Science.gov

Sample records for actuating hydraulic fluid

  1. Actuation fluid adapter for hydraulically-actuated electronically-controlled fuel injector and engine using same

    DOEpatents

    Keyster, Eric S.; Merchant, Jack A.

    2002-01-01

    A fuel injector adapter consists of a block defining a pressure communication passage therethrough and an actuation fluid passage. The actuation fluid passage includes three separate branches that open through an outer surface of the block at three separate locations.

  2. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  3. Pneumatic actuator with hydraulic control

    NASA Astrophysics Data System (ADS)

    Everett, Hobart R., Jr.

    1992-11-01

    The present invention provides a pneumatically powered actuator having hydraulic control for both locking and controlling the velocity of an output rod without any sponginess. The invention includes a double-acting pneumatic actuator having a bore, a piston slidably engaged within the bore, and a control rod connected to the piston. The double-acting pneumatic actuator is mounted to a frame. A first double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and a follower rod mounted to the piston is mounted to the frame such that the follower rod is fixedly connected to the control rod. The maximum translation of the piston within the bore of the first double-acting hydraulic actuator provides a volumetric displacement V1. The present invention also includes a second double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and an output rod mounted to the piston. The maximum translation of the piston within the bore of the second double-acting hydraulic actuator provides a volumetric displacement V2, where V2=V1. A pair of fluid ports in each of the first and second double-acting hydraulic cylinders are operably connected by fluid conduits, one of which includes a valve circuit which may be used to control the velocity of the output rod or to lock the output rod in a static position by regulating the flow of hydraulic fluid between the double-acting cylinders.

  4. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  5. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    NASA Astrophysics Data System (ADS)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response

  6. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  7. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  8. Dual reservoir tank for propellant hydraulic fluid for internal combustion engine hydraulically driven cooling fan and for power steering actuating fluid

    SciTech Connect

    Fukami, K.; Inagaki, M.; Oomura, S.; Hamamoto, T.

    1989-01-03

    This patent describes an internal combustion engine reservoir tank comprising a dividing wall between: (a) a first reservoir tank portion for storing a reserve of the first propellant hydraulic fluid, the first flow being taken from the first reservoir tank portion and being returned to the first reservoir tank portion; and (b) a second reservoir tank portion directly adjacent the first reservoir tank portion for storing a reserve of the second propellant hydraulic fluid, the second flow being taken from the second reservoir tank portion and being returned to the second reservoir tank portion.

  9. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  10. Hydraulic actuator motion limiter ensures operator safety

    NASA Technical Reports Server (NTRS)

    Steinmetz, C. P.

    1971-01-01

    Device regulates action of hydraulic linkage to control column to minimize hazard to operator. Primary components of device are flow rate control valve, limiter accumulator, and shutoff valve. Limiter may be incorporated into other hydraulic systems to prevent undue wear on hydraulic actuators and associated components.

  11. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  12. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  13. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M.

    2009-08-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm3 s-1 and 22.7 cm3 s-1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation.

  14. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  15. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  16. Simulated dynamic response of a servovalve controlled hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1990-01-01

    A general purpose math model of a servovalve controlled hydraulic actuator system is derived. The system consists of a linear actuator with unequal piston areas, a single stage servovalve, a gas charged hydraulic accumulator, and the interconnecting piping. The state equations are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic response characteristics. Using this generalized hydraulic actuator system model, response characteristics were determined for various servovalve commands.

  17. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-01

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process. PMID:27070765

  18. Fluid Power/Basic Hydraulics. Instructor's Guide.

    ERIC Educational Resources Information Center

    Stanbery, Richard

    This guide is designed to assist industrial vocational instructors in teaching a course on fluid power and basic hydraulics. Covered in the unit on the basics of fluid power and hydraulics are the following topics: the fundamentals of fluid power and hydraulics, basic hydraulic circuits, and servicing a hydraulic jack. The second unit, consisting…

  19. 12. VIEW OF HYDRAULIC PUMP INSIDE SILO. ACTUATING ARMS FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF HYDRAULIC PUMP INSIDE SILO. ACTUATING ARMS FOR DOORS EXPOSED Everett Weinreb, photographer, April 1988 - Los Pinetos Nike Missile Site, Santa Clara Road, Los Angeles National Forest, Sylmar, Los Angeles County, CA

  20. Hydraulic actuator for an electric circuit breaker

    DOEpatents

    Imam, Imdad [Colonie, NY

    1983-01-01

    This actuator comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit breaker opening operation. The breaker-opening space and the breaker-closing space are connected by an impeded flow passage. A pilot valve opens to allow the pressurized liquid in the breaker-closing space to flow to a back chamber of a normally closed main valve to cause the main valve to be opened during a circuit breaker opening operation to release the pressurized liquid from the breaker-closing space. An impeded passage affords communication between the back chamber and a sump located on the opposite side of the main valve from the back chamber. The pilot valve and impeded passage allow rapid opening of the main valve with pressurized liquid from the breaker closing side of the piston.

  1. Hydraulic actuator for an electric circuit breaker

    DOEpatents

    Imam, I.

    1983-05-17

    This actuator comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit breaker opening operation. The breaker-opening space and the breaker-closing space are connected by an impeded flow passage. A pilot valve opens to allow the pressurized liquid in the breaker-closing space to flow to a back chamber of a normally closed main valve to cause the main valve to be opened during a circuit breaker opening operation to release the pressurized liquid from the breaker-closing space. An impeded passage affords communication between the back chamber and a sump located on the opposite side of the main valve from the back chamber. The pilot valve and impeded passage allow rapid opening of the main valve with pressurized liquid from the breaker closing side of the piston. 3 figs.

  2. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.

    PubMed

    Otten, Alexander; van Vuuren, Wieke; Stienen, Arno; van Asseldonk, Edwin; Schouten, Alfred; van der Kooij, Herman

    2011-01-01

    Robotics used for diagnostic measurements on, e.g. stroke survivors, require actuators that are both stiff and compliant. Stiffness is required for identification purposes, and compliance to compensate for the robots dynamics, so that the subject can move freely while using the robot. A hydraulic actuator can act as a position (stiff) or a torque (compliant) actuator. The drawback of a hydraulic actuator is that it behaves nonlinear. This article examines two methods for controlling a nonlinear hydraulic actuator. The first method that is often applied uses an elastic element (i.e. spring) connected in series with the hydraulic actuator so that the torque can be measured as the deflection of the spring. This torque measurement is used for proportional integral control. The second method of control uses the inverse of the model of the actuator as a linearizing controller. Both methods are compared using simulation results. The controller designed for the series elastic hydraulic actuator is faster to implement, but only shows good performance for the working range for which the controller is designed due to the systems nonlinear behavior. The elastic element is a limiting factor when designing a position controller due to its low torsional stiffness. The model-based controller linearizes the nonlinear system and shows good performance when used for torque and position control. Implementing the model-based controller does require building and validating of the detailed model. PMID:22275654

  3. Helmholtz resonance in a piezoelectric-hydraulic pump-based hybrid actuator

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2011-01-01

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric-hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator.

  4. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    SciTech Connect

    WITTEKIND WD

    2007-10-03

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  5. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    NASA Astrophysics Data System (ADS)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  6. Climbing robot actuated by meso-hydraulic artificial muscles

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Fitzgerald, Jason; Miller, Samuel; Saltzman, Jonah; Kim, Sangkyu; Lin, Yong; Garcia, Ephrahim

    2014-03-01

    This paper presents the design, construction, experimental characterization, and system testing of a legged, wall-climbing robot actuated by meso-scale hydraulic artificial muscles. While small wall-climbing robots have seen increased research attention in recent years, most authors have primarily focused on designs for the gripping and adhesion of the robot to the wall, while using only standard DC servo-motors for actuation. This project seeks to explore and demonstrate a different actuation mechanism that utilizes hydraulic artificial muscles. A four-limb climbing robot platform that includes a full closed-loop hydraulic power and control system, custom hydraulic artificial muscles for actuation, an on-board microcontroller and RF receiver for control, and compliant claws with integrated sensing for gripping a variety of wall surfaces has been constructed and is currently being tested to investigate this actuation method. On-board power consumption data-logging during climbing operation, analysis of the robot kinematics and climbing behavior, and artificial muscle force-displacement characterization are presented to investigate and this actuation method.

  7. Active catheter driven by a thermo-hydraulic actuation.

    PubMed

    Horovitz, Yonatan; Kosa, Gabor

    2015-01-01

    Catheters and flexible endoscopes are usually steered by mechanical wires that are driven from their base. Due to friction and buckling there is a need to place the driving actuator of the catheter at the catheter's tip. Such active catheter's manoeuvrability is much higher than wire-driven ones. A problem with active catheters is the difficulty to create high enough bending using micro-actuators placed at the catheter's tip. Our actuation method is an attempt to overcome this difficulty by using a novel thermo-hydraulic actuation method. The magnitude of the bending torque of our actuator is created by internal hydraulic pressure in the tube and the steering direction is controlled by the thermal micro-actuator embedded in the wall of the tube. In this paper we present the modelling, optimization, design and testing of an initial prototype of such an actuator. We found that a 4 mm OD actuator made of TPU can bend to ±12°. PMID:26738094

  8. Hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  9. Self-contained hybrid electro-hydraulic actuators using magnetostrictive and electrostrictive materials

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban

    Hybrid electro-hydraulic actuators using smart materials along with flow rectification have been widely reported in recent years. The basic operation of these actuators involves high frequency bidirectional operation of an active material that is converted into unidirectional fluid motion by a set of valves. While theoretically attractive, practical constraints limit the efficacy of the solid-fluid hybrid actuation approach. In particular, inertial loads, fluid viscosity and compressibility combine with loss mechanisms inherent in the active material to limit the effective bandwidth of the driving actuator and the total output power. A hybrid actuator was developed by using magnetostrictive TerFeNOL-D as the active driving element and hydraulic oil as the working fluid. Tests, both with and without an external load, were carried out to measure the unidirectional performance of the actuator at different pumping frequencies and operating conditions. The maximum no-load output velocity was 84 mm/s with a 51 mm long rod and 88 mm/s with a 102 mm long rod, both noted around 325 Hz pumping frequency, while the blocked force was close to 89 N. Dynamic tests were performed to analyze the axial vibration characteristics of the Terfenol-D rods and frequency responses of the magnetic circuits. A second prototype actuator employing the same actuation principle was then designed by using the electrostrictive material PMN-32%PT as the driving element. Tests were conducted to measure the actuator performance for varying electrical input conditions and fluid bias pressures. The peak output velocity obtained was 330 mm/s while the blocked force was 63 N. The maximum volume flow rate obtained with the PMN-based actuator was more than double that obtained from the Terfenol-D--based actuator. Theoretical modeling of the dynamics of the coupled structural-hydraulic system is extremely complex and several models have been proposed earlier. At high pumping frequencies, the fluid inertia

  10. Redundancy of hydraulic flight control actuators

    NASA Technical Reports Server (NTRS)

    Chenoweth, C. C.; Ryder, D. R.

    1976-01-01

    The constraint of requiring airplanes to have inherent aerodynamic stability can be removed by using active control systems. The resulting airplane requires control system reliability approaching that of the basic airframe. Redundant control actuators can be used to achieve the required reliability, but create mechanization and operational problems. Of numerous candidate systems, two different approaches to solving the problems associated with redundant actuators which appear the most likely to be used in advanced airplane control systems are described.

  11. Importance of mechanical testing of hydraulic fluids

    SciTech Connect

    Reichel, J.

    1997-12-31

    Anti-wear properties of hydraulic fluids are important because hydraulic pump and motor wear is costly. Hydraulic fluid performance specifications represent minimum requirements. International hydraulic fluid performance standards are being developed by ISO/TC28/SC4 committee as draft (ISO DIS 11158 ``Specifications for Mineral Oil Hydraulic Fluids``). Performance specifications for non-mineral oil hydraulic fluids are also being developed. Typically, both the user and fluid manufacturer have insufficient information relating to the anti-wear properties of a new fluid to be used in hydraulic equipment, such as axial piston pumps, vane pumps or radial piston motors. Therefore, pump lubrication and operation requirements, preferably pre-existing in pump manufacturer`s specifications, must be determined. The required fluid lubrication properties may be determined by either laboratory pump tests or by a field trial, often at the expense of the customer. More preferably, the lubrication properties of the hydraulic fluid should be determined under mechanical conditions equivalent to field practice. In this paper, the use of both the vane pump test and the FZG Gear Test to predetermine the recommended hydraulic fluid lubrication performance will be discussed. In this way, fluid performance may be determined at significantly lower cost than more expensive large scale hydraulic pump and motor tests which are slower and more energy consuming.

  12. Active control of static pressure drop caused by hydraulic servo-actuator engage

    SciTech Connect

    Janlovic, J.

    1994-12-31

    Pressure drop caused by propagation of expansion waves in the source pipeline of fast high cyclic hydraulic actuator produces possible anomalies in its function. To prevent pressure drop it is possible to minimize wave effects by active control of actuator servo-valve throttle leakage. In the paper is presented synthesis of possible discrete active control of hydraulic actuator and its servo-valve for prevention expansion wave pressure drop. Control synthesis is based on static pressure increasing with decreasing of fluid flow velocity, which can be realized by lower throttle leakage. Some of the effects of assumed control are shown on corresponding diagrams of control valve throttle motion, piston displacement and its corresponding linear velocity.

  13. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  14. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  15. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  16. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72...

  17. Simulation and control of an electro-hydraulic actuated clutch

    NASA Astrophysics Data System (ADS)

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu

    2011-08-01

    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  18. 110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. 128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON RIGHT; ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Fluid power engineering with fire resistant hydraulic fluids: Experiences with water-containing hydraulic fluids

    SciTech Connect

    Reichel, J.

    1994-12-01

    Water-based hydraulic fluids belong to the category of fire-resistant hydraulic fluids. For better fire protection, they are used instead of easily inflammable mineral oil based fluids in zones exposed to fire risks. For reasons of human health and operational safety, fire-resistant fluids have been compulsory in the hard coal mining industry of the European Community for more than 28 years. From the early sixties onward, testing specifications and methods were always updated for keeping pace with the actual state of technology, and recently, the seventh revised version was issued in the Luxembourg Reports (1) in 1993. As a consequence of the number of environmental catastrophes and the ban of polychlorinated biphenyls (PCB) (2) environmental compatibility testing was introduced within the framework of the European harmonization efforts for fire-resistant hydraulic fluids in 1990. However, predominantly national regulations are still in force. 7 figs., 2 tabs.

  1. Design of a hydraulic actuator for active control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Rashidi, Majid; Dirusso, Eliseo

    1991-01-01

    A hydraulic actuator is described which consists of a pump, a hydraulic servo-valve, and a thin elastic plate which transduces the generated pressure variations into forces acting on a mass which simulates the bearing of a rotor system. An actuator characteristic number is defined to provide a base for an optimum design of force actuators with combined weight, frequency, and force considerations. This characteristic number may also be used to compare hydraulic and electromagnetic force actuators. In tests, this actuator generated 182.3 Newton force at a frequency of 100 Hz and a displacement amplitude of 5.8 x 10 exp -5 meter.

  2. Laser microfluidics: fluid actuation by light

    NASA Astrophysics Data System (ADS)

    Delville, Jean-Pierre; de Saint Vincent, Matthieu Robert; Schroll, Robert D.; Chraïbi, Hamza; Issenmann, Bruno; Wunenburger, Régis; Lasseux, Didier; Zhang, Wendy W.; Brasselet, Etienne

    2009-03-01

    The development of microfluidic devices is still hindered by the lack of robust fundamental building blocks that constitute any fluidic system. An attractive approach is optical actuation because light field interaction is contactless and dynamically reconfigurable, and solutions have been anticipated through the use of optical forces to manipulate microparticles in flows. Following the concept of an 'optical chip' advanced from the optical actuation of suspensions, we propose in this survey new routes to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid interfaces by the optical radiation pressure and the formation of liquid jets. We analyze the droplet shedding from the jet tip and the continuous transport in laser-sustained liquid channels. In the second part, we investigate a dissipative light-flow interaction mechanism consisting in heating locally two immiscible fluids to produce thermocapillary stresses along their interface. This opto-capillary coupling is implemented in adequate microchannel geometries to manipulate two-phase flows and propose a contactless optical toolbox including valves, droplet sorters and switches, droplet dividers or droplet mergers. Finally, we discuss radiation pressure and opto-capillary effects in the context of the 'optical chip' where flows, channels and operating functions would all be performed optically on the same device.

  3. High speed hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Iman, I.

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.

  4. A comparison of hydraulic, pneumatic, and electro-mechanical actuators for general aviation flight controls

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Rice, M.; Eysink, H.

    1979-01-01

    Mathematical models for electromechanical (EM), pneumatic and hydraulic actuations are discussed. It is shown that EM and hydraulic actuators provide better and faster time responses than pneumatic actuators but EM actuators utilizing the recently developed samarium-cobalt technology have significant advantages in terms of size, weight and power requirements. In terms of ease and flexibility of installation EM actuators apparently have several advantages over hydraulic actuators, and cost is a primary reason for the popularity of EM actuation for secondary control function since no additional systems need to be added to the aircraft. While new rare earth magnets are currently in developmental stage, costs are relatively high; but continued research should bring prices down.

  5. The design and evaluation of a hydraulic actuation system for a legged rough-terrain vehicle

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Waldron, K. J.; Dworak, J. A.

    One of the causes of low efficiency of legged vehicles is the type of actuation system used. This paper describes the overall design and the evaluation of some aspects of a proposed hydraulic actuation system for a six-legged vehicle intended for use in rough terrain. Features of the hydraulic actuation system designed to improve mechanical efficiency are described. A combination of linearized dynamic system analysis and computer simulation of the nonlinear dynamic system equations is used to evaluate some aspects of the proposed design. The tradeoff between energy efficient operation and the dynamic performance of the actuation system is investigated. Some criteria for controller design are enumerated.

  6. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  7. Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Qian, Yili; Ou, Ge; Maghareh, Amin; Dyke, Shirley J.

    2014-10-01

    In a typical Real-time Hybrid Simulation (RTHS) setup, servo-hydraulic actuators serve as interfaces between the computational and physical substructures. Time delay introduced by actuator dynamics and complex interaction between the actuators and the specimen has detrimental effects on the stability and accuracy of RTHS. Therefore, a good understanding of servo-hydraulic actuator dynamics is a prerequisite for controller design and computational simulation of RTHS. This paper presents an easy-to-use parametric identification procedure for RTHS users to obtain re-useable actuator parameters for a range of payloads. The critical parameters in a linearized servo-hydraulic actuator model are optimally obtained from genetic algorithms (GA) based on experimental data collected from various specimen mass/stiffness combinations loaded to the target actuator. The actuator parameters demonstrate convincing convergence trend in GA. A key feature of this parametric modeling procedure is its re-usability under different testing scenarios, including different specimen mechanical properties and actuator inner-loop control gains. The models match well with experimental results. The benefit of the proposed parametric identification procedure has been demonstrated by (1) designing an H∞ controller with the identified system parameters that significantly improves RTHS performance; and (2) establishing an analysis and computational simulation of a servo-hydraulic system that help researchers interpret system instability and improve design of experiments.

  8. Engine including hydraulically actuated valvetrain and method of valve overlap control

    DOEpatents

    Cowgill, Joel

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  9. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    NASA Technical Reports Server (NTRS)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  10. Light-driven actuation of fluids at microscale

    NASA Astrophysics Data System (ADS)

    Deshpande, Mandar; Saggere, Laxman

    2004-07-01

    This paper discusses the prospects of light-driven actuation particularly for actuating fluids at micro-scale for potential use in a novel retinal prosthesis and other drug delivery applications. The prosthesis is conceived to be comprised of an array of light-driven microfluidic-dispenser units, devices that eject very small amounts of fluids on the order of 1 picoliter per second in response to incident light energy in the range of 0.1-1 mW/cm2. A light-driven actuator, whose size will ideally be smaller than about 100 micrometers in diameter, independently powers each dispenser unit. Towards this application, various approaches for transducing light energy for actuation of fluids are explored. These approaches encompass both direct transduction of light energy to mechanical actuation of fluid and indirect transduction through an intermediary form of energy, for instance, light energy to thermal or electrical energy followed by mechanical actuation of fluid. Various existing schemes for such transduction are reviewed comprehensively and discussed from the standpoint of the application requirements. Direct transduction schemes exploiting recent developments in optically sensitive materials that exhibit direct strain upon illumination, particularly the photostrictive PLZT (Lanthanum modified Lead Zirconate Titanate), are studied for the current application, and results of some preliminary experiments involving measurement of photovoltage, photocurrent, and photo-induced strain in the meso-scale samples of the PLZT material are presented.

  11. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    SciTech Connect

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.

  12. 7 CFR 2902.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2011-01-01 2011-01-01 false Mobile equipment hydraulic fluids. 2902.10 Section... PROCUREMENT Designated Items § 2902.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic...

  13. 7 CFR 3201.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2013-01-01 2013-01-01 false Mobile equipment hydraulic fluids. 3201.10 Section... PROCUREMENT Designated Items § 3201.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic...

  14. 7 CFR 3201.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2012-01-01 2012-01-01 false Mobile equipment hydraulic fluids. 3201.10 Section... PROCUREMENT Designated Items § 3201.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic...

  15. 7 CFR 3201.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2014-01-01 2014-01-01 false Mobile equipment hydraulic fluids. 3201.10 Section... PROCUREMENT Designated Items § 3201.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic...

  16. 7 CFR 2902.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2010-01-01 2010-01-01 false Mobile equipment hydraulic fluids. 2902.10 Section... PROCUREMENT Designated Items § 2902.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic...

  17. Development of a magneto-rheological fluid based hybrid actuation system

    NASA Astrophysics Data System (ADS)

    John, Shaju

    A hybrid hydraulic actuation system is proposed as an active pitch link for rotorcraft applications. Such an active pitch link can be used to implement Individual Blade Control (IBC) techniques for vibration and noise reduction, in addition to providing primary control for the helicopter. Conventional technologies like electric motors and hydraulic actuators have major disadvantages when it come to applications on a rotating environment. Centralized hydraulic system require the use of mechanically complex hydraulic slip rings and electric motors have high precision mechanical moving parts that make them unattractive in application with high centrifugal load. The high energy density of smart materials can be used to design hydraulic actuators in a compact package. MagnetoRheological (MR) fluids can be used as the working fluid in such a hybrid hydraulic actuation system to implement a valving system with no moving parts. Thus, such an actuation system can be theoretically well-suited for application in a rotating environment. To develop an actuation system based on an active material stack and MR fluidic valves, a fundamental understanding of the hydraulic circuit is essential. In order to address this issue, a theoretical model was developed to understand the effect of pumping chamber geometry on the pressure losses in the pumping chamber. Three dimensional analytical models were developed for steady and unsteady flow and the results were correlated to results obtained from Computation Fluid Dynamic simulation of fluid flow inside the pumping chamber. Fundamental understanding regarding the pressure losses in a pumping chamber are obtained from the modeling process. Vortices that form in the pumping chamber (during intake) and the discharge tube (during discharge) are identified as a major cause of pressure loss in the chamber. The role of vortices during dynamic operation is also captured through a frequency domain model. Extensive experimental studies were

  18. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  19. Variable stiffness actuator based on fluidic flexible matrix composites and piezoelectric-hydraulic pump

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Li, Suyi; Wang, K. W.

    2010-04-01

    Recently, a new biological-inspired fluidic flexible matrix composite (in short, F2MC) concept has been developed for linear/torsional actuation and structural stiffness tailoring. Although the actuation and the variable stiffness features of the F2MC have been successfully demonstrated individually, their combined functions and full potentials were not yet manifested. In addition, the current hydraulic pressurization systems are bulky and heavy, limiting the potential of the F2MC actuator. To address these issues, we synthesize a new variable stiffness actuator concept that can provide both effective actuation and tunable stiffness (dual-mode), incorporating the F2MC with a compact piezoelectric-hydraulic pump (in short, PHP). This dual-mode mechanism will significantly enhance the potential of the F2MC adaptive structures.

  20. Particle laden fluids in hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Lecampion, Brice

    2015-11-01

    The aim of hydraulic fracturing is to create a highly conductive pathway in the reservoir formation of interest. This is typically achieved by ``propping'' the created fracture with solid particles (i.e. proppant) in order to prevent complete closure of the created fracture due to in-situ stresses when pumping stops. The placement of proppant is therefore the main goal of any fracturing treatment. It involves a number of interesting fluid dynamics problem (suspensions flow with settling, complex rheologies of the base fluid, effect of the fracture roughness etc.). In this talk, we will review the different class of fluids used to achieve proppant placement in fracture particularly focusing on their widely varied rheological properties. We will also discuss the different flow regimes that are typically encountered during a hydraulic fracturing job. In particular, we will notably present in details how recent advances in our understanding of dense suspensions flow can improve predictions of proppant placement in the Stokesian regime. Second author: Dmtiry Garagash, Dalhousie University.

  1. Fluid-solid interaction model for hydraulic reciprocating O-ring seals

    NASA Astrophysics Data System (ADS)

    Liao, Chuanjun; Huang, Weifeng; Wang, Yuming; Suo, Shuangfu; Liu, Ying

    2013-01-01

    Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.

  2. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... manufacturers and ANSI B93.5 (incorporated by reference; see 46 CFR 58.03-1) shall be considered in the... 46 Shipping 2 2014-10-01 2014-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping... AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-10 Hydraulic fluid. (a) The...

  3. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... manufacturers and ANSI B93.5 (incorporated by reference; see 46 CFR 58.03-1) shall be considered in the... 46 Shipping 2 2011-10-01 2011-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping... AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-10 Hydraulic fluid. (a) The...

  4. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... manufacturers and ANSI B93.5 (incorporated by reference; see 46 CFR 58.03-1) shall be considered in the... 46 Shipping 2 2012-10-01 2012-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping... AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-10 Hydraulic fluid. (a) The...

  5. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... manufacturers and ANSI B93.5 (incorporated by reference; see 46 CFR 58.03-1) shall be considered in the... 46 Shipping 2 2013-10-01 2013-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping... AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-10 Hydraulic fluid. (a) The...

  6. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... manufacturers and ANSI B93.5 (incorporated by reference; see 46 CFR 58.03-1) shall be considered in the... 46 Shipping 2 2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping... AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-10 Hydraulic fluid. (a) The...

  7. Design and development of magnetorheological fluid-based passive actuator.

    PubMed

    Shokrollahi, Elnaz; Price, Karl; Drake, James M; Goldenberg, Andrew A

    2015-08-01

    We present the design and experimental validation of a magnetorheological (MR) fluid-based passive actuator for tele-robotic bone biopsy procedures. With Finite Element Method Magnet (FEMM) software, the required uniform magnetic field circuit design was simulated. An 1100 turn 24 AWG copper wire coil wrapped around a magnetic core was used to create a magnetic field. The field strength was measured with a Hall effect sensor, and compared to the simulation. The maximum magnetic field flux produced by a constant current of 1.4 A was 0.2 T, similar to the simulation results. A series of quasi-static experiments were conducted to characterize the forces generated by the MR fluid-based actuator under various currents up to 12 N. An analytical model was developed to validate the measurements from the passive actuator. PMID:26737387

  8. A MEMS Electrochemical Bellows Actuator for Fluid Metering Applications

    PubMed Central

    Sheybani, Roya; Gensler, Heidi; Meng, Ellis

    2013-01-01

    We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2% variation in flow rate values. PMID:22833156

  9. A MEMS electrochemical bellows actuator for fluid metering applications.

    PubMed

    Sheybani, Roya; Gensler, Heidi; Meng, Ellis

    2013-02-01

    We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2 % variation in flow rate values. PMID:22833156

  10. 7 CFR 3201.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. EPA provides recovered... 7 Agriculture 15 2013-01-01 2013-01-01 false Stationary equipment hydraulic fluids. 3201.28... FEDERAL PROCUREMENT Designated Items § 3201.28 Stationary equipment hydraulic fluids. (a)...

  11. 7 CFR 2902.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. EPA provides recovered... 7 Agriculture 15 2011-01-01 2011-01-01 false Stationary equipment hydraulic fluids. 2902.28... PROCUREMENT Designated Items § 2902.28 Stationary equipment hydraulic fluids. (a) Definition....

  12. 7 CFR 3201.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. EPA provides recovered... 7 Agriculture 15 2012-01-01 2012-01-01 false Stationary equipment hydraulic fluids. 3201.28... FEDERAL PROCUREMENT Designated Items § 3201.28 Stationary equipment hydraulic fluids. (a)...

  13. 7 CFR 3201.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. EPA provides recovered... 7 Agriculture 15 2014-01-01 2014-01-01 false Stationary equipment hydraulic fluids. 3201.28... FEDERAL PROCUREMENT Designated Items § 3201.28 Stationary equipment hydraulic fluids. (a)...

  14. 7 CFR 2902.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. EPA provides recovered... 7 Agriculture 15 2010-01-01 2010-01-01 false Stationary equipment hydraulic fluids. 2902.28... PROCUREMENT Designated Items § 2902.28 Stationary equipment hydraulic fluids. (a) Definition....

  15. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  16. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1) and be acceptable to the Commanding Officer, Marine Safety Center. Also, the piping for the main gear must comply with 46 CFR 58.25-10(e)(3). ... 46 Shipping 2 2014-10-01 2014-10-01 false Non-duplicated hydraulic rudder actuators....

  17. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1) and be acceptable to the Commanding Officer, Marine Safety Center. Also, the piping for the main gear must comply with 46 CFR 58.25-10(e)(3). ... 46 Shipping 2 2013-10-01 2013-10-01 false Non-duplicated hydraulic rudder actuators....

  18. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1) and be acceptable to the Commanding Officer, Marine Safety Center. Also, the piping for the main gear must comply with 46 CFR 58.25-10(e)(3). ... 46 Shipping 2 2011-10-01 2011-10-01 false Non-duplicated hydraulic rudder actuators....

