS circuit process. The latter effort includes a CMOS-first, tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing. Alternatively, a novel micromechanics-first approach wherein the micromechanical devices are processed first in a well below the surface of the CMOS starting material followed by the standard, aluminum metallization CMOS process is also being pursued. Following the description of the polysilicon surface micromachining are examples of the major sensor and actuator projects based on this technology at the Microelectronics Development Laboratory (MDL) at Sandia National Laboratories. Efforts at the MDL are concentrated in the technology of surface micromachining due to the availability of and compatibility with standard CMOS processes. The primary sensors discussed are a silicon nitride membrane pressure sensor, hot polysilicon filaments for calorimetric gas sensing, and a smart hydrogen sensor. Examples of actuation mechanisms coupled to external devices are also presented. These actuators utilize the three-level process (plus an additional passive level) and employ either surface tension or electrostatic forces.

  9. Tunable microlens actuated via a thermoelectrically driven liquid heat engine

    NASA Astrophysics Data System (ADS)

    Ashtiani, Alireza Ousati; Jiang, Hongrui

    2014-06-01

    We have developed a thermally actuated liquid microlens. An embedded thermoelectric element is used to actuate the liquid based heat engine. A closed-loop system is harnessed to drive and stabilize the temperature of the heat engine. Direct contact between the thermoelectric device and the water results in greatly improved, sub-second thermal rise time (0.8 s). The water based heat engine reacts to the variation in the temperature via expansion and contraction. In turn, the shape of a pinned water-oil meniscus at a lens aperture is deformed in response to the net volume change in the water, creating a tunable microlens. A method to fabricate microfluidic devices with relatively high thickness (250-750 μm) and large length-to-depth aspect ratio (280:1) was developed and used in the process. After fabrication and thermal calibration, optical characteristic of the microlens was assessed. Back focal length of the microlens was shown to vary continuously from -19.6 mm to -6.5 mm as the temperature increased from 5 °C to 35 °C. A thin film air was further introduced to insulate the heat engine from the substrate to protect the microlens area from the temperature fluctuation of the heat engine, thus preventing the change of the refractive indices and thermally induced aberrations. Wavefront aberration measurement was conducted. Surface profile of the microlens was mapped and found to have a conical shape. Both 3-dimensional and 1-dimensional thermal models for the device structure were developed and thermal simulation of the device was performed.

  10. Single element magnetic suspension actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention, a single element magnetic suspension actuator with bidirectional force capability along a single axis, includes an electromagnet and a nonmagnetic suspended element. A permanent magnet mounted on the suspended element interacts with a magnetic field established by the electromagnet to produce bidirectional forces in response to a variable force command voltage V (sub FC) applied to the electromagnet. A sensor measures the position of the suspended element on the single axis which is a function of force command voltage V (sub FC).

  11. Flutter suppression via piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1991-01-01

    Experimental flutter results obtained from wind tunnel tests of a two degree of freedom wind tunnel model are presented for the open and closed loop systems. The wind tunnel model is a two degree of freedom system which is actuated by piezoelectric plates configured as bimorphs. The model design was based on finite element structural analyses and flutter analyses. A control law was designed based on a discrete system model; gain feedback of strain measurements was utilized in the control task. The results show a 21 pct. increase in the flutter speed.

  12. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  13. Exploring the basis of [PIN(+)] variant differences in [PSI(+)] induction.

    PubMed

    Sharma, Jaya; Liebman, Susan W

    2013-09-09

    Certain soluble proteins can form amyloid-like prion aggregates. Indeed, the same protein can make different types of aggregates, called variants. Each variant is heritable because it attracts soluble homologous protein to join its aggregate, which is then broken into seeds (propagons) and transmitted to daughter cells. [PSI(+)] and [PIN(+)] are respectively prion forms of Sup35 and Rnq1. Curiously, [PIN(+)] enhances the de novo induction of [PSI(+)]. Different [PIN(+)] variants do this to dramatically different extents. Here, we investigate the mechanism underlying this effect. Consistent with a heterologous prion cross-seeding model, different [PIN(+)] variants preferentially promoted the appearance of different variants of [PSI(+)]. However, we did not detect this specificity in vitro. Also, [PIN(+)] variant cross-seeding efficiencies were not proportional to the level of Rnq1 coimmunocaptured with Sup35 or to the number of [PIN(+)] propagons characteristic for that variant. This leads us to propose that [PIN(+)] variants differ in the cross-seeding quality of their seeds, following the Sup35/[PIN(+)] binding step.

  14. 41. VIEW OF WEST BASCULE LEAF LOCKING PINS IN EXTENDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. VIEW OF WEST BASCULE LEAF LOCKING PINS IN EXTENDED POSITION - PINS FIT INTO MATCHING BUSHINGS ON THE EAST LEAF AND SECURE THE EAST AND WEST SECTIONS WHEN THE BRIDGE IS DOWN. - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT

  15. Optical fuel pin scanner. [Patent application; for reading identifications

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-09

    This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

  16. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  17. FSW of Tapered Thickness Welds using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby; Smelser, Jerry (Technical Monitor)

    2002-01-01

    This viewgraph presentation describes the advantages of tapered thickness welds in FSW (friction stir welding), the structure of FSW welds, the adjustable pin tool used in FSW. Other topics described include compliance and temperature measurement in a FSW system, loads and torque upon the pin tool and its ability to penetrate different metals, and the results and metallurgy of FSW welds.

  18. Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation

    PubMed Central

    Zhang, Yingjie; Rai, Madhulika; Wang, Cheng; Gonzalez, Cayetano; Wang, Hongyan

    2016-01-01

    Prefoldin is a molecular chaperone complex that regulates tubulin function in mitosis. Here, we show that Prefoldin depletion results in disruption of neuroblast polarity, leading to neuroblast overgrowth in Drosophila larval brains. Interestingly, co-depletion of Prefoldin and Partner of Inscuteable (Pins) leads to the formation of gigantic brains with severe neuroblast overgrowth, despite that Pins depletion alone results in smaller brains with partially disrupted neuroblast polarity. We show that Prefoldin acts synergistically with Pins to regulate asymmetric division of both neuroblasts and Intermediate Neural Progenitors (INPs). Surprisingly, co-depletion of Prefoldin and Pins also induces dedifferentiation of INPs back into neuroblasts, while depletion either Prefoldin or Pins alone is insufficient to do so. Furthermore, knocking down either α-tubulin or β-tubulin in pins- mutant background results in INP dedifferentiation back into neuroblasts, leading to the formation of ectopic neuroblasts. Overexpression of α-tubulin suppresses neuroblast overgrowth observed in prefoldin pins double mutant brains. Our data elucidate an unexpected function of Prefoldin and Pins in synergistically suppressing dedifferentiation of INPs back into neural stem cells. PMID:27025979

  19. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  20. Pin stack array for thermoacoustic energy conversion

    DOEpatents

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  1. Cracking Bank PINs by Playing Mastermind

    NASA Astrophysics Data System (ADS)

    Focardi, Riccardo; Luccio, Flaminia L.

    The bank director was pretty upset noticing Joe, the system administrator, spending his spare time playing Mastermind, an old useless game of the 70ies. He had fought the instinct of telling him how to better spend his life, just limiting to look at him in disgust long enough to be certain to be noticed. No wonder when the next day the director fell on his chair astonished while reading, on the newspaper, about a huge digital fraud on the ATMs of his bank, with millions of Euros stolen by a team of hackers all around the world. The article mentioned how the hackers had 'played with the bank computers just like playing Mastermind', being able to disclose thousands of user PINs during the one-hour lunch break. That precise moment, a second before falling senseless, he understood the subtle smile on Joe's face the day before, while training at his preferred game, Mastermind.

  2. Spectrometric characterization of amorphous silicon PIN detectors

    NASA Astrophysics Data System (ADS)

    Leyva, A.; Ramírez, F. J.; Ortega, Y.; Estrada, M.; Cabal, A.; Cerdeira, A.; Díaz, A.

    2000-10-01

    During the last years, much interest has been dedicated to the use of amorphous silicon PIN diodes as particle and radiation detectors for medical applications. This work presents the spectrometric characterization of PECVD high deposition rate diodes fabricated at our laboratory, with thickness up to 17.5 μm. Results show that the studied devices detect the Am241 alpha particles and the medical X-rays generated by a mammograph model Senographe 700T from General Electric Possible reasons of the observed energy losses are discussed in the text. Using the SRIM2000 program, the transit of 5.5 MeV alpha particles through a diode was simulated, determining the optimum thickness for these particles to deposit their energy in the intrinsic layer of the diode.

  3. Nano-engineered pinning centres in YBCO superconducting films

    NASA Astrophysics Data System (ADS)

    Crisan, A.; Dang, V. S.; Mikheenko, P.

    2017-02-01

    For practical applications of superconducting materials in applied magnetic fields, artificial pinning centres in addition to natural ones are required to oppose the Lorentz force. These pinning centres are actually various types of defects in the superconductor matrix. The pinning centres can be categorised on their dimension (volume, surface or point) and on their character (normal cores or Δκ cores). Different samples have been produced by Pulsed Laser Deposition, with various thicknesses, temperatures and nanostructured additions to the superconducting matrix. They have been characterized by SQUID Magnetic Properties Measurement System and Physical Properties Measurement System, as well as by Transmission Electron Microscopy (TEM). Correlations between pinning architecture, TEM images, and critical currents at various fields and field orientations will be shown for a large number of YBa2Cu3Ox films with various types and architectures of artificial pinning centres.

