Science.gov

Sample records for actuation levers driven

  1. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  2. Performance comparison and modeling of PZN, PMN, and PZT stacked actuators in a levered flexure mechanism

    NASA Astrophysics Data System (ADS)

    Woody, Shane C.; Smith, Stuart T.

    2004-04-01

    This article presents a theoretical and experimental assessment of a translation stage design based on a piezoelectric actuator and levering mechanism. This mechanism incorporates stacked piezoelectric actuators of dimensions 5×5×5 mm3 with each stack made from ten plates of 0.5 mm thickness pushing against a symmetric lever design with an ideal amplification of 6.05:1. Three different stacks made from PZN, PMN, and PZT were tested in a nominally similar mechanism to produce displacements of 101, 104, and 33 μm, respectively. Because of their different elastic moduli, the fundamental resonances with each respective device were 670, 729, and 759 Hz. Lagrange analysis of a lumped model of the mechanism is used to estimate the fundamental mode natural frequency of the system while a model for "lost motion" is also presented. This system has been assembled and evaluated experimentally to assess the validity of the models. In general, these models are shown to provide a reasonable estimate of the mechanism performance in terms of lost motion while predicting higher values for the fundamental frequency. The deviations from the model are consistent with the uncertainties associated with rigid body assumptions and the unknown compliances of assembly interfaces and suggest directions for future research in the modeling of such systems.

  3. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  4. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  5. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  6. Microwave Driven Actuators Power Allocation and Distribution

    NASA Technical Reports Server (NTRS)

    Forbes, Timothy; Song, Kyo D.

    2000-01-01

    Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

  7. Quick-Release Pin With Lever Action

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    1995-01-01

    Lever-action quick-release pin operated more easily. Mechanism operated with gloved hand. In modified version, lever added to handle to facilitate actuation. Lever action reduces actuation force. Lever-action pin operated by squeezing on any point of moveable ends of lever and handle together between thumb and forefinger or by simply grasping and squeezing handle and lever with entire hand in more natural grasp.

  8. Rotary Actuators Based on Pneumatically Driven Elastomeric Structures.

    PubMed

    Gong, Xiangyu; Yang, Ke; Xie, Jingjin; Wang, Yanjun; Kulkarni, Parth; Hobbs, Alexander S; Mazzeo, Aaron D

    2016-09-01

    Unique elastomeric rotary actuators based on pneumatically driven peristaltic motion are demonstrated. Using silicone-based wheels, these motors enable a new class of soft locomotion not found in nature, which is capable of withstanding impact, traversing irregular terrain, and operating in water. For soft robotics, this work marks progress toward providing torque without bending actuators. PMID:27348794

  9. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  10. Feasibility of a bimanual, lever-driven wheelchair for people with severe arm impairment after stroke.

    PubMed

    Smith, Brendan W; Zondervan, Daniel K; Lord, Thomas J; Chan, Vicky; Reinkensmeyer, David J

    2014-01-01

    Individuals with severe arm impairment after stroke are thought to be unable to use a manual wheelchair in the conventional bimanual fashion, because they cannot grip and push the pushrim with their impaired hand. Instead, they are often taught to propel a wheelchair with their good arm and leg, a compensatory strategy that encourages disuse and may cause asymmetric tone. Here, we show that four stroke survivors (9, 27 50 and 16 months post stroke) with severe arm impairment (upper extremity Fugl Meyer scores of 21, 17, 16 and 15 of 66 respectively) were able to propel themselves overground during ten, 3.3 meter movement trials, using a specially designed lever-driven wheelchair adapted with a splint and elastic bands. Their average speed on the tenth trial was about 0.1 m/sec. These results suggest that individuals with stroke could use bimanual wheelchair propulsion for mobility, both avoiding the problems associated with good-arm/good-leg propulsion and increasing the number of daily arm movements they achieve, which may improve arm movement recovery.

  11. Active catheter driven by a thermo-hydraulic actuation.

    PubMed

    Horovitz, Yonatan; Kosa, Gabor

    2015-01-01

    Catheters and flexible endoscopes are usually steered by mechanical wires that are driven from their base. Due to friction and buckling there is a need to place the driving actuator of the catheter at the catheter's tip. Such active catheter's manoeuvrability is much higher than wire-driven ones. A problem with active catheters is the difficulty to create high enough bending using micro-actuators placed at the catheter's tip. Our actuation method is an attempt to overcome this difficulty by using a novel thermo-hydraulic actuation method. The magnitude of the bending torque of our actuator is created by internal hydraulic pressure in the tube and the steering direction is controlled by the thermal micro-actuator embedded in the wall of the tube. In this paper we present the modelling, optimization, design and testing of an initial prototype of such an actuator. We found that a 4 mm OD actuator made of TPU can bend to ±12°. PMID:26738094

  12. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  13. Light-driven actuation of fluids at microscale

    NASA Astrophysics Data System (ADS)

    Deshpande, Mandar; Saggere, Laxman

    2004-07-01

    This paper discusses the prospects of light-driven actuation particularly for actuating fluids at micro-scale for potential use in a novel retinal prosthesis and other drug delivery applications. The prosthesis is conceived to be comprised of an array of light-driven microfluidic-dispenser units, devices that eject very small amounts of fluids on the order of 1 picoliter per second in response to incident light energy in the range of 0.1-1 mW/cm2. A light-driven actuator, whose size will ideally be smaller than about 100 micrometers in diameter, independently powers each dispenser unit. Towards this application, various approaches for transducing light energy for actuation of fluids are explored. These approaches encompass both direct transduction of light energy to mechanical actuation of fluid and indirect transduction through an intermediary form of energy, for instance, light energy to thermal or electrical energy followed by mechanical actuation of fluid. Various existing schemes for such transduction are reviewed comprehensively and discussed from the standpoint of the application requirements. Direct transduction schemes exploiting recent developments in optically sensitive materials that exhibit direct strain upon illumination, particularly the photostrictive PLZT (Lanthanum modified Lead Zirconate Titanate), are studied for the current application, and results of some preliminary experiments involving measurement of photovoltage, photocurrent, and photo-induced strain in the meso-scale samples of the PLZT material are presented.

  14. An arm wrestling robot driven by dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Lochmatter, Patrick; Wissler, Michael

    2007-04-01

    The first arm wrestling match between a human arm and a robotic arm driven by electroactive polymers (EAP) was held at the EAPAD conference in 2005. The primary objective was to demonstrate the potential of the EAP actuator technology for applications in the field of robotics and bioengineering. The Swiss Federal Laboratories for Materials Testing and Research (Empa) was one of the three organizations participating in this competition. The robot presented by Empa was driven by a system of rolled dielectric elastomer (DE) actuators. Based on the calculated stress condition in the rolled actuator, a low number of pre-strained DE film wrappings were found to be preferential for achieving the best actuator performance. Because of the limited space inside the robot body, more than 250 rolled actuators with small diameters were arranged in two groups according to the human agonist-antagonist muscle configuration in order to achieve an arm-like bidirectional rotation movement. The robot was powered by a computer-controlled high voltage amplifier. The rotary motion of the arm was activated and deactivated electrically by corresponding actuator groups. The entire development process of the robot is presented in this paper where the design of the DE actuators is of primary interest. Although the robot lost the arm wrestling contest against the human opponent, the DE actuators have demonstrated very promising performance as artificial muscles. The scientific knowledge gained during the development process of the robot has pointed out the challenges to be addressed for future improvement in the performance of rolled dielectric elastomer actuators.

  15. Optically driven actuators using poly(vinylidene difluoride)

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasuhiro; Otani, Yukitoshi; Umeda, Norihiro

    2008-05-01

    Optically driven actuators have a feature of a non-contact method supplied by light energy. A new method is proposed with three poly(vinylidene difluoride) (PVDF) cantilevers as the legs and a polymer film as the body. The PVDF cantilevers are coated with silver on one surface. When one side of the cantilever is irradiated by a laser beam, an electric field is produced along a cross-section of the cantilever by the pyroelectric effect and a mechanical displacement occurs by the piezoelectric effect. Its response time and its generated force are measured experimentally. Two types of optically driven actuators using PVDF film are proposed to move using different characteristics.

  16. Soft mobile robots driven by foldable dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2016-08-01

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  17. Position-movable lens driven by dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Jin, Boya; Ren, Hongwen

    2016-07-01

    A position-movable lens driven by a dielectric elastomer (DE) actuator is demonstrated. With the aid of stretching/contracting of the DE actuator, the lens can do a reciprocating motion in the direction perpendicular to its optical axis. For our DE with 1-mm thick, a voltage pulse of V=5.5 kV can cause the lens to shift ˜1.7 mm. The stretching time and contracting time of the actuator are ˜3.5 and ˜4 s, respectively. When the lens integrates with another solid lens, a variable focal length can be obtained. Although the driving voltage is relatively high, the actuator is electrically stable and the power consumption is extremely low. Our lens with movable position has potential applications in imaging, information storage, beam steering, and bifocal technology.

  18. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  19. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  20. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  1. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  2. 49 CFR 236.764 - Locking, lever operated.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locking, lever operated. 236.764 Section 236.764... Locking, lever operated. The mechanical locking of an interlocking machine which is actuated by means of the lever....

  3. A planar nano-positioner driven by shear piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Dong, W.; Li, H.; Du, Z.

    2016-08-01

    A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  4. Accelerating a Mechanically Driven anti-Woodward-Hoffmann Ring Opening with a Polymer Lever Arm Effect.

    PubMed

    Wang, Junpeng; Kouznetsova, Tatiana B; Niu, Zhenbin; Rheingold, Arnold L; Craig, Stephen L

    2015-12-01

    Mechanical forces have previously been used to drive reactions along pathways that violate the orbital symmetry effects captured in the Woodward-Hoffmann rules. Here, we show that a polymer "lever arm effect" can provide a mechanical advantage in accelerating the symmetry forbidden disrotatory ring opening of benzocyclobutene (BCB). Addition of an α-E-alkene to the BCB mechanophore drops the force required to induce reactions on the ∼0.1 s time scale of single-molecule force spectroscopy experiments from 1370 to 920 pN.

  5. Variable area nozzle for gas turbine engines driven by shape memory alloy actuators

    NASA Technical Reports Server (NTRS)

    Rey, Nancy M. (Inventor); Miller, Robin M. (Inventor); Tillman, Thomas G. (Inventor); Rukus, Robert M. (Inventor); Kettle, John L. (Inventor); Dunphy, James R. (Inventor); Chaudhry, Zaffir A. (Inventor); Pearson, David D. (Inventor); Dreitlein, Kenneth C. (Inventor); Loffredo, Constantino V. (Inventor)

    2001-01-01

    A gas turbine engine includes a variable area nozzle having a plurality of flaps. The flaps are actuated by a plurality of actuating mechanisms driven by shape memory alloy (SMA) actuators to vary fan exist nozzle area. The SMA actuator has a deformed shape in its martensitic state and a parent shape in its austenitic state. The SMA actuator is heated to transform from martensitic state to austenitic state generating a force output to actuate the flaps. The variable area nozzle also includes a plurality of return mechanisms deforming the SMA actuator when the SMA actuator is in its martensitic state.

  6. A vacuum-driven peristaltic micropump with valved actuation chambers

    NASA Astrophysics Data System (ADS)

    Cui, Jianguo; Pan, Tingrui

    2011-06-01

    This paper presents a simple peristaltic micropump design incorporated with valved actuation chambers and propelled by a pulsed vacuum source. The vacuum-driven peristaltic micropump offers high pumping rates, low backflow, appreciable tolerance to air bubbles, and minimal destruction to fluid contents. The pumping device, fabricated by laser micromachining and plasma bonding of three polydimethylsiloxane (PDMS) layers, includes a pneumatic network, actuation membranes, and microfluidic channels. As the key to peristaltic motion, the sequential deflection of the elastic membranes is achieved by periodic pressure waveforms (negative) traveling through the pneumatic network, provided by a vacuum source regulated by an electromagnetic valve. This configuration eliminates the complicated control logic typically required in peristaltic motion. Importantly, the valved actuation chambers substantially reduce backflow and improve the pumping rates. In addition, the pneumatic network with negative pressure provides a means to effectively remove air bubbles present in the microflow through the gas-permeable PDMS membrane, which can be highly desired in handling complex fluidic samples. Experimental characterization of the micropump performance has been conducted by controlling the resistance of the pneumatic network, the number of normally closed valves, the vacuum pressure, and the frequency of pressure pulses. A maximal flow rate of 600 µL min-1 has been optimized at the pulsed vacuum frequency of 30 Hz with a vacuum pressure of 50 kPa, which is comparable to that of compressed air-actuated peristaltic micropumps.

  7. Moisture-driven actuators inspired by motility of plants

    NASA Astrophysics Data System (ADS)

    Shin, Beomjune; Lee, Minhee; Kim, Ho-Young

    2015-11-01

    We report design and fabrication of moisture-driven actuators mimicking pine cones, wild wheats and seeds of Erodium cicutarium, which can bend and even helically coil with variation of environmental humidity. The actuators adopt a bilayer configuration, one of whose layers is hygroscopically active while the other is inactive. In order to enhance the degree and speed of deformation which critically depends on moisture-responsivity of the active layer, nanofibers of hydrogel are directionally deposited on the inactive layer via electrospinning. As a result, several designs of soft robots are demonstrated which are capable of locomotion by harvesting environmental humidity energy. The dynamics of the robots are analyzed by coupling moisture diffusion kinetics and elastic theory of multi-layer bending. The theoretical predictions are compared with the experimental results, to lead to the optimal design to maximize the locomotion speed measured by travel distance normalized by body length per unit time.

  8. A robotic finger driven by twisted and coiled polymer actuator

    NASA Astrophysics Data System (ADS)

    Cho, Kyeong Ho; Song, Min Geun; Jung, Hosang; Park, Jungwoo; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-Do; Choi, Hyouk Ryeol

    2016-04-01

    Previous studies reported that a twisted and coiled polymer actuator (TCA) generates strong force and large stroke by heating. Nylon 6,6 is known to be the most suitable polymer material for TCA because it has high thermal expansion ratio, high softening point and high toughness which is able to sustain gigantic twisting. In order to find the optimal structure of TCA fabricated with silver-coated nylon sewing threads, an equipment for twist-insertion (structuralization), composed of single DC motor, a slider fabricated by 3D printer and a body frame, is developed. It can measure the behaviors of TCAs as well as fabricate TCAs with desired characteristics by structuralizing fibers with controlled rotation per minutes (RPM) and turns. Comparing performances of diverse structures of TCAs, the optimal structure for TCA is found. For the verification of the availability of the optimal TCA, a TCA-driven biomimetic finger is developed. Finally, we successfully demonstrate the flexion/extension of the finger by using the actuation of TCAs.

  9. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  10. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    PubMed

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles. PMID:26367106

  11. Hierarchically arranged helical fibre actuators driven by solvents and vapours

    NASA Astrophysics Data System (ADS)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  12. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    PubMed

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  13. Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above

  14. An autonomous actuator driven by fluctuations in ambient humidity

    NASA Astrophysics Data System (ADS)

    Arazoe, Hiroki; Miyajima, Daigo; Akaike, Kouki; Araoka, Fumito; Sato, Emiko; Hikima, Takaaki; Kawamoto, Masuki; Aida, Takuzo

    2016-10-01

    Devices that respond to negligibly small fluctuations in environmental conditions will be of great value for the realization of more sustainable, low-power-consumption actuators and electronic systems. Herein we report an unprecedented film actuator that seemingly operates autonomously, because it responds to the adsorption and desorption of a minute amount of water (several hundred nanograms per 10 mm2) possibly induced by fluctuations in the ambient humidity. The actuation is extremely rapid (50 ms for one curl) and can be repeated >10,000 times without deterioration. On heating or light irradiation, the film loses adsorbed water and bends quickly, so that it can jump vertically up to 10 mm from a surface or hit a glass bead. The film consists of a π-stacked carbon nitride polymer, formed by one-pot vapour-deposition polymerization of guanidinium carbonate, and is characterized by a tough, ultralightweight and highly anisotropic layered structure. An actuator partially protected against water adsorption is also shown to walk unidirectionally.

  15. Dealloying-driven nanoporous palladium with superior electrochemical actuation performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Bai, Qingguo; Zhang, Zhonghua

    2016-03-01

    Metal-hydrogen (in particular, Pd-H) interactions have been receiving considerable attention over the past 150 years within the scope of hydrogen storage, catalytic hydrogenation, hydrogen embrittlement and hydrogen-induced interfacial failure. Here, for the first time, we show that the coupling of hydrogen adsorption and absorption could trigger giant reversible strain in bulk nanoporous Pd (np-Pd) in a weakly adsorbed NaF electrolyte. The bulk np-Pd with a hierarchically porous structure and a ligament/channel size of ~10 nm was fabricated using a dealloying strategy with compositional/structural design of the precursor. The np-Pd actuator exhibits a giant reversible strain of up to 3.28% (stroke of 137.8 μm), which is a 252% enhancement in comparison to the state-of-the-art value of 1.3% in np-AuPt. The strain rate (~10-5 s-1) of np-Pd is two orders of magnitude higher than that of current metallic actuators. Moreover, the volume-/mass-specific strain energy density (10.71 MJ m-3/3811 J kg-1) of np-Pd reaches the highest level compared with that of previously reported actuator materials. The outstanding actuation performance of np-Pd could be attributed to the coupling of hydrogen adsorption/absorption and its unique hierarchically nanoporous structure. Our findings provide valuable information for the design of novel high-performance metallic actuators.Metal-hydrogen (in particular, Pd-H) interactions have been receiving considerable attention over the past 150 years within the scope of hydrogen storage, catalytic hydrogenation, hydrogen embrittlement and hydrogen-induced interfacial failure. Here, for the first time, we show that the coupling of hydrogen adsorption and absorption could trigger giant reversible strain in bulk nanoporous Pd (np-Pd) in a weakly adsorbed NaF electrolyte. The bulk np-Pd with a hierarchically porous structure and a ligament/channel size of ~10 nm was fabricated using a dealloying strategy with compositional/structural design of the

  16. Electrically driven miniature hydrogels as muscle-like actuators

    NASA Astrophysics Data System (ADS)

    Yoshioka, Yuka; Calvert, Paul D.

    2001-07-01

    Amine-epoxy based gel actuators have been made since this chemistry allows the small volume gels to be made easily and is expected to provide enough strength for practical use with highly crosslinked networks. In this study, a small drop of cationic polyelectrolyte gel was prepared by crosslinking of trifunctional polyetheramines with ethylene glycol diglycidyl ether. The response of these materials to electrical stimuli, pH and metal ions is controlled by the crosslink density and ionic strength of medium. When the gels contact a platinum anode, positive charges are generated on the amine groups and the ionic repulsion causes the swelling. Reversing current neutralizes amines and the hydrogen bonding interaction causes a volume collapse. These gels show large and rapid swelling in response to an electrical and chemical input on a sub-millimeter scale.

  17. Nonlinear Actuation Dynamics of Driven Casimir Oscillators with Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Waalkens, Holger; Svetovoy, Vitaly B.; Knoester, Jasper; Palasantzas, George

    2015-11-01

    At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of microelectromechanical systems (MEMS) in dry vacuum conditions. For a micron-size plate oscillating near a surface, which mimics a frequently used setup in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to a malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, stiction is of significance for fundamentally motivated experiments performed with MEMS.

  18. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications

    NASA Astrophysics Data System (ADS)

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-03-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3 s), powerful (>100 MPa output stress, 7.5 × 105 N kg-1 unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators.

  19. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    PubMed Central

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  20. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection. PMID:26996608

  1. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  2. Piezoelectrically driven translatory optical MEMS actuator with 7mm apertures and large displacements

    NASA Astrophysics Data System (ADS)

    Quenzer, H.-J.; Gu-Stoppel, S.; Stoppel, F.; Janes, J.; Hofmann, U.; Benecke, W.

    2015-02-01

    The design and manufacturing of a piezoelectrically driven translatory MEMS actuator is presented, which features a 7 mm aperture and four thin-film PZT actuators achieving large displacements. The actuator performs piston mode oscillation in resonance which can serve for Fourier Transform Infrared Spectroscopy (FTIR). Thereby vertical displacements in piston mode of up to ± 800 μm at 163 Hz and 25 V driving sinusoidal voltage has been achieved under ambient conditions. Due to the low frequencies and the low driving voltages only low power consumption is required. The effect of residual gas friction and internal friction on the piezo-driven MEMS actuator is analyzed by measuring Qvalues associated with the piston mode. Laser Doppler Vibrometry (LDV) was also used to detect and analyses the parasitic effects especially tilting which superimposes the vertical movement of the mirror. The deviation from the pure vertical piston mode was found to 1.3 μm along the x and 3 μm in the y-axis.

  3. A chaotic self-oscillating sunlight-driven polymer actuator

    PubMed Central

    Kumar, Kamlesh; Knie, Christopher; Bléger, David; Peletier, Mark A.; Friedrich, Heiner; Hecht, Stefan; Broer, Dirk J.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2016-01-01

    Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight. PMID:27375235

  4. A chaotic self-oscillating sunlight-driven polymer actuator.

    PubMed

    Kumar, Kamlesh; Knie, Christopher; Bléger, David; Peletier, Mark A; Friedrich, Heiner; Hecht, Stefan; Broer, Dirk J; Debije, Michael G; Schenning, Albertus P H J

    2016-01-01

    Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight. PMID:27375235

  5. A chaotic self-oscillating sunlight-driven polymer actuator

    NASA Astrophysics Data System (ADS)

    Kumar, Kamlesh; Knie, Christopher; Bléger, David; Peletier, Mark A.; Friedrich, Heiner; Hecht, Stefan; Broer, Dirk J.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2016-07-01

    Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight.

  6. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  7. Closed loop control of a rotational joint driven by two antagonistic dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Randazzo, Marco; Fumagalli, Matteo; Metta, Giorgio; Sandini, Giulio

    2010-04-01

    Dielectric elastomers are a subclass of electronic EAPs able to produce large deformations (and thus mechanical work) when an external electric field is applied. While the intrinsic compliance of this kind of polymeric actuators have been always addressed as major benefit with respect to traditional electromagnetic motors, unable to fully capture the capabilities and mechanical properties of biological muscles, their polymeric nature poses peculiar challenges in controlling a system which is subject to nonlinearities, hysteresis and viscous creep behavior. In this paper we explore the controllability properties of a simple rotational joint driven by two dielectric elastomer actuators arranged in an antagonistic configuration. A number of sensors are used to obtain information about the state of controlled system: the angular position of the joint is measured by an angular encoder, custom-designed tension sensors are used to monitor the tension of the two driving tendons and linear encoders provide accurate measurements of the displacements generated by the two actuators. Using this feedback information, a control algorithm has been implemented on a microcontroller unit in order to independently activate the two actuators, allowing a closed loop control of both the angular position of the joint (position control) and the tensions of its tendons (force control). A description of the developed control strategy and its performances under different load conditions are discussed in this paper.