  19. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1) and be acceptable to the Commanding Officer, Marine Safety Center. Also, the piping for the main gear must comply with 46 CFR 58.25-10(e)(3). ... 46 Shipping 2 2012-10-01 2012-10-01 false Non-duplicated hydraulic rudder actuators....

  20. High-temperature, long-life polyimide seals for hydraulic actuator rods

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Lee, J.; Loomis, W. R.

    1971-01-01

    Two types of polyimide seals are developed for hydraulic actuator rod in low pressure second stage of two-stage configuration. Each seal melts test objectives of twenty million cycles of operation at 534 K. Analytical and experimental study results are discussed. Potential applications are given.

  1. Hydraulic actuation technology for full- and semi-active railway suspensions

    NASA Astrophysics Data System (ADS)

    Goodall, Roger; Freudenthaler, Gerhard; Dixon, Roger

    2014-12-01

    The paper describes a simulation study that provides a comprehensive comparison between full-active and semi-active suspensions for improving the vertical ride quality of railway vehicles. It includes an assessment of the ride quality benefits that can theoretically be achieved with idealised devices, and also examines the impact of real devices based upon hydraulic actuation technology.

  2. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1) and be acceptable to the Commanding Officer, Marine Safety Center. Also, the piping for the main gear must comply with 46 CFR 58.25-10(e)(3). ... 46 Shipping 2 2010-10-01 2010-10-01 false Non-duplicated hydraulic rudder actuators....

  3. Integrated hydraulic cooler and return rail in camless cylinder head

    DOEpatents

    Marriott, Craig D.; Neal, Timothy L.; Swain, Jeff L.; Raimao, Miguel A.

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  4. FTIR quantification of industrial hydraulic fluids in perchloroethylene

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder K.

    1993-01-01

    The purpose of this summer research project was to investigate whether perchloroethylene can be used as a solvent for the quantitative analysis of industrial hydraulic fluids by infrared spectroscopy employing Beer's law. Standard calibration curves using carbon-hydrogen stretching (generic) and ester absorption peaks were prepared for a series of standard dilutions at low ppm levels of concentration of seven hydraulic fluids in perchloroethylene. The absorbance spectras were recorded with 1.5-10 mm fixed and variable path length sample cells made of potassium bromide. The results indicate that using ester infrared spectral peak, it is possible to detect about 20 ppm of the hydraulic fluid in perchloroethylene.

  5. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    PubMed

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level. PMID:23552653

  6. 13. Detail of hydraulic fluid piping, east wall of bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail of hydraulic fluid piping, east wall of bay - Mississippi River 9-Foot Channel, Lock & Dam No. 1, In Mississippi River at Mississippi Boulevard, below Ford Parkway Bridge, Saint Paul, Ramsey County, MN

  7. Dynamic Hydraulic Fluid Stimulation Regulated Intramedullary Pressure

    PubMed Central

    Hu, Minyi; Serra-Hsu, Frederick; Bethel, Neville; Lin, Liangjun; Ferreri, Suzanne; Cheng, Jiqi; Qin, Yi-Xian

    2013-01-01

    Physical signals within bone, i.e. generated from mechanical loading, have the potential to initiate skeletal adaptation. Strong evidence has pointed to bone fluid flow (BFF) as a media between an external load and the bone cells, in which altered velocity and pressure can ultimately initiate the mechanotransduction and the remodeling process within bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone, with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for alteration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1Hz to 10Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response to DHS over the range of loading frequencies, where peaked at 2Hz. DHS at various loading frequencies generated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than 8με. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscillatory DHS may regulate the local fluid dynamics with minimal mechanical strain in bone, which serves critically in bone adaptation. These results clearly implied DHS’s potential as an effective, non-invasive intervention for osteopenia and

  8. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  9. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  10. Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter

    NASA Astrophysics Data System (ADS)

    Strano, Salvatore; Terzo, Mario

    2016-06-01

    The state estimation in hydraulic actuators is a fundamental tool for the detection of faults or a valid alternative to the installation of sensors. Due to the hard nonlinearities that characterize the hydraulic actuators, the performances of the linear/linearization based techniques for the state estimation are strongly limited. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Simulations and experimental tests have been conducted and comparisons with the largely used Extended Kalman Filter (EKF) are illustrated. The results show the effectiveness of the SDRE based technique for applications characterized by not negligible nonlinearities such as dead zone and frictions.

  11. Evaluation of force generation mechanisms in natural, passive hydraulic actuators

    PubMed Central

    Le Duigou, A.; Castro, M.

    2016-01-01

    Pine cones are well known natural actuators that can move their scales upon humidity gradient. The mechanism manifests itself through a displacement easily observable by the naked eye, but coupled with stress generation. In ancient Egypt, wooden wedges were used to break soft blocks of stone by the generated swelling stress. The purpose of the present study is to evaluate the ability of pine cone scales to generate forces while being wetted. In our experiments, a blocking force of around 3N is measured depending on the position on the pine cone where the scales are extracted. A fairly good agreement is obtained when theoretical results based on bimetallic strip systems are compared with experimental data, even if overestimation is observed arising from the input data considered for dry tissues. Inspired by a simplified pine cone microstructure, a biocomposite analogue is manufactured and tested. Although an adequate blocking force can be generated, it has a lower value compared to natural pine cones which benefit from optimized swelling tissue content and interfacial bond strength between them. This study provides new insights to understand the generation of force by pine cones as well as to develop novel biocomposite functionalities. PMID:26726792

  12. Evaluation of force generation mechanisms in natural, passive hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Le Duigou, A.; Castro, M.

    2016-01-01

    Pine cones are well known natural actuators that can move their scales upon humidity gradient. The mechanism manifests itself through a displacement easily observable by the naked eye, but coupled with stress generation. In ancient Egypt, wooden wedges were used to break soft blocks of stone by the generated swelling stress. The purpose of the present study is to evaluate the ability of pine cone scales to generate forces while being wetted. In our experiments, a blocking force of around 3N is measured depending on the position on the pine cone where the scales are extracted. A fairly good agreement is obtained when theoretical results based on bimetallic strip systems are compared with experimental data, even if overestimation is observed arising from the input data considered for dry tissues. Inspired by a simplified pine cone microstructure, a biocomposite analogue is manufactured and tested. Although an adequate blocking force can be generated, it has a lower value compared to natural pine cones which benefit from optimized swelling tissue content and interfacial bond strength between them. This study provides new insights to understand the generation of force by pine cones as well as to develop novel biocomposite functionalities.

  13. Evaluation of force generation mechanisms in natural, passive hydraulic actuators.

    PubMed

    Le Duigou, A; Castro, M

    2016-01-01

    Pine cones are well known natural actuators that can move their scales upon humidity gradient. The mechanism manifests itself through a displacement easily observable by the naked eye, but coupled with stress generation. In ancient Egypt, wooden wedges were used to break soft blocks of stone by the generated swelling stress. The purpose of the present study is to evaluate the ability of pine cone scales to generate forces while being wetted. In our experiments, a blocking force of around 3N is measured depending on the position on the pine cone where the scales are extracted. A fairly good agreement is obtained when theoretical results based on bimetallic strip systems are compared with experimental data, even if overestimation is observed arising from the input data considered for dry tissues. Inspired by a simplified pine cone microstructure, a biocomposite analogue is manufactured and tested. Although an adequate blocking force can be generated, it has a lower value compared to natural pine cones which benefit from optimized swelling tissue content and interfacial bond strength between them. This study provides new insights to understand the generation of force by pine cones as well as to develop novel biocomposite functionalities. PMID:26726792

  14. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  15. 30 CFR 75.1107-2 - Approved fire-resistant hydraulic fluids; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved fire-resistant hydraulic fluids... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-2 Approved fire-resistant hydraulic fluids; minimum requirements. Fire-resistant hydraulic fluids...

  16. 30 CFR 75.1107-2 - Approved fire-resistant hydraulic fluids; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Approved fire-resistant hydraulic fluids... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-2 Approved fire-resistant hydraulic fluids; minimum requirements. Fire-resistant hydraulic fluids...

  17. 30 CFR 75.1107-2 - Approved fire-resistant hydraulic fluids; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Approved fire-resistant hydraulic fluids... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-2 Approved fire-resistant hydraulic fluids; minimum requirements. Fire-resistant hydraulic fluids...

  18. 30 CFR 75.1107-2 - Approved fire-resistant hydraulic fluids; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Approved fire-resistant hydraulic fluids... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-2 Approved fire-resistant hydraulic fluids; minimum requirements. Fire-resistant hydraulic fluids...

  19. 30 CFR 75.1107-2 - Approved fire-resistant hydraulic fluids; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved fire-resistant hydraulic fluids... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-2 Approved fire-resistant hydraulic fluids; minimum requirements. Fire-resistant hydraulic fluids...

  20. Method and apparatus for actuating vehicle transmission

    SciTech Connect

    Ishida, H.; Ishihara, M.; Uriuhara, M.

    1988-11-15

    This patent describes a method of actuating a vehicle parallel-gear transmission having gears and an internal lever for moving shift blocks connected with shift rods and shift forks for changing gear ratios of the transmission, a hydraulically controlled select actuator operatively connected to the internal lever for moving the internal lever in a select direction, a hydraulically controlled shift actuator operatively connected to the internal lever for moving the internal lever in a shift direction substantially normal to the select direction, a hydraulically controlled clutch actuator for connecting and disconnecting a clutch of the transmission, and a common fluid discharge passage connected to fluid discharge ports of the select and shift actuators and a fluid discharge port of the clutch actuator, the select and shift actuators being alternately actuatable to effect a gear changing operation.

  1. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  2. Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion.

    PubMed

    Gorissen, Benjamin; de Volder, Michaël; Reynaerts, Dominiek

    2015-11-21

    Arrays of beating cilia emerged in nature as one of the most efficient propulsion mechanisms at a small scale, and are omnipresent in microorganisms. Previous attempts at mimicking these systems have foundered against the complexity of fabricating small-scale cilia exhibiting complex beating motions. In this paper, we propose for the first time arrays of pneumatically-actuated artificial cilia that are able to address some of these issues. These artificial cilia arrays consist of six highly flexible silicone rubber actuators with a diameter of 1 mm and a length of 8 mm that can be actuated independently from each other. In an experimental setup, the effects of the driving frequency, phase difference and duty cycle on the net flow in a closed-loop channel have been studied. Net fluid speeds of up to 19 mm s(-1) have been measured. Further, it is possible to invert the flow direction by simply changing the driving frequency or by changing the duty cycle of the driving block pulse pressure wave without changing the bending direction of the cilia. Using PIV measurements, we corroborate for the first time existing mathematical models of cilia arrays to measurements on prototypes. PMID:26439855

  3. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  4. Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.

    2002-01-01

    An ultrasonic method is presented for non-intrusively measuring hydraulic fluid level in aircraft struts in the field quickly and easily without modifying the strut or aircraft. The technique interrogates the strut with ultrasonic waves generated and received by a removable ultrasonic transducer hand-held on the outside of the strut in a fashion that is in the presence or absence of hydraulic fluid inside the strut. This technique was successfully demonstrated on an A-6 aircraft strut on the carriage at the Aircraft Landing Dynamics Research Facility at NASA Langley Research Center. Conventional practice upon detection of strut problem symptoms is to remove aircraft from service for extensive maintenance to determine fluid level. No practical technique like the method presented herein for locating strut hydraulic fluid level is currently known to be used.

  5. Electrochemically actuated mercury pump for fluid flow and delivery

    NASA Technical Reports Server (NTRS)

    Ni, J.; Zhong, C. J.; Coldiron, S. J.; Porter, M. D.

    2001-01-01

    This paper describes the development of a prototype pumping system with the potential for incorporation into miniaturized, fluid-based analytical instruments. The approach exploits the well-established electrocapillarity phenomena at a mercury/electrolyte interface as the mechanism for pump actuation. That is, electrochemically induced changes in the surface tension of mercury result in the pistonlike movement of a mercury column confined within a capillary. We present herein theoretical and experimental assessments of pump performance. The design and construction of the pump are detailed, and the potential attributes of this design, including the generated pumping pressure, flow rate, and power consumption, are discussed. The possible miniaturization of the pump for use as a field-deployable, fluid-delivery device is also briefly examined.

  6. Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui

    2016-02-01

    The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.

  7. Application study of magnetic fluid seal in hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Yu, Z. Y.; Zhang, W.

    2012-11-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  8. Thermo-hydraulic actuator as a new way for conversion of solar energy in space

    SciTech Connect

    Sukhodolsky, A.T.

    1998-07-01

    A thermo-hydraulic actuator (THA) to directly convert the energy of continuous radiation into mechanical energy of vibration for use in power or propulsive systems in space is described. A THA consists of a chamber with an active liquid and optical fibers to deliver light energy inside. Power input comes from either argon laser or a solar concentrator 300 mm. in diameter. The principle of THA function is self-organization of a heat cycle that takes place by using a state of liquid (inversion) powered by light up to a temperature much higher than the temperature of boiling. As a result, an excited state of liquid is able to form a single cavity to absorb thermal energy that is available to be converted by the non-equilibrium phase transition of first order into mechanical energy. This work stroke of a THA to form a hydraulic shock has been stimulated by non-linear mechanical motion of a single cavity and non-equilibrium phase transition of first order. The main feature of THA to accumulate energy of light in form of heat between sequential mechanical impulses gives the unique possibility to reach the motive forces induced by solar light by many order of the magnitude greater than the forces available by equilibrium radiation pressure. The first free-piston actuator (FPA) powered by solar light is also described. The construction consists of parabolic collector of diameter of 300mm and a transparent window with mounted actuator that has of a hollow piston with active liquid. Direct generation of hydraulic shocks by THA and preliminary experiments on generation of vibrations within a construction (FPA) has been proposed to be a new subject of interdisciplinary research to go from physical phenomenon observed in laser experiments to engineering development of new vibration machines powered by solar light. To conclude, a project to apply THA in new solar cosmic propulsive systems is discussed.

  9. Dynamics and design of a power unit with a hydraulic piston actuator

    NASA Astrophysics Data System (ADS)

    Misyurin, S. Yu.; Kreinin, G. V.

    2016-07-01

    The problem of the preselection of parameters of a power unit of a mechatronic complex on the basis of the condition for providing a required control energy has been discussed. The design of the unit is based on analysis of its dynamics under the effect of a special-type test conditional control signal. The specific features of the approach used are a reasonably simplified normalized dynamic model of the unit and the formation of basic similarity criteria. Methods of designing a power unit with a hydraulic piston actuator that operates in point-to-point and oscillatory modes have been considered.

  10. Electro-Mechanical Actuators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.

  11. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    SciTech Connect

    Baston, V.F.; Hofstetter, K.J.; Hofman, L.A.; Gallagher, R.E.

    1987-01-01

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties.

  12. Constraints on upward migration of hydraulic fracturing fluid and brine.

    PubMed

    Flewelling, Samuel A; Sharma, Manu

    2014-01-01

    Recent increases in the use of hydraulic fracturing (HF) to aid extraction of oil and gas from black shales have raised concerns regarding potential environmental effects associated with predictions of upward migration of HF fluid and brine. Some recent studies have suggested that such upward migration can be large and that timescales for migration can be as short as a few years. In this article, we discuss the physical constraints on upward fluid migration from black shales (e.g., the Marcellus, Bakken, and Eagle Ford) to shallow aquifers, taking into account the potential changes to the subsurface brought about by HF. Our review of the literature indicates that HF affects a very limited portion of the entire thickness of the overlying bedrock and therefore, is unable to create direct hydraulic communication between black shales and shallow aquifers via induced fractures. As a result, upward migration of HF fluid and brine is controlled by preexisting hydraulic gradients and bedrock permeability. We show that in cases where there is an upward gradient, permeability is low, upward flow rates are low, and mean travel times are long (often >10⁶  years). Consequently, the recently proposed rapid upward migration of brine and HF fluid, predicted to occur as a result of increased HF activity, does not appear to be physically plausible. Unrealistically high estimates of upward flow are the result of invalid assumptions about HF and the hydrogeology of sedimentary basins. PMID:23895673

  13. Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Advani (Deceased), S. H.; Lee, T. S.; Dean, R. H.; Pak, C. K.; Avasthi, J. M.

    1997-04-01

    Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).

  14. Constraints on Upward Migration of Hydraulic Fracturing Fluid and Brine

    PubMed Central

    Flewelling, Samuel A; Sharma, Manu

    2014-01-01

    Recent increases in the use of hydraulic fracturing (HF) to aid extraction of oil and gas from black shales have raised concerns regarding potential environmental effects associated with predictions of upward migration of HF fluid and brine. Some recent studies have suggested that such upward migration can be large and that timescales for migration can be as short as a few years. In this article, we discuss the physical constraints on upward fluid migration from black shales (e.g., the Marcellus, Bakken, and Eagle Ford) to shallow aquifers, taking into account the potential changes to the subsurface brought about by HF. Our review of the literature indicates that HF affects a very limited portion of the entire thickness of the overlying bedrock and therefore, is unable to create direct hydraulic communication between black shales and shallow aquifers via induced fractures. As a result, upward migration of HF fluid and brine is controlled by preexisting hydraulic gradients and bedrock permeability. We show that in cases where there is an upward gradient, permeability is low, upward flow rates are low, and mean travel times are long (often >106 years). Consequently, the recently proposed rapid upward migration of brine and HF fluid, predicted to occur as a result of increased HF activity, does not appear to be physically plausible. Unrealistically high estimates of upward flow are the result of invalid assumptions about HF and the hydrogeology of sedimentary basins. PMID:23895673

  15. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils. PMID:26037076

  16. New Actuators Using ER Fluid and Their Applications to Force Display Devices in Virtual Reality and Medical Treatments

    NASA Astrophysics Data System (ADS)

    Furusho, Junji; Sakaguchi, Masamichi

    We developed ER actuators with low inertia. ER actuator is a torque-controllable clutch which uses an electrorheological fluid. It is shown that this actuator has good properties for force display device, physical therapy treatment, etc. We developed new force display devices for virtual reality which use ER actuators.

  17. Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.

    ERIC Educational Resources Information Center

    McKechnie, R. E.; Vickers, G. W.

    1981-01-01

    Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…

  18. Line Fluid Actuated Valve Development Program. [for application on the space shuttle

    NASA Technical Reports Server (NTRS)

    Lynch, R. A.

    1975-01-01

    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.

  19. Smart glove: hand master using magnetorheological fluid actuators

    NASA Astrophysics Data System (ADS)

    Nam, Y. J.; Park, M. K.; Yamane, R.

    2007-12-01

    In this study, a hand master using five miniature magneto-rheological (MR) actuators, which is called 'the smart glove', is introduced. This hand master is intended to display haptic feedback to the fingertip of the human user interacting with any virtual objects in virtual environment. For the smart glove, two effective approaches are proposed: (i) by using the MR actuator which can be considered as a passive actuator, the smart glove is made simple in structure, high in power, low in inertia, safe in interface and stable in haptic feedback, and (ii) with a novel flexible link mechanism designed for the position-force transmission between the fingertips and the actuators, the number of the actuator and the weight of the smart glove can be reduced. These features lead to the improvement in the manipulability and portability of the smart glove. The feasibility of the constructed smart glove is verified through basic performance evaluation.

  20. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  1. Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems

    NASA Astrophysics Data System (ADS)

    Weng, Falu; Mao, Weijie

    2012-03-01

    The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.

  2. Kerogen-Hydraulic Fracture Fluid Interactions: Reactivity and Contaminant Release

    NASA Astrophysics Data System (ADS)

    Dustin, M. K.; Jew, A. D.; Harrison, A. L.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.

    2015-12-01

    The use of hydraulic fracturing of tight shales to produce oil and natural gas has grown significantly in recent years, yet it remains relatively inefficient, recovering only an estimated 5% and 25% of the oil and gas present, respectively. The need to improve efficiency and diminish environmental impact has prompted research into fundamental geochemical reactions occurring in shales. In particular, reactions between kerogen and fracture fluid components are poorly understood. Kerogen is the precursor of these hydrocarbons and contains metals in addition to organic material; it is also electron rich and therefore susceptible to oxidation and release of a variety of elements. Although some mineral phases in the shales are expected to undergo dissolution-precipitation reactions, kerogen is generally considered to be relatively unreactive [1]. Here we have investigated reactions between isolated kerogen and a hydraulic fracturing fluid typical of that used in the Marcellus shale. These experiments show that kerogen, as well as redox-sensitive minerals within shales, react with fracture fluid. In particular, kerogen exhibited more extensive release of certain metals (e.g. Al, Ba, Cu, among others) than was observed for bulk shale under the same experimental conditions. This evidence suggests that kerogen may be far more reactive to fracture fluids than previously thought. In particular, these results suggest that kerogen may significantly impact the compositions of produced waters, which have previously been attributed solely to mineral reactions. They also emphasize the need for further characterization of kerogen and its reactions with complex hydraulic fracturing fluids. [1] Vandenbroucke and Largeau (2007) Org. Geochem.

  3. Hierarchical design of an electro-hydraulic actuator based on robust LPV methods

    NASA Astrophysics Data System (ADS)

    Németh, Balázs; Varga, Balázs; Gáspár, Péter

    2015-08-01

    The paper proposes a hierarchical control design of an electro-hydraulic actuator, which is used to improve the roll stability of vehicles. The purpose of the control system is to generate a reference torque, which is required by the vehicle dynamic control. The control-oriented model of the actuator is formulated in two subsystems. The high-level hydromotor is described in a linear form, while the low-level spool valve is a polynomial system. These subsystems require different control strategies. At the high level, a linear parameter-varying control is used to guarantee performance specifications. At the low level, a control Lyapunov-function-based algorithm, which creates discrete control input values of the valve, is proposed. The interaction between the two subsystems is guaranteed by the spool displacement, which is control input at the high level and must be tracked at the low-level control. The spool displacement has physical constraints, which must also be incorporated into the control design. The robust design of the high-level control incorporates the imprecision of the low-level control as an uncertainty of the system.

  4. Capillary Imbibition of Hydraulic Fracturing Fluids into Partially Saturated Shale

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Lackey, G.

    2015-12-01

    Understanding the migration of hydraulic fracturing fluids injected into unconventional reservoirs is important to assess the risk of aquifer contamination and to optimize oil and gas production. Capillary imbibition causes fracturing fluids to flow from fractures into the rock matrix where the fluids are sequestered for geologically long periods of time. Imbibition could explain the low amount of flowback water observed in the field (5-50% of the injected volume) and reduce the chance of fracturing fluid migrating out of formation towards overlying aquifers. We present calculations of spontaneous capillary imbibition in the form of an "imbibition rate parameter" (A) based on the only known exact analytical solution for spontaneous capillary imbibition. A depends on the hydraulic and capillary properties of the reservoir rock, the initial water saturation, and the viscosities of the wetting and nonwetting fluids. Imbibed volumes can be large for a high permeability shale gas reservoir (up to 95% of the injected volume) or quite small for a low permeability shale oil reservoir (as low as 3% of the injected volume). We also present a nondimensionalization of the imbibition rate parameter, which facilitates the calculation of A and clarifies the relation of A to initial saturation, porous medium properties, and fluid properties. Over the range of initial water saturations reported for the Marcellus shale (0.05-0.6), A varies by less than factors of ~1.8 and ~3.4 for gas and oil nonwetting phases respectively. However, A decreases significantly for larger initial water saturations. A is most sensitive to the intrinsic permeability of the reservoir rock and the viscosity of the fluids.

  5. Anaerobic Biodegradation of Ethylene Glycol within Hydraulic Fracturing Fluid

    NASA Astrophysics Data System (ADS)

    Heyob, K. M.; Mouser, P. J.

    2014-12-01

    Ethylene glycol (EG) is a commonly used organic additive in hydraulic fracturing fluids used for shale gas recovery. Under aerobic conditions, this compound readily biodegrades to acetate and CO2 or is oxidized through the glycerate pathway. In the absence of oxygen, organisms within genera Desulfovibrio, Acetobacterium, and others can transform EG to acetaldehyde, a flammable and suspected carcinogenic compound. Acetaldehyde can then be enzymatically degraded to ethanol or acetate and CO2. However, little is known on how EG degrades in the presence of other organic additives, particularly under anaerobic conditions representative of deep groundwater aquifers. To better understand the fate and attenuation of glycols within hydraulic fracturing fluids we are assessing their biodegradation potential and pathways in batch anaerobic microcosm treatments. Crushed Berea sandstone was inoculated with groundwater and incubated with either EG or a synthetic fracturing fluid (SFF) containing EG formulations. We tracked changes in dissolved organic carbon (DOC), EG, and its transformation products over several months. Approximately 41% of bulk DOC in SFF is degraded within 21 days, with 58% DOC still remaining after 63 days. By comparison, this same SFF degrades by 70% within 25 days when inoculated with sediment-groundwater microbial communities, suggesting that bulk DOC degradation occurs at a slower rate and to a lesser extent with bedrock. Aerobic biodegradation of EG occurs rapidly (3-7 days); however anaerobic degradation of EG is much slower, requiring several weeks for substantial DOC loss to be observed. Ongoing experiments are tracking the degradation pathways of EG alone and in the presence of SFF, with preliminary data showing incomplete glycol transformation within the complex hydraulic fracturing fluid mixture. This research will help to elucidate rates, processes, and pathways for EG biodegradation and identify key microbial taxa involved in its degradation.

  6. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  7. Imbibition of hydraulic fracturing fluids into partially saturated shale

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Lackey, Greg

    2015-08-01

    Recent studies suggest that imbibition of hydraulic fracturing fluids into partially saturated shale is an important mechanism that restricts their migration, thus reducing the risk of groundwater contamination. We present computations of imbibition based on an exact semianalytical solution for spontaneous imbibition. These computations lead to quantitative estimates of an imbibition rate parameter (A) with units of LT-1/2 for shale, which is related to porous medium and fluid properties, and the initial water saturation. Our calculations suggest that significant fractions of injected fluid volumes (15-95%) can be imbibed in shale gas systems, whereas imbibition volumes in shale oil systems is much lower (3-27%). We present a nondimensionalization of A, which provides insights into the critical factors controlling imbibition, and facilitates the estimation of A based on readily measured porous medium and fluid properties. For a given set of medium and fluid properties, A varies by less than factors of ˜1.8 (gas nonwetting phase) and ˜3.4 (oil nonwetting phase) over the range of initial water saturations reported for the Marcellus shale (0.05-0.6). However, for higher initial water saturations, A decreases significantly. The intrinsic permeability of the shale and the viscosity of the fluids are the most important properties controlling the imbibition rate.

  8. Laboratory imaging of stimulation fluid displacement from hydraulic fractures

    SciTech Connect

    Tidwell, V.; Parker, M.

    1996-11-01

    Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack.

  9. Effect of temperature on leg kinematics in sprinting tarantulas (Aphonopelma hentzi): high speed may limit hydraulic joint actuation.

    PubMed

    Booster, N A; Su, F Y; Adolph, S C; Ahn, A N

    2015-04-01

    Tarantulas extend the femur-patella (proximal) and tibia-metatarsal (distal) joints of their legs hydraulically. Because these two hydraulically actuated joints are positioned in series, hemolymph flow within each leg is expected to mechanically couple the movement of the joints. In the current study, we tested two hypotheses: (1) at lower temperatures, movement of the two in-series hydraulic joints within a leg will be less coupled because of increased hemolymph viscosity slowing hemolymph flow; and (2) at higher temperatures, movement of the two in-series hydraulic joints will be less coupled because the higher stride frequencies limit the time available for hemolymph flow. We elicited maximal running speeds at four ecologically relevant temperatures (15, 24, 31 and 40°C) in Texas Brown tarantulas (Aphonopelma hentzi). The spiders increased sprint speed 2.5-fold over the temperature range by changing their stride frequency but not stride length. The coefficient of determination for linear regression (R(2)) of the proximal and distal joint angles was used as the measure of the degree of coupling between the two joints. This coupling coefficient between the proximal and distal joint angles, for both forelegs and hind-legs, was significantly lowest at the highest temperature at which the animals ran the fastest with the highest stride frequencies. The coordination of multiple, in-series hydraulically actuated joints may be limited by operating speed. PMID:25833132

  10. Effect of temperature on leg kinematics in sprinting tarantulas (Aphonopelma hentzi): high speed may limit hydraulic joint actuation

    PubMed Central

    Booster, N. A.; Su, F. Y.; Adolph, S. C.; Ahn, A. N.

    2015-01-01

    ABSTRACT Tarantulas extend the femur–patella (proximal) and tibia–metatarsal (distal) joints of their legs hydraulically. Because these two hydraulically actuated joints are positioned in series, hemolymph flow within each leg is expected to mechanically couple the movement of the joints. In the current study, we tested two hypotheses: (1) at lower temperatures, movement of the two in-series hydraulic joints within a leg will be less coupled because of increased hemolymph viscosity slowing hemolymph flow; and (2) at higher temperatures, movement of the two in-series hydraulic joints will be less coupled because the higher stride frequencies limit the time available for hemolymph flow. We elicited maximal running speeds at four ecologically relevant temperatures (15, 24, 31 and 40°C) in Texas Brown tarantulas (Aphonopelma hentzi). The spiders increased sprint speed 2.5-fold over the temperature range by changing their stride frequency but not stride length. The coefficient of determination for linear regression (R2) of the proximal and distal joint angles was used as the measure of the degree of coupling between the two joints. This coupling coefficient between the proximal and distal joint angles, for both forelegs and hind­legs, was significantly lowest at the highest temperature at which the animals ran the fastest with the highest stride frequencies. The coordination of multiple, in-series hydraulically actuated joints may be limited by operating speed. PMID:25833132

  11. Non-linear modelling and optimal control of a hydraulically actuated seismic isolator test rig

    NASA Astrophysics Data System (ADS)

    Pagano, Stefano; Russo, Riccardo; Strano, Salvatore; Terzo, Mario

    2013-02-01

    This paper investigates the modelling, parameter identification and control of an unidirectional hydraulically actuated seismic isolator test rig. The plant is characterized by non-linearities such as the valve dead zone and frictions. A non-linear model is derived and then employed for parameter identification. The results concerning the model validation are illustrated and they fully confirm the effectiveness of the proposed model. The testing procedure of the isolation systems is based on the definition of a target displacement time history of the sliding table and, consequently, the precision of the table positioning is of primary importance. In order to minimize the test rig tracking error, a suitable control system has to be adopted. The system non-linearities highly limit the performances of the classical linear control and a non-linear one is therefore adopted. The test rig mathematical model is employed for a non-linear control design that minimizes the error between the target table position and the current one. The controller synthesis is made by taking no specimen into account. The proposed approach consists of a non-linear optimal control based on the state-dependent Riccati equation (SDRE). Numerical simulations have been performed in order to evaluate the soundness of the designed control with and without the specimen under test. The results confirm that the performances of the proposed non-linear controller are not invalidated because of the presence of the specimen.