  4. Flux pinning characteristics and irreversibility line in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-01-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  5. Retrievable fuel pin end member for a nuclear reactor

    DOEpatents

    Rosa, Jerry M.

    1982-01-01

    A bottom end member (17b) on a retrievable fuel pin (13b) secures the pin (13b) within a nuclear reactor (12) by engaging on a transverse attachment rail (18) with a spring clip type of action. Removal and reinstallation if facilitated as only axial movement of the fuel pin (13b) is required for either operation. A pair of resilient axially extending blades (31) are spaced apart to define a slot (24) having a seat region (34) which receives the rail (18) and having a land region (37), closer to the tips (39) of the blades (31) which is normally of less width than the rail (18). Thus an axially directed force sufficient to wedge the resilient blades (31) apart is required to emplace or release the fuel pin (13b) such force being greater than the axial forces on the fuel pins (13b) which occur during operation of the reactor (12).

  6. Identification to a breached fuel pin in the IEM cell

    SciTech Connect

    McGuinness, P.W.; Kalk, J.J.; Hicks, D.F.

    1987-01-01

    Novel methods were successfully employed to identify one breached fuel pin in a 217-pin fuel assembly. The assembly was an experiment that had been irradiated at the Fast Flux Test Facility (FFTF), an experimental liquid-metal reactor operated by Westinghouse Hanford Company for the US Dept. of Energy. A fuel assembly known to contain breached fuel pins was removed from the sodium-cooled FFTF reactor in November 1984. Later, this assembly was brought into the FFTF's Interim Examination and Maintenance (IEM) cell to be disassembled and, for the first time ever at FFTF, to identify a breached fuel pin. The synergistic evaluation of the four different verification techniques - visual examination, cladding swipe activity, wash water radiochemistry, and pin weight - provided rapid and positive identification. The capability to perform future detective work of this kind has been conclusively demonstrated.

  7. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  8. Coalescence-induced droplet actuation

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Verdier, Claude; Nock, Volker

    2011-11-01

    This work investigates a little explored driving mechanism to actuate droplets: the surface tension gradient which arises during the coalescence of two droplets of liquid having different compositions and therefore surface tensions. The resulting surface tension gradient gives rise to a Marangoni flow which, if sufficiently large, can displace the droplet. In order to understand, the flow dynamics arising during the coalescence of droplets of different fluids, a model has been developed in the lubrication framework. The numerical results confirm the existence of a self-propulsion window which depends on two dimensionless groups representing competing effects during the coalescence: the surface tension contrast between the droplets which promotes actuation and species diffusion which tends to make the mixture uniform thereby anihilating Marangoni flow and droplet motion. In parallel, experiments have been conducted to confirm this self-propulsion behaviour. The experiment consists in depositing a droplet of distilled water on a ``hydrophilic highway.'' This stripe was obtained by plasma-treating a piece of PDMS shielded in some parts by glass coverslips. This surface functionalization was found to be the most convenient way to control the coalescence. When a droplet of ethanol is deposited near the ``water slug,'' coalescence occurs and a rapid motion of the resulting mixture is observed. The support of the Dumont d'Urville NZ-France Science & Technology program is gratefully acknowledged.

  9. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  10. Reversibly Actuating Solid Janus Polymeric Fibers.

    PubMed

    Ionov, Leonid; Stoychev, Georgi; Jehnichen, Dieter; Sommer, Jens Uwe

    2017-02-08

    It is commonly assumed that the substantial element of reversibly actuating soft polymeric materials is chemical cross-linking, which is needed to provide elasticity required for the reversible actuation. On the example of melt spun and three-dimensional printed Janus fibers, we demonstrate here for the first time that cross-linking is not an obligatory prerequisite for reversible actuation of solid entangled polymers, since the entanglement network itself can build elasticity during crystallization. Indeed, we show that not-cross-linked polymers, which typically demonstrate plastic deformation in melt, possess enough elastic behavior to actuate reversibly. The Janus polymeric structure bends because of contraction of the polymer and due to entanglements and formation of nanocrystallites upon cooling. Actuation upon melting is simply due to relaxation of the stressed nonfusible component. This approach opens perspectives for design of solid active materials and actuator for robotics, biotechnology, and smart textile applications. The great advantage of our principle is that it allows design of non-cross-linked self-moving materials, which are able to actuate in both water and air, which are not cross-linked. We demonstrate application of actuating fibers for design of walkers, structures with switchable length, width, and thickness, which can be used for smart textile applications.

  11. Performance evaluation of lightweight piezocomposite curved actuator

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Kim, Cheol; Park, Hoon C.; Yoon, Kwang J.

    2001-07-01

    A numerical method for the performance evaluation of LIPCA actuators is proposed using a finite element method. Fully-coupled formulations for piezo-electric materials are introduced and eight-node incompatible elements used. After verifying the developed code, the behavior of LIPCA actuators is investigated.

  12. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  13. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  14. Hydraulic Actuator for Ganged Control Rods

    NASA Technical Reports Server (NTRS)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  15. Improvements In Ball-Screw Linear Actuators

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Summers, Robert

    1996-01-01

    Report describes modifications of design of type of ball-screw linear actuator driven by dc motor, with linear-displacement feedback via linear variable-differential transformer (LVDT). Actuators used to position spacecraft engines to direct thrust. Modifications directed toward ensuring reliable and predictable operation during planned 12-year cruise and interval of hard use at end of cruise.

  16. Active vibration control using DEAP actuators

    NASA Astrophysics Data System (ADS)

    Sarban, Rahimullah; Jones, Richard W.

    2010-04-01

    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  17. Retractable Pin Tools for the Friction Stir Welding Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  18. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  19. The half-pin and the pin tract: a survey of the Limb Lengthening and Reconstruction Society.

    PubMed

    Stinner, Daniel J; Hsu, Jospeh R; Iobst, Christopher

    2013-09-01

    Although the key principles of external fixation have changed little over the years, there remains a significant amount of variation in fixation methods and postoperative care. In particular, use and management of half-pins intended for prolonged reconstruction are the subject of strong opinions and intense debate. We conducted a study of common trends in use and management of half-pins and in treatment of pin-tract infections in circular fixation by polling subject matter experts who are members of the Limb Lengthening and Reconstruction Society. Although the distribution of stainless steel half-pins (52%) and titanium half-pins (48%) was similar, most respondents preferred hydroxyapatite coating (81%). Respondents commonly encouraged use of a shower (60%) and a washing solution (67%) for pin-site care. For pin-tract infections, oral antibiotics were prescribed more often (83%) than parenteral antibiotics (17%) and were given for 8 days on average. Results from this study helped identify trends in application techniques and in routine management of circular fixators. In addition, they helped identify several areas of clinical equipoise that should be studied, including metallurgy, pin-site care solutions, and antibiotics.

  20. Bi-directional electrothermal electromagnetic actuators

    NASA Astrophysics Data System (ADS)

    Cao, Andrew; Kim, Jongbaeg; Lin, Liwei

    2007-05-01

    A new breed of in-plane bi-directional MEMS actuators based on controlled electrothermal buckling and electromagnetic Lorentz force has been demonstrated under both dc and ac operations. Experimentally, bi-directional actuators made by the standard surface-micromachining process have a lateral actuation range of several microns and can exert forces over 100 µN, while those made by SOI and MetalMUMPs processes have an operation range up to several tens of microns and can exert more than 20 mN of force. Reliability tests show that SOI/MetalMUMPs and surface-micromachined actuators can operate for more than 1 and 100 million cycles, respectively, with no signs of degradation. As such, these micro-actuators could be used for MEMS devices that require a bi-directional movement with a large force output such as bi-directional micro-relays.

  1. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  2. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  3. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  4. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  5. Microfabrication of stacked dielectric elastomer actuator fibers

    NASA Astrophysics Data System (ADS)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  6. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  7. A versatile MEMS bimorph actuator with large vertical displacement and high resolution: Design and fabrication process

    NASA Astrophysics Data System (ADS)

    Rangra, Aarushee; Maninder, K.; Soni, Shilpi; Rangra, K. J.

    2016-04-01

    This paper presents design, simulation results and envisaged fabrication process for a versatile MEMS bimorph actuator with large out of plane displacement and high resolution. A comparative study of mechanical, thermal and electrical response of the micro-actuator is presented by using two well-known MEMS simulation tools. The bimorph structure measuring 700 × 1280 mm2 is fully integrable with CMOS fabrication process. It is indented for tunable filter applications where the precise vertical motion of the payload, the top metallic electrode anchored rigidly to bimorph `springs' spans the vertical range of 250-300 microns with submicron resolution. Each bimorph spring resembles a hair pin structure and is composed of materials with large difference in thermal expansion coefficients e.g. electroplated gold and polysilicon for optimal out-of-the plane deflection. The novel structure can also be configured for analog micro-mirror based optical and IR spectroscopy applications by controlling the actuation bias and top electrode surface parameters.

