Science.gov

Sample records for actuation levers driven

  1. Preliminary study of lever-based optical driven micro-actuator

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Lang; Li, Yi-Hsiung; Lin, Chin-Te; Chiang, Chia-Chin; Liu, Yi-Jui; Chung, Tien-Tung; Baldeck, Patrice L.

    2012-04-01

    This study presents a novel type of optically driven lever-based micro-actuator fabricated using two-photon polymerization 3D-microfabrication technique. The lever is composed of a beam, an arch, and a sphere. First, optical tweezers is applied on the spheres to demonstrate the actuation of the lever. A spring is jointed at the lever for verifying the induced forces. Under the dragging by laser focusing, the lever simultaneously turns and results a torque like a mechanical arm. Then, the demonstration of a photo-driven micro-transducer with a mechanical arm and a gear is preformed. The experimental result indicates that our design enables precise manipulation of the mirco-actuator by optical tweezers at micron scale. This study provides a possibility for driving micron-sized structured mechanisms, such as connecting rods, valves. It is expected to contribute on the investigation of "Lab-on-a-chip".

  2. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  3. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  4. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  5. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  6. A thermokinetically driven metal-hydride actuator

    NASA Astrophysics Data System (ADS)

    Jung, Kwangmok; Kim, Kwang J.

    2008-03-01

    The purpose of this study is to develop a novel thermokinetically-driven actuator technology based on the physics of metal hydrides (MH's). A metal hydride absorbs and desorbs hydrogen due to the imposed temperature swing(s). The MH can also work as an effective thermally-driven hydrogen compressor producing more than 5,000 psia net pressure swing. The MH actuation system can be built in a simple structure, exhibits high power, produces soft actuating, and is essentially noiseless. Moreover, it is much more powerful and compact than conventional pneumatic systems that require bulky auxiliary systems. It is our belief that the MH actuators are useful for many emerging industrial, biorobotic, and civil structural applications. In this paper, we report the recent preliminary experimental results for a laboratory-prototyped MH actuation system. In particular, the dynamic response characteristics, enhanced controllability, thermodynamic performances, and reliability of the metal hydride actuator were studied in order to estimate the actuation capability of the MH actuator. A unique design of the MH actuator was created. It encases a so-called "porous metal hydride (PMH)" in the reactor to effectively achieve desirable performance by improving overall thermal conductance.

  7. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  8. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  9. Microwave Driven Actuators Power Allocation and Distribution

    NASA Technical Reports Server (NTRS)

    Forbes, Timothy; Song, Kyo D.

    2000-01-01

    Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

  10. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  11. Quick-Release Pin With Lever Action

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    1995-01-01

    Lever-action quick-release pin operated more easily. Mechanism operated with gloved hand. In modified version, lever added to handle to facilitate actuation. Lever action reduces actuation force. Lever-action pin operated by squeezing on any point of moveable ends of lever and handle together between thumb and forefinger or by simply grasping and squeezing handle and lever with entire hand in more natural grasp.

  12. Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius.

    PubMed

    Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han

    2013-01-01

    In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77,488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.

  13. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  14. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  15. Light-driven actuation of fluids at microscale

    NASA Astrophysics Data System (ADS)

    Deshpande, Mandar; Saggere, Laxman

    2004-07-01

    This paper discusses the prospects of light-driven actuation particularly for actuating fluids at micro-scale for potential use in a novel retinal prosthesis and other drug delivery applications. The prosthesis is conceived to be comprised of an array of light-driven microfluidic-dispenser units, devices that eject very small amounts of fluids on the order of 1 picoliter per second in response to incident light energy in the range of 0.1-1 mW/cm2. A light-driven actuator, whose size will ideally be smaller than about 100 micrometers in diameter, independently powers each dispenser unit. Towards this application, various approaches for transducing light energy for actuation of fluids are explored. These approaches encompass both direct transduction of light energy to mechanical actuation of fluid and indirect transduction through an intermediary form of energy, for instance, light energy to thermal or electrical energy followed by mechanical actuation of fluid. Various existing schemes for such transduction are reviewed comprehensively and discussed from the standpoint of the application requirements. Direct transduction schemes exploiting recent developments in optically sensitive materials that exhibit direct strain upon illumination, particularly the photostrictive PLZT (Lanthanum modified Lead Zirconate Titanate), are studied for the current application, and results of some preliminary experiments involving measurement of photovoltage, photocurrent, and photo-induced strain in the meso-scale samples of the PLZT material are presented.

  16. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  17. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  18. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  19. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  20. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  1. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators.

    PubMed

    Chen, Weilin; Zhang, Xianmin; Fatikow, Sergej

    2016-11-01

    For the piezo-driven microgripper, one issue is to enlarge the grasping stroke and realize parallel grasping movement in the compact design. Piezoelectric stack actuator (PSA) and piezoelectric cantilever actuator (PCA) are two kinds of typical piezoelectric actuators. In this study, a novel microgripper hybrid driven by a PSA and two PCAs is proposed, which can be a better solution for the issue, compared with the previous microgripper using PSA-driven multi-stages displacement amplification mechanism (DAM) or using longer and narrower PCAs. A compact one-stage orthogonal DAM is proposed for the PSA in the microgripper, which can enlarge the grasping stroke and realize parallel grasping movement. The proposed orthogonal DAM is a triangulation amplification-based mechanism with undetermined structural parameters. Bidirectional symmetric input forces/displacements are not required in the proposed design. The number of the undetermined parameters and the solution principle are analyzed. Finite element analysis is used to verify the proposed DAM. The gripper arms are designed as two PCAs, for which the grasping and parasitic movements of the free end are modeled. Piezoelectric-static coupling finite element analysis is used to verify the models. The PCAs-driven grasping with considerable parasitic movement can be used in the coarse positioning. The integration of the hybrid-driven microgripper is presented, and its performances are presented and verified by experiments.

  2. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators

    NASA Astrophysics Data System (ADS)

    Chen, Weilin; Zhang, Xianmin; Fatikow, Sergej

    2016-11-01

    For the piezo-driven microgripper, one issue is to enlarge the grasping stroke and realize parallel grasping movement in the compact design. Piezoelectric stack actuator (PSA) and piezoelectric cantilever actuator (PCA) are two kinds of typical piezoelectric actuators. In this study, a novel microgripper hybrid driven by a PSA and two PCAs is proposed, which can be a better solution for the issue, compared with the previous microgripper using PSA-driven multi-stages displacement amplification mechanism (DAM) or using longer and narrower PCAs. A compact one-stage orthogonal DAM is proposed for the PSA in the microgripper, which can enlarge the grasping stroke and realize parallel grasping movement. The proposed orthogonal DAM is a triangulation amplification-based mechanism with undetermined structural parameters. Bidirectional symmetric input forces/displacements are not required in the proposed design. The number of the undetermined parameters and the solution principle are analyzed. Finite element analysis is used to verify the proposed DAM. The gripper arms are designed as two PCAs, for which the grasping and parasitic movements of the free end are modeled. Piezoelectric-static coupling finite element analysis is used to verify the models. The PCAs-driven grasping with considerable parasitic movement can be used in the coarse positioning. The integration of the hybrid-driven microgripper is presented, and its performances are presented and verified by experiments.

  3. Electrically driven PEDOT/PSS actuators

    NASA Astrophysics Data System (ADS)

    Okuzaki, H.; Hosaka, K.; Suzuki, H.; Ito, T.

    2010-04-01

    Free-standing films made of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) were prepared by casting water dispersion of its colloidal particles. Specific surface area, water vapor sorption, and electroactive polymer actuating behavior of the resulting films were investigated by means of sorption isotherm, and electromechanical analysis. It was found that the non-porous PEDOT/PSS film, having a specific surface area of 0.13 m2 g-1, sorbed water vapor of 1080 cm3(STP) g-1, corresponding to 87 wt%, at relative water vapor pressure of 0.95. A temperature rise from 25 to 40 °C lowered sorption degree, indicative of an exothermic process, where isosteric heat of sorption decreased with increasing water vapor sorption and the value reached 43.9 kJ mol-1, being consistent with the heat of water condensation (44 kJ mol-1). Upon application of 10 V, the film underwent contraction of 2.4% in air at 50% relative humidity (RH) which significantly increased to 4.5% at 90% RH. The principle lay in desorption of water vapor sorbed in the film due to Joule heating, where electric field was capable of controlling the equilibrium of water vapor sorption.

  4. A planar nano-positioner driven by shear piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Dong, W.; Li, H.; Du, Z.

    2016-08-01

    A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  5. Variable area nozzle for gas turbine engines driven by shape memory alloy actuators

    NASA Technical Reports Server (NTRS)

    Rey, Nancy M. (Inventor); Miller, Robin M. (Inventor); Tillman, Thomas G. (Inventor); Rukus, Robert M. (Inventor); Kettle, John L. (Inventor); Dunphy, James R. (Inventor); Chaudhry, Zaffir A. (Inventor); Pearson, David D. (Inventor); Dreitlein, Kenneth C. (Inventor); Loffredo, Constantino V. (Inventor)

    2001-01-01

    A gas turbine engine includes a variable area nozzle having a plurality of flaps. The flaps are actuated by a plurality of actuating mechanisms driven by shape memory alloy (SMA) actuators to vary fan exist nozzle area. The SMA actuator has a deformed shape in its martensitic state and a parent shape in its austenitic state. The SMA actuator is heated to transform from martensitic state to austenitic state generating a force output to actuate the flaps. The variable area nozzle also includes a plurality of return mechanisms deforming the SMA actuator when the SMA actuator is in its martensitic state.

  6. A vacuum-driven peristaltic micropump with valved actuation chambers

    NASA Astrophysics Data System (ADS)

    Cui, Jianguo; Pan, Tingrui

    2011-06-01

    This paper presents a simple peristaltic micropump design incorporated with valved actuation chambers and propelled by a pulsed vacuum source. The vacuum-driven peristaltic micropump offers high pumping rates, low backflow, appreciable tolerance to air bubbles, and minimal destruction to fluid contents. The pumping device, fabricated by laser micromachining and plasma bonding of three polydimethylsiloxane (PDMS) layers, includes a pneumatic network, actuation membranes, and microfluidic channels. As the key to peristaltic motion, the sequential deflection of the elastic membranes is achieved by periodic pressure waveforms (negative) traveling through the pneumatic network, provided by a vacuum source regulated by an electromagnetic valve. This configuration eliminates the complicated control logic typically required in peristaltic motion. Importantly, the valved actuation chambers substantially reduce backflow and improve the pumping rates. In addition, the pneumatic network with negative pressure provides a means to effectively remove air bubbles present in the microflow through the gas-permeable PDMS membrane, which can be highly desired in handling complex fluidic samples. Experimental characterization of the micropump performance has been conducted by controlling the resistance of the pneumatic network, the number of normally closed valves, the vacuum pressure, and the frequency of pressure pulses. A maximal flow rate of 600 µL min-1 has been optimized at the pulsed vacuum frequency of 30 Hz with a vacuum pressure of 50 kPa, which is comparable to that of compressed air-actuated peristaltic micropumps.

  7. Moisture-driven actuators inspired by motility of plants

    NASA Astrophysics Data System (ADS)

    Shin, Beomjune; Lee, Minhee; Kim, Ho-Young

    2015-11-01

    We report design and fabrication of moisture-driven actuators mimicking pine cones, wild wheats and seeds of Erodium cicutarium, which can bend and even helically coil with variation of environmental humidity. The actuators adopt a bilayer configuration, one of whose layers is hygroscopically active while the other is inactive. In order to enhance the degree and speed of deformation which critically depends on moisture-responsivity of the active layer, nanofibers of hydrogel are directionally deposited on the inactive layer via electrospinning. As a result, several designs of soft robots are demonstrated which are capable of locomotion by harvesting environmental humidity energy. The dynamics of the robots are analyzed by coupling moisture diffusion kinetics and elastic theory of multi-layer bending. The theoretical predictions are compared with the experimental results, to lead to the optimal design to maximize the locomotion speed measured by travel distance normalized by body length per unit time.

  8. Note: A novel curvature-driven shape memory alloy torsional actuator.

    PubMed

    Yan, Xiaojun; Huang, Dawei; Zhang, Xiaoyong

    2014-12-01

    This paper presents a novel, extremely simple torsional actuator which employs a special shape setting treated shape memory alloy coil. The actuator works with a so-called curvature-driven principle and can directly generate a rotary motion without any motion converting mechanism. Experiments were performed to study the output performances of several actuators with different geometry parameters. The test results show the actuator can output a rotary motion fluently, and the output torque is about several mN mm.

  9. A robotic finger driven by twisted and coiled polymer actuator

    NASA Astrophysics Data System (ADS)

    Cho, Kyeong Ho; Song, Min Geun; Jung, Hosang; Park, Jungwoo; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-Do; Choi, Hyouk Ryeol

    2016-04-01

    Previous studies reported that a twisted and coiled polymer actuator (TCA) generates strong force and large stroke by heating. Nylon 6,6 is known to be the most suitable polymer material for TCA because it has high thermal expansion ratio, high softening point and high toughness which is able to sustain gigantic twisting. In order to find the optimal structure of TCA fabricated with silver-coated nylon sewing threads, an equipment for twist-insertion (structuralization), composed of single DC motor, a slider fabricated by 3D printer and a body frame, is developed. It can measure the behaviors of TCAs as well as fabricate TCAs with desired characteristics by structuralizing fibers with controlled rotation per minutes (RPM) and turns. Comparing performances of diverse structures of TCAs, the optimal structure for TCA is found. For the verification of the availability of the optimal TCA, a TCA-driven biomimetic finger is developed. Finally, we successfully demonstrate the flexion/extension of the finger by using the actuation of TCAs.

  10. Electrochemically driven actuators from conducting polymers, hydrogels, and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Spinks, Geoffrey M.; Wallace, Gordon G.; Lewis, Trevor W.; Fifield, Leonard S.; Dai, Liming; Baughman, Ray H.

    2001-04-01

    The mechanisms of actuation operating in polymeric actuators are reviewed along with a comparison of actuator performance. Polymer hydrogel actuators show very large dimensional changes, but relatively low response times. The mechanism of actuation involves several processes including electro-osmosis and electrochemical effects. Conducting polymer actuators operate by Faradaic reactions causing oxidation and reduction of the polymer backbone. Associated ion movements produce dimensional changes of typically up to 3%. The maximum stress achieved to date from conducting polymers is not more than 10 MPA. Carbon nanotubes have recently been demonstrated as new actuator materials. The nanotubes undergo useful dimensional changes (approximately 1%) but have the capacity to respond very rapidly (kHz) and generate giant stresses (600 MPa). The advantages of nanotube actuators stem from their exceptional mechanical properties and the non-Faradaic actuation mechanism.

  11. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    PubMed

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  12. Hierarchically arranged helical fibre actuators driven by solvents and vapours

    NASA Astrophysics Data System (ADS)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  13. Charge driven piezoelectric actuators for structural vibration control: issues and implementation

    NASA Astrophysics Data System (ADS)

    Vautier, B. J. G.; Moheimani, S. O. R.

    2005-08-01

    Piezoelectric actuators have been traditionally driven by voltage amplifiers. When driven at large voltages these actuators exhibit a significant amount of distortion, known as hysteresis, which may reduce the stability robustness of the system in feedback control applications. Electric charge is known to reduce the effects of this nonlinearity. To date little research has been done on the coupling between piezoelectric actuators and highly resonant structures when charge is used to drive the actuator. This arrangement was used in a control feedback scheme to reject disturbance vibrations acting on a cantilevered beam. During the analysis it is shown that the dynamics for the coupled 'piezoelectric-beam' system differs depending on whether voltage or charge is used to drive the piezoelectric actuator. Experimental results demonstrating the effectiveness of using electrical charge are included.

  14. Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above

  15. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    NASA Astrophysics Data System (ADS)

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  16. Dynamic measurements of actuators driven by AlN layers

    NASA Astrophysics Data System (ADS)

    Kacperski, Jacek; Kujawinska, Malgorzata; Leon, Sergio Camacho; Nieradko, Lukasz; Jozwik, Michal; Gorecki, Christophe

    2005-09-01

    Micro-Electro-Mechanical Systems are nowadays frequently used in many fields of industry. The number of their applications increase and their functions became more complex and demanding. Therefore precise knowledge about their static (shape, deformations, stresses) and dynamic (resonance frequencies, amplitude and phase of vibration) properties is necessary. Two beam laser interferometry is one of the most popular testing methods of micromechanical elements as a non-contact, high-accurate method allowing full-field measurement. First part of the paper present microbeam actuators designed for MEMS/MOEMS applications. The proposed structures are the straight silicon microbeams formed by KOH etching of Si wafer. Aluminium nitride (AlN) thin films are promising materials for many acoustic and optic applications in MEMS field. In the proposed architecture the actuation layer is sandwiched between two metal electrodes on the top of beam. In the second part we describe the methodology of the actuator characterization. These methods applied are: stroboscopic interferometry and active interferometry (LCOS SLM is used as a reference surface in Twyman-Green interferometer). Moreover some results of FEM analysis of the sample are shown and compared with experimental results. Dynamic measurements validate the design and simulations, and provide information for optimization of the actuator manufacturing process.

  17. An autonomous actuator driven by fluctuations in ambient humidity.

    PubMed

    Arazoe, Hiroki; Miyajima, Daigo; Akaike, Kouki; Araoka, Fumito; Sato, Emiko; Hikima, Takaaki; Kawamoto, Masuki; Aida, Takuzo

    2016-10-01

    Devices that respond to negligibly small fluctuations in environmental conditions will be of great value for the realization of more sustainable, low-power-consumption actuators and electronic systems. Herein we report an unprecedented film actuator that seemingly operates autonomously, because it responds to the adsorption and desorption of a minute amount of water (several hundred nanograms per 10 mm(2)) possibly induced by fluctuations in the ambient humidity. The actuation is extremely rapid (50 ms for one curl) and can be repeated >10,000 times without deterioration. On heating or light irradiation, the film loses adsorbed water and bends quickly, so that it can jump vertically up to 10 mm from a surface or hit a glass bead. The film consists of a π-stacked carbon nitride polymer, formed by one-pot vapour-deposition polymerization of guanidinium carbonate, and is characterized by a tough, ultralightweight and highly anisotropic layered structure. An actuator partially protected against water adsorption is also shown to walk unidirectionally.

  18. An autonomous actuator driven by fluctuations in ambient humidity

    NASA Astrophysics Data System (ADS)

    Arazoe, Hiroki; Miyajima, Daigo; Akaike, Kouki; Araoka, Fumito; Sato, Emiko; Hikima, Takaaki; Kawamoto, Masuki; Aida, Takuzo

    2016-10-01

    Devices that respond to negligibly small fluctuations in environmental conditions will be of great value for the realization of more sustainable, low-power-consumption actuators and electronic systems. Herein we report an unprecedented film actuator that seemingly operates autonomously, because it responds to the adsorption and desorption of a minute amount of water (several hundred nanograms per 10 mm2) possibly induced by fluctuations in the ambient humidity. The actuation is extremely rapid (50 ms for one curl) and can be repeated >10,000 times without deterioration. On heating or light irradiation, the film loses adsorbed water and bends quickly, so that it can jump vertically up to 10 mm from a surface or hit a glass bead. The film consists of a π-stacked carbon nitride polymer, formed by one-pot vapour-deposition polymerization of guanidinium carbonate, and is characterized by a tough, ultralightweight and highly anisotropic layered structure. An actuator partially protected against water adsorption is also shown to walk unidirectionally.

  19. Water-driven actuation of Ornithoctonus huwena spider silk fibers

    NASA Astrophysics Data System (ADS)

    Lin, Shuyuan; Zhu, Jia; Li, Xinming; Guo, Yang; Fang, Yaopeng; Cheng, Huanyu; Zhu, Hongwei

    2017-01-01

    Spider silk possesses remarkable mechanical properties and can lift weight effectively. Certain kinds of spider silk have unique response to liquid, especially water, because of their hydrophilic proteins, β-sheet characters, and surface structure. The Ornithoctonus huwena (O. huwena) spider is a unique species because it can be bred artificially and it spins silk whose diameter is in nanometer scale. In this work, we report the "shrink-stretch" behavior of the O. huwena spider silk fibers and show how they can be actuated by water to lift weight over long distance, at a fast speed, and with high efficiency. We further rationalize this behavior by analyzing the mechanical energy of the system. The lifting process is energy-efficient and environmentally friendly, allowing applications in actuators, biomimetic muscles, or hoisting devices.

  20. Design of a piezoceramic-driven synthetic-jet actuator for aerodynamic performance improvement

    NASA Astrophysics Data System (ADS)

    Rusovici, Razvan; Offord, Casey; Honour, Ryan; Goto, Fumitaka; Louderback, Pierce; Phelps, Charley

    2008-03-01

    The interest in synthetic-jet actuators is elicited by their employment in fluid-control applications, including boundary-layer control, combustion control etc. These actuators are zero net-mass-flux devices, and generally consist of a diaphragm mounted to enclose a volume of fluid in a cavity. The diaphragm bends sinusoidally, and fluid is periodically absorbed into and ejected from the cavity through an orifice. The outflow entrains the fluid around it and establishes a mean jet flow at some distance from the source. Piezoceramic materials have been employed to drive the actuator diaphragm, especially when actuation frequencies are in excess of a few hundreds of hertz. The piezoceramic is glued directly to a silicon diaphragm. In combustion systems, improved turbulent mixing of air and fuel proper can significantly improve efficiency and reduce pollution. In boundary-layer separation control applications, synthetic-jets are used to improve aerodynamic performance by delaying separation and stall over the airfoil. The current work describes the modeling and design process of a piezoceramic-driven synthetic-jet actuator intended, amongst other applications, to improve the aerodynamic characteristics of a specific airfoil. A separate study consisting of numerical analyses performed with the aid of computational fluid dynamics (CFD) have been run to define the necessary performance parameters for the synthetic-jet actuator. The synthetic-jet actuator design task was achieved by running fluid-structure numerical analyses for various design parameters.

  1. Tunable microlens actuated via a thermoelectrically driven liquid heat engine

    NASA Astrophysics Data System (ADS)

    Ashtiani, Alireza Ousati; Jiang, Hongrui

    2014-06-01

    We have developed a thermally actuated liquid microlens. An embedded thermoelectric element is used to actuate the liquid based heat engine. A closed-loop system is harnessed to drive and stabilize the temperature of the heat engine. Direct contact between the thermoelectric device and the water results in greatly improved, sub-second thermal rise time (0.8 s). The water based heat engine reacts to the variation in the temperature via expansion and contraction. In turn, the shape of a pinned water-oil meniscus at a lens aperture is deformed in response to the net volume change in the water, creating a tunable microlens. A method to fabricate microfluidic devices with relatively high thickness (250-750 μm) and large length-to-depth aspect ratio (280:1) was developed and used in the process. After fabrication and thermal calibration, optical characteristic of the microlens was assessed. Back focal length of the microlens was shown to vary continuously from -19.6 mm to -6.5 mm as the temperature increased from 5 °C to 35 °C. A thin film air was further introduced to insulate the heat engine from the substrate to protect the microlens area from the temperature fluctuation of the heat engine, thus preventing the change of the refractive indices and thermally induced aberrations. Wavefront aberration measurement was conducted. Surface profile of the microlens was mapped and found to have a conical shape. Both 3-dimensional and 1-dimensional thermal models for the device structure were developed and thermal simulation of the device was performed.

  2. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications

    NASA Astrophysics Data System (ADS)

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-03-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3 s), powerful (>100 MPa output stress, 7.5 × 105 N kg-1 unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators.

  3. Research on ultra-fast vacuum mechanical switch driven by repulsive force actuator

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; He, Junjia; Pan, Yuan; Jing, Xin; Zhong, Canyi; Zhang, Ning; Wei, Xiaoguang; Tang, Guangfu

    2016-12-01

    In order to meet the fast operation demands of DC circuit breakers, a high-speed vacuum mechanical switch (VMS) driven by a repulsive force actuator is focused. To improve the drive speed and energy conversion efficiency (ECE) of the actuators, the dynamic characteristics of the double sided coil repulsive force actuators are investigated, and two generalized optimization design methods focusing on the aspect ratio of the driving coils (defined as ARF) and the electrical parameters (defined as EF) are developed. FEM simulation models' simulation and tests of VMS prototypes are conducted to verify the optimization methods. Results prove that the ARF method could improve the ECE of a VMS from 1.05% to 7.55%, and EF method could improve ECE of the same VMS from 1.05% to 6.61%, the combination of ARF and EF could improve the value of VMS's ECE to 10.50%, thus proving the validity and accuracy of the optimization methods.

  4. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    PubMed Central

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  5. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    NASA Astrophysics Data System (ADS)

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-04-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively.

  6. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge

    NASA Astrophysics Data System (ADS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-09-01

    A two-dimensional air plasma kinetics model (16 species and 44 processes) for nanosecond discharge under atmospheric pressure was developed to reveal the spatial and temporal distribution of discharge characteristics of a surface dielectric barrier discharge (SDBD) actuator. An energy transfer model, including two channels for energy release from external power source to gas, was developed to couple plasma with hydrodynamics directly in the same dimension. The governing equations included the Poisson equation for the electric potential, continuity equations for each species, electron energy equations for electrons taking part in reactions, and Navier-Stokes equations for non-isothermal fluid. The model was validated through current-voltage profile and electron temperature obtained from experiments. Calculations for discharge characteristics as well as the responses of fluid field from tens of nanoseconds to tens of seconds were performed. Results have shown that local air is heated to 1170 K within tens of nanoseconds and then decreases to 310 K at the end of a discharge period. 30% of the total power is transferred from electric field to electrons while only 20% of this energy is then released to gas through quenching processes. 9% of the total energy is released through ion collision. A micro-shock wave is formed and propagates at the speed of sound. High local density gradient and dynamic viscosity induces vortexes which whirl the heated air downstream. The combined effects of heating convection and vortexes in repetitive pulse discharges lead to the formation of a steady jet, in agreement with experimental results.

  7. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  8. A chaotic self-oscillating sunlight-driven polymer actuator

    PubMed Central

    Kumar, Kamlesh; Knie, Christopher; Bléger, David; Peletier, Mark A.; Friedrich, Heiner; Hecht, Stefan; Broer, Dirk J.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2016-01-01

    Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight. PMID:27375235

  9. A chaotic self-oscillating sunlight-driven polymer actuator

    NASA Astrophysics Data System (ADS)

    Kumar, Kamlesh; Knie, Christopher; Bléger, David; Peletier, Mark A.; Friedrich, Heiner; Hecht, Stefan; Broer, Dirk J.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2016-07-01

    Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight.

  10. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  11. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  12. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications

    PubMed Central

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-01-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3 s), powerful (>100 MPa output stress, 7.5 × 105 N kg−1 unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators. PMID:25826443

  13. Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Gu, Wei; Wei, Jia; Yu, Yanlei

    2016-09-01

    Crosslinked liquid crystalline polymers (CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks. The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore, they can be utilized to fabricate smart actuators, which have potential applications in artificial muscles, micro-optomechanical systems, optics, and energy-harvesting fields. In this review the recent development of thermo- and photo-driven soft actuators based on the CLCPs are summarized. Project supported by the National Natural Science Foundation of China (Grant Nos. 21134003, 21273048, 51225304, and 51203023) and Shanghai Outstanding Academic Leader Program, China (Grant No. 15XD1500600).

  14. Method and apparatus for actuating vehicle transmission

    SciTech Connect

    Ishida, H.; Ishihara, M.; Uriuhara, M.

    1988-11-15

    This patent describes a method of actuating a vehicle parallel-gear transmission having gears and an internal lever for moving shift blocks connected with shift rods and shift forks for changing gear ratios of the transmission, a hydraulically controlled select actuator operatively connected to the internal lever for moving the internal lever in a select direction, a hydraulically controlled shift actuator operatively connected to the internal lever for moving the internal lever in a shift direction substantially normal to the select direction, a hydraulically controlled clutch actuator for connecting and disconnecting a clutch of the transmission, and a common fluid discharge passage connected to fluid discharge ports of the select and shift actuators and a fluid discharge port of the clutch actuator, the select and shift actuators being alternately actuatable to effect a gear changing operation.

  15. Biomimetic cilia arrays - fabrication, magnetic actuation, and driven fluid transport phenomena

    NASA Astrophysics Data System (ADS)

    Shields, Adam

    The cilium is one of biology's most basic functional nanostructures, present on nearly every cell and increasingly realized as vital to many aspects of human health. A fundamental reason for the ubiquity of cilia is their ability to effectively interact with fluids at the microscale, where the Reynolds number is low and thus inertia is irrelevant. This ability makes cilia an attractive and popular candidate for an engineered biomimic with potential applications in microfluidics and sensing. In addition, biological ciliated systems are difficult to study for many reasons, and so I demonstrate how a functional biomimetic system can also serve as a model platform for highly controlled studies of biologically relevant, cilia-driven hydrodynamics. Using the template-based microfabrication of a magnetic nanoparticle/polymer composite, I fabricate arrays of magnetically actuated biomimetic cilia at the scale of their biological analogues. I will discuss this fabrication technique and the magnetic actuation of these arrays to mimic the beat of biological cilia. I also report on the nature of the fluid flows driven by the cilia beat, and demonstrate how these cilia arrays can simultaneously generate long-range fluid transport and mixing in distinct fluid flow regimes. Finally, I present these results within the context of canonical hydrodynamics problems and discuss the implications for biological systems, such as the motile cilia recently discovered in the embryonic node.

  16. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    NASA Astrophysics Data System (ADS)

    Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.

    2016-03-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.

  17. Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator.

    PubMed

    Zhang, Tao; Wang, Qing-Ming

    2006-02-01

    Presented in this paper is the study of the performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator. The application of this micropump is to circulate fuel inside a miniaturized direct methanol fuel cell (DMFC) power system. A theoretical model based on the theory of plates and shells is established to estimate the deflection and the volume change of this micropump without liquid loading. Both finite-element method (FEM) and experimental method are applied to verify this model. Using this model, the optimal design parameters such as the dimensions and the mechanical properties of the micropump can be obtained. Furthermore, various system parameters that will affect the performance of the micropump system with liquid loading are identified and analyzed experimentally. It is expected that this study will provide some vital information for many micropump applications such as fuel delivery in fuel cells, ink jet printers, and biofluidics.

  18. Adaptive control of rigid-link electrically-driven robots actuated with brushless DC motors

    SciTech Connect

    Bridges, M.M.; Dawson, D.M.

    1994-12-31

    In this paper, we extend the work of [1] and [2] to design an adaptive controller for rigid-link electrically-driven (RLED) robot manipulators specifically actuated with Brushless Direct Current (BLDC) motors. In particular the adaptive controller presented is tailored to handle the multi-link dynamics of a rigid-link robot as opposed to a simple inertial load. Furthermore, the linear electrical dynamics of brushed DC motors used in the development of [1], are replaced with the multiple input nonlinear dynamics of BLDC motors. The result is an adaptive controller that guarantees globally asymptotic convergence of the link position tracking error in spite of parametric uncertainty throughout the entire electro-mechanical model.