  12. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  13. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  14. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    NASA Astrophysics Data System (ADS)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-05-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.

  15. Quick-response servo amplifies small hydraulic pressure differences

    NASA Technical Reports Server (NTRS)

    Wiegard, D. E.

    1966-01-01

    Hydraulic servo, which quickly diverts fluid to either of two actuators, controls the flow rates and pressures within a hydraulic system so that the output force of the servo system is independent of the velocity of the mechanism which the system actuates. This servo is a dynamic feedback control device.

  16. Assessing Microbial Activity in Marcellus Shale Hydraulic Fracturing Fluids

    NASA Astrophysics Data System (ADS)

    Wishart, J. R.; Morono, Y.; Itoh, M.; Ijiri, A.; Hoshino, T.; Inagaki, F.; Verba, C.; Torres, M. E.; Colwell, F. S.

    2014-12-01

    Hydraulic fracturing (HF) produces millions of gallons of waste fluid which contains a microbial community adapted to harsh conditions such as high temperatures, high salinities and the presence of heavy metals and radionuclides. Here we present evidence for microbial activity in HF production fluids. Fluids collected from a Marcellus shale HF well were supplemented with 13C-labeled carbon sources and 15N-labeled ammonium at 25°C under aerobic or anaerobic conditions. Samples were analyzed for 13C and 15N incorporation at sub-micrometer scale by ion imaging with the JAMSTEC NanoSIMS to determine percent carbon and nitrogen assimilation in individual cells. Headspace CO2 and CH4 were analyzed for 13C enrichment using irm-GC/MS. At 32 days incubation carbon assimilation was observed in samples containing 1 mM 13C-labeled glucose under aerobic and anaerobic conditions with a maximum of 10.4 and 6.5% total carbon, respectively. Nitrogen assimilation of 15N ammonium observed in these samples were 0.3 and 0.8% of total nitrogen, respectively. Head space gas analysis showed 13C enrichment in CH4 in anaerobic samples incubated with 1mM 13C-labeled bicarbonate (2227 ‰) or methanol (98943 ‰). Lesser 13C enrichment of CO2 was observed in anaerobic samples containing 1 mM 13C-labeled acetate (13.7 ‰), methanol (29.9 ‰) or glucose (85.4 ‰). These results indicate metabolic activity and diversity in microbial communities present in HF flowback fluids. The assimilation of 13C-labeled glucose demonstrates the production of biomass, a critical part of cell replication. The production of 13CO2 and 13CH4 demonstrate microbial metabolism in the forms of respiration and methanogenesis, respectively. Methanogenesis additionally indicates the presence of an active archaeal community. This research shows that HF production fluid chemistry does not entirely inhibit microbial activity or growth and encourages further research regarding biogeochemical processes occurring in

  17. Investigation on micro-patterned gold-plated polymer substrate for a micro hydraulic actuator

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Akle, Barbar; Leo, Donald J.

    2006-03-01

    Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio-fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. This new class of actuators use protein transporters as functional units to move species and result in deformation [Leo et al 2005 (Proceedings of IMECE - 06)]. The ion transporters are hydrocarbons which are formed across the cellular membranes. The membranes that house the ion transporters are aggregates of phospholipids rigidized by cytoskeleton. Reconstituting these nano-machines on a harder matrix is quintessential to build a functional device. Artificial phospholipid membranes or Biliayer lipid membranes (BLM) have poor structural integrity and do not adhere to most surfaces. Patterned arrays of pores made on Poly-propylene glycol-diacrylate (PPG-DA) substrate, a photo curable polymer was made available to us for initial design iterations for an actuator. Hydrophobicity of PPG-DA posed initial problems to support a BLM. We modified the surface of micropatterned PPG-DA membrane by gold plating it. The surface of the porous PPG-DA membranes was plated with gold (Au). A 10nm seeding layer of Au was sputtered on the surface of the membrane. Further gold was reduced onto the sputtered gold surface [Supriya et al(Langmuir 2004, 20, 8870-8876)] by suspending the samples in a solution of hydroxylamine and Hydrogen tetrachloroaurate(III) trihydrate [HAuCl4.3H2O]. This reduction process increased the thickness of the gold, enhanced its adhesion to the PPG-DA substrate and improved the shapes of the pores. This surface modification of PPG-DA helped us form stable BLM with 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- [Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2

  18. 30 CFR 75.1107-1 - Fire-resistant hydraulic fluids and fire suppression devices on underground equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fire-resistant hydraulic fluids and fire...-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-1 Fire-resistant hydraulic fluids and fire suppression devices on...

  19. 30 CFR 75.1107-1 - Fire-resistant hydraulic fluids and fire suppression devices on underground equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fire-resistant hydraulic fluids and fire...-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-1 Fire-resistant hydraulic fluids and fire suppression devices on...

  20. 30 CFR 75.1107-1 - Fire-resistant hydraulic fluids and fire suppression devices on underground equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fire-resistant hydraulic fluids and fire...-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-1 Fire-resistant hydraulic fluids and fire suppression devices on...

  1. 30 CFR 35.4 - Types of hydraulic fluid for which certificates of approval may be granted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Types of hydraulic fluid for which certificates..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS General Provisions § 35.4 Types of hydraulic fluid for which certificates of approval may be...

  2. 30 CFR 35.4 - Types of hydraulic fluid for which certificates of approval may be granted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Types of hydraulic fluid for which certificates..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS General Provisions § 35.4 Types of hydraulic fluid for which certificates of approval may be...

  3. 30 CFR 75.1107-1 - Fire-resistant hydraulic fluids and fire suppression devices on underground equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fire-resistant hydraulic fluids and fire...-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-1 Fire-resistant hydraulic fluids and fire suppression devices on...

  4. 30 CFR 35.4 - Types of hydraulic fluid for which certificates of approval may be granted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Types of hydraulic fluid for which certificates..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS General Provisions § 35.4 Types of hydraulic fluid for which certificates of approval may be...

  5. 30 CFR 35.4 - Types of hydraulic fluid for which certificates of approval may be granted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Types of hydraulic fluid for which certificates..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS General Provisions § 35.4 Types of hydraulic fluid for which certificates of approval may be...

  6. 30 CFR 75.1107-1 - Fire-resistant hydraulic fluids and fire suppression devices on underground equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire-resistant hydraulic fluids and fire...-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-1 Fire-resistant hydraulic fluids and fire suppression devices on...

  7. 30 CFR 35.4 - Types of hydraulic fluid for which certificates of approval may be granted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Types of hydraulic fluid for which certificates..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS General Provisions § 35.4 Types of hydraulic fluid for which certificates of approval may be...

  8. Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation

    SciTech Connect

    Szybist, James P; Nafziger, Eric J

    2010-01-01

    A spark-assist homogeneous charge compression ignition (SA-HCCI) operating strategy is presented here that allows for stoichiometric combustion from 1000-3000 rpm, and at loads as high as 750 kPa net IMEP. A single cylinder gasoline engine equipped with direct fuel injection and fully variable hydraulic valve actuation (HVA) is used for this experimental study. The HVA system enables negative valve overlap (NVO) valve timing for hot internal EGR. Spark-assist stabilizes combustion over a wide range of engine speeds and loads, and allows for stoichiometric operation at all conditions. Characteristics of both spark-ignited combustion and HCCI are present, with combustion analysis showing a distinctive spark ignited phase of combustion, followed by a much more rapid HCCI combustion phase. At high load, the maximum pressure rise rate is controlled by a combination of spark timing and retarding the intake valve closing angle. The latter reduces the effective compression ratio, and therefore the compressive temperatures, allowing the high load limit of the operating range to be expanded. The SA-HCCI operating strategy exhibits improved thermal efficiency at most operating conditions, with fuel consumption improvements up to 9% realized at light engine loads. The SA-HCCI operating strategy presented here does not provide an efficiency advantage at all operating points compared to SI combustion; a decrease was observed at the highest speed and at loads above 500 kPa net IMEP. At light engine loads the majority of the heat release takes place during the HCCI phase of the heat release, and as such the NOx emissions are very low and are similar to levels observed in pure HCCI. At higher loads, a larger portion of the heat release takes place during the spark ignited phase of combustion, which produces NOx emissions that are much higher than is typically associated with HCCI, but still represent a decrease from conventional SI combustion. By limiting the fuel/air mixture to

  9. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  10. Modeling fluid structure interaction with shape memory alloy actuated morphing aerostructures

    NASA Astrophysics Data System (ADS)

    Oehler, Stephen D.; Hartl, Darren J.; Turner, Travis L.; Lagoudas, Dimitris C.

    2012-04-01

    The development of efficient and accurate analysis techniques for morphing aerostructures incorporating shape memory alloys (SMAs) continues to garner attention. These active materials have a high actuation energy density, making them an ideal replacement for conventional actuation mechanisms in morphing structures. However, SMA components are often exposed to the same highly variable environments experienced by the aeroelastic assemblies into which they are incorporated. This is motivating design engineers to consider modeling fluidstructure interaction for prescribing dynamic, solution-dependent boundary conditions. This work presents a computational study of a particular morphing aerostructure with embedded, thermally actuating SMA ribbons and demonstrates the effective use of fluid-structure interaction modeling. A cosimulation analysis is utilized to determine the surface deflections and stress distributions of an example aerostructure with embedded SMA ribbons using the Abaqus Finite Element Analysis (FEA) software suite, combined with an Abaqus Computational Fluid Dynamics (CFD) processor. The global FEA solver utilizes a robust user-defined material subroutine which contains an accurate three-dimensional SMA constitutive model. Variations in the ambient fluid environment are computed using the CFD solver, and fluid pressure is mapped into surface distributed loads. Results from the analysis are qualitatively validated with independently obtained data from representative flow tests previously conducted on a physical prototype of the same aerostructure.

  11. Development of Haptic Display Actuated with Magnetorheological Fluid and Artificial Muscle (HAMA Device)

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Hamamoto, Kazuhiko

    To operate in Immersive Virtual Environment (IVE) with standard devices, beginners will feel difficulties to do it because they are not intuitive devices. Haptic sense is very important for intuitive operation. But existing haptic device is not suited to use in IVE for reasons of displayed sense and the size of the device itself. A device that is a portable one can only display Force-Feedback sense, and a device that can display tactile sense is impossible to be mounted on a hand. In this paper we proposed Haptic display Actuated with Magnetorheological fluid and Artificial muscle (HAMA device). It is a potable haptic device that can display Force-Feedback and tactile sense. The device is constructed of two small devices, a device for displaying Force-Feedback sense and a device for displaying tactile sence. They use Artificial Muscle and Magnetorheological fluid for an actuator. This time we developed index finger part for a trial and evaluate it.

  12. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  13. Study of hydraulic actuation system for Space Shuttle main engine propellant valves

    NASA Technical Reports Server (NTRS)

    Ewel, Bob (Editor)

    1993-01-01

    Recent performance concerns involving the Space Shuttle Main Engine Propellant Valve Actuator assemblies prompted the NASA Marshall Space Flight Center to request an independent design assessment. Moog Inc. responded to this request and received a study contract with objectives of increasing valve reliability, decreasing maintenance costs while preserving the existing design interfaces. The results of the Propellant Valve Actuation System review focus on contamination control and the bypass valve design. Three proof of concept bypass valves employing design changes were built and successfully tested. Test results are presented.

  14. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    NASA Astrophysics Data System (ADS)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-01

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid's dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10-400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer's reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam's mechanical properties.

  15. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration.

    PubMed

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-01

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid's dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10-400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer's reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam's mechanical properties. PMID:25638114

  16. Hydraulic fluid serves as mandrel for small diameter refractory tube drawing

    NASA Technical Reports Server (NTRS)

    Mayfield, R. M.

    1966-01-01

    Sealing hydraulic fluid within a tube and passing the tube through a reducing die produces high quality small diameter refractory metal tubing. The encased fluid eliminates the need for mandrel or ductile core removal and drawing can proceed with less handling operations.

  17. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  18. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    SciTech Connect

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-15

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.

  19. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    PubMed

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086

  20. Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks

    SciTech Connect

    Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G.

    1996-08-01

    A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

  1. Application of computational fluid dynamics methods to improve thermal hydraulic code analysis

    NASA Astrophysics Data System (ADS)

    Sentell, Dennis Shannon, Jr.

    A computational fluid dynamics code is used to model the primary natural circulation loop of a proposed small modular reactor for comparison to experimental data and best-estimate thermal-hydraulic code results. Recent advances in computational fluid dynamics code modeling capabilities make them attractive alternatives to the current conservative approach of coupled best-estimate thermal hydraulic codes and uncertainty evaluations. The results from a computational fluid dynamics analysis are benchmarked against the experimental test results of a 1:3 length, 1:254 volume, full pressure and full temperature scale small modular reactor during steady-state power operations and during a depressurization transient. A comparative evaluation of the experimental data, the thermal hydraulic code results and the computational fluid dynamics code results provides an opportunity to validate the best-estimate thermal hydraulic code's treatment of a natural circulation loop and provide insights into expanded use of the computational fluid dynamics code in future designs and operations. Additionally, a sensitivity analysis is conducted to determine those physical phenomena most impactful on operations of the proposed reactor's natural circulation loop. The combination of the comparative evaluation and sensitivity analysis provides the resources for increased confidence in model developments for natural circulation loops and provides for reliability improvements of the thermal hydraulic code.

  2. Investigating the Fate of Hydraulic Fracturing Fluid in Shale Gas Formations Through Two-Phase Numerical Modelling of Fluid Injection

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Doster, F.; Celia, M. A.; Bandilla, K.

    2015-12-01

    The process of hydraulic fracturing in shale gas formations typically involves the injection of large quantities of water-based fluid (2×107L typical) into the shale formations in order to fracture the rock. A large proportion of the fracturing fluids injected into shale gas wells during hydraulic fracturing does not return out of the well once production begins. The percentage of water returning varies within and between different shale plays, but is generally around 30%. The large proportion of the fluid that does not return raises the possibility that it could migrate out of the target shale formation and potentially toward aquifers and the surface through pathways such as the created hydraulic fractures, faults and adjacent wells. A leading hypothesis for the fate of the remaining fracturing fluid is that it is spontaneously imbibed from the hydraulic fractures into the shale rock matrix due to the low water saturation and very high capillary pressure in the shale. The imbibition hypothesis is assessed using numerical modeling of the two-phase flow of fracturing fluid and gas in the shale during injection. The model incorporates relevant two-phase physical phenomena such as capillarity and relative permeability, including hysteretic behavior in both. Modeling scenarios for fracturing fluid injection were assessed under varying conditions for shale reservoir parameters and spatial heterogeneities in permeability and wettability. The results showed that the unaccounted fracturing fluid may plausibly be imbibed into the shale matrix under certain conditions, and that significant small-scale spatial heterogeneity in the shale permeability likely plays an important role in imbibing the fracturing fluid.

  3. Rock deformation models and fluid leak-off in hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya M.; Bercovici, David; Oristaglio, Michael L.

    2013-09-01

    Fluid loss into reservoir rocks during hydraulic fracturing is modelled via a poro-elastoplastic pressure diffusion equation in which the total compressibility is a sum of fluid, rock and pore space compressibilities. Inclusion of pore compressibility and porosity-dependent permeability in the model leads to a strong pressure dependence of leak-off (i.e. drainage rate). Dilation of the matrix due to fluid invasion causes higher rates of fluid leak-off. The present model is appropriate for naturally fractured and tight gas reservoirs as well as for soft and poorly consolidated formations whose mechanical behaviour departs from simple elastic laws. Enhancement of the leak-off coefficient by dilation, predicted by the new model, may help explain the low percentage recovery of fracturing fluid (usually between 5 and 50 per cent) in shale gas stimulation by hydraulic fracturing.

  4. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.

    2015-09-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.

  5. Directed Fluid Flow Produced by Arrays of Magnetically Actuated Core-Shell Biomimetic Cilia

    NASA Astrophysics Data System (ADS)

    Fiser, B. L.; Shields, A. R.; Evans, B. A.; Superfine, R.

    2010-03-01

    We have developed a novel core-shell microstructure that we use to fabricate arrays of flexible, magnetically actuated biomimetic cilia. Our biomimetic cilia mimic the size and beat shape of biological cilia in order to replicate the transport of fluid driven by cilia in many biological systems including the determination of left-right asymmetry in the vertebrate embryonic nodal plate and mucociliary clearance in the lung. Our core-shell structures consist of a flexible poly(dimethylsiloxane) (PDMS) core surrounded by a shell of nickel approximately forty nanometers thick; by using a core-shell structure, we can tune the mechanical and magnetic properties independently. We present the fabrication process and the long-range transport that occurs above the beating biomimetic cilia tips and will report on progress toward biomimetic cilia induced flow in viscoelastic fluids similar to mucus in the human airway. These flows may have applications in photonics and microfluidics, and our structures may be further useful as sensors or actuators in microelectromechanical systems.

  6. An assessment of three different fire resistance tests for hydraulic fluids

    NASA Astrophysics Data System (ADS)

    Loftus, J. J.

    1981-10-01

    The Center for Fire Research at the National Bureau of Standards at the request of the Mine Safety and Health Administration (MSHA) and the Bureau of Mines made an evaluation or assessment of the three different flammability tests used by MSHA for measuring the fire resistance of hydraulic fluids intended for use in underground coal mining operations. The methods described in the Code of Federal Regulations Schedule 30, Part 35, consist of the following: an Autogenous Ignition Temperature Test, a Temperature-Pressure Spray Ignition Test, and a Test to Determine the Effect of Evaporation on the Flammability of Hydraulic Fluids. Recommendations for improvement of the three test procedures are provided.

  7. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  8. Characterization of hydrofoil damping due to fluid-structure interaction using piezocomposite actuators

    NASA Astrophysics Data System (ADS)

    Seeley, Charles; Coutu, André; Monette, Christine; Nennemann, Bernd; Marmont, Hugues

    2012-03-01

    Hydroelectric power generation is an important non-fossil fuel power source to help meet the world’s energy needs. Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Although the effects of fluid mass loading are well documented, fluid damping is also a critical quantity that may limit vibration amplitudes during service, and therefore help to avoid premature failure of the turbines. However, fluid damping has received less attention in the literature. This paper presents an experimental investigation of damping due to FSI. Three hydrofoils were designed and built to investigate damping due to FSI. Piezoelectric actuation using macrofiber composites (MFCs) provided excitation to the hydrofoil test structure, independent of the flow conditions, to overcome the noisy environment. Natural frequency and damping estimates were experimentally obtained from sine sweep frequency response functions measured with a laser vibrometer through a window in the test section. The results indicate that, although the natural frequencies were not substantially affected by the flow, the damping ratios were observed to increase in a linear manner with respect to flow velocity.

  9. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  10. Particle-based simulation of hydraulic fracture and fluid/heat flow in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wang, Yucang; Alonso-Marroquin, Fernando

    2013-06-01

    Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet's future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle - the coupling of the Lattice Solid Model (LSM) to simulate the nonlinear dynamics of complex solids with the Lattice Boltzmann Method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fracturing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge-or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.

  11. Effect of joystick stiffness, movement speed and movement direction on joystick and upper limb kinematics when using hydraulic-actuation joystick controls in heavy vehicles.

    PubMed

    Oliver, M; Tingley, M; Rogers, R; Rickards, J; Biden, E

    2007-06-01

    Despite the widespread use of hydraulic-actuation joysticks in mobile North American construction, mining and forestry vehicles, the biomechanical effects that joysticks have on their human operators has not been studied extensively. Using nine unskilled joystick operators and a laboratory mock-up with a commonly used North American heavy off-road equipment hydraulic-actuation joystick and operator seat, the purpose of this work was to quantify and compare the effects of three hydraulic-actuation joystick stiffnesses and two movement speeds on upper limb and joystick kinematics as one of the initial steps towards the development of a hydraulic-actuation joystick design protocol. In addition to providing a detailed description of the kinematics of a constrained occupational task, coupled with the corresponding effects of the task on operator upper limb kinematics, results from principal component analysis and ANOVA procedures revealed a number of differences in joystick and upper limb angle ranges and movement curve shapes resulting from the various joystick stiffness-speed combinations tested. For the most part, these joystick motion alterations were caused by small, insignificant changes in one or more upper limb joint angles. The two exceptions occurred for forward movements of the joystick; the fast speed - light stiffness condition movement pattern shape change was caused primarily by an alteration of the elbow flexion-extension movement pattern. Similarly, the fast speed - normal stiffness condition movement curve shape perturbation - was caused principally by a combination of significant movement curve shape alterations to elbow flexion-extension, external-internal shoulder rotation and flexion-extension of the shoulder. The finding that joystick stiffness and speed alterations affect joystick and upper limb kinematics minimally indicates that the joystick design approach of modelling the joystick and operator upper limb as a closed linkage system should be

  12. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells.

    PubMed

    Herrera-Valencia, E E; Rey, Alejandro D

    2014-11-28

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found. PMID:25332388

  13. Laboratory investigation of a fluid-dynamic actuator designed for CubeSats

    NASA Astrophysics Data System (ADS)

    Noack, Daniel; Brieß, Klaus

    2014-03-01

    In general, the attitude control systems (ACS) for precise spacecraft operations rely on reaction wheel technology for angular momentum exchange. In this paper, an alternative ACS concept using fluid rings for this task is presented. This novel actuator—based on Lorentz body force—uses a direct-current conduction pump to accelerate liquid metal within a circular channel structure. As working fluid for the fluid-dynamic actuator (FDA) serves the eutectic alloy Galinstan. Along with a microcontroller that runs the FDA, a MEMS gyroscope is implemented on the device for closed loop operation. Several models of FDAs for small satellites were tested successfully for various attitude control maneuvers on an air bearing platform. Thus advantageous performance has been achieved in terms of torque and power consumption in comparison to similarly dimensioned reaction wheels. Further considerable advantages are wear-free operations and higher reliability as well as expected passive damping properties. A next generation FDA prototype for nano-satellites is currently in development for in-orbit testing.

  14. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  15. Cold fluid enhancement of hydraulic fracture well linkage

    SciTech Connect

    Perkins, T.P.

    1986-05-20

    A method is described of lowering the fracturing pressure of an earth formation portion lying between two boreholes comprising: before initiation of a fracture in the earth formation portion, pumping a cooling fluid down a first of the two boreholes at a pressure below formation fracturing pressure, through the earth formation portion and into a second of the two boreholes for a time sufficient to lower the temperature of the formation portion lying between the two boreholes.

  16. Fluid Compressibility Effects during Hydraulic Fracture: an Opportunity for Gas Fracture Revival

    NASA Astrophysics Data System (ADS)

    Mighani, S.; Boulenouar, A.; Moradian, Z.; Evans, J. B.; Bernabe, Y.

    2015-12-01

    Hydraulic fracturing results when internal pore pressure is increased above a critical value. As the fracture extends, the fluid flows to the crack tip. The fracturing process depends strongly on the physical properties of both the porous solid and the fluid (e.g. porosity and elastic moduli for the solid, viscosity and compressibility for the fluid). It is also affected by the in-situ stress and pore pressure conditions. Here, we focus on the effect of fluid properties on hydraulic fracturing under conventional triaxial loading. Cylinders of Solnhofen limestone (a fine-grained, low permeability rock) were prepared with a central borehole through which different pressurized fluids such as oil, water or argon, were introduced. Preliminary experiments were performed using a confining pressure of 5 MPa and axial stress of 7 MPa. Our goal was to monitor fracture extension using strain gauges, acoustic emissions (AE) recording and ultrasonic velocity measurements. We also tried to compare the data with analytical models of fracture propagation. Initial tests showed that simple bi-wing fractures form when the fracturing fluid is relatively incompressible. With argon as pore fluid, a complex fracture network was formed. We also observed that the breakdown pressure was higher with argon than with less compressible fluids. After fracturing occurred, we cycled fluid pressure for several times. During the first cycles, re-opening of the fracture was associated with additional propagation. In general, it took 4 cycles to inhibit further propagation. Analytical models suggest that initial fractures occurring with compressible fluids tend to stabilize. Hence, formation and extension of additional fractures may occur, leading to a more complex morphology. Conversely, fractures formed by incompressible fluids remain critically stressed as they extend, thus producing a simple bi-wing fracture. Using compressible fracturing fluids could be a suitable candidate for an efficient

  17. Hydraulic fracture characterization resulting from low-viscosity fluid injection: Implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Zhou, X.

    2013-12-01

    The initiation of hydraulic fractures during CO2 sequestration can be either engineered or induced unintentionally. Some fractures may be desirable such as horizontal fractures that can facilitate fluid injection and migration; whereas some fractures may be unfavorable if the fractures tend to extend vertically above a certain limit, thus creating a potential leaking condition. Historically, carbon dioxide as a liquefied gas has been used in oil and gas field stimulation since the early1960s because it eliminates formation damage and residual fluids. Carbon dioxide injection is considered to be one of the most effective technologies for improving oil recovery from hard-to-extract oil reserves because CO2 is effective in penetrating the formation due to its high diffusivity, while the rock associated with petroleum-containing formations is generally porous. However, low viscosity and high compressibility fluids such as CO2 exhibit different effects on the hydraulic fracture initiation/propagation behavior in comparison with high viscosity and low compressibility fluids. Laboratory tests show that viscous fluids tend to generate thick and planar cracks with few branches, while low viscosity fluids tend to generate narrow and wavelike cracks with many secondary branches. A numerical comparison between water and supercritical CO2-like fluid has been made to investigate the influence of fluids to fracture propagation behavior. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Thin fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison to fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation. One is the time at which a crack ceases opening, and he other is the time at which a crack

  18. Numerical Modeling of Fluid Migration and Propagation of Multiple Hydraulic Fractures in Crystalline Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove; Min, Ki-Bok

    2015-04-01

    This paper presents discrete element based numerical model which is applied to simulation of multiple stage hydraulic fracturing in crystalline granitic geothermal reservoir. Target site modeled locates in south of state of Saxony Germany. Particle Flow Code 2D (Itasca) is used in which fluid flow algorithm and moment tensor based seismicity computation algorithm are implemented. Crystalline rock layer to be stimulated locates at 4-6 km depth with relative low density of pre-existing joints and faults. Hydraulic stimulation is modeled with five stages of fluid injection with distance of several hundreds of meters. Hydraulic fracturing is done on the stages from toe to heel direction along a series of sub-horizontally drilled wellbore with constant rate of fluid injection. Fracture propagation paths and induced seismic events are documented based on their time of occurrence and their magnitude. In addition to the evolution of the fracture propagation path and distribution of the induced events, migration of the injected fluid is investigated in space and time. This is to see how the results relate to the fluid migration front in low permeability crystalline reservoir subjected to multiple stage hydraulic fracturing. Moreover, this paper addresses advantages and disadvantages of the inclined drilling of the wellbore in low permeability reservoir and multi-stage fracturing setting. We try to seek an optimum inclination of the drilling in relation to the gradients and magnitudes of the in situ stresses, which are horizontal minimum and vertical stresses. Preliminary modeling results show that inclination angle of the drilling has a significant effect on lowering of the stress shadow effect and level of induced seismicity in terms of total number, magnitudes and the Gutenberg-Richter relation.

  19. Analysis on oscillating actuator frequency influence of the fluid flow characterization for 2D contractile water jet thruster

    NASA Astrophysics Data System (ADS)

    Shaari, M. F.; Abu Bakar, H.; Nordin, N.; Saw, S. K.; Samad, Z.

    2013-12-01

    Contractile body is an alternative mechanism instead of rotating blade propeller to generate water jet for locomotion. The oscillating motion of the actuator at different frequencies varies the pressure and volume of the pressure chamber in time to draw in and jet out the water at a certain mass flow rate. The aim of this research was to analyze the influence of the actuating frequency of the fluid flow in the pressure chamber of the thruster during this inflation-deflation process. A 70mm × 70mm × 18mm (L × W × T) 2D water jet thruster was fabricated for this purpose. The contractile function was driven using two lateral pneumatic actuators where the fluid flow analysis was focused on the X-Y plane vector. Observation was carried out using a video camera and Matlab image measurement technique to determine the volume of the flowing mass. The result demonstrated that the greater actuating frequency decreases the fluid flow rate and the Reynolds number. This observation shows that the higher frequency would give a higher mass flow rate during water jet generation.

  20. A Geochemical Framework for Evaluating Shale-Hydraulic Fracture Fluid Interactions

    NASA Astrophysics Data System (ADS)

    Harrison, A. L.; Jew, A. D.; Dustin, M. K.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.; Bill, M.; Conrad, M. E.