  8. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications

    PubMed Central

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-01-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3 s), powerful (>100 MPa output stress, 7.5 × 105 N kg−1 unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators. PMID:25826443

  9. Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Gu, Wei; Wei, Jia; Yu, Yanlei

    2016-09-01

    Crosslinked liquid crystalline polymers (CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks. The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore, they can be utilized to fabricate smart actuators, which have potential applications in artificial muscles, micro-optomechanical systems, optics, and energy-harvesting fields. In this review the recent development of thermo- and photo-driven soft actuators based on the CLCPs are summarized. Project supported by the National Natural Science Foundation of China (Grant Nos. 21134003, 21273048, 51225304, and 51203023) and Shanghai Outstanding Academic Leader Program, China (Grant No. 15XD1500600).

  10. Bio-inspired Polymer Composite Actuator and Generator Driven by Water Gradients

    PubMed Central

    Ma, Mingming; Guo, Liang; Anderson, Daniel G.; Langer, Robert

    2013-01-01

    Here we describe the development of a water-responsive polymer film; combining both a rigid matrix (polypyrrole) and a dynamic network (polyol-borate), strong and flexible polymer films were developed that can exchange water with the environment to induce film expansion and contraction, resulting in rapid and continuous locomotion. The film actuator can generate contractile stress up to 27 MPa, lift objects 380 times heavier than itself, and transport cargo 10 times heavier than itself. We have assembled a generator by associating this actuator with a piezoelectric element. Driven by water gradients, this generator outputs alternating electricity at ∼0.3 Hz, with a peak voltage of ∼1.0 V. The electrical energy is stored in capacitors that could power micro- and nano-electronic devices. PMID:23307738

  11. Bio-inspired polymer composite actuator and generator driven by water gradients.

    PubMed

    Ma, Mingming; Guo, Liang; Anderson, Daniel G; Langer, Robert

    2013-01-11

    Here we describe the development of a water-responsive polymer film. Combining both a rigid matrix (polypyrrole) and a dynamic network (polyol-borate), strong and flexible polymer films were developed that can exchange water with the environment to induce film expansion and contraction, resulting in rapid and continuous locomotion. The film actuator can generate contractile stress up to 27 megapascals, lift objects 380 times heavier than itself, and transport cargo 10 times heavier than itself. We have assembled a generator by associating this actuator with a piezoelectric element. Driven by water gradients, this generator outputs alternating electricity at ~0.3 hertz, with a peak voltage of ~1.0 volt. The electrical energy is stored in capacitors that could power micro- and nanoelectronic devices.

  12. Method and apparatus for actuating vehicle transmission

    SciTech Connect

    Ishida, H.; Ishihara, M.; Uriuhara, M.

    1988-11-15

    This patent describes a method of actuating a vehicle parallel-gear transmission having gears and an internal lever for moving shift blocks connected with shift rods and shift forks for changing gear ratios of the transmission, a hydraulically controlled select actuator operatively connected to the internal lever for moving the internal lever in a select direction, a hydraulically controlled shift actuator operatively connected to the internal lever for moving the internal lever in a shift direction substantially normal to the select direction, a hydraulically controlled clutch actuator for connecting and disconnecting a clutch of the transmission, and a common fluid discharge passage connected to fluid discharge ports of the select and shift actuators and a fluid discharge port of the clutch actuator, the select and shift actuators being alternately actuatable to effect a gear changing operation.

  13. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Han, Chulhee; Han, Young-Min; Choi, Seung-Bok

    2014-07-01

    A direct-drive valve (DDV) system is a kind of electrohydraulic servo valve system, in which the actuator directly drives the spool of the valve. In conventional DDV systems, the spool is generally driven by an electromagnetic actuator. Performance characteristics such as frequency bandwidth of DDV systems driven by the electromagnetic actuator are limited due to the actuator response property. In order to improve the performance characteristics of conventional DDV systems, in this work a new configuration for a direct-drive valve system actuated by a piezostack actuator with a flexible beam mechanism is proposed (in short, a piezo-driven DDV system). Its benefits are demonstrated through both simulation and experiment. After describing the geometric configuration and operational principle of the proposed valve system, a governing equation of the whole system is obtained by combining the dynamic equations of the fluid part and the structural parts: the piezostack, the flexible beam, and the spool. In the structural parts of the piezostack and flexible beam, a lumped parameter modeling method is used, while the conventional rule of the fluid momentum is used for the fluid part. In order to evaluate valve performances of the proposed system, an experimental apparatus consisting of a hydraulic circuit and the piezo-driven DDV system is established. The performance characteristics are evaluated in terms of maximum spool displacement, flow rate, frequency characteristics, and step response. In addition, in order to advocate the feasibility of the proposed dynamic model, a comparison between simulation and experiment is undertaken.

  14. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    NASA Astrophysics Data System (ADS)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  15. A tunable millimeter-wave phase shifter driven by dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Araromi, O. A.; Romano, P.; Rosset, S.; Perruisseau-Carrier, J.; Shea, H. R.

    2014-03-01

    We present the successful operation of the first dielectric elastomer actuator (DEA) driven tunable millimeter-wave phase shifter. The development of dynamically reconfigurable microwave/millimeter-wave (MW/MMW) antenna devices is becoming a prime need in the field of telecommunications and sensing. The real time updating of antenna characteristics such as coverage or operation frequency is particularly desired. However, in many circumstances currently available technologies suffer from high EM losses, increased complexity and cost. Conversely, reconfigurable devices based on DEAs offer low complexity, low electromagnetic (EM) losses and analogue operation. Our tunable phase shifter consists of metallic strips suspended a fixed distance above a coplanar waveguide (CPW) by planar DEAs. The planar actuators displace the metallic strips (10 mm in length) in-plane by 500 μm, modifying the EM field distribution, resulting in the desired phase shift. The demanding spacing (50 +/-5 μm between CPW and metallic strips) and parallel alignment criteria required for optimal device operation are successfully met in our device design and validated using bespoke methods. Our current device, approximately 60 mm x 60 mm in planar dimensions, meets the displacement requirements and we observe a considerable phase shift (~95° at 25 GHz) closely matching numerical simulations. Moreover, our device achieves state of the art performance in terms of phase shift per EM loss ~235°/dB (35 GHz), significantly out performing other phase shifter technologies, such as MMIC phase shifters.

  16. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    NASA Astrophysics Data System (ADS)

    Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.

    2016-03-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.

  17. Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators

    NASA Astrophysics Data System (ADS)

    Pham, Phuc Hong; Viet Dao, Dzung; Dang, Lam Bao; Sugiyama, Susumu

    2012-01-01

    We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation.

  18. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  19. Auto-Gopher: A Wireline Deep Sampler Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Ressa, Aaron; Jae Lee, Hyeong; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2013-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  20. Auto-Gopher: a wireline deep sampler driven by piezoelectric percussive actuator and EM rotary motor

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Ressa, Aaron; Lee, Hyeong Jae; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2013-04-01

    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  1. Combining Model-Based and Feature-Driven Diagnosis Approaches - A Case Study on Electromechanical Actuators

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Roychoudhury, Indranil; Balaban, Edward; Saxena, Abhinav

    2010-01-01

    Model-based diagnosis typically uses analytical redundancy to compare predictions from a model against observations from the system being diagnosed. However this approach does not work very well when it is not feasible to create analytic relations describing all the observed data, e.g., for vibration data which is usually sampled at very high rates and requires very detailed finite element models to describe its behavior. In such cases, features (in time and frequency domains) that contain diagnostic information are extracted from the data. Since this is a computationally intensive process, it is not efficient to extract all the features all the time. In this paper we present an approach that combines the analytic model-based and feature-driven diagnosis approaches. The analytic approach is used to reduce the set of possible faults and then features are chosen to best distinguish among the remaining faults. We describe an implementation of this approach on the Flyable Electro-mechanical Actuator (FLEA) test bed.

  2. CNT/conductive polymer composites for low-voltage driven EAP actuators

    NASA Astrophysics Data System (ADS)

    Sugino, Takushi; Shibata, Yoshiyuki; Kiyohara, Kenji; Asaka, Kinji

    2012-04-01

    We investigated the effects of additives incorporated into the electrode layer in order to improve the actuation performance of dry-type carbon nanotube (CNT) actuators. Especially, the addition of conductive nano-particles such as polyaniline (PANI) and polypyrrole (PPy) improves actuation performance very much rather than the addition of nonconductive nano-particles such as mesoprous silica (MCM-41 type). In this paper, we studied on the influences of applied voltage, species of ionic liquid (IL), amounts of IL, thickness of actuator to optimize actuation performance. Imidazolium type ionic liquids with three different anions, that is, 1-ethyl-3-methylimidazolium (EMI) as a cation and tetrafluoroborate (BF4), trifluoromethanesulfonate (OTf), and bis(trifluoromethanesulfonyl)imide (TFSI) as anions were chosen in this study. EMIBF4 is the most suitable IL for our CNT actuator including PANI in the electrode layer. We tuned the amount of IL and the thickness of actuator. As a result, the strain was improved to be 2.2% at 0.1 Hz by applying the voltage of 2.5 V. This improved value is almost 2 times larger than our previous results. We also show the potential of improved CNT actuators for a thin and light Braille display.

  3. Experimental Application of Piezoelectric Actuator-Driven Pulsed Water Jets in Retinal Vascular Surgery

    PubMed Central

    Kunikata, Hiroshi; Tanaka, Yuji; Aizawa, Naoko; Nakagawa, Atsuhiro; Tominaga, Teiji; Nakazawa, Toru

    2014-01-01

    Purpose To report on the effectiveness and safety of an ophthalmic piezoelectric actuator-driven pulsed water jet (ADPJ) system adapted for intraocular use. Methods First, we determined the highest ADPJ flow rate that did not cause an unsafe rise in intraoperative intraocular pressure (IOP) in rabbits (n = 4). Next, we determined the most effective ADPJ frequency (in hertz) at that flow rate. Finally, we visualized the ADPJ stream, measured its pressure, and determined the minimum voltage and distance between the ADPJ needle and retinal veins to induce intravenous displacement of the blood column (DBC) through massage of the outer retinal vessels (n = 3) while not causing retinal tearing or hemorrhage. Results We found that a 0.05 mL/min ADPJ flow rate caused IOP to rise above 40 mm Hg after 1 minute, but that at 0.025 mL/min, IOP stayed below 40 mm Hg even after 3 minutes. Moreover, we found that a 0.025 mL/min ADPJ stream was stable at a pulse frequency of 10 Hz and that at this flow rate/frequency the ADPJ pressure was closely correlated with the applied voltage (P < 0.001, r2 = 0.9991). The minimum voltage and distance to achieve intravenous DBC without causing retinal tearing or hemorrhage were 40 V and 0.5 mm, respectively. Conclusions With an appropriate flow rate and surgical time, ADPJ successfully induced massage of the retinal vessels and intravenous DBC while maintaining safe IOP and not causing retinal complications. Translational Relevance The ADPJ system has promise as a safe and minimally invasive instrument for the intraocular surgical treatment of human retinal vascular diseases. PMID:25674359

  4. Pre-distorted sinewave-driven parallel-plate electrostatic actuator for harmonic displacement

    NASA Astrophysics Data System (ADS)

    de Graaf, G.; Mol, L.; Rocha, L. A.; Cretu, E.; Wolffenbuttel, R. F.

    2005-07-01

    Harmonic displacement of a parallel-plate electrostatic actuator up to 50% of the static pull-in displacement has been achieved despite the non-linear voltage-to-displacement function using a driving voltage with a pre-distorted waveform. The microstructure is fabricated in an epi-poly process and the circuit is implemented in a CMOS process and designed for operation of the MEMS in a frequency range up to 1 kHz. The pre-distorted waveform is synthesized using 16 samples per period with 16 non-uniformly spaced quantization levels, using a ladder with accurately scaled resistors. Harmonic actuation has been demonstrated with 34 dB reduction of second-order distortion compared to systems with sinusoidal actuation. The residual second harmonic content in the harmonic displacement is typically -42 dB.

  5. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  6. Lightweight Seat Lever Operation Characteristics

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar

    1999-01-01

    In 1999, a Shuttle crew member was unable to operate the backrest lever for the lightweight seat in microgravity. It is essential that crew members can adjust this backrest lever, which is titled forward during launch and then moved backward upon reaching orbit. This adjustment is needed to cushion the crew members during an inadvertent crash landing situation. JSCs Anthropometry and Biomechanics Facility (ABF) performed an evaluation of the seat controls and provided recommendations on whether the seat lever positions and operations should be modified. The original Shuttle seats were replaced with new lightweight seats whose controls were moved, with one control at the front and the other at the back. The ABF designed a 12-person experiment to investigate the amount of pull force exerted by suited subjects, when controls were placed in the front and back of the lightweight seat. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results showed that, in general, the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. The pull forces on the front lever diminished about 50% when subjects wore pressurized suits. Based on these results from this study, it was recommended that the levers should not be located in the back position. Further investigation is needed to determine whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.

  7. Modeling and optimization of a novel two-axis mirror-scanning mechanism driven by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Jing, Zijian; Xu, Minglong; Feng, Bo

    2015-02-01

    Mirror-scanning mechanisms are a key component in optical systems for diverse applications. However, the applications of existing piezoelectric scanners are limited due to their small angular travels. To overcome this problem, a novel two-axis mirror-scanning mechanism, which consists of a two-axis tip-tilt flexure mechanism and a set of piezoelectric actuators, is proposed in this paper. The focus of this research is on the design, theoretical modeling, and optimization of the piezoelectric-driven mechanism, with the goal of achieving large angular travels in a compact size. The design of the two-axis tip-tilt flexure mechanism is based on two nonuniform beams, which translate the limited linear output displacements of the piezoelectric actuators into large output angles. To exactly predict the angular travels, we built a voltage-angle model that characterizes the relationship between the input voltages to the piezoelectric actuators and the output angles of the piezoelectric-driven mechanism. Using this analytical model, the optimization is performed to improve the angular travels. A prototype of the mirror-scanning mechanism is fabricated based on the optimization results, and experiments are implemented to test the two-axis output angles. The experimental result shows that the angular travels of the scanner achieve more than 50 mrad, and the error between the analytical model and the experiment is about 11%. This error is much smaller than the error for the model built using the previous method because the influence of the stiffness of the mechanical structure on the deformation of the piezoelectric stack is considered in the voltage-angle model.

  8. Development of a tilt-positioning mechanism driven by flextensional piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Jing, Zijian; Xu, Minglong; Wu, Tonghui; Tian, Zheng

    2016-08-01

    Tilt-positioning mechanisms are required in optical systems for diverse applications. Compared to electromagnetic tilt-positioning mechanisms, piezoelectric tilters are superior with regard to high positioning resolution, cost-effectiveness, and no electromagnetic interference issues. But their applications are limited by small motion ranges. To overcome this problem, a novel piezoelectric tilt-positioning mechanism is proposed and developed in this paper, aiming to achieve a large output range in compact size. Serving this purpose, flextensional piezoelectric actuators (FPAs) are employed in this mechanism and their optimal structure is pursued. The existing approach to model and analyze the structure of FPAs is not perfect, making it challenging to exactly characterize and optimize actuator performance for its applications. To address this problem, a hybrid-body model of the FPAs is developed and based on this model, a governing equation is established to exactly and comprehensively characterize their kinematic performance. This equation allows the application requirement to be readily related to the actuator design, enabling the optimization of tilter design and the actuators. Using the optimized parameters, an experimental prototype is fabricated. This specimen achieved more than 15 mrad of angular travel at a small size of 35 × 42 × 42 mm, and the error between the analytical model and the experiment was less than 5%. These results support the accuracy of the hybrid-body model and indicate that the proposed tilter is very promising for practical applications.

  9. Development of a tilt-positioning mechanism driven by flextensional piezoelectric actuators.

    PubMed

    Jing, Zijian; Xu, Minglong; Wu, Tonghui; Tian, Zheng

    2016-08-01

    Tilt-positioning mechanisms are required in optical systems for diverse applications. Compared to electromagnetic tilt-positioning mechanisms, piezoelectric tilters are superior with regard to high positioning resolution, cost-effectiveness, and no electromagnetic interference issues. But their applications are limited by small motion ranges. To overcome this problem, a novel piezoelectric tilt-positioning mechanism is proposed and developed in this paper, aiming to achieve a large output range in compact size. Serving this purpose, flextensional piezoelectric actuators (FPAs) are employed in this mechanism and their optimal structure is pursued. The existing approach to model and analyze the structure of FPAs is not perfect, making it challenging to exactly characterize and optimize actuator performance for its applications. To address this problem, a hybrid-body model of the FPAs is developed and based on this model, a governing equation is established to exactly and comprehensively characterize their kinematic performance. This equation allows the application requirement to be readily related to the actuator design, enabling the optimization of tilter design and the actuators. Using the optimized parameters, an experimental prototype is fabricated. This specimen achieved more than 15 mrad of angular travel at a small size of 35 × 42 × 42 mm, and the error between the analytical model and the experiment was less than 5%. These results support the accuracy of the hybrid-body model and indicate that the proposed tilter is very promising for practical applications.

  10. Development of a tilt-positioning mechanism driven by flextensional piezoelectric actuators.

    PubMed

    Jing, Zijian; Xu, Minglong; Wu, Tonghui; Tian, Zheng

    2016-08-01

    Tilt-positioning mechanisms are required in optical systems for diverse applications. Compared to electromagnetic tilt-positioning mechanisms, piezoelectric tilters are superior with regard to high positioning resolution, cost-effectiveness, and no electromagnetic interference issues. But their applications are limited by small motion ranges. To overcome this problem, a novel piezoelectric tilt-positioning mechanism is proposed and developed in this paper, aiming to achieve a large output range in compact size. Serving this purpose, flextensional piezoelectric actuators (FPAs) are employed in this mechanism and their optimal structure is pursued. The existing approach to model and analyze the structure of FPAs is not perfect, making it challenging to exactly characterize and optimize actuator performance for its applications. To address this problem, a hybrid-body model of the FPAs is developed and based on this model, a governing equation is established to exactly and comprehensively characterize their kinematic performance. This equation allows the application requirement to be readily related to the actuator design, enabling the optimization of tilter design and the actuators. Using the optimized parameters, an experimental prototype is fabricated. This specimen achieved more than 15 mrad of angular travel at a small size of 35 × 42 × 42 mm, and the error between the analytical model and the experiment was less than 5%. These results support the accuracy of the hybrid-body model and indicate that the proposed tilter is very promising for practical applications. PMID:27587152

  11. Design and performance evaluation of a new jetting dispenser system using two piezostack actuators

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Hong, Seung-Min; Choi, Minkyu; Choi, Seung-Bok

    2015-01-01

    This paper presents a new jetting dispenser system which is adaptable to various packaging processes such as light emitting diode packaging and flip chip packaging. The proposed dispenser system is driven by piezostack actuators and a lever-hinge mechanism. In order to improve jetting performances such as accurate dispensed amount and adaptability to high viscosity fluid, two piezostack actuators are used. By activating the two actuators dually, the angular displacement of the lever can be controlled to produce a required motion of the needle. Firstly, the configuration and working principles of the proposed jetting system are explained, the design of the dispenser is then conducted and significant geometric dimensions of the dispenser are presented. In the design process, several operational requirements such as the maximum needle stroke, operational frequency, and amplification ratio of the lever-hinge are considered. The principal design parameters of the jetting dispenser system are determined from static and modal analysis using the finite element analysis. After obtaining the dimensional characteristics, the control logic for the dispensing operation is explained using a feed-forward controller. The piezostack-driven jetting dispenser system and control devices are then fabricated to evaluate the dispenser performance. It is shown experimentally that by changing the input voltage conditions, the amount of fluid dispensed by the proposed jetting system can be effectively controlled to achieve the desired jetting performance.

  12. Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles

    PubMed Central

    Lee, Eunsu; Kim, Dowan; Kim, Haneul; Yoon, Jinhwan

    2015-01-01

    To overcome the slow kinetics of the volume phase transition of stimuli-responsive hydrogels as platforms for soft actuators, thermally responsive comb-type hydrogels were prepared using synthesized poly(N-isopropylacrylamide) macromonomers bearing graft chains. Fast responding light-responsive hydrogels were fabricated by combining a comb-type hydrogel matrix with photothermal magnetite nanoparticles (MNP). The MNPs dispersed in the matrix provide heat to stimulate the volume change of the hydrogel matrix by converting absorbed visible light to thermal energy. In this process, the comb-type hydrogel matrix exhibited a rapid response due to the free, mobile grafted chains. The comb-type hydrogel exhibited significantly enhanced light-induced volume shrinkage and rapid recovery. The comb-type hydrogels containing MNP were successfully used to fabricate a bilayer-type photo-actuator with fast bending motion. PMID:26459918

  13. Protein binding reaction enhanced by bi-directional flow driven by on-chip thermopneumatic actuator.

    PubMed

    Lei, Kin Fong; Chen, Kuan-Hao; Chang, Yu-Chen

    2014-04-01

    A microfluidic immunoassay system was developed for the study of the enhancement of protein binding reaction. The system mainly consisted of a thermopneumatic actuator and a reaction chamber. Reagent was pre-installed in the on-chip reservoir and manipulated by the actuator. Such design could eliminate the external tubing connections in order to reduce the waste of reagent and improve the portability. The on-chip actuator could manipulate the reagent bi-directionally to induce vortexes in the chamber. Enhancement of protein binding reaction was demonstrated by the protein model pair, i.e., mouse IgG and anti-mouse IgG. By such bi-directional fluid motion, more binding opportunities between suspended protein and its surface-immobilized counterpart were generated to improve the performance of immunoassay. It showed that an 83.74 % enhancement of the binding reaction was achieved, compared with the static situation. As a whole, the proposed microfluidic system is highly integrated and can enhance the protein binding efficiency using such novel design. The developed system can be easily extended to multi-reagents immunoassay protocols and provides a useful platform for point-of-care applications. PMID:24474184

  14. Physiological evaluation of a newly designed lever mechanism for wheelchairs.

    PubMed

    van der Woude, L H; Veeger, H E; de Boer, Y; Rozendal, R H

    1993-01-01

    Lever-propelled wheelchairs have been described as more efficient and less physically demanding than hand-rim-propelled wheelchairs. To evaluate a newly designed lever mechanism (MARC) in both one- and two-arm use, a series of wheelchair exercise tests were performed on a motor-driven treadmill. Eight able-bodied male subjects performed a standard exercise test in the prototype MARC, both in an asynchronic and a synchronic bimanual propelling mode and in an unilateral (left-sided) mode. Subsequently the subjects performed additional exercise tests in a conventional crank-to-rod lever mechanism with unilateral and bimanual propulsion and in a conventional hand rim wheelchair. Analysis of variance was used to study the effect of the different work modes upon power output and cardiorespiratory parameters statistically (p < 0.05). The MARC stood out well in comparison with the conventional lever design. The additional design features which are to be implemented (variable gearing, reverse gear) will make the MARC a useful wheelchair. One-arm wheelchair propulsion is a very strenuous form of locomotion, requiring careful consideration in terms of provision. Mechanical and ergonomic improvements are quite feasible in lever propulsion and may to a certain extent reduce this problem. To improve overall mobility of wheelchair-dependent subjects further, ergonomic and mechanical design improvements are very necessary in lever as well as hand-rim wheelchairs. A combined biomechanical and physiological research approach will help in the definition of design criteria and fitting guidelines. PMID:8169940

  15. SPH Based Optimization of Electrowetting-Driven Digital Microfluidics with Advanced Actuation Patterns

    NASA Astrophysics Data System (ADS)

    Weiß, Dennis; Greiner, Andreas; Lienemann, Jan; Korvink, Jan G.