  19. Electro-mechanical efficiency of plasma synthetic jet actuator driven by capacitive discharge

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2016-11-01

    A simplified model is established to estimate the jet exit density variation of a plasma synthetic jet actuator (PSJA) driven by a capacitive arc discharge. This model, in conjunction with phase-locked planar particle imaging velocimetry (PIV) measurements, enables the calculation of jet mechanical energy for different operating conditions. Discharge energy is directly calculated based on waveforms of applied voltage and discharge current. The ratio of jet mechanical energy to discharge energy provides the absolute electro-mechanical efficiency. Results indicate that PSJA is characterized by a rather low electro-mechanical efficiency in the order of 0.1%, while the maximum observed value under tested conditions is 0.22%. Electro-mechanical efficiency improves significantly with nondimensional energy deposition, and appears largely independent of jet exit diameter.

  20. Robust vibration control at critical resonant modes using indirect-driven self-sensing actuation in mechatronic systems.

    PubMed

    Hong, Fan; Pang, Chee Khiang

    2012-11-01

    This paper presents an improved indirect-driven self-sensing actuation circuit for robust vibration control of piezoelectrically-actuated flexible structures in mechatronic systems. The circuit acts as a high-pass filter and provides better self-sensing strain signals with wider sensing bandwidth and higher signal-to-noise ratio. An adaptive non-model-based control is used to compensate for the structural vibrations using the strain signals from the circuit. The proposed scheme is implemented in a PZT-actuated suspension of a commercial dual-stage hard disk drive. Experimental results show improvements of 50% and 75% in the vibration suppression at 5.4kHz and 21kHz respectively, compared to the conventional PI control.

  1. Auto-Gopher: a wireline deep sampler driven by piezoelectric percussive actuator and EM rotary motor

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Ressa, Aaron; Lee, Hyeong Jae; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2013-04-01

    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  2. Water Spray Flow Characteristics Under Synthetic Jet Driven By a Piezoelectric Actuator

    NASA Astrophysics Data System (ADS)

    Marchitto, L.; Valentino, G.; Chiatto, M.; de Luca, L.

    2017-01-01

    Particle Image Velocimetry (PIV) and Phase Doppler Anemometry (PDA) have been applied to investigate the droplets size and velocity distribution of a water spray, under the control of a piezo-element driven synthetic jet (SJ). Tests were carried out under atmospheric conditions within a chamber test rig equipped with optical accesses at two injection pressures, namely 5 and 10 MPa, exploring the variation of the main spray parameters caused by the synthetic jet perturbations. The SJ orifice has been placed at 45° with respect to the water spray axis; the nozzle body has been moved on its own axis and three different nozzle quotes were tested. PIV measurements have been averaged on 300 trials whereas about 105 samples have been acquired for the PDA tests. For each operative condition, the influence region of the SJ device on the spray has been computed through a T-Test algorithm. The synthetic jet locally interacts with the spray, energizing the region downstream the impact. The effect of the actuator decreases at higher injection pressures and moving the impact region upwards. Droplets coalescence can be detected along the synthetic jet axis, while no significant variations are observed along a direction orthogonal to it.

  3. Combining Model-Based and Feature-Driven Diagnosis Approaches - A Case Study on Electromechanical Actuators

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Roychoudhury, Indranil; Balaban, Edward; Saxena, Abhinav

    2010-01-01

    Model-based diagnosis typically uses analytical redundancy to compare predictions from a model against observations from the system being diagnosed. However this approach does not work very well when it is not feasible to create analytic relations describing all the observed data, e.g., for vibration data which is usually sampled at very high rates and requires very detailed finite element models to describe its behavior. In such cases, features (in time and frequency domains) that contain diagnostic information are extracted from the data. Since this is a computationally intensive process, it is not efficient to extract all the features all the time. In this paper we present an approach that combines the analytic model-based and feature-driven diagnosis approaches. The analytic approach is used to reduce the set of possible faults and then features are chosen to best distinguish among the remaining faults. We describe an implementation of this approach on the Flyable Electro-mechanical Actuator (FLEA) test bed.

  4. Auto-Gopher: A Wireline Deep Sampler Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Ressa, Aaron; Jae Lee, Hyeong; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2013-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  5. Research on giant magnetostrictive actuator online nonlinear modeling based on data driven principle with grating sensing technique

    NASA Astrophysics Data System (ADS)

    Han, Ping

    2017-01-01

    A novel Giant Magnetostrictive Actuator (GMA) experimental system with Fiber Bragg Grating (FBG) sensing technique and its modeling method based on data driven principle are proposed. The FBG sensors are adopted to gather the multi-physics fields' status data of GMA considering the strong nonlinearity of the Giant Magnetostrictive Material and GMA micro-actuated structure. The feedback features are obtained from the raw dynamic status data, which are preprocessed by data fill and abnormal value detection algorithms. Correspondingly the Least Squares Support Vector Machine method is utilized to realize GMA online nonlinear modeling with data driven principle. The model performance and its relative algorithms are experimentally evaluated. The model can regularly run in the frequency range from 10 to 1000 Hz and temperature range from 20 to 100 °C with the minimum prediction error stable in the range from -1.2% to 1.1%.

  6. Resistor-damped electromechanical lever blocks

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.; Kjelberg, Ivar

    1998-06-01

    The paper presents an innovative technical solution which provides a combined damping and isolation interface with the appropriate transmissibility characteristics between a vibrating base and a sensitive payload, typically an optical terminal/telescope. The novelty of the solution is primarily found in the implementation of uncoupling and magnification of the incurred vibrations by means of flexures combined with the implementation of energy dissipation by means of a linear electro-magnetic actuator to constitute a passive integrated resistor-damped electromechanic lever block. By means of frictionless flexible lever systems, the amplitude of the payload vibrations is adapted to the optimal range of the actuator with a magnification by a factor ranging typically between 10 and 30. Passive viscous damping is obtained by simply short-circuiting the electro-magnetic motor and can be adapted by setting the impedance of the shorting connection. The desired stiffness is provided by the passive springs of the elastic motor suspension and by the stiffness of the lever flexure blades. The mobile mass of the motors also provide a reaction mass which, like damping and stiffness, is amplified by the square of the lever factor. A theoretical model of resistor-damped electromechanical lever blocks has been established. A particular property is it the good attenuation of excited vibrations only over a set frequency range. Above this range the interface properties rejoin the ones of a rigid connection. This performance makes this type of isolators particularly suitable for integration into multi-layer vibration control systems where sensitive equipment is protected by a mix of passive and active damping/isolation devices acting optimally at different frequency ranges. Experiments performed with a dummy load (80 Kg) representative of a satellite based optical terminal demonstrated the efficiency of the system in protecting the payload by passive damping for vibration excitations

  7. CNT/conductive polymer composites for low-voltage driven EAP actuators

    NASA Astrophysics Data System (ADS)

    Sugino, Takushi; Shibata, Yoshiyuki; Kiyohara, Kenji; Asaka, Kinji

    2012-04-01

    We investigated the effects of additives incorporated into the electrode layer in order to improve the actuation performance of dry-type carbon nanotube (CNT) actuators. Especially, the addition of conductive nano-particles such as polyaniline (PANI) and polypyrrole (PPy) improves actuation performance very much rather than the addition of nonconductive nano-particles such as mesoprous silica (MCM-41 type). In this paper, we studied on the influences of applied voltage, species of ionic liquid (IL), amounts of IL, thickness of actuator to optimize actuation performance. Imidazolium type ionic liquids with three different anions, that is, 1-ethyl-3-methylimidazolium (EMI) as a cation and tetrafluoroborate (BF4), trifluoromethanesulfonate (OTf), and bis(trifluoromethanesulfonyl)imide (TFSI) as anions were chosen in this study. EMIBF4 is the most suitable IL for our CNT actuator including PANI in the electrode layer. We tuned the amount of IL and the thickness of actuator. As a result, the strain was improved to be 2.2% at 0.1 Hz by applying the voltage of 2.5 V. This improved value is almost 2 times larger than our previous results. We also show the potential of improved CNT actuators for a thin and light Braille display.

  8. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Dunlop, John W. C.; Qiu, Xunlin; Huang, Feihe; Zhang, Zibin; Heyda, Jan; Dzubiella, Joachim; Antonietti, Markus; Yuan, Jiayin

    2014-07-01

    Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 °C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 °C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn ‘inert’ objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials.

  9. Lightweight Seat Lever Operation Characteristics

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar

    1999-01-01

    In 1999, a Shuttle crew member was unable to operate the backrest lever for the lightweight seat in microgravity. It is essential that crew members can adjust this backrest lever, which is titled forward during launch and then moved backward upon reaching orbit. This adjustment is needed to cushion the crew members during an inadvertent crash landing situation. JSCs Anthropometry and Biomechanics Facility (ABF) performed an evaluation of the seat controls and provided recommendations on whether the seat lever positions and operations should be modified. The original Shuttle seats were replaced with new lightweight seats whose controls were moved, with one control at the front and the other at the back. The ABF designed a 12-person experiment to investigate the amount of pull force exerted by suited subjects, when controls were placed in the front and back of the lightweight seat. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results showed that, in general, the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. The pull forces on the front lever diminished about 50% when subjects wore pressurized suits. Based on these results from this study, it was recommended that the levers should not be located in the back position. Further investigation is needed to determine whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.

  10. One-volt-driven superfast polymer actuators based on single-ion conductors.

    PubMed

    Kim, Onnuri; Kim, Hoon; Choi, U Hyeok; Park, Moon Jeong

    2016-11-18

    The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future.

  11. One-volt-driven superfast polymer actuators based on single-ion conductors

    PubMed Central

    Kim, Onnuri; Kim, Hoon; Choi, U. Hyeok; Park, Moon Jeong

    2016-01-01

    The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future. PMID:27857067

  12. Fabrication of a bubble-driven arrayed actuator for a tactile display

    NASA Astrophysics Data System (ADS)

    Shikida, Mitsuhiro; Imamura, Tsubasa; Ukai, Shinji; Miyaji, Takaaki; Sato, Kazuo

    2008-06-01

    A chip-sized arrayed actuator device has been developed for application to a tactile display. Each actuator uses a liquid-vapour phase change to drive a microneedle that stimulates receptors in a finger in contact with the array. The actuators have a flexible diaphragm structure and a bottom plate bonded together to create a cavity between them. A microneedle and a microheater are formed on the diaphragm and plate of each actuator, respectively. The sealed cavity is filled with an operating liquid. Activating the heater and generating bubbles, which is similar to the process of a thermal ink jet, increase the pressure in the cavity. As a result, the flexible membrane deforms and it drives the needle upwards to stimulate receptors. Microelectromechanical systems technologies are used to fabricate the three components of the actuators, which are manually assembled to form a 3 × 3 arrayed actuator device. The total size of the device is 15 × 15 × 1 mm. The device performance is experimentally evaluated and a large needle displacement (61 µm) is obtained with an input energy of 457 mJ.

  13. One-volt-driven superfast polymer actuators based on single-ion conductors

    NASA Astrophysics Data System (ADS)

    Kim, Onnuri; Kim, Hoon; Choi, U. Hyeok; Park, Moon Jeong

    2016-11-01

    The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future.

  14. Double chamber ventricular assist device with a roller screw linear actuator driven by left and right latissimus dorsi muscles.

    PubMed

    Takatani, S; Takami, Y; Nakazawa, T; Jacobs, G; Nose, Y

    1995-01-01

    A double chamber ventricular assist device (VAD) with a roller screw linear muscle actuator (RSLMA) driven by the left and right latissimus dorsi muscles was developed. The inflow port of each chamber was connected to form the compound inflow port, and the outflow ports were connected to form the compound outflow port. The advantages of this system include 1) the contraction of each muscle contributes to ejection from each ventricle into the common outflow port, thus doubling the net outflow; 2) through proper adjustment of muscle length, the preload to each muscle can be optimized to yield the maximum muscle force; 3) muscle can be stimulated at a lower rate to reduce fatigue and to optimize muscle performance; and 4) the compliance chamber needed in the implantable VAD system is not required with this system. In vitro evaluation in the mock loop with the human arm actuating the RSLMA revealed that the double chamber VAD can provide pump flows of 2-4 L/min against an afterload of 100 mmHg at a stimulation rate of 35-50 beats per minute. The power requirement for each muscle ranged from 2.5 to 3 W at a muscle stroke length of 4 cm. These results verify that the double chamber VAD with the RSLMA driven by the left and right latissimus dorsi muscles can meet the design requirements of a muscle driven VAD to assist the left heart.

  15. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  16. Modeling and optimization of a novel two-axis mirror-scanning mechanism driven by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Jing, Zijian; Xu, Minglong; Feng, Bo

    2015-02-01

    Mirror-scanning mechanisms are a key component in optical systems for diverse applications. However, the applications of existing piezoelectric scanners are limited due to their small angular travels. To overcome this problem, a novel two-axis mirror-scanning mechanism, which consists of a two-axis tip-tilt flexure mechanism and a set of piezoelectric actuators, is proposed in this paper. The focus of this research is on the design, theoretical modeling, and optimization of the piezoelectric-driven mechanism, with the goal of achieving large angular travels in a compact size. The design of the two-axis tip-tilt flexure mechanism is based on two nonuniform beams, which translate the limited linear output displacements of the piezoelectric actuators into large output angles. To exactly predict the angular travels, we built a voltage-angle model that characterizes the relationship between the input voltages to the piezoelectric actuators and the output angles of the piezoelectric-driven mechanism. Using this analytical model, the optimization is performed to improve the angular travels. A prototype of the mirror-scanning mechanism is fabricated based on the optimization results, and experiments are implemented to test the two-axis output angles. The experimental result shows that the angular travels of the scanner achieve more than 50 mrad, and the error between the analytical model and the experiment is about 11%. This error is much smaller than the error for the model built using the previous method because the influence of the stiffness of the mechanical structure on the deformation of the piezoelectric stack is considered in the voltage-angle model.

  17. Design and performance evaluation of a new jetting dispenser system using two piezostack actuators

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Hong, Seung-Min; Choi, Minkyu; Choi, Seung-Bok

    2015-01-01

    This paper presents a new jetting dispenser system which is adaptable to various packaging processes such as light emitting diode packaging and flip chip packaging. The proposed dispenser system is driven by piezostack actuators and a lever-hinge mechanism. In order to improve jetting performances such as accurate dispensed amount and adaptability to high viscosity fluid, two piezostack actuators are used. By activating the two actuators dually, the angular displacement of the lever can be controlled to produce a required motion of the needle. Firstly, the configuration and working principles of the proposed jetting system are explained, the design of the dispenser is then conducted and significant geometric dimensions of the dispenser are presented. In the design process, several operational requirements such as the maximum needle stroke, operational frequency, and amplification ratio of the lever-hinge are considered. The principal design parameters of the jetting dispenser system are determined from static and modal analysis using the finite element analysis. After obtaining the dimensional characteristics, the control logic for the dispensing operation is explained using a feed-forward controller. The piezostack-driven jetting dispenser system and control devices are then fabricated to evaluate the dispenser performance. It is shown experimentally that by changing the input voltage conditions, the amount of fluid dispensed by the proposed jetting system can be effectively controlled to achieve the desired jetting performance.

  18. Multiplying optical tweezers force using a micro-lever.

    PubMed

    Lin, Chih-Lang; Lee, Yi-Hsiung; Lin, Chin-Te; Liu, Yi-Jui; Hwang, Jiann-Lih; Chung, Tien-Tung; Baldeck, Patrice L

    2011-10-10

    This study presents a photo-driven micro-lever fabricated to multiply optical forces using the two-photon polymerization 3D-microfabrication technique. The micro-lever is a second class lever comprising an optical trapping sphere, a beam, and a pivot. A micro-spring is placed between the short and long arms to characterize the induced force. This design enables precise manipulation of the micro-lever by optical tweezers at the micron scale. Under optical dragging, the sphere placed on the lever beam moves, resulting in torque that induces related force on the spring. The optical force applied at the sphere is approximately 100 to 300 pN, with a laser power of 100 to 300 mW. In this study, the optical tweezers drives the micro-lever successfully. The relationship between the optical force and the spring constant can be determined by using the principle of leverage. The arm ratio design developed in this study multiplies the applied optical force by 9. The experimental results are in good agreement with the simulation of spring property.

  19. The characteristics of variable speed inchworm stage using lever mechanism by different materials.

    PubMed

    Kim, Yong Woo; Choi, Soo Chang; Park, Jeong Woo; Jung, Yoong Ho; Lee, Deug Woo

    2008-11-01

    Currently, piezoelectric actuators which have attractive features such as high output force, high positioning resolution, high stiffness and quick response have been used in many ultra precision stages. But their positioning ranges are very small. This very limited displacement severely restricts the actuator's immediate implementation for long-range positioning. This paper shows a variable speed inchworm type stage with hinge structures as lever mechanism for nanometer resolution with large dynamic range and studies on characteristics of it. The inchworm stage has hinge structure levers which can shift their pivot position. And it can amplify/reduce output displacement using mechanical advantage with a lever. Especially we suggest guide-line of design according this work that was performed using different materials of stages (Aluminium and Stainless Steel). As the results of simulations, the larger lever ratio is, the smaller stiffness of lever portion is. As the results of experiments, when we input voltage into the inchworm stage, output displacement of each lever is different according to material. Hysteresis of stage could also present that grow according as lever rate rises and stiffness of material. In the case of feeding speed, Aluminium with less hardness showed excellent responsiveness, hence excellent feed performance results.

  20. Twistable and bendable actuator: a CNT/polymer sandwich structure driven by thermal gradient.

    PubMed

    Seo, Dong Kyun; Kang, Tae June; Kim, Dae Weon; Kim, Yong Hyup

    2012-02-24

    We demonstrate a novel configuration of an electrothermal actuator (ETA), which is based on a polydimethylsiloxane (PDMS) slab sandwiched by upper and lower active layers of CNT-PDMS composite. When only one active layer of a single sandwich structure ETA is heated and the other is not, there exists a thermal gradient in the direction of the slab thickness, resulting in bending motion toward the unheated side. Moreover, a dual sandwich structure ETA, consisting of two parallel assembled sandwich structures on the same body, has the unique ability to act with a twisting motion as the two ETAs bend in opposite directions. We expect the advent of the bendable and twistable actuator to break new ground in ETAs.

  1. Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles

    PubMed Central

    Lee, Eunsu; Kim, Dowan; Kim, Haneul; Yoon, Jinhwan

    2015-01-01

    To overcome the slow kinetics of the volume phase transition of stimuli-responsive hydrogels as platforms for soft actuators, thermally responsive comb-type hydrogels were prepared using synthesized poly(N-isopropylacrylamide) macromonomers bearing graft chains. Fast responding light-responsive hydrogels were fabricated by combining a comb-type hydrogel matrix with photothermal magnetite nanoparticles (MNP). The MNPs dispersed in the matrix provide heat to stimulate the volume change of the hydrogel matrix by converting absorbed visible light to thermal energy. In this process, the comb-type hydrogel matrix exhibited a rapid response due to the free, mobile grafted chains. The comb-type hydrogel exhibited significantly enhanced light-induced volume shrinkage and rapid recovery. The comb-type hydrogels containing MNP were successfully used to fabricate a bilayer-type photo-actuator with fast bending motion. PMID:26459918

  2. Analysis of suitable geometrical parameters for designing a tendon-driven under-actuated mechanical finger

    NASA Astrophysics Data System (ADS)

    Penta, Francesco; Rossi, Cesare; Savino, Sergio

    2016-06-01

    This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendon. The considered parameters are the tendon guide positions with respect to the hinges. By applying such an optimization, the correct kinematical and dynamical behavior of the closing cycle of the finger can be obtained. The results of this study are useful for avoiding the snapthrough and the single joint hyperflexion, which are the two breakdowns most frequently observed during experimentation on prototypes. Diagrams are established to identify the optimum values for the tendon guides position of a finger with specified dimensions. The findings of this study can serve as guide for future finger design.

  3. Twistable and bendable actuator: a CNT/polymer sandwich structure driven by thermal gradient

    NASA Astrophysics Data System (ADS)

    Seo, Dong Kyun; Kang, Tae June; Kim, Dae Weon; Hyup Kim, Yong

    2012-02-01

    We demonstrate a novel configuration of an electrothermal actuator (ETA), which is based on a polydimethylsiloxane (PDMS) slab sandwiched by upper and lower active layers of CNT-PDMS composite. When only one active layer of a single sandwich structure ETA is heated and the other is not, there exists a thermal gradient in the direction of the slab thickness, resulting in bending motion toward the unheated side. Moreover, a dual sandwich structure ETA, consisting of two parallel assembled sandwich structures on the same body, has the unique ability to act with a twisting motion as the two ETAs bend in opposite directions. We expect the advent of the bendable and twistable actuator to break new ground in ETAs.

  4. The development of electrically driven mechanochemical actuators that act as artificial muscle

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.

    2009-03-01

    Ras Labs, LLC, is committed to producing a variety of electroactive smart materials and actuators that are strong, resilient, and respond quickly and repeatedly to electrical stimuli over a wide temperature range. Cryogenic and high temperature experiments (4.22 K to 137°C) were performed on the contractile electroactive materials developed by Ras Labs with very favorable results. One of the biggest challenges in developing these actuators, however, is the interface between the embedded electrodes and the electroactive material because of the pronounced movement of the electroactive material. If the electroactive material contracts very quickly, the electrode is often left behind and thus becomes detached. Preliminary experiments explored the bonding between these electroactive materials with plasma treated metals provided by the Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University. The results were encouraging, with much better bond strengths in the plasma treated metals compared to untreated controls. Plasma treatments, and other treatments to non-corrosive metal leads, were further investigated in order to improve the attachment of the embedded electrodes to the electroactive material. Surface water drop contact angle tests, modified T-peel testing, and mechanical testing were used to test metal surfaces and metal-polymer interfaces for stainless steel and titanium. X-ray photoelectron spectroscopy (XPS) was used to determine the atomic surface composition of stainless steel and titanium after various plasma treatments. Mode of failure after T-peel testing and mechanical testing was determined using scanning electron microscopy (SEM) and stereo microscopy. Nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and

  5. Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents

    SciTech Connect

    Longtin, Jon

    2016-02-08

    The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system, then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other

  6. Design and performance test of a two-axis fast steering mirror driven by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Fang, Chu; Guo, Jin; Yang, Guo-qing; Jiang, Zhen-hua; Xu, Xin-hang; Wang, Ting-feng

    2016-09-01

    A novel design of a two-axis fast steering mirror (FSM) with piezoelectric actuators is proposed for incoherent laser beam combination. The mechanical performance of the FSM is tested. The results show that the tilting range of the mirror is about 4 mrad, and the 1st-order resonance frequency is about 250 Hz. A self-designed grating encoder is taken as the sensor, which ensures the optimal precision of 10 μrad. The novel mechanical design can meet the requirement of engineering in incoherent laser beam combination.

  7. Separation Control with Nanosecond Pulse Driven Dielectric Barrier Discharge Plasma Actuators

    DTIC Science & Technology

    2011-01-01

    Institute of Aeronautics and Astronautics 41 5Forte, M ., Jolibois, J., Pons, J., Moreau, E., Touchard, G . and Cazalens, M ., "Optimization of a...of Applied Physics, Vol. 103, No. 053305, 2008, pp. 1-13. 11Opaits, D., Likhanskii, A., Neretti, G ., Zaidi, S., Shneider, M ., Miles, R. and Macheret...control is investigated experimentally on an airfoil leading edge up to Re=1x106 (62 m /s). Unlike AC- DBDs, the nanosecond pulse driven DBD plasma

  8. ELECTRICALLY ACTUATED, PRESSURE-DRIVEN LIQUID CHROMATOGRAPHY SEPARATIONS IN MICROFABRICATED DEVICES

    PubMed Central

    Fuentes, Hernan V.; Woolley, Adam T.

    2012-01-01

    Electrolysis-based micropumps integrated with microfluidic channels in micromachined glass substrates are presented. Photolithography combined with wet chemical etching and thermal bonding enabled the fabrication of multi-layer devices containing electrically actuated micropumps interfaced with sample and mobile phase reservoirs. A stationary phase was deposited on the microchannel walls by coating with 10% (w/w) chlorodimethyloctadecylsilane in toluene. Pressure-balanced injection was implemented by controlling the electrolysis time and voltage applied in the two independent micropumps. Current fluctuations in the micropumps due to the stochastic formation of bubbles on the electrode surfaces were determined to be the main cause of variation between separations. On-chip electrochemical pumping enabled the loading of pL samples with no dead volume between injection and separation. A mobile phase composed of 70% acetonitrile and 30% 50 mM acetate buffer (pH 5.45) was used for the chromatographic separation of three fluorescently labeled amino acids in <40 s with an efficiency of >3000 theoretical plates in a 2.5-cm-long channel. Our results demonstrate the potential of electrochemical micropumps integrated with microchannels to perform rapid chromatographic separations in a microfabricated platform. Importantly, these devices represent a significant step toward the development of miniaturized and fully integrated liquid chromatography systems. PMID:17960281

  9. Piezoelectrically Actuated Shutter for High Vacuum

    NASA Technical Reports Server (NTRS)

    Thompson, Robert; Klose, Gerhard

    2003-01-01

    A piezoelectrically actuated shutter is undergoing development for use in experiments on laser cooling of atoms. The shutter is required to be compatible with ultrahigh vacuum [pressure of 10(exp -9) torr (.1.3 x 10(exp -7) Pa) or less] and to be capable of performing reliably in the vacuum for at least one year. In operation, the shutter would enable the collection and launch of successive samples of cold atoms and would enable the interrogation of the immediately preceding sample while preventing disturbance of the atoms of that sample by light from the collection region. A major constraint is imposed on the design and operation of the shutter by a requirement that it not generate a magnetic field large enough to perturb an atomic clock. An electromagnetically actuated shutter could satisfy all requirements except this one. Hence, it was decided to use piezoelectric instead of electromagnetic actuation. The shutter (see figure) includes two commercial piezoelectrically driven flexure stages that produce a travel of 0.5 mm. Levers mechanically amplify the travel to the required level of 1 cm. Problems that remained to be addressed at the time of reporting the information for this article included lifetime testing and correction of a tendency for shutter blades to bounce open.

  10. Deep drilling and sampling via the wireline auto-gopher driven by piezoelectric percussive actuator and EM rotary motor

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2012-04-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars, Europa, and Enceladus. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. The developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline drill that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism, which is driven by a piezoelectric stack, demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with the objective of reaching as deep as 3 to 5 meters in tufa formation.

  11. Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi

    2012-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.

  12. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  13. Lever arm dysfunction in cerebral palsy gait.

    PubMed

    Theologis, Tim

    2013-11-01

    Skeletal structures act as lever arms during walking. Muscle activity and the ground reaction against gravity exert forces on the skeleton, which generate torque (moments) around joints. These lead to the sequence of movements which form normal human gait. Skeletal deformities in cerebral palsy (CP) affect the function of bones as lever arms and compromise gait. Lever arm dysfunction should be carefully considered when contemplating treatment to improve gait in children with CP.

  14. A wheelchair with lever propulsion control for climbing up and down stairs.

    PubMed

    Sasaki, Kai; Eguchi, Yosuke; Suzuki, Kenji

    2016-08-01

    This study proposes a novel stair-climbing wheelchair based on lever propulsion control using the human upper body. Wheelchairs are widely used as supporting locomotion devices for people with acquired lower limb disabilities. However, steps and stairs are critical obstacles to locomotion, which restrict their activities when using wheelchairs. Previous research focused on power-assisted, stair-climbing wheelchairs, which were large and heavy due to its large actuators and mechanisms. In the previous research, we proposed a wheelchair with lever propulsion mechanism and presented its feasibility of climbing up the stairs. The developed stair-climbing wheelchair consists of manual wheels with casters for planar locomotion and a rotary-leg mechanism based on lever propulsion that is capable of climbing up stairs. The wheelchair also has a passive mechanism powered by gas springs for posture transition to shift the user's center of gravity between the desired positions for planar locomotion and stair-climbing. In this paper, we present an advanced study on both climbing up and going down using lever propulsion control by the user's upper body motion. For climbing down the stairs, we reassembled one-way clutches used for the rotary-leg mechanism to help a user climb down the stairs through lever operation. We also equipped the wheelchair with sufficient torque dampers. The frontal wheels were fixed while climbing down the stairs to ensure safety. Relevant experiments were then performed to investigate its performance and verify that the wheelchair users can operate the proposed lever propulsion mechanism.

  15. Design and fabrication of a novel XYθz monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators

    NASA Astrophysics Data System (ADS)

    AbuZaiter, Alaa; Faris Hikmat, Omer; Nafea, Marwan; Ali, Mohamed Sultan Mohamed

    2016-10-01

    This paper reports a new shape-memory-alloy (SMA) micro-positioning stage. The device has been monolithically micro-machined with a single fabrication step. The design comprises a moving stage that is manipulated by six SMA planar springs actuators to generate movements with three degrees of freedom. The overall design is square in shape and has dimensions of 12 mm × 12 mm × 0.25 mm. Localized thermomechanical training for shape setting of SMA planar springs was performed using electrical current induced heating at restrained condition to individually train each of the six actuators to memorize a predetermined shape. For actuation, each SMA actuator is individually driven using Joule heating induced by an electrical current. The current flow is controlled by an external pulse-width modulation signal. The thermal response and heat distribution were simulated and experimentally verified using infrared imaging. The micro-positioning results indicated maximum stage movements of 1.2 and 1.6 mm along the x- and y-directions, respectively. Rotational movements were also demonstrated with a total range of 20°. The developed micro-positioning device has been successfully used to move a small object for microscopic scanning applications.

  16. Lever-Arm Pin Puller

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1994-01-01

    Mechanism holds retaining pins in place except when actuated to release pins quickly. Mechanism is integral part of cover designed to be removed with simple downward motion of hand. Before removal, mechanism secures cover in place. After removal, mechanism holds retaining pins for reuse.

  17. Photoresponsive Liquid Crystal Elastomers as Feedback Controlled Light-driven Actuators - Theory, Real-time Behaviour, Limitations

    NASA Astrophysics Data System (ADS)

    Lippenberger, Michael; Dengler, Philipp; Wandinger, Andreas; Schmidt, Michael

    Liquid Crystal Elastomers constitute a class of intelligent materials and actuators. External stimulation induces an internal phase-change that results in a mechanical motion of the Liquid Crystal Elastomer. External stimuli can be humidity, thermal energy but also radiation with an appropriate wavelength. In this paper we use the photomechanic response of Liquid Crystal Elastomers as a driving force for a controlled actuator, operating in feedback constellation with a tuned cascade-compensator. To accomplish this, we go the methodical route of dynamic system investigation consisting of an analysis of the phenomenological system-properties, the identification of the dynamic behaviour and the overall synthesis of the feedback-control loop. Since we also take practical considerations into account, we present a coordinated hard- and software concept to realize the application of the Liquid Crystal Elastomer as a controlled actuator. An application guide complements the paper and discusses the limits of this class of actuators.

  18. 14. INTERIOR OF MAIN DECKNOTE LEVERS FROM CEILING CONTROLLED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF MAIN DECK--NOTE LEVERS FROM CEILING CONTROLLED BY OPERATOR. LEFT HAND LEVER CONTROLLED THROTTLE, RIGHT HAND LEVER CONTROLLED SHOT GUN SWINGER. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA

  19. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry F.; Likhanskii, Alexandre V.; Neretti, Gabriele; Zaidi, Sohail; Shneider, Mikhail N.; Miles, Richard B.; Macheret, Sergey O.

    2008-08-01

    Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.