    2015-12-01

    The development of shale oil and gas reservoirs has increased dramatically due to the application of hydraulic fracturing techniques. Fracture fluids contain dissolved oxygen and numerous chemical additives [1] that are out of equilibrium with the reducing conditions in shale reservoirs and could react extensively with shale minerals and alter porosity. Yet, the complex dissolution-precipitation reactions in shales along with the poorly constrained characteristics of many fracture fluid additives hinder predictive modeling based on established reaction kinetics and thermodynamic constants [2]. Here, we are developing a reaction framework to better predict reaction progress and porosity evolution upon exposure of shales to hydraulic fracturing fluids. To this end, the reactive transport model CrunchFlow [3] was applied to the results of batch reactor experiments containing shales of different mineralogical and organic compositions exposed to simulated fracturing fluid. Despite relatively good agreement between modeled and experimental data for pH and aqueous Ca concentrations, which are strongly governed by carbonate dissolution, the model is presently unable to reproduce observed trends in aqueous Fe concentration. This is largely attributable to the dearth of thermodynamic data for certain fracture fluid components and the complex interactions between multiple Fe-bearing mineral phases. Experimental results revealed that the presence of organic fracture fluid components strongly influenced the precipitation of Fe-bearing phases, which are speculated to coat fracture fluid polymers that formed in the reactors. The incorporation of these effects in our reactive transport model will permit improved prediction of reservoir permeability evolution and metal release during hydraulic fracturing operations. [1] Stringfellow et al. (2014) J. Hazard. Mater. [2] Carroll et al. (2013) Environ. Sci. Technol. [3] Steefel and Maher (2009) Rev. Mineral. Geochem.

  1. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    SciTech Connect

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo; Kabilan, Senthil; Um, Wooyong; Carroll, Kenneth C.; Varga, Tamas; Suresh, Niraj; Stephens, Sean A.; Fernandez, Carlos A.

    2014-12-14

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5 samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.

  2. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  3. Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Holt, James B.

    2000-01-01

    Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between

  4. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  5. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    EPA Science Inventory

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  6. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  7. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    PubMed

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations. PMID:24088205

  8. A hybrid ultrasonic motor and electrorheological fluid clutch actuator for force-feedback in MRI/fMRI.

    PubMed

    Chapuis, Dominique; Gassert, Roger; Burdet, Etienne; Bleuler, Hannes

    2008-01-01

    This paper presents a safe, electrically powered MR-compatible actuator with a large range of output impedance, which can be used at the entry of the scanner bore. This actuator is composed of an ultrasonic motor (USM) and a torque-controlled electrorheological fluid clutch which modulates the output torque of the USM. This paper describes the developments on the electrorheological fluid (ERF) clutch and its high voltage driver. The performances of the ERF brake constituting the clutch are evaluated, and its torque range is adapted using an epicyclic differential. The transmissible torque of the ERF clutch, i.e., the maximum system output torque, is 94.4 mNm and its drag torque is 2.6 mNm. The MR compatibility of the complete hybrid actuator is shown in extensive tests including subtraction of images and comparison of signal-to-noise ratios in powered and unpowered conditions. This novel MR-compatible actuator may be used to study the neural control of the hand. PMID:19163448

  9. Coupled Mineral Dissolution and Precipitation Reactions in Shale-Hydraulic Fracturing Fluid Systems

    NASA Astrophysics Data System (ADS)

    Joe-Wong, C. M.; Harrison, A. L.; Thomas, D.; Dustin, M. K.; Jew, A. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2015-12-01

    Hydraulic fracturing of low-permeability, hydrocarbon-rich shales has recently become an important energy source in the United States. However, hydrocarbon recovery rates are low and drop rapidly after a few months. Hydraulic fracture fluids, which contain dissolved oxygen and numerous organic additives, induce dissolution and precipitation reactions that change the porosity and permeability of the shale. To investigate these reactions, we studied the interactions of four shales (Eagle Ford, Barnett, Marcellus, and Green River) with a simulated hydraulic fracture fluid in batch reactors at 80 °C. The shales were chosen for both economic viability and chemical variety, allowing us to explore the reactivities of different components. The Eagle Ford shale is carbonate rich, and the Green River shale contains significant siderite and kerogen. The Barnett shale also has a high organic content, while the Marcellus shale has the highest fractions of clay and pyrite. Our experiments show that hydrochloric acid in the fluid promotes carbonate mineral dissolution, rapidly raising the pH from acidic to circumneutral levels for the Eagle Ford and Green River shales. Dissolution textures in the Green River shale and large cavities in the Barnett shale indicate significant mineralogical and physical changes in the reacted rock. Morphological changes are not readily apparent in the Eagle Ford and Marcellus shales. For all shales, ongoing changes to the solution Al: Si ratio suggest incongruent aluminosilicate dissolution. Siderite or pyrite dissolution occurs within days and is followed by the formation of secondary Fe precipitates in suspension and coating the walls of the reactor. However, little evidence of any coatings on shale surfaces was found. The net effect of these reactions on porosity and permeability and their influence on the long-term efficacy of oil and gas recovery after hydraulic fracturing are critical to the energy landscape of the United States.

  10. Replacement of petroleum based hydraulic fluids with a soybean-based alternative

    SciTech Connect

    Rose, B.; Rivera, P.

    1998-05-01

    Despite the best preventative measures, ruptured hoses, spills and leaks occur with use of all hydraulic equipment. Although these releases do not usually produce a RCRA regulated waste, they are often a reportable occurrence. Clean-up and subsequent administrative procedure involves additional costs, labor and work delays. Concerns over these releases, especially related to Sandia National Laboratories (SNL) vehicles hauling waste on public roads prompted Fleet Services (FS) to seek an alternative to the standard petroleum based hydraulic fluid. Since 1996 SNL has participated in a pilot program with the University of Iowa (UNI) and selected vehicle manufacturers, notably John Deere, to field test hydraulic fluid produced from soybean oil in twenty of its vehicles. The vehicles included loaders, graders, sweepers, forklifts and garbage trucks. Research was conducted for several years at UNI to modify and market soybean oils for industrial uses. Soybean oil ranks first in worldwide production of vegetable oils (29%), and represents a tremendous renewable resource. Initial tests with soybean oil showed excellent lubrication and wear protection properties. Lack of oxidative stability and polymerization of the oil were concerns. These concerns were being addressed through genetic alteration, chemical modification and use of various additives, and the improved lubricant is in the field testing stage.

  11. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    PubMed

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-01

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF. PMID:25327769

  12. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity.

    PubMed

    Kahrilas, Genevieve A; Blotevogel, Jens; Stewart, Philip S; Borch, Thomas

    2015-01-01

    Biocides are critical components of hydraulic fracturing ("fracking") fluids used for unconventional shale gas development. Bacteria may cause bioclogging and inhibit gas extraction, produce toxic hydrogen sulfide, and induce corrosion leading to downhole equipment failure. The use of biocides such as glutaraldehyde and quaternary ammonium compounds has spurred a public concern and debate among regulators regarding the impact of inadvertent releases into the environment on ecosystem and human health. This work provides a critical review of the potential fate and toxicity of biocides used in hydraulic fracturing operations. We identified the following physicochemical and toxicological aspects as well as knowledge gaps that should be considered when selecting biocides: (1) uncharged species will dominate in the aqueous phase and be subject to degradation and transport whereas charged species will sorb to soils and be less bioavailable; (2) many biocides are short-lived or degradable through abiotic and biotic processes, but some may transform into more toxic or persistent compounds; (3) understanding of biocides' fate under downhole conditions (high pressure, temperature, and salt and organic matter concentrations) is limited; (4) several biocidal alternatives exist, but high cost, high energy demands, and/or formation of disinfection byproducts limits their use. This review may serve as a guide for environmental risk assessment and identification of microbial control strategies to help develop a sustainable path for managing hydraulic fracturing fluids. PMID:25427278

  13. Hydraulic Fracturing Fluid Reaction with Shale in Experiments at Unconventional Gas Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Paukert, A. N.; Hakala, A.; Jarvis, K. B.

    2015-12-01

    Despite the marked increase in hydraulic fracturing for unconventional natural gas production over the past decade, reactions between hydraulic fracturing fluids (HFF) and shale reservoirs remain poorly reported in the scientific literature. Shale-HFF interaction could cause mineral dissolution, releasing matter from the shale, or mineral precipitation that degrades reservoir permeability. Furthermore, data are limited on whether scale inhibitors are effective at preventing mineral precipitation and whether these inhibitors adversely affect reservoir fluid chemistry and permeability. To investigate HFF-rock interaction within shale reservoirs, we conducted flow-through experiments exposing Marcellus Shale to synthetic HFF at reservoir conditions (66oC, 20MPa). Outcrop shale samples were cored, artificially fractured, and propped open with quartz sand. Synthetic HFFs were mixed with chemical additives similar to those used for Marcellus Shale gas wells in Ohio and Southwestern Pennsylvania (FracFocus.org). We evaluated differences between shale reactions with HFF made from natural freshwater and reactions with HFF made from synthetic produced water (designed to simulate produced water that is diluted and re-used for subsequent hydraulic fracturing). We also compared reactions with HFFs including hydrochloric acid (HCl) to represent the initial acid stage, and HFFs excluding HCl. Reactions were determined through changes in fluid chemistry and X-ray CT and SEM imaging of the shale before and after experiments. Results from experiments with HFF containing HCl showed dissolution of primary calcite, as expected. Experiments using HFF made from synthetic produced water had significant mineral precipitation, particularly of barium and calcium sulfates. X-ray CT images from these experiments indicate precipitation of minerals occurred either along the main fracture or within smaller splay fractures, depending on fluid composition. These experiments suggest that HFF

  14. Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions

    USGS Publications Warehouse

    Iverson, Richard M.

    1997-01-01

    Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.

  15. On the modeling of a piezoellectrically actuated micro-sensor for measurement of microscale fluid physical properties

    NASA Astrophysics Data System (ADS)

    Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader

    2015-11-01

    This paper deals with the analysis of a novel micro-electromechanical sensor for measurement of microscale fluid physical properties. The proposed sensor is made up of a micro-beam with one end fixed and a micro-plate as a sensing element at its free end, which is immersed in a microscale fluid media. As fluids show different behavior in microscale than in macroscale, the microscale fluid media have been modeled based on micro-polar theory. So non-classical properties of fluid that are absent in macroscale flows need to be measured. In order to actuate the sensor longitudinally, an AC voltage is applied to the piezoelectric layers on the upper and lower surfaces of the micro-beam. Coupled governing partial differential equations of motion of the fluid field and longitudinal vibration of the micro-beam have been derived based on micro-polar theory. The obtained governing differential equations with time-varying boundary conditions have been simplified and transformed to an enhanced form with homogenous boundary conditions. Then, they have been discretized over the beam and fluid domain using Galerkin-based reduced-order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been studied. It has been shown that by investigating damping and inertial effect fluid loading on response of the micro-beam, properties of a microscale fluid can be measured. At the end, effects of geometrical parameters of the sensor on the response of sensing element have been studied.

  16. Cavitation in hydraulic fluids. I - Inception in shear flow. II - Delay time for stepwise reduction in pressure

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.

    1980-09-01

    A novel concentric-cylinder test apparatus was used to study the onset of cavitation in hydraulic fluids with allowance for the effects of shear. The fluids tested were base oils and include four types of paraffinic mineral oils and two types of naphthenic oils. In addition, the delay time of gaseous cavitation in seven types of hydraulic fluids and tap water was measured for a stepwise reduction in pressure from atmospheric pressure to given pressure. The longest delay time for the incipient cavitation is obtained for water-glycol fluids, and the second longest for tap water. Petroleum-based hydraulic fluids and the phosphate ester have almost the same delay times, which are slightly longer than for the base oil.

  17. Evaluation of the acute toxicity of a synthetic polyalphaolefin-based hydraulic fluid. Technical report, June 1986-May 1987

    SciTech Connect

    Kinkead, E.R.; Culpepper, B.T.; Henry, S.S.; Pollard, D.L.; Kimmel, E.C.

    1987-11-01

    In contingency planning for alternative hydraulic fluids in the event that critical shortages should occur in the supply of petroleum based fluids, the US Navy has investigated various synthetic compounds including polyalphaolefins. Earlier toxicity assessments (1983) on five formulations of polyalphaolefin hydraulic fluids and a base fluid indicated that one formation (N501) was toxic via inhalation. This material was reformulated (now designated B85-174) and retested along with its base polyalphaolefin (R-1061-3). The LC50 values for the reformulated hydraulic fluid B85-174 were 1.60 and 1.37 mg/L for male and female rats, respectively. Nor was the material irritating to the skin or eyes of treated rabbits. Similar results were obtained from tests on the base polyalphaolefin used for comparison. In contrast, the previous base material demonstrates con inhalation toxicity. THe 1983 and 1986 polyalphaolefin base materials were obtained form different suppliers and infrared analysis demonstrated compositional differences.

  18. Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

    1999-11-14

    Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

  19. Hydraulic Pressure during Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts

    PubMed Central

    Gardinier, Joseph D.; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L.

    2014-01-01

    During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis. PMID:24910719

  20. Determination of hydraulic fracture parameters using a non-stationary fluid injection

    NASA Astrophysics Data System (ADS)

    Valov, A. V.; Golovin, S. V.

    2016-06-01

    In this paper, one provides a theoretical justification of the possibility of hydraulic fracture parameters determination by using a non-stationary fluid injection. It is assumed that the fluid is pumped into the fractured well with the time-periodic flow rate. It is shown that there is a phase shift between waves of fluid pressure and velocity. For the modelling purposes, the length and width of the fracture are assumed to be fixed. In the case of infinite fracture, one constructs an exact solution that ensures analytical determination of the phase shift in terms of the physical parameters of the problem. In the numerical calculation, the phase shift between pressure and velocity waves is found for a finite fracture. It is shown that the value of the phase shift depends on the physical parameters and on the fracture geometry. This makes it possible to determine parameters of hydraulic fracture, in particular its length, by the experimental measurement of the time shift and comparison with the numerical solution.

  1. Hydraulic catworks system

    SciTech Connect

    Walker, J.L.

    1981-03-03

    A hydraulic catworks system is described for use on a well drilling rig for making up and breaking out a drill string which includes a hydraulic makeup piston and cylinder assembly for actuating a makeup line connected to the makeup tongs, and a breakout piston and cylinder assembly connected to a breakout line for actuating the breakout tongs. A makeup hydraulic control valve controls hydraulic fluid to first and second lines connected to the makeup assembly with the first line connected for extending the makeup line and the second line connected for retracting the makeup line. A breakout hydraulic control valve controls fluid to third and fourth lines with the third line connected for extending the breakout line and the fourth line connected for retracting the breakout line. Manual air control means are provided for selectively actuating the makeup and breakout control valves. A variable pressure control is connected to the second line for controlling the makeup torque. Preferably, the makeup and breakout assemblies are vertically connected to the legs of the drilling rig and rollers are positioned horizontally with the makeup and breakout tongs and connected to the breakout and makeup lines. Preferably, a sheave is connected to the makeup assembly and the makeup line passes over the sheave with its free end fixedly secured. A re-generative system is provided on the makeup assembly for increasing the speed of the makeup line extension. Preferably the makeup and breakout cylinders are of the same cross-sectional area with the stroke of the breakout cylinder being less than the stroke of the makeup cylinder.

  2. Quantifying Hydraulic Conductivity and Fluid Pressures in the Alpine Fault Hanging-Wall Using DFDP-2 Data and Numerical Models

    NASA Astrophysics Data System (ADS)

    Coussens, J. P.; Woodman, N. D.; Menzies, C. D.; Teagle, D. A. H.; Sutherland, R.; Capova, L.; Cox, S.; Upton, P.; Townend, J.; Toy, V.

    2015-12-01

    Fluid flow can play an important role in fault failure, due to the influence of pore pressure on effective confining stress and through chemical and thermal alteration of the fault zone. Rocks of the Alpine Fault Zone, both exposed at the surface and recovered in cores, show evidence for significant alteration by fluids. However, the fluid flow regime in the region is poorly constrained and its relationship with the behaviour of the fault is uncertain. In 2014 the Deep Fault Drilling Project (DFDP) drilled the DFDP-2B borehole, penetrating 893 m into the hanging-wall of the Alpine Fault. Prior to drilling, a set of hydrogeological models for the Whataroa Valley region, encompassing the DFDP-2B drill site, were constructed using the modelling software FEFLOW. Models were constructed for a range of plausible hydraulic conductivity structures for the region. They predicted strongly artesian hydraulic heads of 50-150 m above surface elevation and temperatures exceeding 100 °C within 1 km depth in bedrock beneath the DFDP-2 drill site, with the exact hydraulic and thermal gradients dependent on the hydraulic conductivity structure chosen. During the drilling project hydraulic and thermal data from the borehole was collected. This included 33 slug test datasets, carried out at a range of borehole depths throughout the project. Estimates for hydraulic conductivity were obtained by analysis of slug test data. Steady state hydraulic heads for the borehole, across a range of depths, were estimated from the slug test measurements. Depth profiles of hydraulic head show rapid increases in hydraulic head with depth, in line with model predictions. Results show fluid pressures greatly exceeding hydrostatic pressure in the shallow crust, reflecting significant upward flow of groundwater beneath the Whataroa Valley. Hydraulic conductivity estimates provide constraints on the hydraulic conductivity structure of the region. All hydraulic conductivity structures modelled thus far

  3. Conceptual hermetically sealed elbow actuator

    NASA Technical Reports Server (NTRS)

    Wuenscher, H. F.

    1968-01-01

    Electrically or hydraulically powered, hermetically sealed angular or rotary actuator deflects mechanical members over a range of plus or minus 180 degrees. The actuator design provides incremental flexures which keep the local deflection rate within elastic limits.

  4. A magnetorheological actuation system: test and model

    NASA Astrophysics Data System (ADS)

    John, Shaju; Chaudhuri, Anirban; Wereley, Norman M.

    2008-04-01

    Self-contained actuation systems, based on frequency rectification of the high frequency motion of an active material, can produce high force and stroke output. Magnetorheological (MR) fluids are active fluids whose rheological properties can be altered by the application of a magnetic field. By using MR fluids as the energy transmission medium in such hybrid devices, a valving system with no moving parts can be implemented and used to control the motion of an output cylinder shaft. The MR fluid based valves are configured in the form of an H-bridge to produce bi-directional motion in an output cylinder by alternately applying magnetic fields in the two opposite arms of the bridge. The rheological properties of the MR fluid are modeled using both Bingham plastic and bi-viscous models. In this study, the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves. The pump and reed valve configuration along with MR fluidic valves form a compact hydraulic actuation system. Actuator design, analysis and experimental results are presented in this paper. A time domain model of the actuator is developed and validated using experimental data.

  5. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback, and Produced Waters.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-05-01

    Concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values-specifically, chronic oral reference values (RfVs) for noncancer effects, and oral slope factors (OSFs) for cancer-that are available for a list of 1173 chemicals that the United States (U.S.) Environmental Protection Agency (EPA) identified as being associated with hydraulic fracturing, including 1076 chemicals used in hydraulic fracturing fluids and 134 chemicals detected in flowback or produced waters from hydraulically fractured wells. The EPA compiled RfVs and OSFs using six governmental and intergovernmental data sources. Ninety (8%) of the 1076 chemicals reported in hydraulic fracturing fluids and 83 (62%) of the 134 chemicals reported in flowback/produced water had a chronic oral RfV or OSF available from one or more of the six sources. Furthermore, of the 36 chemicals reported in hydraulic fracturing fluids in at least 10% of wells nationwide (identified from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0), 8 chemicals (22%) had an available chronic oral RfV. The lack of chronic oral RfVs and OSFs for the majority of these chemicals highlights the significant knowledge gap that exists to assess the potential human health hazards associated with hydraulic fracturing. PMID:27050380

  6. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  7. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  8. Determination of the toxicity of cyclotriphosphazene hydraulic fluid by 21-day repeated inhalation and dermal exposure.

    PubMed

    Kinkead, E; Kimmel, E; Wall, H; Grabau, J

    1990-11-01

    Cyclotriphosphazene (CTP) ester is one of a series of compounds developed for use as a fire-resistant hydraulic fluid. The most significant routes of industrial exposure to hydraulic fluids are dermal, because of spills or leaks, and aerosol inhalation from pressurized system leaks. This study was designed to evaluate the toxic effects associated with repeated or continuous exposure to CTP by both dermal and inhalation routes. Male and female Fischer 344 (F-344) rats were exposed for 3 weeks to air alone, or to 0.25, 0.50, or 1.00 mg CTP/L. No deaths or signs of toxic stress occurred during the exposure period. A depression in mean body weight gain and increases in numbers of pulmonary alveolar macrophages and renal hyaline droplets were noted in both genders. Male and female New Zealand White (NZW) rabbits were treated dermally for 3 weeks with mineral oil, or 0.25, 0.50, or 1.00 g CTP/kg. No toxic effects were noted in either gender of rabbits. PMID:2085163

  9. Assessment of the Acute and Chronic Health Hazards of Hydraulic Fracturing Fluids.

    PubMed

    Wattenberg, Elizabeth V; Bielicki, Jeffrey M; Suchomel, Ashley E; Sweet, Jessica T; Vold, Elizabeth M; Ramachandran, Gurumurthy

    2015-01-01

    There is growing concern about how hydraulic fracturing affects public health because this activity involves handling large volumes of fluids that contain toxic and carcinogenic constituents, which are injected under high pressure through wells into the subsurface to release oil and gas from tight shale formations. The constituents of hydraulic fracturing fluids (HFFs) present occupational health risks because workers may be directly exposed to them, and general public health risks because of potential air and water contamination. Hazard identification, which focuses on the types of toxicity that substances may cause, is an important step in the complex health risk assessment of hydraulic fracturing. This article presents a practical and adaptable tool for the hazard identification of HFF constituents, and its use in the analysis of HFF constituents reported to be used in 2,850 wells in North Dakota between December 2009 and November 2013. Of the 569 reported constituents, 347 could be identified by a Chemical Abstract Service Registration Number (CASRN) and matching constituent name. The remainder could not be identified either because of trade secret labeling (210) or because of an invalid CASRN (12). Eleven public databases were searched for health hazard information on thirteen health hazard endpoints for 168 identifiable constituents that had at least 25 reports of use. Health hazard counts were generated for chronic and acute endpoints, including those associated with oral, inhalation, ocular, and dermal exposure. Eleven of the constituents listed in the top 30 by total health hazard count were also listed in the top 30 by reports of use. This includes naphthalene, which along with benzyl chloride, has the highest health hazard count. The top 25 constituents reportedly used in North Dakota largely overlap with those reported for Texas and Pennsylvania, despite different geologic formations, target resources (oil vs. gas), and disclosure requirements

  10. Seismic swarms, fluid flow and hydraulic conductivity in the forearc offshore North Costa Rica and Nicaragua

    NASA Astrophysics Data System (ADS)

    Thorwart, Martin; Dzierma, Yvonne; Rabbel, Wolfgang; Hensen, Christian

    2014-10-01

    At the continental margin of north Costa Rica and Nicaragua, the strongly hydrated Cocos Plate subducts beneath the Caribbean Plate. From the downgoing Cocos plate fluids are released through extensional fractures in the overriding plate. At the seafloor, they form fluid seeps, mounds and other types of fluid expulsion. Using an offshore temporary seismic network, we investigated seismicity possibly related to these processes and observed several swarms of earthquakes located on the continental slope trenchward of the seismogenic zone of S Nicaragua. The seismicity occurred within the downgoing plate, near the plate interface and in the overriding plate. We interpret these swarm events as an expression of pore pressure propagation under critical stress conditions driven by fluid release from the downgoing plate. In order to estimate hydraulic diffusivity and permeability values, we applied a theory developed for injection test interpretation to the spatio-temporal development of the swarms. The resulting diffusivity and permeability values are in the ranges of 28-305 m²/s and 3.2 × 10-14 m²-35.1 × 10-14 m², respectively, applying to the continental and oceanic crust near the plate interface. These values are somewhat larger than observed in drill logs on the margin wedge off north Costa Rica, but of comparable magnitude to values estimated for the Antofagasta 1995 earthquake aftershock sequence.

  11. Subsurface well safety valve with hydraulic strainer

    SciTech Connect

    Morris, A.J.; Knieriemen, J.L.

    1988-12-20

    This patent describes in combination with a subsurface safety valve for controlling fluid flow through a well conduit and including a housing having a bore and a valve closure member moving between open and closed positions for controlling fluid flow through the bore, a flow tube telescopically moving in the housing for controlling the movement of the valve closure member, biasing means for moving the tubular member in a direction to close the valve and a hydraulic piston and cylinder assembly for actuating the valve closure member, of a hydraulic strainer comprising, means defining a closed chamber positioned above the hydraulic piston and cylinder assembly, means defining an inlet fluid passageway having first and second ends, the first end adapted to receive hydraulic control fluid through a control line from the well surface, the second end extending into the chamber, means defining an outlet fluid passageway having first and second ends. The first end of the outlet fluid passageway extending into the chamber, and the second end of the outlet fluid passageway connected in fluid communication to the top of the hydraulic piston and cylinder assembly, the second end of the inlet fluid passageway being positioned away from the first end of the outlet fluid passageway for allowing debris to accumulate in the chamber and protect the piston and cylinder assembly.

  12. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    SciTech Connect

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  13. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2015-04-01

    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperatures, with high pressure, etc.) were conducted using groundwater samples from three different locations. Series of microcosms (3 of each kind) containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides, frac fluids or flowback. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride could be used as substrates, while the effects of others like triethanolamine or light oil

  14. Improving energy efficiency in robot limbs through hydraulic dangle

    NASA Astrophysics Data System (ADS)

    Whitman, Julian S.; Meller, Mike; Garcia, Ephrahim

    2015-03-01

    Animals often allow their limbs to swing passively under their own inertia. For example, about 40% of a human walking gait consists of the primarily passive swing phase. Current hydraulic robots employ traditional actuation methods in which fluid power is expended for all limb movements, even when passive dynamics could be utilized. "Dangle" is the ability to allow a hydraulic actuator to freely sway in response to external loads, in which both sides of the actuator are disconnected from pressure and connected to the tank. Dangle offers the opportunity for efficiency gains by enabling the use of momentum, gravity, and external loads to move a limb without expending fluid power. To demonstrate these efficiency gains, this paper presents an experiment that compares the fluid power consumed to actuate a two degree of freedom hydraulic leg following a human walking gait cycle trajectory in both a traditional manner and utilizing dangle. It was shown that the use of dangle can decrease fluid power consumption by 20% by utilizing pendular dynamics during the swing phase. At speeds higher than the free dangling rate, more power must be used to maintain the desired trajectory due to damping inherent in the configuration. The use of dangle as a power saving method when driving hydraulic limbs could increase operation time for untethered hydraulic walking robots.

  15. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part I)

    NASA Astrophysics Data System (ADS)

    Fernandez, C. A.; Jung, H. B.; Shao, H.; Bonneville, A.; Heldebrant, D.; Hoyt, D.; Zhong, L.; Holladay, J.

    2014-12-01

    Cost-effective yet safe creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the viability of enhanced geothermal systems and unconventional oil/gas recovery. Current reservoir stimulation processes utilize brute force (hydraulic pressures in the order of hundreds of bar) to create/propagate fractures in the bedrock. Such stimulation processes entail substantial economic costs ($3.3 million per reservoir as of 2011). Furthermore, the environmental impacts of reservoir stimulation are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To reduce the costs and environmental impact of reservoir stimulation, we developed an environmentally friendly and recyclable hydraulic fracturing fluid that undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at temperatures relevant for reservoir stimulation in Enhanced Geothermal System (EGS). The volume expansion, which will specifically occurs at EGS depths of interest, generates an exceptionally large mechanical stress in fracture networks of highly impermeable rock propagating fractures at effective stress an order of magnitude lower than current technology. This paper will concentrate on the presentation of this CO2-triggered expanding hydrogel formed from diluted aqueous solutions of polyallylamine (PAA). Aqueous PAA-CO2 mixtures also show significantly higher viscosities than conventional rheology modifiers at similar pressures and temperatures due to the cross-linking reaction of PAA with CO2, which was demonstrated by chemical speciation studies using in situ HP-HT 13C MAS-NMR. In addtion, PAA shows shear-thinning behavior, a critical advantage for the use of this fluid system in EGS reservoir stimulation. The high pressure/temperature experiments and their results as well

  16. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  17. Tubular dielectric elastomer actuator for active fluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Pei, Qibing

    2015-10-01

    We report a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ∼3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ∼0 kPa is reached at 2.4 kV. The device is reliable for at least 2000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control.

  18. In-line hydraulic dashpot

    NASA Astrophysics Data System (ADS)

    Moody, Paul E.

    1992-10-01

    An in-line hydraulic dashpot is disclosed that effectively decelerates the piston of a power cylinder by controllably choking off the oil which is providing pressure to the piston. The in-line hydraulic dashpot of the invention includes a valve spool member movable between an open and closed position along a fluid flow path that supplies oil to the power cylinder. An actuator rod is cooperative with the valve spool member and the piston shaft of the power cylinder to move tile valve spool member between its open and closed positions. The in-line hydraulic dashpot eliminates the clashing of mechanical parts and therewith eliminates the noise that would otherwise be generated thereby. The in-line hydraulic dashpot of the present invention makes possible the adaptation of a fixed stroke power cylinder to applications that call for a variable stroke length.

  19. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.

    PubMed

    Kondash, Andrew J; Warner, Nathaniel R; Lahav, Ori; Vengosh, Avner

    2014-01-21

    Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A. PMID:24367969

  20. Kinematical measurement of hydraulic tortuosity of fluid flow in porous media

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Dong, J. B.; Li, X.; Wu, Y.

    2015-07-01

    It is hard to experimentally or analytically derive the hydraulic tortuosity (τ) of porous media flow because of their complex microstructures. In this work, we propose a kinematical measurement method for τ by introducing the concept of local tortuosity, which is defined as the ratio of fluid particle velocity to its component along the macro flow. And then, the calculation model of τ is analytically deduced in terms of that τ is the mean value of the local tortuosity. To avoid the impact from the singularity of local tortuosity, the velocity is normalized, and τ is then approximated by the ratio of the mean normalized velocity to the average value of its component along the macro-flow direction. The new estimation method is verified by flow through different types of porous media via the lattice Boltzmann method, and the relationships between permeabilities and tortuosities obtained by different methods are examined. The numerical results show that tortuosity by the novel approach is in good agreement with the existing theory, and the kinematic definition of hydraulic tortuosity is also proven.