    2013-12-01

    Fast and thorough mixing is a crucial operation of digital microfluidic devices, where discrete and small fluid portions are moved and processed. In this paper, we want to analyze and to optimize the mixing process by substituting conventional motion and superposing oscillatory and translational modes. An accurate multiphase smoothed particle hydrodynamics (SPH) discretization for incompressible flow is instantiated. Different harmonic excitation patterns for the solid-liquid surface energy are applied and their influence on droplet mode shapes, formation of eddies and the Shannon entropy of droplet fluid components are measured. We tailor enhanced actuation patterns which improve mixing grade and reduce mixing time.

  16. Design and performance test of a two-axis fast steering mirror driven by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Fang, Chu; Guo, Jin; Yang, Guo-qing; Jiang, Zhen-hua; Xu, Xin-hang; Wang, Ting-feng

    2016-09-01

    A novel design of a two-axis fast steering mirror (FSM) with piezoelectric actuators is proposed for incoherent laser beam combination. The mechanical performance of the FSM is tested. The results show that the tilting range of the mirror is about 4 mrad, and the 1st-order resonance frequency is about 250 Hz. A self-designed grating encoder is taken as the sensor, which ensures the optimal precision of 10 μrad. The novel mechanical design can meet the requirement of engineering in incoherent laser beam combination.

  17. Cyclic Step-voltammetric Analysis of Cation-driven and Anion-driven Actuation in Polypyrrole Films

    NASA Astrophysics Data System (ADS)

    Takashima, Wataru; Pandey, Shyam S.; Fuchiwaki, Masaki; Kaneto, Keiichi

    2002-12-01

    Cation-driven and anion-driven electrochemomechanical deformations (ECMD) in electrodeposited polypyrrole (PPy) films have been investigated by means of cyclic voltammetry and cyclic step-voltammetry (CSV). The film deposited from hydrochloric acid (PPyCl) expanded upon anodic reaction (anodic expansion) while that deposited from dodecyl-benzene sulfonic acid (PPyDBS) exhibited cathodic expansion. In the case of the film deposited from p-phenol sulfonic acid (PPyPPS), it was found to show the anodic expansion at 600 mV (vs Ag wire as a reference electrode) along with the cathodic contraction at -800 mV in CSV. The film obtained from the same lot, however, showed cathodic contraction and anodic expansion only by changing the oxidative potential from 600 mV to -100 mV. This phase inversion indicates that not only the polymerization electrolyte but also the redox potential determines the (de)insertion of ions in the PPyPPS film. Contractive electrochemical creeping was only observed in PPyPPS film in chloride salt electrolytes, indicating that the cation insertion induces the deinsertion of initial-dopant anion from the film.

  18. Piezoelectrically Actuated Shutter for High Vacuum

    NASA Technical Reports Server (NTRS)

    Thompson, Robert; Klose, Gerhard

    2003-01-01

    A piezoelectrically actuated shutter is undergoing development for use in experiments on laser cooling of atoms. The shutter is required to be compatible with ultrahigh vacuum [pressure of 10(exp -9) torr (.1.3 x 10(exp -7) Pa) or less] and to be capable of performing reliably in the vacuum for at least one year. In operation, the shutter would enable the collection and launch of successive samples of cold atoms and would enable the interrogation of the immediately preceding sample while preventing disturbance of the atoms of that sample by light from the collection region. A major constraint is imposed on the design and operation of the shutter by a requirement that it not generate a magnetic field large enough to perturb an atomic clock. An electromagnetically actuated shutter could satisfy all requirements except this one. Hence, it was decided to use piezoelectric instead of electromagnetic actuation. The shutter (see figure) includes two commercial piezoelectrically driven flexure stages that produce a travel of 0.5 mm. Levers mechanically amplify the travel to the required level of 1 cm. Problems that remained to be addressed at the time of reporting the information for this article included lifetime testing and correction of a tendency for shutter blades to bounce open.

  19. Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi

    2012-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.

  20. Deep drilling and sampling via the wireline auto-gopher driven by piezoelectric percussive actuator and EM rotary motor

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2012-04-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars, Europa, and Enceladus. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. The developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline drill that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism, which is driven by a piezoelectric stack, demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with the objective of reaching as deep as 3 to 5 meters in tufa formation.

  1. Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation.

    PubMed

    Molina, M A; Rivarola, C R; Miras, M C; Lescano, D; Barbero, C A

    2011-06-17

    Macroporous hydrogels irreversibly absorb solid nanoparticles from aqueous dispersions. A nanocomposite is made using a macroporous thermosensitive hydrogel (poly(N-isopropylacrylamide-co-(2-acrylamido-2-methyl propane sulfonic acid)) (poly(NIPAm-co-AMPS)) and conductive polymer (polyaniline, PANI) nanoparticles (PANI NPs). Macroporous gels of poly(NIPAm-co-AMPS) were made by a cryogelation technique. NPs of PANI were produced by precipitation polymerization. It is found that PANI NPs are easily absorbed into the macroporous hydrogels while conventional non-porous hydrogels do not incorporate NPs. It is shown that PANI NPs, dispersed in water, absorb NIR laser light or microwave radiation, increasing their temperature. Upon irradiation of the nanocomposite with microwaves or NIR laser light, the PANI NPs heat up and induce the phase transition of the thermosensitive hydrogel matrix and the internal solution is released. Other nano-objects, such as gold nanorods and PANI nanofibers, are also easily incorporated into the macroporous gel. The resulting nanocomposites also suffer a phase transition upon irradiation with electromagnetic waves. The results suggest that, using a thermosensitive matrix and conducting nanoparticles, mechanical/chemical actuators driven at a distance by electromagnetic radiation can be built. The sensitivity of the nanocomposite to electromagnetic radiation can be modulated by the pH, depending on the nature of the incorporated nanoparticles. Additionally, it is possible to make systems which absorb either NIR or microwaves or both.

  2. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  3. Characteristics of sheath-driven tangential flow produced by a low-current DC surface glow discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Shin, Jichul; Shajid Rahman, Mohammad

    2014-08-01

    An experimental investigation of low-speed flow actuation at near-atmospheric pressure is presented. The flow actuation is achieved via low-current ( \\lesssim 1.0 mA) continuous or pulsed DC surface glow discharge plasma. The plasma actuator, consisting of two sharp-edged nickel electrodes, produces a tangential flow in a direction from anode to cathode, and is visualized using high-speed schlieren photography. The induced flow velocity estimated via the schlieren images reaches up to 5 m/s in test cases. The actuation capability increases with pressure and electrode gap distances, and the induced flow velocity increases logarithmically with the discharge power. Pulsed DC exhibits slightly improved actuation capability with better directionality. An analytic estimation of induced flow velocity obtained based on ion momentum in the cathode sheath and gas dynamics in one-dimensional flow yields values similar to those measured.

  4. Design and fabrication of a novel XYθz monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators

    NASA Astrophysics Data System (ADS)

    AbuZaiter, Alaa; Faris Hikmat, Omer; Nafea, Marwan; Ali, Mohamed Sultan Mohamed

    2016-10-01

    This paper reports a new shape-memory-alloy (SMA) micro-positioning stage. The device has been monolithically micro-machined with a single fabrication step. The design comprises a moving stage that is manipulated by six SMA planar springs actuators to generate movements with three degrees of freedom. The overall design is square in shape and has dimensions of 12 mm × 12 mm × 0.25 mm. Localized thermomechanical training for shape setting of SMA planar springs was performed using electrical current induced heating at restrained condition to individually train each of the six actuators to memorize a predetermined shape. For actuation, each SMA actuator is individually driven using Joule heating induced by an electrical current. The current flow is controlled by an external pulse-width modulation signal. The thermal response and heat distribution were simulated and experimentally verified using infrared imaging. The micro-positioning results indicated maximum stage movements of 1.2 and 1.6 mm along the x- and y-directions, respectively. Rotational movements were also demonstrated with a total range of 20°. The developed micro-positioning device has been successfully used to move a small object for microscopic scanning applications.

  5. Lever arm dysfunction in cerebral palsy gait.

    PubMed

    Theologis, Tim

    2013-11-01

    Skeletal structures act as lever arms during walking. Muscle activity and the ground reaction against gravity exert forces on the skeleton, which generate torque (moments) around joints. These lead to the sequence of movements which form normal human gait. Skeletal deformities in cerebral palsy (CP) affect the function of bones as lever arms and compromise gait. Lever arm dysfunction should be carefully considered when contemplating treatment to improve gait in children with CP.

  6. Lever-Arm Pin Puller

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1994-01-01

    Mechanism holds retaining pins in place except when actuated to release pins quickly. Mechanism is integral part of cover designed to be removed with simple downward motion of hand. Before removal, mechanism secures cover in place. After removal, mechanism holds retaining pins for reuse.

  7. 14. INTERIOR OF MAIN DECKNOTE LEVERS FROM CEILING CONTROLLED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF MAIN DECK--NOTE LEVERS FROM CEILING CONTROLLED BY OPERATOR. LEFT HAND LEVER CONTROLLED THROTTLE, RIGHT HAND LEVER CONTROLLED SHOT GUN SWINGER. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA

  8. Design, fabrication and testing of laterally driven electrostatic motors employing walking motion and mechanical leverage

    NASA Astrophysics Data System (ADS)

    Tas, N. R.; Sonnenberg, T.; Molenaar, R.; Elwenspoek, M.

    2003-01-01

    Laterally driven linear electrostatic micromotors have been fabricated by standard surface micromachining. We attempt to employ mechanical leverage with the aim to increase the force from the order of 1 μN up to the order of 0.1 mN, in combination with walking motion to increase the stroke to virtually unlimited. Three designs have been made and tested. We conclude that mechanical levers with proper stiffness characteristics to be driven by electrostatic actuators are feasible. Friction as a function of the applied electrostatic clamp force has been measured, showing that there is a significant adhesion in the clamps. Walking motion has been successfully generated in one of the designs, generating a stroke of 15 μm and a force of 3 μN. Improvement of the clamping is needed to benefit from the implemented levers to increase the generated force.

  9. Investigation of axial bearings with lever-operated equalization system

    SciTech Connect

    Zaretskii, E.I.; Serezhkina, L.P.; Tomkov, Yu.P.

    1983-01-01

    The authors describe the operation of lever-operated systems of an axial bearing which automatically equalizes the load on the pads when the fulcrum of the lower levers are moved out into the plane of conjugation of the upper levers with the lower levers.

  10. Atomic levers control pyranose ring conformations

    PubMed Central

    Marszalek, Piotr E.; Pang, Yuan-Ping; Li, Hongbin; Yazal, Jamal El; Oberhauser, Andres F.; Fernandez, Julio M.

    1999-01-01

    Atomic force microscope manipulations of single polysaccharide molecules have recently expanded conformational chemistry to include force-driven transitions between the chair and boat conformers of the pyranose ring structure. We now expand these observations to include chair inversion, a common phenomenon in the conformational chemistry of six-membered ring molecules. We demonstrate that by stretching single pectin molecules (1 → 4-linked α-d-galactouronic acid polymer), we could change the pyranose ring conformation from a chair to a boat and then to an inverted chair in a clearly resolved two-step conversion: 4C1 ⇄ boat ⇄ 1C4. The two-step extension of the distance between the glycosidic oxygen atoms O1 and O4 determined by atomic force microscope manipulations is corroborated by ab initio calculations of the increase in length of the residue vector O1O4 on chair inversion. We postulate that this conformational change results from the torque generated by the glycosidic bonds when a force is applied to the pectin molecule. Hence, the glycosidic bonds act as mechanical levers, driving the conformational transitions of the pyranose ring. When the glycosidic bonds are equatorial (e), the torque is zero, causing no conformational change. However, when the glycosidic bond is axial (a), torque is generated, causing a rotation around C—C bonds and a conformational change. This hypothesis readily predicts the number of transitions observed in pyranose monomers with 1a-4a linkages (two), 1a-4e (one), and 1e-4e (none). Our results demonstrate single-molecule mechanochemistry with the capability of resolving complex conformational transitions. PMID:10393918

  11. A rapid infusion pump driven by micro electromagnetic linear actuation for pre-hospital intravenous fluid administration.

    PubMed

    Zhao, Peng; Chong, Yinbao; Zhao, An; Lang, Lang; Wang, Qing; Liu, Jiuling

    2015-02-01

    A rapid infusion pump with a maximum flow rate of 6 L/h was designed experimentally using a micro electromagnetic linear actuator, and its effectiveness was evaluated by comparing with that of a commercial Power Infuser under preset flow rates of 0.2, 2, and 6 L/h. The flow rate, air detection sensitivity, occlusion response time, quantitative determination of hemolysis, and power consumption of the infusion devices were extensively investigated using statistical analysis methods (p < 0.05). The experimental results revealed that the flow rate of the designed infusion pump was more stable and accurate, and the hemolysis was significantly less than that of the Power Infuser. The air detection sensitivity and the power consumption could be comparable to that of the Power Infuser except the occlusion response time. The favorable performance made the designed infusion pump a potential candidate for applications in pre-hospital fluid administration.

  12. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  13. Linear Actuator Has Long Stroke and High Resolution

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Moore, Donald M.; Braun, David F.; Koenig, John S.; Hankins, Steve M.

    2009-01-01

    The term precision linear actuator, direct drive ( PLADD ) refers to a robust linear actuator designed to be capable of repeatedly performing, over a lifetime of the order of 5 to 10 years, positioning maneuvers that include, variously, submicron increments or slews of the order of a centimeter. The PLADD is capable of both long stroke (120 mm) and high resolution (repeatable increments of 20 nm). Unlike precise linear actuators of prior design, the PLADD contains no gears, levers, or hydraulic converters. The PLADD, now at the prototype stage of development, is intended for original use as a coarse-positioning actuator in a spaceborne interferometer. The PLADD could also be adapted to terrestrial applications in which there are requirements for long stroke and high resolution: potential applications include medical imaging and fabrication of semiconductor devices. The PLADD (see figure) includes a commercially available ball-screw actuator driven directly by a commercially available three-phase brushless DC motor. The ball-screw actuator comprises a spring-preloaded ball nut on a ball screw that is restrained against rotation as described below. The motor is coupled directly (that is, without an intervening gear train) to a drive link that, in turn, is coupled to the ball nut. By eliminating the gear train, the direct-drive design eliminates the complexity, backlash, and potential for misalignment associated with a gear train. To prevent inadvertent movement, there is a brake that includes flexured levers compressed against the drive link by preload springs. This is a power-off brake: There are also piezoelectric stacks that can be activated to oppose the springs and push the levers away from the drive link. Hence, power must be applied to the piezoelectric stacks to release the drive link from braking. To help ensure long operational life, all of the mechanical drive components are immersed in an oil bath within hermetically sealed bellows. The outer end of the

  14. Measuring How Muscles Function in Levers.

    ERIC Educational Resources Information Center

    DeMont, M. Edwin

    1996-01-01

    Presents an exercise that examines the lever systems that function in the chelae of the American lobster. Involves calculating the mechanical and distance advantages of the crusher and pincer chelae and estimating the actual forces generated by the contraction of the muscles and the magnitude of the forces transmitted around the fulcrum to the tip…

  15. Fabrication and characterization of solid-state, conducting polymer actuators

    SciTech Connect

    Xie, J.; Sansinena, J. M.; Gao, J.; Wang, H. L.

    2004-01-01

    We report here the fabrication and characterization of solid-state, conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhere to a lever arm of an force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torques generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, current, on the bending angle and displacement is also studied using square wave potential.

  16. DETAIL OF STANDARD INTERLOCKING MACHINE OPERATING LEVERS. LOCKING MECHANISM IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF STANDARD INTERLOCKING MACHINE OPERATING LEVERS. LOCKING MECHANISM IS BELOW FLOOR. BOXES BEHIND SOME LEVERS HOUSE ELECTRICAL CONTACTS FOR SIGNALS. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  17. Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range

    SciTech Connect

    Torun, H.; Torello, D.; Degertekin, F. L.

    2011-08-15

    The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz in air with the current setup was demonstrated.

  18. Power lever apparatus for a turbine engine

    SciTech Connect

    McCombs Jr., H. L.

    1985-05-21

    In a turbine engine having a compressor with a bleed valve and a variable geometry apparatus is responsive to an operational control member for regulating the flow rate of fuel supplied the turbine engine as a function of atmospheric pressure and the temperature of air supplied to the compressor corresponding to movement of a power lever by an operator to a desired operation of the turbine engine. The power lever has an indicator member fluidically connected to a follower member linked to the operational control member. The fluidic connection is responsive to operational parameters of the turbine engine and limits the rotational input to the follower member when the rate of fuel flow could cause stalling and the development of an unacceptable operating temperature or overspeed condition in the turbine engine.

  19. Lever-press conditioning in the crab.

    PubMed

    Abramson, C I; Feinman, R D

    1990-08-01

    An operant chamber has been developed for studying lever-press conditioning in the green crab Carcinus maenas. In one series of experiments, animals were presented with a single bar and were reinforced with food for every bar press. Performance increased over time and high rates of responding were observed after 2 days of training. The response rate was always higher than that for a yoked (noncontingent) control group. When the contingencies were switched, the animals adjusted to the new conditions. Discrimination in the lever-press apparatus was demonstrated in a second experiment in which crabs had to choose between two bars, one (S+) caused food to be dispensed while the other (S-) was inactive. Experimental animals pressed the S+ bar at a significantly higher rate than the S- bar. When the contingencies associated with the lever were reversed, animals learned to switch to the correct bar by the second day. It was not necessary to reinforce every response: animals maintained high rates of responding on a schedule where every other response was reinforced. Animals used different methods of pressing the bar; the most common was extension of the claw, predominantly at the meropodite-carpopodite joint. PMID:2255730

  20. Blocking in autoshaped lever-pressing procedures with rats.

    PubMed

    Holland, Peter C; Asem, Judith S A; Galvin, Connor P; Keeney, Caitlin Hepps; Hsu, Melanie; Miller, Alexandra; Zhou, Vivian

    2014-03-01

    Rats will approach and contact a lever whose insertion into the chamber signals response-independent food delivery. This "autoshaping" or "sign-tracking" phenomenon has recently attracted considerable attention as a platform for studying individual differences in impulsivity, drug sensitization, and other traits associated with vulnerability to drug addiction. Here, we examined two basic stimulus selection phenomena-blocking and overshadowing-in the autoshaped lever pressing of rats. Blocking and overshadowing were decidedly asymmetrical. Previously reinforced lever-extension conditioned stimuli (CSs) completely blocked conditioning to auditory cues (Exps. 1 and 2), and previously nonreinforced lever-extension CSs overshadowed conditioning to auditory cues. By contrast, conditioning to lever-extension CSs was not blocked by either auditory (Exp. 3) or lever-insertion (Exp. 4) cues, and was not overshadowed by auditory cues. Conditioning to a lever-insertion cue was somewhat overshadowed by the presence of another lever, especially in terms of food cup behavior displayed after lever withdrawal. We discuss several frameworks in which the apparent immunity of autoshaped lever pressing to blocking might be understood. Given evidence that different brain systems are engaged when different kinds of cues are paired with food delivery, it is worth considering the possibility that interactions among them in learning and performance may follow different rules. In particular, it is intriguing to speculate that the roles of simple cue-reinforcer contiguity, as well as of individual and aggregate reinforcer prediction errors, may differ across stimulus classes.