  20. Optical lever calibration in atomic force microscope with a mechanical lever.

    PubMed

    Xie, Hui; Vitard, Julien; Haliyo, Sinan; Régnier, Stéphane

    2008-09-01

    A novel method that uses a small mechanical lever has been developed to directly calibrate the lateral sensitivity of the optical lever in the atomic force microscope (AFM). The mechanical lever can convert the translation into a nanoscale rotation angle with a flexible hinge that provides an accurate conversion between the photodiode voltage output and torsional angle of a cantilever. During the calibration, the cantilever is mounted on a holder attached on the lever, which brings the torsional axis of the cantilever and rotation axis of the lever into line. By making use of its nanomotion on the Z-axis and using an external motion on the barrier, this device can complete the local and full-range lateral sensitivity calibrations of the optical lever without modifying the actual AFM or the cantilevers.

  1. Measuring How Muscles Function in Levers.

    ERIC Educational Resources Information Center

    DeMont, M. Edwin

    1996-01-01

    Presents an exercise that examines the lever systems that function in the chelae of the American lobster. Involves calculating the mechanical and distance advantages of the crusher and pincer chelae and estimating the actual forces generated by the contraction of the muscles and the magnitude of the forces transmitted around the fulcrum to the tip…

  2. Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator.

    PubMed

    Aminzahed, Iman; Mashhadi, Mahmoud Mosavi; Sereshk, Mohammad Reza Vaziri

    2017-02-01

    Micro forming is a manufacturing process to fabricate micro parts with high quality and a cost effective manner. Deep drawing could be a favorable method for production of complicated parts in macro and micro sizes. In this paper piezoelectric actuator is used as a novel approach in the field of micro manufacturing. Also, in current work, investigations are conducted with four rectangular punches and blanks with various thicknesses. Blank holder pressure effects on thickness distributions, punch force, and springback are studied. According to the results of this work, increasing of blank holder pressure in scaled deep drawing, in contrast to thickness of drawn part, leads to decrease in the punch forces and springback. Furthermore, it is shown that in micro deep drawing, the effects of holder pressure on mentioned parameters can be ignored.

  3. Voltage-Driven In-Plane Magnetization Easy Axis Switching in FeNi/Piezoelectric Actuator Hybrid Structure

    NASA Astrophysics Data System (ADS)

    Xi, Li; Guo, Xiaobin; Wang, Zhen; Li, Yue; Yao, Yuelin; Zuo, Yalu; Xue, Desheng

    2013-01-01

    FeNi thin films with the in-plane uniaxial anisotropy were fabricated by direct current magnetron sputtering. An FeNi/piezoelectric actuator hybrid structure was used to investigate the voltage-controlled magnetization switching. A theoretical calculation was performed to provide a simplified vision of the magnetoelastic contribution to the magnetic anisotropy. Magneto-optical Kerr effect measurements were performed and the rotation of the magnetization easy axis in the FeNi film upon application of a voltage with or without the application of a magnetic field was demonstrated. A film-thickness dependent in-plane magnetization easy axis rotation angle was observed and explained by the variation of the magnetostriction.

  4. A rapid infusion pump driven by micro electromagnetic linear actuation for pre-hospital intravenous fluid administration.

    PubMed

    Zhao, Peng; Chong, Yinbao; Zhao, An; Lang, Lang; Wang, Qing; Liu, Jiuling

    2015-02-01

    A rapid infusion pump with a maximum flow rate of 6 L/h was designed experimentally using a micro electromagnetic linear actuator, and its effectiveness was evaluated by comparing with that of a commercial Power Infuser under preset flow rates of 0.2, 2, and 6 L/h. The flow rate, air detection sensitivity, occlusion response time, quantitative determination of hemolysis, and power consumption of the infusion devices were extensively investigated using statistical analysis methods (p < 0.05). The experimental results revealed that the flow rate of the designed infusion pump was more stable and accurate, and the hemolysis was significantly less than that of the Power Infuser. The air detection sensitivity and the power consumption could be comparable to that of the Power Infuser except the occlusion response time. The favorable performance made the designed infusion pump a potential candidate for applications in pre-hospital fluid administration.

  5. DETAIL OF STANDARD INTERLOCKING MACHINE OPERATING LEVERS. LOCKING MECHANISM IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF STANDARD INTERLOCKING MACHINE OPERATING LEVERS. LOCKING MECHANISM IS BELOW FLOOR. BOXES BEHIND SOME LEVERS HOUSE ELECTRICAL CONTACTS FOR SIGNALS. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  6. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  7. Power lever apparatus for a turbine engine

    SciTech Connect

    McCombs Jr., H. L.

    1985-05-21

    In a turbine engine having a compressor with a bleed valve and a variable geometry apparatus is responsive to an operational control member for regulating the flow rate of fuel supplied the turbine engine as a function of atmospheric pressure and the temperature of air supplied to the compressor corresponding to movement of a power lever by an operator to a desired operation of the turbine engine. The power lever has an indicator member fluidically connected to a follower member linked to the operational control member. The fluidic connection is responsive to operational parameters of the turbine engine and limits the rotational input to the follower member when the rate of fuel flow could cause stalling and the development of an unacceptable operating temperature or overspeed condition in the turbine engine.

  8. Engineering a lever into the kinesin neck.

    PubMed

    Mazumdar, M; Cross, R A

    1998-11-06

    To probe for a lever arm action in the kinesin stepping mechanism, we engineered a rodlike extension piece into the tail of rat kinesin at various points close to the head-tail junction and measured its effects on the temperature dependence of velocity in microtubule gliding assays. The insert comprised two contiguous alpha-actinin triple-coil repeats and was predicted to fold into a stiff rodlike module about 11 nm long. The effects of this module were greater the closer it was placed to the head-tail junction. When inserted distal to the head-tail junction, at Asn401 in the dimeric K partial differential401GST, the insert had no effect. When inserted closer to the heads at Val376 into K partial differential376GST, the insert slowed progress below 22 degreesC but accelerated progress to approximately 125% of wild type above 22 degreesC. The most dramatic effect of the synthetic lever occurred when it was inserted very close to the head-neck junction, at Glu340 into the single-headed construct K partial differential340GST. This construct was immotile without the insert, but motile with it, at about 30% of the velocity of the dimeric control. The alpha-actinin module thus confers some gain-of-function when inserted close to the head-neck junction but not when placed distal to it. The data exclude the presence of a lever arm C-terminal to Val376 in the kinesin tail but suggest that a short-throw lever arm may be present, N-terminal to Val376 and contiguous with the head-neck junction at Ala339.

  9. Linear Actuator Has Long Stroke and High Resolution

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Moore, Donald M.; Braun, David F.; Koenig, John S.; Hankins, Steve M.

    2009-01-01

    The term precision linear actuator, direct drive ( PLADD ) refers to a robust linear actuator designed to be capable of repeatedly performing, over a lifetime of the order of 5 to 10 years, positioning maneuvers that include, variously, submicron increments or slews of the order of a centimeter. The PLADD is capable of both long stroke (120 mm) and high resolution (repeatable increments of 20 nm). Unlike precise linear actuators of prior design, the PLADD contains no gears, levers, or hydraulic converters. The PLADD, now at the prototype stage of development, is intended for original use as a coarse-positioning actuator in a spaceborne interferometer. The PLADD could also be adapted to terrestrial applications in which there are requirements for long stroke and high resolution: potential applications include medical imaging and fabrication of semiconductor devices. The PLADD (see figure) includes a commercially available ball-screw actuator driven directly by a commercially available three-phase brushless DC motor. The ball-screw actuator comprises a spring-preloaded ball nut on a ball screw that is restrained against rotation as described below. The motor is coupled directly (that is, without an intervening gear train) to a drive link that, in turn, is coupled to the ball nut. By eliminating the gear train, the direct-drive design eliminates the complexity, backlash, and potential for misalignment associated with a gear train. To prevent inadvertent movement, there is a brake that includes flexured levers compressed against the drive link by preload springs. This is a power-off brake: There are also piezoelectric stacks that can be activated to oppose the springs and push the levers away from the drive link. Hence, power must be applied to the piezoelectric stacks to release the drive link from braking. To help ensure long operational life, all of the mechanical drive components are immersed in an oil bath within hermetically sealed bellows. The outer end of the

  10. Fabrication and characterization of solid-state, conducting polymer actuators

    SciTech Connect

    Xie, J.; Sansinena, J. M.; Gao, J.; Wang, H. L.

    2004-01-01

    We report here the fabrication and characterization of solid-state, conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhere to a lever arm of an force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torques generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, current, on the bending angle and displacement is also studied using square wave potential.

  11. Blocking in autoshaped lever-pressing procedures with rats.

    PubMed

    Holland, Peter C; Asem, Judith S A; Galvin, Connor P; Keeney, Caitlin Hepps; Hsu, Melanie; Miller, Alexandra; Zhou, Vivian

    2014-03-01

    Rats will approach and contact a lever whose insertion into the chamber signals response-independent food delivery. This "autoshaping" or "sign-tracking" phenomenon has recently attracted considerable attention as a platform for studying individual differences in impulsivity, drug sensitization, and other traits associated with vulnerability to drug addiction. Here, we examined two basic stimulus selection phenomena-blocking and overshadowing-in the autoshaped lever pressing of rats. Blocking and overshadowing were decidedly asymmetrical. Previously reinforced lever-extension conditioned stimuli (CSs) completely blocked conditioning to auditory cues (Exps. 1 and 2), and previously nonreinforced lever-extension CSs overshadowed conditioning to auditory cues. By contrast, conditioning to lever-extension CSs was not blocked by either auditory (Exp. 3) or lever-insertion (Exp. 4) cues, and was not overshadowed by auditory cues. Conditioning to a lever-insertion cue was somewhat overshadowed by the presence of another lever, especially in terms of food cup behavior displayed after lever withdrawal. We discuss several frameworks in which the apparent immunity of autoshaped lever pressing to blocking might be understood. Given evidence that different brain systems are engaged when different kinds of cues are paired with food delivery, it is worth considering the possibility that interactions among them in learning and performance may follow different rules. In particular, it is intriguing to speculate that the roles of simple cue-reinforcer contiguity, as well as of individual and aggregate reinforcer prediction errors, may differ across stimulus classes.

  12. Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range

    SciTech Connect

    Torun, H.; Torello, D.; Degertekin, F. L.

    2011-08-15

    The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz in air with the current setup was demonstrated.

  13. Attempting a classification for electrical polymeric actuators

    NASA Astrophysics Data System (ADS)

    Otero, T. F.; López Cascales, J.; Fernández-Romero, A. J.

    2007-04-01

    Polymeric actuators, electroactive polymer actuators, electromechanical polymeric actuators, artificial muscles, and other, are usual expressions to name actuators developed during the last 15-20 years based on interactions between the electric energy and polymer films. The polymeric actuators can be divided into two main fields: electromechanical actuators working by electrostatic interactions between the polymer and the applied electric fields, and electrochemomechanical actuators, or reactive actuators, working by an electrochemical reaction driven by the flowing electric current. The electromechanical actuators can be classified into electrostrictive, piezoelectric, ferroelectric, electrostatic and electrokinetic. They can include a solvent (wet) or not (dry), or they can include a salt or not. Similitude and differences related to the rate and position control or to the possibility or not to include sensing abilities are discussed.

  14. Differential acquisition of lever pressing in inbred and outbred mice: comparison of one-lever and two-lever procedures and correlation with differences in locomotor activity.

    PubMed

    McKerchar, Todd L; Zarcone, Troy J; Fowler, Stephen C

    2005-11-01

    Recent progress in mouse genetics has led to an increased interest in developing procedures for assessing mouse behavior, but relatively few of the behavioral procedures developed involve positively reinforced operant behavior. When operant methods are used, nose poking, not lever pressing, is the target response. In the current study differential acquisition of milk-reinforced lever pressing was observed in five inbred strains (C57BL/6J, DBA/2J, 129X1/SvJ, C3H/HeJ, and BALB/cJ) and one outbred stock (CD-1) of mice. Regardless of whether one or two levers (an "operative" and "inoperative" lever) were in the operant chamber, a concomitant variable-time fixed-ratio schedule of milk reinforcement established lever pressing in the majority of mice within two 120-min sessions. Substantial differences in lever pressing were observed across mice and between procedures. Adding an inoperative lever retarded acquisition in C57BL/6J, DBA/2J, 129X1/SvJ, and C3H/HeJ mice, but not in CD-1 and BALB/cJ mice. Locomotor activity was positively correlated with number of lever presses in both procedures. Analyses of durations of the subcomponents (e.g., time to move from hopper to lever) of operant behavior revealed further differences among the six types of mice. Together, the data suggest that appetitively reinforced lever pressing can be acquired rapidly in mice and that a combination of procedural, behavioral, and genetic variables contributes to this acquisition.

  15. A method for measurement of static lever arm

    NASA Astrophysics Data System (ADS)

    Ma, Xianglu; Qin, Shiqiao; Wang, Xingshu; Wu, Wei; Hu, Feng; Zheng, JiaXing

    2016-01-01

    Lever arm effect has to be considered in transfer alignment technology. Between static lever arm and dynamic lever arm, the former has larger amplitude, and it is the major error source in transfer alignment. How to measure and solve it become an important problem. This paper takes vehicle as a rigid body. Assume that static lever arm does not change in a short time, based on two inertial measurement units(IMU), data are measured and constituted several matrixes properly. After that, by using least square method, static lever arm is solved finally. Simulation experiments are implemented, results show that static lever arm can be solved effectively. Further study shows that, the precision of the method can be improved by preprocessing low pass filter.

  16. How does lever length and the position of its axis of rotation influence human performance during lever wheelchair propulsion?

    PubMed

    Fiok, Krzysztof; Mróz, Anna

    2015-10-01

    The purpose of this study was to investigate empirically how lever length and its axis of rotation position influences human performance during lever wheelchair propulsion. In order to fulfill this goal, a dedicated test stand allowing easy implementation of various lever positions was created. In the experiment, 10 young, healthy, male subjects performed 8 tests consisting of propulsion work with levers of different lengths and lever axis of rotation positions. During tests heart rate, oxygen consumption and EMG assessment of 6 muscles was carried out. Measurements of power output on the test stand were done as well. Together with oxygen consumption analysis, this allowed calculation of human work efficiency. The results show significant (p<0.05 and p<0.001) differences between lever configurations when comparing various parameters values. From the carried out experiments, the authors conclude that levers' length and their axis of rotation position significantly influence human performance during lever wheelchair propulsion. For the examined subjects, placing the levers' axis of rotation close behind the back wheels axis of rotation offered advantageous work conditions.

  17. Simulation model of a lever-propelled wheelchair.

    PubMed

    Sasaki, Makoto; Ota, Yuki; Hase, Kazunori; Stefanov, Dimitar; Yamaguchi, Masaki

    2014-01-01

    Wheelchair efficiency depends significantly on the individual adjustment of the wheelchair propulsion interface. Wheelchair prescription involves reconfiguring the wheelchair to optimize it for specific user characteristics. Wheelchair tuning procedure is a complicated task that is performed usually by experienced rehabilitation engineers. In this study, we report initial results from the development of a musculoskeletal model of the wheelchair lever propulsion. Such a model could be used for the development of new advanced wheelchair approaches that allow wheelchair designers and practitioners to explore virtually, on a computer, the effects of the intended settings of the lever-propulsion interface. To investigate the lever-propulsion process, we carried out wheelchair lever propulsion experiments where joint angle, lever angle and three-directional forces and moments applied to the lever were recorded during the execution of defined propulsion motions. Kinematic and dynamic features of lever propulsion motions were extracted from the recorded data to be used for the model development. Five healthy male adults took part in these initial experiments. The analysis of the collected kinematic and dynamic motion parameters showed that lever propulsion is realized by a cyclical three-dimensional motion of upper extremities and that joint torque for propulsion is maintained within a certain range. The synthesized propulsion model was verified by computer simulation where the measured lever-angles were compared with the angles generated by the developed model simulation. Joint torque amplitudes were used to impose the torque limitation to the model joints. The results evidenced that the developed model can simulate successfully basic lever propulsion tasks such as pushing and pulling the lever.

  18. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  19. Lever attacking and pressing as a function of conditioning and extinguishing a lever-press avoidance response in rats.

    PubMed

    Pear, J J; Hemingway, M J; Keizer, P

    1978-03-01

    Six experimental rats were conditioned to press one of two available levers to avoid shock. The levers registered bites as well as presses. For four of these rats, shock was contingent on lever bites when a specified time period had elapsed after the previous shock. An extinction period, in which only periodic noncontingent shocks were presented, followed avoidance training. Six yoked-control rats received the same sequence of shocks as did the corresponding experimental rats in both the conditioning and extinction phases. All six experimental rats repeatedly bit the avoidance lever. Four bit it more than the nonavoidance lever during conditioning, and five bit it more during extinction. Five of the six experimental rats consistently bit the levers many more times during each session than did their respective control rats, suggesting that avoidance conditioning facilitated lever biting. Rates of lever biting and pressing by all of the experimental rats and by some of the control rats were highest immediately following shock throughout both phases. During later portions of the intervals following shock, characteristic effects of conditioning and extinction were observed. This finding suggests that extinction of avoidance behavior by unavoidable shock presentations can be demonstrated more readily when shock-elicited responding is extricated from the data.

  20. Lever-type two-cycle internal combustion engine

    SciTech Connect

    Wenzel, E.C.; Wenzel, S.T.

    1991-06-25

    This patent describes a lever type internal combustion engine. It comprises power cylinders arranged in side-by-side opposed pairs and disposed in a first horizontal plane, each provided with a piston and a piston rod pivotally connected at an inner end with the piston, a crankshaft supported for rotation about an axis lying in a second horizontal plane disposed in spaced parallel relationship with and below the first horizontal plane, and a lever system whereby the power cylinder pistons drive the crankshaft, the lever system, one for each pair of opposed power cylinders, comprising an elongate level arm pivotally interconnected at a first end with the outer ends of the piston rods, means including guide members disposed below the crankshaft for constraining a second end of the lever arm for up and down movement in a direction perpendicular to the first and second horizontal planes, and means for operatively connecting the lever arm at a point intermediate its first and second ends to the crankshaft, whereby the lever arm functions as a lever of the second class between the piston rods and the crankshaft the constrained second end thereof functioning as the fulcrum therefor.

  1. Electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Bigham, J.

    1982-01-01

    Materials illustrating a presentation on the development of electromechanical actuators (EMA) for electric flight systems are presented. Technology issues are identified, and major steps relative to EMA development, NASA's role, and a technology procurement plan are outlined.

  2. Electromechanical lever blocks for active vibration isolation

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.

    2000-04-01

    This paper is a follow-up of a presentation at the Smart Structures Symposium of 1998. There we described an innovative technical solution which provides a combined passive damping and isolation interface with the appropriate transmissibility characteristics between a vibrating base and a sensitive payload, typically an optical terminal/telescope. The particularity of the solution is primarily found in the implementation of energy dissipation by means linear electromagnetic linear motors leveraged by means of flexure elements, to constitute an integrated resistor-damped electromechanic lever block, which we called MEDI (Mechanical Elastic element for Damping and Isolation). Passive viscous damping with attenuation of the order of -20 dB at 50 Hz with respect to a hard fixation, is obtained by simply short- circuiting the electro-magnetic motor. The study and test program presented here extends the application of MEDIs to active vibration reduction systems. The study, contracted by the European Space Agency, aimed at investigating the possibility of using the MEDI as an active isolator for scientific experiments in the International Space Station. By controlling the current in the electromagnetic motor in closed loop with the signal from specially designed force sensor (with extremely low noise), we achieved attenuation of the order of -15 dB at 1 Hz, -30 dB at 10 Hz, -50 dB at 30 Hz, with the isolation slope starting as low as 0.1 Hz.

  3. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  4. 16. VIEW OF LEVER CONNECTED TO CHAIN (BRIDGE IN CLOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF LEVER CONNECTED TO CHAIN (BRIDGE IN CLOSED POSITION), LOOKING WEST - Mystic River Drawbridge No. 7, Spanning Mystic River at Boston & Maine Railroad Eastern Route, Somerville, Middlesex County, MA

  5. 35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, SOUTH NORWALK - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  6. Differential Suppression by Punishment of Nonconsummatory Licking and Lever Pressing

    ERIC Educational Resources Information Center

    Walters, Gary C.; Herring, Barbara

    1978-01-01

    Five experiments investigated the differential effects of shock punishment on nonconsummatory licking (dry licking) and lever pressing. Results support a motivationally based theory of punishment involving the role of incentive stimuli associated with the particular responses studied. (Editor/RK)

  7. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    SciTech Connect

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-15

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  8. Improvements In Ball-Screw Linear Actuators

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Summers, Robert

    1996-01-01

    Report describes modifications of design of type of ball-screw linear actuator driven by dc motor, with linear-displacement feedback via linear variable-differential transformer (LVDT). Actuators used to position spacecraft engines to direct thrust. Modifications directed toward ensuring reliable and predictable operation during planned 12-year cruise and interval of hard use at end of cruise.

  9. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  10. Polypyrrole actuators for tremor suppression

    NASA Astrophysics Data System (ADS)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse; West, Keld

    2003-07-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers exemplify "soft actuator" technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants for the change of length and for the stiffness change are significantly different; the stiffness change being about 10 times faster. Both force measurements and Electrochemical Quartz Crystal Microbalance measurements indicate that the actuation process is complex and involves at least two different processes. The EQCM results make it possible to formulate a hypothesis for the two different time constants: Sodium ions enter the polymer correlated with a fast mass change that probably involves a few (~4) strongly bound water molecules as well. On further reduction, about 10 additional water molecules enter the polymer in a slower process driven by osmotic pressure. Earlier work has tended to focus on achieving the maximum length change, therefore taking the time needed to include all processes. However, since the slower process described above is associated with the lowest strength of the actuator, concentrating on the faster stiffness change results in only a small reduction in the work done by the actuator. This may make actuation at higher frequencies feasible.

  11. Parallel-coupled micro-macro actuators

    SciTech Connect

    Morrell, J.B.; Salisbury, J.K.

    1998-07-01

    This paper presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the parallel-coupled micro-macro actuator, or PaCMMA. In this system, the micro-actuator is capable of high-bandwidth force control owing to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft, and increases the dynamic range of force. Performance improvement over single-actuator systems was expected in force control, impedance control, force distortion, and transient impact force reduction. Several theoretical performance limits are derived from the saturation limits of the system. A control law is presented. A prototype test bed was built and an experimental comparison was performed between this actuator concept and two single-actuator systems. A set of quantitative measures is proposed and the actuator system is evaluated against them with the following results: force bandwidth of 56 Hz, torque dynamic range of 800:1, peak torque of 1,040 mNm, and minimum torque of 1.3 mNm. Peak impact force, force distortion, and back-driven impedance of the PaCMMA system are shown to be better than either of the single-actuator configurations considered.

  12. Mars Science Laboratory Rover Actuator Thermal Design

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Liu, Yuanming; Lee, Chern-Jiin; Hendricks, Steven

    2010-01-01

    NASA will launch a 900 kg rover, part of the Mars Science Laboratory (MSL) mission, to Mars in October of 2011. The MSL rover is scheduled to land on Mars in August of 2012. The rover employs 31, electric-motor driven actuators to perform a variety of engineering and science functions including: mobility, camera pointing, telecommunications antenna steering, soil and rock sample acquisition and sample processing. This paper describes the MSL rover actuator thermal design. The actuators have stainless steel housings and planetary gearboxes that are lubricated with a "wet" lubricant. The lubricant viscosity increases with decreasing temperature. Warm-up heaters are required to bring the actuators up to temperature (above -55 C) prior to use in the cold wintertime environment of Mars (when ambient atmosphere temperatures are as cold as -113 C). Analytical thermal models of all 31 MSL actuators have been developed. The actuators have been analyzed and warm-up heaters have been designed to improve actuator performance in cold environments. Thermal hardware for the actuators has been specified, procured and installed. This paper presents actuator thermal analysis predicts, and describes the actuator thermal hardware and its operation. In addition, warm-up heater testing and thermal model correlation efforts for the Remote Sensing Mast (RSM) elevation actuator are discussed.

  13. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    NASA Astrophysics Data System (ADS)

    Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2013-08-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

  14. Performance of dielectric elastomer actuators and materials

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Peter; Kofod, Guggi; Shridhar, M. H.; Benslimane, Mohammed; Gravesen, Peter

    2002-07-01

    Dielectric elastomer actuators performance depends on their construction and the way they are driven. We describe the governing equations for the dynamic performance of actuators and show examples of their use. Both the properties of the base elastomer material and the compliant electrodes influence the actuators performance. The mechanical and electrical properties of elastomers are discussed with a focus on an acrylate pressure sensitive adhesive from 3M, which is used by a number of groups. The influence of these properties on the actuator properties is analyzed.

  15. Differential Acquisition of Lever Pressing in Inbred and Outbred Mice: Comparison of One-Lever and Two-Lever Procedures and Correlation with Differences in Locomotor Activity

    ERIC Educational Resources Information Center

    McKerchar, Todd L.; Zarcone, Troy J.; Fowler, Stephen C.

    2005-01-01

    Recent progress in mouse genetics has led to an increased interest in developing procedures for assessing mouse behavior, but relatively few of the behavioral procedures developed involve positively reinforced operant behavior. When operant methods are used, nose poking, not lever pressing, is the target response. In the current study differential…

  16. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  17. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  18. Light-Mediated Manufacture and Manipulation of Actuators.

    PubMed

    Han, Dong-Dong; Zhang, Yong-Lai; Ma, Jia-Nan; Liu, Yu-Qing; Han, Bing; Sun, Hong-Bo

    2016-10-01

    Recent years have seen a considerable growth of research interests in developing novel technologies that permit designable manufacture and controllable manipulation of actuators. Among various fabrication and driving strategies, light has emerged as an enabler to reach this end, contributing to the development of actuators. Several accessible light-mediated manufacturing technologies, such as ultraviolet (UV) lithography and direct laser writing (DLW), are summarized. A series of light-driven strategies including optical trapping, photochemical actuation, and photothermal actuation for controllable manipulation of actuators is introduced. Current challenges and future perspectives of this field are discussed. To generalize, light holds great promise for the development of actuators.

  19. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  20. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  1. Series Elastic Actuators for legged robots

    NASA Astrophysics Data System (ADS)

    Pratt, Jerry E.; Krupp, Benjamin T.

    2004-09-01

    Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.

  2. Design of a MEMS-based motion stage based on a lever mechanism for generating large displacements and forces

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sik; Shi, Hongliang; Dagalakis, Nicholas G.; Gupta, Satyandra K.

    2016-09-01

    Conventional miniaturized motion stages have a volume of 50-60 cm3 and a range of motion around 100 μm. Micro-electro-mechanical systems (MEMS)-based motion stages have been good alternatives in some applications for small footprint, micron-level accuracy, and a lower cost. However, existing MEMS-based motion stages are able to provide a force of μN level, small displacements (less than tens of microns), and need additional features for practical applications like a probe or a stage. In this paper, a single degree of freedom motion stage is designed and analyzed for a larger displacement, a larger output force, a smaller out-of-plane deformation, and a bigger moving stage for further applications. For these purposes, the presented motion stage is designed with a thermal actuator, folded springs, and a lever, and it is experimentally characterized. Furthermore, three different types of flexure joints are investigated to characterize their capabilities and suitability to serve as the revolute joint of the lever: a beam, a cartwheel, and a butterfly flexure. The presented motion stage has a moving stage of 15 mm  ×  15 mm and shows a maximum displacement over 80 μm, and out-of-plane deformation under a weight of 120 μN less than 2 μm. The force generated by the actuator is estimated to be 68.6 mN.

  3. Fabrication and characterization of solid state conducting polymer actuators

    NASA Astrophysics Data System (ADS)

    Xie, Jian; Sansinena, Jose-Maria; Gao, Junbo; Wang, Hsing-Lin

    2004-07-01

    We report here the fabrication and characterization of solid-state conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhered to a lever arm of a force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torque generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, and current, on the bending angle and displacement is also studied using square wave potential.

  4. Gear-shift lever having variable thickness walls

    SciTech Connect

    Tanaka, T.

    1988-01-03

    A one-piece elongated tubular transmission gear shift lever, is described comprising a tubular connector part at a first end of the gear shift lever, whereby the tubular connector part is adapted to be secured to a pivot means; a spherical part extending from the connector part, the connector part and the spherical part having a first wall thickness; a cylindrical part extending from the spherical part in a direction opposite the tubular connector part, the cylindrical part having a second wall thickness less than the first wall thickness; a tapered part extending from the cylindrical part; and a threaded part extending from the tapered part, the threaded part formed at a second end of the gear shift lever opposite the first end, whereby a gear shift knob may be attached.

  5. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  6. Acquisition of operant behavior in rats with delayed reinforcement: A retractable-lever procedure.

    PubMed

    McNamara, Andrew A; Johnson, Lyndsey E; Tate, Christopher; Chiang, Thomas; Byrne, Tom

    2015-02-01

    Experimentally naïve rats acquired lever pressing with delayed reinforcement when the immediate programmed consequence for lever pressing was the simultaneous retraction of two identical levers. Presses on one lever also produced access to sweetened condensed milk after a delay of 10s following retraction. Presses on the second lever resulted in retraction only. Lever retraction prevented the possibility of adventitious reinforcement of contacting the operanda during the reinforcement delays. Several measures indicated that the delayed reinforcers strengthened behavior. The majority of responses for all rats were on the lever that initiated reinforcer delivery. Responding for seven out of eight rats decreased during a subsequent extinction phase in which retraction was the only consequence arranged for lever pressing. Responding recovered rapidly when food reinforcement was available again. Furthermore, when contingencies on the two levers were switched, rats allocated their behavior accordingly, showing control by the delayed reinforcers.

  7. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  8. High torque miniature rotary actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  9. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  10. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    in tactile display is investigated by the prototyping of a large scale refreshable Braille display device. Braille is a critical way for the vision impaired community to learn literacy and improve life quality. Current piezoelectrics-based refreshable Braille display technologies are limited to up to 1 line of Braille text, due to the bulky size of bimorph actuators. Based on the unique actuation feature of BSEP, refreshable Braille display devices up to smartphone-size have been demonstrated by polymer sheet laminates. Dots in the devices can be individually controlled via incorporated field-driven BSEP actuators and Joule heater units. A composite material consisting of silver nanowires (AgNW) embedded in a polymer substrate is brought up as a compliant electrode candidate for BSEP application. The AgNW composite is highly conductive (Rs: 10 Ω/sq) and remains conductive at strains as high as 140% (Rs: <10 3 Ω/sq). The baseline conductivity has only small changes up to 90% strain, which makes it low enough for both field driving and stretchable Joule heating. An out-of-plane bistable area strain up to 68% under Joule heating is achieved.

  11. 5. FLOOR 3; SHOWS BRAKE LEVER, BLOCK FORMERLY USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLOOR 3; SHOWS BRAKE LEVER, BLOCK FORMERLY USED TO RAISE IT AND HOOK WHICH KEPT IT IN THE 'OFF' POSITION; ALSO SEEN ARE THE LARGE BLOCKS SUSPENDED FROM THE CAP FRAME WHICH HOLD THE TRUCK WHEELS TO CENTER THE CAP - Hayground Windmill, Windmill Lane, East Hampton, Suffolk County, NY

  12. The Relationship between State Policy Levers and Student Mobility

    ERIC Educational Resources Information Center

    Gross, Jacob P. K.; Berry, Matthew S.