  1. Kinematical measurement of hydraulic tortuosity of fluid flow in porous media

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Dong, J. B.; Li, X.; Wu, Y.

    2014-07-01

    It is hard to experimentally or analytically derive the hydraulic tortuosity (τ) of porous media flow because of their complex microstructures. In this work, we propose a kinematical measurement method for τ by introducing the concept of local tortuosity, which is defined as the ratio of fluid particle velocity to its component along the macro flow. And then, the calculation model of τ is analytically deduced in terms of that τ is the mean value of the local tortuosity. To avoid the impact from the singularity of local tortuosity, the velocity is normalized, and τ is then approximated by the ratio of the mean normalized velocity to the average value of its component along the macro-flow direction. The new estimation method is verified by flow through different types of porous media via the lattice Boltzmann method, and the relationships between permeabilities and tortuosities obtained by different methods are examined. The numerical results show that tortuosity by the novel approach is in good agreement with the existing theory, and the kinematic definition of hydraulic tortuosity is also proven.

  2. Hydraulic optimization of membrane bioreactor via baffle modification using computational fluid dynamics.

    PubMed

    Yan, Xiaoxu; Xiao, Kang; Liang, Shuai; Lei, Ting; Liang, Peng; Xue, Tao; Yu, Kaichang; Guan, Jing; Huang, Xia

    2014-11-01

    Baffles are a key component of an airlift membrane bioreactor (MBR), which could enhance membrane surface shear for fouling control. In order to obtain an optimal hydraulic condition of the reactor, the effects of baffle location and size were systematically explored in this study. Computational fluid dynamics (CFD) was used to investigate the hydrodynamics in a bench-scale airlift flat sheet MBR with various baffle locations and sizes. Validated simulation results showed that side baffles were more effective in elevating membrane surface shear than front baffles. The maximum average shear stress was achieved by adjusting baffle size when both front and side baffles were installed. With the optimized baffle configuration, the shear stress was 10-30% higher than that without baffles at a same aeration intensity (specific air demand per membrane area in the range of 0-0.45m(3)m(-2)h(-1)). The effectiveness of baffles was particularly prominent at lower aeration intensities. PMID:25465790

  3. Third International Symposium on Environmental Hydraulics with a Special Theme on Urban Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Boyer, Don

    2002-01-01

    This is to report on the use of the funds provided by NASA to support the 'Third International Symposium on Environmental Hydraulics with a Special Theme on Urban Fluid Dynamics'. The Symposium was held on the campus of Arizona State University in Tempe, Arizona, USA, from 5-8 December 2001. It proved to be a forum for the discussion of a wide range of applied and basic research being conducted in the general areas of water and air resources, with the latter focusing on air quality in urban areas associated with complex terrain. This aspect of the Symposium was highlighted by twelve invited papers given by distinguished international scientists and roughly three hundred contributed manuscripts. Owing primarily to the current international situation, roughly 20% of the authors canceled their plans to attend the Symposium; while this was unfortunate, the Symposium went ahead with the enthusiastic participation of more than 250 scientists from forty nations.

  4. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    PubMed

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  5. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well

    PubMed Central

    Robbins, Steven J.; Evans, Paul N.; Parks, Donovan H.; Golding, Suzanne D.; Tyson, Gene W.

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  6. Fluid-rock interactions in unconventional reservoirs during hydraulic fracturing: a geochemical investigation from the Powder River Basin, WY

    NASA Astrophysics Data System (ADS)

    Herz-Thyhsen, R.; Kaszuba, J. P.

    2014-12-01

    Widespread use of hydraulic fracturing to stimulate resource production from unconventional reservoirs necessitates the development of a fundamental understanding for this process. Our research focuses on a synthesis of three sets of data to better understand geochemical and mineralogic aspects of the process of hydraulic fracturing, including laboratory experiments, field data, and geochemical modeling. Experiments examine fluid-rock interaction using rock samples from the Niobrara and Frontier Formations, two unconventional reservoirs within the Powder River Basin of NE Wyoming. Experiments react reservoir rocks with a representative hydraulic fracturing fluid for 28 days at 115°C and 350 bars. Fresh water and common chemicals, including HCl and petroleum distillates, used in hydraulic fracturing comprise the experimental fluid. Mineral reaction to the acidic fluid (pH ~2.35) causes immediate buffering, bringing fluid pH to near-neutral conditions after ~6 hours. Al initially spikes in the first 6 hours by ~10X, but returns to lower concentrations within 12 hours. Fe, Ba, Co, Mn, Sb, and Cr follow similar trends. Contemporaneously, Sr, Mo, Li, W, V, and Rb increase dramatically and remain at elevated levels. Changes in trace element concentrations correlate with clay alteration, calcite dissolution, and feldspar dissolution observed within reacted rock samples. Fluid samples are compared to produced-water chemistry from active wells in the field, enhancing our understanding of geochemical reactions occurring at depth. Lastly, produced fluid chemistry from both field samples and experiments are tethered together using preliminary geochemical models. These models predict calcite and feldspar reaction as well as new clay formation. This research ties together a limited population of produced water data with reservoir mineralogy to enhance fundamental understanding of fluid-rock interactions in unconventional reservoirs.

  7. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    NASA Astrophysics Data System (ADS)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  8. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    SciTech Connect

    Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  9. EXPERIMENTAL ANALYSIS OF THE ENVIRONMENTAL BEHAVIOR OF HYDRAULIC FRACTURING FLUID COMPOUNDS PRIORITIZED BY POTENTIAL OF ENVIRONMENTAL OR HEALTH RISK

    EPA Science Inventory

    Given the large number of chemical additives used in hydraulic fracturing fluids, it is not practical to conduct a comprehensive analysis in cases where contamination is suspected. The fate and transport model can identify compounds with high likelihood for transport and pe...

  10. THE USE AND FATE OF LUBRICANTS, OILS, GREASES, AND HYDRAULIC FLUIDS IN THE IRON AND STEEL INDUSTRY

    EPA Science Inventory

    The report gives results of an investigation of the use and fate of lubricants, oils, greases, and hydraulic fluids in the iron and steel industry. Data from nine integrated steel plants and two consultants with extensive steel industry experience were used to: develop correlatio...

  11. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  12. Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2014-05-01

    Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential

  13. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.

    PubMed

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234

  14. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    PubMed Central

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234

  15. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  16. Fluid film force control in lubricated journal bearings by means of a travelling wave generated with a piezoelectric actuators' system

    NASA Astrophysics Data System (ADS)

    Iula, Antonio; Lamberti, Nicola; Savoia, Alessandro; Caliano, Giosue

    2012-05-01

    In this work an experimental evaluation of the possiblity to influence and control the fluid film forces in the gap of a lubricated journal bearing by means of a rotating travelling wave is carried out. The travellig wave is generated by two power actuators opportunely positioned on the outer surface of the bearing and electrically driven with a phase shift of 90°. Each transducer is designed to work at the natural frequency of the radial nonaxisymmetrical mode 0-5 (23.6 kHz). Experimental results show that the travelling wave is capable to control the motion of an oil drop on the inner surface of the bearing and that it is capable to put in rotation a rotor layed on the drop oil via the viscous forces in the oil drop itself.

  17. Numerical Model of Hydraulic Fracturing Fluid Transport in the Subsurface with Pressure Transient, Density Effects, and Imbibition

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Dempsey, D.; Viswanathan, H.

    2014-12-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated from an environmental and public health perspective and to understand formation damage from an oil and gas production perspective. Upward pressure gradients, permeable pathways such as faults or improperly abandoned wellbores, and the density contrast of the HF fluid to the surrounding brine encourages upward HF fluid migration. In contrast, the very low shale permeability and the imbibition of water into partially-saturated shale may sequester much of the HF fluid. Using the Finite Element Heat and Mass Transfer Code (FEHM), single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore as flowback and produced water and how much reaches overlying aquifers; imbibition is calculated with a semi-analytical one-dimensional solution and treated as a sink term. The travel time for HF fluid to reach the shallow aquifers is highly dependent on the amount of water imbibed and the suction applied to the well. If imbibition rates and suction are small, the pressure transient due to injection and the density contrast allows rapid upward plume migration at early times. The density contrast diminishes considerably within tens to hundreds of years as mixing occurs. We present estimates of HF fluid migration to shallow aquifers during the first 1,000 years after hydraulic fracturing begins for ranges of subsurface properties.

  18. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  19. An electromechanical attenuator/actuator for Space Station docking

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean; Carroll, Monty B.

    1987-01-01

    The development of a docking system for aerospace vehicles has identified the need for reusable and variably controlled attenuators/actuators for energy absorption and compliance. One approach to providing both the attenuator and the actuator functions is by way of an electromechanical attenuator/actuator (EMAA) as opposed to a hydraulic system. The use of the electromechanical devices is considered to be more suitable for a space environment because of the absence of contamination from hydraulic fluid leaks and because of the cost effectiveness of maintenance. A smart EMAA that uses range/rate/attitude sensor information to preadjust a docking interface to eliminate misalignments and to minimize contact and stroking forces is described. A prototype EMAA was fabricated and is being tested and evaluated. Results of preliminary testing and analysis already performed have established confidence that this concept is feasible and will provide the desired reliability and low maintenance for repetitive long term operation typical of Space Station requirements.

  20. Exposure of aircraft maintenance technicians to organophosphates from hydraulic fluids and turbine oils: a pilot study.

    PubMed

    Schindler, Birgit Karin; Koslitz, Stephan; Weiss, Tobias; Broding, Horst Christoph; Brüning, Thomas; Bünger, Jürgen

    2014-01-01

    Hydraulic fluids and turbine oils contain organophosphates like tricresyl phosphate isomers, triphenyl phosphate and tributyl phosphate from very small up to high percentages. The aim of this pilot study was to determine if aircraft maintenance technicians are exposed to relevant amounts of organophosphates. Dialkyl and diaryl phosphate metabolites of seven organophosphates were quantified in pre- and post-shift spot urine samples of technicians (N=5) by GC-MS/MS after solid phase extraction and derivatization. Pre- and post shift values of tributyl phosphate metabolites (dibutyl phosphate (DBP): median pre-shift: 12.5 μg/L, post-shift: 23.5 μg/L) and triphenyl phosphate metabolites (diphenyl phosphate (DPP): median pre-shift: 2.9 μg/L, post-shift: 3.5 μg/L) were statistically higher than in a control group from the general population (median DBP: <0.25 μg/L, median DPP: 0.5 μg/L). No tricresyl phosphate metabolites were detected. The aircraft maintenance technicians were occupationally exposed to tributyl and triphenyl phosphate but not to tricresyl phosphate, tri-(2-chloroethyl)- and tri-(2-chloropropyl)-phosphate. Further studies are necessary to collect information on sources, routes of uptake and varying exposures during different work tasks, evaluate possible health effects and to set up appropriate protective measures. PMID:23597959

  1. Electrochemical determination of water in environmental hydraulic fluids using the karl Fischer reaction.

    PubMed

    Cedergren, A; Lundström, M

    1997-10-01

    Different procedures based on the Karl Fischer reaction were investigated with respect to their applicability for water determinations in environmental hydraulic fluids:  (i) continuous coulometry using a recently described diaphragm-free cell; (ii) on-line stripping of water at elevated temperature using either continuous coulometry or direct potentiometry for detection of the liberated water. Except for one of the oils, Statoil PA, which is a poly(α-olefin) with certain polymers added, no significant difference was found among coulometry using an optimized imidazole-buffered methanolic reagent containing 75% (v/v) chloroform, the two different stripping techniques (working in the temperature interval 100-110 °C), and the commercially available Hydranal Coulomat AG-H. The high stability and sensitivity of the coulometric technique described made it possible to work with sample amounts in the low milligram-range, and this is shown to increase the reliability of the coulometric method as compared to normally used procedures. PMID:21639214

  2. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  3. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    PubMed Central

    Velescu, C.; Popa, N. C.

    2015-01-01

    We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids' motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i) velocity and pressure distributions, (ii) average velocity, (iii) volume flow rate of the liquid, (iv) pressures difference, and (v) radial clearance. PMID:26167532

  4. Active noise control - Piezoceramic actuators in fluid/structure interaction models

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fang, W.; Smith, R. C.

    1991-01-01

    A model for a 2-D acoustic cavity with a flexible boundary (a beam) controlled via piezoceramic patches producing bending moments in the beam is considered. The associated control problem for this fluid/structure interaction system to reduce the acoustic pressure in the cavity involves unbounded control inputs. Approximation methods in the context of an LQR state space formulation are discussed, and numerical results are presented to demonstrate the effectiveness of this approach in computing feedback controls for noise reduction.

  5. The hydraulic separator Multidune: preliminary tests on fluid-dynamic features and plastic separation feasibility.

    PubMed

    De Sena, Giulia; Nardi, Camillo; Cenedese, Antonio; La Marca, Floriana; Massacci, Paolo; Moroni, Monica

    2008-01-01

    Recycling of plastic materials is a rapidly developing discipline because of environmental awareness, the need to conserve materials and energy, and the growing demand to increase the production economy. The main problem in plastics recovery and recycling is related to the variety of plastic wastes, even if selective collection occurs. Therefore, plastic materials can be recycled either as mixtures or as single types, separating the different typologies by their physical (size, specific mass, etc.) and/or chemical properties. However, separation of plastics in single typologies by traditional processes and devices is difficult due to their typical low variability in properties. This paper presents a new research development for recycling industry: the Multidune separator. This is a device constructed from a sequence of parallel semi-cylindrical tubes of transparent plastic welded together in a plane. The lower half is shifted laterally and then fixed relative to the upper half. Flow is then induced in the lateral direction normal to the axis of the tubes, creating a main flow channel and two recirculation zones. This apparatus creates a differential transport of particles of low specific mass, near to 1g/cm3, allowing their separation. The flow field in the Multidune separator is studied via Particle Tracking Velocimetry (PTV). Eulerian analysis of the data is performed to gather information about the fluid-dynamics features established by different hydraulic heads at the inlet of the Multidune. Preliminary tests on monomaterial samples have been performed, varying several operative parameters to determine the best set of values. Therefore, separation tests have been executed on composite samples, obtaining satisfactory results in terms of plastic separation feasibility. PMID:17935965

  6. Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Lu, Zhen-Hua

    2004-08-01

    Hydraulic engine mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter (LP) model is a traditional model for modelling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, a fluid-structure interaction (FSI) finite element analysis (FEA) method and a non-linear FEA technology are used to determine the system parameters, and a fully coupled FSI model is developed for modelling the static and lower-frequency performance of an HEM. A FSI FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and the decoupler of an HEM. A non-linear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions. A numerical simulation for an HEM with an inertia track and a free decoupler is performed based on the FSI model and the LP model along with the estimated system parameters, and again the simulation results are compared with experimental data. The calculated time histories of some variables in the model, such as the pressure in the upper chamber, the displacement of the free decoupler and the volume flow through the inertia track and the decoupler, under different excitations, elucidate the working mechanism of the HEM. The pressure distribution calculated with the FSI model in the chambers of the HEM validates the assumption that the pressure distribution in the upper and lower chamber is uniform in the LP model. The work conducted in the paper demonstrates that the methods for estimating the system parameters in the LP model and the FSI model for modelling HEM are effective, with which the dynamic characteristic analysis and design optimization of an HEM can be performed before its prototype development, and this

  7. Electric versus hydraulic drives

    SciTech Connect

    Not Available

    1983-01-01

    This volume records the proceedings of a conference organised by the Engineering Manufacturing Industries Division of the Institution of Mechanical Engineers. Topics considered include high performance position control - a review of the current state of developments; hydrostatic drives - present and future; electric drives - present and future trends; electrical and hydraulic drives for heavy industrial robots; the development of an electro-mechanical tilt system for the advanced passenger train; industrial hydraulic ring mains - effective or efficient. the comparison of performance of servo feed-drive systems; overhead crane drives; the future of d.c. servodrives; the choice of actuator for military systems; linear electro-hydraulic actuators; and actuation for industrial robots.

  8. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, Volumes, and Physical-chemical Properties of Chemicals

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Daiss, R.; Williams, L.; Singer, A.

    2015-12-01

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base fluid, proppant, and additives. Additives, comprised of one or more chemicals, are serve a specific engineering purpose (e.g., friction reducer, scale inhibitor, biocide). As part of the USEPA's Draft Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, we investigated the different types, volumes injected, and physical-chemical properties of HF fluid chemicals. The USEPA identified 1,076 chemicals used in HF fluids, based on 10 sources covering chemical use from 2005 to 2013. These chemicals fall into different classes: acids, alcohols, aromatic hydrocarbons, bases, hydrocarbon mixtures, polysaccharides, and surfactants. The physical-chemical properties of these chemicals vary, which affects their movement through the environment if spilled. Properties range from fully miscible to insoluble, from highly hydrophobic to highly hydrophilic. Most of these chemicals are not volatile. HF fluid composition varies from site to site depending on a range of factors. No single chemical or set of chemicals are used at every site. A median of 14 chemicals are used per well, with a range of four to 28 (5th and 95th percentiles). Methanol was the chemical most commonly reported in FracFocus 1.0 (72% of disclosures), and hydrotreated light petroleum distillates and hydrochloric acid were both reported in over half the disclosures. Operators store chemicals on-site, often in multiple containers (typically in 760 to 1,500 L totes). We estimated that the total volume of all chemicals used per well ranges from approximately 10,000 to 110,000 L. The views expressed here are those of the authors and do not necessarily represent the views or policies of the USEPA.

  9. Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Jeffrey, Robert G.

    2012-12-01

    In bedded sedimentary rocks, the energy for spontaneous growth of multiple vertical fractures from a bedding plane may be provided by an overpressurized sublayer fracture that connects a fluid source to the bedding plane. In this paper, using our coupled deformation and flow model, we study the processes and mechanisms involved in the formation and interaction of closely space fractures from preexisting flaws or starter fractures located along the bedding plane. Fracture growth from multiple flaws can be convergent, parallel or divergent, depending on the factors like contrasts in moduli and far-field stresses, flaw sizes and locations, and initial bed conductivity, fluid viscosity, and injection rate, as well as time. The results presented here have been obtained for conditions where fluid viscous dissipation is dominant, in contrast to other results available in literature based on uniform pressure assumption equivalent to use of an inviscid fluid. It is demonstrated that the earlier a hydraulic fracture starts to extend, the more likely it is to become the primary fracture in a system of closely spaced fractures. The fracture closest to the fluid source typically grows faster as a result of a higher pressure level because viscous dissipation results in a decrease in pressure with distance from the fluid source. But its development does not completely inhibit the growth of other hydraulic fractures. Simultaneous growth of closely spaced fractures is supported by the local stress and energetic analyses, and the fracture distance can be very small. Their length to spacing ratio is accordingly much larger than that predicted previously. Under certain circumstances, a longer and more permeable fracture may grow to a greater extent than a shorter fracture closer to the fluid source, which may grow toward and merge with the longer fracture to create fracture clusters adjacent to a bedding plane.

  10. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  11. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  12. Investigation of the Pressure Distribution in a Flow of a Viscous Fluid in a Pipeline Under Hydraulic-Shock Conditions with Account for the Relaxation Properties of the Fluid

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kudinov, V. A.

    2014-03-01

    An exact analytical solution of the hyperbolic equation defining the pressure distribution in a viscous fluid flowing in a pipeline under the conditions of a hydraulic shock with account for the relaxation properties of the fluid has been obtained. It was established, based on a comparison of calculation and experimental data, that the relaxation properties of such a fluid determine the degree of nonstationarity of its fl ow and, hence, the wall friction of the fluid or its shear stress. It is shown that, in the case of nonstationary movement of a viscous fluid in a pipeline under hydraulic-shock conditions, the pressure jump caused by the hydraulic shock differs markedly in form (it is longer in time) from that in the case of quasi-stationary movement of this fluid under the identical conditions. The same effect (although weaker) was detected for decrease in the indicated pressure jump.

  13. Hydraulic Extractor For Electronic Connectors

    NASA Technical Reports Server (NTRS)

    Smith, Larry D.

    1994-01-01

    Tool separates multipin electrical connectors in electronic equipment. Based on use of hydraulic pressure to apply balanced forces to connector and gently pull it free without damage. Easily assembled from readily available parts. Includes actuator syringe, two extractor syringes of disposable plastic 5-mL type, several pieces of flexible plastic tubing, and adjustable mounting components that brace tool in desired spacing configuration to suit connector extracted. Tubes and syringes filled with suitable fluid. Designed specifically for use on "D"-type connectors, also adapted for use wherever linear extraction motion used.

  14. Synthesis and evaluation of C-ether formulations for use as high temperature lubricants and hydraulic fluids

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Green, R. L.; Miller, D. R.

    1974-01-01

    The formulation and evaluation of C-ether fluids for use in the hydraulic and lubrication systems of the space shuttle and advanced air breathing engines were studied to lower the pour point of a reference C-ether from -29 C to -40 C without changing its evaporation loss. Use of disiloxanes mixed with C-ethers gave a -40 C pour point fluid with little change in the desired evaporation loss or in oxidative stability. A second -40 C pour point fluid containing only C-ethers was also developed. A screening program tested lubrication additives for C-ethers and the new fluids. Six additive packages were chosen for evaluation in 316 C bearing tests, two for evaluation in 260 C pump tests. The goal of the bearing test was a 100 hour run. The rig was a specially designed 80-mm axially loaded ball bearing. The C-ether base fluid ran only one hour at 316 C before cage wear failure occurred. The best additive blends ran 47, 94 and 100 hours. The 96 hour test gave excessive deposits. The 100 hour test had no wear failures; an unexplained loss of cage silver occurred from areas of direct fluid impingement on the cage.

  15. Vehicle having hydraulic and power steering systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-06-22

    A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

  16. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  17. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    SciTech Connect

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow

  18. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump. PMID:19894088

  19. Characterization of Radium and Radon Isotopes in Hydraulic Fracturing Flowback Fluid and Gas from the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Bardsley, A.

    2015-12-01

    High volume hydraulic fracturing of unconventional deposits has expanded rapidly over the past decade in the US, with much attention focused on the Marcellus Shale gas reservoir in the northeastern US. We use naturally occurring radium isotopes and 222Rn to explore changes in formation characteristics as a result of hydraulic fracturing. Gas and produced waters were analyzed from time series samples collected soon after hydraulic fracturing at three Marcellus Shale well sites in the Appalachian Basin, USA. Analyses of δ18O, Cl- , and 226Ra in flowback fluid are consistent with two end member mixing between injected slick water and formation brine. All three tracers indicate that the ratio of injected water to formation brine declines with time across both time series. Cl- concentration (max ~1.5-2.2 M) and 226Ra activity (max ~165-250 Bq/Kg) in flowback fluid are comparable at all three sites. There are differences evident in the stable isotopic composition (δ18O & δD) of injected slick water across the three sites, but all appear to mix with formation brine of similar isotopic composition. On a plot of water isotopes, δ18O in formation brine-dominated fluid is enriched by ~3-4 permille relative to the Global Meteoric Water Line, indicating oxygen exchange with shale. The ratio of 223Ra/226Ra and 228Ra/226Ra in produced waters is quite low relative to shale samples analyzed. This indicates that most of the 226Ra in the formation brine must be sourced from shale weathering or dissolution rather than emanation due to alpha recoil from the rock surface. During the first week of flowback, ratios of short lived isotopes 223Ra and 224Ra to longer lived radium isotopes change modestly, suggesting rock surface area per unit of produced water volume did not change substantially. For one well, longer term gas samples were collected. The 222Rn/methane ratio in produced gas from this site declines with time and may represent a decrease in the brine to gas ratio in the

  20. Degradation of phosphate ester hydraulic fluid in power station turbines investigated by a three-magnet unilateral magnet array.

    PubMed

    Guo, Pan; He, Wei; García-Naranjo, Juan C

    2014-01-01

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the ¹H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T₂eff and longitudinal relaxation time T₁ were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T₂eff,long and T₁,long. This indicates that the T₂eff,long and T₁,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines. PMID:24736132

  1. Degradation of Phosphate Ester Hydraulic Fluid in Power Station Turbines Investigated by a Three-Magnet Unilateral Magnet Array

    PubMed Central

    Guo, Pan; He, Wei; García-Naranjo, Juan C.

    2014-01-01

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the 1H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T2eff and longitudinal relaxation time T1 were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T2eff,long and T1,long. This indicates that the T2eff,long and T1,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines. PMID:24736132

  2. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump.

    PubMed

    Yang, Xiao-Chen; Zhang, Yan; Gui, Xing-Min; Hu, Sheng-Shou

    2011-10-01

    The advent of various technologies has allowed mechanical blood pumps to become more reliable and versatile in recent decades. In our study group, a novel structure of axial flow blood pump was developed for assisting the left ventricle. The design point of the left ventricular assist blood pump 25 (LAP-25) was chosen at 4 Lpm with 100 mm Hg according to our clinical practice. Computational fluid dynamics was used to design and analyze the performance of the LAP-25. In order to obtain a required hydraulic performance and a satisfactory hemolytic property in the LAP-25 of a smaller size, a novel structure was developed including an integrated shroud impeller, a streamlined impeller hub, and main impeller blades with splitter blades; furthermore, tandem cascades were introduced in designing the diffuser. The results of numerical simulation show the LAP-25 can generate flow rates of 3-5 Lpm at rotational speeds of 8500-10,500 rpm, producing pressure rises of 27.5-148.3 mm Hg with hydraulic efficiency points ranging from 13.4 to 27.5%. Moreover, the fluid field and the hemolytic property of the LAP-25 were estimated, and the mean hemolysis index of the pump was 0.0895% with Heuser's estimated model. In conclusion, the design of the LAP-25 shows an acceptable result. PMID:21517911

  3. Identification and real-time position control of a servo-hydraulic rotary actuator by means of a neurobiologically motivated algorithm.

    PubMed

    Sadeghieh, Ali; Sazgar, Hadi; Goodarzi, Kamyar; Lucas, Caro

    2012-01-01

    This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system. A modified version of the brain emotional learning based intelligent controller (BELBIC), a bio-inspired algorithm based upon a computational model of emotional learning which occurs in the amygdala, is utilized for position controlling a real laboratorial rotary electro-hydraulic servo (EHS) system. EHS systems are known to be nonlinear and non-smooth due to many factors such as leakage, friction, hysteresis, null shift, saturation, dead zone, and especially fluid flow expression through the servo valve. The large value of these factors can easily influence the control performance in the presence of a poor design. In this paper, a mathematical model of the EHS system is derived, and then the parameters of the model are identified using the recursive least squares method. In the next step, a BELBIC is designed based on this dynamic model and utilized to control the real laboratorial EHS system. To prove the effectiveness of the modified BELBIC's online learning ability in reducing the overall tracking error, results have been compared to those obtained from an optimal PID controller, an auto-tuned fuzzy PI controller (ATFPIC), and a neural network predictive controller (NNPC) under similar circumstances. The results demonstrate not only excellent improvement in control action, but also less energy consumption. PMID:22015061

  4. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  5. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  6. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  7. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.

    PubMed

    Arvand, Arash; Hahn, Nicole; Hormes, Marcus; Akdis, Mustafa; Martin, Michael; Reul, Helmut

    2004-10-01

    A mixed-flow blood pump for long-term applications has been developed at the Helmholtz-Institute in Aachen, Germany. Central features of this implantable pump are a centrally integrated motor, a blood-immersed mechanical bearing, magnetic coupling of the impeller, and a shrouded impeller, which allows a relatively wide clearance. The aim of the study was a numerical analysis of hydraulic and hemolytic properties of different impeller design configurations. In vitro testing and numerical simulation techniques (computational fluid dynamics [CFD]) were applied to achieve a comprehensive overview. Pressure-flow charts were experimentally measured in a mock loop in order to validate the CFD data. In vitro hemolysis tests were performed at the main operating point of each impeller design. General flow patterns, pressure-flow charts, secondary flow rates, torque, and axial forces on the impeller were calculated by means of CFD. Furthermore, based on streak line techniques, shear stress (stress loading), exposure times, and volume percentage with critical stress loading have been determined. Comparison of CFD data with pressure head measurements showed excel-lent agreement. Also, impressive trend conformity was observed between in-vitro hemolysis results and numerical data. Comparison of design variations yielded clear trends and results. Design C revealed the best hydraulic and hemolytic properties and was chosen as the final design for the mixed-flow rotary blood pump. PMID:15384994

  8. Comparison of extraction techniques, including supercritical fluid, high-pressure solvent, and soxhlet, for organophosphorus hydraulic fluids from soil.

    PubMed

    David, M D; Seiber, J N

    1996-09-01

    The efficiencies of three extraction techniques for removal of nonpesticidal organophosphates from soil were determined. Traditional Soxhlet extraction was compared to supercritical fluid extraction (SFE) and a low solvent volume flow through technique referred to here as high-pressure solvent extraction (HPSE). SFE, optimized by varying parameters of temperature, pressure, and methanol polarity modifier, showed at least 90% efficiency in the extraction of OPs from both spiked and native soils. HPSE experiments showed efficient and consistent recoveries over a range of temperatures up to 200 °C and pressures up to 170 atm. Recovery of TCP from spiked soils with HPSE depends on the system variables of temperature and pressure, which dictate density and flow rate. HPSE provided extraction efficiencies comparable to those obtained with Soxhlet extraction and SFE but with substantial savings of time and cost. PMID:21619371

  9. Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1991-01-01

    Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

  10. Hydraulic control unit for automotive transmissions

    SciTech Connect

    Kojima, Y.; Ishida, H.