  1. Blocking in autoshaped lever-pressing procedures with rats

    PubMed Central

    Holland, Peter C.; Asem, Judith S. A.; Galvin, Connor P.; Keeney, Caitlin Hepps; Hsu, Melanie; Miller, Alexandra; Zhou, Vivian

    2013-01-01

    Rats will approach and contact a lever whose insertion into the chamber signals response-independent food delivery. This “autoshaping” or “sign-tracking” phenomenon has recently attracted considerable attention as a platform for studying individual differences in impulsivity, drug sensitization, and other traits associated with vulnerability to drug addiction. Here we examined two basic stimulus selection phenomena, blocking and overshadowing, in the autoshaped lever-pressing of rats. Blocking and overshadowing were decidedly asymmetrical. Previously reinforced lever-extension conditioned stimuli (CSs) completely blocked conditioning to auditory cues (Experiments 1 and 2), and previously nonreinforced lever-extension CSs overshadowed conditioning to auditory cues. By contrast, conditioning to lever-extension CSs was not blocked by either auditory (Experiment 3) or lever insertion (Experiment 4) cues, and was not overshadowed by auditory cues. Conditioning to a lever insertion cue was somewhat overshadowed by the presence of another lever, especially in terms of food cup behavior displayed after lever withdrawal. We discussed several frameworks in which the apparent immunity of autoshaped lever-pressing to blocking might be understood. Given evidence that different brain systems are engaged when different kinds of cues are paired with food delivery, it is worth considering the possibility that interactions among them in learning and performance may follow different rules. In particular, it is intriguing to speculate that the roles of simple cue-reinforcer contiguity as well as of individual and aggregate reinforcer prediction errors may differ across stimulus classes. PMID:24002941

  2. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  3. A method for measurement of static lever arm

    NASA Astrophysics Data System (ADS)

    Ma, Xianglu; Qin, Shiqiao; Wang, Xingshu; Wu, Wei; Hu, Feng; Zheng, JiaXing

    2016-01-01

    Lever arm effect has to be considered in transfer alignment technology. Between static lever arm and dynamic lever arm, the former has larger amplitude, and it is the major error source in transfer alignment. How to measure and solve it become an important problem. This paper takes vehicle as a rigid body. Assume that static lever arm does not change in a short time, based on two inertial measurement units(IMU), data are measured and constituted several matrixes properly. After that, by using least square method, static lever arm is solved finally. Simulation experiments are implemented, results show that static lever arm can be solved effectively. Further study shows that, the precision of the method can be improved by preprocessing low pass filter.

  4. How does lever length and the position of its axis of rotation influence human performance during lever wheelchair propulsion?

    PubMed

    Fiok, Krzysztof; Mróz, Anna

    2015-10-01

    The purpose of this study was to investigate empirically how lever length and its axis of rotation position influences human performance during lever wheelchair propulsion. In order to fulfill this goal, a dedicated test stand allowing easy implementation of various lever positions was created. In the experiment, 10 young, healthy, male subjects performed 8 tests consisting of propulsion work with levers of different lengths and lever axis of rotation positions. During tests heart rate, oxygen consumption and EMG assessment of 6 muscles was carried out. Measurements of power output on the test stand were done as well. Together with oxygen consumption analysis, this allowed calculation of human work efficiency. The results show significant (p<0.05 and p<0.001) differences between lever configurations when comparing various parameters values. From the carried out experiments, the authors conclude that levers' length and their axis of rotation position significantly influence human performance during lever wheelchair propulsion. For the examined subjects, placing the levers' axis of rotation close behind the back wheels axis of rotation offered advantageous work conditions.

  5. Simulation model of a lever-propelled wheelchair.

    PubMed

    Sasaki, Makoto; Ota, Yuki; Hase, Kazunori; Stefanov, Dimitar; Yamaguchi, Masaki

    2014-01-01

    Wheelchair efficiency depends significantly on the individual adjustment of the wheelchair propulsion interface. Wheelchair prescription involves reconfiguring the wheelchair to optimize it for specific user characteristics. Wheelchair tuning procedure is a complicated task that is performed usually by experienced rehabilitation engineers. In this study, we report initial results from the development of a musculoskeletal model of the wheelchair lever propulsion. Such a model could be used for the development of new advanced wheelchair approaches that allow wheelchair designers and practitioners to explore virtually, on a computer, the effects of the intended settings of the lever-propulsion interface. To investigate the lever-propulsion process, we carried out wheelchair lever propulsion experiments where joint angle, lever angle and three-directional forces and moments applied to the lever were recorded during the execution of defined propulsion motions. Kinematic and dynamic features of lever propulsion motions were extracted from the recorded data to be used for the model development. Five healthy male adults took part in these initial experiments. The analysis of the collected kinematic and dynamic motion parameters showed that lever propulsion is realized by a cyclical three-dimensional motion of upper extremities and that joint torque for propulsion is maintained within a certain range. The synthesized propulsion model was verified by computer simulation where the measured lever-angles were compared with the angles generated by the developed model simulation. Joint torque amplitudes were used to impose the torque limitation to the model joints. The results evidenced that the developed model can simulate successfully basic lever propulsion tasks such as pushing and pulling the lever.

  6. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  7. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility.

    PubMed

    Fuhrer, Roland; Athanassiou, Evagelos Kimon; Luechinger, Norman Albert; Stark, Wendelin Jan

    2009-03-01

    The combination of force and flexibility is at the core of biomechanics and enables virtually all body movements in living organisms. In sharp contrast, presently used machines are based on rigid, linear (cylinders) or circular (rotator in an electrical engine) geometries. As a potential bioinspired alternative, magnetic elastomers can be realized through dispersion of micro- or nanoparticles in polymer matrices and have attracted significant interest as soft actuators in artificial organs, implants, and devices for controlled drug delivery. At present, magnetic particle loss and limited actuator strength have restricted the use of such materials to niche applications. We describe the direct incorporation of metal nanoparticles into the backbone of a hydrogel and application as an ultra-flexible, yet strong magnetic actuator. Covalent bonding of the particles prevents metal loss or leaching. Since metals have a far higher saturation magnetization and higher density than oxides, the resulting increased force/volume ratio afforded significantly stronger magnetic actuators with high mechanical stability, elasticity, and shape memory effect.

  8. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  9. Lever-type two-cycle internal combustion engine

    SciTech Connect

    Wenzel, E.C.; Wenzel, S.T.

    1991-06-25

    This patent describes a lever type internal combustion engine. It comprises power cylinders arranged in side-by-side opposed pairs and disposed in a first horizontal plane, each provided with a piston and a piston rod pivotally connected at an inner end with the piston, a crankshaft supported for rotation about an axis lying in a second horizontal plane disposed in spaced parallel relationship with and below the first horizontal plane, and a lever system whereby the power cylinder pistons drive the crankshaft, the lever system, one for each pair of opposed power cylinders, comprising an elongate level arm pivotally interconnected at a first end with the outer ends of the piston rods, means including guide members disposed below the crankshaft for constraining a second end of the lever arm for up and down movement in a direction perpendicular to the first and second horizontal planes, and means for operatively connecting the lever arm at a point intermediate its first and second ends to the crankshaft, whereby the lever arm functions as a lever of the second class between the piston rods and the crankshaft the constrained second end thereof functioning as the fulcrum therefor.

  10. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  11. Actuator mechanism

    NASA Technical Reports Server (NTRS)

    Stange, W. C. (Inventor)

    1978-01-01

    An actuator mechanism is described, having a frame with a rotatable shaft supported in the frame, a positioning mechanism coupled to the shaft for rotating the shaft in two rotary positions, disposed approximately 180 degrees apart, and a pair of plungers coupled to the shaft. Each plunger is responsive to a control signal for applying bi-directional rotation to the shaft.

  12. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  13. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  14. Microfabricated torsion levers optimized for low force and high-frequency operation in fluids.

    PubMed

    Beyder, Arthur; Sachs, Frederick

    2006-01-01

    We developed a mass production fabrication process for making symmetrically supported torsion cantilevers/oscillators with highly compliant springs. These torsion probes offer advantages in atomic force microscopy (AFM) because they are small, have high optical gain, do not warp and can be made with two independent axes. Compared to traditional AFM cantilevers, these probes have higher frequency response, higher Q, lower noise, better optics (since the mirror does not bend) and two data channels. Soft small levers with sub-pN force resolution can resonate cleanly above 10 kHz in water. When fabricated with a ferromagnetic coating on the rigid reflecting pad, they can be driven magnetically or serve as high-resolution magnetometers. Asymmetric levers can be tapping mode probes or high-resolution accelerometers. The dual axis gimbaled probes with two orthogonal axes can operate on a standard AFM with single beam illumination. These probes can be used as self-referencing, drift free, cantilevers where one axis senses the substrate position and the other the sample position. These levers can be optimized for differential contrast or high-resolution friction imaging.

  15. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    NASA Astrophysics Data System (ADS)

    Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2013-08-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

  16. [A graphic study of levers in the human body].

    PubMed

    Basso, M; Soardo, G P

    1989-02-01

    A graphical method is proposed which permits one to determine by a simple drawing procedure for any lever in the human body the intensity of the muscular force and of the force acting on the fulcrum (i.e. on the joint) and the direction of this latter. The method is compared with the conventional one, in which muscular force is first determined by a calculation in which the geometrical lever arms are measured, and then fulcrum force is obtained by means of a vector construction. The new graphic method permits one to simultaneously obtain the intensity and the direction of the forces acting on the lever, without measuring or computing torque values.

  17. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  18. 35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, SOUTH NORWALK - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  19. 16. VIEW OF LEVER CONNECTED TO CHAIN (BRIDGE IN CLOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF LEVER CONNECTED TO CHAIN (BRIDGE IN CLOSED POSITION), LOOKING WEST - Mystic River Drawbridge No. 7, Spanning Mystic River at Boston & Maine Railroad Eastern Route, Somerville, Middlesex County, MA

  20. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    SciTech Connect

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-15

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  1. Differential Suppression by Punishment of Nonconsummatory Licking and Lever Pressing

    ERIC Educational Resources Information Center

    Walters, Gary C.; Herring, Barbara

    1978-01-01

    Five experiments investigated the differential effects of shock punishment on nonconsummatory licking (dry licking) and lever pressing. Results support a motivationally based theory of punishment involving the role of incentive stimuli associated with the particular responses studied. (Editor/RK)

  2. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  3. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  4. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  5. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    in tactile display is investigated by the prototyping of a large scale refreshable Braille display device. Braille is a critical way for the vision impaired community to learn literacy and improve life quality. Current piezoelectrics-based refreshable Braille display technologies are limited to up to 1 line of Braille text, due to the bulky size of bimorph actuators. Based on the unique actuation feature of BSEP, refreshable Braille display devices up to smartphone-size have been demonstrated by polymer sheet laminates. Dots in the devices can be individually controlled via incorporated field-driven BSEP actuators and Joule heater units. A composite material consisting of silver nanowires (AgNW) embedded in a polymer substrate is brought up as a compliant electrode candidate for BSEP application. The AgNW composite is highly conductive (Rs: 10 Ω/sq) and remains conductive at strains as high as 140% (Rs: <10 3 Ω/sq). The baseline conductivity has only small changes up to 90% strain, which makes it low enough for both field driving and stretchable Joule heating. An out-of-plane bistable area strain up to 68% under Joule heating is achieved.

  6. Differential Acquisition of Lever Pressing in Inbred and Outbred Mice: Comparison of One-Lever and Two-Lever Procedures and Correlation with Differences in Locomotor Activity

    ERIC Educational Resources Information Center

    McKerchar, Todd L.; Zarcone, Troy J.; Fowler, Stephen C.

    2005-01-01

    Recent progress in mouse genetics has led to an increased interest in developing procedures for assessing mouse behavior, but relatively few of the behavioral procedures developed involve positively reinforced operant behavior. When operant methods are used, nose poking, not lever pressing, is the target response. In the current study differential…

  7. Design of a MEMS-based motion stage based on a lever mechanism for generating large displacements and forces

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sik; Shi, Hongliang; Dagalakis, Nicholas G.; Gupta, Satyandra K.

    2016-09-01

    Conventional miniaturized motion stages have a volume of 50–60 cm3 and a range of motion around 100 μm. Micro-electro-mechanical systems (MEMS)-based motion stages have been good alternatives in some applications for small footprint, micron-level accuracy, and a lower cost. However, existing MEMS-based motion stages are able to provide a force of μN level, small displacements (less than tens of microns), and need additional features for practical applications like a probe or a stage. In this paper, a single degree of freedom motion stage is designed and analyzed for a larger displacement, a larger output force, a smaller out-of-plane deformation, and a bigger moving stage for further applications. For these purposes, the presented motion stage is designed with a thermal actuator, folded springs, and a lever, and it is experimentally characterized. Furthermore, three different types of flexure joints are investigated to characterize their capabilities and suitability to serve as the revolute joint of the lever: a beam, a cartwheel, and a butterfly flexure. The presented motion stage has a moving stage of 15 mm  ×  15 mm and shows a maximum displacement over 80 μm, and out-of-plane deformation under a weight of 120 μN less than 2 μm. The force generated by the actuator is estimated to be 68.6 mN.

  8. Design of a MEMS-based motion stage based on a lever mechanism for generating large displacements and forces

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sik; Shi, Hongliang; Dagalakis, Nicholas G.; Gupta, Satyandra K.

    2016-09-01

    Conventional miniaturized motion stages have a volume of 50-60 cm3 and a range of motion around 100 μm. Micro-electro-mechanical systems (MEMS)-based motion stages have been good alternatives in some applications for small footprint, micron-level accuracy, and a lower cost. However, existing MEMS-based motion stages are able to provide a force of μN level, small displacements (less than tens of microns), and need additional features for practical applications like a probe or a stage. In this paper, a single degree of freedom motion stage is designed and analyzed for a larger displacement, a larger output force, a smaller out-of-plane deformation, and a bigger moving stage for further applications. For these purposes, the presented motion stage is designed with a thermal actuator, folded springs, and a lever, and it is experimentally characterized. Furthermore, three different types of flexure joints are investigated to characterize their capabilities and suitability to serve as the revolute joint of the lever: a beam, a cartwheel, and a butterfly flexure. The presented motion stage has a moving stage of 15 mm  ×  15 mm and shows a maximum displacement over 80 μm, and out-of-plane deformation under a weight of 120 μN less than 2 μm. The force generated by the actuator is estimated to be 68.6 mN.

  9. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  10. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

  11. Myosin lever arm directs collective motion on cellular actin network

    PubMed Central

    Hariadi, Rizal F.; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-01-01

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions. PMID:24591646

  12. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  13. Gear-shift lever having variable thickness walls

    SciTech Connect

    Tanaka, T.

    1988-01-03

    A one-piece elongated tubular transmission gear shift lever, is described comprising a tubular connector part at a first end of the gear shift lever, whereby the tubular connector part is adapted to be secured to a pivot means; a spherical part extending from the connector part, the connector part and the spherical part having a first wall thickness; a cylindrical part extending from the spherical part in a direction opposite the tubular connector part, the cylindrical part having a second wall thickness less than the first wall thickness; a tapered part extending from the cylindrical part; and a threaded part extending from the tapered part, the threaded part formed at a second end of the gear shift lever opposite the first end, whereby a gear shift knob may be attached.

  14. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  15. Acquisition of operant behavior in rats with delayed reinforcement: A retractable-lever procedure.

    PubMed

    McNamara, Andrew A; Johnson, Lyndsey E; Tate, Christopher; Chiang, Thomas; Byrne, Tom

    2015-02-01

    Experimentally naïve rats acquired lever pressing with delayed reinforcement when the immediate programmed consequence for lever pressing was the simultaneous retraction of two identical levers. Presses on one lever also produced access to sweetened condensed milk after a delay of 10s following retraction. Presses on the second lever resulted in retraction only. Lever retraction prevented the possibility of adventitious reinforcement of contacting the operanda during the reinforcement delays. Several measures indicated that the delayed reinforcers strengthened behavior. The majority of responses for all rats were on the lever that initiated reinforcer delivery. Responding for seven out of eight rats decreased during a subsequent extinction phase in which retraction was the only consequence arranged for lever pressing. Responding recovered rapidly when food reinforcement was available again. Furthermore, when contingencies on the two levers were switched, rats allocated their behavior accordingly, showing control by the delayed reinforcers.

  16. Acquisition of operant behavior in rats with delayed reinforcement: A retractable-lever procedure.

    PubMed

    McNamara, Andrew A; Johnson, Lyndsey E; Tate, Christopher; Chiang, Thomas; Byrne, Tom

    2015-02-01

    Experimentally naïve rats acquired lever pressing with delayed reinforcement when the immediate programmed consequence for lever pressing was the simultaneous retraction of two identical levers. Presses on one lever also produced access to sweetened condensed milk after a delay of 10s following retraction. Presses on the second lever resulted in retraction only. Lever retraction prevented the possibility of adventitious reinforcement of contacting the operanda during the reinforcement delays. Several measures indicated that the delayed reinforcers strengthened behavior. The majority of responses for all rats were on the lever that initiated reinforcer delivery. Responding for seven out of eight rats decreased during a subsequent extinction phase in which retraction was the only consequence arranged for lever pressing. Responding recovered rapidly when food reinforcement was available again. Furthermore, when contingencies on the two levers were switched, rats allocated their behavior accordingly, showing control by the delayed reinforcers. PMID:25464338

  17. The MJS-77 magnetometer actuator

    NASA Technical Reports Server (NTRS)

    Stange, W. C.

    1977-01-01

    A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions is described. The magnetic field, power requirements, weight and volume of this device are discussed. The problems encountered in design and development of this mechanism are presented.

  18. The MJS-77 magnetometer actuator

    NASA Technical Reports Server (NTRS)

    Stange, W. C.

    1977-01-01

    A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) will be used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions. The magnetic field, power requirements, weight and volume of this device are very restrictive. The problems encountered in design and development of this mechanism are presented.

  19. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  20. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  1. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  2. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  3. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  4. 5. FLOOR 3; SHOWS BRAKE LEVER, BLOCK FORMERLY USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLOOR 3; SHOWS BRAKE LEVER, BLOCK FORMERLY USED TO RAISE IT AND HOOK WHICH KEPT IT IN THE 'OFF' POSITION; ALSO SEEN ARE THE LARGE BLOCKS SUSPENDED FROM THE CAP FRAME WHICH HOLD THE TRUCK WHEELS TO CENTER THE CAP - Hayground Windmill, Windmill Lane, East Hampton, Suffolk County, NY

  5. PHOTOCOPY OF HISTORIC PHOTOGRAPH, "LAWRENCE LEVERING BECKEL (BRIDGE BUILT BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF HISTORIC PHOTOGRAPH, "LAWRENCE LEVERING BECKEL (BRIDGE BUILT BY HIM AND HIS FATHER, CHAS. N. BECKEL AT EASTON)," original ca. 1885, photographer unknown. Collection of Historic Bethlehem Inc., Bethlehem, PA, Negative Nos. 3550 or 4504. - Walnut Street Bridge, Formerly spanning Saucon Creek, Hellertown, Northampton County, PA

  6. DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ON BUCKET HANGER WAS PULLED DOWN BY A CAMEL (FIXED CAM RAIL AT CENTER) AS BUCKET ROLLED PAST IT, CAUSING A CLAMP TO CLOSE AGAINST TRACTION CABLE. A SIMILAR CAMEL (NO LONGER EXTANT) DISENGAGED CLAMP ON RECEIVING SIDE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  7. The Relationship between State Policy Levers and Student Mobility

    ERIC Educational Resources Information Center

    Gross, Jacob P. K.; Berry, Matthew S.

    2016-01-01

    To address conceptual and methodological shortcomings in the extant literature on student mobility, this study employs event history modeling to describe and explain how state policy levers, specifically state grant aid, relates to mobility and baccalaureate degree completion. We find that state grant aid reduces mobility, but less so than…

  8. 25. VIEW EAST IN BRIDGE TENDER'S HOUSE, (left) ORIGINAL LEVERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW EAST IN BRIDGE TENDER'S HOUSE, (left) ORIGINAL LEVERS FOR GASOLINE ENGINE OPERATION OF SWING-SPAN, (right) PANEL F ELECTRIC OPERATION OF GATES AND SWING-SPAN; new bridge located in background - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  9. 26. VIEW FROM EAST IN BRIDGE TENDER'S HOUSE, LEVERS FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW FROM EAST IN BRIDGE TENDER'S HOUSE, LEVERS FOR GASOLINE ENGINE OPERATION FOR BRIDGE AND THEIR CONNECTIONS TO CONTROL RODS ON DOWNSTREAM SIDE OF SWING-SPAN; new bridge located in background - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  10. SECOND FLOOR OF OPERATOR'S ROOM, WITH THROTTLE LEVER ABOVE TORQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR OF OPERATOR'S ROOM, WITH THROTTLE LEVER ABOVE TORQUE CONVERTER SWITCH, AT LEFT. MAGNETIC SOLENOID IS IN CENTER, HYDRAULIC BRAKE PUMP IS IN UPPER RIGHT, LOOKING WEST. - Mad River Glen, Single Chair Ski Lift, 62 Mad River Glen Resort Road, Fayston, Washington County, VT

  11. Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: an investigation of the origin of the micromechanical motion and surface stress.

    PubMed

    Norman, Lana L; Badia, Antonella

    2009-02-18

    The electrochemically induced motion of free-standing microcantilevers is attracting interest as micro/nanoactuators and robotic devices. The development and implementation of these cantilever-based actuating technologies requires a molecular-level understanding of the origin of the surface stress that causes the cantilever to bend. Here, we report a detailed study of the electroactuation dynamics of gold-coated microcantilevers modified with a model, redox-active ferrocenylundecanethiolate self-assembled monolayer (FcC(11)SAu SAM). The microcantilever transducer enabled the observation of the redox transformation of the surface-confined ferrocene. Oxidation of the FcC(11)SAu SAM in perchlorate electrolyte generated a compressive surface stress change of -0.20 +/- 0.04 N m(-1), and cantilever deflections ranging from approximately 0.8 microm to approximately 60 nm for spring constants between approximately 0.01 and approximately 0.8 N m(-1). A comparison of the charge-normalized surface stress of the FcC(11)SAu cantilever with values published for the electrochemical oxidation of polyaniline- and polypyrrole-coated cantilevers reveals a striking 10- to 100-fold greater stress for the monomolecular FcC(11)SAu system compared to the conducting polymer multilayers used for electroactuation. The larger stress change observed for the FcC(11)SAu microcantilever is attributable to steric constraints in the close-packed FcC(11)SAu SAM and an efficient coupling between the chemisorbed FcC(11)S- monolayer and the Au-coated microcantilever transducer (vs physisorbed conducting polymers). The microcantilever deflection vs quantity of electrogenerated ferrocenium obtained in cyclic voltammetry and potential step/hold experiments, as well as the surface stress changes obtained for mixed FcC(11)S-/C(11)SAu SAMs containing different populations of clustered vs isolated ferrocenes, have permitted us to establish the molecular basis of stress generation. Our results strongly suggest

  12. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  13. An affordance analysis of unconditioned lever pressing in rats and hamsters.