  8. Spooled packaging of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Redmond, John A.

    A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators

  9. Reversible ratchet effects for vortices in conformal pinning arrays

    SciTech Connect

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transverse to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.

  10. Reversible ratchet effects for vortices in conformal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less

  11. Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis.

    PubMed

    Xu, Tao; Zhang, Honglai; Park, Sung-Soo; Venneti, Sriram; Kuick, Rork; Ha, Kimberly; Michael, Lowell Evan; Santi, Mariarita; Uchida, Chiyoko; Uchida, Takafumi; Srinivasan, Ashok; Olson, James M; Dlugosz, Andrzej A; Camelo-Piragua, Sandra; Rual, Jean-François

    2017-03-01

    Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy) have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis.

  12. Pin-based electrochemical glucose sensor with multiplexing possibilities.

    PubMed

    Rama, Estefanía C; Costa-García, Agustín; Fernández-Abedul, M Teresa

    2017-02-15

    This work describes the use of mass-produced stainless-steel pins as low-cost electrodes to develop simple and portable amperometric glucose biosensors. A potentiostatic three-electrode configuration device is designed using two bare pins as reference and counter electrodes, and a carbon-ink coated pin as working electrode. Conventional transparency film without any pretreatment is used to punch the pins and contain the measurement solution. The interface to the potentiostat is very simple since it is based on a commercial female connection. This electrochemical system is applied to glucose determination using a bienzymatic sensor phase (glucose oxidase/horseradish peroxidase) with ferrocyanide as electron-transfer mediator, achieving a linear range from 0.05 to 1mM. It shows analytical characteristics comparable to glucose sensors previously reported using conventional electrodes, and its application for real food samples provides good results. The easy modification of the position of the pins allows designing different configurations with possibility of performing simultaneous measurements. This is demonstrated through a specific design that includes four pin working-electrodes. Different concentrations of antibody labeled with alkaline phosphatase are immobilized on the pin-heads and after enzymatic conversion of 3-indoxylphosphate and silver nitrate, metallic silver is determined by anodic stripping voltammetry.

  13. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.

  14. Magnetic actuation of hair cells

    PubMed Central

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-01-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368

  15. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  16. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Smith, Gregory F. (Inventor); Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  17. Mechanically actuated downhole locking sub

    SciTech Connect

    Menard, M.

    1986-09-30

    A mechanically actuated locking sub is described for setting and releasing a downhole tool from an oilwell borehole, having landing nipples, without interrupting a production flow therethrough, comprising: an inner tubular member, having a central conduit and a lower end provided with means for attachment to the downhole tool to be set in or released from the oilwell bore; an outer sleeve member circumferentially encompassing at least a part of the inner tubular member, the sleeve having a plurality of apertures therein; locking dog members intermediate the inner tubular member and the outer sleeve member, having an engaging portion extending outwardly through the apertures of the outer sleeve member; slidable sleeve means intermediate the outer sleeve member and the inner tubular member, movable between a first, extended and a second, retracted position with respect to the inner tubular member; and a double acting spring means engaging the locking dogs; adapted to bias the locking dogs towards the inner tubular member.

  18. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.

    PubMed

    Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram

    2016-01-27

    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.

  19. High-Performance Multiresponsive Paper Actuators.

    PubMed

    Amjadi, Morteza; Sitti, Metin

    2016-11-22

    There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm(-2)), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm(-1) and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

  20. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  1. Magnetic suspension characteristics of electromagnetic actuators

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, J.; Zorzi, E.

    1993-01-01

    Electromagnetic actuators that use a current-carrying coil (which is placed in a magnetic field) to generate mechanical force are conceptually attractive components for active control of rotating shafts. In one concept that is being tested in the laboratory, the control forces from such actuators are applied on the flexibly supported bearing housings of the rotor. Development of this concept into a practical reality requires a clear and thorough understanding of the role of electromechanical parameters of these actuators in delivering the right amount of control force at the right phase into the rotor. The electromechanical parameters of the actuators investigated are the mass of the armature, stiffness of its suspension, electrical resistance, and inductance of the coils. Improper selection of these parameters can result in degradation in their performance, leading to mistuning between the actuator and the rotor. Through a simple analysis, it is shown that use of such mistuned actuators could result in sharp fluctuations in the phase of the control force delivered into the rotor around the critical speeds. These sharp fluctuations in phase, called 'Phase Glitches', are undesirable. Hence, future designs of controllers should take into account the undesirable mistuning effects between the actuator and the rotor caused by the phase glitches.

  2. Smart film actuators using biomass plastic

    NASA Astrophysics Data System (ADS)

    Yoneyama, Satoshi; Tanaka, Nobuo

    2011-04-01

    This paper presents a novel smart film actuator based on the use of a biomass plastic as a piezoelectric film. Conventional polymeric smart sensors and actuators have been based upon synthetic piezoelectric polymer films such as PVDF. Almost all synthetic polymers are made from nearly depleted oil resources. In addition combustion of their materials releases carbon dioxide, thereby contributing to global warming. Thus at least two important sustainability principles are violated when employing synthetic polymers: avoiding depletable resources and avoiding ecosystem destruction. To overcome such problems, industrial plastic products made from synthetic polymers were developed to replace oil-based plastics with biomass plastics. This paper applies a biomass plastic with piezoelectricity such as poly-L-lactic acid (PLLA). As a result, PLLA film becomes a distributed parameter actuator per se, hence an environmentally conscious smart film actuator is developed. Firstly, this paper overviews the fundamental properties of piezoelectric synthetic polymers and biopolymers. The concept of carbon neutrality using biopolymers is mentioned. Then a two-dimensional modal actuator for exciting a specific structural mode is proposed. Furthermore, a biomass plastic-based cantilever beam with the capability of modal actuation is developed, the validity of the proposed smart film actuator based upon a biomass plastic being analytically as well as experimentally verified.

  3. Characterization of piezoelectric macrofiber composite actuated winglets

    NASA Astrophysics Data System (ADS)

    Guha, T. K.; Oates, W. S.; Kumar, R.

    2015-06-01

    The present study primarily focuses on the design, development, and structural characterization of an oscillating winglet actuated using a piezoelectric macrofiber composite (MFC). The primary objective is to study the effect of controlled wingtip oscillations on the evolution of wingtip vortices, with a goal of weakening these potentially harmful tip vortices by introducing controlled instabilities through both spatial and temporal perturbations producible through winglet oscillations. MFC-actuated winglets have been characterized under different input excitation and pressure-loading conditions. The winglet oscillations show bimodal behavior for both structural and actuation modes of resonance. The oscillatory amplitude at these actuation modes increases linearly with the magnitude of excitation. During wind-tunnel tests, fluid-structure interactions led to structural vibrations of the wing. The effect of these vibrations on the overall winglet oscillations decreased when the strength of actuation increased. At high input excitation, the actuated winglet was capable of generating controlled oscillations. As a proof of concept, the current study has demonstrated that microfiber composite-actuated winglets produce sufficient displacements to alter the development of the wingtip vortex.

  4. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  5. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  6. "Safety pin"--a question to its safety!

    PubMed

    Thapa Chettri, S; Bhattarai, M; Karki, S; Regmi, S; Mathur, N N

    2010-03-01

    Foreign body ingestion is not an uncommon problem in children. They can ingest various foreign objects and one of such objects is a safety pin. The ingestion of such foreign body is not widely reported in the literature. This case highlights the risk of accidental ingestion of safety pin used on child's clothing to protect him from cold that can result in lethal complications. In a poor developing country like Nepal, this case serves to address all mothers alerting them of their ignorance while using safety pin in infants. In addition, physicians are reminded to obtain a detailed inquiry of suspected foreign body ingestion in every child with the history of dysphagia.

  7. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    SciTech Connect

    Zirker, L.R. ); Bottcher, J.H. ); Shikakura, S. ); Tsai, C.L. . Dept. of Welding Engineering); Hamilton, M.L. )

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab.

  8. Piezotronic PIN diode for microwave and piezophototronic devices

    NASA Astrophysics Data System (ADS)

    Luo, Lu; Zhang, Yan; Li, Lijie

    2017-04-01

    Piezotronics and piezophototronics, the two emerging fields that combine piezoelectric and semiconductor properties of materials have drawn much attention recently. Piezopotential caused by piezocharges can change the energy band and carrier transport of piezoelectric semiconductor materials. The PIN diodes have been widely used in high-frequency microwave circuits. In this paper, we present the theoretical calculations of the piezotronic PIN diode, including the built-in-potential, current–voltage characteristic, and junction capacitance for microwave and radio frequency application. Furthermore, the photovoltaic and luminescence properties of the PIN piezophototronic photodetector and light-emitting diode have been provided under applied strain.