    1986-12-02

    This patent describes a hydraulic control unit for use in an automotive transmission having a speed change gear and a clutch, the hydraulic control unit including a housing, a change gear operating mechanism means for hydraulically operating the speed change gear, and a clutch operating mechanism means for hydraulically operating the clutch. The change gear operating mechanism means and the clutch operating mechanism means are both incorporated in the housing. The improvement described here is wherein the change gear operating mechanism means comprises a first hydraulic actuator means for effecting gear shifting of the speed change gear and gear selection thereof, first solenoid valve means for controlling the first hydraulic actuator means, first and second position sensor means for sensing positions of the first hydraulic actuator means indicative of a selected gear position thereof, respectively. The clutch operating mechanism means comprises a second hydraulic actuator means for effecting engagement and disengagement of the clutch, second solenoid valve means for controlling the second hydraulic actuator means, and a third position sensor means for sensing a position of the second hydraulic actuator means indicative of engagement and disengagement of the clutch. The first and second hydraulic actuator means, the first and second solenoid valve means, and the first, second and third position sensor means are all incorporated in one body in the housing.

  11. Integrated Experimental and Computational Study of Hydraulic Fracturing and the Use of Alternative Fracking Fluids

    NASA Astrophysics Data System (ADS)

    Viswanathan, H.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Zhang, D.; Makedonska, N.; Middleton, R. S.; Currier, R.; Gupta, R.; Lei, Z.; Kang, Q.; O'Malley, D.; Hyman, J.

    2014-12-01

    Shale gas is an unconventional fossil energy resource that is already having a profound impact on US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydrofracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. This project uses innovative high-pressure microfluidic and triaxial core flood experiments on shale to explore fracture-permeability relations and the extraction of hydrocarbon. These data are integrated with simulations including lattice Boltzmann modeling of pore-scale processes, finite-element/discrete element models of fracture development in the near-well environment, discrete-fracture modeling of the reservoir, and system-scale models to assess the economics of alternative fracturing fluids. The ultimate goal is to make the necessary measurements to develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  12. Control apparatus for hydraulically driven generator

    SciTech Connect

    Beckwith, S.

    1985-08-06

    Apparatus for controlling a hydraulically driven generator for supplying electrical power to power mains. The generator is coupled to a turbine driven by a fluid flow through a duct. The duct has a one-fourth turn butterfly valve controlled by a fluid-actuated operator and the operator receives fluid from the duct by way of a normally closed valve which, when energized, creates water pressure on the operator for opening the butterfly valve. A second, normally open solenoid provides an emergency exit for the water from the operator to relieve the water pressure thereon and thereby close the butterfly valve when certain conditions exist, such as sudden loss of line voltage, overvoltage or deviation in frequency of the line voltage. A differential pressure switch across the turbine rotor also controls the starting of the system to assure proper flow of fluid through the duct before commencing operation of the generator itself.

  13. Evaluation of the acute toxicity of four water-in-oil emulsion hydraulic fluids. Technical report, July 1986-April 1987

    SciTech Connect

    Kinkead, E.R.; Culpepper, B.T.; Henry, S.S.; Pollard, D.L.; Kimmel, E.C.

    1987-11-01

    As a part of the Submarine Damage Prevention program, four commercial water-in-oil emulsion class of compounds consists of stable emulsions of micronic or submicronic water droplets suspended in a high-quality petroleum-base oil. These fluids also contain special additives to give the final product lubricity, corrosion-protection properties, emulsion stabilizers, and resistance to bacterial and fungal growth. The most significant exposure routes for hydraulic fluids are expected to be dermal, due to spills or leaks, and aerosol inhalation, from pressurized-system leaks. The studies conducted included eye and skin irritation, skin sensitization, oral and dermal toxicity, and aerosol inhalation. They also provided data to compare the short-term exposure effects of these various emulsions. None of the testbed compounds were toxic by the oral or dermal routes of administration. The viscous nature of these emulsions were limited to aerosol concentrations that could be tested. At the maximum attainable concentrations, no deaths or toxic effects were noted in the exposed animals. All of the materials were mildly irritating to the eyes but not on the skin. One of the materials testbed had a slight potential to sensitize treated animals.

  14. Composite hydraulic system

    SciTech Connect

    Williamson, W.A.

    1987-03-17

    A composite hydraulic system is described for a work vehicle having an implement hydraulic circuit and a steering hydraulic circuit comprising a first pump which supplies the implement hydraulic circuit primarily, a second pump which supplies the steering hydraulic circuit primarily, a third pump which is operable also as a motor and which transfers hydraulic fluid between the implement and the steering hydraulic circuits, an engine which operates the three pumps simultaneously, and servo system means whereby the third pump under at least one condition of operation operates as a motor to provide regeneration.

  15. Effects of actuator limits in bifurcation control with applications to active control of fluid instabilities in turbomachinery

    NASA Astrophysics Data System (ADS)

    Wang, Yong

    Bifurcations are ubiquitous in engineering applications. Subcritical bifurcations are typically associated with hysteresis and catastrophic instability inception, while supercritical bifurcations are usually associated with gradual and more benign instability inception. With the assumption that the bifurcating modes are linearly unstabilizable, we give a constructive procedure of designing feedback laws to change the criticality of bifurcations from subcritical to supercritical. Algebraic necessary and sufficient conditions are obtained under which the criticality of a simple steady-state or Hopf bifurcation can be changed to supercritical by a smooth feedback. The effects of magnitude saturation, bandwidth, and rate limits are important issues in control engineering. We give qualitative estimates of the region of attraction to the stabilized bifurcating equilibrium/periodic orbits under these constraints. We apply the above theoretical results to the Moore-Greitzer model in active control of rotating stall and surge in gas turbine engines. Though linear stabilizability can be achieved using distributed actuation, it limits the practical usefulness due to considerations of affordability and reliability. On the other hand, simple but practically promising actuation schemes such as outlet bleed valves, a couple of air injectors, and magnetic bearings will make the system loss of linear stabilizability, thus the control design becomes a challenging task. The above mentioned theory in bifurcation stabilization can be applied to these cases. We analyze the effects of magnitude and rate saturations in active control of rotating stall using bleed valves. Analytic formulas are obtained for the operability enhancement as a function of system parameters, noise level, and actuator magnitude and rate limits. The formulas give good qualitative predictions when compared with experiments. Our conclusion is that actuator magnitude and rate limits are serious limiting factors in

  16. Varifocal liquid-filled microlens operated by an electroactive polymer actuator.

    PubMed

    Choi, Seung Tae; Lee, Jeong Yub; Kwon, Jong Oh; Lee, Seungwan; Kim, Woonbae

    2011-05-15

    We designed, fabricated, and characterized varifocal microlenses, whose focal length varies along with the deformation of a transparent elastomer membrane under hydraulic pressure tailored by electroactive polymer actuators. The microfluidic channel of the microlens was designed to be embedded between silicon and glass so that transient fluctuation of the optical fluid and elastomer membrane is effectively suppressed, and thus the microlens is optically stabilized in a reduced time. Multilayered poly(vinylidene fluoride-trifluoroethylene-clorotrifluoroethylene) actuators were also developed and integrated onto the microfluidic chambers. We demonstrated that the developed microlenses are suitable for use in microimaging systems to make their foci tunable. PMID:21593935

  17. EM Earthquake Precursor Detection Associated with Fluid Injection for Hydraulic Fracturing and Tectonic Sources

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth B., II

    2015-04-01

    , Texas field sites, a proactive detection approach was taken, due to the heavy presence of hydraulic fracturing activity for regional hydrocarbon extraction, which appeared to be causing several rare M4.0+ earthquakes. As a result, detailed Southern California and Timpson, Texas field studies led to the improved design of two newer, prototype antennae and the first ever earthquake epicenter map. With more antennae and continuous monitoring, more fracture cycles can be established well ahead of the next earthquake. In addition, field data could be ascertained longer by the proper authorities and lead to significantly improved earthquake forecasting. The EM precursor determined by this method appears to surpass all prior precursor claims, and the general public may finally receive long overdue forecasting.

  18. Magnetically Actuated Propellant Orientation Experiment, Controlling Fluid Motion With Magnetic Fields in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Holt, J. B.

    2000-01-01

    This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.

  19. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  20. Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory

    PubMed Central

    Rastgoo, Abbas; Ahmadian, Mohammad Taghi

    2013-01-01

    Summary The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes. PMID:24367746

  1. Fluid flow paths discrimination in tight sand gas reservoirs using the Hydraulic Flow unit approach with an example from the Algerian Sahara

    NASA Astrophysics Data System (ADS)

    Sokhal, Abdellah; Bougandoura, Adel; Ouadfeul, Sid-Ali

    2015-04-01

    In this work, fluid flow paths are discriminated from standard well logs and core data through the utilization of Hydraulic Flow Units Approach (HFU) and an intelligent network. Firstly, the flow zone indicator (FZI), which is a unique parameter for each hydraulic unit, was used to characterize each rock type. The number of hydraulic flow units and mean values of FZI for each HFU were calculated from porosity and permeability measured from core-rocks. Application to data of a borehole located in the Algerian Sahara shows the existence of three HFUs and a correlation coefficient greater than 0.9 in each HFU was observed. Some FZI were attributed for un-cored wells using the Fuzzy Logic system (FL). Well-logs data that are used as an input to train the fuzzy system are the neutron porosity, the bulk density, the slowness of the P wave, the resistivity of the shallow and the deep zones and the natural gamma ray. The calculated FZI associated to these depths interval are used as an output. The presented methodology was successfully applied to a large data set of laboratory and well logging measurements from the Hassi D'zaabat field. Keywords: Fluid flow; FZI, Hydraulic Flow Unit (HFU); Fuzzy logic.

  2. Spent fluid catalytic cracking catalyst (FCC) applications in the preparation of hydraulic binders: Pozzolanic properties study

    NASA Astrophysics Data System (ADS)

    Velazquez Rodriguez, Sergio

    At the present work the replacement of Portland cement in pastes and mortars by spent fluid catalytic cracking catalyst (FCC) is studied. The study has been focused in four physicochemical characterization, hydrated lime/catalyst and cement/catalyst pastes and mortars studies, and environmental impact aspects. The FCC characterization establishes that it is a silicoaluminate, having a mainly amorphous structure, with a great specific surface, and that is necessary its mechanical activation (grinding) to obtain a pozzolanic behaviour material. The reactivity was studied by: thermogravimetry, X ray diffractometry, aqueous media electrical conductivity measurements, Fourier transform infrared spectroscopy, scanning electron microscopy, mechanical strength development evaluation and cementing effectiveness k-factor evaluation. The very high pozzolanic activity of the material has been demonstrated, besides that this reactivity has been superior to others similar products such as the metakaolin. The products formed in the hydration, pozzolanic and hydration catalysis of cement reactions have been studied, comparing the reactivity characteristics with others better known pozzolans. The nature of the reaction products between FCC and hydrated lime is similar to the ones formed by the metakaolin, being fundamentally calcium silicate hydrates and hydrated gehlenite, and their formation allow to obtain microstructures with higher mechanical strength. The possibility of preparation materials containing cement/FCC with improved mechanical strength and drying shrinkage has been demonstrated, compared to homologous materials without ground FCC. The optimal FCC dosage for the lime fixation maximization has been determined, showing a pozzolanic behaviour similar to metakaolin, nevertheless very superior to others studied pozzolans, behaviour that is improved with the aid of certain chemical activators, and with the increasing of the curing temperature. Measurements of electrical

  3. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Han, Chulhee; Han, Young-Min; Choi, Seung-Bok

    2014-07-01

    A direct-drive valve (DDV) system is a kind of electrohydraulic servo valve system, in which the actuator directly drives the spool of the valve. In conventional DDV systems, the spool is generally driven by an electromagnetic actuator. Performance characteristics such as frequency bandwidth of DDV systems driven by the electromagnetic actuator are limited due to the actuator response property. In order to improve the performance characteristics of conventional DDV systems, in this work a new configuration for a direct-drive valve system actuated by a piezostack actuator with a flexible beam mechanism is proposed (in short, a piezo-driven DDV system). Its benefits are demonstrated through both simulation and experiment. After describing the geometric configuration and operational principle of the proposed valve system, a governing equation of the whole system is obtained by combining the dynamic equations of the fluid part and the structural parts: the piezostack, the flexible beam, and the spool. In the structural parts of the piezostack and flexible beam, a lumped parameter modeling method is used, while the conventional rule of the fluid momentum is used for the fluid part. In order to evaluate valve performances of the proposed system, an experimental apparatus consisting of a hydraulic circuit and the piezo-driven DDV system is established. The performance characteristics are evaluated in terms of maximum spool displacement, flow rate, frequency characteristics, and step response. In addition, in order to advocate the feasibility of the proposed dynamic model, a comparison between simulation and experiment is undertaken.

  4. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    EPA Science Inventory

    As the use of hydraulic fracturing has increased, concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values—...

  5. Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2016-04-01

    As offshore oil and gas exploration moves further offshore and into deeper waters to reach hydrocarbon reserves, it is becoming essential for the industry to develop more reliable and efficient hydraulic accumulators to supply pressured hydraulic fluid for various control and actuation operations, such as closing rams of blowout preventers and controlling subsea valves on the seafloor. By utilizing the shape memory effect property of nitinol, which is a type of shape memory alloy (SMA), an innovative SMA actuated hydraulic accumulator prototype has been developed and successfully tested at Smart Materials and Structure Laboratory at the University of Houston. Absence of gas in the developed SMA accumulator prototype makes it immune to hydrostatic head loss caused by water depth and thus reduces the number of accumulators required in deep water operations. Experiments with a feedback control have demonstrated that the proposed SMA actuated accumulator can provide precisely regulated pressurized fluids. Furthermore the potential use of ultracapacitors along with an embedded system to control the electric power supplied to SMA allows this accumulator to be an autonomous device for deployment. The developed SMA accumulator will make deepwater oil extraction systems more compact and cost effective.

  6. Electric-hydraulic car

    SciTech Connect

    Clark, R.W.; Greene, H.

    1993-07-27

    A propulsion system is described for a vehicle having a chassis and at least one drive wheel, the propulsion system including in combination: a constant speed power source comprising an alternating current electric motor operated at a constant speed corresponding to its optimum performance; a source of energy comprising a storage battery and an inverter connected to the electric motor for operating the electric motor of the constant speed power source; a hydraulic fluid system including a main hydraulic pump coupled with the electric motor of the constant speed power source and driven thereby; at least one hydraulic drive motor coupled with the hydraulic pump for receiving fluid flow therefrom; and means for varying the fluid flow through the main hydraulic pump to vary the speed of operation of the hydraulic drive motor.

  7. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  8. Fail-safe electric actuator

    SciTech Connect

    Wright, J.J.

    1988-07-19

    In combination with a control mechanism characterized by the ability to be moved from inoperative to operative position and back, a fail-safe actuator device for automatically returning the control mechanism to inoperative position when interruption of electric power occurs is described which comprises: a fluid-driven vaned torque actuator: electric-motor-driven fluid power means for operating the torque actuator; electrically operated valve means for controlling the power fluid flow between the torque actuator and the fluid power generating means; at least one shaft projecting from the torque actuator; coupling means for operatively connecting the shaft to the control mechanism to be operated by the failsafe actuator device; reversible means for storing energy, the reversible means being operatively connected to the shaft; a limit-switch operating cam mounted on and rotable with the shaft; a limit switch positioned for activation by the limit-switch operating cam; and electric circuitry means for interconnecting the motordriven fluid power generating means, the valve means, and the limit switch.

  9. Data regarding hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Comprehensive, published, and publicly available data regarding the extent, location, and character of hydraulic fracturing in the United States are scarce. The objective of this data series is to publish data related to hydraulic fracturing in the public domain. The spreadsheets released with this data series contain derivative datasets aggregated temporally and spatially from the commercial and proprietary IHS database of U.S. oil and gas production and well data (IHS Energy, 2011). These datasets, served in 21 spreadsheets in Microsoft Excel (.xlsx) format, outline the geographical distributions of hydraulic fracturing treatments and associated wells (including well drill-hole directions) as well as water volumes, proppants, treatment fluids, and additives used in hydraulic fracturing treatments in the United States from 1947 through 2010. This report also describes the data—extraction/aggregation processing steps, field names and descriptions, field types and sources. An associated scientific investigation report (Gallegos and Varela, 2014) provides a detailed analysis of the data presented in this data series and comparisons of the data and trends to the literature.

  10. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: III - Numerical Evaluation of Fluid Mixing Phenomena using Advanced Interface-Tracking Method -

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Nagayoshi, Takuji; Takase, Kazuyuki; Akimoto, Hajime

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed by correlations with empirical results of actual-size tests. However, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. Development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. We tried to verify the TPFIT code by comparing it with the 2-channel air-water and steam-water mixing experimental results. The predicted result agrees well the observed results and bubble dynamics through the gap and cross flow behavior could be effectively predicted by the TPFIT code, and pressure difference between fluid channels is responsible for the fluid mixing.

  11. Hydraulic manipulator research at ORNL

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  12. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  13. A Hydraulic Blowdown Servo System For Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  14. Manual or hydraulic gearshifting apparatus

    SciTech Connect

    Ishida, H.; Kojima, Y.

    1986-04-08

    A vehicle transmission control apparatus is described which consists of: a plurality of shift members for operating a vehicle transmission; a lever adapted for linear movement into a plurality of positions, one each of the lever being operatively coupled to a different one of the shift members in each of the positions; the lever being further adapted for pivotal movement in response to which the one end of the lever actuates the operatively coupled shift member; a select actuator means comprising a select hydraulic cylinder and a select piston retained thereby, the select piston being coupled to the lever and hydraulically controlled to produce the linear movement thereof; a shift actuator means comprising a shift hydraulic cylinder and a shift piston retained thereby, the shift piston being coupled to the lever and hydraulically controlled to produce the pivotal movement thereof; a casing means retaining the lever, the select actuator means, and the shift actuator means; and a control member comprising a portion within the casing means and coupled to the lever and a manually accessible portion always disposed outside the casing means and having means adapted for manual actuation to produce either the linear or the pivotal movement of the lever.

  15. Low-power microfluidic electro-hydraulic pump (EHP).

    PubMed

    Lui, Clarissa; Stelick, Scott; Cady, Nathaniel; Batt, Carl

    2010-01-01

    Low-power electrolysis-based microfluidic pumps utilizing the principle of hydraulics, integrated with microfluidic channels in polydimethylsiloxane (PDMS) substrates, are presented. The electro-hydraulic pumps (EHPs), consisting of electrolytic, hydraulic and fluidic chambers, were investigated using two types of electrodes: stainless steel for larger volumes and annealed gold electrodes for smaller-scale devices. Using a hydraulic fluid chamber and a thin flexible PDMS membrane, this novel prototype successfully separates the reagent fluid from the electrolytic fluid, which is particularly important for biological and chemical applications. The hydraulic advantage of the EHP device arises from the precise control of flow rate by changing the electrolytic pressure generated, independent of the volume of the reagent chamber, mimicking the function of a hydraulic press. Since the reservoirs are pre-filled with reagents and sealed prior to testing, external fluid coupling is minimized. The stainless steel electrode EHPs were manufactured with varying chamber volume ratios (1 : 1 to 1 : 3) as a proof-of-concept, and exhibited flow rates of 1.25 to 30 microl/min with electrolysis-based actuation at 2.5 to 10 V(DC). The miniaturized gold electrode EHPs were manufactured with 3 mm diameters and 1 : 1 chamber volume ratios, and produced flow rates of 1.24 to 7.00 microl/min at 2.5 to 10 V(AC), with a higher maximum sustained pressure of 343 KPa, suggesting greater device robustness using methods compatible with microfabrication. The proposed technology is low-cost, low-power and disposable, with a high level of reproducibility, allowing for ease of fabrication and integration into existing microfluidic lab-on-a-chip and analysis systems. PMID:20024053

  16. Analysis of 6-year fluid electric conductivity logs to evaluate the hydraulic structure of the deep drill hole at Outokumpu, Finland

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhakar; Tsang, Chin-Fu; Kukkonen, Ilmo T.; Niemi, Auli

    2015-11-01

    Over the last two decades, the flowing fluid electric conductivity (FFEC) logging method has been applied in boreholes in the well-testing mode to evaluate the transmissivity, hydraulic head, and formation water electrical conductivity as a function of depth with a resolution of about 10-20 cm. FFEC profiles along the borehole are obtained under both shut-in and pumping conditions in a logging procedure that lasts only 3 or 4 days. A method for analyzing these FFEC logs has been developed and successfully employed to obtain formation parameters in a number of field studies. The present paper concerns the analysis of a unique set of FFEC logs that were taken from a deep borehole reaching down to 2.5 km at Outokumpu, Finland, over a 6-year time period. The borehole intersects paleoproterozoic metasedimentary, granitoid, and ophiolite-derived rocks. After the well was drilled, completed, and cleaned up, FFEC logs were obtained after 7, 433, 597, 948, and 2036 days. In analyzing these five profiles, we discovered the need to account for salinity diffusion from water in the formation to the borehole. Analysis results include the identification of 15 hydraulically conducting zones along the borehole, the calculation of flow rates associated with these 15 zones, as well as the estimation of the variation of formation water electrical conductivity as a function of depth. The calculated flow rates were used to obtain the tentative hydraulic conductivity values at these 15 depth levels.

  17. Analysis of 6-year fluid electric conductivity logs to evaluate the hydraulic structure of the deep drill hole at Outokumpu, Finland

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhakar; Tsang, Chin-Fu; Kukkonen, Ilmo T.; Niemi, Auli

    2016-07-01

    Over the last two decades, the flowing fluid electric conductivity (FFEC) logging method has been applied in boreholes in the well-testing mode to evaluate the transmissivity, hydraulic head, and formation water electrical conductivity as a function of depth with a resolution of about 10-20 cm. FFEC profiles along the borehole are obtained under both shut-in and pumping conditions in a logging procedure that lasts only 3 or 4 days. A method for analyzing these FFEC logs has been developed and successfully employed to obtain formation parameters in a number of field studies. The present paper concerns the analysis of a unique set of FFEC logs that were taken from a deep borehole reaching down to 2.5 km at Outokumpu, Finland, over a 6-year time period. The borehole intersects paleoproterozoic metasedimentary, granitoid, and ophiolite-derived rocks. After the well was drilled, completed, and cleaned up, FFEC logs were obtained after 7, 433, 597, 948, and 2036 days. In analyzing these five profiles, we discovered the need to account for salinity diffusion from water in the formation to the borehole. Analysis results include the identification of 15 hydraulically conducting zones along the borehole, the calculation of flow rates associated with these 15 zones, as well as the estimation of the variation of formation water electrical conductivity as a function of depth. The calculated flow rates were used to obtain the tentative hydraulic conductivity values at these 15 depth levels.

  18. Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Kankam, M. David

    1997-01-01

    For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.

  19. Determination of depth, permeability, and fluid pressure of hydraulically active fractures in the COSC-1 borehole and their correlation with chemical and geophysical logging data

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Doughty, Christine; Rosberg, Jan-Erik; Berthet, Theo; Juhlin, Christopher; Niemi, Auli

    2016-04-01

    The Flowing Fluid Electricity Conductivity (FFEC) logging method has been applied to the 2.5-km fully-cored COSC-1 borehole in Sweden, both during and after the drilling period. The method is based on the fact that the drilling fluid has a lower electric conductivity (EC) value (about 200 μS/cm) compared to the formation water. Thus, by scanning several times along the borehole while it is being pumped at a low rate, Q, the locations of inflow zones can be identified as EC peaks at these depths. An analysis of the shape of the EC peaks will yield the local inflow rates and the formation water EC at each of the inflow zones. Further, by conducting the logging more than once with two values of Q, the initial or inherent fluid pressure at each inflow zone can be calculated. In the case of the COSC-1 borehole, the method has identified nine discrete inflow zones between 250 m depth and the borehole bottom of 2500 m depth. The permeability values are small and spread over more than one order of magnitude. The fluid pressures in the inflow zones show two groups of similar values with the shallow inflow zones having a higher pressure than those in the deeper part of the borehole. Correlation of the FFEC logging results with other information and data from the COSC-1 borehole are underway. First, rock cores were carefully examined at the depths of the inflow zones identified by FFEC logging. We were able to identify the fractures which may be responsible for the flow. It appears that each inflow zone can be correlated with one single fracture. The cores with these hydraulically active fractures have been transferred to the laboratory for detailed study. Second, COSC-1 fracture logs were reviewed. The majority of the fractures in the borehole are not hydraulically active and the active ones represent only about 1-2 % of the total number of fractures, consistent with previous statistical studies of fractures in crystalline rocks. Breakout logs were also studied and it

  20. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  1. Monitoring the interaction of hydraulic fracturing fluid with Marcellus Shale using Sr isotopes: a comparison of laboratory experiments with field scale observations (Invited)

    NASA Astrophysics Data System (ADS)

    Wall, A. J.; Hakala, A.; Marcon, V.; Joseph, C.

    2013-12-01

    Strontium isotopes have the potential to be an effective tool for differentiating Marcellus Shale derived-fluids from other sources in surface and ground waters (Chapman et al. 2012, doi: 10.1021/es204005g). Water that is co-produced during gas extraction is likely influenced by fluid/rock interactions during hydraulic fracturing (HF) and monitoring changes in Sr isotope ratios can provide insight into reactions occurring within the shale formation. However, questions persist as to what controls the Sr isotopic composition of Marcellus Shale fluids, especially during HF. Here we compare laboratory experiments, simulating the dissolution of the Marcellus Shale during HF, with a time-series of water samples taken from a Marcellus Shale gas wells after HF has occurred. For the laboratory experiments, a core sample of Marcellus Shale from Greene County, PA was crushed and placed into a high P and T reaction vessel. Solutions were added in two different experiments: one with synthetic brine, and another using brine+HF fluid. The HF fluid was made up of components listed on fracfocus.org. Experiments were run for ~16 days at 27.5 MPa and 130oC. Aqueous samples were periodically removed for analysis and Sr isotope ratios were measured by MC-ICP-MS. Using just brine, the pH of the solution decreased from 7.6 to 5.3 after 24 hrs, then reached a steady state at ~6.1. Sr/Ca molar ratios in the fluid started at 2.3 after 24 hours and decreased to 1.8 over ~16 days. During this time only 6% of the total inorganic carbon (TIC) dissolved from the shale. The ɛSr values started at +43.2 and decreased to +42.4. In the experiment using brine+HF fluid, the pH started at 1.8 and rose slowly to a steady value of 5.6 by day 6. The Sr and Ca concentrations were higher than the brine experiment, but the Sr/Ca ratios remained lower at ~0.3 through the experiment. The increased Ca release, as well as the dissolution of over 60% of the TIC, suggests the dissolution of a carbonate mineral

  2. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  3. Controller modeling and evaluation for PCV electro-mechanical actuator

    NASA Astrophysics Data System (ADS)

    Parker, Joey K.

    1993-11-01

    Hydraulic actuators are currently used to operate the propellant control valves (PCV) for the space shuttle main engine (SSME) and other rocket engines. These actuators are characterized by large power to weight ratios, large force capabilities, and rapid accelerations, which favor their use in control valve applications. However, hydraulic systems are also characterized by susceptibility to contamination, which leads to frequent maintenance requirements. The Control Mechanisms Branch (EP34) of the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center (MSFC) has been investigating the application of electromechanical actuators as replacements for the hydraulic units in PCV's over the last few years. This report deals with some testing and analysis of a PCV electromechanical actuator (EMA) designed and fabricated by HR Textron, Inc. This prototype actuator has undergone extensive testing by EP34 personnel since early 1993. At this time, the performance of the HR Textron PCV EMA does not meet requirements for position tracking.

  4. Controller modeling and evaluation for PCV electro-mechanical actuator

    NASA Technical Reports Server (NTRS)

    Parker, Joey K.

    1993-01-01

    Hydraulic actuators are currently used to operate the propellant control valves (PCV) for the space shuttle main engine (SSME) and other rocket engines. These actuators are characterized by large power to weight ratios, large force capabilities, and rapid accelerations, which favor their use in control valve applications. However, hydraulic systems are also characterized by susceptibility to contamination, which leads to frequent maintenance requirements. The Control Mechanisms Branch (EP34) of the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center (MSFC) has been investigating the application of electromechanical actuators as replacements for the hydraulic units in PCV's over the last few years. This report deals with some testing and analysis of a PCV electromechanical actuator (EMA) designed and fabricated by HR Textron, Inc. This prototype actuator has undergone extensive testing by EP34 personnel since early 1993. At this time, the performance of the HR Textron PCV EMA does not meet requirements for position tracking.

  5. Actuator Exerts Tensile Or Compressive Axial Load

    NASA Technical Reports Server (NTRS)

    Nozzi, John; Richards, Cuyler H.

    1994-01-01

    Compact, manually operated mechanical actuator applies controlled, limited tensile or compressive axial force. Designed to apply loads to bearings during wear tests in clean room. Intended to replace hydraulic actuator. Actuator rests on stand and imparts axial force to part attached to clevis inside or below stand. Technician turns control screw at one end of lever. Depending on direction of rotation of control screw, its end of lever driven downward (for compression) or upward (for tension). Lever pivots about clevis pin at end opposite of control screw; motion drives downward or upward link attached via shearpin at middle of lever. Link drives coupling and, through it, clevis attached to part loaded.

  6. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    SciTech Connect

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil; Heldebrant, David J.; Hoyt, David W.; Zhong, Lirong; Varga, Tamas; Stephens, Sean A.; Adams, Lexor; Bonneville, Alain; Kuprat, Andrew P.; Fernandez, Carlos A.

    2015-01-01

    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.

  7. Small hydraulic turbine drives

    NASA Technical Reports Server (NTRS)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  8. Actuator-valve interface optimization. [Explosive actuators

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1987-02-01

    The interface of explosive actuator driven valves can be optimized to maximize the velocity of the valve plunger by using the computer code Actuator-Valve Response. Details of the AVR model of the actuator driven valve plunger and the results of optimizing an actuator-valve interface with AVR are presented. 5 refs., 5 figs., 3 tabs.