    PubMed

    Cabrera, Felipe; Sanabria, Federico; Jiménez, Ángel Andrés; Covarrubias, Pablo

    2013-01-01

    Two experiments were conducted to assess the effect of lever height on lever pressing that was not explicitly reinforced - i.e., operant-level responding. Two rodent species were used as subjects, rats (Experiment 1) and hamsters (Experiment 2), aiming to compare the behavioral support offered by one lever at various heights relative to the subjects' body size. Results showed that lever height had a substantial effect on response rate. The rate of lever pressing varied similarly for rats and hamsters as a function of lever height, when lever height was re-scaled relative to body size. The distribution of inter-response times showed that lever pressing was organized in bouts separated by pauses. This pattern of responding was accurately described in both experiments by a mixture of two exponential distributions. These findings support an analysis of affordances in non-human species.

  14. Thermo-magnetic materials for use in designing intelligent actuators

    SciTech Connect

    Ohtani, Yoshimutsu; Yoshimura, Fumikatsu; Hatakeyama, Iwao; Ishii, Yoshikazu

    1994-12-31

    The authors present the concept of an intelligent thermal actuator designed by using thermally sensitive magnetic materials. The use of the magnetic transition of FeRh alloy is very effective in increasing the actuator functions. These functions are freedom of direction, tuning temperature, and increasing both sensitivity and power. Two new types of actuator, a remote controlled optical driven thermo-magnetic motor and a temperature sensitive spring-less valve, are proposed and experimental results are shown.

  15. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  16. Evaluation of piezoceramic actuators for control of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.

    1992-01-01

    Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.

  17. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  18. Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Min; He, Qingsong; Yu, Dingshan; Zhang, Xiaoqing; Ji, Aihong; Zhang, Hao; Guo, Ce; Dai, Zhendong

    2012-10-01

    Active actuation of the adhesive pads is important for a gecko-robot climbing on walls. We demonstrate the fabrication of an ionic polymer-metal composite (IPMC) actuator enhanced with carbon nanotubes (CNTs) and its use for actively actuating an adhesive array to imitate the locomotion of gecko's toes. The as-fabricated IPMC actuator doped with CNTs exhibits a maximum blocking force of 3.59 gf driven at a low voltage of 3 V. It can be easily controlled by voltage signals to actuate an artificial gecko's toe to attach and detach from a surface. This will allow active, distributed actuation in a gecko robot.

  19. Response Induction during the Acquisition and Maintenance of Lever Pressing with Delayed Reinforcement

    ERIC Educational Resources Information Center

    Escobar, Rogelio; Bruner, Carlos A.

    2007-01-01

    The acquisition of lever pressing by rats and the occurrence of unreinforced presses at a location different from that of the reinforced response were studied using different delays of reinforcement. An experimental chamber containing seven identical adjoining levers was used. Only presses on the central (operative) lever produced food pellets.…

  20. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  1. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  2. The Lever oscillator for use in high resistance resonator applications

    SciTech Connect

    Wessendorf, K.O.

    1993-07-01

    The Lever oscillator has been specifically designed for use with quartz resonator sensors. The use of quartz resonators as sensors is of particular interest and depending on the sensing environment, e.g., liquid, the oscillator design is both critical and difficult due to the wide dynamic range of resonator resistance possible due to damping of the resonator. Standard oscillator designs do not work well as sensor oscillators. An oscillator design will be presented that allows both frequency and loss (R{sub m}) of the resonator to be determined over a wide dynamic range of resonator loss. The Lever oscillator uses negative feedback in a differential amplifier configuration to actively and variably divide (or leverage) the resonator impedance such that the oscillator can maintain the phase and gain of the loop over a wide range of resonator resistance.

  3. Gain lever characterization in monolithically integrated diode lasers

    NASA Astrophysics Data System (ADS)

    Pocha, Michael; Bond, Tiziana; Welty, Rebecca; Vernon, Stephen; Kallman, Jeffrey; Behymer, Elaine

    2005-04-01

    Gain Lever, an effect for enhancing amplitude modulation (AM) efficiency in multisection laser diodes1, has been characterized in InGaAs DQW edge emitting lasers that are integrated with passive waveguides. Specifically designed structures which give a range of split ratios from 1:1 to 9:1 have been fabricated and measured to fully characterize the parameter space for operation in the gain lever mode. Additionally the experimental results are compared to a hybrid 3-D simulation involving effective index method (EIM) reduction to 2-D. Gains greater than 6 dB in the AM efficiency can be achieved within the appropriate operating range, but this gain drops rapidly as the parameter range is exceeded. High speed RF modulation with significant gain is, in principle, possible if proper biasing and modulation conditions are used. This phenomenon can also be useful for high-speed digital information transmission.

  4. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  5. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  6. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  7. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  8. Nanoporous carbon actuator and methods of use thereof

    DOEpatents

    Biener, Juergen; Baumann, Theodore F.; Shao, Lihua; Weissmueller, Joerg

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  9. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  10. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  11. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  12. On the development of planar actuators for variable stiffness devices

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-04-01

    This contribution describes the development, the potential and the limitations of planar actuators for controlling bending devices with variable stiffness. Such structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. To realize a proper stiffness control, it is necessary to develop reliable actuators with high actuation capabilities based on smart materials. Several actuator designs driven by electroactive polymers (EAPs) are presented and discussed regarding to their applicability in such structures. To investigate the actuators, variable-flexural stiffness devices based on the control of its area moment of inertia were developed. The devices consist of a multi-layer stack of thin, individual plates. Stiffness variation is caused by planar actuators which control the sliding behavior between the layers by form closure structures. Previous investigations have shown that actuators with high actuation potential are needed to ensure reliable connections between the layers. For that reason, two kinds of EAPs Danfoss PolyPower and VHB 4905 by 3M, have been studied as driving unit. These EAP-driven actuators will be compared based on experimental measurements and finite element analyses.

  13. Paper actuators made with cellulose and hybrid materials.

    PubMed

    Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad

    2010-01-01

    Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated.

  14. A wireless actuating drug delivery system

    NASA Astrophysics Data System (ADS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-04-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s-1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator.

  15. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4μm. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  16. Networked Rectenna Array for Smart Material Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.

    2000-01-01

    The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.

  17. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  18. Theory and applications of optical fiber lever sensors

    NASA Technical Reports Server (NTRS)

    Cuomo, F. W.

    1989-01-01

    The evolution of optical fiber lever concepts is illustrated leading to several designs found useful in air and water applications. In particular, this technology has led to the development of underwater detectors of the pressure and pressure gradient kind. In addition, an optical microphone with features not found in condenser microphones has been utilized in the measurement of pressure fluctuations in high speed boundary layers requiring sensors of small size, extended bandwidth, wide dynamic range, and high temperature capability. Finally, similar concepts have been applied to the design of scale model acoustic arrays intended for acoustic imaging applications in the megahertz frequency range.

  19. Tuneable Auxiliary Control Mechanisms For RUM Actuators

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Alhorn, Dean C.

    1995-01-01

    Tuneable auxiliary control mechanisms for rotating unbalanced-mass (RUM) actuators used to maximize scan amplitudes and/or minimize power consumption during changing conditions. This type of mechanism more sophisticated version of type of mechanism described in "Auxiliary Control Mechanisms for RUM Actuators" (MFS-28817). Torsional stiffness of torsionally flexible coupling made adjustable on command. Torsionally flexible coupling in tuneable version of auxiliary control mechanism adjustable by use of stepping-motor-driven worm-gear mechanism that varies bending length of flexible blade.

  20. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  1. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  2. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  3. Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers

    SciTech Connect

    Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M

    2007-01-03

    In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.

  4. Management of personal safety risk for lever operation in mechanical railway signal boxes.

    PubMed

    Muffett, Bob; Wilson, John R; Clarke, Theresa; Coplestone, Anthony; Lowe, Emma; Robinson, John; Smith, Stuart

    2014-03-01

    Despite increased implementation of computer control systems in managing and regulating rail networks, mechanical signal boxes using lever operation will be in place for years to come. A rolling risk assessment programme identified a number of levers in mechanical signal boxes within the UK rail network which potentially presented unacceptable personal safety risk to signallers. These levers operate both points and signals and the risk is primarily the weights which have to be moved when pulling and pushing the levers. Operating difficulties are often compounded by the design and condition of lever frames, the linkages to the points/signals, maintenance regimes, the workspace and the postures and strategies adopted by signallers. Lever weights were measured as from 15 kg to 180 kg at over 160 boxes, using a specially designed and constructed device. Taken together with examination of injury and sickness absence data, interviews and field observations, and biomechanical computer modelling, the measurement programme confirmed the potential risks. A risk management programme has been implemented, comprising lever weight measurement, training of operations staff, a structured maintenance regime and renewal or redesign for boxes/levers where, after maintenance, a criterion weight level is still exceeded. For a feasible management programme, the first alert (or 1st action) value for further assessment is 55 kg, a second action level requiring specified maintenance is 80-99 kg, and a third action level requiring the lever to be signed out of use is 100 kg.

  5. Actuating Fibers: Design and Applications.

    PubMed

    Stoychev, Georgi V; Ionov, Leonid

    2016-09-21

    Actuators are devices capable of moving or controlling objects and systems by applying mechanical force on them. Among all kinds of actuators with different shapes, fibrous ones deserve particular attention. In spite of their apparent simplicity, actuating fibers allow for very complex actuation behavior. This review discusses different approaches for the design of actuating fibers, and their advantages and disadvantages. We also discuss the prospects for the design of fibers with advanced architectures and complex actuation behavior. PMID:27571481

  6. Lock for hydraulic actuators

    NASA Technical Reports Server (NTRS)

    Wood, R. H.

    1981-01-01

    Two clamps hold rod in fixed extension from cylinder even when power is off, converting actuator into stiff structural member. Locked actuator is useful as mechanical support or linkage or as fail-safe device in case of loss of hydraulic pressure. Potential applications include manufacturing processes and specialized handling and holding devices.

  7. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  8. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  9. Piezoelectric ceramic assembly tubes for torsional actuators

    NASA Astrophysics Data System (ADS)

    Kim, Chulho; Glazounov, Alexandre E.; Flippen, Luther D.; Pattnaik, Amitav; Zhang, Qi Ming; Lewis, David, III

    1999-07-01

    The efforts described here are intended to provide a basis for the utilization of novel piezoelectric actuators in smart materials and structures. The actuator design developed in this study is a segmented, piezoelectric tube, with the individual segments driven in a d15 shear mode. The PZT-5A tubes were cut longitudinally in to an even number of equal slender segments. These slender segments were poled individually along their length using a continuous poling technique developed at NRL. The polarization of the poled segments alternates in direction between adjacent segments. The segments were reassembled with a conductive epoxy so that it serves as both joint and electrode. The assembled actuator tubes were evaluated by applying electric field normal to the polarization direction of the segments, demonstrating proof of concept. These solid state prototype devices were driven to precise angular displacement and torque output. Reliability test, including both fatigue and mechanical loading of the device, were conducted. In conjunction with this effort, numerical computation analyses were performed with respect to structural integrity versus segment joint thickness, and the relative effect of cylindrical versus polygonal configurations. These studies facilitated the successful production of prototypes. Projected actuator outputs based on electromechanical test results are also discussed in terms of requirements for noise and vibration control of helicopter rotor blades.

  10. CMB cluster lensing: Cosmography with the longest lever arm

    SciTech Connect

    Hu, Wayne; Holz, Daniel E.; Vale, Chris

    2007-12-15

    We discuss combining gravitational lensing of galaxies and the cosmic microwave background by clusters to measure cosmographic distance ratios, and hence dark energy parameters. Advantages to using the cosmic microwave background as the second source plane, instead of galaxies, include a well-determined source distance, a longer lever arm for distance ratios, typically up to an order of magnitude higher sensitivity to dark energy parameters, and a decreased sensitivity to photometric redshift accuracy of the lens and galaxy sources. Disadvantages include higher statistical errors, potential systematic errors, and the need for disparate surveys that overlap on the sky. Ongoing and planned surveys, such as the South Pole Telescope in conjunction with the Dark Energy Survey, can potentially reach the statistical sensitivity to make interesting consistency tests of the standard cosmological constant model. Future measurements that reach 1% or better precision in the convergences can provide sharp tests for future supernovae distance measurements.

  11. High-temperature fiber-optic lever microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.; Nguyen, Trung D.; Rizzi, Stephen A.; Clevenson, Sherman A.

    1995-01-01

    The design and construction of a fiber-optic lever microphone, capable of operating continuously at temperatures up to 538 C (1000 F) are described. The design is based on the theoretical sensitivities of each of the microphone system components, namely, a cartridge containing a stretched membrane, an optical fiber probe, and an optoelectronic amplifier. Laboratory calibrations include the pistonphone sensitivity and harmonic distortion at ambient temperature, and frequency response, background noise, and optical power transmission at both ambient and elevated temperatures. A field test in the Thermal Acoustic Fatigue Apparatus at Langley Research Center, in which the microphone was subjected to overall sound-pressure levels in the range of 130-160 dB and at temperatures from ambient to 538 C, revealed good agreement with a standard probe microphone.

  12. A backbone lever-arm effect enhances polymer mechanochemistry.

    PubMed

    Klukovich, Hope M; Kouznetsova, Tatiana B; Kean, Zachary S; Lenhardt, Jeremy M; Craig, Stephen L

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity. PMID:23344431

  13. A backbone lever-arm effect enhances polymer mechanochemistry

    NASA Astrophysics Data System (ADS)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  14. Photostrictive actuators for photonic control of shallow spherical shells

    NASA Astrophysics Data System (ADS)

    Shih, Hui-Ru; Tzou, Horn-Sen

    2007-10-01

    Photostrictive materials, exhibiting light-induced strain, are of interest for the future generation of wireless remote control photo-actuators. Photostrictive actuators are expected to be used as the driving component in optically controlled flexible structures. In this paper, the photonic control of flexible spherical shells using discrete photostrictive actuators is investigated. This paper presents a coupled opto-piezothermoelastic shell theory that incorporates photovoltaic, pyroelectric and piezoelectric effects, and has the capability to predict the response of a spherical shell driven by the photostrictive actuators. In this study, the effects of actuator location as well as membrane and bending components on the control action have been analyzed. The results obtained indicate that the control forces are mode and location dependent. Analysis also shows that the membrane control action is much more significant than the bending control action.

  15. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  16. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  17. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  18. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  19. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  20. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305 Section 1926.305 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1)...

  1. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305 Section 1926.305 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1)...

  2. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305 Section 1926.305 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1)...

  3. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305 Section 1926.305 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1)...

  4. Acquisition and Maintenance of Lever Pressing with Prolonged Exposure to Delayed Reinforcement

    ERIC Educational Resources Information Center

    Vansickel, Andrea; White, Victoria; Byrne, Tom

    2004-01-01

    The present study investigated acquisition and extinction of free-operant responding when rats' lever presses produced sucrose pellets after resetting delays of 10 or 20 s. Presses on a second lever cancelled any scheduled food deliveries. Although previous research using 60-s delays failed to demonstrate maintenance of responding across repeated…

  5. 29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1) The... secured at once. (ii) Hydraulic jacks exposed to freezing temperatures shall be supplied with an...

  6. A Method for Evaluating the Electro-Mechanical Characteristics of Piezoelectric Actuators during Motion

    PubMed Central

    Jin, Tao; Takita, Akihiro; Djamal, Mitra; Hou, Wenmei; Jia, Hongzhi; Fujii, Yusaku

    2012-01-01

    The electro-mechanical characteristics of piezoelectric actuators which have being driven are evaluated in this paper. The force generated by actuators is measured as an inertial force of a corner cub prism which is attached to the actuators. The Doppler frequency shift of a laser beam, due to the motion of actuator, is accurately measured by a heterodyne interferometer. Subsequently, the mechanical quantities, such as velocity, acceleration, force, power and displacement, are calculated from the Doppler frequency shift. With the measurement results of current and voltage of the actuator, the relationships between electrical and mechanical characteristics are evaluated.

  7. Implementation and analysis of an innovative digital charge amplifier for hysteresis reduction in piezoelectric stack actuators

    SciTech Connect

    Bazghaleh, Mohsen Grainger, Steven; Cazzolato, Ben; Lu, Tien-Fu; Oskouei, Reza

    2014-04-15

    Smart actuators are the key components in a variety of nanopositioning applications, such as scanning probe microscopes and atomic force microscopes. Piezoelectric actuators are the most common smart actuators due to their high resolution, low power consumption, and wide operating frequency but they suffer hysteresis which affects linearity. In this paper, an innovative digital charge amplifier is presented to reduce hysteresis in piezoelectric stack actuators. Compared to traditional analog charge drives, experimental results show that the piezoelectric stack actuator driven by the digital charge amplifier has less hysteresis. It is also shown that the voltage drop of the digital charge amplifier is significantly less than the voltage drop of conventional analog charge amplifiers.

  8. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  9. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  10. Mesoscale MEMS motion transformer and amplifier electrostatically actuated by parallel plate electrodes

    NASA Astrophysics Data System (ADS)

    Gerson, Y.; Nachmias, T.; Maimon, R.; Krylov, S.

    2015-05-01

    We report on the design, fabrication and characterization of a mesoscale microelectromechanical motion transformer and amplifier with integrated actuation. The device incorporates an electrostatic transducer with multiple parallel plate electrodes and an elastic suspension realized as a compliant mechanism, which converts small linear motion of the transducer into mechanically amplified angular motion of a rotating lever. By combining highly efficient small-gap actuation with the motion amplification the device is designed to provide a large, more than 60 µm, lever tip displacement along with a calculated blocking force increasing from the initial value of 0.8 mN up to 26 mN in the maximal stroke configuration when actuated at 150 V. The devices were fabricated from a silicon on insulator (SOI) wafer with (1 1 1) front surface orientation and a 150 µm thick device layer using deep reactive ion etching (DRIE) and their functionality was demonstrated experimentally. Good agreement between the results provided by finite elements analysis and the experimental data was observed. Our results demonstrate an ability to achieve both large displacements and high blocking forces in an electrostatically actuated mesoscale compliant mechanisms.

  11. Investigation of Creep Properties in RAINBOW High Displacement Actuators

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Li, Guang; Barron, Bret; Moon, Youngwoo

    1997-01-01

    Results from this study on fatigue in Rainbow and Cerambow actuators show that these high displacement actuators have definite fatigue rates and lifetimes depending upon (1) the amount of displacement generated, (2) how hard they are driven electrically, and (3) the microstructure (grain size) of the ceramic material. Lifetimes for some actuators were on the order of 10(exp 7) cycles at near dc (1 Hz) frequencies while others still retained up to 74% of their displacement at 2.1 x 10(exp 7) Hz.

  12. Apparatus for controlling an engine in a hydraulically driven vehicle

    SciTech Connect

    Kitada, T.

    1987-01-27

    An apparatus is described for controlling the internal combustion engine of a hydraulically driven vehicle comprising: a transmission mechanism for transmitting the operation of a fuel control lever to a governor control lever and having a loose spring mechanism with a loose spring therein: a hydraulic decelerator cylinder connected to the transmission mechanism and having a spring and piston therein. The deceleration cylinder spring has a slightly larger spring force than the loose spring in the loose spring mechanism and applies a force absorbing action, in the absence of hydraulic force acting on the piston, to set the governor control lever in its deceleration position when the fuel control lever is moved to its full engine speed position and for moving the governor control lever to its full engine speed position when hydraulic force is applied to the piston; an electromagnetic valve for applying fluid pressure from a control pump driven by the engine to the piston in the decelerator cylinder and releasing the fluid pressure; and an electric circuit including switches operationally associated with levers for operating a hydraulic valve.

  13. Electrothermal linear actuator

    NASA Technical Reports Server (NTRS)

    Derr, L. J.; Tobias, R. A.

    1969-01-01

    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward.

  14. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  15. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  16. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  17. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  18. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  19. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  20. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  1. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  2. Electrostatic Linear Actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Curry, Kenneth C.

    1990-01-01

    Electrically charged helices attract or repel each other. Proposed electrostatic linear actuator made with intertwined dual helices, which holds charge-bearing surfaces. Dual-helix configuration provides relatively large unbroken facing charged surfaces (relatively large electrostatic force) within small volume. Inner helix slides axially in outer helix in response to voltages applied to conductors. Spiral form also makes components more rigid. Actuator conceived to have few moving parts and to be operable after long intervals of inactivity.

  3. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  4. Actuation of polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  5. Actuation of polypyrrole nanowires.

    PubMed

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  6. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  7. Characterization of radiation-induced performance decrement using a two-lever shock-avoidance task

    SciTech Connect

    Burghardt, W.F. Jr.; Hunt, W.A.

    1985-07-01

    Rats were trained to perform a task involving responses on two levers. Responding on an avoidance lever delayed the onset of electrical footshock for 20 sec and responding on a warning lever turned on a light for 60 sec. When the light was on, the task on the avoidance lever was changed from unsignaled shock avoidance to signaled shock avoidance by preceding the shocks with 5-sec warning tones. The animals preferred the signaled avoidance condition. After 100 Gy of /sup 60/Co irradiation, the animals were less able to avoid shock, an effect from which the animals recovered somewhat over 90 min. The response rate on the avoidance lever remained at or above control rates, while the response rate on the warning lever showed an initial increase, followed by a decrease below baseline. The data suggest that under these experimental conditions a subject will not respond appropriately to avoid shock or acquire cues that can facilitate the avoidance of shock. The effects, however, do not reflect an inability to perform the required movements but instead appear to reflect some characteristic of the task associated with a particular lever.

  8. Response-food delay gradients for lever pressing and schedule-induced licking in rats.

    PubMed

    Pellón, Ricardo; Pérez-Padilla, Angeles

    2013-06-01

    Eight food-deprived Wistar rats developed stable patterns of lever pressing and licking when exposed to a fixed-time 30-s schedule of food pellet presentation. The rats were trained to lever press by presenting the lever 10 s before the programmed food delivery, with the food pellet being delivered immediately upon a lever press. The operant contingency was then removed and the lever was inserted through the entire interfood interval, being withdrawn with food delivery and reinserted 2 s later. On successive phases of the study, a protective contingency postponed food delivery if responses (lever presses or licks) occurred within the last 1, 2, 5, 10, 20, or 25 s of the interfood interval. Lever pressing was reduced at much shorter response-food delays than those that reduced licking. These results demonstrate that reinforcement contributes to the maintenance of different response patterns on periodic schedules, and that different responses are differentially sensitive to delays.