  9. Three-Dimensional Prints with Pinned Cylindrical Lens Arrays

    NASA Astrophysics Data System (ADS)

    Yasuda, Shin; Shimizu, Keishi

    2013-09-01

    An application of pinned cylindrical lens arrays (CLAs) reported in Opt. Rev. 19 (2012) 287 to three-dimensional prints is presented for the first time. This lens fabrication method features the easy control of the pitch and radius of curvature of the lens arrays by taking advantage of the pinning effect that the partition walls created on a polymeric substrate by scratching with a cutter blade prevent the ultraviolet curable polymer dispensed between the walls from spreading. It is demonstrated in this paper that a three-dimensional print was realized successfully with the pinned CLA fabricated with our method.

  10. Self-Pinning by Colloids Confined at a Contact Line

    NASA Astrophysics Data System (ADS)

    Weon, Byung Mook; Je, Jung Ho

    2013-01-01

    Colloidal particles suspended in a fluid usually inhibit complete wetting of the fluid on a solid surface and cause pinning of the contact line, known as self-pinning. We show differences in spreading and drying behaviors of pure and colloidal droplets using optical and confocal imaging methods. These differences come from spreading inhibition by colloids confined at a contact line. We propose a self-pinning mechanism based on spreading inhibition by colloids. We find a good agreement between the mechanism and the experimental result taken by directly tracking individual colloids near the contact lines of evaporating colloidal droplets.

  11. High-force cofired multilayer actuators

    NASA Astrophysics Data System (ADS)

    Bridger, Keith; Jones, Lorianne; Poppe, Fred; Brown, Steven A.; Winzer, Stephen R.

    1996-05-01

    Various structural control applications (e.g., high-precision machining) require high-force actuation. Actuators made by stacking and gluing plates are not suitable for many of these applications because, unless the plates are very thin (< 1 mm), the glued stack requires high voltages (> 1 kV) and stacks of very thin plates require extreme care in fabrication to avoid compliance due to the joints. This paper describes an effort to fabricate high-force, co- fired multilayer actuators. The actuator modules were designed to be approximately 50 mm X 50 mm X 20 mm (height), with 20 1-mm thick layers and a 12.7-mm diameter hole in the center for a prestress bolt. The modules were to be stacked together to form an actuator capable of delivering > 50 micrometers stroke at 5 degree(s)C under a load of approximately 10,000 lb. The major challenge in this task is fabricating the co-fired modules because of their size. It is exceptionally difficult to burnout and sinter such a large multilayer device without introducing flaws such as delaminations and, to the best of our knowledge, this had never been done successfully before. Three co-fired, high force actuator modules were fabricated and electrically and mechanically characterized. The capacitance of the actuator modules ranged from 1.5 to 9.4 (mu) F. Co-fired actuators gave modulus values of 12.2 X 106 psi (at E equals 1 MV/m) which was close to the modulus of the material. The peak-peak strain of an actuator module at 0 prestress was 600 ppm (at a field of E equals 1 MV/m). At 2000 psi prestress, the strain measured was about 450 ppm (p-p).

  12. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  13. Comparison of a reverse-transverse cross pin technique with a same side cross pin type II external skeletal fixator in 89 dogs.

    PubMed

    Tsai, Kun-Yang; Pead, Matthew

    2015-01-01

    The objective of this study was to determine whether a novel reverse-transverse cross pin insertion technique could increase the stability of type II external skeletal fixators (ESF) in dogs compared with an alternate, same side cross pin ESF. Reverse-transverse cross pin technique and type II ESFs same side cross pin technique were applied and compared among subjects. Two of 42 ESFs (4.8%) applied with the reverse-transverse cross pin technique and 39 of 47 ESFs (83%) applied with the same side cross pin technique were subjectively unstable at the time of fixator removal (P < 0.001). The same side cross pin ESFs had significantly more pin tract new bone formation than the reverse-transverse ESFs (P = 0.038). In summary, this approach may provide a method of treating a variety of musculoskeletal conditions and soft tissue cases, which reverse-transverse cross pin ESFs are tolerated in dogs for a variety of conditions.

  14. Multi-pin chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K.

    2007-02-20

    A multi-pin chemiresistor for use in microchemical sensors. A pair of free-standing, bare wires is supported by an electrically insulating support, and are oriented parallel to each other and spaced closely together. A free-standing film of a chemically sensitive polymer that swells when exposed to vapors of a volatile chemical is formed in-between the pair of closely-spaced wires by capillary action. Similar in construction to a thermocouple, this "chemicouple" is relatively inexpensive and easy to fabricate by dipping the pair of bare wires into a bath of well-mixed chemiresistor ink. Also, a chemiresistor "stick" is formed by dipping an electrically insulating rod with two or more linear or spiral-wrapped electrical traces into the bath of well-mixed chemiresistor ink, which deposits a uniform coating of the chemically sensitive polymer on the rod and the electrical traces. These "sticks" can be easily removed and replaced from a multi-chemiresistor plug.

  15. Superconducting vortex pinning with artificial magnetic nanostructures.

    SciTech Connect

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  16. Ideal glass transitions by random pinning

    PubMed Central

    Cammarota, Chiara; Biroli, Giulio

    2012-01-01

    We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T. We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c = cK(T) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T - c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for |c - cK(T)| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c = cK(T) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition. PMID:22623524

  17. A PWR Thorium Pin Cell Burnup Benchmark

    SciTech Connect

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  18. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  19. Refreshable Braille Displays Using EAP Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2010-01-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators..

  20. Recent Developments in NASA Piezocomposite Actuator Technology

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Inman, Daniel J.; High, James W.; Williams, R. Brett

    2004-01-01

    In this paper, we present an overview of recent progress in the development of the NASA Macro-Fiber Composite (MFC) piezocomposite actuator device. This will include a brief history of the development of the MFC, a description of the standard manufacturing process used to fabricate MFC actuators, and a summary of ongoing MFC electromechanical characterization testing. In addition, we describe the development of a prototype single-crystal piezoelectric MFC device, and compare its performance with MFC actuator specimens utilizing conventional piezoceramic materials.

  1. Bluff Body Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  2. Refreshable Braille displays using EAP actuators

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2010-04-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators.

  3. Optimization Strategies for Sensor and Actuator Placement

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Kincaid, Rex K.

    1999-01-01

    This paper provides a survey of actuator and sensor placement problems from a wide range of engineering disciplines and a variety of applications. Combinatorial optimization methods are recommended as a means for identifying sets of actuators and sensors that maximize performance. Several sample applications from NASA Langley Research Center, such as active structural acoustic control, are covered in detail. Laboratory and flight tests of these applications indicate that actuator and sensor placement methods are effective and important. Lessons learned in solving these optimization problems can guide future research.

  4. Misfire tolerant combustion-powered actuation

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Kuehl, Michael A.

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  5. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will

  6. A Division in PIN-Mediated Auxin Patterning during Organ Initiation in Grasses

    PubMed Central

    O'Connor, Devin L.; Runions, Adam; Sluis, Aaron; Bragg, Jennifer; Vogel, John P.

    2014-01-01

    The hormone auxin plays a crucial role in plant morphogenesis. In the shoot apical meristem, the PIN-FORMED1 (PIN1) efflux carrier concentrates auxin into local maxima in the epidermis, which position incipient leaf or floral primordia. From these maxima, PIN1 transports auxin into internal tissues along emergent paths that pattern leaf and stem vasculature. In Arabidopsis thaliana, these functions are attributed to a single PIN1 protein. Using phylogenetic and gene synteny analysis we identified an angiosperm PIN clade sister to PIN1, here termed Sister-of-PIN1 (SoPIN1), which is present in all sampled angiosperms except for Brassicaceae, including Arabidopsis. Additionally, we identified a conserved duplication of PIN1 in the grasses: PIN1a and PIN1b. In Brachypodium distachyon, SoPIN1 is highly expressed in the epidermis and is consistently polarized toward regions of high expression of the DR5 auxin-signaling reporter, which suggests that SoPIN1 functions in the localization of new primordia. In contrast, PIN1a and PIN1b are highly expressed in internal tissues, suggesting a role in vascular patterning. PIN1b is expressed in broad regions spanning the space between new primordia and previously formed vasculature, suggesting a role in connecting new organs to auxin sinks in the older tissues. Within these regions, PIN1a forms narrow canals that likely pattern future veins. Using a computer model, we reproduced the observed spatio-temporal expression and localization patterns of these proteins by assuming that SoPIN1 is polarized up the auxin gradient, and PIN1a and PIN1b are polarized to different degrees with the auxin flux. Our results suggest that examination and modeling of PIN dynamics in plants outside of Brassicaceae will offer insights into auxin-driven patterning obscured by the loss of the SoPIN1 clade in Brassicaceae. PMID:24499933

  7. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  8. Androgen receptor serine 81 mediates Pin1 interaction and activity

    PubMed Central

    La Montagna, Raffaele; Caligiuri, Isabella; Maranta, Pasquale; Lucchetti, Chiara; Esposito, Luca; Paggi, Marco G.; Toffoli, Giuseppe; Rizzolio, Flavio; Giordano, Antonio