  9. Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2014-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, extraction of fuels from strata such as coal beds, and confinement of waste within the earth. Characterizing low or negligible flow rates and transport of solutes can require impractically long periods of field or laboratory testing, but is necessary for evaluations over regional areas and over multi-decadal timescales. The current work reports a custom designed centrifuge permeameter (CP) system, which can provide relatively rapid and reliable hydraulic conductivity (K) measurement compared to column permeameter tests at standard gravity (1g). Linear fluid velocity through a low K porous sample is linearly related to g-level during a CP flight unless consolidation or geochemical reactions occur. The CP module is designed to fit within a standard 2 m diameter, geotechnical centrifuge with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length. At maximum RPM the resultant centrifugal force is equivalent to 550g at base of sample or a total stress of ~2 MPa. K is calculated by measuring influent and effluent volumes. A custom designed mounting system allows minimal disturbance of drill core samples and a centrifugal force that represents realistic in situ stress conditions is applied. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the resultant K value. Vertical hydraulic conductivity (Kv) results from CP testing of core from the sites in the same clayey silt formation varied (10-7 to 10-9 m s-1, n = 14) but higher than 1g column permeameter tests of adjacent core using deionized water (10-9 to 10-11 m s-1, n = 7). Results at one site were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses within a 30 m clayey sequence in a homogenous area of the formation. Kv sensitivity to sample heterogeneity was observed, and anomalous flow via

  10. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  11. Rotary actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron (Inventor)

    1995-01-01

    Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.

  12. Seismic monitoring of hydraulic fracturing: techniques for determining fluid flow paths and state of stress away from a wellbore

    SciTech Connect

    Fehler, M.; House, L.; Kaieda, H.

    1986-01-01

    Hydraulic fracturing has gained in popularity in recent years as a way to determine the orientations and magnitudes of tectonic stresses. By augmenting conventional hydraulic fracturing measurements with detection and mapping of the microearthquakes induced by fracturing, we can supplement and idependently confirm information obtained from conventional analysis. Important information obtained from seismic monitoring includes: the state of stress of the rock, orientation and spacing of the major joint sets, and measurements of rock elastic parameters at locations distant from the wellbore. While conventional well logging operations can provide information about several of these parameters, the zone of interrogation is usually limited to the immediate proximity of the borehole. The seismic waveforms of the microearthquakes contain a wealth of information about the rock in regions that are otherwise inaccessible for study. By reliably locating the hypocenters of many microearthquakes, we have inferred the joint patterns in the rock. We observed that microearthquake locations do not define a simple, thin, planar distribution, that the fault plane solutions are consistent with shear slippage, and that spectral analysis indicates that the source dimensions and slip along the faults are small. Hence we believe that the microearthquakes result from slip along preexisting joints, and not from tensile extension at the tip of the fracture. Orientations of the principal stresses can be estimated by using fault plane solutions of the larger microearthquakes. By using a joint earthquake location scheme, and/or calibrations with downhole detonators, rock velocities and heterogeneities thereof can be investigated in rock volumes that are far enough from the borehole to be representative of intrincis rock properties.

  13. Tubing Cutter is Activated Hydraulically

    NASA Technical Reports Server (NTRS)

    Mcsmith, D. G.; Richardson, J. I.

    1983-01-01

    Hydraulically-actuated tubing cutter severs tubing when operator squeezes handle grip. "Gooseneck" extension enables cutter to be used in areas where accessiblity is limited. Cutter has potential as flight-line tool and is useful in automobile and fire rescue work.

  14. Development of Design Tools for Flow-Control Actuators

    NASA Technical Reports Server (NTRS)

    Mathew, Jose; Gallas, Quentin; Cattafesta, Louis N., III

    2003-01-01

    This report discusses the: 1. Development coupled electro/fluid/structural lumped-element model (LEM) of a prototypical flow-control actuator. 2. Validation the coupled electro/fluid/structural dynamics lumped-element models. 3. Development simple, yet effective, design tools for actuators. 4. Development structural dynamic models that accurately characterize the dynamic response of piezoelectric flap actuators using the Finite Element Method (FEW as well as analytical methods. 5. Perform a parametric study of a piezo-composite flap actuator. 6.Develop an optimization scheme for maximizing the actuator performance.

  15. Compact valve actuation mechanism

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A valve actuation device. The device may include a free floating valve bridge movably supported within a cavity in the engine housing. The bridge may be provided with a cavity and an orifice arrangement for pumping gases entrained with lubricating fluid toward the piston stems as the bridge reciprocates back and forth. The device may also include a rocker arm that has a U-shaped cross-sectional shape for receiving at least a portion of the valve bridge, valve stem valve spring and spring retainer therein. The rocker arm may be provided with lubrication passages for directing lubrication to the point wherein it is pivotally affixed to the engine housing.

  16. Tiny hydraulics for powered orthotics.

    PubMed

    Durfee, William; Xia, Jicheng; Hsiao-Wecksler, Elizabeth

    2011-01-01

    Untethered, powered orthotics require an actuation system with power supply and control, transmission line and actuator. Fluid power has unmatched force-to-weight and power-to-weight compared to electromechanical systems, but it is unclear if those same advantages hold for small systems in the 10 to 100 W range. A systems analysis approach suggests that a fluid power system will be lighter than an electromechanical system with the same output power and efficiency if the fluid power is run at pressures over about 200 psi. A theoretical analysis of small bore cylinders suggests that eliminating the piston seal will result in a higher efficiency actuator if the clearance gap is small. A demonstration, battery powered electrohydraulic actuator assembled from off-the-shelf components had the force and power suited to a powered ankle orthosis, but is too large and too heavy, suggesting the need to develop custom components. PMID:22275671

  17. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  18. Active-standby servovalue/actuator development

    NASA Technical Reports Server (NTRS)

    Masm, R. K.

    1973-01-01

    A redundant, fail/operate fail/fixed servoactuator was constructed and tested along with electronic models of a servovalve. It was found that a torque motor switch is satisfactory for the space shuttle main engine hydraulic actuation system, and that this system provides an effective failure monitoring technique.

  19. Hydraulic control system for vehicular automatic transmission

    SciTech Connect

    Lentz, C.A.

    1991-11-12

    This patent describes a hydraulic control system for the automatic transmission of a vehicle wherein the transmission includes a plurality of torque transfer devices which can be engaged and disengaged in response to fluid pressure provided by a pump, the sequence of engagement and disengagement of the torque transfer devices being determined by a pre-programmed, on-board computer so as to provide a neutral, reverse, and a plurality of forward drive ratios, the control system interconnected between the pump and the torque transfer devices. It comprises conduits; fluid operated relay valves interconnected in a cascaded arrangement by the conduits, particular relay valves having outputs connected to effect the operational status of specific torque transfer devices; solenoid valves; each solenoid valve having an electrical control input, a fluid pressure inlet and a fluid pressure outlet; a pressure regulating valve having an electrical control input; a fluid pressure inlet and a fluid pressure outlet; a pressure regulating valve having an inlet and an outlet; the pressure regulating valve receiving line pressure from the pump at the regulating valve inlet; the regulating valve outlet connected to the fluid pressure inlets of the solenoid valves; the electrical input of each solenoid valve connected to receive a control input from the computer and the outlet of each solenoid valve connected to actuate one of the relay valves; a single, pulse width, pressure modulating valve receiving line pressure from the pump and providing a modulated output pressure; and, a control valve having first and second inlets; the first inlet of the control valve receiving modulated pressure from the modulating valve; the second inlet of the control valve receiving line pressure from the pump.

  20. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  1. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  2. Vct system having closed loop control employing spool valve actuated by a stepper motor

    SciTech Connect

    Quin, S.B. Jr.; Siemon, E.C.

    1993-06-15

    An internal combustion engine is described comprising: a crankshaft, the crankshaft being rotable about an axis; a cam shaft, the cam shaft being rotatable about a second axis, the second axis being parallel to the axis, the cam shaft being subject to torque reversals during the rotation thereof; a vane, the vane having at least one lobe, the vane being attached to the cam shaft, being rotatable with the cam shaft and being non-oscillatable with respect to the cam shaft; a housing, the housing being rotatable with the cam shaft and being oscillatable with respect to the cam shaft, the housing having at least one recess, the recess receiving the lobe, the lobe being oscillatable within the recess; rotary movement transmitting means for transmitting rotary movement from the crankshaft to the housing; actuating means for varying the position of the housing relative to the cam shaft in reaction to torque reversals in the cam shaft, the actuating means comprising a stepper motor, a lead screw and a proportional spool valve, the position of the spool valve being controlled by the position of the lead screw driven by the stepper motor, the actuating means also delivering hydraulic fluid to the vane; and processing means for controlling the position of the actuating means.

  3. Electokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  4. HYDRAULIC SERVO CONTROL MECHANISM

    DOEpatents

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  5. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  6. A Parylene Bellows Electrochemical Actuator

    PubMed Central

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2011-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized through a careful examination of geometrical factors. Overall, a maximum pump efficiency of 90% was achieved in the case of electroplated electrodes, and a deflection of over 1.5 mm was demonstrated. Real-time wireless operation was achieved. The complete fabrication process and the materials used in this actuator are bio-compatible, which makes it suitable for biological and medical applications. PMID:21318081

  7. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  8. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  9. Electric versus hydraulics versus pneumatics

    SciTech Connect

    Not Available

    1985-01-01

    This book presents a collection of papers from a conference which considered the advantages and disadvantages of electric, hydraulic and pneumatic drives and actuators. The volume follows on the success of the 1983 conference on electric and hydraulic drives. Topics considered include fork lift trucks - an ideal application for regenerative transmissions; a hybrid-electric power system with hydrostatic transmission; electrics and hydraulics on roadheader machinery; hydraulic, electrical, pneumatic control - which way to go. an electrically-powered servo to drive the two axes of a missile launching platform - pros and cons when compared with the traditional hydraulic solution; the encapsulation of a novel intrinsically safe displacement transducer; mobile cryogenic pumping systems; automation of a wood-turning machine, hydraulic or electric. The choice of a servo motor for a specific application; developments in the design and control of pneumatic linear actuators; compressed air purification for instrumentation in the high technology industries; trends in prime mover choice for powered hand tools; and choosing the drive system for the right application.

  10. Vehicle hydraulic cooling fan system

    SciTech Connect

    Nilson, C.A.

    1993-06-08

    A hydraulic cooling system for vehicles having an internal combustion engine cooled by a radiator and a coolant is described, comprising, in combination, a shroud adapted to be mounted adjacent the radiator having a wall forming an air passage and defining a first port disposed adjacent the radiator and a second port spaced from the first port, a fan located within the second port, a hydraulic fan motor operatively connected to the fan, a hydraulic pump operatively connected to the engine for producing a pressurized hydraulic fluid flow, a hydraulic circuit interconnecting the pump to the fan motor, the circuit including a control valve, a hydraulic fluid reservoir and a heat exchanger, the heat exchanger being mounted within the shroud air passage.

  11. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  12. Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies.

    PubMed

    Veale, Allan Joshua; Xie, Shane Quan

    2016-04-01

    Robotic orthoses, or exoskeletons, have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. However, current orthosis actuation systems use components designed for industrial applications, not specifically for interacting with humans. This can limit orthoses' capabilities and, if their users' needs are not adequately considered, contribute to their abandonment. Here, a user centered review is presented on: requirements for orthosis actuators; the electric, hydraulic, and pneumatic actuators currently used in orthoses and their advantages and limitations; the potential of new actuator technologies, including smart materials, to actuate orthoses; and the future of orthosis actuator research. PMID:26923385

  13. ENVIRONMENTAL HYDRAULICS

    EPA Science Inventory

    The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...

  14. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  15. Tribology of hydraulic pumps

    SciTech Connect

    Yamaguchi, A.

    1997-12-31

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation of hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.

  16. Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Moore, W. I.; Lundy, F. E.

    1981-01-01

    Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.

  17. Integration in Hydraulics.

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    This paper presents an application of integration to the field of hydraulics. An integral relation for the time required to drop the fluid contained in a cylindrical tank from one level to another using a hole in the tank wall is derived. Procedures for constructing the experimental equipment and procedures for determining the coefficient of…

  18. An automated, pre-programmed, multiplexed, hydraulic microvalve.

    PubMed

    Kim, Jitae; Chen, Dafeng; Bau, Haim H

    2009-12-21

    An automated, pre-programmed, multiplexed hydraulic valve actuator is described. The valve is membrane-based and normally open. In contrast to the membrane-based pneumatic valve, the hydraulic valve uses hydraulic liquid to exert the control pressure. The line pressure is controlled with a roller moving over a prefabricated topology. Multiple rollers, each traversing its own track, are assembled into a single carriage, which can be actuated either manually or with a single computer-controlled motor. A valve manifold and roller actuators are designed, fabricated, and tested to demonstrate three-way valve actuation in a pre-determined sequence. The performance of the valve is evaluated and the utility of the valve in the operation of a micro thermal cycler was demonstrated. Hydraulic controllers of the type described here can be operated either manually or under computer control and provide an inexpensive means of controlling flow in lab-on-a-chip devices. PMID:20024041

  19. Dielectric elastomer actuators with hydrostatic coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2009-03-01

    The rapidly growing adoption of dielectric elastomer (DE) actuators as a high performance EAP technology for many kinds of new applications continuously opens new technical challenges, in order to take always the most from each adopted device and actuating configuration. This paper presents a new type of DE actuators, which show attractive potentialities for specific application needs. The concept here proposed adopts an incompressible fluid to mechanically couple active and passive parts. The active parts work according to the DE actuation principle, while the passive parts represent the end effector, in contact with the load. The fluid is used to transfer actuation hydrostatically from an active to a passive part and, then, to the load. This can provide specific advantages, including improved safety and less stringent design constraints for the architecture of the actuator, especially for soft end effectors. Such a simple concept can be readily implemented according to different shapes and intended functionalities of the resulting actuators. The paper describes the structure and the performance of the first prototype devices developed so far.

  20. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  1. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  2. Peristaltic pump made of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2009-03-01

    The functional principle of peristaltic motion is inspired by the pattern in which hollow organs move. The technology of dielectric elastomer actuators provides the possibility to design a very compact peristaltic pump. The geometries of the whole pump and the actuator elements have been determined by numerical simulations of the mechanical behaviour and the fluid dynamics. With eight independent actuators the pumping channel is self-sealing and there is no need for any valves. The first generation of this pump is able to generate flow rates up to 0.36 μl/min.

  3. Dielectric elastomer actuators for active microfluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Murray, Coleman; Di Carlo, Dino; Pei, Qibing

    2013-04-01

    Dielectric elastomers with low modulus and large actuation strain have been investigated for applications in which they serve as "active" microfluidic channel walls. Anisotropically prestrained acrylic elastomer membranes are bonded to cover open trenches formed on a silicone elastomer substrate. Actuation of the elastomer membranes increases the cross-sectional area of the resulting channels, in turn controlling hydraulic flow rate and pressure. Bias voltage increases the active area of the membranes, allowing intrachannel pressure to alter channel geometry. The channels have also demonstrated the ability to actively clear a blockage. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices.

  4. Two-stage actuation system using DC motors and piezoelectric actuators for controllable industrial and automotive brakes and clutches

    NASA Astrophysics Data System (ADS)

    Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.

    2005-05-01

    High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.

  5. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The

  6. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis. PMID:24663947

  7. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  8. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2005-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  9. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2004-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  10. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  11. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  12. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  13. Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem

    NASA Technical Reports Server (NTRS)

    Duval, J. D.; Davidson, W. R.; Parkman, William E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.

  14. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  15. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  16. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  17. Dual drive actuators

    NASA Technical Reports Server (NTRS)

    Packard, D. T.

    1982-01-01

    A new class of electromechanical actuators is described. These dual drive actuators were developed for the NASA-JPL Galileo Spacecraft. The dual drive actuators are fully redundant and therefore have high inherent reliability. They can be used for a variety of tasks, and they can be fabricated quickly and economically.

  18. Characterization of piezoelectric macrofiber composite actuated winglets

    NASA Astrophysics Data System (ADS)

    Guha, T. K.; Oates, W. S.; Kumar, R.

    2015-06-01

    The present study primarily focuses on the design, development, and structural characterization of an oscillating winglet actuated using a piezoelectric macrofiber composite (MFC). The primary objective is to study the effect of controlled wingtip oscillations on the evolution of wingtip vortices, with a goal of weakening these potentially harmful tip vortices by introducing controlled instabilities through both spatial and temporal perturbations producible through winglet oscillations. MFC-actuated winglets have been characterized under different input excitation and pressure-loading conditions. The winglet oscillations show bimodal behavior for both structural and actuation modes of resonance. The oscillatory amplitude at these actuation modes increases linearly with the magnitude of excitation. During wind-tunnel tests, fluid-structure interactions led to structural vibrations of the wing. The effect of these vibrations on the overall winglet oscillations decreased when the strength of actuation increased. At high input excitation, the actuated winglet was capable of generating controlled oscillations. As a proof of concept, the current study has demonstrated that microfiber composite-actuated winglets produce sufficient displacements to alter the development of the wingtip vortex.

  19. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  20. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  1. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  2. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  3. A study of low-cost reliable actuators for light aircraft. Part B: Appendices

    NASA Technical Reports Server (NTRS)

    Eijsink, H.; Rice, M.

    1978-01-01

    Computer programs written in FORTRAN are given for time response calculations on pneumatic and linear hydraulic actuators. The programs are self-explanatory with comment statements. Program output is also included.

  4. Modeling actuation forces and strains in nastic structures

    NASA Astrophysics Data System (ADS)

    Matthews, Luke A.; Giurgiutiu, Victor

    2006-03-01

    Nastic structures are capable of three dimensional shape change using biological principles borrowed from plant motion. The plant motor cells increase or decrease in size through a change in osmotic pressure. When nonuniform cell swelling occurs, it causes the plant tissue to warp and change shape, resulting it net movement, known as nastic motion, which is the same phenomena that causes plants to angle their broad leaf and flower surfaces to face light sources. The nastic structures considered in this paper are composed of a bilayer of microactuator arrays with a fluid reservoir in between the two layers. The actuators are housed in a thin plate and expand when water from the fluid reservoir is pumped into the actuation chamber through a phospholipid bilayer with embedded active transport proteins, which move the water from the low pressure fluid reservoir into a high pressure actuation chamber. Increasing water pressure inside the actuator causes lateral expansion and axial bulging, and the non-uniform net volume change of actuators throughout the nastic structure results in twisting or bending shape change. Modifying the actuation displacement allows controlled volume change. This paper presents an analytical model of the driving and blocking forces involved in actuation, as well as stress and strain that occurs due to the pressure changes. Actuation is driven by increasing osmotic pressure, and blocking forces are taken into consideration to plan actuator response so that outside forces do not counteract the displacement of actuation. Nastic structures are designed with use in unmanned aerial vehicles in mind, so blocking forces are modeled to be similar to in-flight conditions. Stress in the system is modeled so that any residual strain or lasting deformation can be determined, as well as a lifespan before failure from repeated actuation. The long-term aim of our work is to determine the power and energy efficiency of nastic structures actuation mechanism.

  5. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  6. 23. STATION 85.5 OF MST, WEST SIDE. ACTUATOR FOR MIDDLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. STATION 85.5 OF MST, WEST SIDE. ACTUATOR FOR MIDDLE NORTH DOORS AT TOP; WEST DOOR MOTOR DISCONNECT ABOVE ACTUATOR; WINCH AND PULLEY SYSTEM AT BOTTOM; HYDRAULIC PUMPING UNIT ABOVE WINCHES; MOTOR COMPRESSOR FOR DOORS ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  8. Hydraulically Driven Grips For Hot Tensile Specimens

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Johnson, George W.

    1994-01-01

    Pair of grips for tensile and compressive test specimens operate at temperatures up to 1,500 degrees F. Grips include wedges holding specimen inside furnace, where heated to uniform temperature. Hydraulic pistons drive wedges, causing them to exert clamping force. Hydraulic pistons and hydraulic fluid remain outside furnace, at room temperature. Cooling water flows through parts of grips to reduce heat transferred to external components. Advantages over older devices for gripping specimens in high-temperature tests; no need to drill holes in specimens, maintains constant gripping force on specimens, and heated to same temperature as that of specimen without risk of heating hydraulic fluid and acuator components.

  9. Independent Orbiter Assessment (IOA): Analysis of the ascent thrust vector control actuator subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.

  10. Force feedback system using magneto-rheological fluids for telerobotic surgery

    NASA Astrophysics Data System (ADS)

    Neelakantan, Vijay A.; Washington, Gregory N.; Wolf, Randall K.

    2002-07-01

    Force feedback is a new technology that has great potential in human-machine interfaces. While guiding the end effector of a robot through an environment using a hand-held actuator, force feedback is needed to make the user feel the environment conditions like stiffness along which the end effector moves. This along with the already available visual feedback will allow the user to guide the robot exactly along the path that he or she intends thereby enhancing the performance. Easily controllable actuators that give quick response at the user end are needed here. This paper demonstrates the effectiveness of MR fluid devices in such force feedback applications. The force-feedback experiment includes a simple setup that depicts a typical situation wherein a user controls the movement of an external linear hydraulic actuator using a MR sponge damper. Force and displacement sensors sense the environment conditions along which the end effector of the hydraulic actuator moves. This information is then used to control the MR damper to provide appropriate force feedback to the user. The setup is tested with different environments like springs with various stiffnesses and for extreme cases with mechanical stops thereby demonstrating the flexibility in using MR sponge dampers for various force feedback applications.

  11. Design of hydraulic output Stirling engine

    NASA Technical Reports Server (NTRS)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  12. Hydraulic design development of Xiluodu Francis turbine

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Li, G. Y.; Shi, Q. H.; Wang, Z. N.

    2012-11-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  13. Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion

    PubMed Central

    Lee, Selene A.; Lee, Hyowon; Pinney, James R; Khialeeva, Elvira; Bergsneider, Marvin; Judy, Jack W.

    2011-01-01

    Here we report on the development of torsional magnetic microactuators for displacing biological materials in implantable catheters. Static and dynamic behaviors of the devices were characterized in air and in fluid using optical experimental methods. The devices were capable of achieving large deflections (>60°) and had resonant frequencies that ranged from 70 Hz to 1.5 kHz in fluid. The effect of long-term actuation (>2.5 · 108 cycles) was quantified using resonant shift as the metric (Δf < 2%). Cell-clearing capabilities of the devices were evaluated by examining the effect of actuation on a layer of aggressively growing adherent cells. On average, actuated microdevices removed 37.4% of the adherent cell layer grown over the actuator surface. The effect of actuation time, deflection angle, and beam geometry were evaluated. The experimental results indicate that physical removal of adherent cells at the microscale is feasible using magnetic microactuation. PMID:21886945

  14. Larger-Stroke Piezoelectrically Actuated Microvalve

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be

  15. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  16. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  17. Comparison of hydrogeochemical logging of drilling fluid during coring with the results from geophysical logging and hydraulic testing Example of the Morte-Mérie scientific borehole, Ardèche-France, Deep Geology of France Programme

    NASA Astrophysics Data System (ADS)

    Aquilina, L.; Eberschweiler, C.; Perrin, J.; Deep Geology of France Team

    1996-11-01

    A 980-m-deep well was cored on the Ardèche border of the Southeastern basin of France as part of the Deep Geology of France (GPF) programme. Hydrogeochemical logging was carried out during drilling, which involved the monitoring of physico-chemical parameters (pH, Eh, temperature and conductivity), and chemical parameters (concentrations of He, Rn, CO 2, CH 4, O 2 Ca, Cl and SiO 2) of the drilling fluid permanently circulating in the well. This logging programme was complemented by geophysical logging and two hydraulic tests. The combination of these measurements enabled identification of a transmissive interval due to fractures in the Jurassic carbonates, and of fluid inflow both at the base of the porous and slightly permeable Triassic sandstones and from an open fracture in the Permian conglomerates. These intervals are marked by changes in the drilling-fluid chemistry, such as an increase in chemical species content, or a drop in pH. The degree of modification depends on the natural permeability of the fractures and the salinity of the fluids. The porous and permeable intervals are also marked by He anomalies, which act as a tracer for these zones. Comparison between the geophysical and hydrogeochemical logs reveals that the latter provide information on the liquid phase, whether the fractures are productive or not, whereas the geophysical logs are more directly related to the solid phase.

  18. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.

    PubMed

    Jang, Ling-Sheng; Shu, Kuan; Yu, Yung-Chiang; Li, Yuan-Jie; Chen, Chiun-Hsun

    2009-02-01

    Many biomedical applications require the administration of drugs at a precise and preferably programmable rate. The flow rate generated by the peristaltic micropumps used in such applications depends on the actuation sequence. Accordingly, the current study performs an analytical and experimental investigation to determine the correlation between the dynamic response of the diaphragms in the micropump and the actuation sequence. A simple analytical model of a peristaltic micropump is established to analyze the shift in the resonant frequency of the diaphragms caused by the viscous damping effect. The analytical results show that this damping effect increases as the oscillation frequency of the diaphragm increases. A peristaltic micropump with three piezoelectric actuators is fabricated on a silicon substrate and is actuated using 2-, 3-, 4- and 6-phase actuation sequences via a driving system comprising a microprocessor and a phase controller. A series of experiments is conducted using de-ionized water as the working fluid to determine the diaphragm displacement and the flow rates induced by each of the different actuation sequences under phase frequencies ranging from 50 Hz to 1 MHz. The results show that the damping effect of actuation sequences influences diaphragm resonant frequency, which in turn affects the profiles of flow rates. PMID:18821016

  19. Remote control thermal actuator

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Harrigill, W. T.; Krsek, A.

    1969-01-01

    Thermal actuator makes precise changes in the position of one object with respect to another. Expansion of metal tubes located in the actuator changes the position of the mounting block. Capacitance probe measures the change in position of the block relative to the fixed target plate.

  20. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  1. Control surface actuator

    NASA Technical Reports Server (NTRS)

    Seidel, Gerhard E. (Inventor)

    1988-01-01

    A device which actuates aircraft control surfaces is disclosed. The actuator is disposed entirely within the control surface structure. This allows the gap between the wing structural box and the control surface to be reduced. Reducing the size of the gap is especially desirable for wings with high aspect ratio, wherein the volume of the structural box is at a premium.

  2. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  3. Dynamical analysis of fluid lines coupled to mechanical systems taking into account fluid frequency-dependent damping and non-conventional constitutive models: Part 2 - Coupling with mechanical systems

    NASA Astrophysics Data System (ADS)

    Catania, Giuseppe; Sorrentino, Silvio

    2015-01-01

    The design of hydraulic transmission systems for control and actuation requires accurate knowledge of their dynamic response: some standard techniques are known to obtain a consistent dynamic model of a fluid line, including the contribution of inertia, compressibility and friction. In this study an efficient procedure is developed for simulating the dynamic response of a fluid line coupled with mechanical systems, in both the frequency and time domains. A bi-dimensional approach is adopted for the fluid line, and the laminar flow frequency-dependent friction is modeled using non-integer order differential laws, which may improve the accuracy in comparison with more traditional Newtonian models. The coupling problem with mechanical systems is studied by means of both continuous models of the fluid line (yielding frequency response functions in exact analytical form), and discretized models of the fluid line (to express time response functions in approximate analytical form), focusing on the damping properties of the resulting vibrating systems.

  4. Gas-to-hydraulic power converter

    NASA Technical Reports Server (NTRS)

    Galloway, C. W. (Inventor)

    1982-01-01

    A gas piston driven hydraulic piston pump is described in which the gas cycle is of high efficiency by injecting the gas in slugs at the beginning of each power stroke. The hydraulic piston is disposed to operate inside the as piston, and the two pistons, both slidably but nonrotatably mounted, are coupled together with a rotating but non-sliding motion transfer ring extending into antifriction grooves in the sidewalls of the two pistons. To make the hydraulic piston move at a constant speed during constant hydraulic horsepower demand and thus exert a constant pressure on the hydraulic fluid, these grooves are machined with variable pitches and one is the opposite of the other, i.e., the gas piston groove increases in pitch during its power stroke while the hydraulic piston groove decreases. Any number of piston assembly sets may be used to obtain desired hydraulic horsepower.

  5. Applying Switched Reluctance Motor to Oil Hydraulic Pump Use

    NASA Astrophysics Data System (ADS)

    Yamai, Hiroyuki; Sawada, Yuzo; Ohyama, Kazunobu

    Hydraulic pump units are widely used to operate hydraulic actuators. In a typical machine shop, conventional constant speed hydraulic pump units consume more than 20% of the total electric power necessary to operate CNC machine tools. Most of that energy are wasted to run the axial piston pump at idle. This paper describes a variable speed hydraulic pump unit using a switched reluctance motor (SRM), which saves energy drastically. SRM was selected as the most suitable motor for this application. Design and control strategy of this motor are described. Application examples to machine tools shows the effectiveness of the new hybrid pump system in saving energy and in reducing acoustic noise.

  6. Dynamical analysis of fluid lines coupled to mechanical systems taking into account fluid frequency-dependent damping and non-conventional constitutive models: part 1 - Modeling fluid lines

    NASA Astrophysics Data System (ADS)

    Catania, Giuseppe; Sorrentino, Silvio

    2015-01-01

    The design of hydraulic transmission systems for control and actuation requires accurate knowledge of their dynamic response: some standard techniques are known to obtain a consistent dynamic model of a fluid line, including the contribution of inertia, compressibility and friction. In this paper an efficient procedure is developed for simulating the dynamic response of a fluid line in both the frequency and time domains, focusing the attention on the modal analysis of a discretized model, in view of coupling with mechanical systems. A bi-dimensional approach is adopted, and the laminar flow frequency-dependent friction is modeled using non-integer order differential laws, which may improve the accuracy of the simulated responses in comparison with more traditional Newtonian models.

  7. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  8. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  9. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  10. Scalability of Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2008-01-01

    Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

  11. Hydraulic-Leak Detector for Hidden Joints

    NASA Technical Reports Server (NTRS)

    Anderson, G. E.; Loo, S.