  9. Tractor controls actuating force limits for Indian operators.

    PubMed

    Mehta, C R; Pandey, M M; Tiwari, P S; Gite, L P; Khadatkar, Abhijit

    2011-01-01

    In four-wheel tractors, proper design of controls is important for comfortable and safe operation of the tractor. The design involves location and dimensions of controls as well as strength limits for operating these controls. The present study was aimed to quantify human strength for operation of tractor controls and to recommend the maximum control actuating forces for normal operation of tractors based on strength capability of 3,423 Indian male agricultural workers. The 5th percentile values of strength parameters i.e. leg strength sitting (left and right), foot strength sitting (right), torque strength (both hands) sitting, push strength (left hand and right hand) sitting and pull strength (left hand and right hand) sitting of agricultural workers collected using a strength measurement set-up were taken into consideration for the study. It was recommended that the maximum actuating forces for normal operation of frequently operated brake and clutch pedals of tractors should not exceed 260 N and 125 N based on 5th percentile values of right and left leg strength of male agricultural workers, respectively. The maximum actuating force required in steering wheel operation should not exceed 51 N based on 5th percentile value of torque strength (both hands) sitting of workers. The maximum actuating forces required for operating frequently operated levers viz. gear selection, speed selection, hydraulic control and hand throttle of Indian tractors should not exceed 46 N, 46 N, 25 N and 25 N, respectively. It may be concluded that the maximum actuating force limits as given in Bureau of Indian Standards IS 10703 are very high as compared to the findings of the study based on strength data of Indian male operators, which highlight the need to revise the standard. PMID:21697615

  10. Nonlinear identification of ionic polymer actuator systems

    NASA Astrophysics Data System (ADS)

    Kothera, Curt S.; Lacy, Seth L.; Erwin, R. Scott; Leo, Donald J.

    2004-07-01

    Ionic polymers are a class of electromechanically coupled materials that can be used as flexible transducers. When set up in the cantilever configuration, the actuators exhibit a large bending deflection when an electric field is applied across their thickness. Being a relatively new research topic, the governing physical and chemical mechanisms are not yet fully understood. Experimental results have demonstrated nonlinear dynamic behavior. The nonlinear dynamics can be seen in the response of current, displacement, and velocity of the actuator. This work presents results for the nonlinear identification of ionic polymer actuator systems driven at a specific frequency. Identification results using a 5th-degree Volterra expansion show that the nonlinear distortion can be accurately modeled. Using such a high power in the series expansion is necessary to capture the most dominant harmonics, as evidenced when examining the power spectral density of the response. An investigation of how nonlinearities enter into the response is also performed. By analyzing both the actuation current and tip velocity, results show that both the voltage to current and current to velocity stages influence the nonlinear response, but the voltage to current stage is more dominantly nonlinear.

  11. Examining the reinforcement-enhancement effects of phencyclidine and its interactions with nicotine on lever-pressing for a visual stimulus.

    PubMed

    Swalve, Natashia; Barrett, Scott T; Bevins, Rick A; Li, Ming

    2015-09-15

    Nicotine is a widely-abused drug, yet its primary reinforcing effect does not seem potent as other stimulants such as cocaine. Recent research on the contributing factors toward chronic use of nicotine-containing products has implicated the role of reinforcement-enhancing effects of nicotine. The present study investigates whether phencyclidine (PCP) may also possess a reinforcement-enhancement effect and how this may interact with the reinforcement-enhancement effect of nicotine. PCP was tested for two reasons: (1) it produces discrepant results on overall reward, similar to that seen with nicotine and (2) it may elucidate how other compounds may interact with the reinforcement-enhancement of nicotine. Adult male Sprague-Dawley rats were trained to lever press for brief visual stimulus presentations under fixed-ratio (FR) schedules of reinforcement and then were tested with nicotine (0.2 or 0.4 mg/kg) and/or PCP (2.0mg/kg) over six increasing FR values. A selective increase in active lever-pressing for the visual stimulus with drug treatment was considered evidence of a reinforcement-enhancement effect. PCP and nicotine separately increased active lever pressing for a visual stimulus in a dose-dependent manner and across the different FR schedules. The addition of PCP to nicotine did not increase lever-pressing for the visual stimulus, possibly due to a ceiling effect. The effect of PCP may be driven largely by its locomotor stimulant effects, whereas the effect of nicotine was independent of locomotor stimulation. This dissociation emphasizes that distinct pharmacological properties contribute to the reinforcement-enhancement effects of substances.

  12. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  13. Practical optimization of amplification mechanisms for piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Loveday, Philip W.

    2003-08-01

    A method for designing practical displacement amplification mechanisms for piezoelectric stack actuators was developed. The amplification mechanisms and the piezoelectric stack actuators were modeled using plane-strain finite elements. Optimal sizing and topology optimization were performed simultaneously to maximize the first natural frequency while satisfying free stroke and stress constraints. Optimal sizing variables were selected to control the kinematic behavior of the mechanism while a restricted variable thickness sheet topology optimization method was used to remove unnecessary material from stiff regions of the structure. Calculation of sensitivities was very efficient for the topology optimization variables but required the major portion of computational time for the optimal sizing variables. The method was applied to beam-type lever amplification mechanisms and two devices that included pre-stressing of the piezoelectric ceramics and pure translation of the output point were optimized, manufactured and tested. The results demonstrate that the method presented can be used to design amplified piezoelectric actuators that can be manufactured without interpretation by the designer.

  14. Lever arm extension of myosin VI is unnecessary for the adjacent binding state.

    PubMed

    Ikezaki, Keigo; Komori, Tomotaka; Arai, Yoshiyuki; Yanagida, Toshio

    2015-01-01

    Myosin VI is a processive myosin that has a unique stepping motion, which includes three kinds of steps: a large forward step, a small forward step and a backward step. Recently, we proposed the parallel lever arms model to explain the adjacent binding state, which is necessary for the unique motion. In this model, both lever arms are directed the same direction. However, experimental evidence has not refuted the possibility that the adjacent binding state emerges from myosin VI folding its lever arm extension (LAE). To clarify this issue, we constructed a myosin VI/V chimera that replaces the myosin VI LAE with the IQ3-6 domains of the myosin V lever arm, which cannot fold, and performed single molecule imaging. Our chimera showed the same stepping patterns as myosin VI, indicating the LAE is not responsible for the adjacent binding state.

  15. Manual shift control lever device and self-contained electronic control for transmissions

    SciTech Connect

    Parker, F.F.

    1986-09-09

    A unitized shift control lever device is described for the remote activation of an electrically controlled transmission comprising: a housing; a manually operable range selector lever pivotally supported in the housing for selective movements to predetermined operating positions respectively indicative of a required operating condition of an associated electrically controlled transmission; means in the housing providing a source of radiations; radiation controlled switching means for generating discrete control signals in response to the presence and non-presence of the radiations; means interposed in the radiation path between the source and the switching means operable in response to the movement of the range selector lever for selectively determining the presence or non-presence of the radiations with respect to the switching means at each range selector position of the lever; and electronic circuit control means having input connections for receiving the generated signals and output connections adapted for connection with electrically activated condition controlling devices on the transmission.

  16. 20. VIEW OF NEWER 7LEVER INTERLOCKING MACHINE IN FOREGROUND, NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF NEWER 7-LEVER INTERLOCKING MACHINE IN FOREGROUND, NEXT TO ORIGINAL INTERLOCKING MACHINE, THIRD FLOOR - South Station Tower No. 1 & Interlocking System, Dewey Square, Boston, Suffolk County, MA

  17. Lever arm extension of myosin VI is unnecessary for the adjacent binding state

    PubMed Central

    Ikezaki, Keigo; Komori, Tomotaka; Arai, Yoshiyuki; Yanagida, Toshio

    2015-01-01

    Myosin VI is a processive myosin that has a unique stepping motion, which includes three kinds of steps: a large forward step, a small forward step and a backward step. Recently, we proposed the parallel lever arms model to explain the adjacent binding state, which is necessary for the unique motion. In this model, both lever arms are directed the same direction. However, experimental evidence has not refuted the possibility that the adjacent binding state emerges from myosin VI folding its lever arm extension (LAE). To clarify this issue, we constructed a myosin VI/V chimera that replaces the myosin VI LAE with the IQ3-6 domains of the myosin V lever arm, which cannot fold, and performed single molecule imaging. Our chimera showed the same stepping patterns as myosin VI, indicating the LAE is not responsible for the adjacent binding state. PMID:27493514

  18. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  19. Actuating critical care therapeutics.

    PubMed

    Stone, David J; Csete, Marie

    2016-10-01

    Viewing the intensive care unit (ICU) as a control system with inputs (patients) and outputs (outcomes), we focus on actuation (therapies) of the system and how to enhance our understanding of status of patients and their trajectory in the ICU. To incorporate the results of these analytics meaningfully, we feel that a reassessment of predictive scoring systems and of ways to optimally characterize and display the patient's "state space" to clinicians is important. Advances in sensing (diagnostics) and computation have not yet led to significantly better actuation, and so we focus on ways that data can be used to improve actuation in the ICU, in particular by following therapeutic burden along with disease severity. This article is meant to encourage discussion about how the critical care community can best deal with the data they see each day, and prepare for recommendations that will inevitably arise from application of major federal and state initiatives in big data analytics and precision medicine.

  20. Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance

    PubMed Central

    Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang

    2014-01-01

    Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and −10°C) but also realize the goal of grabbing an object by adjusting the applied voltage. PMID:25327414

  1. Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance

    NASA Astrophysics Data System (ADS)

    Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang

    2014-10-01

    Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and -10°C) but also realize the goal of grabbing an object by adjusting the applied voltage.

  2. Design and experiment performances of an inchworm type rotary actuator.

    PubMed

    Li, Jianping; Zhao, Hongwei; Shao, Mingkun; Zhou, Xiaoqin; Huang, Hu; Fan, Zunqiang

    2014-08-01

    A piezo-driven rotary actuator by means of inchworm principle is proposed in this paper. Six piezo-stacks and flexure hinges are used to realize large rotation ranges with high accuracy both in the forward and backward motions. Four right-angle flexure hinges and two right-circular flexure hinges are applied in the stator. The motion principle and theoretical analysis of the designed actuator are discussed. In order to investigate the working characteristics, a prototype actuator was manufactured and a series of experiment tests were carried out. The test results indicate that the maximum rotation velocity is 71,300 μrad/s; the maximum output torque is 19.6 N mm. The experiment results confirm that the designed actuator can obtain large rotation motion ranges with relatively high output torques and different rotation speeds on the condition of different driving voltages and frequencies.

  3. Soft linear electroactive polymer actuators based on polypyrrole

    NASA Astrophysics Data System (ADS)

    Maziz, Ali; Khaldi, Alexandre; Persson, Nils-Krister; Jager, Edwin W. H.

    2015-04-01

    There is a growing demand for human-friendly robots that can interact and work closely with humans. Such robots need to be compliant, lightweight and equipped with silent and soft actuators. Electroactive polymers such as conducting polymers (CPs) are "smart" materials that deform in response to electrical simulation and are often addressed as artificial muscles due to their functional similarity with natural muscles. They offer unique possibilities and are perfect candidates for such actuators since they are lightweight, silent, and driven at low voltages. Most CP actuators are fabricated using electrochemical oxidative synthesis. We have developed new CP based fibres employing both vapour phase and liquid phase electrochemical synthesis. We will present the fabrication and characterisation of these fibres as well as their performance as linear actuators.

  4. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  5. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  6. Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V.

    PubMed

    Trivedi, Darshan V; Muretta, Joseph M; Swenson, Anja M; Davis, Jonathon P; Thomas, David D; Yengo, Christopher M

    2015-11-24

    Myosins use a conserved structural mechanism to convert the energy from ATP hydrolysis into a large swing of the force-generating lever arm. The precise timing of the lever arm movement with respect to the steps in the actomyosin ATPase cycle has not been determined. We have developed a FRET system in myosin V that uses three donor-acceptor pairs to examine the kinetics of lever arm swing during the recovery and power stroke phases of the ATPase cycle. During the recovery stroke the lever arm swing is tightly coupled to priming the active site for ATP hydrolysis. The lever arm swing during the power stroke occurs in two steps, a fast step that occurs before phosphate release and a slow step that occurs before ADP release. Time-resolved FRET demonstrates a 20-Å change in distance between the pre- and postpower stroke states and shows that the lever arm is more dynamic in the postpower stroke state. Our results suggest myosin binding to actin in the ADP.Pi complex triggers a rapid power stroke that gates the release of phosphate, whereas a second slower power stroke may be important for mediating strain sensitivity.

  7. Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V

    PubMed Central

    Trivedi, Darshan V.; Muretta, Joseph M.; Swenson, Anja M.; Davis, Jonathon P.; Thomas, David D.; Yengo, Christopher M.

    2015-01-01

    Myosins use a conserved structural mechanism to convert the energy from ATP hydrolysis into a large swing of the force-generating lever arm. The precise timing of the lever arm movement with respect to the steps in the actomyosin ATPase cycle has not been determined. We have developed a FRET system in myosin V that uses three donor–acceptor pairs to examine the kinetics of lever arm swing during the recovery and power stroke phases of the ATPase cycle. During the recovery stroke the lever arm swing is tightly coupled to priming the active site for ATP hydrolysis. The lever arm swing during the power stroke occurs in two steps, a fast step that occurs before phosphate release and a slow step that occurs before ADP release. Time-resolved FRET demonstrates a 20-Å change in distance between the pre- and postpower stroke states and shows that the lever arm is more dynamic in the postpower stroke state. Our results suggest myosin binding to actin in the ADP.Pi complex triggers a rapid power stroke that gates the release of phosphate, whereas a second slower power stroke may be important for mediating strain sensitivity. PMID:26553992

  8. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    PubMed

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered.

  9. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    PubMed

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered. PMID:24699972

  10. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  11. Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring.

    PubMed

    García-López, Víctor; Chiang, Pinn-Tsong; Chen, Fang; Ruan, Gedeng; Martí, Angel A; Kolomeisky, Anatoly B; Wang, Gufeng; Tour, James M

    2015-12-01

    Unimolecular submersible nanomachines (USNs) bearing light-driven motors and fluorophores are synthesized. NMR experiments demonstrate that the rotation of the motor is not quenched by the fluorophore and that the motor behaves in the same manner as the corresponding motor without attached fluorophores. No photo or thermal decomposition is observed. Through careful design of control molecules with no motor and with a slow motor, we found using single molecule fluorescence correlation spectroscopy that only the molecules with fast rotating speed (MHz range) show an enhancement in diffusion by 26% when the motor is fully activated by UV light. This suggests that the USN molecules give ∼9 nm steps upon each motor actuation. A non-unidirectional rotating motor also results in a smaller, 10%, increase in diffusion. This study gives new insight into the light actuation of motorized molecules in solution.

  12. Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring.

    PubMed

    García-López, Víctor; Chiang, Pinn-Tsong; Chen, Fang; Ruan, Gedeng; Martí, Angel A; Kolomeisky, Anatoly B; Wang, Gufeng; Tour, James M

    2015-12-01

    Unimolecular submersible nanomachines (USNs) bearing light-driven motors and fluorophores are synthesized. NMR experiments demonstrate that the rotation of the motor is not quenched by the fluorophore and that the motor behaves in the same manner as the corresponding motor without attached fluorophores. No photo or thermal decomposition is observed. Through careful design of control molecules with no motor and with a slow motor, we found using single molecule fluorescence correlation spectroscopy that only the molecules with fast rotating speed (MHz range) show an enhancement in diffusion by 26% when the motor is fully activated by UV light. This suggests that the USN molecules give ∼9 nm steps upon each motor actuation. A non-unidirectional rotating motor also results in a smaller, 10%, increase in diffusion. This study gives new insight into the light actuation of motorized molecules in solution. PMID:26540377

  13. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  14. Microwave power for smart material actuators

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Song, Kyo D.; Golembiewskii, Walter; Chu, Sang-Hyon; King, Glen C.

    2004-02-01

    The concept of microwave-driven smart material actuators was envisioned and developed as the best option to alleviate the complexity and weight associated with a hard-wire-networked power and control system for smart actuator arrays. The patch rectenna array was initially designed for high current output, but has undergone further development for high voltage output devices used in shape control applications. Test results show that more than 200 V of output were obtained from a 6 × 6 array at a far-field exposure (1.8 m away) with an X-band input power of 18 W. The 6 × 6 array patch rectenna was designed to theoretically generate voltages up to 540 V, but practically it has generated voltages in the range between 200 and 300 V. Testing was also performed with a thin layer composite unimorph ferroelectric driver and sensor and electro-active paper as smart actuators attached to the 6 × 6 array. Flexible dipole rectenna arrays built on thin-film-based flexible membranes are most applicable for NASA's various missions, such as microwave-driven shape controls for aircraft morphing and large, ultra-lightweight space structures. An array of dipole rectennas was designed for high voltage output by densely populating Schottky barrier diodes to drive piezoelectric or electrostrictive actuators. The dipole rectenna array will eventually be integrated with a power allocation and distribution logic circuit and microbatteries for storage of excessive power. The roadmap for the development of wireless power drivers based on the rectenna array for shape control requires the development of new membrane materials with proper dielectric constants that are suitable for dipole rectenna arrays.

  15. Robot Arm with Tendon Connector Plate and Linear Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Nguyen, Vienny (Inventor); Millerman, Alexander (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  16. S-IV-B Aft Swing Arm Cam Lever Stop Strain Guage

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed 'The Arm Farm', the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swing arm mechanisms that were used to hold the rocket in position until liftoff. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center. This photo depicts a close up of the S-IV-B aft swing arm cam lever stop strain guage.

  17. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  18. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  19. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  20. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  1. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  2. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  3. Electro-Active Polymer (EAP) Actuators for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP

  4. Contractive tension force stack actuator based on soft dielectric EAP

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Düring, Lukas

    2009-03-01

    Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission

  5. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  6. An investigation of the energy consumption and conversion of piezoelectric actuators integrated in active structures

    SciTech Connect

    Liang, C.; Sun, F.; Rogers, C.A.

    1994-12-31

    This paper quantifies the energy consumption and conversion of an active structure driven by piezoelectric ceramic (PZT) actuators. The principle and methodology discussed in this paper may also be applied to other active structures with different types of actuators. The paper first discusses the energy conversion of PZT actuator materials, including the energy dissipation and electro-mechanical energy conversion. The energy conversion efficiency for the static and dynamic applications of PZT actuator is then defined and discussed. A numerical case study has also been conducted. One of the major conclusions from the investigation is that the physical process of energy conversion (electrical to mechanical and vice versa) within an induced strain actuator depends on the operating conditions of the actuator, namely, the type of structure it interacts, as well as the structural impedance.

  7. Distributed electromechanical actuation system design for a morphing trailing edge wing

    NASA Astrophysics Data System (ADS)

    Dimino, I.; Diodati, G.; Concilio, A.; Volovick, A.; Zivan, L.

    2016-04-01

    Next-generation flight control actuation technology will be based on "more electric" concepts to ensure benefits in terms of efficiency, weight and maintenance. This paper is concerned with the design of an un-shafted distributed servo-electromechanical actuation system, suited for morphing trailing edge wings of large commercial aircraft. It aims at producing small wing camber variations in the range between -5° and +5° in cruise, to enable aerodynamic efficiency improvements. The deployment kinematics is based on multiple "direct-drive" actuation, each made of light-weight compact lever mechanisms, rigidly connected to compliant ribs and sustained by load-bearing motors. Navier-Stokes computations are performed to estimate the pressure distribution over the interested wing region and the resulting hinge moments. These transfer to the primary structure via the driving mechanism. An electro-mechanical Matlab/Simulink model of the distributed actuation architecture is developed and used as a design tool, to preliminary evaluate the complete system performance. Implementing a multi-shaft strategy, each actuator is sized for the torque acting on the respective adaptive rib, following the effect of both the aerodynamic pressure and the morphing skin stiffness. Elastic trailing edge rotations and power needs are evaluated in operative conditions. Focus is finally given to the key challenges of the proposed concept: targeting quantifiable performance improvements while being compliant to the demanding requirements in terms of reliability and safety.

  8. New modular piezo actuator with built-in stress-strain transformation

    NASA Astrophysics Data System (ADS)

    Rödig, Thomas; Schönecker, Andreas; Seffner, Lutz; Drossel, Welf-Guntram; Kunze, Holger; Roscher, Hans-Jürgen

    2009-03-01

    As known, the electrical induced strain of conventional piezoceramic materials is limited by 0.12 % (2 kV/mm), which often requires strain transformation designs, like levers, in order to meet application needs. High fabrication accuracy and low tolerances are crucial points in mechanical manufacturing causing high device costs. Therefore, we developed a piezoelectric composite actuator with inherent stress - strain transformation. Basically, piezoceramic sheets are laminated with spring steel of a certain curvature, which can be realised by a comparatively simple fabrication technique. The working diagram of these composite bow actuators showed a high level of performance adaptable to a wide range of applications. The authors established the value chain covering the piezoceramic formulation, the processing technology and the design in view of optimum system performance. The paper presents an overview of the design principles, simulation and various aspect of fabrication technology including lamination, sintering and polarization. The new devices are useable in different sectors, for example in automotive industry as solid state transducer or as the active part in injectors. Moreover, the composite bow actuators may find application in microsystems technology, micro optics and micro fluidics as well as vibration dampers. The composite bow actuators can be used as single component transducer, as well as multi-bow actuator in series or parallel combination on demand.

  9. Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning.

    PubMed

    Chang, Stephen E

    2014-10-15

    A cue associated with a rewarding event can trigger behavior towards the cue itself due to the cue acquiring incentive value through its pairing with the rewarding outcome (i.e., sign-tracking). For example, rats will approach, press, and attempt to "consume" a retractable lever conditioned stimulus (CS) that signals delivery of a food unconditioned stimulus (US). Attending to food-predictive CSs is important when seeking out food, and it is just as important to be able to modify one's behavior when the relationships between CSs and USs are changed. Using a discriminative autoshaping procedure with lever CSs, the present study investigated the effects of orbitofrontal cortex (OFC) lesions on sign-tracking and reversal learning. Insertion of one lever was followed by sucrose delivery upon retraction, and insertion of another lever was followed by nothing. After the acquisition phase, the contingencies between the levers and outcomes were reversed. Bilateral OFC lesions had no effect on the acquisition of sign-tracking. However, OFC-lesioned rats showed substantial deficits in acquiring sign-tracking compared to sham-lesioned rats once the stimulus-outcome contingencies were reversed. Over the course of reversal learning, OFC-lesioned rats were able to reach comparable levels of sign-tracking as sham-lesioned rats. These findings suggest that OFC is not necessary for the ability of a CS to acquire incentive value and provide more evidence that OFC is critical for modifying behavior appropriately following a change in stimulus-outcome contingencies.