    2012-01-01

    Hormone-dependent tumors are characterized by deregulated activity of specific steroid receptors, allowing aberrant expression of many genes involved in cancer initiation, progression and metastasis. In prostate cancer, the androgen receptor (AR) protein has pivotal functions, and over the years it has been the target of different drugs. AR is a nuclear receptor whose activity is regulated by a phosphorylation mechanism controlled by hormone and growth factors. Following phosphorylation, AR interacts with many cofactors that closely control its function. Among such cofactors, Pin1 is a peptidyl-prolyl isomerase that is involved in the control of protein phosphorylation and has a prognostic value in prostate cancer. In the present study, we demonstrate that ARSer81 is involved in the interaction with Pin1, and that this interaction is important for the transcriptional activity of AR. Since Pin1 expression positively correlates with tumor grade, our results suggest that Pin1 can participate in this process by modulating AR function. PMID:22894932

  9. 43. DETAIL OF PINNED UPPER CHORD CONNECTION BETWEEN ANCHOR ARM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. DETAIL OF PINNED UPPER CHORD CONNECTION BETWEEN ANCHOR ARM AND SUSPENDED (PANEL 67). VIEW TO NORTH. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  10. 7. DETAIL VIEW OF PIN CONNECTION, NORTH WEB, SHOWING FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW OF PIN CONNECTION, NORTH WEB, SHOWING FLOOR BEANS, STRINGERS, LATTICE BRACING, EYEBARS AND DECKING, LOOKING SOUTH - Four Mile Bridge, Spanning Elk River on County Road 42, Steamboat Springs, Routt County, CO

  11. 22. PIN CONNECTION AT JUNCTURE OF INTERMEDIATE VERTICAL WITH BOTTOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. PIN CONNECTION AT JUNCTURE OF INTERMEDIATE VERTICAL WITH BOTTOM CHORD ON PENNSYLVANIA PETIT TRUSS. HYDRAULICALLY FORGED EYES ON ROLLED STOCK. - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  12. Post-refinement multiscale method for pin power reconstruction

    SciTech Connect

    Collins, B.; Seker, V.; Downar, T.; Xu, Y.

    2012-07-01

    The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques based on diffusion theory and pin power reconstruction (PPR). The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is 'post-refinement' and thus has no impact on the global solution. (authors)

  13. PIN proteins and the evolution of plant development.

    PubMed

    Bennett, Tom

    2015-08-01

    Many aspects of development in the model plant Arabidopsis thaliana involve regulated distribution of the hormone auxin by the PIN-FORMED (PIN) family of auxin efflux carriers. The role of PIN-mediated auxin transport in other plants is not well understood, but studies in a wider range of species have begun to illuminate developmental mechanisms across land plants. In this review, I discuss recent progress in understanding the evolution of PIN-mediated auxin transport, and its role in development across the green plant lineage. I also discuss the idea that changes in auxin biology led to morphological novelty in plant development: currently available evidence suggests major innovations in auxin transport are rare and not associated with the evolution of new developmental mechanisms.

  14. 23. DETAIL VIEW OF SUBMERSIBLE TAINTER GATE, SHOWING TRUNNION PIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL VIEW OF SUBMERSIBLE TAINTER GATE, SHOWING TRUNNION PIN, GATE ARM AND GATE GAUGE, LOOKING SOUTHEAST - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 10, Guttenberg, Clayton County, IA

  15. 21. DETAIL VIEW OF SUBMERSIBLE TAINTER GATE, SHOWING TRUNNION PIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL VIEW OF SUBMERSIBLE TAINTER GATE, SHOWING TRUNNION PIN, LOOKING NORTH - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  16. 46. VAL, DETAIL OF 'PILLOW BLOCK' WHERE LAUNCHER BRIDGE PIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. VAL, DETAIL OF 'PILLOW BLOCK' WHERE LAUNCHER BRIDGE PIN SAT AT THE TOP OF THE CONNECTING BRIDGE. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  17. 9. FINIAL DETAIL COVERING PIN CONNECTIONS AND COMPRESSION BLOCK AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FINIAL DETAIL COVERING PIN CONNECTIONS AND COMPRESSION BLOCK AT EAST INCLINED END POST. NOTE CONSTRUCTION DATE OF 1880. - Peevy Road Bridge, Peevy Road spanning Perkiomen Creek in Upper Hanover Township, East Greenville, Montgomery County, PA

  18. PIN architecture for ultrasensitive organic thin film photoconductors

    PubMed Central

    Jin, Zhiwen; Wang, Jizheng

    2014-01-01

    Organic thin film photoconductors (OTFPs) are expected to have wide applications in the field of optical communications, artificial vision and biomedical sensing due to their great advantages of high flexibility and low-cost large-area fabrication. However, their performances are not satisfactory at present: the value of responsivity (R), the parameter that measures the sensitivity of a photoconductor to light, is below 1 AW−1. We believe such poor performance is resulted from an intrinsic self-limited effect of present bare blend based device structure. Here we designed a PIN architecture for OTFPs, the PIN device exhibits a significantly improved high R value of 96.5 AW−1. The PIN architecture and the performance the PIN device shows here should represent an important step in the development of OTFPs. PMID:24936952

  19. Characterization of vortex pinning through the Campbell length

    NASA Astrophysics Data System (ADS)

    Willa, Roland; Geshkenbein, Vadim B.; Blatter, Gianni

    Vortex pinning is decisive in establishing dissipation-free current flow in a type-II superconductor; knowledge and optimization of the pinning landscape (pinscape) is of major importance for applications. The ac magnetic response, characterized by the Campbell penetration depth λC, provides valuable information on the pinscape, besides the critical current density jc. While microscopic derivations of jc are available both in the weak and strong pinning limits, this is not the case for the Campbell length, whose understanding has remained on a phenomenological level so far. Based on the microscopic theory of strong pinning, we have established a proper link between the Campbell length and the pinscape parameters. This new quantitative formalism captures all experimentally observed signatures, among which are the dependence of λC on the vortex state preparation and the hysteresis in λC upon thermal cycling the field-cooled state.

  20. Criteria for stochastic pinning control of networks of chaotic maps

    SciTech Connect

    Mwaffo, Violet; Porfiri, Maurizio; DeLellis, Pietro

    2014-03-15

    This paper investigates the controllability of discrete-time networks of coupled chaotic maps through stochastic pinning. In this control scheme, the network dynamics are steered towards a desired trajectory through a feedback control input that is applied stochastically to the network nodes. The network controllability is studied by analyzing the local mean square stability of the error dynamics with respect to the desired trajectory. Through the analysis of the spectral properties of salient matrices, a toolbox of conditions for controllability are obtained, in terms of the dynamics of the individual maps, algebraic properties of the network, and the probability distribution of the pinning control. We demonstrate the use of these conditions in the design of a stochastic pinning control strategy for networks of Chirikov standard maps. To elucidate the applicability of the approach, we consider different network topologies and compare five different stochastic pinning strategies through extensive numerical simulations.

  1. 10. EYEBAR PIN CONNECTION JOINING VERTICAL SUSPENSION STRINGER WITH LATERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. EYEBAR PIN CONNECTION JOINING VERTICAL SUSPENSION STRINGER WITH LATERAL BRACING MEMBERS - Spruce Street Bridge, East Spruce Street, 500 Block, spanning Power Canal, Sault Ste. Marie, Chippewa County, MI

  2. 13. UNDERSIDE OF THROUGHWAY SHOWING MAIN CHORDS, SUSPENSION EYEBAR PIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. UNDERSIDE OF THROUGHWAY SHOWING MAIN CHORDS, SUSPENSION EYE-BAR PIN CONNECTORS, LOWER CHORD EYEBARS AND LATERAL BRACING MEMBERS - Spruce Street Bridge, East Spruce Street, 500 Block, spanning Power Canal, Sault Ste. Marie, Chippewa County, MI

  3. 21 CFR 872.3740 - Retentive and splinting pin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A retentive and splinting pin is a device made of austenitic alloys or alloys containing 75 percent or greater gold and metals of the platinum group intended to be placed permanently in a tooth...

  4. 7. Pin connections and eye bar nest, lower chord, up ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Pin connections and eye bar nest, lower chord, up river truss, 321-4 Span 3. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  5. 6. Pin connection and eye bar nest, lower chord, up ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Pin connection and eye bar nest, lower chord, up river truss, 321-4 Span 3. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  6. 24. PIN CONNECTION AT VERTICAL AND BOTTOM CHORD ON CAMELBACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PIN CONNECTION AT VERTICAL AND BOTTOM CHORD ON CAMELBACK THROUGH TRUSS. VERTICAL AND BOTTOM CHORD MADE OF HAND-FORGED EYE BARS - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  7. 8. Pin connecting and eye bar nest, lower chord, down ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Pin connecting and eye bar nest, lower chord, down river truss 132-0 Span 2 from Hot Metal Bridge. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  8. 48. Fixed Span, Detail of Pinned Connection between End Post ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Fixed Span, Detail of Pinned Connection between End Post & First Segment of Top Chord (Vertical Tension Member goes to 2L); looking E. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  9. PIN1 in breast development and cancer: a clinical perspective.