    2016-01-01

    To address conceptual and methodological shortcomings in the extant literature on student mobility, this study employs event history modeling to describe and explain how state policy levers, specifically state grant aid, relates to mobility and baccalaureate degree completion. We find that state grant aid reduces mobility, but less so than…

  13. PHOTOCOPY OF HISTORIC PHOTOGRAPH, "LAWRENCE LEVERING BECKEL (BRIDGE BUILT BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF HISTORIC PHOTOGRAPH, "LAWRENCE LEVERING BECKEL (BRIDGE BUILT BY HIM AND HIS FATHER, CHAS. N. BECKEL AT EASTON)," original ca. 1885, photographer unknown. Collection of Historic Bethlehem Inc., Bethlehem, PA, Negative Nos. 3550 or 4504. - Walnut Street Bridge, Formerly spanning Saucon Creek, Hellertown, Northampton County, PA

  14. DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ON BUCKET HANGER WAS PULLED DOWN BY A CAMEL (FIXED CAM RAIL AT CENTER) AS BUCKET ROLLED PAST IT, CAUSING A CLAMP TO CLOSE AGAINST TRACTION CABLE. A SIMILAR CAMEL (NO LONGER EXTANT) DISENGAGED CLAMP ON RECEIVING SIDE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  15. SECOND FLOOR OF OPERATOR'S ROOM, WITH THROTTLE LEVER ABOVE TORQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR OF OPERATOR'S ROOM, WITH THROTTLE LEVER ABOVE TORQUE CONVERTER SWITCH, AT LEFT. MAGNETIC SOLENOID IS IN CENTER, HYDRAULIC BRAKE PUMP IS IN UPPER RIGHT, LOOKING WEST. - Mad River Glen, Single Chair Ski Lift, 62 Mad River Glen Resort Road, Fayston, Washington County, VT

  16. 26. VIEW FROM EAST IN BRIDGE TENDER'S HOUSE, LEVERS FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW FROM EAST IN BRIDGE TENDER'S HOUSE, LEVERS FOR GASOLINE ENGINE OPERATION FOR BRIDGE AND THEIR CONNECTIONS TO CONTROL RODS ON DOWNSTREAM SIDE OF SWING-SPAN; new bridge located in background - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  17. 25. VIEW EAST IN BRIDGE TENDER'S HOUSE, (left) ORIGINAL LEVERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW EAST IN BRIDGE TENDER'S HOUSE, (left) ORIGINAL LEVERS FOR GASOLINE ENGINE OPERATION OF SWING-SPAN, (right) PANEL F ELECTRIC OPERATION OF GATES AND SWING-SPAN; new bridge located in background - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  18. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  19. An affordance analysis of unconditioned lever pressing in rats and hamsters.

    PubMed

    Cabrera, Felipe; Sanabria, Federico; Jiménez, Ángel Andrés; Covarrubias, Pablo

    2013-01-01

    Two experiments were conducted to assess the effect of lever height on lever pressing that was not explicitly reinforced - i.e., operant-level responding. Two rodent species were used as subjects, rats (Experiment 1) and hamsters (Experiment 2), aiming to compare the behavioral support offered by one lever at various heights relative to the subjects' body size. Results showed that lever height had a substantial effect on response rate. The rate of lever pressing varied similarly for rats and hamsters as a function of lever height, when lever height was re-scaled relative to body size. The distribution of inter-response times showed that lever pressing was organized in bouts separated by pauses. This pattern of responding was accurately described in both experiments by a mixture of two exponential distributions. These findings support an analysis of affordances in non-human species.

  20. Modeling of a three degrees of freedom piezo-actuated mechanism

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Rui, Xiao Ting

    2017-01-01

    This paper presents the modeling and experimentation of a three degrees of freedom (3-DOF) piezo-actuated mechanism. The displacements of the piezoelectric stack actuators are amplified with lever mechanisms to achieve large displacement output. In order to accurately model the mechanism, a comprehensive model, which uses the transfer matrix method to describe the dynamics characteristics and the modified Bouc-Wen hysteresis operator to represent the hysteresis, is presented. Ultimately, the proposed comprehensive model of the mechanism is experimentally investigated for its performance. Experimental results show that the proposed comprehensive model can accurately portray the hysteresis and dynamics characteristics of the 3-DOF piezo-actuated mechanism.

  1. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  2. Shared inductor hybrid topology for weight constrained piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Elliott, A. D. T.; Caccia, A.; Thomas, A.; Astolfi, A.; Mitcheson, P. D.

    2016-11-01

    This paper presents a new circuit topology designed to minimise the weight of the control circuit required to actuate multiple piezoelectric actuators. It can independently set the phase and bias voltage on each piezoelectric actuator through the use of a single inductor. This is highly desirable in weight constrained applications such as unmanned aerial vehicles as the ferroelectric material required for the inductor is heavy. Furthermore, the circuit topology can also use the same inductor to generate the high bias voltage required to drive the actuators. The full system has been verified in PSpice and a pair of piezoelectric actuators have been successfully driven using off the shelf components.

  3. Response Induction during the Acquisition and Maintenance of Lever Pressing with Delayed Reinforcement

    ERIC Educational Resources Information Center

    Escobar, Rogelio; Bruner, Carlos A.

    2007-01-01

    The acquisition of lever pressing by rats and the occurrence of unreinforced presses at a location different from that of the reinforced response were studied using different delays of reinforcement. An experimental chamber containing seven identical adjoining levers was used. Only presses on the central (operative) lever produced food pellets.…

  4. Actuation performances of anisotropic gels

    NASA Astrophysics Data System (ADS)

    Nardinocchi, P.; Teresi, L.

    2016-12-01

    We investigated the actuation performances of anisotropic gels driven by mechanical and chemical stimuli, in terms of both deformation processes and stroke-curves, and distinguished between the fast response of gels before diffusion starts and the asymptotic response attained at the steady state. We also showed as the range of forces that an anisotropic hydrogel can exert when constrained is especially wide; indeed, changing fiber orientation allows us to induce shear as well as transversely isotropic extensions.

  5. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  6. The Lever oscillator for use in high resistance resonator applications

    SciTech Connect

    Wessendorf, K.O.

    1993-07-01

    The Lever oscillator has been specifically designed for use with quartz resonator sensors. The use of quartz resonators as sensors is of particular interest and depending on the sensing environment, e.g., liquid, the oscillator design is both critical and difficult due to the wide dynamic range of resonator resistance possible due to damping of the resonator. Standard oscillator designs do not work well as sensor oscillators. An oscillator design will be presented that allows both frequency and loss (R{sub m}) of the resonator to be determined over a wide dynamic range of resonator loss. The Lever oscillator uses negative feedback in a differential amplifier configuration to actively and variably divide (or leverage) the resonator impedance such that the oscillator can maintain the phase and gain of the loop over a wide range of resonator resistance.

  7. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  8. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  9. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  10. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  11. Evaluation of piezoceramic actuators for control of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.

    1992-01-01

    Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.

  12. Wing tip vortex control by the pulsed MHD actuator

    NASA Astrophysics Data System (ADS)

    Moralev, I. A.; Biturin, V. A.; Kazansky, P. N.; Zaitsev, M. Yu.; Kopiev, Vl. A.

    2016-10-01

    The paper presents the experimental results and the analysis of the wingtip vortex control by magnetohydrodynamic (MHD) plasma actuator [1]. The actuator is installed on the surface of the asymmetric wing of a finite span. In a single cycle of actuator operation, the pulsed discharge is created between two electrodes and then driven by the Lorentz force in the spanwise direction. The evolution of the vortex after the actuator pulse is studied directly downstream of the wing trailing edge. The shift of the vortex position, without a significant change in the vortex circulation is the main effect obtained after the discharge pulse. The effect of the external flow velocity and the position of the actuator on the shift amplitude were studied. The authority of the flow control by the actuator is shown to reduce at higher velocity values; the position on the suction side of the airfoil is shown to be crucial for the effective actuator operation.

  13. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  14. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  15. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  16. Multilayer piezoelectric stack actuator characterization

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-03-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180°C to +200°C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  17. Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Min; He, Qingsong; Yu, Dingshan; Zhang, Xiaoqing; Ji, Aihong; Zhang, Hao; Guo, Ce; Dai, Zhendong

    2012-10-01

    Active actuation of the adhesive pads is important for a gecko-robot climbing on walls. We demonstrate the fabrication of an ionic polymer-metal composite (IPMC) actuator enhanced with carbon nanotubes (CNTs) and its use for actively actuating an adhesive array to imitate the locomotion of gecko's toes. The as-fabricated IPMC actuator doped with CNTs exhibits a maximum blocking force of 3.59 gf driven at a low voltage of 3 V. It can be easily controlled by voltage signals to actuate an artificial gecko's toe to attach and detach from a surface. This will allow active, distributed actuation in a gecko robot.

  18. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  19. Theory and applications of optical fiber lever sensors

    NASA Technical Reports Server (NTRS)

    Cuomo, F. W.

    1989-01-01

    The evolution of optical fiber lever concepts is illustrated leading to several designs found useful in air and water applications. In particular, this technology has led to the development of underwater detectors of the pressure and pressure gradient kind. In addition, an optical microphone with features not found in condenser microphones has been utilized in the measurement of pressure fluctuations in high speed boundary layers requiring sensors of small size, extended bandwidth, wide dynamic range, and high temperature capability. Finally, similar concepts have been applied to the design of scale model acoustic arrays intended for acoustic imaging applications in the megahertz frequency range.

  20. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  1. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  2. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  3. Nanoporous carbon actuator and methods of use thereof

    DOEpatents

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  4. Response Induction During the Acquisition and Maintenance of Lever Pressing with Delayed Reinforcement

    PubMed Central

    Escobar, Rogelio; Bruner, Carlos A

    2007-01-01

    The acquisition of lever pressing by rats and the occurrence of unreinforced presses at a location different from that of the reinforced response were studied using different delays of reinforcement. An experimental chamber containing seven identical adjoining levers was used. Only presses on the central (operative) lever produced food pellets. Groups of 3 rats were exposed to one of seven different tandem random-interval (RI) fixed-time (FT) schedules. The average RI duration was the complement of the FT duration such that their sum yielded a nominal 32-s interreinforcement interval on average. Response rate on the operative lever decreased as the FT value was lengthened. The spatial distribution of responses on the seven levers converged on the operative lever when the FT was 0 or 2 s and spread across the seven levers as the FT value was lengthened to 16 or 32 s. Presses on the seven levers were infrequent during the FT schedule. Both operative- and inoperative-lever pressing intertwined in repetitive patterns that were consistent within subjects but differed between subjects. These findings suggest that reinforcer delay determined the response-induction gradient. PMID:17725050

  5. Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers

    SciTech Connect

    Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M

    2007-01-03

    In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.

  6. Management of personal safety risk for lever operation in mechanical railway signal boxes.

    PubMed

    Muffett, Bob; Wilson, John R; Clarke, Theresa; Coplestone, Anthony; Lowe, Emma; Robinson, John; Smith, Stuart

    2014-03-01

    Despite increased implementation of computer control systems in managing and regulating rail networks, mechanical signal boxes using lever operation will be in place for years to come. A rolling risk assessment programme identified a number of levers in mechanical signal boxes within the UK rail network which potentially presented unacceptable personal safety risk to signallers. These levers operate both points and signals and the risk is primarily the weights which have to be moved when pulling and pushing the levers. Operating difficulties are often compounded by the design and condition of lever frames, the linkages to the points/signals, maintenance regimes, the workspace and the postures and strategies adopted by signallers. Lever weights were measured as from 15 kg to 180 kg at over 160 boxes, using a specially designed and constructed device. Taken together with examination of injury and sickness absence data, interviews and field observations, and biomechanical computer modelling, the measurement programme confirmed the potential risks. A risk management programme has been implemented, comprising lever weight measurement, training of operations staff, a structured maintenance regime and renewal or redesign for boxes/levers where, after maintenance, a criterion weight level is still exceeded. For a feasible management programme, the first alert (or 1st action) value for further assessment is 55 kg, a second action level requiring specified maintenance is 80-99 kg, and a third action level requiring the lever to be signed out of use is 100 kg.

  7. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  8. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  9. On the development of planar actuators for variable stiffness devices

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-04-01

    This contribution describes the development, the potential and the limitations of planar actuators for controlling bending devices with variable stiffness. Such structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. To realize a proper stiffness control, it is necessary to develop reliable actuators with high actuation capabilities based on smart materials. Several actuator designs driven by electroactive polymers (EAPs) are presented and discussed regarding to their applicability in such structures. To investigate the actuators, variable-flexural stiffness devices based on the control of its area moment of inertia were developed. The devices consist of a multi-layer stack of thin, individual plates. Stiffness variation is caused by planar actuators which control the sliding behavior between the layers by form closure structures. Previous investigations have shown that actuators with high actuation potential are needed to ensure reliable connections between the layers. For that reason, two kinds of EAPs Danfoss PolyPower and VHB 4905 by 3M, have been studied as driving unit. These EAP-driven actuators will be compared based on experimental measurements and finite element analyses.

  10. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  11. Paper actuators made with cellulose and hybrid materials.

    PubMed

    Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad

    2010-01-01

    Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated.

  12. Networked Rectenna Array for Smart Material Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.

    2000-01-01

    The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.

  13. CMB cluster lensing: Cosmography with the longest lever arm

    SciTech Connect

    Hu, Wayne; Holz, Daniel E.; Vale, Chris

    2007-12-15

    We discuss combining gravitational lensing of galaxies and the cosmic microwave background by clusters to measure cosmographic distance ratios, and hence dark energy parameters. Advantages to using the cosmic microwave background as the second source plane, instead of galaxies, include a well-determined source distance, a longer lever arm for distance ratios, typically up to an order of magnitude higher sensitivity to dark energy parameters, and a decreased sensitivity to photometric redshift accuracy of the lens and galaxy sources. Disadvantages include higher statistical errors, potential systematic errors, and the need for disparate surveys that overlap on the sky. Ongoing and planned surveys, such as the South Pole Telescope in conjunction with the Dark Energy Survey, can potentially reach the statistical sensitivity to make interesting consistency tests of the standard cosmological constant model. Future measurements that reach 1% or better precision in the convergences can provide sharp tests for future supernovae distance measurements.

  14. A backbone lever-arm effect enhances polymer mechanochemistry.

    PubMed

    Klukovich, Hope M; Kouznetsova, Tatiana B; Kean, Zachary S; Lenhardt, Jeremy M; Craig, Stephen L

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  15. High-temperature fiber-optic lever microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.; Nguyen, Trung D.; Rizzi, Stephen A.; Clevenson, Sherman A.

    1995-01-01

    The design and construction of a fiber-optic lever microphone, capable of operating continuously at temperatures up to 538 C (1000 F) are described. The design is based on the theoretical sensitivities of each of the microphone system components, namely, a cartridge containing a stretched membrane, an optical fiber probe, and an optoelectronic amplifier. Laboratory calibrations include the pistonphone sensitivity and harmonic distortion at ambient temperature, and frequency response, background noise, and optical power transmission at both ambient and elevated temperatures. A field test in the Thermal Acoustic Fatigue Apparatus at Langley Research Center, in which the microphone was subjected to overall sound-pressure levels in the range of 130-160 dB and at temperatures from ambient to 538 C, revealed good agreement with a standard probe microphone.

  16. A backbone lever-arm effect enhances polymer mechanochemistry

    NASA Astrophysics Data System (ADS)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  17. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  18. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  19. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  20. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1) The... secured at once. (ii) Hydraulic jacks exposed to freezing temperatures shall be supplied with an...

  1. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1) The... secured at once. (ii) Hydraulic jacks exposed to freezing temperatures shall be supplied with an...

  2. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1) The... secured at once. (ii) Hydraulic jacks exposed to freezing temperatures shall be supplied with an...

  3. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1) The... secured at once. (ii) Hydraulic jacks exposed to freezing temperatures shall be supplied with an...

  4. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1) The... secured at once. (ii) Hydraulic jacks exposed to freezing temperatures shall be supplied with an...

  5. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical... 49 Transportation 4 2010-10-01 2010-10-01 false Electromechanical interlocking machine;...

  6. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical... 49 Transportation 4 2011-10-01 2011-10-01 false Electromechanical interlocking machine;...

  7. Acquisition and Maintenance of Lever Pressing with Prolonged Exposure to Delayed Reinforcement

    ERIC Educational Resources Information Center

    Vansickel, Andrea; White, Victoria; Byrne, Tom

    2004-01-01

    The present study investigated acquisition and extinction of free-operant responding when rats' lever presses produced sucrose pellets after resetting delays of 10 or 20 s. Presses on a second lever cancelled any scheduled food deliveries. Although previous research using 60-s delays failed to demonstrate maintenance of responding across repeated…

  8. Tuneable Auxiliary Control Mechanisms For RUM Actuators

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Alhorn, Dean C.

    1995-01-01

    Tuneable auxiliary control mechanisms for rotating unbalanced-mass (RUM) actuators used to maximize scan amplitudes and/or minimize power consumption during changing conditions. This type of mechanism more sophisticated version of type of mechanism described in "Auxiliary Control Mechanisms for RUM Actuators" (MFS-28817). Torsional stiffness of torsionally flexible coupling made adjustable on command. Torsionally flexible coupling in tuneable version of auxiliary control mechanism adjustable by use of stepping-motor-driven worm-gear mechanism that varies bending length of flexible blade.

  9. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  10. Series elastic actuators

    NASA Astrophysics Data System (ADS)

    Williamson, Matthew M.

    1995-01-01

    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  11. Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws

    DTIC Science & Technology

    2007-11-02

    5c. PROGRAM ELEMENT NUMBER I-ioh Bandwidth Actiintorv and Actuator 9clinp Iaw-, 65502F 6. AUTHOR(S) 5d. PROJECT NUMBER A. B. Cain, G. R. Raman , and E...of possible applications include the high frequency excitation for supprc~sion of flow induced resonance in weapons bay cavities (see Raman et al...systems. Adaptive high bandwidth actuators are required to adapt to changes in flow speed and conditions during flight. Raman et al. (2000) and Stanek et

  12. Hydraulic Actuator Project

    DTIC Science & Technology

    2003-11-01

    Hydraulic Actuator Project Stakeholder meeting held 7- 8 October in Los Angeles; 58 attendees representing aircraft and actuator OEMs, seal...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Ave., SW ,Washington,DC,20375 8 . PERFORMING ORGANIZATION REPORT...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8 -98) Prescribed by ANSI Std Z39-18 Actuator JTP: Coupon Testing Substrate

  13. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  14. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  15. Apparatus for controlling an engine in a hydraulically driven vehicle

    SciTech Connect

    Kitada, T.

    1987-01-27

    An apparatus is described for controlling the internal combustion engine of a hydraulically driven vehicle comprising: a transmission mechanism for transmitting the operation of a fuel control lever to a governor control lever and having a loose spring mechanism with a loose spring therein: a hydraulic decelerator cylinder connected to the transmission mechanism and having a spring and piston therein. The deceleration cylinder spring has a slightly larger spring force than the loose spring in the loose spring mechanism and applies a force absorbing action, in the absence of hydraulic force acting on the piston, to set the governor control lever in its deceleration position when the fuel control lever is moved to its full engine speed position and for moving the governor control lever to its full engine speed position when hydraulic force is applied to the piston; an electromagnetic valve for applying fluid pressure from a control pump driven by the engine to the piston in the decelerator cylinder and releasing the fluid pressure; and an electric circuit including switches operationally associated with levers for operating a hydraulic valve.

  16. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  17. Characterization of radiation-induced performance decrement using a two-lever shock-avoidance task

    SciTech Connect

    Burghardt, W.F. Jr.; Hunt, W.A.

    1985-07-01

    Rats were trained to perform a task involving responses on two levers. Responding on an avoidance lever delayed the onset of electrical footshock for 20 sec and responding on a warning lever turned on a light for 60 sec. When the light was on, the task on the avoidance lever was changed from unsignaled shock avoidance to signaled shock avoidance by preceding the shocks with 5-sec warning tones. The animals preferred the signaled avoidance condition. After 100 Gy of /sup 60/Co irradiation, the animals were less able to avoid shock, an effect from which the animals recovered somewhat over 90 min. The response rate on the avoidance lever remained at or above control rates, while the response rate on the warning lever showed an initial increase, followed by a decrease below baseline. The data suggest that under these experimental conditions a subject will not respond appropriately to avoid shock or acquire cues that can facilitate the avoidance of shock. The effects, however, do not reflect an inability to perform the required movements but instead appear to reflect some characteristic of the task associated with a particular lever.

  18. Response-food delay gradients for lever pressing and schedule-induced licking in rats.

    PubMed

    Pellón, Ricardo; Pérez-Padilla, Angeles

    2013-06-01

    Eight food-deprived Wistar rats developed stable patterns of lever pressing and licking when exposed to a fixed-time 30-s schedule of food pellet presentation. The rats were trained to lever press by presenting the lever 10 s before the programmed food delivery, with the food pellet being delivered immediately upon a lever press. The operant contingency was then removed and the lever was inserted through the entire interfood interval, being withdrawn with food delivery and reinserted 2 s later. On successive phases of the study, a protective contingency postponed food delivery if responses (lever presses or licks) occurred within the last 1, 2, 5, 10, 20, or 25 s of the interfood interval. Lever pressing was reduced at much shorter response-food delays than those that reduced licking. These results demonstrate that reinforcement contributes to the maintenance of different response patterns on periodic schedules, and that different responses are differentially sensitive to delays.

  19. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  20. Remotely controllable actuating device

    NASA Technical Reports Server (NTRS)

    McKillip, Jr., Robert M. (Inventor)

    1998-01-01

    An actuating device can change a position of an active member that remains in substantially the same position in the absence of a force of a predetermined magnitude on the active member. The actuating device comprises a shape-memory alloy actuating member for exerting a force when actuated by changing the temperature thereof, which shape-memory alloy actuating member has a portion for connection to the active member for exerting thereon a force having a magnitude at least as large as the predetermined magnitude for moving the active member to a desired position. Actuation circuitry is provided for actuating the shape-memory alloy actuating member by changing the temperature thereof only for the time necessary to move the active member to the desired position. The invention is particularly useful for changing the position of a camber-adjusting tab on a helicopter rotor blade by using two shape-memory alloy members that can act against each other to adjust dynamic properties of the rotor blade as it is rotating.

  1. Massively Redundant Electromechanical Actuators

    DTIC Science & Technology

    2014-08-30

    date of determination). DoD Controlling Office is (insert controlling DoD office). "Massively Redundant Electromechanical Actuators" August... electromechanical systems) processes are used to manufacture reliable and reproducible stators and sliders for the actuators. These processes include

  2. Modeling actuation forces and strains in nastic structures

    NASA Astrophysics Data System (ADS)

    Matthews, Luke A.; Giurgiutiu, Victor

    2006-03-01

    Nastic structures are capable of three dimensional shape change using biological principles borrowed from plant motion. The plant motor cells increase or decrease in size through a change in osmotic pressure. When nonuniform cell swelling occurs, it causes the plant tissue to warp and change shape, resulting it net movement, known as nastic motion, which is the same phenomena that causes plants to angle their broad leaf and flower surfaces to face light sources. The nastic structures considered in this paper are composed of a bilayer of microactuator arrays with a fluid reservoir in between the two layers. The actuators are housed in a thin plate and expand when water from the fluid reservoir is pumped into the actuation chamber through a phospholipid bilayer with embedded active transport proteins, which move the water from the low pressure fluid reservoir into a high pressure actuation chamber. Increasing water pressure inside the actuator causes lateral expansion and axial bulging, and the non-uniform net volume change of actuators throughout the nastic structure results in twisting or bending shape change. Modifying the actuation displacement allows controlled volume change. This paper presents an analytical model of the driving and blocking forces involved in actuation, as well as stress and strain that occurs due to the pressure changes. Actuation is driven by increasing osmotic pressure, and blocking forces are taken into consideration to plan actuator response so that outside forces do not counteract the displacement of actuation. Nastic structures are designed with use in unmanned aerial vehicles in mind, so blocking forces are modeled to be similar to in-flight conditions. Stress in the system is modeled so that any residual strain or lasting deformation can be determined, as well as a lifespan before failure from repeated actuation. The long-term aim of our work is to determine the power and energy efficiency of nastic structures actuation mechanism.

  3. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  4. Photostrictive actuators for photonic control of shallow spherical shells

    NASA Astrophysics Data System (ADS)

    Shih, Hui-Ru; Tzou, Horn-Sen

    2007-10-01

    Photostrictive materials, exhibiting light-induced strain, are of interest for the future generation of wireless remote control photo-actuators. Photostrictive actuators are expected to be used as the driving component in optically controlled flexible structures. In this paper, the photonic control of flexible spherical shells using discrete photostrictive actuators is investigated. This paper presents a coupled opto-piezothermoelastic shell theory that incorporates photovoltaic, pyroelectric and piezoelectric effects, and has the capability to predict the response of a spherical shell driven by the photostrictive actuators. In this study, the effects of actuator location as well as membrane and bending components on the control action have been analyzed. The results obtained indicate that the control forces are mode and location dependent. Analysis also shows that the membrane control action is much more significant than the bending control action.

  5. Implementation and analysis of an innovative digital charge amplifier for hysteresis reduction in piezoelectric stack actuators

    SciTech Connect

    Bazghaleh, Mohsen Grainger, Steven; Cazzolato, Ben; Lu, Tien-Fu; Oskouei, Reza

    2014-04-15

    Smart actuators are the key components in a variety of nanopositioning applications, such as scanning probe microscopes and atomic force microscopes. Piezoelectric actuators are the most common smart actuators due to their high resolution, low power consumption, and wide operating frequency but they suffer hysteresis which affects linearity. In this paper, an innovative digital charge amplifier is presented to reduce hysteresis in piezoelectric stack actuators. Compared to traditional analog charge drives, experimental results show that the piezoelectric stack actuator driven by the digital charge amplifier has less hysteresis. It is also shown that the voltage drop of the digital charge amplifier is significantly less than the voltage drop of conventional analog charge amplifiers.

  6. Examining the reinforcement-enhancement effects of phencyclidine and its interactions with nicotine on lever-pressing for a visual stimulus.

    PubMed

    Swalve, Natashia; Barrett, Scott T; Bevins, Rick A; Li, Ming

    2015-09-15

    Nicotine is a widely-abused drug, yet its primary reinforcing effect does not seem potent as other stimulants such as cocaine. Recent research on the contributing factors toward chronic use of nicotine-containing products has implicated the role of reinforcement-enhancing effects of nicotine. The present study investigates whether phencyclidine (PCP) may also possess a reinforcement-enhancement effect and how this may interact with the reinforcement-enhancement effect of nicotine. PCP was tested for two reasons: (1) it produces discrepant results on overall reward, similar to that seen with nicotine and (2) it may elucidate how other compounds may interact with the reinforcement-enhancement of nicotine. Adult male Sprague-Dawley rats were trained to lever press for brief visual stimulus presentations under fixed-ratio (FR) schedules of reinforcement and then were tested with nicotine (0.2 or 0.4 mg/kg) and/or PCP (2.0mg/kg) over six increasing FR values. A selective increase in active lever-pressing for the visual stimulus with drug treatment was considered evidence of a reinforcement-enhancement effect. PCP and nicotine separately increased active lever pressing for a visual stimulus in a dose-dependent manner and across the different FR schedules. The addition of PCP to nicotine did not increase lever-pressing for the visual stimulus, possibly due to a ceiling effect. The effect of PCP may be driven largely by its locomotor stimulant effects, whereas the effect of nicotine was independent of locomotor stimulation. This dissociation emphasizes that distinct pharmacological properties contribute to the reinforcement-enhancement effects of substances.

  7. Investigation of Creep Properties in RAINBOW High Displacement Actuators

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Li, Guang; Barron, Bret; Moon, Youngwoo

    1997-01-01

    Results from this study on fatigue in Rainbow and Cerambow actuators show that these high displacement actuators have definite fatigue rates and lifetimes depending upon (1) the amount of displacement generated, (2) how hard they are driven electrically, and (3) the microstructure (grain size) of the ceramic material. Lifetimes for some actuators were on the order of 10(exp 7) cycles at near dc (1 Hz) frequencies while others still retained up to 74% of their displacement at 2.1 x 10(exp 7) Hz.

  8. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  9. 20. VIEW OF NEWER 7LEVER INTERLOCKING MACHINE IN FOREGROUND, NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF NEWER 7-LEVER INTERLOCKING MACHINE IN FOREGROUND, NEXT TO ORIGINAL INTERLOCKING MACHINE, THIRD FLOOR - South Station Tower No. 1 & Interlocking System, Dewey Square, Boston, Suffolk County, MA

  10. Manual shift control lever device and self-contained electronic control for transmissions

    SciTech Connect

    Parker, F.F.

    1986-09-09

    A unitized shift control lever device is described for the remote activation of an electrically controlled transmission comprising: a housing; a manually operable range selector lever pivotally supported in the housing for selective movements to predetermined operating positions respectively indicative of a required operating condition of an associated electrically controlled transmission; means in the housing providing a source of radiations; radiation controlled switching means for generating discrete control signals in response to the presence and non-presence of the radiations; means interposed in the radiation path between the source and the switching means operable in response to the movement of the range selector lever for selectively determining the presence or non-presence of the radiations with respect to the switching means at each range selector position of the lever; and electronic circuit control means having input connections for receiving the generated signals and output connections adapted for connection with electrically activated condition controlling devices on the transmission.

  11. Lever arm extension of myosin VI is unnecessary for the adjacent binding state.

    PubMed

    Ikezaki, Keigo; Komori, Tomotaka; Arai, Yoshiyuki; Yanagida, Toshio

    2015-01-01

    Myosin VI is a processive myosin that has a unique stepping motion, which includes three kinds of steps: a large forward step, a small forward step and a backward step. Recently, we proposed the parallel lever arms model to explain the adjacent binding state, which is necessary for the unique motion. In this model, both lever arms are directed the same direction. However, experimental evidence has not refuted the possibility that the adjacent binding state emerges from myosin VI folding its lever arm extension (LAE). To clarify this issue, we constructed a myosin VI/V chimera that replaces the myosin VI LAE with the IQ3-6 domains of the myosin V lever arm, which cannot fold, and performed single molecule imaging. Our chimera showed the same stepping patterns as myosin VI, indicating the LAE is not responsible for the adjacent binding state.

  12. Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Do, Dukho; Yoo, Hongki; Gweon, Dae-Gab

    2014-06-01

    A nonresonant, fiber-optic raster scanning endomicroscope was developed using a quarter-tubular piezoelectric (PZT) actuator. A fiber lever mechanism was utilized to enhance the small actuation range of the tubular PZT actuator and to increase its field-of-view. Finite element method simulation of the endoscopic probe was conducted for various conditions to maximize its scanning range. After fabricating the probe using a double clad fiber, we obtained two-photon fluorescence images using raster beam scanning of the fiber. The outer diameter of the probe was 3.5 mm and its rigid distal length was 30 mm including a high numerical aperture gradient index lens. These features are sufficient for input into the instrumental channel of a commercial colonoscope or gastroscope to obtain high resolution images in vivo.