  10. A linear actuator for precision positioning of dual objects

    NASA Astrophysics Data System (ADS)

    Peng, Yuxin; Cao, Jie; Guo, Zhao; Yu, Haoyong

    2015-12-01

    In this paper, a linear actuator for precision positioning of dual objects is proposed based on a double friction drive principle using a single piezoelectric element (PZT). The linear actuator consists of an electromagnet and a permanent magnet, which are connected by the PZT. The electromagnet serves as an object 1, and another object (object 2) is attached on the permanent magnet by the magnetic force. For positioning the dual objects independently, two different friction drive modes can be alternated by an on-off control of the electromagnet. When the electromagnet releases from the guide way, it can be driven by impact friction force generated by the PZT. Otherwise, when the electromagnet clamps on the guide way and remains stationary, the object 2 can be driven based on the principle of smooth impact friction drive. A prototype was designed and constructed and experiments were carried out to test the basic performance of the actuator. It has been verified that with a compact size of 31 mm (L) × 12 mm (W) × 8 mm (H), the two objects can achieve long strokes on the order of several millimeters and high resolutions of several tens of nanometers. Since the proposed actuator allows independent movement of two objects by a single PZT, the actuator has the potential to be constructed compactly.

  11. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  12. Solar actuated drain system

    SciTech Connect

    Sarver, G. E.; Worstell, B. W.

    1985-04-30

    A temperature actuated drain system is provided that comprises a siphon that has an inlet end for immersing in a pool of water to be drained from a roof surface and a discharge end communicating with a pressure-responsive one-way valve. A solar actuated enclosed chamber that contains a solar heat energy collector is located on the roof surface and is in open communication with the siphon by means of a tubular member that has its inlet end positioned closely adjacent the bottom of the interior of the chamber. The arrangement causes any appreciable amounts of water that accumulate within the chamber to be discharged from the chamber during the pumping action created by the heating and cooling of air within the chamber.

  13. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  14. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  15. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  16. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  17. Automatic rotary valve actuator

    SciTech Connect

    Cook, W.E.

    1985-03-28

    This report describes the design, construction, and operation of a microcomputer-controlled valve actuator for operating test valves requiring rotary motion of the valve stem. An AIM 65 microcomputer, using a FORTH language program, controls an air motor and air clutch mounted within an oven to accomplish testing at elevated temperatures. The valve actuator closes the test valve until a preset torque is reached and then opens the valve to its initial starting point. The number of cycles and extremes of rotation are tallied and printed as the test progresses. Provisions are made to accept remote signals to stop the test and to indicate to a remote device when the test has been stopped.

  18. Development of multilayer conducting polymer actuator for power application

    NASA Astrophysics Data System (ADS)

    Ikushima, Kimiya; Kudoh, Yuji; Hiraoka, Maki; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-03-01

    In late years many kinds of home-use robot have been developed to assist elderly care and housework. Most of these robots are designed with conventional electromagnetic motors. For safety it is desirable to replace these electromagnetic motors with artificial muscle. However, an actuator for such a robot is required to have simple structure, low driving voltage, high stress generation, high durability, and operability in the air. No polymer actuator satisfying all these requirements has been realized yet. To meet these we took following two approaches focusing on conducting polymer actuators which can output high power in the air. (Approach 1) We have newly developed an actuator by multiply laminating ionic liquid infiltrated separators and polypyrrole films. Compared with conventional actuator that is driven in a bath of ionic liquid, the new actuator can greatly increase generated stress since the total sectional area is tremendously small. In our experiment, the new actuator consists of minimum unit with thickness of 128um and has work/weight ratio of 0.92J/kg by laminating 9 units in 0.5Hz driving condition. In addition, the driving experiment has shown a stable driving characteristic even for 10,000 cycles durability test. Furthermore, from our design consideration, it has been found that the work/weight ratio can be improved up to 8J/kg (1/8 of mammalian muscle of 64J/kg) in 0.1Hz by reducing the thickness of each unit to 30um. (Approach 2) In order to realize a simplified actuator structure in the air without sealing, we propose the use of ionic liquid gel. The actuation characteristic of suggested multilayered actuator using ionic liquid gel is simulated by computer. The result shows that performance degradation due to the use of ionic liquid gel is negligible small when ionic liquid gel with the elasticity of 3kPa or less is used. From above two results it is concluded that the proposed multilayerd actuator is promising for the future robotic applications

  19. Dissolution actuated sample container

    DOEpatents

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  20. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  1. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  2. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  3. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  4. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  5. A small and fast piezo-actuated legged robot

    NASA Astrophysics Data System (ADS)

    Yumaryanto, Abdul A.; An, Jaebum; Lee, Sangyoon

    2007-04-01

    In this paper we present the development of a small and fast LIPCA-actuated mobile robot. LIPCA (Lightweight Piezoceramic Composite curved Actuator) is a piezo-composite actuator that uses a PZT layer sandwiched between composite materials of carbon/epoxy and glass/epoxy layers to amplify the displacement. Three versions of LIPCA robots have been developed thus far to implement a small and autonomous robot. The design of the first prototype was inspired by a six-legged insect like a cockroach. Its maximum speed is 173 mm/sec with the voltage input of 400 Vpp at 40 Hz frequency. As the result of a slight modification in the design, a faster LIPCA robot was developed. However their structures are not strong enough to carry a load heavier than 20 gram, which can be a major obstacle to implementing autonomous robots. By several changes in the mechanism, the LIPCA-actuated robot has been improved such that it is able to carry a weight as much as 60 gram. For all the prototypes we used two LIPCA strips that are placed oppositely in the middle of the robot body. The LIPCA strips are driven by a square signal function of high AC voltage with the phase difference of 180°. All the experimental results show a possibility of a small and fast walking robot actuated by LIPCA without using any conventional electromagnetic actuator.

  6. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  7. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  8. Single Piezo-Actuator Rotary-Hammering Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to

  9. The Lever Arm Effects a Mechanical Asymmetry of the Myosin-V-Actin Bond

    PubMed Central

    Gebhardt, J. Christof M.; Ökten, Zeynep; Rief, Matthias

    2010-01-01

    Myosin-V is a two-headed molecular motor taking multiple ATP-dependent steps toward the plus end (forward) of actin filaments. At high mechanical loads, the motor processively steps toward the minus end (backward) even in the absence of ATP, whereas analogous forward steps cannot be induced. The detailed mechanism underlying this mechanical asymmetry is not known. We investigate the effect of force on individual single headed myosin-V constructs bound to actin in the absence of ATP. If pulled forward, the myosin-V head dissociates at forces twice as high than if pulled backward. Moreover, backward but not forward distances to the unbinding barrier are dependent on the lever arm length. This asymmetry of unbinding force distributions in a single headed myosin forms the basis of the two-headed asymmetry. Under load, the lever arm functions as a true lever in a mechanical sense. PMID:20338849

  10. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  11. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length.

    PubMed

    Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony

    2002-01-01

    Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.

  12. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  13. Light-Controlled Graphene-Elastin Composite Hydrogel Actuators

    PubMed Central

    Wang, Eddie; Desai, Malav S.; Lee, Seung-Wuk

    2013-01-01

    Hydrogels actuators (HAs) that can reversibly respond to stimuli have applications in diverse fields. However, faster response rates and improved control over actuation timing and location are required to fulfill their potential. To address these criteria, we synthesized near-infrared light-driven HAs by interfacing genetically engineered elastin-like polypeptides with reduced-graphene oxide sheets. The resulting nanocomposites exhibited rapid and tunable motions controlled by light position, intensity, and path, including finger-like flexing and crawling. This work demonstrates the ability of rationally designed proteins to be combined with synthetic nanoparticles for the creation of macroscale functional materials. PMID:23647361

  14. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  15. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  16. High power thrust vector actuation

    NASA Astrophysics Data System (ADS)

    Kittock, M. J.

    1993-06-01

    Modern missile programs are frequently favoring electro-mechanical (EM) thrust vector actuation (TVA) over hydraulic for a variety of reasons. However, actuation system performance requirements are not relaxed for EM systems. Thus the development of EM systems with greater power output is required. The configuration of EM actuator studied consists of a DC brushless motor driving a spur gear train, which drives a ballscrew that converts rotary motion to rectilinear motion. This design produces an actuator with high levels of performance in a compact mechanical package. Design for manufacturability and assembly (DFMA) was part of the design process, resulting in an actuator that can be assembled easily and will operate reliably. This paper will discuss the mechanical details of the resultant actuator and report test results on a prototype derivative.

  17. Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis

    PubMed Central

    Spudich, James A.; Sivaramakrishnan, Sivaraj

    2010-01-01

    The swinging crossbridge hypothesis states that energy from ATP hydrolysis is transduced to mechanical movement of the myosin head while bound to actin. The light chain-binding region of myosin is thought to act as a lever arm that amplifies movements near the catalytic site. This model has been challenged by findings that myosin VI takes larger steps along actin filaments than early interpretations of its structure seem to allow. We now know that myosin VI does indeed operate by an unusual ~ 180° lever arm swing and achieves its large step size using special structural features in its tail domain. PMID:20094053

  18. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  19. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  20. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  1. Piezoelectric control of the static behaviour of flextensional actuators with constricted hinges

    NASA Astrophysics Data System (ADS)

    Przybylski, Jacek

    2014-06-01

    The objective of this paper is to present the mathematical modelling and computational testing of the static operational performance and effectiveness of flextensional actuators comprised of two rectilinear or initially deflected beams placed equidistantly from a centrally located piezoceramic stack in the form of a rod. The beams are mounted by stiff links with an offset to a piezoelectric transformer. A monolithic hinge lever mechanism is applied by cutting constricted hinges at the links to generate and magnify the in-plane displacement created by the application of a voltage to the piezorod. Structures of such a type have been commonly used as passive or active actuators since the manufacturing of the mechanism’s prototypes in the form of Moonie or cymbal actuators. An analytical model of the actuator is developed on the basis of stationary values of the total potential energy principle with the use of the von Kármán non-linear strains theory. During the numerical computations, the deflection and internal axial force generated by both the externally distributed load and the the application of an electric field are determined by changing the actuator properties such as the distance between the beams and the rod, the amplitude of the beam’s initial displacement as well as the stiffness of the constricted hinges. Additionally, the application of structure prestressing is considered to avoid an undesired stretching of the piezo stack. It has been shown that for the flextensional actuator with a very high flexibility of constricted hinges, the generated transverse displacement is limited by the maximum electric field as the characteristic property for each piezoceramic material. A vast number of numerical results exhibit the mechanical responses of the transducer of different geometrical and physical properties to piezoelectric stimulation; this has potential applications in the design process of such actuators.

  2. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4 2 1 cm3. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds

  3. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4x2x1 cu cm. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10

  4. Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and Operation

    NASA Technical Reports Server (NTRS)

    Maida, J.; Rajulu, Sudhakar L.; Bond, Robert L. (Technical Monitor)

    2000-01-01

    During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with

  5. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  6. Pneumatically actuated micropipetting device

    NASA Astrophysics Data System (ADS)

    Szita, Nicolas; Buser, Rudolf A.

    1998-03-01

    We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.

  7. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  8. A Lever for Life: How I Lost 150 Pounds and Learned the Catalytic Power of School Community

    ERIC Educational Resources Information Center

    Ebner, Steven J.

    2011-01-01

    The quotation, attributed to the Greek mathematician Archimedes, about the power of levers to move the world has been quoted many times with slight variations, but usually the point is the same: "With the right lever, one can move the earth." However, the actual quotation attributed to Archimedes comes in the writings of another Greek…

  9. Grasp Assist Device with Shared Tendon Actuator Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  10. Mediation, Translation and Local Ecologies: Understanding the Impact of Policy Levers on FE Colleges

    ERIC Educational Resources Information Center

    Spours, Ken; Coffield, Frank; Gregson, Maggie

    2007-01-01

    This article reports the views of managers and tutors on the role of policy "levers" on teaching, learning, and inclusion in colleges of Further Education (FE) in our research project, "The impact of policy on learning and inclusion in the Learning and Skills Sector (LSS)." Using data from five research visits conducted over two years in eight FE…

  11. Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward.

    PubMed

    Yokel, R A; Wise, R A

    1975-02-14

    Low and high doses of a dopamine blocking agent had effects on lever pressing for intravenous amphetamine reward which resembled the effects of reward reduction and reward termination, respectively. Noradrenaline blockade had no such effects. A role in central mediation of reward perception is suggested for dopamine but not for noradrenaline.

  12. [Equivalent Lever Principle of Ossicular Chain and Amplitude Reduction Effect of Internal Ear Lymph].

    PubMed

    Zhao, Xiaoyan; Qin, Renjia

    2015-04-01

    This paper makes persuasive demonstrations on some problems about the human ear sound transmission principle in existing physiological textbooks and reference books, and puts forward the authors' view to make up for its literature. Exerting the knowledge of lever in physics and the acoustics theory, we come up with an equivalent simplified model of manubrium mallei which is to meet the requirements as the long arm of the lever. We also set up an equivalent simplified model of ossicular chain--a combination of levers of ossicular chain. We disassemble the model into two simple levers, and make full analysis and demonstration on them. Through the calculation and comparison of displacement amplitudes in both external auditory canal air and internal ear lymph, we may draw a conclusion that the key reason, which the sound displacement amplitude is to be decreased to adapt to the endurance limit of the basement membrane, is that the density and sound speed in lymph is much higher than those in the air.

  13. "Modernisation" and the Role of Policy Levers in the Learning and Skills Sector

    ERIC Educational Resources Information Center

    Steer, Richard; Spours, Ken; Hodgson, Ann; Finlay, Ian; Coffield, Frank; Edward, Sheila; Gregson, Maggie

    2007-01-01

    This paper examines the changing use of policy levers in the English postcompulsory education and training system, often referred to as the learning and skills sector (LSS). Policy steering by governments has increased significantly in recent years, bringing with it the development of new forms of arms-length regulation. In the English context,…

  14. Haptic Feedback and Students' Learning about Levers: Unraveling the Effect of Simulated Touch

    ERIC Educational Resources Information Center

    Wiebe, Eric N.; Minogue, James; Jones, M. Gail; Cowley, Jennifer; Krebs, Denise

    2009-01-01

    While there has been extensive experimental research on haptics, less has been conducted on cross-modal interactions between visual and haptic perception and even less still on cross-modal applications in instructional settings. This study looks at a simulation on the principles of levers using both visual and haptic feedback: one group received…

  15. Connection Levers: Supports for Building Teachers' Confidence and Commitment to Teach Mathematics and Statistics through Inquiry

    ERIC Educational Resources Information Center

    Makar, Katie

    2007-01-01

    Gaps between teaching practices and research recommendations have been well documented. One challenge for research is in understanding the processes and systems that promote a bridging of these gaps. A year-long study with four primary teachers documented ten support mechanisms, or connection levers, that the teachers raised as important for…

  16. Implementing a University E-Learning Strategy: Levers for Change within Academic Schools

    ERIC Educational Resources Information Center

    Sharpe, Rhona; Benfield, Greg; Francis, Richard

    2006-01-01

    This paper describes the implementation of an e-learning strategy at a single higher education institution in terms of the levers used to promote effective uptake and ensure sustainable embedding. The focus of this work was at the level of the academic school using a range of change practices including the appointment of school-based learning…

  17. Expanded Lever Rule for Phase Volume Fraction Calculation of High-Strength Low-Alloy Steel in Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Lei, Xuanwei; Huang, Jihua; Chen, Shuhai; Zhao, Xingke

    2016-06-01

    The principle of the lever rule on the dilatation curve and its application to the corresponding differential dilatation curve were introduced in a nonoverlapped two-phase continuous cooling process. The lever rule was further expanded in the case of an overlapped two-phase process. The application of the expanded lever rule was based on the approximate symmetry treatment on the differential dilatation curve, which shows reasonably both on the theoretical calculation and in the experimental results. High-strength low-alloy steels were thermal simulated with Gleeble 3500. The transformed phase volume fractions in different cooling processes were calculated by the expanded lever rule and metallography analysis. The results showed the expanded lever rule could calculate reliable phase volume fractions as metallography analysis.

  18. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  19. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper

    NASA Astrophysics Data System (ADS)

    Gerboni, G.; Brancadoro, M.; Tortora, G.; Diodato, A.; Cianchetti, M.; Menciassi, A.

    2016-10-01

    Minimally invasive surgery (MIS) applications require lightweight actuators that can generate a high force in a limited volume. Among pressure driven actuators, fluid elastic actuators demonstrate high potential for use in the medical field. They are characterized by nearly no friction and wear and they can be made of low-cost biocompatible elastomers. However, when compared to traditional piston-cylinder fluid actuators, fluid elastic actuators often result in smaller output forces as well as weaker return forces. This work is about the design of a linear elastic actuator (LEA) which is able to develop relevant pulling-pushing force in one direction. The LEA is composed of entirely disposable materials and it requires a simple manufacturing process. Thanks to its design, the LEA can be compared to traditional piston-cylinders actuators in terms of output forces (up to 7 N) with the advantage of using relative low working pressures (0, 2 MPa). The actuator has been used for the actuation of a gripper for MIS, as a case study. The whole range of gripping forces developed by the tool actated by the LEA has been evaluated, thus verifying that the gripping device, is able to meet the force requirements for accomplishing typical surgical tasks.

  20. In vivo orientation of single myosin lever arms in zebrafish skeletal muscle.

    PubMed

    Sun, Xiaojing; Ekker, Stephen C; Shelden, Eric A; Takubo, Naoko; Wang, Yihua; Burghardt, Thomas P

    2014-09-16

    Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1/GFP

  1. A bioinspired soft actuated material.

    PubMed

    Roche, Ellen T; Wohlfarth, Robert; Overvelde, Johannes T B; Vasilyev, Nikolay V; Pigula, Frank A; Mooney, David J; Bertoldi, Katia; Walsh, Conor J

    2014-02-26

    A class of soft actuated materials that can achieve lifelike motion is presented. By embedding pneumatic actuators in a soft material inspired by a biological muscle fibril architecture, and developing a simple finite element simulation of the same, tunable biomimetic motion can be achieved with fully soft structures, exemplified here by an active left ventricle simulator.

  2. Smart actuators with piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Janocha, Hartmut; Jendritza, Daniel J.; Scheer, Peter

    1996-04-01

    Piezoelectric solid-state actuators continue to gain in technical and economic significance for a great variety of applications such as quick fine-positioning tasks, control of structural stability and active noise and vibration control due to the high driving forces, short reaction times and compact construction of these actuators. Microelectronics and signal processing must be combined intelligently to form `smart actuators' in order to do justice to the growing demand for precision, miniaturization, efficiency and cost. Energy transducers with piezoelectric PZT ceramics (PZT: lead-zirconate-titanate) simultaneously possess actuator and sensor capacities. An important requirement for the construction of smart actuators is fulfilled by separating the sensor information (charge approximately external force) from the actuator control quantities (elongation approximately electric field strength). A closed-loop control structure with digital signal processing and a voltage controlled power amplifier were developed to enable nearly load-independent linearization of the actuator's response characteristic (elongation-voltage curve) even under dynamic operating conditions by making use of the `self-sensing' effect and without using extra force or displacement sensors. The effectiveness of the developed approach for realizing smart actuators was verified and specified with the help of a computerized large-signal measurement set-up using a low-voltage piezoelectric ceramic stack as an example.

  3. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  4. Rotary actuator for space applications

    NASA Astrophysics Data System (ADS)

    Andión, J. A.; Burgui, C.; Migliorero, G.

    2005-07-01

    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  5. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  6. Shoulder Muscular Demand During Lever-Activated Vs Pushrim Wheelchair Propulsion in Persons With Spinal Cord Injury

    PubMed Central

    Requejo, Philip Santos; Lee, Sharon E; Mulroy, Sara J; Haubert, Lisa Lighthall; Bontrager, Ernest L; Gronley, JoAnne K; Perry, Jacquelin

    2008-01-01

    Background/Objective: The high demand on the upper limbs during manual wheelchair (WC) use contributes to a high prevalence of shoulder pathology in people with spinal cord injury (SCI). Lever-activated (LEVER) WCs have been presented as a less demanding alternative mode of manual WC propulsion. The objective of this study was to evaluate the shoulder muscle electromyographic activity and propulsion characteristics in manual WC users with SCI propelling a standard pushrim (ST) and LEVER WC design. Methods: Twenty men with complete injuries (ASIA A or B) and tetraplegia (C6, n = 5; C7, n = 7) or paraplegia (n = 8) secondary to SCI propelled ST and LEVER WCs at 3 propulsion conditions on a stationary ergometer: self-selected free, self-selected fast, and simulated graded resistance. Average velocity, cycle distance, and cadence; median and peak electromyographic intensity; and duration of electromyography of anterior deltoid, pectoralis major, supraspinatus, and infraspinatus muscles were compared between LEVER and ST WC propulsion. Results: Significant decreases in pectoralis major and supraspinatus activity were recorded during LEVER compared with ST WC propulsion. However, anterior deltoid and infraspinatus intensities tended to increase during LEVER WC propulsion. Participants with tetraplegia had similar or greater anterior deltoid, pectoralis major, and infraspinatus activity for both ST and LEVER WC propulsion compared with the men with paraplegia. Conclusions: Use of the LEVER WC reduced and shifted the shoulder muscular demands in individuals with paraplegia and tetraplegia. Further studies are needed to determine the impact of LEVER WC propulsion on long-term shoulder function. PMID:19086715

  7. Reliability studies of electrostrictive actuators

    SciTech Connect

    Kumar, U.; Randall, M.; Hock, J.; Ritter, A.

    1994-12-31

    Multilayer electrostrictive actuators have numerous applications. Frequently these applications involve harsh mechanical and electrical loads. Furthermore, it is typically expected that these loads be incurred for >10{sup 8} repetitions (ideally for an infinite number of cycles). This paper describes the electrical and electro-mechanical analyses used at AVX Corporation to assess the performance characteristics of multilayer ceramic actuators, and addresses the effects of electro-mechanical cycling on selected device properties. In this study, lead magnesium niobate based multilayer electrostrictive actuators were subjected to a.c. fields at rated device voltage. Capacitance, dissipation factor, displacement vs. voltage, displacement hysteresis, electro-mechanical quality factor, and resonant frequency were monitored as a function of electro-mechanical cycling. The actuators exhibited highly stable displacements throughout the investigation. Changes observed in other properties indicate a possibility of using them as NDE techniques to assess the actuator reliability.