    PubMed

    Rustighi, Alessandra; Zannini, Alessandro; Campaner, Elena; Ciani, Yari; Piazza, Silvano; Del Sal, Giannino

    2017-02-01

    Mammary gland development, various stages of mammary tumorigenesis and breast cancer progression have the peptidyl-prolyl cis/trans isomerase PIN1 at their centerpiece, in virtue of the ability of this unique enzyme to fine-tune the dynamic crosstalk between multiple molecular pathways. PIN1 exerts its action by inducing conformational and functional changes on key cellular proteins, following proline-directed phosphorylation. Through this post-phosphorylation signal transduction mechanism, PIN1 controls the extent and direction of the cellular response to a variety of inputs, in physiology and disease. This review discusses PIN1's roles in normal mammary development and cancerous progression, as well as the clinical impact of targeting this enzyme in breast cancer patients.

  10. 11. Detail view (looking east) of pin connection of vertical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail view (looking east) of pin connection of vertical tensile members between panels nine end ten of Moody Bridge - Moody Bridge, Spanning South Fork Eel River, Garberville, Humboldt County, CA

  11. 8. Detail view (looking east) of pin connection of vertical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view (looking east) of pin connection of vertical member at the third panel point north from south abutment of Moody Bridge. - Moody Bridge, Spanning South Fork Eel River, Garberville, Humboldt County, CA

  12. 9. Detail view (looking east) of pin connection of vertical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view (looking east) of pin connection of vertical tensile members at the fifth panel point north from south abutment of Moody Bridge. - Moody Bridge, Spanning South Fork Eel River, Garberville, Humboldt County, CA

  13. 9. DETAIL VIEW OF PIN CONNECTION, SHOWING INCLINED END POSTS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW OF PIN CONNECTION, SHOWING INCLINED END POSTS, PORTAL BRACING, HIP VERTICALS, LATTICE BRACING AND EYEBARS, LOOKING NORTHEAST - Nepesta Bridge, Spanning Arkansas River on County Road 613, Boone, Pueblo County, CO

  14. 11. VIEW OF PIN CONNECTION, SOUTH WEB, SHOWING TOP CHORD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF PIN CONNECTION, SOUTH WEB, SHOWING TOP CHORD, LATTICE BRACING, HIP VERTICAL, EYEBARS, TOP LATERAL BRACING, AND STRUTS, LOOKING SOUTH - Four Mile Bridge, Spanning Elk River on County Road 42, Steamboat Springs, Routt County, CO

  15. 20. Detail of lower chord of west truss, showing pin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of lower chord of west truss, showing pin connection through lower chord assembly, hip verticals and U-bolt hangers. - Tremont Station Bridge, Pierceville Road, spanning Conrail tracks, Wareham, Plymouth County, MA

  16. 20. LOCK GATES, 3 FOOT WALKWAY, ADJUSTMENT AT GUDGEON PIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. LOCK GATES, 3 FOOT WALKWAY, ADJUSTMENT AT GUDGEON PIN AND QUOIN SHOE. May 1933 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 17, Upper Mississippi River, New Boston, Mercer County, IL

  17. Electromechanical characteristic analysis of a dielectric electroactive polymer (DEAP) actuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yinlong; Zhou, Hongpin; Wang, Huaming

    2015-10-01

    To assist in the design and optimization of dielectric electroactive polymer (DEAP) actuators, an analytical model for the electromechanical response of cone DEAP actuators is developed. Using the Yeoh form strain energy potential and the Maxwell stress tensor, the constitutive relationship of the DEAP that accounts for the electromechanical coupling behavior is deduced. The equilibrium equations of DEAP actuators with a cone configuration are derived and an analytical model is then proposed. With this model, the actuation characteristics of the DEAP actuator, including actuation displacement, force output and efficiency can be calculated. Additionally, the principal stresses and principal stretch ratio of the membrane under different actuation voltages can be determined, along with the wrinkling failure mode of DEAP actuators. The experimental results for the DEAP actuator matched the numerical results determined using the proposed model. As such, the proposed work is beneficial as a guide for the design optimization of DEAP actuators.

  18. Procedure of recovery of pin-by-pin fields of energy release in the core of VVER-type reactor for the BIPR-8 code

    SciTech Connect

    Gordienko, P. V. Kotsarev, A. V.; Lizorkin, M. P.

    2014-12-15

    The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.

  19. Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Sohrab Gholamhosein, Pouryoussefi; Masoud, Mirzaei

    2015-05-01

    The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuators in quiescent air. The parameters affecting the operation of unsteady plasma actuators were experimentally measured and compared with the ones for steady actuators. The effects of excitation frequency and duty cycle on the induced flow pattern properties were studied by means of hot-wire anemometers, and the smoke visualization method was also used. It was observed that the current and the mean induced velocity linearly increase with increasing duty cycle while they are not sensitive to excitation frequency. Furthermore, with increasing excitation frequency, the magnitude of vortices shedding from the actuator decreases while their frequency increases. Nevertheless, when the excitation frequency grows beyond a certain level, the induced flow downstream of the actuator behaves as a steady flow. However, the results for steady actuators show that by increasing the applied voltage and carrier frequency, the velocity of the induced flow first increases and then decreases with actuator saturation and the onset of the emission of streaky glow discharge.

  20. Open safety pin ingestion presenting as incarcerated umbilical hernia.

    PubMed

    Mirza, Bilal; Sheikh, Afzal

    2011-09-01

    Foreign body ingestion is common in children. Sharp foreign bodies are potentially harmful and can result various complications. An 8-month-old infant presented with incarcerated umbilical hernia. With a suspicion of strangulation, operation was performed that revealed a loop of ileum being stuck in the umbilical defect. The loop of ileum was freed from the umbilicus which demonstrated open ends of safety pin piercing out of bowel lumen. The enterotomy followed by removal of safety pin was performed.

  1. Pin and roller attachment system for ceramic blades

    DOEpatents

    Shaffer, James E.

    1995-01-01

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints.

  2. Pin and roller attachment system for ceramic blades

    DOEpatents

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  3. The Safe Zone for External Fixator Pins in the Femur

    DTIC Science & Technology

    2012-11-01

    need to be placed more than a centimeter from the fracture to avoid potential pin track infection of fracture hematoma .17 FIGURE 3. Drawing...joint after high-energy periarticular fracture or dislo- cation.1–6 Optimal placement of pins requires a thorough knowledge of cross-sectional limb...distal femur fracture applications, a location which has previously been demonstrated to place neurovascular structures at risk with interlocking of

  4. Remote weighing of irradiated fuel pins at FFTF

    SciTech Connect

    Anglesey, M.O.; Romrell, D.M.

    1986-01-01

    This paper describes the testing and operations of a remotely operated fuel pin weighing system developed to identify fuel pins with breached cladding in the interim examination and maintenance (IEM) cell at the Fast Flux Test Facility (FFTF) located near Richland, Washington. The IEM cell is a vertical hot cell located within the FFTF containment building that was designed for disassembly and reassembly of experiments and fuel assemblies.

  5. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].

    PubMed

    Du, Zhiqiang; Li, Liming

    2014-06-01

    Multiple prion elements, which are transmitted as heritable protein conformations and often linked to distinct phenotypes, have been identified in the budding yeast, Saccharomyces cerevisiae. It has been shown that overproduction of a prion protein Swi1 can promote the de novo conversion of another yeast prion [PSI(+)] when Sup35 is co-overproduced. However, the mechanism underlying this Pin(+) ([PSI(+)] inducible) activity is not clear. Moreover, how the Swi1 prion ([SWI(+)]) interacts with other yeast prions is unknown. Here, we demonstrate that the Pin(+) activity associated with Swi1 overproduction is independent of Rnq1 expression or [PIN(+)] conversion. We also show that [SWI(+)] enhances the appearance of [PSI(+)] and [PIN(+)]. However, [SWI(+)] significantly compromises the Pin(+) activity of [PIN(+)] when they coexist. We further demonstrate that a single yeast cell can harbor three prions, [PSI(+)], [PIN(+)], and [SWI(+)], simultaneously. However, under this condition, [SWI(+)] is significantly destabilized. While the propensity to aggregate underlies prionogenesis, Swi1 and Rnq1 aggregates resulting from overproduction are usually nonheritable. Conversely, prion protein aggregates formed in nonoverexpressing conditions or induced by preexisting prion(s) are more prionogenic. For [PSI(+)] and [PIN(+)] de novo formation, heterologous "facilitators," such as preexisting [SWI(+)] aggregates, colocalize only with the newly formed ring-/rod-shaped Sup35 or Rnq1 aggregates, but not with the dot-shaped mature prion aggregates. Their colocalization frequency is coordinated with their prion inducibility, indicating that prion-prion interactions mainly occur at the early initiation stage. Our results provide supportive evidence for the cross-seeding model of prionogenesis and highlight a complex interaction network among prions in yeast.