  13. Effects of lesions of the amygdala central nucleus on autoshaped lever pressing.

    PubMed

    Chang, Stephen E; Wheeler, Daniel S; Holland, Peter C

    2012-04-23

    Neutral cues paired with rewards often appear to acquire motivational significance, as if the incentive motivational value of the reward is transferred to the cue. Such cues have been reported to modulate the performance of instrumental action (Pavlovian-instrumental transfer, PIT), serve as conditioned reinforcers in the establishment of new learning, and be the targets of approach and other cue-directed behaviors. Here we examined the effects of lesions of the amygdala central nucleus (CeA) on the acquisition of discriminative autoshaped lever-pressing. Insertion of one lever into the experimental chamber was reinforced by sucrose delivery, but insertion of another lever was not reinforced. Although sucrose delivery was not contingent on lever pressing, both CeA- and sham-lesioned rats rapidly came to press the reinforced but not the nonreinforced lever. Despite their showing little evidence of impairments in autoshaped lever pressing, these same CeA-lesioned rats showed significant deficits in the expression of PIT in a subsequent phase of the experiment. The lack of impaired autoshaping in CeA-lesioned rats contrasts with effects previously reported for conditioned orienting responses (ORs) and for other putative measures of incentive learning including PIT and conditioned approach to visual cues.

  14. Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V.

    PubMed

    Trivedi, Darshan V; Muretta, Joseph M; Swenson, Anja M; Davis, Jonathon P; Thomas, David D; Yengo, Christopher M

    2015-11-24

    Myosins use a conserved structural mechanism to convert the energy from ATP hydrolysis into a large swing of the force-generating lever arm. The precise timing of the lever arm movement with respect to the steps in the actomyosin ATPase cycle has not been determined. We have developed a FRET system in myosin V that uses three donor-acceptor pairs to examine the kinetics of lever arm swing during the recovery and power stroke phases of the ATPase cycle. During the recovery stroke the lever arm swing is tightly coupled to priming the active site for ATP hydrolysis. The lever arm swing during the power stroke occurs in two steps, a fast step that occurs before phosphate release and a slow step that occurs before ADP release. Time-resolved FRET demonstrates a 20-Å change in distance between the pre- and postpower stroke states and shows that the lever arm is more dynamic in the postpower stroke state. Our results suggest myosin binding to actin in the ADP.Pi complex triggers a rapid power stroke that gates the release of phosphate, whereas a second slower power stroke may be important for mediating strain sensitivity.

  15. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    PubMed

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered.

  16. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  17. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  18. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  19. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  20. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  1. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  2. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  3. Bimaterial lattices as thermal adapters and actuators

    NASA Astrophysics Data System (ADS)

    Toropova, Marina M.; Steeves, Craig A.

    2016-11-01

    The goal of this paper is to demonstrate how anisotropic biomaterial lattices can be used in thermal actuation. Compared to other lattices with tailored thermal expansion, the anisotropy of these bimaterial lattices makes them uniquely suitable for use as thermal actuators. Each individual cell, and hence lattices consisting of such cells, can be designed with widely different predetermined coefficients of thermal expansion (CTE) in different directions, enabling complex shape changes appropriate for actuation with either passive or active control. The lattices are composed of planar non-identical cells that each consist of a skewed hexagon surrounding an irregular triangle. The cells and all members of any cell are connected to each other by pins so that they have no rotational constraints and are able to expand or contract freely. In this case, the skew angles of the hexagon and the ratio of the CTEs of the two component materials determine the overall performance of the lattice. At its boundaries, the lattice is connected to substrates by pins and configured such that the CTE between two neighboring lattice vertices coincides with the CTE of the adjacent substrate. Provided the boundary behavior of the lattice is matched to the thermal properties of the substrates, temperature changes in the structure produce thermal strains without producing any corresponding stresses. Such lattices can be used in three different ways: as adaptive elements for stress-free connection of components with different CTEs; for fine tuning of structures; and as thermally driven actuators. In this paper, we demonstrate some concepts for lattice configurations that produce thermally-driven displacements that enable several actuators: a switch, a valve and tweezers.

  4. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  5. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  6. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  7. Powered glove with electro-pneumatic actuation unit for the disabled

    NASA Astrophysics Data System (ADS)

    Kawakami, Kosuke; Kumano, Shinichi; Moromugi, Shunji; Ishimatsu, Takakazu

    2007-12-01

    Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be used in our daily life. Huge air compressor is needed and solenoid valves emit loud sound for example. These problems are hurdles to commercialize the powered glove. To solve these problems authors have developed a new actuation unit by integrating an electric cylinder and an air cylinder. This actuation unit has advantages of both the electric actuation and the pneumatic actuation. Its advanced grip control ability has demonstrated through several experiments. The experimental results are reported in this paper.

  8. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  9. S-IV-B Aft Swing Arm Cam Lever Stop Strain Guage

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed 'The Arm Farm', the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swing arm mechanisms that were used to hold the rocket in position until liftoff. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center. This photo depicts a close up of the S-IV-B aft swing arm cam lever stop strain guage.

  10. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  11. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  12. Tractor controls actuating force limits for Indian operators.

    PubMed

    Mehta, C R; Pandey, M M; Tiwari, P S; Gite, L P; Khadatkar, Abhijit

    2011-01-01

    In four-wheel tractors, proper design of controls is important for comfortable and safe operation of the tractor. The design involves location and dimensions of controls as well as strength limits for operating these controls. The present study was aimed to quantify human strength for operation of tractor controls and to recommend the maximum control actuating forces for normal operation of tractors based on strength capability of 3,423 Indian male agricultural workers. The 5th percentile values of strength parameters i.e. leg strength sitting (left and right), foot strength sitting (right), torque strength (both hands) sitting, push strength (left hand and right hand) sitting and pull strength (left hand and right hand) sitting of agricultural workers collected using a strength measurement set-up were taken into consideration for the study. It was recommended that the maximum actuating forces for normal operation of frequently operated brake and clutch pedals of tractors should not exceed 260 N and 125 N based on 5th percentile values of right and left leg strength of male agricultural workers, respectively. The maximum actuating force required in steering wheel operation should not exceed 51 N based on 5th percentile value of torque strength (both hands) sitting of workers. The maximum actuating forces required for operating frequently operated levers viz. gear selection, speed selection, hydraulic control and hand throttle of Indian tractors should not exceed 46 N, 46 N, 25 N and 25 N, respectively. It may be concluded that the maximum actuating force limits as given in Bureau of Indian Standards IS 10703 are very high as compared to the findings of the study based on strength data of Indian male operators, which highlight the need to revise the standard.

  13. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water.

    PubMed

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X; Zhao, Xuanhe

    2017-02-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.

  14. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    NASA Astrophysics Data System (ADS)

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-02-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.

  15. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    PubMed Central

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-01-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water. PMID:28145412

  16. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  17. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  18. Folded dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Salaris, Claudio; DeRossi, Danilo

    2007-04-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on a couple of helical compliant electrodes alternated with a couple of helical dielectrics. The fabrication of both these configurations presents some specific drawbacks today, arising from the peculiarity of each structure. Accordingly, the availability of simpler solutions may boost the short-term use of contractile actuators in practical applications. For this purpose, a new configuration is here described. It consists of a monolithic structure made of an electroded sheet, which is folded up and compacted. The resulting device is functionally equivalent to a multi-layer stack with interdigitated electrodes. However, with respect to a stack the new configuration is advantageously not discontinuous and can be manufactured in one single phase, avoiding layer-by-layer multi-step procedures. The development and preliminary testing of prototype samples of this new actuator made of a silicone elastomer are presented here.

  19. Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing.

    PubMed

    Chang, Stephen E; Wheeler, Daniel S; Holland, Peter C

    2012-05-01

    Initially-neutral cues paired with rewards are thought to acquire motivational significance, as if the incentive motivational value of the reward is transferred to the cue. Such cues may serve as secondary reinforcers to establish new learning, modulate the performance of instrumental action (Pavlovian-instrumental transfer, PIT), and be the targets of approach and other cue-directed behaviors. Here we examined the effects of lesions of the ventral striatal nucleus accumbens (ACb) and the basolateral amygdala (BLA) on the acquisition of discriminative autoshaped lever-pressing in rats. Insertion of one lever into the experimental chamber was reinforced by sucrose delivery, but insertion of another lever was not reinforced. Although sucrose was delivered independently of the rats' behavior, sham-lesioned rats rapidly came to press the reinforced but not the nonreinforced lever. Bilateral ACb lesions impaired the initial acquisition of sign-tracking but not its terminal levels. In contrast, BLA lesions produced substantial deficits in terminal levels of sign-tracking. Furthermore, whereas ACb lesions primarily affected the probability of lever press responses, BLA lesions mostly affected the rate of responding once it occurred. Finally, disconnection lesions that disrupted communication between ACb and BLA produced both sets of deficits. We suggest that ACb is important for initial acquisition of consummatory-like responses that incorporate hedonic aspects of the reward, while BLA serves to enhance such incentive salience once it is acquired.

  20. There is no trade-off between speed and force in a dynamic lever system.

    PubMed

    McHenry, Matthew J

    2011-06-23

    Lever systems within a skeleton transmit force with a capacity determined by the mechanical advantage, A. A is the distance from input force to a joint, divided by the distance from the joint to the output force. A lever with a relatively high A in static equilibrium has a great capacity to generate force but moves a load over a small distance. Therefore, the geometry of a skeletal lever presents a trade-off between force and speed under quasi-static conditions. The present study considers skeletal dynamics that do not assume static equilibrium by modelling kicking by a locust leg, which is powered by stored elastic energy. This model predicts that the output force of this lever is proportional to A, but its maximum speed is independent of A. Therefore, no trade-off between force and velocity exists in a lever system with spring-mass dynamics. This demonstrates that the motion of a skeleton depends on the major forces that govern its dynamics and cannot be inferred from skeletal geometry alone.

  1. Torque control in lingual orthodontics with lever arm mechanics: a case report.

    PubMed

    Aravind, M; Shivaprakash, G; Ramesh, G C

    2013-01-01

    The aim of this report is to illustrate treatment mechanics for torque control in lingual mechanotherapy using a lever arm and transpalatal arch (TPA) tab system during en masse retraction of anterior teeth. An 18-year-old female with bimaxillary dentoalveolar proclination with crowding was treated with a lever arm-TPA tab system. The retraction tabs bent into the TPA placed across the maxillary second molars were used as anchorage. The retraction force on the maxillary anterior teeth was applied using lever arm hooks soldered between the lateral incisors and canines on a lingual mushroom archwire. By applying a retraction force to the lever arm hooks, the maxillary anterior teeth experienced greater palatal root movement as compared to the conventional retraction forces applied at the crown level. The tabs, placed high in the TPA, produced a distal tipping moment on the maxillary second molars, reinforcing their anchorage. The retraction force applied to the long lever arm hooks from the TPA tabs at the level of center of resistance (CRes) of anterior and posterior teeth is advantageous mainly in two aspects. First, it reinforces the anchorage, and second, it favors the palatal root movement of anterior teeth, thus obtaining better control over the torque during en masse retraction.

  2. Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning.

    PubMed

    Chang, Stephen E

    2014-10-15

    A cue associated with a rewarding event can trigger behavior towards the cue itself due to the cue acquiring incentive value through its pairing with the rewarding outcome (i.e., sign-tracking). For example, rats will approach, press, and attempt to "consume" a retractable lever conditioned stimulus (CS) that signals delivery of a food unconditioned stimulus (US). Attending to food-predictive CSs is important when seeking out food, and it is just as important to be able to modify one's behavior when the relationships between CSs and USs are changed. Using a discriminative autoshaping procedure with lever CSs, the present study investigated the effects of orbitofrontal cortex (OFC) lesions on sign-tracking and reversal learning. Insertion of one lever was followed by sucrose delivery upon retraction, and insertion of another lever was followed by nothing. After the acquisition phase, the contingencies between the levers and outcomes were reversed. Bilateral OFC lesions had no effect on the acquisition of sign-tracking. However, OFC-lesioned rats showed substantial deficits in acquiring sign-tracking compared to sham-lesioned rats once the stimulus-outcome contingencies were reversed. Over the course of reversal learning, OFC-lesioned rats were able to reach comparable levels of sign-tracking as sham-lesioned rats. These findings suggest that OFC is not necessary for the ability of a CS to acquire incentive value and provide more evidence that OFC is critical for modifying behavior appropriately following a change in stimulus-outcome contingencies.

  3. Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance

    PubMed Central

    Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang

    2014-01-01

    Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and −10°C) but also realize the goal of grabbing an object by adjusting the applied voltage. PMID:25327414

  4. Tough nanocomposite ionogel-based actuator exhibits robust performance.

    PubMed

    Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang

    2014-10-20

    Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and -10°C) but also realize the goal of grabbing an object by adjusting the applied voltage.

  5. Soft linear electroactive polymer actuators based on polypyrrole

    NASA Astrophysics Data System (ADS)

    Maziz, Ali; Khaldi, Alexandre; Persson, Nils-Krister; Jager, Edwin W. H.

    2015-04-01

    There is a growing demand for human-friendly robots that can interact and work closely with humans. Such robots need to be compliant, lightweight and equipped with silent and soft actuators. Electroactive polymers such as conducting polymers (CPs) are "smart" materials that deform in response to electrical simulation and are often addressed as artificial muscles due to their functional similarity with natural muscles. They offer unique possibilities and are perfect candidates for such actuators since they are lightweight, silent, and driven at low voltages. Most CP actuators are fabricated using electrochemical oxidative synthesis. We have developed new CP based fibres employing both vapour phase and liquid phase electrochemical synthesis. We will present the fabrication and characterisation of these fibres as well as their performance as linear actuators.

  6. Design and experiment performances of an inchworm type rotary actuator.

    PubMed

    Li, Jianping; Zhao, Hongwei; Shao, Mingkun; Zhou, Xiaoqin; Huang, Hu; Fan, Zunqiang

    2014-08-01

    A piezo-driven rotary actuator by means of inchworm principle is proposed in this paper. Six piezo-stacks and flexure hinges are used to realize large rotation ranges with high accuracy both in the forward and backward motions. Four right-angle flexure hinges and two right-circular flexure hinges are applied in the stator. The motion principle and theoretical analysis of the designed actuator are discussed. In order to investigate the working characteristics, a prototype actuator was manufactured and a series of experiment tests were carried out. The test results indicate that the maximum rotation velocity is 71,300 μrad/s; the maximum output torque is 19.6 N mm. The experiment results confirm that the designed actuator can obtain large rotation motion ranges with relatively high output torques and different rotation speeds on the condition of different driving voltages and frequencies.

  7. MRF-actuator concepts for HMI and industrial applications

    NASA Astrophysics Data System (ADS)

    Maas, Jürgen; Güth, Dirk; Wiehe, Ansgar

    2011-03-01

    Actuators based on magnetorheological fluids, like brakes and clutches, offer a high dynamical and almost linear force generation combined with fast response times and a high force density. In this paper concepts of MRF based actuators with radial and axial shear gaps for realizing braking and coupling functions in HMI devices and industrial applications are presented. Designing well defined shear gaps and appropriate electromagnetically driven excitation systems, combined brake and clutch functionalities can be realized even by providing current less bias torques. While actuators using radial shear gaps meet often the requirements for applications with low rotational speeds, e.g. HMI applications, designs with axial shear gaps are predestinated for applications for higher rotational speeds due to their robustness against centrifugation impacts. Experimental results of realized actuators underlining the potential for HMI and industrial applications and reveal the advantages of MRF as the smooth adjustable torque, fast response time and noiseless operation.

  8. Dynamic profile of a prototype pivoted proof-mass actuator

    NASA Astrophysics Data System (ADS)

    Miller, D. W.

    1981-08-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  9. Hydraulically actuated artificial muscles

    NASA Astrophysics Data System (ADS)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  10. Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring.

    PubMed

    García-López, Víctor; Chiang, Pinn-Tsong; Chen, Fang; Ruan, Gedeng; Martí, Angel A; Kolomeisky, Anatoly B; Wang, Gufeng; Tour, James M

    2015-12-09

    Unimolecular submersible nanomachines (USNs) bearing light-driven motors and fluorophores are synthesized. NMR experiments demonstrate that the rotation of the motor is not quenched by the fluorophore and that the motor behaves in the same manner as the corresponding motor without attached fluorophores. No photo or thermal decomposition is observed. Through careful design of control molecules with no motor and with a slow motor, we found using single molecule fluorescence correlation spectroscopy that only the molecules with fast rotating speed (MHz range) show an enhancement in diffusion by 26% when the motor is fully activated by UV light. This suggests that the USN molecules give ∼9 nm steps upon each motor actuation. A non-unidirectional rotating motor also results in a smaller, 10%, increase in diffusion. This study gives new insight into the light actuation of motorized molecules in solution.

  11. Bucky gel actuator displacement: experiment and model

    NASA Astrophysics Data System (ADS)

    Ghamsari, A. K.; Jin, Y.; Zegeye, E.; Woldesenbet, E.

    2013-02-01

    Bucky gel actuator (BGA) is a dry electroactive nanocomposite which is driven with a few volts. BGA’s remarkable features make this tri-layered actuator a potential candidate for morphing applications. However, most of these applications would require a better understanding of the effective parameters that influence the BGA displacement. In this study, various sets of experiments were designed to investigate the effect of several parameters on the maximum lateral displacement of BGA. Two input parameters, voltage and frequency, and three material/design parameters, carbon nanotube type, thickness, and weight fraction of constituents were selected. A new thickness ratio term was also introduced to study the role of individual layers on BGA displacement. A model was established to predict BGA maximum displacement based on the effect of these parameters. This model showed good agreement with reported results from the literature. In addition, an important factor in the design of BGA-based devices, lifetime, was investigated.

  12. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  13. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J [Knoxville, TN; Lind, Randall F [Loudon, TX

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  14. Tetherless thermobiochemically actuated microgrippers

    PubMed Central

    Leong, Timothy G.; Randall, Christina L.; Benson, Bryan R.; Bassik, Noy; Stern, George M.; Gracias, David H.

    2009-01-01

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy). PMID:19139411

  15. Robot Arm with Tendon Connector Plate and Linear Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Nguyen, Vienny (Inventor); Millerman, Alexander (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  16. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  17. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  18. The azimuthal path of myosin V and its dependence on lever-arm length.

    PubMed

    Lewis, John H; Beausang, John F; Sweeney, H Lee; Goldman, Yale E

    2012-02-01

    Myosin V (myoV) is a two-headed myosin capable of taking many successive steps along actin per diffusional encounter, enabling it to transport vesicular and ribonucleoprotein cargos in the dense and complex environment within cells. To better understand how myoV navigates along actin, we used polarized total internal reflection fluorescence microscopy to examine angular changes of bifunctional rhodamine probes on the lever arms of single myoV molecules in vitro. With a newly developed analysis technique, the rotational motions of the lever arm and the local orientation of each probe relative to the lever arm were estimated from the probe's measured orientation. This type of analysis could be applied to similar studies on other motor proteins, as well as other proteins with domains that undergo significant rotational motions. The experiments were performed on recombinant constructs of myoV that had either the native-length (six IQ motifs and calmodulins [CaMs]) or truncated (four IQ motifs and CaMs) lever arms. Native-length myoV-6IQ mainly took straight steps along actin, with occasional small azimuthal tilts around the actin filament. Truncated myoV-4IQ showed an increased frequency of azimuthal steps, but the magnitudes of these steps were nearly identical to those of myoV-6IQ. The results show that the azimuthal deflections of myoV on actin are more common for the truncated lever arm, but the range of these deflections is relatively independent of its lever-arm length.

  19. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  20. Fabrication of Polyurethane Dielectric Actuators

    DTIC Science & Technology

    2005-01-01

    a summary of a 3 year Technology Investment Fund Project entitled “Dielectric Polymer Actuators for Active/ Passive Vibration Isolation”, which was...completed in March 2005. The purpose of this project was to investigate dielectric polymer materials for potential use in active/ passive vibration...devices and systems based on dielectric polymer actuators. Keywords: dielectric actuators, electroactive polymers , Technology Investment Fund 1

  1. Electro-Active Polymer (EAP) Actuators for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP

  2. Contractive tension force stack actuator based on soft dielectric EAP

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Düring, Lukas

    2009-03-01

    Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission

  3. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  4. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  5. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  6. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  7. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  8. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  9. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  10. Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and Operation

    NASA Technical Reports Server (NTRS)

    Maida, J.; Rajulu, Sudhakar L.; Bond, Robert L. (Technical Monitor)

    2000-01-01

    During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with

  11. Distributed electromechanical actuation system design for a morphing trailing edge wing

    NASA Astrophysics Data System (ADS)

    Dimino, I.; Diodati, G.; Concilio, A.; Volovick, A.; Zivan, L.

    2016-04-01

    Next-generation flight control actuation technology will be based on "more electric" concepts to ensure benefits in terms of efficiency, weight and maintenance. This paper is concerned with the design of an un-shafted distributed servo-electromechanical actuation system, suited for morphing trailing edge wings of large commercial aircraft. It aims at producing small wing camber variations in the range between -5° and +5° in cruise, to enable aerodynamic efficiency improvements. The deployment kinematics is based on multiple "direct-drive" actuation, each made of light-weight compact lever mechanisms, rigidly connected to compliant ribs and sustained by load-bearing motors. Navier-Stokes computations are performed to estimate the pressure distribution over the interested wing region and the resulting hinge moments. These transfer to the primary structure via the driving mechanism. An electro-mechanical Matlab/Simulink model of the distributed actuation architecture is developed and used as a design tool, to preliminary evaluate the complete system performance. Implementing a multi-shaft strategy, each actuator is sized for the torque acting on the respective adaptive rib, following the effect of both the aerodynamic pressure and the morphing skin stiffness. Elastic trailing edge rotations and power needs are evaluated in operative conditions. Focus is finally given to the key challenges of the proposed concept: targeting quantifiable performance improvements while being compliant to the demanding requirements in terms of reliability and safety.

  12. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  13. Development of robot hand with pneumatic actuator and construct of master-slave system.

    PubMed

    Nishino, Shinya; Tsujiuchi, Nobutaka; Koizumi, Takayuki; Komatsubara, Hiroyuki; Kudawara, Tatuwo; Shimizu, Mikio

    2007-01-01

    Recently, research has concentrated on robots that can coexist with people and be of use to them. Such a robot needs to be both safe and flexible. Here, we use a pneumatic actuator as the driving source of a robot hand. We develop a pneumatic actuator driven by low pressure because we consider that the conventional pneumatic actuator is inadequate for the driving source of a robot hand. First, we examine the characteristics of our new pneumatic actuator. Next, we develop a five-fingered robot hand using this pneumatic actuator. The robot hand produced is both safe and flexible. We construct a master-slave system to enable the robot hand to perform the same operations as a human hand. Next, we make a joint model that has one degree of freedom using a pneumatic actuator. We construct a control system for the joint model and verify its control performance.

  14. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  15. A Lever for Life: How I Lost 150 Pounds and Learned the Catalytic Power of School Community

    ERIC Educational Resources Information Center

    Ebner, Steven J.

    2011-01-01

    The quotation, attributed to the Greek mathematician Archimedes, about the power of levers to move the world has been quoted many times with slight variations, but usually the point is the same: "With the right lever, one can move the earth." However, the actual quotation attributed to Archimedes comes in the writings of another Greek…

  16. Improving the quality and longevity of the valve-gear lever of VAZ automobiles

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. K.; Bogdanova, N. V.; Krishtal, M. A.

    1990-12-01

    The basic causes of the scouring of the nitrided layer are its increased brittleness as a result of supersaturation with nitrogen, the presence of stress raisers on the effective surface of the lever (increased roughness), and the insufficient extent to which the surface layers of the components of the camshaft couple are worn in.

  17. [Equivalent Lever Principle of Ossicular Chain and Amplitude Reduction Effect of Internal Ear Lymph].

    PubMed

    Zhao, Xiaoyan; Qin, Renjia

    2015-04-01

    This paper makes persuasive demonstrations on some problems about the human ear sound transmission principle in existing physiological textbooks and reference books, and puts forward the authors' view to make up for its literature. Exerting the knowledge of lever in physics and the acoustics theory, we come up with an equivalent simplified model of manubrium mallei which is to meet the requirements as the long arm of the lever. We also set up an equivalent simplified model of ossicular chain--a combination of levers of ossicular chain. We disassemble the model into two simple levers, and make full analysis and demonstration on them. Through the calculation and comparison of displacement amplitudes in both external auditory canal air and internal ear lymph, we may draw a conclusion that the key reason, which the sound displacement amplitude is to be decreased to adapt to the endurance limit of the basement membrane, is that the density and sound speed in lymph is much higher than those in the air.

  18. Mediation, Translation and Local Ecologies: Understanding the Impact of Policy Levers on FE Colleges

    ERIC Educational Resources Information Center

    Spours, Ken; Coffield, Frank; Gregson, Maggie

    2007-01-01

    This article reports the views of managers and tutors on the role of policy "levers" on teaching, learning, and inclusion in colleges of Further Education (FE) in our research project, "The impact of policy on learning and inclusion in the Learning and Skills Sector (LSS)." Using data from five research visits conducted over…

  19. The influence of the dynamic transformation of a sliding lever on aiming errors.

    PubMed

    Heuer, H; Sülzenbrück, S

    2012-04-05

    Human movements are quickly adjusted to variations of inertial load. However, this adjustment does not always imply a full compensation, so that kinematic movement characteristics vary. The present experiment served to explore the consequences of a complex dynamic transformation, implemented by a sliding first-order lever, on the endpoint distributions of goal-directed movements. Whereas the endpoint distributions were clearly affected by the inertial anisotropy of the arm, there was no effect of the dynamic transformation of the lever, neither on the parameters of endpoint distributions nor on the covariations of endpoints of successive movements (error propagation). However, when the lever was used, the effect of the inertial anisotropy of the arm on movement amplitudes was reduced, accompanied by a longer movement time overall, in particular for movements with higher inertial load of the arm. These observations suggest an interaction of the use of internal models and impedance control in the presence of variable inertial loads. Most likely the influence of the dynamic transformation of the sliding lever is absorbed by increased joint impedance, which also reduces the influence of the inertial anisotropy of the arm which otherwise is (incompletely) compensated based on an internal model of the dynamic transformation of the arm.

  20. History of Extension Work in Virginia Prior to Smith-Lever.

    ERIC Educational Resources Information Center

    Hillison, John; Sutphin, Cathy M.

    1999-01-01

    Before the Smith-Lever Act of 1914, agricultural schools begun in 11 Virginia congressional districts in 1908 performed a great deal of extension work, such as agricultural demonstrations, youth activities, and home economics programs. This helped pave the way for formal extension programs established by the legislation. (SK)

  1. Haptic Feedback and Students' Learning about Levers: Unraveling the Effect of Simulated Touch

    ERIC Educational Resources Information Center

    Wiebe, Eric N.; Minogue, James; Jones, M. Gail; Cowley, Jennifer; Krebs, Denise

    2009-01-01

    While there has been extensive experimental research on haptics, less has been conducted on cross-modal interactions between visual and haptic perception and even less still on cross-modal applications in instructional settings. This study looks at a simulation on the principles of levers using both visual and haptic feedback: one group received…

  2. Technological and physiological characteristics of a newly developed hand-lever drive system for wheelchairs.

    PubMed

    Engel, P; Seeliger, K

    1986-10-01

    It may be concluded that, by use of the newly developed Swing-Turn-gear system, mobility of the disabled person using wheelchairs outdoors can be improved. The qualities of the drive gear in push and pull action, the free wheel, the full selection of frequency, and the range of moving the hand levers represent important progress in wheelchair engineering research. The handrim drive is an alternative, especially for indoor use. But, for the first time, an indoor wheelchair can be offered as a combination vehicle for both indoor and outdoor use. The acceptance of the new wheelchair integrated Swing-Turn-gear is much better than the conspicuous hand-lever drive in standard outdoor wheelchairs. At present, the German wheelchair manufacturer, MEYRA Vlotho, is preparing the new hand-lever drive system for production. Initially, the drive system will be adapted to a standard indoor wheelchair made by this company. Development of a lever drive system is also in progress in the United States, which employs force transmission characteristics in one direction.

  3. Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward.

    PubMed

    Yokel, R A; Wise, R A

    1975-02-14

    Low and high doses of a dopamine blocking agent had effects on lever pressing for intravenous amphetamine reward which resembled the effects of reward reduction and reward termination, respectively. Noradrenaline blockade had no such effects. A role in central mediation of reward perception is suggested for dopamine but not for noradrenaline.

  4. A linear actuator for precision positioning of dual objects

    NASA Astrophysics Data System (ADS)

    Peng, Yuxin; Cao, Jie; Guo, Zhao; Yu, Haoyong

    2015-12-01

    In this paper, a linear actuator for precision positioning of dual objects is proposed based on a double friction drive principle using a single piezoelectric element (PZT). The linear actuator consists of an electromagnet and a permanent magnet, which are connected by the PZT. The electromagnet serves as an object 1, and another object (object 2) is attached on the permanent magnet by the magnetic force. For positioning the dual objects independently, two different friction drive modes can be alternated by an on-off control of the electromagnet. When the electromagnet releases from the guide way, it can be driven by impact friction force generated by the PZT. Otherwise, when the electromagnet clamps on the guide way and remains stationary, the object 2 can be driven based on the principle of smooth impact friction drive. A prototype was designed and constructed and experiments were carried out to test the basic performance of the actuator. It has been verified that with a compact size of 31 mm (L) × 12 mm (W) × 8 mm (H), the two objects can achieve long strokes on the order of several millimeters and high resolutions of several tens of nanometers. Since the proposed actuator allows independent movement of two objects by a single PZT, the actuator has the potential to be constructed compactly.

  5. In vivo orientation of single myosin lever arms in zebrafish skeletal muscle.

    PubMed

    Sun, Xiaojing; Ekker, Stephen C; Shelden, Eric A; Takubo, Naoko; Wang, Yihua; Burghardt, Thomas P

    2014-09-16

    Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1/GFP

  6. In Vivo Orientation of Single Myosin Lever Arms in Zebrafish Skeletal Muscle

    PubMed Central

    Sun, Xiaojing; Ekker, Stephen C.; Shelden, Eric A.; Takubo, Naoko; Wang, Yihua; Burghardt, Thomas P.

    2014-01-01

    Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1

  7. A survey on dielectric elastomer actuators for soft robots.

    PubMed

    Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang

    2017-01-23

    Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.

  8. A small and fast piezo-actuated legged robot

    NASA Astrophysics Data System (ADS)

    Yumaryanto, Abdul A.; An, Jaebum; Lee, Sangyoon

    2007-04-01

    In this paper we present the development of a small and fast LIPCA-actuated mobile robot. LIPCA (Lightweight Piezoceramic Composite curved Actuator) is a piezo-composite actuator that uses a PZT layer sandwiched between composite materials of carbon/epoxy and glass/epoxy layers to amplify the displacement. Three versions of LIPCA robots have been developed thus far to implement a small and autonomous robot. The design of the first prototype was inspired by a six-legged insect like a cockroach. Its maximum speed is 173 mm/sec with the voltage input of 400 Vpp at 40 Hz frequency. As the result of a slight modification in the design, a faster LIPCA robot was developed. However their structures are not strong enough to carry a load heavier than 20 gram, which can be a major obstacle to implementing autonomous robots. By several changes in the mechanism, the LIPCA-actuated robot has been improved such that it is able to carry a weight as much as 60 gram. For all the prototypes we used two LIPCA strips that are placed oppositely in the middle of the robot body. The LIPCA strips are driven by a square signal function of high AC voltage with the phase difference of 180°. All the experimental results show a possibility of a small and fast walking robot actuated by LIPCA without using any conventional electromagnetic actuator.