    1986-01-01

    Slow leakage of fluid made obvious. Indicator consists of wick wrapped at one end around joint to be monitored. Wick absorbs hydraulic fluid leaking from joint and transmits to opposite end, located outside cover plate and visible to inspector. Leakage manifested as discoloration of outside end of wick. Indicator reveals leaks in hidden fittings on hydraulic lines. Fast inspection of joints without disassembly. Used in aerospace, petroleum, chemical, nuclear, and other industries where removing covers for inspection impossible, difficult, or time-consuming.

  12. Tree Hydraulics: How Sap Rises

    ERIC Educational Resources Information Center

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  13. Hydraulic fracturing and the creation of hydraulic breccias

    NASA Astrophysics Data System (ADS)

    Koehn, Daniel; Varga Vass, Anna; Toussaint, Renaud; Bons, Paul

    2016-04-01

    Vein systems that indicate paleofracture geometries can be found in variable settings including typical layer perpendicular and layer parallel veins. Some natural examples show layer parallel and perpendicular veins that appear to form synchronously. A more drastic example of fluid overpressures is the development of hydraulic breccias where the fractures also do not show a specific orientation. We argue that these structure develop due to local fluid overpressures leading to pressure gradients. Depending on the boundary conditions, for example seals in the system and localisation or non-localisation of fluid overpressure the developing effective stress fields can be quite complicated and the fluid pressure is not isotropic, but pressure gradients produce anisotropic stresses. We illustrate the complexity of the developing effective stress and fracture patterns with a hybrid numerical model linking pressure gradients to solid deformation. In the model fluid pressure rise below a seal leads to a decrease of the mean and differential stress of the solid. In a closed system where fluid pressure rise below a seal is not local, the main principle stresses flip with the effective horizontal stress becoming zero and the effective vertical stress tensile leading to horizontal hydrofractures. Such a system leads to the development of a hydraulic breccia if initially local high fluid pressure pulses produce vertical fractures. We argue that an fluid pressure gradients have to be taken into account to understand effective stresses in the Earth's crust.

  14. One-shot valve may be remotely actuated

    NASA Technical Reports Server (NTRS)

    Kami, S.

    1965-01-01

    One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.

  15. Artificial heart for humanoid robot using coiled SMA actuators

    NASA Astrophysics Data System (ADS)

    Potnuru, Akshay; Tadesse, Yonas

    2015-03-01

    Previously, we have presented the design and characterization of artificial heart using cylindrical shape memory alloy (SMA) actuators for humanoids [1]. The robotic heart was primarily designed to pump a blood-like fluid to parts of the robot such as the face to simulate blushing or anger by the use of elastomeric substrates for the transport of fluids. It can also be used for other applications. In this paper, we present an improved design by using high strain coiled SMAs and a novel pumping mechanism that uses sequential actuation to create peristalsis-like motions, and hence pump the fluid. Various placements of actuators will be investigated with respect to the silicone elastomeric body. This new approach provides a better performance in terms of the fluid volume pumped.

  16. Thermal and hydraulic performance tests of a sieve-tray direct-contact heat exchanger vaporizing pure and mixed-hydrocarbon Rankine-cycle working fluids

    SciTech Connect

    Mines, G.L.; Demuth, O.J.; Wiggins, D.J.

    1983-08-01

    Experiments investigating a sieve-tray direct-contact heat exchanger were conducted at the Raft River Geothermal Test Site in southeastern Idaho using the 60-kW Mobile Heat Cycle Research Facility operating in the thermal loop mode (without a turbine). Isobutane, propane, and several hydrocarbon mixtures were heated and boiled in the direct-contact column, which is approx. 12 in. in diameter and 19-1/2 ft. high, using the energy from a 280/sup 0/F geothermal resource. Using pure fluids, isobutane or propane, the column operated much as intended, with 17 trays used for preheating and one or two accomplishing the boiling. For the pure fluids, individual tray efficiencies were found to be 70% or higher for preheating, and close to 100% for boiling; column pinch points were projected to be well under 1/sup 0/F with some runs reaching values as low as approx. 0.02/sup 0/F. Maximum geofluid throughputs for the isobutane tests corresponded roughly to the terminal rise velocity of a 1/32 in. working fluid droplet in geofluid. Boiling was found to occur in as many as 12 trays for the mixtures having the highest concentrations of the minor component, with overall efficiencies in the boiling section estimated on the order of 25 or 30%. Preheating tray efficiencies appeared to be fairly independent of working fluid, with pinch points ranging from as low as approx. 0.03/sup 0/F for a 0.95 isobutane/0.05 hexane mixture to approx. 2.3/sup 0/F for a 0.85 isobutane/0.05 hexane mixture. Column operation was noticeably less stable for the mixtures than for the pure fluids, with maximum throughputs dropping to as low as 40 to 50% of those for the pure fluids.

  17. Design and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  18. Design and test of electromechanical actuators for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Weir, Rae Ann

    1993-05-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  19. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  20. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  1. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  2. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  3. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  4. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  5. Well treating method and system for stimulating recovery of fluids

    SciTech Connect

    Hill, G.A.; Passamaneck, R.S.; Touryan, K.J.

    1988-01-12

    This patent describes a method for fracturing a subterranean earth formation to stimulate the production of fluid from the formation wherein a wellbore extends at least to the formation from a surface point. The wellbore is provided with casing means forming a substantially fluid tight interior space. The method comprises the steps of: providing perforating means for perforating the casing means at a predetermined zone of the formation to provide for flow of fluids between the formation and the wellbore and placing the perforating means at the zone, filling at least a portion of the wellbore with a compressible fracturing fluid comprised of a liquid containing dispersed quantities of gas and having a solid propant dispersed therein; raising the pressure of the fracturing fluid in the wellbore to a predetermined pressure greater than the pressure required to hydraulically extend a fracture in the formation at the zone; and actuating the perforating means to form apertures in the casing means whereby the pressurized fracturing fluid at the predetermined pressure is allowed to flow into the formation under decompression forces to fracture the formation with a quantity of the fracturing fluid and to pro fractures in the formation open with the propant.

  6. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  7. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  8. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  9. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  10. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  11. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Love, L.J.; Basher, A.M.H.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  12. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  13. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  14. Automatic transmission having hydraulic and electronic control systems

    SciTech Connect

    Furukawa, T.; Mori, M.

    1987-06-23

    A shifting apparatus is described for a motor vehicle transmission which comprises: a shift actuator including shift shafts, cylinders, springs and select levers; the shift shafts effecting engagement and disengagement of transmission gears to accomplish shift ranges; each of the cylinders comprising one piston and two chambers defined by the piston, the piston being movable to three positions corresponding to the positions of the shift shaft and being actuated to one of the first or second position by applying working pressure to the chambers corresponding to each position; each of the springs urging the pistons to locate at a neutral position defined between the first or second positions; each of the select levers operatively connecting one of the shift shafts with a respective one of the pistons; an electronic control unit for gear shift operation; a hydraulic control unit comprising first, second and third solenoid valves, only the first solenoid valve actuated at a first shift range; the first and second solenoid valves actuated at a second shift range; only the second solenoid valve is actuated at a third shift range, and second and third solenoid valves are actuated at a fourth shift range; the third solenoid valve is actuated at a fifth shift range, no solenoid valve is actuated at a neutral shift range; and a reverse shift range is accomplished by actuating all the three solenoid valves.

  15. A thermopneumatically actuated bistable microvalve

    NASA Astrophysics Data System (ADS)

    Yang, Bocong; Wang, Boxiong; Schomburg, Werner Karl

    2010-09-01

    A bistable polymer microvalve with a thermopneumatic actuator has been developed. The microvalve was fabricated by micro milling of a polymer combined with sputtering and photolithography. The valve comprises two 2/2-way valves which are alternately switched such that they can be connected to serve as a 3/2-way valve. Two permanent magnets work with a movable soft magnet to keep the valve in its current state, resulting in bistable switching with a minimum energy of 320 mJ. An air flow rate of 1.36 L min-1 is achieved at 20 °C with a pressure difference of 200 kPa. No leakage is observed up to a differential pressure of 350 kPa. Flowing and switching performances were also tested at different temperatures. Sealing the flow channels from the actuator chamber makes the valve less sensitive to the temperature and other properties of the fluid to be switched. An initial gap between the valve seat and the silicone sealing membrane at least reduces the sticking problem. Switching time is found to be significantly influenced by the thickness of the heating membrane. With an 8 µm thick heating membrane, a response time of 10 ms can be achieved.

  16. Hydraulic Calibrator for Strain-Gauge Balances

    NASA Technical Reports Server (NTRS)

    Skelly, Kenneth; Ballard, John

    1987-01-01

    Instrument for calibrating strain-gauge balances uses hydraulic actuators and load cells. Eliminates effects of nonparallelism, nonperpendicularity, and changes of cable directions upon vector sums of applied forces. Errors due to cable stretching, pulley friction, and weight inaccuracy also eliminated. New instrument rugged and transportable. Set up quickly. Developed to apply known loads to wind-tunnel models with encapsulated strain-gauge balances, also adapted for use in calibrating dynamometers, load sensors on machinery and laboratory instruments.

  17. Hydraulic control device for automatic transmissions

    SciTech Connect

    Sakaguchi, Y.; Taga, Y.; Kashihara, Y.

    1989-06-20

    This patent describes a hydraulic control device for an automatic transmission including a control unit, a shift gear mechanism, clutches and brakes for controlling the shift gear mechanism, hydraulic servos for actuating the clutches and brakes to control the shift gear mechanism and having hydraulic servo for a forward clutch, and an electronically operated regulating value for regulating pressure according to signals from the control unit. The control device consists of: a selecting value switched by signals indicating stopping and running condition of a vehicle, the selecting valve being connected to the hydraulic servo for the forward clutch for engaging and transmitting torque during the forward running conditon, the selecting valve selectively receiving a line pressure and a control pressure from the regulating valve so that hydraulic pressure just below engaging pressure regulated by the regulating valve is applied to the hydraulic servo for the forward clutch during stopping, and a line pressure is applied to the hydraulic servo for the forward clutch during running.

  18. Hydraulic control system for automatic transmission

    SciTech Connect

    Sugano, K.

    1986-04-01

    This patent describes an automatic transmission consisting of: fluid operated friction units, including a first clutch, a second clutch and a brake, which are selectively made operative and inoperative to produce first, second, third and fourth speed ratios, the first clutch having a first chamber and being engaged when the first chamber is pressurized, the second clutch having a second chamber and being engaged when the second chamber is pressurized, the brake having a servo apply chamber and a servo release chamber, the brake being released when the servo release chamber is pressurized and being applied when the servo release chamber is discharged with the servo apply chamber being pressurized; means for generating an actuating fluid pressure; a 2-3 shift valve communicating with the actuating fluid pressure generating means and the first chamber, the 2-3 shift valve having an upshift position wherein it supplies the actuating fluid pressure to the first chamber; a 3-4 shift valve communicating with the actuating fluid pressure generating means and the first, second and servo release chambers, and 3-4 shift valve having a downshift position wherein it supplies the actuating fluid pressure to the second chamber and provides communication between the first and servo release chambers, the 3-4 shift valve having an upshift position wherein it discharges the second servo release chambers; and means for defining a drain passage which allows the fluid discharged from the servo release chamber to pass there-through when the 3-4 shift valve is moved to the upshift position thereof, wherein the drain passage defining means includes an orifice and a 3-4 timing valve means for providing a passage portion bypassing the orifice.

  19. Three-dimensional effects of curved plasma actuators in quiescent air

    SciTech Connect

    Wang Chincheng; Durscher, Ryan; Roy, Subrata

    2011-04-15

    This paper presents results on a new class of curved plasma actuators for the inducement of three-dimensional vortical structures. The nature of the fluid flow inducement on a flat plate, in quiescent conditions, due to four different shapes of dielectric barrier discharge (DBD) plasma actuators is numerically investigated. The three-dimensional plasma kinetic equations are solved using our in-house, finite element based, multiscale ionized gas (MIG) flow code. Numerical results show electron temperature and three dimensional plasma force vectors for four shapes, which include linear, triangular, serpentine, and square actuators. Three-dimensional effects such as pinching and spreading the neighboring fluid are observed for serpentine and square actuators. The mechanisms of vorticity generation for DBD actuators are discussed. Also the influence of geometric wavelength ({lambda}) and amplitude ({Lambda}) of the serpentine and square actuators on vectored thrust inducement is predicted. This results in these actuators producing significantly better flow mixing downstream as compared to the standard linear actuator. Increasing the wavelengths of serpentine and square actuators in the spanwise direction is shown to enhance the pinching effect giving a much higher vertical velocity. On the contrary, changing the amplitude of the curved actuator varies the streamwise velocity significantly influencing the near wall jet. Experimental data for a serpentine actuator are also reported for validation purpose.

  20. Vehicle hydraulic system that provides heat for passenger compartment

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  1. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  2. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  3. Thermally actuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Sul, Onejae

    This thesis will discuss the generation of controlled sub-micron motions using novel micro actuators. Our research focuses on the development of an arm-type actuator and a free-motion locomotive walking device. Nano-science and nano-technology focuses on the creation of novel functional materials and also at the development of new fabrication techniques incorporating them. In the fields of novel fabrication techniques, manipulations of micron or sub-micron objects by micro actuators have been suggested in the science and engineering societies for mainly two reasons. From a scientific standpoint, new tools enable new prospective sciences, as is evident from the development of the atomic force microscope. From an engineering standpoint, the miniaturization of manipulation tools will require less material and less energy during a material's production. In spite of such importance, progress in the actuator miniaturization is in a primitive state, especially for the micro mobile devices. The thesis will be a key step in pursuit of this goal with an emphasis on generating motions. Our static actuator uses the excellent elastic properties of multiwall carbon nanotubes as a template for a bimorph system. Deflections in response to temperature variations are demonstrated. The mobile device itself is a bimorph system consisting of thin metal films. Control mechanisms for its velocity and steering are discussed. Finally, fundamental limits on the capabilities of the two devices in a more general sense are discussed under via laws of physics.

  4. Spiral groove seal. [for hydraulic rotating shaft

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  5. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  6. Electromechanical actuation for thrust vector control applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  7. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  8. Tetherless thermobiochemically actuated microgrippers

    PubMed Central

    Leong, Timothy G.; Randall, Christina L.; Benson, Bryan R.; Bassik, Noy; Stern, George M.; Gracias, David H.

    2009-01-01

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy). PMID:19139411

  9. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  10. Hydraulic fracturing-1

    SciTech Connect

    Not Available

    1990-01-01

    This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

  11. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  12. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  13. High-precision hydraulic Stewart platform

    NASA Astrophysics Data System (ADS)

    van Silfhout, Roelof G.

    1999-08-01

    We present a novel design for a Stewart platform (or hexapod), an apparatus which performs positioning tasks with high accuracy. The platform, which is supported by six hydraulic telescopic struts, provides six degrees of freedom with 1 μm resolution. Rotations about user defined pivot points can be specified for any axis of rotation with microradian accuracy. Motion of the platform is performed by changing the strut lengths. Servo systems set and maintain the length of the struts to high precision using proportional hydraulic valves and incremental encoders. The combination of hydraulic actuators and a design which is optimized in terms of mechanical stiffness enables the platform to manipulate loads of up to 20 kN. Sophisticated software allows direct six-axis positioning including true path control. Our platform is an ideal support structure for a large variety of scientific instruments that require a stable alignment base with high-precision motion.

  14. Angular-Momentum-Compensating Actuator

    NASA Technical Reports Server (NTRS)

    Wiktor, Peter J.

    1988-01-01

    Reactionless actuator developed for instrument-pointing platforms on flexible spacecraft; by eliminating reactions, actuator changes aiming angle of platform without inducing vibrations in spacecraft, eliminateing vibrations in point angle of instrument platform. Actuator used on Earth in such systems as helicopter platforms for television cameras in law enforcement and news telecasts.

  15. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  16. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  17. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  18. Actuators Acting without Actin.

    PubMed

    Geitmann, Anja

    2016-06-30

    Plant actuators move organs, allowing the plant to respond to environmental cues or perform other mechanical tasks. In Cardamine hursuta the dispersal of seeds is accomplished by explosive opening of the fruit. The biomechanical mechanism relies on a complex interplay between turgor regulation and cell wall mechanical properties. PMID:27368097

  19. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  20. Transfer Function Identification of an Electro-Rheological Actuator

    NASA Astrophysics Data System (ADS)

    Brookfield, D. J.; Dlodlo, Z. B.

    A fluid clutch utilising an Electro-Rheological (ER) suspension provides a controlled torque coupling between input and output through the control of the applied electric field. If the input is driven at constant speed the device can be considered as an ER torque actuator and thus be used to drive robot links or other mechanisms requiring precise positioning. Such an ER torque actuator can replace a DC servo-motor in robotic applications with the benefits of low time constant and smooth output torque unaffected by cogging (i.e. variation in torque of a DC motor as the magnetic reluctance of the armature-stator path changes with rotation). Although the ER actuator has many benefits, it suffers from a non-linear and time varying relationship between input voltage and output torque. These undesirable characteristics can be mitigated by providing a local closed loop controller around the system. The design of such a controller requires a knowledge of the relationship between the applied voltage and output torque; i.e. the transfer function of the actuator. This transfer function has been determined by observing the response of an ER torque actuator in the frequency domain. It is shown that a linear transfer function model reasonable represents the actuator behaviour, that the actuator is a stable second order system and that the time constant of the clutch studied is sufficiently short to hold considerable promise for robotic applications. Furthermore, the maximum torque capability is shown to be sufficient for many medium scale industrial robots.

  1. A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8

    NASA Technical Reports Server (NTRS)

    Eijsink, H.; Rice, M.

    1978-01-01

    An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft.

  2. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  3. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  4. Robotic insects: Manufacturing, actuation, and power considerations

    NASA Astrophysics Data System (ADS)

    Wood, Robert

    2015-12-01

    As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power - whereas such questions have in general been answered for larger aircraft. When developing a robot on the scale of a housefly, all hardware must be developed from scratch as there is nothing "off-the-shelf" which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. With these challenges in mind, this talk will present progress in the essential technologies for insect-like robots with an emphasis on multi-scale manufacturing methods, high power density actuation, and energy-efficient power distribution.

  5. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  6. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…

  7. Piezoelectrically actuated flextensional micromachined ultrasound droplet ejectors.

    PubMed

    Perçin, Gökhan; Khuri-Yakub, Butrus T

    2002-06-01

    This paper reports a variation on the design of the flextensional transducer for use in ejecting liquids. The transducer is constructed by depositing a piezoelectric thin film to a thin, edge-clamped, circular annular plate. By placing a fluid behind one face of a vibrating compound plate that has an orifice at its center, we achieve continuous or drop-on-demand ejection of the fluid. We present results of ejection of water and isopropanol. The ejector is harmless to sensitive fluids and can be used to eject fuels as well as chemical and biological samples. Micromachined two-dimensional array piezoelectrically actuated flextensional droplet ejectors were realized using planar silicon micromachining techniques. Typical resonant frequency of the micromachined device ranges from 400 kHz to 4.5 MHz. The ejection of water thru a 5-microm diameter orifice at 3.5 MHz was demonstrated by using the developed micromachined two-dimensional array ejectors. PMID:12075968

  8. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  9. Dynamic modeling of brushless dc motors for aerospace actuation

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Nehl, T. W.

    1980-01-01

    A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.

  10. Dynamic modeling of brushless dc motors for aerospace actuation

    NASA Astrophysics Data System (ADS)

    Demerdash, N. A.; Nehl, T. W.

    1980-11-01

    A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.

  11. Hydraulic conductivity of rock fractures

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs.

  12. Microfabricated therapeutic actuators

    SciTech Connect

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  13. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  14. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  15. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  16. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  17. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  18. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  19. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  20. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  1. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  2. Dissolution actuated sample container

    DOEpatents

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  3. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  4. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  5. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  6. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  7. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  8. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  9. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  10. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  11. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  12. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  13. Application of polyimide actuator rod seals

    NASA Technical Reports Server (NTRS)

    Watermann, A. W.; Gay, B. F.; Robinson, E. D.; Srinath, S. K.; Nelson, W. G.

    1972-01-01

    Development of polyimide two-stage hydraulic actuator rod seals for application in high-performance aircraft was accomplished. The significant portion of the effort was concentrated on optimization of the chevron and K-section second-stage seal geometries to satisfy the requirements for operation at 450 K (350 F) with dynamic pressure loads varying between 200 psig steady-state and 1500 psig impulse cycling. Particular significance was placed on reducing seal gland dimension by efficiently utilizing the fatigue allowables of polyimide materials. Other objectives included investigation of pressure balancing techniques for first-stage polyimide rod seals for 4000 psig 450 K(350 F) environment and fabrication of a modular retainer for the two-stage combination. Seals were fabricated in 0.0254 m (1.0in.) and 0.0635 m (2.5in.) sizes and tested for structural integrity, frictional resistance, and endurance life. Test results showed that carefully designed second stages using polyimides could be made to satisfy the dynamic return pressure requirements of applications in high-performance aircraft. High wear under full system pressure indicated that further research is necessary to obtain an acceptable first-stage design. The modular retainer was successfully tested and showed potential for new actuator applications.

  14. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  15. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  16. Fuzzy logic controls pressure in Fracturing Fluid Characterization Facility

    SciTech Connect

    Rivera, V.P.; Farabee, L.M.

    1994-12-31

    A fuzzy logic pressure control system has been designed and implemented to deal with the demanding requirements of the Fracturing Fluid Characterization Facility (FFCF), a test bed that simulates downhole conditions for investigating fluid behavior during fracturing stimulation. Pressure control in the fracture simulator was difficult because of the wide range of fluid types and pumping conditions used and by the compliant structure of the simulator, which uses servo-controlled actuators to maintain a constant gap width under varying pressure conditions. The FFCF pressure control system must handle fluids that vary from water to high-viscosity gel slurries at flow rates ranging from 1/2 to 3 bbl/min. Conventional control approaches were successful only under very limited conditions. To solve this problem, a fuzzy logic controller (FLC) was developed to be a user function in the FFCF supervisory control and data acquisition system. Using several fuzzy logic rules, the FLC generates a position set point for a slurry throttling valve. An electro-hydraulic directional control valve uses the set point supplied by the FLC to position the active control element of the slurry throttling valve.

  17. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  18. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  19. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  20. Design and control of a proof-of-concept variable-area exhaust nozzle using shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Song, Gangbing; Ma, Ning; Lee, Hou-Jun; Arnold, Steven

    2004-07-01

    There is no reported research of using shape memory alloy (SMA) actuators for variable area exhaust nozzle for a jet engine in the literature, to the authors' best knowledge. SMA actuators have the advantages of high power-to-weight ratio and can result in dramatic weight reduction as compared to hydraulic systems. However, the difficulty of using SMA actuators for controlling variable area exhaust nozzle lies in the fact that the temperature near exhaust nozzle is far higher than the transformation temperature of an SMA actuator. Due to the flexibility and small volume of SMA wire actuators, they can be remotely replaced in a region where temperature is lower than that of its transformation temperature. By exploiting this fact, this paper presents a novel design of a proof-of-concept variable area exhaust nozzle using shape memory alloy wire actuators. The SMA actuators are remotely placed away from the exhaust nozzle area so that the environmental temperature is below their transformation temperature. By electrically heating the SMA actuators, the exhaust nozzle will experience an area reduction of up to 40%. Bias springs will apply forces to return the fan nozzle to the open-up configuration. A feedback controller based sliding mode method is used to regulate the SMA actuators' position. Experimental results demonstrate that the proposed design meets the desired area variation specifications and show the promise of a lightweight and simple exhaust nozzle design by using shape memory alloy actuators.

  1. Robotic Arm Actuated by Electroactie Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Xue, T.; Shaninpoor, M.; Simpson, J. O.; Smith, J.

    1998-01-01

    Actuators are used for many planetary and space applications. To meet the NASA goal to reduce the actuators size, mass, cost and power consumption, electroactie polymers (EAP) are being developed to induce large bending and longitudinal actuation strains.

  2. Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic Fluid Buildings, Northeast of Looking Glass Avenue at southwest side of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  3. Dry ice plug for hydraulic and pneumatic pipe flushing

    NASA Technical Reports Server (NTRS)

    Francino, L.; Rauch, S.

    1972-01-01

    Development of technique to clear blockages in hydraulic and pneumatic pipes is discussed. Technique consists of using dry ice plug to separate sensitive components from flushing fluid. Diagram of equipment and principles of operation are presented.

  4. Offshore hydraulics: tough, reliable, and failsafe

    SciTech Connect

    Hoock, C.J.

    1983-08-01

    The Offshore Comet is a modern offshore drilling rig with a hydraulic-cylinder-actuated jacking (raising and lowering) system. Hydraulic-cylinder jacking provides a safe and efficient method for placing the rig at the desired height above the water and insuring that it can withstand the expected heavy loads imposed by machinery, supplies, and the ocean environment. The drilling rig consists of a steel-hulled barge that is floated to the site and then supported during drilling operations by four steel triangular-cross-section lattice legs. The legs are planted firmly on the ocean bottom by a procedure called preloading. Each leg with its integral footing weighs 657 tons. The barge with its deck load can weigh up to 9200 tons.

  5. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  6. Control rod drive hydraulic system

    DOEpatents

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  7. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  8. Analysis of hydraulic instability of ANS involute fuel plates

    SciTech Connect

    Sartory, W.K.

    1991-11-01

    Curved shell equations for the involute Advanced Neutron Source (ANS) fuel plates are coupled to two-dimensional hydraulic channel flow equations that include fluid friction. A complete set of fluid and plate boundary conditions is applied at the entrance and exit and along the sides of the plate and the channel. The coupled system is linearized and solved to assess the hydraulic instability of the plates.

  9. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOEpatents

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  10. Actuator-valve interface optimization

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1986-01-01

    A computer code, Actuator Valve Response (AVR), has been developed to optimize the explosive actuator-valve interface parameters so that the valve plunger velocity is at a maximum when the plunger reaches the valve tubes. The code considers three forces to act on the valve plunger before the plunger reaches the valve tubes. These are the pressure force produced by the actuator, the shear force necessary to shear the seal disks on the actuator and the valve plunger, and the friction force caused by friction between the plunger and the plunger bore. The three forces are modeled by expressions that are explicitly functions of the plunger displacement. A particular actuator-valve combination was analyzed with the computer code AVR with four different combinations of valve plunger seal disk shear strength and initial friction force. (LEW)

  11. A Reduced-Order Model For Zero-Mass Synthetic Jet Actuators

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.; Vatsa, Veer S.

    2007-01-01

    Accurate details of the general performance of fluid actuators is desirable over a range of flow conditions, within some predetermined error tolerance. Designers typically model actuators with different levels of fidelity depending on the acceptable level of error in each circumstance. Crude properties of the actuator (e.g., peak mass rate and frequency) may be sufficient for some designs, while detailed information is needed for other applications (e.g., multiple actuator interactions). This work attempts to address two primary objectives. The first objective is to develop a systematic methodology for approximating realistic 3-D fluid actuators, using quasi-1-D reduced-order models. Near full fidelity can be achieved with this approach at a fraction of the cost of full simulation and only a modest increase in cost relative to most actuator models used today. The second objective, which is a direct consequence of the first, is to determine the approximate magnitude of errors committed by actuator model approximations of various fidelities. This objective attempts to identify which model (ranging from simple orifice exit boundary conditions to full numerical simulations of the actuator) is appropriate for a given error tolerance.

  12. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  13. Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry

    SciTech Connect

    Love, Lonnie J

    2012-12-01

    The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

  14. Tree hydraulics: how sap rises

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown—a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by transpiration or capillary action; we investigate the effectiveness of both these forces for the two conduit architectures considered. The level of analysis is appropriate for undergraduates. The subject is of broad interest because it provides a naturally-occurring example of an unusual metastable state of matter: liquid under tension.

  15. Development of the space shuttle body flap actuation subsystem

    NASA Technical Reports Server (NTRS)

    Boggs, C. R.

    1985-01-01

    Development of the Body Flap Actuation Subsystem for Space Shuttles included alterations from the original design to mechanical stops, planet gears, control valves, and solenoid valves. The mechanical stops were redesigned to absorb stall load and rotating inertia of the hydraulic motors instead of only stall load. The institution of a quill shaft (torsion spring) was a successful solution. The planet gears in the geared rotary actuators developed cracks during testing. This failure was alleviated via modification to the gears. A motor pressurization - brake release timing technique was developed thru analysis and testing. This resulted in a control valve configuration which would not permit freewheeling of the body flap surface. Finally, several solenoid valve configurations were tested to obtain the desired performance. Conceptual redesigns and modifications were weighted against each other to optimize a solution. Tradeoffs were usually made between life, performance, failure tolerance, and reliability versus weight, envelope, and maintainability.

  16. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  17. Quiet Clean Short-haul Experimental Engine (QCSEE): Hamilton Standard cam/harmonic drive variable pitch fan actuation system detail design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A variable pitch fan actuation system was designed which incorporates a remote nacelle-mounted blade angle regulator. The regulator drives a rotating fan-mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Detail design parameters of the actuation system are presented. These include the following: design philosophies, operating limits, mechanical, hydraulic and thermal characteristics, mechanical efficiencies, materials, weights, lubrication, stress analyses, reliability and failure analyses.

  18. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  19. Note: Development of a compact electromagnetic hydraulic pump for a microrobot joint driving system.

    PubMed

    Chen, Naijian; Wang, Sun'an; Zhang, Jinhua

    2010-04-01

    This note describes a compact electromagnetic hydraulic pump (EMHP) designed primarily to build a microdriving system for a robot joint actuator. A characteristic mathematical model integrating electricity, magnetism, and hydraulics is constructed to represent the working process of the EMHP. Tests show that a volumetric flow rate of up to 430 cm(3)/min and load pressure of up to 2.5 MPa can be achieved. The prototype pump can supply stable pressure of 0-2.4 MPa and acceleration of 1.2 MPa/s for the robot joint actuator. PMID:20441378

  20. CFD Aided Design and Production of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.