  6. Auto-adjustable pin tool for friction stir welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Oelgoetz, Peter A. (Inventor)

    1999-01-01

    An auto-adjusting pin tool for friction stir welding is presented wherein the pin tool automatically adjusts for welding materials of varying thicknesses, and the pin can be incrementally withdrawn from the workpieces thus eliminating any crater or keyhole in the weld. The inventive apparatus is comprised of a welding head housing a motor connected to a controller instrument package and an arbor supported by bearings. The arbor forms an interior cylinder and is encircled by a stationary slip ring though which are ported hydraulic passageways into the interior cylinder of the arbor such that a piston housed therein may be moved axially. Coupled to the piston is a pin tool which is treaded on its lower end and which is moveably seated in, and extending through, a shoulder housing having concave lower face. When welding, the rotating treaded end of the pin enters and stirs the workpieces while the lower face of the shoulder housing compacts the workpieces. As the welding head traverses the shoulder housing the controller senses any rising pressure on the lower face of the shoulder housing and withdraws the arbor to keep the pressure constant. At the same time, the piston moves towards the workpieces thus extending the pin further from the shoulder. This keeps the pin at a proper depth in the workpieces regardless of their thicknesses. As the weld terminates this same operation can be used to incrementally withdraw the pin during the final part of the traverse, thus eliminating any keyhole or crater that would otherwise be created.

  7. Smart actuators for active vibration control

    NASA Astrophysics Data System (ADS)

    Pourboghrat, Farzad; Daneshdoost, Morteza

    1998-07-01

    In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.

  8. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  9. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  10. Overview of Honeywell electromechanical actuation programs

    NASA Technical Reports Server (NTRS)

    Wyllie, C.

    1982-01-01

    Materials illustrating a presentation on electromechanical actuation programs (EMA) are presented. The development history is outlined. Space shuttle flight control systems and the advantages of EMAS, and EMA technology status and development requirements are outlined.

  11. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  12. Hybrid transition control approach for plasma actuators

    NASA Astrophysics Data System (ADS)

    Kurz, A.; Goldin, N.; King, R.; Tropea, C.; Grundmann, S.

    2013-11-01

    This work reports on the development of a novel hybrid transition control method for single DBD plasma actuators. The experiments have been carried out on a natural laminar flow airfoil in a wind tunnel and combine two methods previously used for transition control purposes with DBD plasma actuators: boundary-layer stabilization by quasi-steady wall-parallel momentum addition, and active wave cancelation by linear superposition utilizing modulated momentum injection. For this purpose, the modulated body force is controlled using an improved extremum seeking controller based on an extended Kalman filter. Combining the two methods in a single actuator has advantages. Applied to 2-D Tollmien-Schlichting waves, the achievable transition delay in hybrid mode is significantly larger than the isolated effects, while the energy consumption remains almost unchanged compared to the case of continuous actuation. For a Reynolds number of , a transition delay of could be observed.

  13. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  14. Cannon launched electromechanical control actuation system development

    NASA Technical Reports Server (NTRS)

    Johnston, J. G.

    1983-01-01

    The evolution of an electromechanical control actuation system from trade study results through breadboard test and high-g launch demonstration tests is summarized. Primary emphasis is on design, development, integration and test of the gear reduction system.

  15. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  16. Sensors and actuators inherent in biological species

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  17. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  18. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  19. Feasibility of transparent flexible ultrasonic haptic actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  20. Serpentine Robot Arm Contains Electromagnetic Actuators

    NASA Technical Reports Server (NTRS)

    Moya, Israel A.; Studer, Philip A.

    1994-01-01

    Identical modules assembled into flexible robot arm configured in serpentlike fashion to manipulate objects while avoiding obstacles. Each module includes integral electromagnetic actuators energized selectively to produce variety of motions, stationary configurations, and combinations thereof.

  1. Piezoelectric Morphing versus Servo-Actuated MAV Control Surfaces

    DTIC Science & Technology

    2012-04-01

    bandwidth, and reliability has revealed several observations. The conformal morphing airfoil geometry increases the lift-to-drag ratio over a servo...actuated flapped airfoil design, showing benefits in aerodynamic efficiency. The embedded MFC actuators eliminate the servo actuator volume from vehicle...morphing actuation over a servo-actuated design. Nomenclature A = Airfoil planform area, ft2 Cd = Drag coefficient (2D), D/(0.5!V2A) Cl = Lift

  2. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  3. Self-pinning of a nanosuspension droplet: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shi, Baiou; Webb, Edmund B.

    2016-07-01

    Results are presented from molecular dynamics simulations of Pb(l) nanodroplets containing dispersed Cu nanoparticles (NPs) and spreading on solid surfaces. Three-dimensional simulations are employed throughout, but droplet spreading and pinning are reduced to two-dimensional processes by modeling cylindrical NPs in cylindrical droplets; NPs have radius RNP≅3 nm while droplets have initial R0≅42 nm . At low particle loading explored here, NPs in sufficient proximity to the initial solid-droplet interface are drawn into advancing contact lines; entrained NPs eventually bind with the underlying substrate. For relatively low advancing contact angle θadv, self-pinning on entrained NPs occurs; for higher θadv, depinning is observed. Self-pinning and depinning cases are compared and forces on NPs at the contact line are computed during a depinning event. Though significant flow in the droplet occurs in close proximity to the particle during depinning, resultant forces are relatively low. Instead, forces due to liquid atoms confined between the particles and substrate dominate the forces on NPs; that is, for the NP size studied here, forces are interface dominated. For pinning cases, a precursor wetting film advances ahead of the pinned contact line but at a significantly slower rate than for a pure droplet. This is because the precursor film is a bilayer of liquid atoms on the substrate surface but it is instead a monolayer film as it crosses over pinning particles; thus, mass delivery to the bilayer structure is impeded.

  4. Dipentamethylene thiuram monosulfide is a novel inhibitor of Pin1.

    PubMed

    Tatara, Yota; Lin, Yi-Chin; Bamba, Yoshimasa; Mori, Tadashi; Uchida, Takafumi

    2009-07-03

    Pin1 is involved in eukaryotic cell proliferation by changing the structure and function of phosphorylated proteins. PiB, the Pin1 specific inhibitor, blocks cancer cell proliferation. However, low solubility of PiB in DMSO has limited studies of its effectiveness. We screened for additional Pin1 inhibitors and identified the DMSO-soluble compound dipentamethylene thiuram monosulfide (DTM) that inhibits Pin1 activity with an EC50 value of 4.1 microM. Molecular modeling and enzyme kinetic analysis indicated that DTM competitively inhibits Pin1 activity, with a K(i) value of 0.05 microM. The K(D) value of DTM with Pin1 was determined to be 0.06 microM by SPR technology. Moreover, DTM specifically inhibited peptidyl-prolyl cis/trans isomerase activity in HeLa cells. FACS analysis showed that DTM induced G0 arrest of the HCT116 cells. Our results suggest that DTM has the potential to guide the development of novel antifungal and/or anticancer drugs.

  5. Refixation of osteochondral fractures by ultrasound-activated, resorbable pins

    PubMed Central

    Neumann, H.; Schulz, A. P.; Gille, J.; Klinger, M.; Jürgens, C.; Reimers, N.; Kienast, B.

    2013-01-01

    Objectives Osteochondral injuries, if not treated adequately, often lead to severe osteoarthritis. Possible treatment options include refixation of the fragment or replacement therapies such as Pridie drilling, microfracture or osteochondral grafts, all of which have certain disadvantages. Only refixation of the fragment can produce a smooth and resilient joint surface. The aim of this study was the evaluation of an ultrasound-activated bioresorbable pin for the refixation of osteochondral fragments under physiological conditions. Methods In 16 Merino sheep, specific osteochondral fragments of the medial femoral condyle were produced and refixed with one of conventional bioresorbable pins, titanium screws or ultrasound-activated pins. Macro- and microscopic scoring was undertaken after three months. Results The healing ratio with ultrasound-activated pins was higher than with conventional pins. No negative heat effect on cartilage has been shown. Conclusion As the material is bioresorbable, no further surgery is required to remove the implant. MRI imaging is not compromised, as it is with implanted screws. The use of bioresorbable pins using ultrasound is a promising technology for the refixation of osteochondral fractures. PMID:23610699

  6. Dipentamethylene thiuram monosulfide is a novel inhibitor of Pin1

    SciTech Connect

    Tatara, Yota; Lin, Yi-Chin; Bamba, Yoshimasa; Mori, Tadashi; Uchida, Takafumi

    2009-07-03

    Pin1 is involved in eukaryotic cell proliferation by changing the structure and function of phosphorylated proteins. PiB, the Pin1 specific inhibitor, blocks cancer cell proliferation. However, low solubility of PiB in DMSO has limited studies of its effectiveness. We screened for additional Pin1 inhibitors and identified the DMSO-soluble compound dipentamethylene thiuram monosulfide (DTM) that inhibits Pin1 activity with an EC50 value of 4.1 {mu}M. Molecular modeling and enzyme kinetic analysis indicated that DTM competitively inhibits Pin1 activity, with a K{sub i} value of 0.05 {mu}M. The K{sub D} value of DTM with Pin1 was determined to be 0.06 {mu}M by SPR technology. Moreover, DTM specifically inhibited peptidyl-prolyl cis/trans isomerase activity in HeLa cells. FACS analysis showed that DTM induced G0 arrest of the HCT116 cells. Our results suggest that DTM has the potential to guide the development of novel antifungal and/or anticancer drugs.

  7. Vortex Avalanches with Periodic Arrays of Pinning Sites

    NASA Astrophysics Data System (ADS)

    Abbas, J.; Heckel, T.; Kakalios, J.