  9. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  10. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  11. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  12. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  13. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  14. Microfabricated actuators and their application to optics

    SciTech Connect

    Sniegowski, J.J.; Garcia, E.J.

    1994-12-31

    Several authors have given overviews of microelectromechanical systems, including microactuators. In our presentation we will review some of these results, and provide a brief description of the basic principles of operation, fabrication, and application, of a few selected microactuators (electrostatic and surface tension driven). We present a description of a three-level mechanical polysilicon surface-micromachining technology with a discussion of the advantages of this level of process complexity. This technology, is capable of forming complex, batch-fabricated, interconnected, and interactive, microactuated micromechanisms which include optical elements. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Two examples of microactuators fabricated using this process are provided to illustrate the capabilities and usefulness of the technology. The first actuator is an example of a novel actuation mechanism based on the effect of surface tension at these micro-scale dimensions and of a microstructure within a microstructure. The second is a comb-drive-based microengine which has direct application as a drive and power source for micro optical elements, specifically, micro mirrors and micro shutters. This design converts linear oscillatory motion from electrostatic comb drive actuators into rotational motion via a direct linkage connection. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism.

  15. Microfabricated actuators and their application to optics

    NASA Astrophysics Data System (ADS)

    Sniegowski, Jeffry J.; Garcia, Ernest J.

    1995-05-01

    Several authors have given overviews of microelectromechanical systems, including microactuators. In our presentation we review some of these results, and provide a brief description of the basic principles of operation, fabrication, and application, of a few selected microactuators (electrostatic and surface tension driven). We present a description of a three- level mechanical polysilicon surface-micromachining technology with a discussion of the advantages of this level of process complexity. This technology is capable of forming complex, batch-fabricated, interconnected, and interactive, microactuated micromechanisms which include optical elements. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Two examples of microactuators fabricated using this process are provided to illustrate the capabilities and usefulness of the technology. The first actuator is an example of a novel actuation mechanism based on the effect of surface tension at these micro-scale dimensions and of a microstructure within a microstructure. The second is a comb-drive-based microengine which has direct application as a drive and power source for micro optical elements, specifically, micro mirrors and micro shutters. This design converts linear oscillatory motion from electrostatic comb drive actuators into rotational motion via a direct linkage connection. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism.

  16. Control strategies for systems with limited actuators

    NASA Technical Reports Server (NTRS)

    Marcopoli, Vincent R.; Phillips, Stephen M.

    1994-01-01

    This work investigates the effects of actuator saturation in multi-input, multi-output (MIMO) control systems. The adverse system behavior introduced by the saturation nonlinearity is viewed here as resulting from two mechanisms: controller windup - a problem caused by the discrepancy between the limited actuator commands and the corresponding control signals, and directionality - the problem of how to use nonlimited actuators when a limited condition exists. The tracking mode and Hanus methods are two common strategies for dealing with the windup problem. It is seen that while these methods alleviate windup, performance problems remain due to plant directionality. Though high gain conventional antiwindup as well as more general linear methods have the potential to address both windup and directionality, no systematic design method for these schemes has emerged; most approaches used in practice are application driven. An alternative method of addressing the directionality problem is presented which involves the introduction of a control direction preserving nonlinearity to the Hanus antiwindup system. A nonlinearity is subsequently proposed which reduces the conservation inherent in the former direction-preserving approach, improving performance. The concept of multivariable sensitivity is seen to play a key role in the success of the new method.

  17. Shoulder Muscular Demand During Lever-Activated Vs Pushrim Wheelchair Propulsion in Persons With Spinal Cord Injury

    PubMed Central

    Requejo, Philip Santos; Lee, Sharon E; Mulroy, Sara J; Haubert, Lisa Lighthall; Bontrager, Ernest L; Gronley, JoAnne K; Perry, Jacquelin

    2008-01-01

    Background/Objective: The high demand on the upper limbs during manual wheelchair (WC) use contributes to a high prevalence of shoulder pathology in people with spinal cord injury (SCI). Lever-activated (LEVER) WCs have been presented as a less demanding alternative mode of manual WC propulsion. The objective of this study was to evaluate the shoulder muscle electromyographic activity and propulsion characteristics in manual WC users with SCI propelling a standard pushrim (ST) and LEVER WC design. Methods: Twenty men with complete injuries (ASIA A or B) and tetraplegia (C6, n = 5; C7, n = 7) or paraplegia (n = 8) secondary to SCI propelled ST and LEVER WCs at 3 propulsion conditions on a stationary ergometer: self-selected free, self-selected fast, and simulated graded resistance. Average velocity, cycle distance, and cadence; median and peak electromyographic intensity; and duration of electromyography of anterior deltoid, pectoralis major, supraspinatus, and infraspinatus muscles were compared between LEVER and ST WC propulsion. Results: Significant decreases in pectoralis major and supraspinatus activity were recorded during LEVER compared with ST WC propulsion. However, anterior deltoid and infraspinatus intensities tended to increase during LEVER WC propulsion. Participants with tetraplegia had similar or greater anterior deltoid, pectoralis major, and infraspinatus activity for both ST and LEVER WC propulsion compared with the men with paraplegia. Conclusions: Use of the LEVER WC reduced and shifted the shoulder muscular demands in individuals with paraplegia and tetraplegia. Further studies are needed to determine the impact of LEVER WC propulsion on long-term shoulder function. PMID:19086715

  18. Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm.

    PubMed

    Reifenberger, Jeff G; Toprak, Erdal; Kim, Hyeongjun; Safer, Dan; Sweeney, H Lee; Selvin, Paul R

    2009-10-27

    We simultaneously measure both the step size, via FIONA, and the 3-D orientation, via DOPI, of the light-chain domain of individual dimeric myosin VIs. This allows for the correlation of the change in orientation of the light chain domain to the stepping of the motor. Three different pairs of positions were tested using a rigid bifunctional rhodamine on the calmodulin of the IQ domain. The data for all three labeling positions support the model that the light chain domain undergoes a significant rotation of approximately 180 degrees . Contrary to an earlier study [Sun, Y. et al. (2007) Mol Cell 28, 954-964], our data does not support a model of multiple angles of the lever arm of the lead head, nor "wiggly" walking on actin. Instead, we propose that for the two heads of myosin VI to coordinate their processive movement, the lever arm of the lead head must be uncoupled from the converter until the rear head detaches. More specifically, intramolecular strain causes the myosin VI lever arm of the lead head to uncouple from the motor domain, allowing the motor domain to go through its product-release (phosphate and ADP) steps at an unstrained rate. The lever arm of the lead head rebinds to the motor and attains a rigor conformation when the rear head detaches. By coupling the orientation and position information with previously described kinetics, this allows us to explain how myosin VI coordinates its heads processively while maintaining the ability to move under load with a (semi-) rigid lever arm.

  19. Dissolution actuated sample container

    SciTech Connect

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  20. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  1. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  2. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  3. Shape Memory Actuator System

    DTIC Science & Technology

    1998-07-31

    The advantage in utilizing 15 shape-memory cables made of Nitinol for size reduction of the remote control actuator system is 1 Fi well suited for...a submarine environment because of its non-magnetic and corrosion resistance 17 properties. Use of thermoelastic Nitinol introduces other...problems because of the cooling and 18 resetting properties of Nitinol cables. It is therefore an important object of the present invention 19 on to

  4. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  5. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  6. Single Piezo-Actuator Rotary-Hammering Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to

  7. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  8. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  9. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    PubMed

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  10. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  11. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  12. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  13. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  14. Direct drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  15. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4x2x1 cu cm. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10

  16. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4 2 1 cm3. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds

  17. Electrolysis-based diaphragm actuators

    NASA Astrophysics Data System (ADS)

    Pang, C.; Tai, Y.-C.; Burdick, J. W.; Andersen, R. A.

    2006-02-01

    This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 µm of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability.

  18. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  19. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  20. Grasp Assist Device with Shared Tendon Actuator Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  1. Control of Systems With Slow Actuators Using Time Scale Separation

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vehram; Nguyen, Nhan

    2009-01-01

    This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.

  2. Design and performance of a piezoelectric actuated precise rotary positioner

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Chang, S. H.

    2006-10-01

    Industries including semiconductor, biotechnology, and nanotechnology are seeking compact and reliable nanometer resolution positioning techniques. To address this demand, this article presents a friction-drive rotary stage driven by a piezoelectric transducer (PZT) actuator. This stage includes a multilayer PZT actuator, the Scott-Russell mechanism, an actuation stage, a preload spring, and an output shaft. Its rotary positioning is accomplished by the stick-slip effect between the wire electrodischarge-machining rotary stage and the output shaft. Finite element analysis and Taguchi optimization method were extensively conducted to analyze the displacement, stress, and vibration behavior for optimum design. As shown by the experimental results, the stage achieved a resolution of 0.13μrad and a speed of 0.15°/h by tuning of the preload spring.

  3. Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage

    SciTech Connect

    Xie, H.; Regnier, S.

    2009-04-15

    A method using atomic force microscope (AFM) optical levers and a reference nanopositioning stage has been developed to characterize piezoscanner hysteresis and creep. The piezoscanner is fixed on a closed-loop nanopositioning stage, both of which have the same arrangement on each axis of the three spatial directions inside the AFM-based nanomanipulation system. In order to achieve characterization, the optical lever is used as a displacement sensor to measure the relative movement between the nanopositioning stage and the piezoscanner by lateral tracking a well-defined slope with the tapping mode of the AFM cantilever. This setup can be used to estimate a piezoscanner's voltage input with a reference displacement from the nanopositioning stage. The hysteresis and creep were accurately calibrated by the method presented, which use the current setup of the AFM-based nanomanipulation system without any modification or additional devices.

  4. Effect of amphetamine on sucrose-reinforced lever pressing: interaction with food deprivation.

    PubMed

    Samson, H H

    1986-07-01

    Rats were trained to lever press on a Fixed Ratio Schedule 8 using sucrose reinforcement in one of two feeding conditions: ad lib food and water available in the home cage; reduced feeding in order to maintain the animals at 80% of their free feeding body weight. The effect of three doses of d-amphetamine (0.10, 0.25 and 0.50 mg/kg) on lever pressing was examined for each feeding condition. A systematic decrease in responding as dose increased was found in the ad lib feeding condition while only the highest dose had any effect on responding in the food restricted animals. Thus, it appeared that the effect of food deprivation was to shift the amphetamine dose-response curve to the right.

  5. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    NASA Astrophysics Data System (ADS)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C–180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  6. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper

    NASA Astrophysics Data System (ADS)

    Gerboni, G.; Brancadoro, M.; Tortora, G.; Diodato, A.; Cianchetti, M.; Menciassi, A.

    2016-10-01

    Minimally invasive surgery (MIS) applications require lightweight actuators that can generate a high force in a limited volume. Among pressure driven actuators, fluid elastic actuators demonstrate high potential for use in the medical field. They are characterized by nearly no friction and wear and they can be made of low-cost biocompatible elastomers. However, when compared to traditional piston-cylinder fluid actuators, fluid elastic actuators often result in smaller output forces as well as weaker return forces. This work is about the design of a linear elastic actuator (LEA) which is able to develop relevant pulling-pushing force in one direction. The LEA is composed of entirely disposable materials and it requires a simple manufacturing process. Thanks to its design, the LEA can be compared to traditional piston-cylinders actuators in terms of output forces (up to 7 N) with the advantage of using relative low working pressures (0, 2 MPa). The actuator has been used for the actuation of a gripper for MIS, as a case study. The whole range of gripping forces developed by the tool actated by the LEA has been evaluated, thus verifying that the gripping device, is able to meet the force requirements for accomplishing typical surgical tasks.

  7. Dynamic properties of a metal photo-thermal micro-actuator.

    PubMed

    Shi, B; Zhang, H J; Wang, B; Yi, F T; Jiang, J Z; Zhang, D X

    2015-02-20

    This work presents the design, modeling, simulation, and characterization of a metal bent-beam photo-thermal micro-actuator. The mechanism of actuation is based on the thermal expansion of the micro-actuator which is irradiated by a laser, achieving noncontact control of the power supply. Models for micro-actuators were established and finite-element simulations were carried out to investigate the effects of various parameters on actuation properties. It is found that the thermal expansion coefficient, thermal conductivity, and the geometry size largely affected actuation behavior whereas heat capacity, density, and Young's modulus did not. Experiments demonstrated the dynamic properties of a Ni micro-actuator fabricated via LIGA technology with 1100/30/100 μm (long/wide/thick) arms. The tip displacement of the micro-actuator could achieve up to 42 μm driven by a laser beam (1064 nm wavelength, 1.2 W power, and a driving frequency of 1 HZ). It is found that the tip displacement decreases with increasing laser driving frequency. For 8 Hz driving frequency, 17 μm (peak-valley value) can be still reached, which is large enough for the application as micro-electro-mechanical systems. Metal photo-thermal micro actuators have advantages such as large displacement, simple structure, and large temperature tolerance, and therefore they will be promising in the fields of micro/nanotechnology.

  8. Coupling of lever arm swing and biased Brownian motion in actomyosin.

    PubMed

    Nie, Qing-Miao; Togashi, Akio; Sasaki, Takeshi N; Takano, Mitsunori; Sasai, Masaki; Terada, Tomoki P

    2014-04-01

    An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5-11 nm displacement due to the biased Brownian motion and the 3-5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.

  9. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  10. Motor actuated vacuum door

    NASA Astrophysics Data System (ADS)

    Hanagud, A. V.

    1986-10-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  11. Bouts of responding from variable-interval reinforcement of lever pressing by rats.

    PubMed Central

    Shull, Richard L; Grimes, Julie A

    2003-01-01

    Four rats obtained food pellets by lever pressing. A variable-interval reinforcement schedule assigned reinforcers on average every 2 min during one block of 20 sessions and on average every 8 min during another block. Also, at each variable-interval duration, a block of sessions was conducted with a schedule that imposed a variable-ratio 4 response requirement after each variable interval (i.e., a tandem variable-time variable-ratio 4 schedule). The total rate of lever pressing increased as a function of the rate of reinforcement and as a result of imposing the variable-ratio requirement. Analysis of log survivor plots of interresponse times indicated that lever pressing occurred in bouts that were separated by pauses. Increasing the rate of reinforcement increased total response rate by increasing the rate of initiating bouts and, less reliably, by lengthening bouts. Imposing the variable-ratio component increased response rate mainly by lengthening bouts. This pattern of results is similar to that reported previously with key poking as the response. Also, response rates within bouts were relatively insensitive to either variable. PMID:14674726

  12. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  13. Remotely-actuated biomedical switch

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1969-01-01

    Remotely-actuated biomedical switching circuit using transistors consumes no power in the off position and can be actuated by a single-frequency telemetry pulse to control implanted instrumentation. Silicon controlled rectifiers permit the circuit design which imposes zero drain on supply batteries when not in use.

  14. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  15. Dynamic analysis of nonlinear behaviour in inertial actuators

    NASA Astrophysics Data System (ADS)

    Dal Borgo, M.; Ghandchi Tehrani, M.; Elliott, S. J.

    2016-09-01

    Inertial actuators are devices typically used to generate the control force on a vibrating structure. Generally, an inertial actuator comprises a proof-mass suspended in a magnetic field. The inertial force due to the moving mass is used to produce the secondary force needed to control the vibration of the primary structure. Inertial actuators can show nonlinear behaviour, such as stroke saturation when driven at high input voltages. If the input voltage is beyond their limit, they can hit the end stop of the actuator casing and saturate. In this paper, the force generated by an inertial actuator is measured experimentally and numerical simulations of a linear piecewise stiffness model are carried out and compared with the results of analytical methods. First, a numerical model for a symmetric bilinear stiffness is derived and a parametric study is carried out to investigate the change of the end stop stiffness. In addition, the variation of the amplitude of the excitation is considered and a comparison is made with the analytical solution using the harmonic balance method. Finally, experimental measurements are carried out and the results are compared with simulated data to establish the accuracy of the model.

  16. Design and calibration of a piezoelectric actuator for interferometric applications

    NASA Astrophysics Data System (ADS)

    Bruno, Luigi; Poggialini, Andrea; Felice, Giuseppina

    2007-12-01

    The present work reports a possible solution for a low-cost piezoelectric actuator available for interferometric applications. In the paper the design, the assembly and the calibration of the actuator are described in detail. The solution adopted consists of a machined stainless steel case deformed by three low-voltage multilayer plumbum zirconate titanate (PZT) ceramic blocks. In the proposed arrangement a three degree of freedom device is obtained, by which a translation and two rotations can be performed. The PZTs are driven by a supply voltage provided by a 16 bit D/A converter directly connected to the parallel port of a personal computer which guarantees a very accurate output. This voltage is applied on each ceramic by means of a variable resistor, by which it is possible to adjust the maximum driving voltage for the single block. This electrical solution allows to match up the strokes of the ceramics in order to obtain a straight expansion of the whole actuator. After the mechanical and electrical set-up of the actuator, a static calibration was carried out by inserting it along one arm of a Michelson speckle interferometer. The calibration procedure had emphasized the hysteresis loop and the non-linearity of the electromechanical behaviour of the actuator.

  17. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do

    2013-07-01

    A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.

  18. Control of Tollmien-Schlichting instabilities by finite distributed wall actuation

    NASA Astrophysics Data System (ADS)

    Losse, Nikolas R.; King, Rudibert; Zengl, Marcus; Rist, Ulrich; Noack, Bernd R.

    2011-06-01

    Tollmien-Schlichting waves are one of the key mechanisms triggering the laminar-turbulent transition in a flat-plate boundary-layer flow. By damping these waves and thus delaying transition, skin friction drag can be significantly decreased. In this simulation study, a wall segment is actuated according to a control scheme based on a POD-Galerkin model driven extended Kalman filter for state estimation and a model predictive controller to dampen TS waves by negative superposition based on this information. The setup of the simulation is chosen to resemble actuation with a driven compliant wall, such as a membrane actuator. Most importantly, a method is proposed to integrate such a localized wall actuation into a Galerkin model.

  19. Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability

    PubMed Central

    Keplinger, Christoph; Kaltenbrunner, Martin; Arnold, Nikita; Bauer, Siegfried

    2010-01-01

    Electrical actuators made from films of dielectric elastomers coated on both sides with stretchable electrodes may potentially be applied in microrobotics, tactile and haptic interfaces, as well as in adaptive optical elements. Such actuators with compliant electrodes are sensitive to the pull-in electromechanical instability, limiting operational voltages and attainable deformations. Electrode-free actuators driven by sprayed-on electrical charges were first studied by Röntgen in 1880. They withstand much higher voltages and deformations and allow for electrically clamped (charge-controlled) thermodynamic states preventing electromechanical instabilities. The absence of electrodes allows for direct optical monitoring of the actuated elastomer, as well as for designing new 3D actuator configurations and adaptive optical elements. PMID:20173097

  20. Characterization of PolyMUMPs-based in-plane electromagnetic actuator

    NASA Astrophysics Data System (ADS)

    Ahmed, Mawahib Gafare; Dennis, John-Ojur; Khir, Mohd-Haris; Rabih, Almur; Mian, Muhammad Umer

    2016-11-01

    This paper presents a synopsis of the design and fabrication of an in-plane electromagnetic actuator using Polysilicon Multi-Users MEMS Process (PolyMUMPs). The electromagnetic actuator is driven by Lorentz force. This article is based on the premise that the proportionality of Lorentz force to magnetic field and driving current controls lateral displacement. The fabricated actuator consists of two plates; moving plate supported by four beams and a stationary plate in order to form a capacitor setup for sensing. This work experimentally demonstrates the actuation of the device using low frequencies of 0.5 Hz, 1 Hz and 2Hz. The characterization of the micro actuator using a Leica optical microscope showed a displacement exceeding 8 µm. This displacement is attained with a magnetic field of 20mT and applied current of approximately 5 mA.

  1. Design and driving characteristics of a novel ‘pusher’ type piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2016-01-01

    This study proposes a novel ‘pusher’ type piezoelectric actuator based on clamping blocks, where a solid mover can be driven at a high resolution and with a designed stroke of 4 mm. The working principle of the actuator is presented and the design process of its key component ‘stator’ is described. Via finite element simulation, the rationality of the structure of the device was analyzed. The prototype actuator was manufactured and its main performance was tested. The driving characteristics of the proposed actuator produced the following experimental results. The movement resolution was 31.5 nm, the maximum speed was 248 μm s-1 and the maximum loading capacity was 123.5 N, verifying that it could meet the needs of precise positioning with a high resolution and a large load capacity. The actuator was also found to achieve various step speeds when the driving voltage and working frequency were changed.

  2. Effects of contingent and noncontingent nicotine on lever pressing for liquids and consumption in water-deprived rats.

    PubMed

    Frenk, Hanan; Martin, Jeffrey; Vitouchanskaia, Cristina; Dar, Reuven; Shalev, Uri

    2017-01-05

    Nicotine has been proposed to be a primary reinforcer and a reinforcement enhancer. To date, no studies have examined whether nicotine enhances consummatory behaviors or only operant responding (appetitive behaviors). Experiments were designed to test whether contingent and noncontingent nicotine enhance lever pressing for and consumption of fluids in water-deprived rats. Animals were water-deprived throughout all experiments. They were trained to press two levers under a variable interval (VI-20, 1-35s). Their lever pressing and water consumption were measured after noncontingent subcutaneous (s.c.) injection of nicotine (1mg/kg), and in 3 choice conditions (water and quinine solution (18µg/ml); water and nicotine (32µg/ml) solution; quinine (18µg/ml) and nicotine (32µg/ml) solutions) where nicotine was thus delivered contingently upon lever pressing. The effects of nicotine (1mg/kg; s.c.) on the consumption of water in a time-limited free access (1h) paradigm were assessed. Nicotine significantly increased lever pressing and the number of earned reinforcements on both levers in the two choice conditions and when administered s.c. compared to all groups that did not receive nicotine. However, under no condition did animals consume more fluids than baseline. Under the time-limited free access condition nicotine reduced water consumption. Although our findings do not support a reinforcing effect for nicotine, they are consistent with the incentive-amplification hypothesis. Its relevance for human smoking is yet unclear.

  3. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  4. Application Actuation Trade Study

    DTIC Science & Technology

    1982-01-01

    Rectifier Unit 3 1..5 37.5 Battery 40 A-Hr 1 76 75 Battery Charger 1 6.8 6.8 Static Inverter I 12.C 13.C AC Power Pelay 3 PDT 1 1.2 1.2 AC Povmr Relay 3 PD)T...Weight 0.7 pounds Total Weight 4.7 pounds Both actuators are Vowered by 28V DC brush type motors so that the system can be operated from battery pover in... DC -AC Inverter 2 34 68 Battery (2 @ 4C A-Hr) 2 75 150 AC Power Contactor 6POT 2 18 36 AC Power Contactor 6PST 2 12 24 AC Power Contactor SPST 4 1

  5. Electromechanical actuator for the tongs of a servomanipulator

    DOEpatents

    Martin, H. Lee; Killough, Stephen M.

    1986-01-01

    Computer-augmented electromechanical system is provided for controlling the tongs of a servomanipulator. The mechanical tongs are motor-driven through the remote slave arm of the manipulator, and the motor control current is supplied by a position sensor which senses the position of a spring-loaded trigger in the master arm handle on the manipulator. The actuator for the tongs provides the operator with artificial force reflection in a unilateral force-force control loop.

  6. Preliminary study, analysis and design for a power switch for digital engine actuators

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Zickwolf, H. C., Jr.

    1979-01-01

    Innovative control configurations using high temperature switches to operate actuator driving solenoids were studied. The impact on engine control system life cycle costs and reliability of electronic control and (ECU) heat dissipation due to power conditioning and interface drivers were addressed. Various power supply and actuation schemes were investigated, including optical signal transmission and electronics on the actuator, engine driven alternator, and inside the ECU. The use of a switching shunt power conditioner results in the most significant decrease in heat dissipation within the ECU. No overall control system reliability improvement is projected by the use of remote high temperature switches for solenoid drivers.

  7. Analytical analysis of a beam flexural-mode piezoelectric actuator for deformable mirrors

    NASA Astrophysics Data System (ADS)

    Wang, Hairen

    2015-10-01

    A beam flexural-mode piezoelectric bimorph actuator is analyzed based on linear piezoelectricity, and the performance of the actuator is studied. The beam bimorph piezoelectric actuator (BBPA), which is a sandwich compound consisting of a lower and an upper piezoelectric ceramic surface layer and a middle layer made of metal, is driven to flexural deformation. The statistical analytical solution and dynamical solutions from the three-dimensional equations of linear piezoelectricity are derived, and the dependence of the performance upon the physical parameters of the BBPA is evaluated. Numerical results illustrate the strengthened performance achieved by adjusting the geometrical and material parameters of the BBPA.

  8. Laser-induced actuation of individual microsize liquid metal droplets on an open solid surface

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Chunqing; Dou, Guangbin; Tian, Yanhong; Yang, Lei

    2017-01-01

    The actuation of microsize liquid metal droplets on an open solid surface with laser offset heating is reported in this work. The process allows the droplets to move towards the laser beam center. The analysis of the actuations showed that the droplets were predominantly driven by the thermally induced wettability alteration on the solid; in contrast, Marangoni flow and vapor recoil weakened the motion of the droplets. This indicates that a localized thermal gradient was the driving force for droplet motion and suggests that it may be an alternative actuation technique in manipulating liquid metal droplets for microsystems.

  9. Actuator design using electroactive polymers

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-07-01

    In order to make EAP actuators technology scalable a design methodology for polymer actuators is required. Design variables, optimization formulas and a general architecture are required as it is usual in electromagnetic or hydraulic actuators design. This will allow the development of large EAP actuators from micro-actuator units, specifically designed for a particular application. It will also help to enhance the EAP material final performance. This approach is not new, since it is found in Nature. Skeletal muscle architecture has a profound influence on muscle force-generating properties and functionality. Based on existing literature on skeletal muscle biomechanics, the Nature design philosophy is inferred. Formulas and curves employed by Nature in the design of muscles are presented. Design units such as fiber, tendon, aponeurosis, and motor units are compared with the equivalent design units to be taken into account in the design of EAP actuators. Finally a complete design methodology for the design of actuators based on multiple EAP fiber/sheets is proposed. In addition, the procedure gives an idea of the required parameters that must be clearly modeled and characterized at EAP material level prior to attempt the design of complex Electromechanical Systems based on Electroactive Polymers.

  10. Valves Based on Amplified Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Le Letty, R.; Lhermet, N.; Patient, G.; Claeyssen, F.; Lang, M.

    2004-10-01

    Amplified Piezo Actuators have been developed at CEDRAT TECHNOLOGIES for several years and found several applications in space. Their well-known advantages (rapid response and precise positioning) have been used in valve designs to obtain either rapid or fine proportional valves. A first gas valve is using a small amplified piezo actuator and is further driven with a switched amplifier to get a high frequency modulation. A frequency modulation higher than 400 Hz with a stroke of 100 m has been measured. These properties can also be used for gasoline injectors. A second gas valve is also using an amplified piezo actuator, a linear amplifier, and a servo controller to get an accurate proportional valve dedicated to precise gas flow control in the fields of instrumentation and space. A linear and stable flow control has been demonstrated. The low power consumption of the piezoelectric valve in the space applications is an additional advantage. A stable flow of dry Nitrogen ranging from 0.1 sccm to 200 sccm has been measured with an inlet pressure of 1 bar. These valves have been designed with the help of several modelling tools: finite element procedure for the electro-mechanical part, the contact mechanics between the poppet and the seat, the computational fluid dynamics. The valves have been further measured by using several measuring equipment's, including a laser interferometer, a spectrum analyser to measure the gas flow stability, Thermal vacuum and leak tests have also been performed. A special emphasis is realised on the driving and control aspects of this valve for space applications.

  11. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  12. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  13. Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators

    NASA Astrophysics Data System (ADS)

    Dong, Kaichen; Lou, Shuai; Choe, Hwan Sung; Liu, Kai; You, Zheng; Yao, Jie; Wu, Junqiao

    2016-07-01

    Due to its thermally driven structural phase transition, vanadium dioxide (VO2) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO2 actuators severely obstructs the actuation performance and application. Here, we introduce a "seesaw" method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO2 actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvature and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO2 actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This "seesaw" method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.

  14. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  15. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  16. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  17. Analog actuator-piston memory

    NASA Technical Reports Server (NTRS)

    Sable, B. A.

    1980-01-01

    Simple analog control system of digitally controlled acuator uses 'stopped' position of actuator as 'memory' and potentiometer as sensing element during power failure to reload drive circuit to value equal to its last position preceding power loss.

  18. Single myosin lever arm orientation in a muscle fiber detected with photoactivatable GFP.

    PubMed

    Burghardt, Thomas P; Li, Jinhui; Ajtai, Katalin

    2009-02-03

    Myosin 2 is the molecular motor in muscle. It binds actin and executes a power stroke by rotating its lever arm through an angle of approximately 70 degrees to translate actin against resistive force. Myosin 2 has evolved to function optimally under crowded conditions where rates and equilibria of macromolecular reactions undergo major shifts relative to those measured in dilute solution. Hence, an important research objective is to detect in situ the lever arm orientation. Single-molecule measurements are preferred because they clarify ambiguities that are unavoidable with ensemble measurements; however, detecting single molecules in the condensed tissue medium where the myosin concentration exceeds 100 muM is challenging. A myosin light chain (MLC) tagged with photoactivatable green fluorescent protein (PAGFP) was constructed. The recombinant MLC physically and functionally replaced native MLC on the myosin lever arm in a permeabilized skeletal muscle fiber. Probe illumination volume was minimized using total internal reflection fluorescence microscopy, and PAGFP was sparsely photoactivated such that polarized fluorescence identified a single probe orientation. Several physiological states of the muscle fiber were characterized, revealing two distinct orientation populations in all states called straight and bent conformations. Conformation occupancy probability varies among fiber states with rigor and isometric contraction at extremes where straight and bent conformations predominate, respectively. Comparison to previous work on single rigor cross-bridges at the A-band periphery where the myosin concentration is low suggests molecular crowding in the A-band promotes occupancy of the straight myosin conformation [Burghardt, T. P., et al. (2007) Biophys. J. 93, 2226]. The latter may have a role in contraction because it provides additional free energy favoring completion of the cross-bridge power stroke.

  19. Single myosin cross-bridge orientation in cardiac papillary muscle detects lever-arm shear strain in transduction.

    PubMed

    Burghardt, Thomas P; Josephson, Matthew P; Ajtai, Katalin

    2011-09-13

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley-Simmons model for myosin based contraction [Huxley and Simmons ( 1971 ) Nature 233 , 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution.

  20. Single Myosin Cross-Bridge Orientation in Cardiac Papillary Muscle Detects Lever-Arm Shear Strain in Transduction

    PubMed Central

    Burghardt, Thomas P.; Josephson, Matthew P.; Ajtai, Katalin

    2011-01-01

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley–Simmons model for myosin based contraction [Huxley and Simmons (1971) Nature 233, 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution. PMID:21819137

  1. Acoustic actuation of bioinspired microswimmers.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2017-01-31

    Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.