    2001-03-01

    Numerical simulations by Nori and co-workers of dynamical phase transitions for magnetic vortices in type II superconductors when the defects which act as pinning sites are arranged in a periodic array have found a dramatic non-linear relationship between vortex voltage and driving current.2,4 In order to experimentally test the predictions of these simulations, a macroscopic physical analog of an array of flux vortices in the presense of an ordered lattice of pinning sites has been constructed. This simple table-top experimental system consists of conventional household magnets, arranged in an ordered grid (serving as the lattice of fixed pinning centers). A plexiglass sheet is positioned above these fixed magnets, and another collection of magnets (representing the magnetic flux vortices), oriented so that they are attracted to the fixed magnets are placed on top of the sheet. The entire apparatus is then tilted to a given angle (the analog of the driving voltage) and the velocity of the avalanching magnets is recorded using the induced voltage in a pick-up coil. By varying the ratio of movable magnets to fixed pinning magnets, the filling fraction can be adjusted, as can the pinning strength, by adjusting the separation of the plexiglass sheet between the fixed and movable magnets. The velocity of the avalanching magnets as the filling fraction is varied displays a jamming transition, with a non-trivial dependence on the pinning strength of the lattice of fixed magnets below the sheet.

  8. Pinned vortex hopping in a neutron star crust

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Melatos, A.

    2016-09-01

    The motion of superfluid vortices in a neutron star crust is at the heart of most theories of pulsar glitches. Pinning of vortices to ions can decouple the superfluid from the crust and create a reservoir of angular momentum. Sudden large-scale unpinning can lead to an observable glitch. In this paper, we investigate the scattering of a free vortex off a pinning potential and calculate its mean free path, in order to assess whether unpinned vortices can skip multiple pinning sites and come close enough to their neighbours to trigger avalanches, or whether they simply hop from one pinning site to its neighbour, giving rise to a more gradual creep. We find that there is a significant range of parameter space in which avalanches can be triggered, thus supporting the hypothesis that they may lie at the origin of pulsar glitches. For realistic values of the pinning force and superfluid drag parameters, we find that avalanches are more likely in the higher density regions of the crust where pinning is stronger. Physical differences in stellar parameters, such as mass and temperature, may lead to a switch between creep-like motion and avalanches, explaining the different characteristics of glitching pulsars.

  9. Handbook of actuators and edge alignment sensors

    SciTech Connect

    Krulewich, D A

    1992-11-01

    This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

  10. Electromechanical flight control actuator, volume 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.

  11. SparkJet Actuators for Flow Control

    DTIC Science & Technology

    2007-03-01

    from 300 to 1000 K and velocities from -100 to 400 m/sec. The rectangular zone that represents the annular energy deposition region in 3D is visible in...and Glezer, A., "Flow Reattachment Dynamics over a Thick Airfoil Controlled by Synthetic Jet Actuators," AIAA Paper No. 99-1001, 37th AIAA Aerospace...Sciences Meeting, Reno, NV, January 1999. 3 Amitay, M., and Glezer, A., "Aerodynamic Flow Control of a Thick Airfoil using Synthetic Jet Actuators

  12. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  13. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  14. A survey of Populus PIN-FORMED family genes reveals their diversified expression patterns.

    PubMed

    Liu, Bobin; Zhang, Jin; Wang, Lin; Li, Jianbo; Zheng, Huanquan; Chen, Jun; Lu, Mengzhu

    2014-06-01

    The plant hormone auxin is a key regulator of plant development, and its uneven distribution maintained by polar intercellular auxin transport in plant tissues can trigger a wide range of developmental processes. Although the roles of PIN-FORMED (PIN) proteins in intercellular auxin flow have been extensively characterized in Arabidopsis, their roles in woody plants remain unclear. Here, a comprehensive analysis of PIN proteins in Populus is presented. Fifteen PINs are encoded in the genome of Populus, including four PIN1s, one PIN2, two PIN3s, three PIN5s, three PIN6s, and two PIN8s. Similar to Arabidopsis AtPIN proteins, PtPINs share conserved topology and transmembrane domains, and are either plasma membrane- or endoplasmic reticulum-localized. The more diversified expansion of the PIN family in Populus, comparing to that in Arabidopsis, indicates that some auxin-regulated developmental processes, such as secondary growth, may exhibit unique features in trees. More importantly, different sets of PtoPINs have been found to be strongly expressed in the roots, leaves, and cambium in Populus; the dynamic expression patterns of selected PtoPINs were further examined during the regeneration of shoots and roots. This genome-wide analysis of the Populus PIN family provides important cues for their potential roles in tree growth and development.

  15. Dynamical coupled-channels study of {pi}N {right arrow} {pi pi}N reactions.

    SciTech Connect

    Kamano, H.; Julia-Diaz, B.; Lee, T.-S. H.; Matsuyama, A.; Sato, T.; Physics; Jefferson Lab.; Univ. of Barcelona; Shizuoka Univ.; Osaka Univ.

    2009-02-24

    As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N {yields} {pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N {yields} {pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{Delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The data of total cross sections and {pi}N and {pi}{pi} invariant mass distributions of {pi} + p {yields} {pi} + {pi} + n, {pi} + {pi}0p and {pi} - p {yields} {pi} + {pi} - n, {pi} - {pi}0p,{pi}0{pi}0n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{Delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.

  16. Pin-Hole Luminosity Monitor with Feedback

    NASA Astrophysics Data System (ADS)

    Norem, James H.; Spencer, James E.

    Previously, the generalized luminosity { L} was defined and calculated for all incident channels based on an NLC e+e- design. Alternatives were then considered to improve the differing beam-beam effects in the e-e-, eγ and γγ channels. Regardless of the channel, there was a large flux of outgoing, high energy photons that were produced from the beam-beam interaction e.g. beamstrahlung that needs to be disposed of and whose flux depended on { L}. One approach to this problem is to consider it a resource and attempt to take advantage of it by disposing of these straight-ahead photons in more useful ways than simply dumping them. While there are many options for monitoring the luminosity, any method that allows feedback and optimization in real time and in a non-intercepting and non-interfering way during normal data taking is extremely important - especially if it provides other capabilities such as high resolution tuning of spot sizes and can be used for all incident channels without essential modifications to their setup. Our "pin-hole" camera appears to be such a device if it can be made to work with high energy photons in ways that are compatible with the many other constraints and demands on space around the interaction region. The basis for using this method is that it has, in principle, the inherent resolution and bandwidth to monitor the very small spot sizes and their stabilities that are required for very high, integrated luminosity. While there are many possible, simultaneous uses of these outgoing photon beams, we limit our discussion to a single, blind, proof-of-principle experiment that was done on the FFTB line at SLAC to certify the concept of a camera obscura for high energy photons.

  17. Antimicrobial efficacy of external fixator pins coated with a lipid stabilized hydroxyapatite/chlorhexidine complex to prevent pin tract infection in a goat model.

    SciTech Connect

    Dejong, E. Schuyler; Deberardino, T. M.; Brooks, D. E.; Nelson, B. J.; Campbell, Allison A.; Bottoni, Craig R.; Pusateri, A. E.; Walton, R. S.; Guymon, C. H.; Mcmanus, Albert T.

    2001-06-01

    Background: Pin tract infection is a common complication of external fixation. An antiinfective external fixator pin might help to reduce the incidence of pin tract infection and improve pin fixation. Methods: Stainless steel and titanium external fixator pins, with and without a lipid stabilized hydroxyapatite/chlorhexidine coating, were evaluated in a goat model. Two pins contaminated with an identifiable Staphylococcus aureus strain were inserted into each tibia of 12 goats. The pin sites were examined daily. On day 14, the animals were killed, and the pin tips cultured. Insertion and extraction torques were measured. Results: Infection developed in 100% of uncoated pins, whereas coated pins demonstrated 4.2% infected, 12.5% colonized, and the remainder, 83.3%, had no growth (p < 0.01). Pin coating decreased the percent loss of fixation torque over uncoated pins (p = 0.04). Conclusion: These results demonstrate that the lipid stabilized hydroxyapatite/chlorhexidine coating was successful in decreasing infection and improving fixation of external fixator pins.

  18. Flux pinning behavior in Nb50Ti/Cu superconducting composite with different form of artificial pinning center

    NASA Astrophysics Data System (ADS)

    Liu, X. H.; Zhou, L.; Wu, X. Z.; Fu, B. Q.; Wang, F. Y.; Zhang, P. X.; Feng, Y.; Weber, H. W.

    2003-04-01

    Artificial pinning center (APC) niobium-titanium composites achieve very high critical current density value at low magnetic field (below 5 T), but they are inferior to conventional composites at high magnetic fields (above 7 T) due to weak flux pining force. Therefore, realization of flux pinning behavior and improvement of flux pinning force of NbTi composite are very important. In this paper, three forms of niobium APC were introduced into Nb50Ti/Cu composites, that is, island-shaped, net-shaped and sheet-shaped Nb APC. The results show that Nb50Ti/Cu composites with island-shaped APC have highest flux pinning force over other two kinds of composites with net-shaped and sheet-shaped APC, however, this difference will be reduced after heat treatment process.

  19. Networked Rectenna Array for Smart Material Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.

    2000-01-01

    The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.

  20. Dielectric Elastomer Actuated Systems and Methods

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.