  2. Determination of the electrostatic lever arm of carbon nanotube field effect transistors using Kelvin force microscopy

    NASA Astrophysics Data System (ADS)

    Brunel, David; Deresmes, Dominique; Mélin, Thierry

    2009-06-01

    We use Kelvin force microscopy (KFM) to study the electrostatic properties of single-walled carbon nanotube field effect transistor devices (CNTFETs) with backgate geometry at room temperature. We show that KFM maps recorded as a function of the device backgate polarization enable a complete phenomenological determination of the averaging effects associated with the KFM probe side capacitances, and thus, to obtain KFM measurements with quantitative character. The value of the electrostatic lever arm of the CNTFET is determined from KFM measurements and found in agreement with transport measurements based on Coulomb blockade.

  3. Displacement response, detection limit, and dynamic range of fiber-optic lever sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.

    1991-01-01

    The authors present the evaluation of the displacement response, detection limit, and dynamic range of fiber-optic lever sensors in a general format to establish their dependence on fiber sizes, optoelectronic detector specifications, input power, and other relevant parameters. The formations for the normalized reflected optical power change are derived for the evaluation of the optimal sensor response, the linearity range, and the minimum detectable displacement. The theoretical models are verified by an experiment which determines sensor response, modulation index, reflected optical power change, and linear response range through dynamic measurement. The application of this theoretical model to the study of a fiber-optic microphone for acoustic pressure detection is considered.

  4. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  5. Thermally actuated piston micromirror arrays

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Bright, Victor M.

    1997-07-01

    This paper reports design and characterization testing of thermally actuated piston micromirror arrays. The micromirrors were fabricated in the DARPA-sponsored MUMPs polysilicon surface micromachining process. The power averaging characteristic of thermal actuation is exploited in a novel line addressing scheme which reduces wiring for an n2 array to 2n wires. Mirror deflections were measured with a microscope laser interferometer system equipped with a vacuum chamber. Data presented includes device uniformity, frequency response, and deflection versus drive power for varied ambient pressure. Initial test results confirm that thermally actuated piston micromirrors offer several advantages over more common electrostatic designs. Thermally actuated micromirrors offer greater deflections at drive voltages compatible with CMOS circuitry. Measured thermal piston micromirror deflection versus drive voltage is nonlinear, but does not exhibit the 'snap through instability' characteristic of electrostatic devices. Operation of thermally actuated devices in rarefied ambient significantly decreases power dissipation. For a given deflection range, the power reduction facilitated by vacuum operation makes large arrays feasible. Frequency response of thermally actuated devices is limited by the ability of the device to dissipate heat, but operation at 1 kHz rates is feasible.

  6. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  7. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  8. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  9. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  10. Protein-based microhydraulic transport for controllable actuation

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Leo, Donald J.

    2006-03-01

    Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio- fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. Calculations for controlled actuation of an active material inspired by biological transport mechanism demonstrated the feasibility of developing such a material with actuation energy densities on the order of 100 kJ/m 3. The mathematical model for a simplified proof of concept actuator referred to as micro hydraulic actuator uses ion transporters extracted from plants reconstituted on a synthetic bilayer lipid membrane (BLM). Thermodynamic model of the concept actuator predicted the ability to develop 5 percent normalized deformation in thickness of the micro- hydraulic actuator. Controlled fluid transport through AtSUT4 (Proton-sucrose co-transporter from Arabidopsis thaliana) reconstituted on a 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L- Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- Phosphoethanolamine (POPE) BLM on a porous lead silicate glass plate (50μm with 61μm pitch) was driven by proton gradient. Bulk fluid flux of 1.2 μl/min was observed for each microliter of AtSUT4 transporter suspension (16.6 mg/ml in pH7.0 medium) reconstituted on the BLM. The flux rate is observed to be dependent on the concentration of sucrose present in pH4 buffer. Flux rate of 10 μl/min is observed for 5 mM sucrose in the first 10 minutes. The observed flux scales linearly with BLM area and the amount of proteins reconstituted on the lipid membrane. This article details the next step in the development of the micro hydraulic actuator - fluid transport driven by exergonic Adenosine triphosphate (ATP) hydrolysis reaction in the presence of ATP

  11. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin

    SciTech Connect

    Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.; O'Neall-Hennessey, E.; Reshetnikova, L.; Nguyen-McCarty, M.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-01-04

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  12. Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin

    SciTech Connect

    J Brown; V Senthil Kumar; E ONeall-Hennessey; L Reshetnikova; H Robinson; M Nguyen-McCarty; A Szent-Gyorgyi; C Cohen

    2011-12-31

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  13. Theoretical and experimental studies of a magnetically actuated valveless micropump

    NASA Astrophysics Data System (ADS)

    Ashouri, Majid; Behshad Shafii, Mohammad; Moosavi, Ali

    2017-01-01

    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µl min-1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s-1. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.

  14. Energy harvesting for self-powered aerostructure actuation

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  15. Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Little, Jesse

    2016-11-01

    A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).

  16. Pneumatic artificial muscle actuators for compliant robotic manipulators

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and

  17. Sensor/Actuator Selection for Gust and Turbulence Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1998-01-01

    From aircraft fuselages and space stations to vacuum cleaners and automobiles, active control of noise and/or vibration has come of age. Determining the number of active control devices (e.g. actuators) to be placed and where they are to be placed is the prototypical location problem. However, unlike typical location problems, where the customer is readily identified and is actively engaged in the assessment of the performance of the chosen locations, the customers that active control devices serve are not so easily identified and their impact on system performance issues may be unclear. For example, consider the problem of where to locate actuators to attenuate cabin noise in a propeller driven aircraft. Clearly, the ultimate customers are the passengers who will travel in these aircraft. But to decide whether one set of actuator locations is better than another it is unlikely we will ask passengers to fly in the aircraft and fill out a questionnaire about noise levels. Instead a set of sensors (pseudo-customers) are placed and the system performance of the actuators, as measured by these sensors, is recorded. Hence, we have yet another location problem. How many sensors should there be and where should they be located? In many instances collocation of sensors and actuators is the answer but in other instances it is not. A variety of approaches have been taken to address these sensor/actuator location problems. With regard to damping vibrations in truss structures (space station prototypes) it was formulated a new noxious location problem and generated high-quality solutions with a combination of LP-relaxations and heuristic search procedures. Other related efforts are summarized the actuator location problem for a single frequency interior noise control problem was examined for an idealized aircraft cabin. A tabu search procedure was shown to generate better locations for the actuators than a modal decomposition approach. The model was extended to include multi

  18. Processive steps in the reverse direction require uncoupling of the lead head lever arm of myosin VI.

    PubMed

    Ménétrey, Julie; Isabet, Tatiana; Ropars, Virginie; Mukherjea, Monalisa; Pylypenko, Olena; Liu, Xiaoyan; Perez, Javier; Vachette, Patrice; Sweeney, H Lee; Houdusse, Anne M

    2012-10-12

    Myosin VI is the only known reverse-direction myosin motor. It has an unprecedented means of amplifying movements within the motor involving rearrangements of the converter subdomain at the C terminus of the motor and an unusual lever arm projecting from the converter. While the average step size of a myosin VI dimer is 30-36 nm, the step size is highly variable, presenting a challenge to the lever arm mechanism by which all myosins are thought to move. Herein, we present structures of myosin VI that reveal regions of compliance that allow an uncoupling of the lead head when movement is modeled on actin. The location of the compliance restricts the possible actin binding sites and predicts the observed stepping behavior. The model reveals that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model.

  19. Myosin VI must dimerize and deploy its unusual lever arm in order to perform its cellular roles.

    PubMed

    Mukherjea, Monalisa; Ali, M Yusuf; Kikuti, Carlos; Safer, Daniel; Yang, Zhaohui; Sirkia, Helena; Ropars, Virginie; Houdusse, Anne; Warshaw, David M; Sweeney, H Lee

    2014-09-11

    It is unclear whether the reverse-direction myosin (myosin VI) functions as a monomer or dimer in cells and how it generates large movements on actin. We deleted a stable, single-α-helix (SAH) domain that has been proposed to function as part of a lever arm to amplify movements without impact on in vitro movement or in vivo functions. A myosin VI construct that used this SAH domain as part of its lever arm was able to take large steps in vitro but did not rescue in vivo functions. It was necessary for myosin VI to internally dimerize, triggering unfolding of a three-helix bundle and calmodulin binding in order to step normally in vitro and rescue endocytosis and Golgi morphology in myosin VI-null fibroblasts. A model for myosin VI emerges in which cargo binding triggers dimerization and unfolds the three-helix bundle to create a lever arm essential for in vivo functions.

  20. Mechanics of Actuated Disc Cutting

    NASA Astrophysics Data System (ADS)

    Dehkhoda, Sevda; Detournay, Emmanuel

    2017-02-01

    This paper investigates the mechanics of an actuated disc cutter with the objective of determining the average forces acting on the disc as a function of the parameters characterizing its motion. The specific problem considered is that of a disc cutter revolving off-centrically at constant angular velocity around a secondary axis rigidly attached to a cartridge, which is moving at constant velocity and undercutting rock at a constant depth. This model represents an idealization of a technology that has been implemented in a number of hard rock mechanical excavators with the goal of reducing the average thrust force to be provided by the excavation equipment. By assuming perfect conformance of the rock with the actuated disc as well as a prescribed motion of the disc (perfectly rigid machine), the evolution of the contact surface between the disc and the rock during one actuation of the disc can be computed. Coupled with simple cutter/rock interaction models that embody either a ductile or a brittle mode of fragmentation, these kinematical considerations lead to an estimate of the average force on the cartridge and of the partitioning of the energy imparted by the disc to the rock between the actuation mechanism of the disc and the translation of the cartridge on which the actuated disc is attached.

  1. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  2. Gain compression effect on the modulation dynamics of an optically injection-locked semiconductor laser using gain lever

    NASA Astrophysics Data System (ADS)

    Sarraute, J.-M.; Schires, K.; LaRochelle, S.; Grillot, F.

    2016-03-01

    The modulation response of an optically-injected gain lever semiconductor laser is studied and calculations show that a gain-lever laser operating under medium to strong optical injection provides a unique and robust configuration for ultra large bandwidth enhancement. Modulation bandwidths above nine times the relaxation oscillation frequency of the free-running laser can be reached using injection-locking conditions that are reasonable for practical applications. The impact of the gain compression on the modulation dynamic is discussed for the first time. This work is of prime importance for the development of directly-modulated broadband optical sources for high-speed operation at 40 Gbps and beyond.

  3. SPRING DRIVEN ACTUATING MECHANISM FOR NUCLEAR REACTOR CONTROL

    DOEpatents

    Bevilacqua, F.; Uecker, D.F.; Groh, E.F.

    1962-01-23

    l962. rod in a nuclear reactor to shut it down. The control rod or an extension thereof is wound on a drum as it is withdrawn from the reactor. When an emergency occurs requiring the reactor to be shut down, the drum is released so as to be free to rotate, and the tendency of the control rod or its extension coiled on the drum to straighten itself is used for quickly returning the control rod to the reactor. (AEC)

  4. A mechanical actuator driven electrochemically by artificial molecular muscles.

    PubMed

    Juluri, Bala Krishna; Kumar, Ajeet S; Liu, Yi; Ye, Tao; Yang, Ying-Wei; Flood, Amar H; Fang, Lei; Stoddart, J Fraser; Weiss, Paul S; Huang, Tony Jun

    2009-02-24

    A microcantilever, coated with a monolayer of redox-controllable, bistable [3]rotaxane molecules (artificial molecular muscles), undergoes reversible deflections when subjected to alternating oxidizing and reducing electrochemical potentials. The microcantilever devices were prepared by precoating one surface with a gold film and allowing the palindromic [3]rotaxane molecules to adsorb selectively onto one side of the microcantilevers, utilizing thiol-gold chemistry. An electrochemical cell was employed in the experiments, and deflections were monitored both as a function of (i) the scan rate (< or =20 mV s(-1)) and (ii) the time for potential step experiments at oxidizing (>+0.4 V) and reducing (<+0.2 V) potentials. The different directions and magnitudes of the deflections for the microcantilevers, which were coated with artificial molecular muscles, were compared with (i) data from nominally bare microcantilevers precoated with gold and (ii) those coated with two types of control compounds, namely, dumbbell molecules to simulate the redox activity of the palindromic bistable [3]rotaxane molecules and inactive 1-dodecanethiol molecules. The comparisons demonstrate that the artificial molecular muscles are responsible for the deflections, which can be repeated over many cycles. The microcantilevers deflect in one direction following oxidation and in the opposite direction upon reduction. The approximately 550 nm deflections were calculated to be commensurate with forces per molecule of approximately 650 pN. The thermal relaxation that characterizes the device's deflection is consistent with the double bistability associated with the palindromic [3]rotaxane and reflects a metastable contracted state. The use of the cooperative forces generated by these self-assembled, nanometer-scale artificial molecular muscles that are electrically wired to an external power supply constitutes a seminal step toward molecular-machine-based nanoelectromechanical systems (NEMS).

  5. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.

  6. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  7. Biomimetic flexible plate actuators are faster and more efficient with a passive attachment

    NASA Astrophysics Data System (ADS)

    Yeh, Peter D.; Alexeev, Alexander

    2016-12-01

    Using three-dimensional computer simulations, we probe biomimetic free swimming of an internally actuated flexible plate in the regime near the first natural frequency. The plate is driven by an oscillating internal moment approximating the actuation mechanism of a piezoelectric macro fiber composite (MFC) bimorph. We show in our simulations that the addition of a passive attachment increases both swimming velocity and efficiency. Specifically, if the active and passive sections are of similar size, the overall performance is the best. We determine that this optimum is a result of two competing factors. If the passive section is too large, then the actuated portion is unable to generate substantial deflection to create sufficient thrust. On the other hand, a large actuated section leads to a bending pattern that is inefficient at generating thrust especially at higher frequencies.

  8. Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators

    NASA Astrophysics Data System (ADS)

    Cao, Yin; Sun, Hongling; An, Fengyan; Li, Xiaodong

    2012-05-01

    A novel active control method of sound radiation from a cylindrical shell under axial excitations is proposed and theoretically analyzed. This control method is based on a pair of piezoelectric stack force actuators which are installed on the shell and parallel to the axial direction. The actuators are driven in phase and generate the same forces to control the vibration and the sound radiation of the cylindrical shell. The model considered is a fluid-loaded finite stiffened cylindrical shell with rigid end-caps and only low-frequency axial vibration modes are involved. Numerical simulations are performed to explore the required control forces and the optimal mounting positions of actuators under different cost functions. The results show that the proposed force actuators can reduce the radiated sound pressure of low-frequency axial modes in all directions.

  9. Internally-actuated flexible fins swim faster and more efficiently with a passive attachment

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Alexeev, Alexander

    2016-11-01

    Using three dimensional computer simulations, we probe biomimetic free swimming of an internally-actuated flexible plate in the regime near the first natural frequency. The plate is driven by an oscillating internal moment approximating the actuation mechanism of a piezoelectric MFC bimorph. We show in our simulations that the addition of a passive attachment increases both swimming velocity and efficiency. Specifically, if the active and passive sections are of similar size, the overall performance is the best. We determine that this optimum is a result of two competing factors. If the passive section is too large, then the actuated portion is unable to generate substantial deflection to create sufficient thrust. On the other hand, a large actuated section leads to a bending pattern that is inefficient at generating thrust especially at higher frequencies.

  10. Solar Sail Control Actuator Concepts

    NASA Technical Reports Server (NTRS)

    Mangus, David; Heaton, Andy

    2004-01-01

    The thrust produced by a solar sail is a direct function of its attitude. Thus, solar sail thrust vector control is a key technology that must be developed for sailcraft to become a viable form of deep-space transportation. The solar sail community has been studying various sail Attitude Control System (ACS) actuator designs for near Earth orbit as well as deep space missions. These actuators include vanes, spreader bars, two-axis gimbals, floating/locking gimbals with wheels, and translating masses. This paper documents the various concepts and performs an assessment at the highest level. This paper will only compare the various ACS actuator concepts as they stand at the publication time. This is not an endorsement of any particular concept. As concepts mature, the assessments will change.

  11. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  12. A Parylene Bellows Electrochemical Actuator

    PubMed Central

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2011-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized through a careful examination of geometrical factors. Overall, a maximum pump efficiency of 90% was achieved in the case of electroplated electrodes, and a deflection of over 1.5 mm was demonstrated. Real-time wireless operation was achieved. The complete fabrication process and the materials used in this actuator are bio-compatible, which makes it suitable for biological and medical applications. PMID:21318081

  13. Flight Control System Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Snell, S. A.

    1997-01-01

    Actuator rate saturation is an important factor adversely affecting the stability and performance of aircraft flight control systems. It has been identified as a catalyst in pilot-induced oscillations, some of which have been catastrophic. A simple design technique is described that utilizes software rate limiters to improve the performance of control systems operating in the presence of actuator rate saturation. As described, the technique requires control effectors to be ganged such that any effector is driven by only a single compensated error signal. Using an analysis of the steady-state behavior of the system, requirements are placed upon the type of the loop transmissions and compensators in the proposed technique. Application of the technique to the design of a multi-input/multi-output, lateral-directional control system for a simple model of a high-performance fighter is demonstrated as are the stability and performance improvements that can accrue with the technique.

  14. Underwater propulsion of an internally actuated elastic plate

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Cen, Lejun; Erturk, Alper; Alexeev, Alexander

    2013-03-01

    Combining experiments and numerical simulations we examine underwater locomotion of an active (internally powered) flexible bimorph composite. We use Macro-Fiber Composite (MFC) piezoelectric laminates that are actuated by a sinusoidally varying voltage generating thrust similar to that of a flapping fin in carangiform motion. In our fully-coupled three dimensional simulations, we model this MFC bimorph fin as a thin, elastic plate that is actuated by a time-varying internal moment producing periodic fin bending and oscillations. The steady state swim velocity and thrust are experimentally measured and compared to the theoretical predictions. Our simulations provide detailed information about the flow structures around the swimming fin and show how they affect the forward motion. The results are useful for designing self-propelling fish-like robots driven by internally powered fins.

  15. Filament actuation by an active colloid at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Laskar, Abhrajit; Adhikari, R.

    2017-03-01

    Active colloids and externally actuated semi-flexible filaments provide basic building blocks for designing autonomously motile micro-machines. Here, we show that a passive semi-flexible filament can be actuated and transported by attaching an active colloid to its terminus. We study the dynamics of this assembly when it is free, tethered, or clamped using overdamped equations of motion that explicitly account for active fluid flow and the forces it mediates. Linear states are destabilised by buckling instabilities to produce stable states of non-zero curvature and writhe. We demarcate boundaries of these states in the two-dimensional parameter space representing dimensionless measures of polar and apolar activity. Our proposed assembly can be used as a novel component in the design of micro-machines at low Reynolds number and to study elastic instabilities driven by ‘follower’ forces.

  16. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  17. Soft electrothermal actuators using silver nanowire heaters.

    PubMed

    Yao, Shanshan; Cui, Jianxun; Cui, Zheng; Zhu, Yong

    2017-03-17

    Low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible silver nanowire (AgNW) based heaters, which exhibited a fast heating rate of 18 °C s(-1) and stable heating performance with large bending. The actuators offered the largest bending angle (720°) or curvature (2.6 cm(-1)) at a very low actuation voltage (0.2 V sq(-1) or 4.5 V) among all types of bimorph actuators that have been reported to date. The actuators can be designed and fabricated in different configurations that can achieve complex patterns and shapes upon actuation. Two applications of this type of soft actuators were demonstrated towards biomimetic robotics - a crawling robot that can walk spontaneously on ratchet surfaces and a soft gripper that is capable of manipulating lightweight and delicate objects.

  18. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  19. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  20. LEVER: software tools for segmentation, tracking and lineaging of proliferating cells.

    PubMed

    Winter, Mark; Mankowski, Walter; Wait, Eric; Temple, Sally; Cohen, Andrew R

    2016-11-15

    The analysis of time-lapse images showing cells dividing to produce clones of related cells is an important application in biological microscopy. Imaging at the temporal resolution required to establish accurate tracking for vertebrate stem or cancer cells often requires the use of transmitted light or phase-contrast microscopy. Processing these images requires automated segmentation, tracking and lineaging algorithms. There is also a need for any errors in the automated processing to be easily identified and quickly corrected. We have developed LEVER, an open source software tool that combines the automated image analysis for phase-contrast microscopy movies with an easy-to-use interface for validating the results and correcting any errors.

  1. Levers and linkages: mechanical trade-offs in a power-amplified system.

    PubMed

    Anderson, Philip S L; Claverie, Thomas; Patek, S N

    2014-07-01

    Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy.

  2. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  3. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  4. Response inhibition is impaired by developmental methylmercury exposure: Acquisition of low-rate lever-pressing☆

    PubMed Central

    Newland, M. Christopher; Hoffman, Daniel J.; Heath, John C.; Donlin, Wendy D.

    2013-01-01

    Developmental methylmercury (MeHg) exposure produces response perseveration on discrimination reversal procedures, disrupts sensitivity to reinforcement, and enhances sensitivity to dopamine agonists – a profile suggesting a deficit in behavioral inhibition. To examine inhibition, we examined MeHg’s effects on the acquisition and persistence of low-rate lever-pressing following a history of high-rate responding. Additionally, we examined whether chronic exposure to selenium protects against MeHg’s developmental neurotoxicity. Female rats were exposed in utero via maternal exposure to drinking water containing 0 ppm, 0.5 ppm or 5 ppm of Hg as MeHg, producing approximately 0 μg/kg/day, 40 μg/kg/day, or 400 μg/kg/day of Hg. The mothers (during gestation) and the offspring (throughout life) consumed a purified diet containing 0.06 ppm or 0.6 ppm of Se (as sodium selenite), forming a 2 (lifespan diet) × 3 (developmental MeHg) factorial design. Adult offspring lever-pressed under two schedules of reinforcement. A differential reinforcement of high-rate (DRH) schedule imposed rigid response requirements that remained constant through the study. A high-rate percentile schedule (PCNT-H) incorporated a flexible criterion that reinforced short interresponse times using an adjusting criterion that was sensitive to recent performance. After high-rate responding stabilized, the PCNT-H schedule was abruptly inverted by reinforcing long interresponse times. Acquisition of low-rate responding was impaired in the MeHg-exposed rats because of intrusions of high-rate response bursts. DRH response rates did not change. Dietary selenium did not influence MeHg’s effects. High-rate operant behavior perseverated, suggesting that gestational MeHg exposure impairs response inhibition – an effect that extends results previously reported using choice procedures or spatial and visual discrimination reversals. PMID:23721962

  5. Design and performance of a sub-nanoradian resolution autocollimating optical lever

    SciTech Connect

    Cowsik, R.; Srinivasan, R.; Kasturirengan, S.; Kumar, A. Senthil; Wagoner, K.

    2007-03-15

    Precision goniometry using optics has the advantage that it does not impose much stress on the object of investigation and, as such, is adopted extensively in gravitational wave detection, in torsion balances investigating fundamental forces, in specialized studies of biological samples, and it has potential applications in condensed matter physics. In this article we present the considerations that go into designing optical levers and discuss the performance of the instrument we have constructed. We motivate the design by considering an idealized setup and the limitations to the angular resolution induced by statistical fluctuations of the photon count rate and diffraction at the apertures. The effects of digitization of the count rate and of the spatial location of the photons on the image plane motivating the actual design are discussed next. Based on these considerations, we have developed an autocollimating optical lever which has a very high resolution and dynamic range. An array of 110 slits, of 90 {mu}m width and a pitch of 182 {mu}m, is located in the focal plane of a field lens, of focal length 1000 mm, and is illuminated by a CCFL tube. This array is imaged back onto the focal plane after retroreflection from a mirror placed just beyond the lens. The image is recorded on a linear charge-coupled device array at the rate of 1000 images/s and is processed through a special algorithm to obtain the centroid. The instrument has a centroid stability of {approx}3x10{sup -10} rad Hz{sup -1/2} and a dynamic range of {approx}10{sup 7}.

  6. Crossbridge and filament compliance in muscle: implications for tension generation and lever arm swing.

    PubMed

    Offer, Gerald; Ranatunga, K W

    2010-12-01

    The stiffness of myosin heads attached to actin is a crucial parameter in determining the kinetics and mechanics of the crossbridge cycle. It has been claimed that the stiffness of myosin heads in the anterior tibialis muscle of the common frog (Rana temporaria) is as high as 3.3 pN/nm, substantially higher than its value in rabbit muscle (~1.7 pN/nm). However, the crossbridge stiffness measurement has a large error since the contribution of crossbridges to half-sarcomere compliance is obtained by subtracting from the half-sarcomere compliance the contributions of the thick and thin filaments, each with a substantial error. Calculation of its value for isometric contraction also depends on the fraction of heads that are attached, for which there is no consensus. Surprisingly, the stiffness of the myosin head from the edible frog, Rana esculenta, determined in the same manner, is only 60% of that in Rana temporaria. In our view it is unlikely that the value of such a crucial parameter could differ so substantially between two frog species. Since the means of the myosin head stiffness in these two species are not significantly different, we suggest that the best estimate of the stiffness of the myosin heads for frog muscle is the average of these data, a value similar to that for rabbit muscle. This would allow both frog and rabbit muscles to operate the same low-cooperativity mechanism for the crossbridge cycle with only one or two tension-generating steps. We review evidence that much of the compliance of the myosin head is located in the pliant region where the lever arm emerges from the converter and propose that tension generation ("tensing") caused by the rotation and movement of the converter is a separate event from the passive swinging of the lever arm in its working stroke in which the strain energy stored in the pliant region is used to do work.

  7. Pre-actuation and post-actuation in control applications

    NASA Astrophysics Data System (ADS)

    Iamratanakul, Dhanakorn

    This research proposes a direct approach to solve the output-transition problem in linear systems. The objective is to find an input that changes the system output from an initial value to a final value during a specified output-transition time-interval. It is noted that the output-transition problem (i.e., changing the output of a system from one value to another) is a fundamental control problem, which appears in a wide range of flexible structure applications. When performing fast maneuvers with such flexible structures, it is critical to suppress residual vibrations (at the end of the maneuver) that cause a loss of positioning precision. For example, in disk-drive applications, read and write operations cannot be performed (before and after the output transition) if the output position is not precisely maintained at the desired track. This research studies such residual-vibration-free (rest-to-rest) output transitions, where the output is maintained at a constant value outside the output-transition time-interval. The novelty of the proposed approach is that inputs are not applied just during the output-transition time-interval; rather, inputs are also applied outside the output-transition time-interval, i.e., before the beginning of and after the end of the output-transition time-interval (these inputs are called pre-actuation and post-actuation, respectively). The advantage of using pre-actuation and post-actuation when compared to standard methods that do not use such pre- and post-actuation is studied in this research.

  8. Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation

    NASA Astrophysics Data System (ADS)

    Li, Muhua; Zhao, Jiahao; You, Zheng; Zhao, Guanghong

    2017-01-01

    In this paper, we have developed an electrostatic driven capacitive RF MEMS switch. The actuation voltage is applied to the actuation electrodes, and the DC voltage is isolated from the signal line and RF signals. Actuation area and capacitance area are separated. Thanks to this structure, both low actuation voltage and low up-state capacitance are achieved. The switch can be integrated in RF systems without additional circuits to isolate the DC voltage, so the system is simplified. The proposed switch is fabricated and tested. The insertion loss and isolation of the fabricated switch are 0.29 dB and 20.5 dB at 35 GHz, respectively. The actuation voltage is 18.3 V.

  9. Electromagnetically driven liquid iris

    NASA Astrophysics Data System (ADS)

    Jang, Deasung; Jeong, Jin Won; Lee, Dae Young; Kim, Dae Geun; Chung, Sang Kug

    2016-11-01

    This paper describes a tunable liquid iris driven by electromagnetic actuation for miniature cameras. To examine the magnetic effect on a ferrofluid, the contact angle modification of a sessile ferrofluid droplet is tested using a neodymium magnet and an electric coil which 2.5 A current is applied to. The contact angle variations of the ferrofluid droplet for each test are 21.3 and 18.1 degrees, respectively. As a proof of concept, a pretest of a tunable iris actuated by electromagnetic effect is performed by using a hollow cylinder cell. As applying the current, the aperture diameter is adjusted from 4.06 mm at 0A to 3.21 mm at 2.0A. Finally, a tunable liquid iris (9 x 9 x 2 mm3) , consisting of two connected circular microchannels, is realized using MEMS technology. the aperture diameter of the tunable liquid iris is able to be modified from 1.72 mm at 0 A to 1.15 mm at 2.6 A. This tunable optical iris has potential applications not only for portable electronic devices but also in biomedical fields such as optical coherence tomography and microsurgery. This work was supported by 2016 Research Fund of Myongji University.

  10. Optimization of a magnetic disk drive actuator with small skew actuation

    NASA Astrophysics Data System (ADS)

    He, Zhimin; Ong, Eng Hong; Guo, Guoxiao

    2002-05-01

    Currently the utilization of the voice-coil motor for actuating read/write head elements in magnetic hard disk drives results in a skewed actuation, which necessitates an involved microjogging process and thus a complicated servo system. Furthermore, in perpendicular recording systems, a small skew actuation will relax the requirement on pole trimming. This article presents a magnetic hard disk drive actuator and suspension assembly with small skew actuation. In the present study, the distance from the actuator pivot to the read/write head is chosen so that the skew angle variation is minimized. After that, the suspension head is assembled to the actuator arm at a slant angle with respect to the actuator longitudinal direction to achieve an absolute small skew actuation. Finite element modeling and experimental measurements reveal that there are no significant changes of the actuator assembly dynamic performance with and without the slant angle.

  11. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented.

  12. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  13. Active Flow Control with Thermoacoustic Actuators

    DTIC Science & Technology

    2014-01-31

    dielectric barrier discharge ( DBD ) plasma actuators [4], or combustion powered actuators [5]. Compared to passive flow control techniques, such as vortex...space nor adding significant weight, which is similar to how DBD plasma actuators can be installed. 3 The sound generation mechanism, known as

  14. Photogated humidity-driven motility

    PubMed Central

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-01-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day–night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min−1. The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids. PMID:26067649

  15. Photogated humidity-driven motility.

    PubMed

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-11

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min(-1). The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  16. Photogated humidity-driven motility

    NASA Astrophysics Data System (ADS)

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min-1. The element can lift objects ~85 times heavier and can transport cargos ~20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  17. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator.

    PubMed

    Zhang, Chi; Tang, Wei; Pang, Yaokun; Han, Changbao; Wang, Zhong Lin

    2015-01-27

    Based on a triboelectric nanogenerator (TENG), the first active micro-actuator for optical modulation driven by mechanical energy without external power or mechanical joint is presented. This demonstrates the enormous potential of TENGs for independent and sustainable self-powered micro/nano electromechanical systems, and opens up new -applications of TENGs in triboelectric-voltage-controlled devices.

  18. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating

  19. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  20. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  1. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  2. Trying to Make a Lever Work at Ages 1 to 4: The Development of "Functions" (Logico-Mathematical Thinking)

    ERIC Educational Resources Information Center

    Kamii, Constance; Miyakawa, Yoko; Kato, Tsuguhiko

    2007-01-01

    To find out if children could make functions before age 4, 73 children aged 1 to 4 were encouraged to imitate the use of a lever to make a beanbag fly up. Functions are mental relationships that preoperational children can make between 2 things at a time in a unidirectional way (Piaget, Grize, Szeminska, & Bang, 1968/1977). The child's…

  3. Effects of ketamine, a noncompetitive NMDA antagonist, on the acquisition of the lever-press response in rats.

    PubMed

    Pallarés, M A; Nadal, R A; Silvestre, J S; Ferré, N S

    1995-02-01

    We analyzed the effects of ketamine, a noncompetitive NMDA antagonist, on the acquisition of the lever-press response in the Skinner box and on motor performance both in the open field and in the inclined screen. Ninety-six adult male Wistar rats were assigned at random to eight different groups (n = 12). The first four groups received an acute intraperitoneal (IP) injection of: (a) physiological saline, (b) 4 mg/kg ketamine, (c) 8 mg/kg ketamine, or (d) 12 mg/kg ketamine, and the subjects were tested in a free lever-press response shaping in the Skinner box. The second four groups received the same substances and doses as the first four, but the subjects were tested for locomotor activity in an open field and tested immediately afterwards for motor performance in an 80 degrees inclined screen. Results showed that ketamine impaired the acquisition of the lever-press response in a dose-dependent manner, with no effects on ambulation in the open field nor on length of stay in the inclined screen. These results suggest that ketamine effects on the acquisition of the lever-press response cannot be attributed to a motor impairment, indicating a possible specific effect of ketamine on the associative learning acquisition.

  4. 77 FR 9890 - Solicitation of Input From Stakeholders Regarding the Smith-Lever 3(d) Children, Youth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...-Lever 3(d) Children, Youth, and Families at Risk Sustainable Community Projects AGENCY: National... opportunity to compete for section 3(d) funds. The Children, Youth, and Families at Risk (CYFAR) Sustainable... The mission of the CYFAR Program is to marshal resources of Land- Grant and Cooperative...

  5. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber.

    PubMed

    Minoda, Hiroki; Okabe, Tatsuhiro; Inayoshi, Yuhri; Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru; Katayama, Eisaku; Wakabayashi, Takeyuki; Akimoto, Tsuyoshi; Sugi, Haruo

    2011-02-25

    Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  6. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Domm, Lukas; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea

    2012-01-01

    The search for present or past life in the Universe is one of the most important objectives of NASA's exploration missions. Drills for subsurface sampling of rocks, ice and permafrost are an essential tool for astrobiology studies on other planets. Increasingly, it is recognized that drilling via a combination of rotation and hammering offers an efficient and effective rapid penetration mechanism. The rotation provides an intrinsic method for removal of cuttings from the borehole while the impact and shear forces aids in the fracturing of the penetrated medium. Conventional drills that use a single actuator are based on a complex mechanism with many parts and their use in future mission involves greater risk of failure and/or may require lubrication that can introduce contamination. In this paper, a compact drill is reported that uses a single piezoelectric actuator to produce hammering and rotation of the bit. A horn with asymmetric grooves was design to impart a longitudinal (hammering) and transverse force (rotation) to a keyed free mass. The drill requires low axial pre-load since the hammering-impacts fracture the rock under the bit kerf and rotate the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations 'fluidize' the powdered cuttings inside the flutes reducing the friction with the auger surface. This action reduces the consumed power and heating of the drilled medium helping to preserve the pristine content of the acquired samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This can reduce the development/fabrication cost and complexity. In this paper, the drill mechanism will be described and the test results will be reported and discussed.

  7. Fabrication and Characterization of a Micromachined Swirl-Shaped Ionic Polymer Metal Composite Actuator with Electrodes Exhibiting Asymmetric Resistance

    PubMed Central

    Feng, Guo-Hua; Liu, Kim-Min

    2014-01-01

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370

  8. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    PubMed

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  9. Composite flight-control actuator development

    NASA Technical Reports Server (NTRS)

    Bott, Richard; Ching, Fred

    1992-01-01

    The composite actuator is 'jam resistant', satisfying a survivability requirement for the Navy. Typically, the push-pull force needed to drive through the wound area of the composite actuator is 73 percent less than that of an all-metal actuator. In addition to improving the aircraft's combat survivability, significant weight savings were realized. The current design of the survivable, composite actuator cylinder is 36 percent lighter than that of the production steel cylinder, which equates to a 15 percent overall actuator weight savings.

  10. A bidirectional shape memory alloy folding actuator

    NASA Astrophysics Data System (ADS)

    Paik, Jamie K.; Wood, Robert J.

    2012-06-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype.

  11. Characterization and modeling of CNT based actuators

    NASA Astrophysics Data System (ADS)

    Riemenschneider, Johannes

    2009-10-01

    In order to get an understanding of the general characteristics of carbon nanotube (CNT) based actuators, the system response of the actuator was analyzed. Special techniques were developed in order to generate a reproducible characteristic measure for the material: the R-curve. In addition, the dynamic response of the system was evaluated in different states of the actuator. A model was generated to capture the general behavior of the system. Finally an actuator incorporating a solid electrolyte was built and tested, showing similar characteristics to an actuator with an aqueous electrolyte.

  12. A piezoelectric pseudo-bimorph actuator

    NASA Astrophysics Data System (ADS)

    Shi, Huaduo; Chen, Jianguo; Liu, Guoxi; Xiao, Wenlei; Dong, Shuxiang

    2013-06-01

    We report a piezoelectric pseudo-bimorph actuator, which is made of only one single plate with interdigitated electrodes on both sides and polarized alternately in longitudinal direction. Like a bimorph actuator, it can also produce a large bending actuation based on anti-symmetrically longitudinal piezoelectric d33 strain effect under an applied electric field. The presented pseudo-bimorph actuator shows much better temperature stability than conventional piezoelectric bimorph actuators from room temperature to the depolarization temperature of the material due to lacking of interface strain loss.

  13. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    SciTech Connect

    Minoda, Hiroki; Okabe, Tatsuhiro; Inayoshi, Yuhri; Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru; Katayama, Eisaku; Wakabayashi, Takeyuki; Akimoto, Tsuyoshi; Sugi, Haruo

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  14. Reliable quantification of bite-force performance requires use of appropriate biting substrate and standardization of bite out-lever.

    PubMed

    Lappin, A Kristopher; Jones, Marc E H

    2014-12-15

    Bite-force performance is an ecologically important measure of whole-organism performance that shapes dietary breadth and feeding strategies and, in some taxa, determines reproductive success. It also is a metric that is crucial to testing and evaluating biomechanical models. We reviewed nearly 100 published studies of a range of taxa that incorporate direct in vivo measurements of bite force. Problematically, methods of data collection and processing vary considerably among studies. In particular, there is little consensus on the appropriate substrate to use on the biting surface of force transducers. In addition, the bite out-lever, defined as the distance from the fulcrum (i.e. jaw joint) to the position along the jawline at which the jaws engage the transducer, is rarely taken into account. We examined the effect of bite substrate and bite out-lever on bite-force estimates in a diverse sample of lizards. Results indicate that both variables have a significant impact on the accuracy of measurements. Maximum bite force is significantly greater using leather as the biting substrate compared with a metal substrate. Less-forceful bites on metal are likely due to inhibitory feedback from mechanoreceptors that prevent damage to the feeding apparatus. Standardization of bite out-lever affected which trial produced maximum performance for a given individual. Indeed, maximum bite force is usually underestimated without standardization because it is expected to be greatest at the minimum out-lever (i.e. back of the jaws), which in studies is rarely targeted with success. We assert that future studies should use a pliable substrate, such as leather, and use appropriate standardization for bite out-lever.

  15. The arthroscopical and radiological corelation of lever sign test for the diagnosis of anterior cruciate ligament rupture.

    PubMed

    Deveci, Alper; Cankaya, Deniz; Yilmaz, Serdar; Özdemir, Güzelali; Arslantaş, Emrah; Bozkurt, Murat

    2015-01-01

    The aim of the current study was to evaluate the sensitivity of the lever sign test and the widely used basic tests of the Lachman, anterior drawer and pivot shift tests, both under anaesthesia and without anaesthesia, according to the gold standard diagnostic arthroscopic results in patients undergoing anterior cruciate ligament reconstruction. The study included 117 patients, diagnosed with ACL tear which was definitively determined during an arthroscopic surgical procedure applied. Before anaesthesia and while under anaesthesia, the Lachman, anterior drawer, pivot shift and lever sign tests were applied to all patients. Evaluation was made of MR images for each patient and documented. The patients comprised 96 males and 21 females, witha mean age of 25.8 ± 5.9 years (range, 17-45 years). Total tear was determined in 82 cases, anteromedial (AM) bundle in 14, posterolateral (PL) bundle in 13 and elongation in 8. Pre-anaesthesia positivity was found in lever sign at 94.2 %, Lachman at 80.5 %, pivot shift at 62.3 % and anterior drawer at 60.1 %. These rates were determined after anaesthesia as lever sign 98.4 %, Lachman 88.7 %, pivot shift 88.3 % and anterior drawer 84.2 %. The lever sign test can be easily applied clinically and it seems to have higher sensitivity than the Lachman test which is the basis of classic information, it should be included in routine clinical practice. In the light of the results of this study, further studies are required to review the accepted view that the Lachmann test is the most reliable test.

  16. Enhanced IPMC actuation by thermal cycling

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2012-04-01

    IPMCs are bi-polar actuators capable of large, rapid actuation in flexural configurations. The limit of actuation is defined by the maximal voltage that can be applied to the IPMC, above which electrolysis of the electrolyte and damage to the IPMC may occur. In this paper we present preliminary results that indicate how this actuation limit could be tuned and even exceeded through controlled thermal cycling of gold-plated Nafion IPMCs. Thermal cycling is used to move the centre point of the actuation stroke. Subsequent voltage stimulation actuates the structure around this new centre point. It is shown that by further thermal cycling this centre point naturally returns to its initial position. By exploiting this shape memory characteristic as part of a control system it is expected that more sophisticated IPMC actuation will be achievable.

  17. [Actuator placement for active sound and vibration control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  18. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  19. Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.

  20. Actuator placement for active sound and vibration control of cylinders

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  1. Policy initiation and political levers in health policy: lessons from Ghana’s health insurance

    PubMed Central

    2012-01-01

    Background Understanding the health policy formulation process over the years has focused on the content of policy to the neglect of context. This had led to several policy initiatives having a still birth or ineffective policy choices with sub-optimal outcomes when implemented. Sometimes, the difficulty has been finding congruence between different values and interests of the various stakeholders. How can policy initiators leverage the various subtle mechanisms that various players draw on to leverage their interests during policy formulation. This paper attempts to conceptualise these levers of policy formulation to enhance an understanding of this field of work based on lived experience. Methodology This is a qualitative participant observation case study based on retrospective recollection of the policy process and political levers involved in developing the Ghana National Health Insurance Scheme. The study uses a four-concept framework which is agenda setting, symbols manipulation, constituency preservation and coalition building to capture the various issues, negotiations and nuanced approaches used in arriving at desired outcomes. Results Technical experts, civil society, academicians and politicians all had significant influence on setting the health insurance agenda. Each of these various stakeholders carefully engaged in ways that preserved their constituency interests through explicit manoeuvres and subtle engagements. Where proposals lend themselves to various interpretations, stakeholders were quick to latch on the contentious issues to preserve their constituency and will manipulate the symbols that arise from the proposals to their advantage. Where interests are contested and the price of losing out will leave government worse off which will favour its political opponent, it will push for divergent interests outside parliamentary politics through intense negotiations to build coalitions so a particular policy may pass. Conclusions This paper has

  2. An investigation of electrochemomechanical actuation of conductive Polyacrylonitrile (PAN) nanofiber composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.; Walter, Wayne W.

    2014-03-01

    A polymer-based nanofiber composite actuator designed for contractile actuation was fabricated by electrospinning, stimulated by electrolysis, and characterized by electrochemical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural kinetics and mechanics of muscle needed to provide breakthroughs in the bio-medical and robotic fields. In this study, activated Polyacrylonitrile (PAN) fibers have demonstrated biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN has also been shown to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers (~500 nm) especially show faster response to changes in environmental pH and improved mechanical properties compared to larger diameter fibers. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Voltage driven transient effects of localized pH were examined to address pHdefined actuation thresholds of PAN fibers. Electrochemical contraction rates of the PAN/Graphite composite actuator demonstrated up to 25%/min. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Further improvements, however, to contraction rates and Young's moduli were found essential to capture the function and performance of skeletal muscles appropriately.

  3. Power-efficient low-temperature woven coiled fibre actuator for wearable applications

    NASA Astrophysics Data System (ADS)

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi

    2016-11-01

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg‑1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.

  4. Power-efficient low-temperature woven coiled fibre actuator for wearable applications.

    PubMed

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W; Tagashira, Kenji; Omote, Atsushi

    2016-11-04

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg(-1) of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.

  5. Pneumatic artificial muscles for trailing edge flap actuation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Sirohi, Jayant; Wereley, Norman M.

    2011-10-01

    In this study a novel aircraft trailing edge flap actuation system was developed and tested. Pneumatic artificial muscles (PAMs) were used as the driving elements of this system to demonstrate their feasibility and utility as an alternative aerospace actuation technology. A prototype flap/actuator system was integrated into a model wing section and tested on the bench-top under simulated airloads for flight at 100 m s-1 (M = 0.3) and in an open-jet wind tunnel at free stream velocities ranging up to 45 m s-1 (M = 0.13). Testing was performed for actuator pressures ranging from 0.069 to 0.62 MPa (10-90 psi) and actuation frequencies from 0.1 to 31 Hz. Results show that the PAM-driven trailing edge flap system can generate substantial and sustainable dynamic deflections, thereby proving the feasibility of using pneumatic artificial muscle actuators in a trailing edge flap system. Key issues limiting system performance are identified, that should be resolved in future research.

  6. A motor integrated regenerative pump as the actuator of an electrohydraulic totally implantable artificial heart.

    PubMed

    Masuzawa, T; Taenaka, Y; Kinoshita, M; Nakatani, T; Akagi, H; Takano, H; Fukui, Y; Sasagawa, H; Takahashi, K

    1992-01-01

    The authors have developed a new actuator to drive an electrohydraulic totally implantable artificial heart. The basic concept of this artificial heart is that the blood pumps are implanted in the thorax and an actuator is placed separately in the abdominal region. The actuator is a regenerative pump that pumps fluids against high pressures and is thin enough for easy implantation. The rotor-magnet of the brushless DC motor is mounted on the impeller of the pump to miniaturize the actuator and reduce the number of moving parts. The height, diameter, and weight of the actuator are 32.5 mm, 73 mm, and 360 g, respectively. A pair of oil ports is connected to the left and right blood pumps with mesh reinforced tubes filled with silicone oil. The blood pumps are alternately driven by bidirectional rotation of the motor. Performance of the system was evaluated in in vitro and in vivo experiments. Maximum output of the right heart was 6.7 L/min in both experiments. Systemic circulation was well maintained in acute animal experiments using 49 and 50 kg goats. The feasibility of the actuator was confirmed.

  7. Power-efficient low-temperature woven coiled fibre actuator for wearable applications

    PubMed Central

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi

    2016-01-01

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg−1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency. PMID:27812014

  8. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  9. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  10. Bio-hybrid cell-based actuators for microsystems.

    PubMed

    Carlsen, Rika Wright; Sitti, Metin

    2014-10-15

    As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

  11. The application of polypyrrole trilayer actuators in microfluidics and robotics

    NASA Astrophysics Data System (ADS)

    Kiefer, Rudolf; Mandviwalla, Xerxes; Archer, Rosalind; Tjahyono, Sungkono Surya; Wang, Han; MacDonald, Bruce; Bowmaker, Graham A.; Kilmartin, Paul A.; Travas-Sejdic, Jadranka

    2008-03-01

    Trilayer actuators were constructed using polypyrrole (PPy) films doped with dodecylbenzene sulfonate (DBS). Identical 5-20 μm PPy/DBS films were grown on either side of a 110 μm poly(vinylidene fluoride) (PVDF) membrane to serve as working and counter electrodes with respect to each other. The performance of the trilayer actuator was tested using potential step experiments between -0.8 and +0.8 V at different frequencies (0.03 to 10 Hz) and trilayer lengths (1 to 2.5 cm), and the extent of deflection was measured using a CCD camera. Satisfactory deflections in the range of 1-3 mm were observed for 10 μm thick PPy layers on trilayers 1.5 to 2.5 cm in length when operated at 1-5 Hz for over 40,000 cycles. The trilayer actuators were examined in a fluidics channels, and mathematical modelling using finite element analysis was used to predict overall fluid movement and flow rates. The trilayers were also used to construct a 'fish-tail' positioned at the back of a self-driven robotic fish.

  12. Simulating Magneto-Aerodynamic Actuator

    DTIC Science & Technology

    2007-12-20

    2005. 19. Boeuf, J.P., Lagmich, Y., Callegari, Th., and Pitchford , L.C., Electro- hydrodynamic Force and Acceleration in Surface Discharge, AIAA 2006...Plasmadynamics and Laser Award, 2004 AFRL Point of Contact Dr. Donald B. Paul , AFRL/VA WPAFB, OH 937-255-7329, met weekly. Dr. Alan Garscadden, AFRL/PR...validating database for numerical simulation of magneto-aerodynamic actuator for hypersonic flow control. Points of contact at the AFRL/VA are Dr. D. Paul

  13. Microspoiler Actuation for Guided Projectiles

    DTIC Science & Technology

    2016-01-06

    between the Georgia Institute of Technology (Georgia Tech ) and the Army Research Laboratory (ARL) for DARPA.  Objective 1: Perform Trade Studies to...required. These prototypes were fabricated at the Georgia Tech Mechanical Engineering machine shop. A detailed description of the selected actuator... Tech fabricated the projectiles according to a detailed specification of the Army-Navy Finner (30mm). Projectile manufacturing methods drew on existing

  14. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  15. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    SciTech Connect

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  16. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  17. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  18. Rover Wheel-Actuated Tool Interface

    NASA Technical Reports Server (NTRS)

    Matthews, Janet; Ahmad, Norman; Wilcox, Brian

    2007-01-01

    A report describes an interface for utilizing some of the mobility features of a mobile robot for general-purpose manipulation of tools and other objects. The robot in question, now undergoing conceptual development for use on the Moon, is the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, which is designed to roll over gentle terrain or walk over rough or steep terrain. Each leg of the robot is a six-degree-of-freedom general purpose manipulator tipped by a wheel with a motor drive. The tool interface includes a square cross-section peg, equivalent to a conventional socket-wrench drive, that rotates with the wheel. The tool interface also includes a clamp that holds a tool on the peg, and a pair of fold-out cameras that provides close-up stereoscopic images of the tool and its vicinity. The field of view of the imagers is actuated by the clamp mechanism and is specific to each tool. The motor drive can power any of a variety of tools, including rotating tools for helical fasteners, drills, and such clamping tools as pliers. With the addition of a flexible coupling, it could also power another tool or remote manipulator at a short distance. The socket drive can provide very high torque and power because it is driven by the wheel motor.

  19. Actuators with 10 mm stroke and less than 300 nm of runout

    NASA Astrophysics Data System (ADS)

    Hatheway, Alson E.

    2007-09-01

    All-elastic motorized flexure stages have been developed for critical metrology applications where X-Y runout of the motion must be less than 300 nm over a 10 mm stroke. The design was adapted from a highly stable flat-blade flexure stage that was manually driven and used in several instruments where long term stability of adjustments were important. The adaptations included a motor-driven miniature ball screw, a Z axis position sensor repeatable to 10 microns and elastic strain relief between the ball nut and the driven table. In-situ testing of the actuators demonstrated that they met or exceeded all specifications for their performance.

  20. Effects of reinforcement rate and delay on the acquisition of lever pressing by rats.

    PubMed Central

    Bruner, C A; Avila, R; Acuña, L; Gallardo, L M

    1998-01-01

    The acquisition of lever pressing by naive rats, in the absence of shaping, was studied as a function of different rates and unsignaled delays of reinforcement. Groups of 3 rats were each exposed to tandem schedules that differed in either the first or the second component. First-component schedules were either continuous reinforcement or random-interval 15, 30, 60 or 120 s; second-component schedules were fixed-time 0, 1, 3, 6, 12, or 24 s. Rate of responding was low under continuous immediate reinforcement and higher under random-interval 15 s. Random interval 30-s and 60-s schedules produced lower rates that were similar to each other. Random-interval 120 s controlled the lowest rate in the immediate-reinforcement condition. Adding a constant 12-s delay to each of the first-component schedule parameters controlled lower response rates that did not vary systematically with reinforcement rate. The continuous and random-interval 60-s schedules of immediate reinforcement controlled higher global and first-component response rates than did the same schedules combined with longer delays, and first-component rates showed some graded effects of delay duration. In addition, the same schedules controlled higher second-component response rates in combination with a 1-s delay than in combination with longer delays. These results were related to those from previous studies on acquisition with delayed reinforcement as well as to those from similar reinforcement procedures used during steady-state responding. PMID:9465413

  1. Experimental Investigation of Liquid-propellant Laser Propulsion with a Horizontal Momentum Measuring Lever

    SciTech Connect

    Wang Bin; Li Long; Tang Zhiping; Cai Jian

    2010-05-06

    Thrust performance of Liquid-propellant laser propulsion (LLP) is seriously influenced by factors like laser parameters, choice of propellants and ablation materials. For the purpose of studying these influences, series of impulse measuring experiments for various propellants and ablation materials were conducted. The key device is a Horizontal Momentum Measuring Lever, which covers a C{sub m} measuring range from 10{sup 3} Ns/MJ to about 1.6x10{sup 4} Ns/MJ. A Nd:YAG laser was used as the laser source. From the result, it is found that laser energy density plays an important role on LLP efficiency, higher energy density leads to higher C{sub m} and I{sub sp}. Highest C{sub m} of about 10{sup 4} Ns/MJ with the I{sub sp} of 3.57s was achieved by focusing the laser to the average energy density of 8.83x10{sup 8} W/cm{sup 2}. Besides of that, it is also found that when the energy density is certainly high, C{sub m} of LLP increases stably with the increase of the propellant thickness, which gives a potential way to further improve the thrust performance in LLP.

  2. Practical design of the optical lever intracavity topology of gravitational-wave detectors

    SciTech Connect

    Danilishin, S. L.; Khalili, F. Ya.

    2006-01-15

    The quantum nondemolition (QND) intracavity topologies of gravitational-wave detectors proposed several years ago allow us, in principle, to obtain sensitivity significantly better than the standard quantum limit using relatively small amount of optical pumping power. In this article we consider an improved more practical version of the optical lever intracavity scheme. It differs from the original version by the symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it provides the means to inject optical pumping inside the scheme without increase of optical losses. We consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity topologies. Two variants of the local meter are analyzed, which are based on the spectral variation measurement and on the discrete sampling variation measurement, correspondingly. The former one, while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain the best sensitivity and thus can be considered as an ideal 'asymptotic case' for all other schemes. The DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of view search of new methods of mechanical QND measurements probably based on improved DSVM scheme or which combine the local meter with the pondermotive squeezing technique, is necessary.

  3. The neck region of the myosin motor domain acts as a lever arm to generate movement.

    PubMed Central

    Uyeda, T Q; Abramson, P D; Spudich, J A

    1996-01-01

    The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8633089

  4. Structural correlations: Design levers for performance and durability of catalyst layers

    NASA Astrophysics Data System (ADS)

    Artyushkova, Kateryna; Atanassov, Plamen; Dutta, Monica; Wessel, Silvia; Colbow, Vesna

    2015-06-01

    Durability of the catalyst layer (CL) is of vital importance in the large-scale deployment of PEMFCs. It is necessary to determine parameters that represent properties of catalysts layer and other cathode components for optimization of fuel cell performance and durability. The structure, morphology and surface chemistry of the catalyst powder affects the ionomer and catalyst interaction, ionomer dispersion in the catalyst layer and, for this reason, its morphology and chemistry. These, in turn, affect the catalyst layer effective properties such as thickness, porosity, tortuosity, diffusivity, conductivity and others, directly influencing electrode performance and durability. In this study, X-ray Photoelectron Spectroscopy and SEM are used to quantify surface species and morphology of membrane electrode assemblies (MEAs) tested under different accelerated stress test (AST) conditions. Correlations between composition, structure and morphological properties of cathode components and the catalyst layer have been developed and linked to catalyst layer performance losses. The key relationships between the catalyst layer effective properties and performance and durability provide design and optimization levers for making MEAs for different operating regimes.

  5. Five Policy Levers To Meet The Value Challenge In Cancer Care.

    PubMed

    Callahan, Ryan; Darzi, Ara

    2015-09-01

    The burden of cancer on public finances is a serious concern for policy makers. More people are developing cancer, and as standards of care have risen, more are surviving and requiring longer-term care. Precision medicine promises better outcomes but demands commensurately higher payments for care. As both incidence and per case costs rise, we suggest that the task of expanding access to high-quality cancer care poses a "value challenge" that policies in many countries are inadequate to meet. Policy makers should respond with a new approach. We explore questions that policy makers will need to consider regarding objectives, barriers, and levers for policy development. We use transparency and accountability as cornerstones of a new approach to promote value-based decision making. Although barriers to advancing this agenda are formidable, we recommend that governments define common standards for value-based accounting; serve as information brokers for evidence development; pioneer value-based procurement of goods and services; engage in deliberative democracy in cancer care; and educate communities to facilitate knowledge sharing between communities of patients, their caretakers, and researchers.

  6. Experimental Investigation of Liquid-propellant Laser Propulsion with a Horizontal Momentum Measuring Lever

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Li, Long; Tang, Zhi-ping; Cai, Jian

    2010-05-01

    Thrust performance of Liquid-propellant laser propulsion (LLP) is seriously influenced by factors like laser parameters, choice of propellants and ablation materials. For the purpose of studying these influences, series of impulse measuring experiments for various propellants and ablation materials were conducted. The key device is a Horizontal Momentum Measuring Lever, which covers a Cm measuring range from 103Ns/MJ to about 1.6×104 Ns/MJ. A Nd:YAG laser was used as the laser source. From the result, it is found that laser energy density plays an important role on LLP efficiency, higher energy density leads to higher Cm and Isp. Highest Cm of about 104Ns/MJ with the Isp of 3.57s was achieved by focusing the laser to the average energy density of 8.83×108W/cm2. Besides of that, it is also found that when the energy density is certainly high, Cm of LLP increases stably with the increase of the propellant thickness, which gives a potential way to further improve the thrust performance in LLP.

  7. Design and modeling of a self-sufficient shape-memory-actuator

    NASA Astrophysics Data System (ADS)

    Bucht, André; Junker, Tom; Pagel, Kenny; Drossel, Welf-Guntram; Neugebauer, Reimund

    2011-03-01

    In machine tools several time and position varying heat sources causes complex temperature distributions. The resulting problems are varying thermal deformations which cause a loss of accuracy as well as non optimal drive conditions. An option to deal with that issue is to use structure integrated SM-actuators which use the thermal energy accumulated by machining processes to yield an actuator displacement. That creates a structure inherent control loop. There the shape-memory- elements work as sensing element as well as actuation element. The plant is defined by the thermal and mechanical behaviour of the surrounding structure. Because of the closed loop operation mode, the mechanical design has to deal with questions of stability and parameter adjustment in a control sense. In contrast to common control arrangements this issues can only be influenced by designing the actuator and the structure. To investigate this approach a test bench has been designed. The heat is yielded by a clutch and directed through the structure to the shape memory element. The force and displacement of the actuator are therefore driven directly by process heat. This paper presents a broad mechanical design approach of the test bench as well as the design of the SM-actuator. To investigate the thermo-mechanical behaviour of the structure-integrated actuator, a model of the test bench has been developed. The model covers the thermal behaviour of the test bench as well as the thermo-mechanical couplings of the shape memory actuator. The model has been validated by comprehensive measurements.

  8. Design of a radio telescope surface segment actuator based on a form-closed eccentric cam

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    2014-07-01

    As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.

  9. Multi-imager compatible actuation principles in surgical robotics

    PubMed Central

    Stoianovici, D

    2011-01-01

    Today’s most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using “intervention friendly” energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several

  10. Multi-imager compatible actuation principles in surgical robotics.

    PubMed

    Stoianovici, D

    2005-01-01

    Today's most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using "intervention friendly" energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-Imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several

  11. The design, hysteresis modeling and control of a novel SMA-fishing-line actuator

    NASA Astrophysics Data System (ADS)

    Xiang, Chaoqun; Yang, Hui; Sun, Zhiyong; Xue, Bangcan; Hao, Lina; Asadur Rahoman, M. D.; Davis, Steve

    2017-03-01

    Fishing line can be combined with shape memory alloy (SMA) to form novel artificial muscle actuators which have low cost, are lightweight and soft. They can be applied in bionic, wearable and rehabilitation robots, and can reduce system weight and cost, increase power-to-weight ratio and offer safer physical human-robot interaction. However, these actuators possess several disadvantages, for example fishing line based actuators possess low strength and are complex to drive, and SMA possesses a low percentage contraction and has high hysteresis. This paper presents a novel artificial actuator (known as an SMA-fishing-line) made of fishing line and SMA twisted then coiled together, which can be driven directly by an electrical voltage. Its output force can reach 2.65 N at 7.4 V drive voltage, and the percentage contraction at 4 V driven voltage with a 3 N load is 7.53%. An antagonistic bionic joint driven by the novel SMA-fishing-line actuators is presented, and based on an extended unparallel Prandtl-Ishlinskii (EUPI) model, its hysteresis behavior is established, and the error ratio of the EUPI model is determined to be 6.3%. A Joule heat model of the SMA-fishing-line is also presented, and the maximum error of the established model is 0.510 mm. Based on this accurate hysteresis model, a composite PID controller consisting of PID and an integral inverse (I-I) compensator is proposed and its performance is compared with a traditional PID controller through simulations and experimentation. These results show that the composite PID controller possesses higher control precision than basic PID, and is feasible for implementation in an SMA-fishing-line driven antagonistic bionic joint.

  12. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  13. Actuation fluid adapter for hydraulically-actuated electronically-controlled fuel injector and engine using same

    DOEpatents

    Keyster, Eric S.; Merchant, Jack A.

    2002-01-01

    A fuel injector adapter consists of a block defining a pressure communication passage therethrough and an actuation fluid passage. The actuation fluid passage includes three separate branches that open through an outer surface of the block at three separate locations.

  14. Surface Control of Actuated Hybrid Space Mirrors

    DTIC Science & Technology

    2010-10-01

    precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal

  15. Advanced Actuation Systems Development. Volume 2

    DTIC Science & Technology

    1989-08-01

    servovalve was constructed with discrete high-speed solenoid valve , Ito cotroI thie flow to a control actuator, The solenoid valves were a poppet design...was constructed with discrete high-speed solenoid valves to control the flow to a control actuator. The solenoih vaIlves were a poppet design using a...controlled high-speed solenoid valves , (3) the performance evaltiation of an F- 15 rudder actuator tinder applied loads, (4) the performance

  16. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  17. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  18. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  19. Direct-drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  20. Serpentine Geometry Plasma Actuators for Flow Control

    DTIC Science & Technology

    2013-08-23

    Serpentine geometry plasma actuators for flow control Mark Riherd and Subrata Roy Citation: J. Appl. Phys. 114, 083303 (2013); doi: 10.1063...DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Serpentine geometry plasma actuators for flow control 5a. CONTRACT NUMBER 5b...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Serpentine geometry plasma actuators for flow