  8. Actuator-valve interface optimization

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1986-01-01

    A computer code, Actuator Valve Response (AVR), has been developed to optimize the explosive actuator-valve interface parameters so that the valve plunger velocity is at a maximum when the plunger reaches the valve tubes. The code considers three forces to act on the valve plunger before the plunger reaches the valve tubes. These are the pressure force produced by the actuator, the shear force necessary to shear the seal disks on the actuator and the valve plunger, and the friction force caused by friction between the plunger and the plunger bore. The three forces are modeled by expressions that are explicitly functions of the plunger displacement. A particular actuator-valve combination was analyzed with the computer code AVR with four different combinations of valve plunger seal disk shear strength and initial friction force. (LEW)

  9. The SAH domain extends the functional length of the myosin lever

    PubMed Central

    Baboolal, Thomas G.; Sakamoto, Takeshi; Forgacs, Eva; White, Howard D.; Jackson, Scott M.; Takagi, Yasuharu; Farrow, Rachel E.; Molloy, Justin E.; Knight, Peter J.; Sellers, James R.; Peckham, Michelle

    2009-01-01

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5–2IQ). Electron microscopy of this chimera (Myo5–2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5–6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5–6IQ but much greater than for Myo5–2IQ. Myo5–2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5–6IQ in in-vitro single molecule assays. In comparison, Myo5–2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5–6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins. PMID:20018767

  10. The SAH domain extends the functional length of the myosin lever.

    PubMed

    Baboolal, Thomas G; Sakamoto, Takeshi; Forgacs, Eva; White, Howard D; Jackson, Scott M; Takagi, Yasuharu; Farrow, Rachel E; Molloy, Justin E; Knight, Peter J; Sellers, James R; Peckham, Michelle

    2009-12-29

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5-2IQ). Electron microscopy of this chimera (Myo5-2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5-6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5-6IQ but much greater than for Myo5-2IQ. Myo5-2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5-6IQ in in-vitro single molecule assays. In comparison, Myo5-2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5-6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins. PMID:20018767

  11. Low-mass muscle actuators using electroactive polymers (EAP)

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Xue, T.; Shahinpoor, Mohsen; Simpson, Joycelyn O.; Smith, J.

    1998-07-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers offer an effective alternative to current actuators. In this study, two families of electroactive polymer materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, which also include cryovac tests at conditions that simulate Mars environment. Tests at T equals -140 degree(s)C and P approximately 1 Torr, which are below Mars conditions, showed that the bending actuator was still responding with a measurable actuation displacement. Analysis of the electrical characteristics of the ionomer showed that it is a current driven material rather than voltage driven. Measurements of transient currents in response to a voltage step shows a time constant on the order of few seconds with a response speed that is enhanced with the decrease in drive voltage. The ionomer main limitation is its requirement for being continuously moist. Tests showed that while the performance degrades as the material becomes dry, its AC impedance increases, reaching an order of magnitude higher than the wet ionomer. This response provides a gauging indication of the material wetness status. Methods of forming the equivalent of a skin to protect the moisture content of the ionomer are being sought and a limited success was observed using thick platinum electroding as well as when using polymeric coating.

  12. Design and driving characteristics of a novel ‘pusher’ type piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2016-01-01

    This study proposes a novel ‘pusher’ type piezoelectric actuator based on clamping blocks, where a solid mover can be driven at a high resolution and with a designed stroke of 4 mm. The working principle of the actuator is presented and the design process of its key component ‘stator’ is described. Via finite element simulation, the rationality of the structure of the device was analyzed. The prototype actuator was manufactured and its main performance was tested. The driving characteristics of the proposed actuator produced the following experimental results. The movement resolution was 31.5 nm, the maximum speed was 248 μm s-1 and the maximum loading capacity was 123.5 N, verifying that it could meet the needs of precise positioning with a high resolution and a large load capacity. The actuator was also found to achieve various step speeds when the driving voltage and working frequency were changed.

  13. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  14. Elliptical modelling of hysteresis operating characteristics in a dielectric elastomer tubular actuator

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Jones, Richard W.; Yu, Fei

    2016-07-01

    A dielectric elastomer (DE) tubular actuator, based on compliant metal electrode technology, exhibits hysteresis-like characteristics when driven with a low power rated high voltage power supply (HVPS). This behavior occurs mainly because the DE actuator acts as a capacitive load compromising the ‘slew rate’ of the HVPS during the actuator’s operation. The motivation of this contribution is to investigate the use of elliptical modelling approaches for capturing the hysteresis characteristics exhibited by the DE tubular actuator when it is driven by a low cost low power rated HVPS. The DE tubular actuator considered in this work demonstrates asymmetric hysteresis behaviour due to the nonlinear voltage–strain behaviour of the actuator. A linearization filter placed in series with the actuator (during its operation) ensures a symmetric hysteresis characteristic that can then be modelled using an ellipse-based approach. Elliptical models come in many forms with the two most popular being the constrained general conic form and the general parametric form. Elliptical-based hysteresis model fits are carried out on experimental data obtained from the application of periodic input voltages, at a number of different low-frequencies, to the tubular actuator. The range of frequencies used is related to the possible use of the tubular actuator for attenuating low frequency vibration during DE actuator-based load positioning applications. Constrained conic and general parametric forms of elliptical model are used for modelling the hysteresis characteristics of the DE actuator and rate dependent models developed based on both approaches. The sensitivity of both of these rate dependent models to small inaccuracies in model parameters was then investigated. The general parametric form was found to be more robust in this respect.

  15. Elliptical modelling of hysteresis operating characteristics in a dielectric elastomer tubular actuator

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Jones, Richard W.; Yu, Fei

    2016-07-01

    A dielectric elastomer (DE) tubular actuator, based on compliant metal electrode technology, exhibits hysteresis-like characteristics when driven with a low power rated high voltage power supply (HVPS). This behavior occurs mainly because the DE actuator acts as a capacitive load compromising the ‘slew rate’ of the HVPS during the actuator’s operation. The motivation of this contribution is to investigate the use of elliptical modelling approaches for capturing the hysteresis characteristics exhibited by the DE tubular actuator when it is driven by a low cost low power rated HVPS. The DE tubular actuator considered in this work demonstrates asymmetric hysteresis behaviour due to the nonlinear voltage-strain behaviour of the actuator. A linearization filter placed in series with the actuator (during its operation) ensures a symmetric hysteresis characteristic that can then be modelled using an ellipse-based approach. Elliptical models come in many forms with the two most popular being the constrained general conic form and the general parametric form. Elliptical-based hysteresis model fits are carried out on experimental data obtained from the application of periodic input voltages, at a number of different low-frequencies, to the tubular actuator. The range of frequencies used is related to the possible use of the tubular actuator for attenuating low frequency vibration during DE actuator-based load positioning applications. Constrained conic and general parametric forms of elliptical model are used for modelling the hysteresis characteristics of the DE actuator and rate dependent models developed based on both approaches. The sensitivity of both of these rate dependent models to small inaccuracies in model parameters was then investigated. The general parametric form was found to be more robust in this respect.

  16. Toward a new generation of electrically controllable hygromorphic soft actuators.

    PubMed

    Taccola, Silvia; Greco, Francesco; Sinibaldi, Edoardo; Mondini, Alessio; Mazzolai, Barbara; Mattoli, Virgilio

    2015-03-11

    An innovative processing strategy for fabricating soft structures that possess electric- and humidity-driven active/passive actuation capabilities along with touch- and humidity-sensing properties is reported. The intrinsically multifunctional material comprises an active thin layer of poly(3,4-ethylenedioxythiophene):poly-(styrene sulfonate) in a double-layered structure with a silicone elastomer and provides an opportunity toward developing a new class of smart structures for soft robotics. PMID:25556552

  17. Electromechanical actuator for the tongs of a servomanipulator

    DOEpatents

    Martin, H. Lee; Killough, Stephen M.

    1986-01-01

    Computer-augmented electromechanical system is provided for controlling the tongs of a servomanipulator. The mechanical tongs are motor-driven through the remote slave arm of the manipulator, and the motor control current is supplied by a position sensor which senses the position of a spring-loaded trigger in the master arm handle on the manipulator. The actuator for the tongs provides the operator with artificial force reflection in a unilateral force-force control loop.

  18. Preliminary study, analysis and design for a power switch for digital engine actuators

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Zickwolf, H. C., Jr.

    1979-01-01

    Innovative control configurations using high temperature switches to operate actuator driving solenoids were studied. The impact on engine control system life cycle costs and reliability of electronic control and (ECU) heat dissipation due to power conditioning and interface drivers were addressed. Various power supply and actuation schemes were investigated, including optical signal transmission and electronics on the actuator, engine driven alternator, and inside the ECU. The use of a switching shunt power conditioner results in the most significant decrease in heat dissipation within the ECU. No overall control system reliability improvement is projected by the use of remote high temperature switches for solenoid drivers.

  19. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  20. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  1. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  2. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  3. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A.; Eide, S.A.

    1993-04-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  4. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A. ); Eide, S.A. )

    1993-01-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  5. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  6. Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage

    SciTech Connect

    Xie, H.; Regnier, S.

    2009-04-15

    A method using atomic force microscope (AFM) optical levers and a reference nanopositioning stage has been developed to characterize piezoscanner hysteresis and creep. The piezoscanner is fixed on a closed-loop nanopositioning stage, both of which have the same arrangement on each axis of the three spatial directions inside the AFM-based nanomanipulation system. In order to achieve characterization, the optical lever is used as a displacement sensor to measure the relative movement between the nanopositioning stage and the piezoscanner by lateral tracking a well-defined slope with the tapping mode of the AFM cantilever. This setup can be used to estimate a piezoscanner's voltage input with a reference displacement from the nanopositioning stage. The hysteresis and creep were accurately calibrated by the method presented, which use the current setup of the AFM-based nanomanipulation system without any modification or additional devices.

  7. Adhesion force studies using a dangling optical lever with variable sensitivity.

    PubMed

    Panduputra, Yohannes; Ng, Tuck Wah; Neild, Adrian; Ling, William Yeong Liang

    2011-01-15

    Adhesion force sensed using tips on microcantilevers via an optical lever requires care to ensure that the tip alone contacts the liquid; is sensitive to high degrees of measurement error from departure from the laser spot; requires specialized optics and careful arrangement to produce a small laser probing spot; and limits the distance between cantilever and photodiode for increased force sensitivity. An alternative scheme, using microimaging electronic speckle pattern interferometry to monitor the deformation of a tipless microcantilever, necessitates that the beam be rigid enough to be independent of the drop location; is not amenable to very low adhesion force measurement; and requires more complicated instrumentation. All these limitations can be effectively circumvented by a variable sensitivity scheme described here that harnesses the geometric properties of a dangling cantilever operating as an optical lever. PMID:21263491

  8. Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators

    NASA Astrophysics Data System (ADS)

    Dong, Kaichen; Lou, Shuai; Choe, Hwan Sung; Liu, Kai; You, Zheng; Yao, Jie; Wu, Junqiao

    2016-07-01

    Due to its thermally driven structural phase transition, vanadium dioxide (VO2) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO2 actuators severely obstructs the actuation performance and application. Here, we introduce a "seesaw" method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO2 actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvature and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO2 actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This "seesaw" method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.

  9. Flexure-based nanomagnetic actuators

    NASA Astrophysics Data System (ADS)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  10. The actuated latch pin and its development

    NASA Technical Reports Server (NTRS)

    Lawlor, P. J.

    1980-01-01

    An actuated latch pin developed to meet the need for a reusable locking device is described. The unit can function as a pin puller or as a pin pusher latch. Initial prototype testing demonstrated the feasibility of the device with the unit being driven from a 28 V dc supply and using 15 W to drive a 12 mm diameter pin through a stroke of 10 mm with a side load of 100 N in 120 ms. High wear rates with a MOS2 lubrication on the ballscrew and angular contact bearings have necessitated the reduction in the duty cycle from 1000 cycles in air and vacuum to 100 in air and 1000 in vacuum.

  11. Magnetostrictive Actuators For Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1996-01-01

    Linear-translation motors containing magnetostrictive actuator elements proposed for use in making fine position adjustments on scientific instruments at temperatures from near absolute zero to room temperature. Actuators produce small increments of linear motion and operate in "set-and-forget" mode in sense they automatically lock themselves against motion when power not applied. Do not consume or dissipate power when stationary. Proposed linear-translation motors also made to produce large maximum displacements.

  12. Sensors, actuators, and smart materials

    NASA Astrophysics Data System (ADS)

    Troiler-McKinstry, S.; Newnham, R. E.

    1993-04-01

    Electroceramic materials are presently noted to have a wide array of sensing and actuating functions which can be incorporated into smart-material designs. The sensor types extend to temperature, piezoelectricity and piezoresistivity, and the presence of oxygen. Attention is given to the prospects for developing composite smart materials that encompass various sensing and actuating functions; these may ultimately reach a level of complexity and sophistication that may be termed 'biomimetric' in its approximation to the functions of the living tissues of organisms.

  13. Coupling of lever arm swing and biased Brownian motion in actomyosin.

    PubMed

    Nie, Qing-Miao; Togashi, Akio; Sasaki, Takeshi N; Takano, Mitsunori; Sasai, Masaki; Terada, Tomoki P

    2014-04-01

    An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5-11 nm displacement due to the biased Brownian motion and the 3-5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.

  14. Dielectric Elastomers for Actuation and Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Brochu, Paul A.

    The first part of this work focuses on free-standing linear soft silicone actuators as this configuration is the most relevant for real applications. A particular soft silicone has been isolated a good candidate and was extensively tested in a free-standing linear actuator configuration to determine the effects of pre-stretch and the application of mechanical loads on its actuation performance. It is shown that when the mechanical loads are properly applied, large linear actuation strains of 120% and work density of 0.5 J/cm3 can be obtained. Furthermore, we demonstrate that when coupled with single wall carbon nanotube (SWNT) compliant electrodes, fault-tolerance is introduced via self-clearing leading to significantly improved operational reliability. Driven at moderate electric fields, the actuators display relatively high linear actuation strain (25%) without degradation of the electromechanical performance even after 85,000 cycles. The high performance of the aforementioned soft silicone actuators requires the application of rather large levels of prestrain. In order to eliminate this requirement a novel all-silicone prestrain-locked interpenetrating polymer network (S-IPN) elastomer was developed. The elastomer is fabricated using a combination of two silicones: a soft room temperature vulcanizing silicone that serves as the host elastomer matrix, and a more rigid high temperature vulcanizing silicone that acts to preserve the prestrain in the host network. The free-standing prestrain-locked silicones show a more than twofold performance improvement over standard free-standing silicone films, with a linear strain of 25% and an area strain of 45% when tested in a diaphragm configuration. The S-IPN procedure was leveraged to improve electrode adhesion and stability as well as improve the interlayer adhesion in multilayer actuators. It is demonstrated that strongly bonded SWNT electrodes are capable of fault tolerance through self-clearing, even in multilayer

  15. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  16. Bouts of responding from variable-interval reinforcement of lever pressing by rats.

    PubMed Central

    Shull, Richard L; Grimes, Julie A

    2003-01-01

    Four rats obtained food pellets by lever pressing. A variable-interval reinforcement schedule assigned reinforcers on average every 2 min during one block of 20 sessions and on average every 8 min during another block. Also, at each variable-interval duration, a block of sessions was conducted with a schedule that imposed a variable-ratio 4 response requirement after each variable interval (i.e., a tandem variable-time variable-ratio 4 schedule). The total rate of lever pressing increased as a function of the rate of reinforcement and as a result of imposing the variable-ratio requirement. Analysis of log survivor plots of interresponse times indicated that lever pressing occurred in bouts that were separated by pauses. Increasing the rate of reinforcement increased total response rate by increasing the rate of initiating bouts and, less reliably, by lengthening bouts. Imposing the variable-ratio component increased response rate mainly by lengthening bouts. This pattern of results is similar to that reported previously with key poking as the response. Also, response rates within bouts were relatively insensitive to either variable. PMID:14674726

  17. Predicting bite force in mammals: two-dimensional versus three-dimensional lever models.

    PubMed

    Davis, J L; Santana, S E; Dumont, E R; Grosse, I R

    2010-06-01

    Bite force is a measure of whole-organism performance that is often used to investigate the relationships between performance, morphology and fitness. When in vivo measurements of bite force are unavailable, researchers often turn to lever models to predict bite forces. This study demonstrates that bite force predictions based on two-dimensional (2-D) lever models can be improved by including three-dimensional (3-D) geometry and realistic physiological cross-sectional areas derived from dissections. Widely used, the 2-D method does a reasonable job of predicting bite force. However, it does so by over predicting physiological cross-sectional areas for the masseter and pterygoid muscles and under predicting physiological cross-sectional areas for the temporalis muscle. We found that lever models that include the three dimensional structure of the skull and mandible and physiological cross-sectional areas calculated from dissected muscles provide the best predictions of bite force. Models that accurately represent the biting mechanics strengthen our understanding of which variables are functionally relevant and how they are relevant to feeding performance. PMID:20472771

  18. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  19. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  20. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  1. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  2. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  3. Protein-based microhydraulic transport for controllable actuation

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Leo, Donald J.

    2006-03-01

    Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio- fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. Calculations for controlled actuation of an active material inspired by biological transport mechanism demonstrated the feasibility of developing such a material with actuation energy densities on the order of 100 kJ/m 3. The mathematical model for a simplified proof of concept actuator referred to as micro hydraulic actuator uses ion transporters extracted from plants reconstituted on a synthetic bilayer lipid membrane (BLM). Thermodynamic model of the concept actuator predicted the ability to develop 5 percent normalized deformation in thickness of the micro- hydraulic actuator. Controlled fluid transport through AtSUT4 (Proton-sucrose co-transporter from Arabidopsis thaliana) reconstituted on a 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L- Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- Phosphoethanolamine (POPE) BLM on a porous lead silicate glass plate (50μm with 61μm pitch) was driven by proton gradient. Bulk fluid flux of 1.2 μl/min was observed for each microliter of AtSUT4 transporter suspension (16.6 mg/ml in pH7.0 medium) reconstituted on the BLM. The flux rate is observed to be dependent on the concentration of sucrose present in pH4 buffer. Flux rate of 10 μl/min is observed for 5 mM sucrose in the first 10 minutes. The observed flux scales linearly with BLM area and the amount of proteins reconstituted on the lipid membrane. This article details the next step in the development of the micro hydraulic actuator - fluid transport driven by exergonic Adenosine triphosphate (ATP) hydrolysis reaction in the presence of ATP

  4. Electro-active paper for a durable biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Yun, Sung-Ryul; Yun, Gyu Young; Kim, Jung Hwan; Chen, Yi; Kim, Jaehwan

    2009-02-01

    Cellulose electro-active paper (EAPap), known as a smart material, has merits in terms of low voltage operation, light weight, dryness, low power consumption, biodegradability, abundance and low price. Since EAPap requires low power consumption, a remotely driven actuator has been proposed using microwave power transmission. This concept is attractive for many biomimetic systems such as crawling micro-insect robots, flying objects like dragon flies and smart wallpapers. However, the actuation performance of EAPap is sensitive to humidity and degrades with time. Thus, in this paper, a durable EAPap is studied. The fabrication of EAPap is explained and the actuation performance is shown with applied electric field, frequency, humidity level and time. The fabrication process includes dissolving cellulose fibers, eliminating solvent and Li ions with a mixture of deionized water and isopropyl alcohol, washing with water, drying and coating with gold. The morphology of the fabricated EAPap is analyzed by taking scanning electron microscope images and x-ray diffractograms. The actuation performance is tested in terms of bending displacement with frequency, time and humidity level

  5. Mixing Layer Excitation by Dielectric Barrier Discharge Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ely, Richard; Little, Jesse

    2012-11-01

    The response of a mixing layer with velocity ratio 0.28 to perturbations near the high-speed side (U2=11 m/s, ReL = 0.26 × 106) of its origin from dielectric barrier discharge plasma actuators is studied experimentally. Both alternating current (ac) and nanosecond (ns) pulse driven plasma are investigated in an effort to clarify the mechanisms associated with each technique as well as the more general physics associated with flow control via momentum-based versus thermal actuation. Ac-DBD plasma actuators, which function through electrohydrodynamic effects, are found to generate an increase in mixing layer momentum thickness that is strongly dependent on forcing frequency. Results are qualitatively similar to previous archival literature on the topic employing oscillating flaps. Ns-DBD plasma, which is believed to function through thermal effects, has no measureable influence on the mixing layer profile at similar forcing conditions. In the context of previous archival literature, these results suggest different physical mechanisms govern active control via ac- and ns-DBD plasma actuation and more generally, momentum versus thermal perturbations. Further investigation of these phenomena will be provided through variation of the boundary/mixing layer properties and forcing parameters in the context of spatially and temporally resolved experimental data. Supported by: AFOSR and Raytheon Missile Systems.

  6. 3-D Separation Control using Spatially-Compact, Pulsed Actuation

    NASA Astrophysics Data System (ADS)

    Woo, George T. K.; Glezer, Ari

    2013-11-01

    The dynamics of controlled 3-D transitory attachment of stalled flow over a dynamically pitching 2-D airfoil are investigated in wind tunnel experiments. Pulsed actuation is effected over a spanwise fraction of the separated domain on a time scale that is an order of magnitude shorter than the airfoil's characteristic convective time scale using surface-integrated pulsed, combustion-driven actuator jets. The formation, evolution, and advection of vorticity concentrations over the airfoil and in its near wake are computed from high-resolution, phase-locked PIV measurements of the flow field in multiple cross-stream planes. It is shown that transitory attachment spreads toward the outboard, unactuated flow domains and exceeds the spanwise width of the actuation. The attachment is preceded by the formation of 3-D vortical structures that are advected and shed into the near wake. The effect of the actuation on the variation of the lift and pitching moment during the pitching cycle is altered significantly with its phase delay relative to the airfoil's pitching motion and can significantly mitigate the adverse aerodynamic effects of the dynamic stall. Supported by AFOSR.

  7. The LDCM actuator for vibration suppression

    NASA Technical Reports Server (NTRS)

    Ide, Eric N.; Lindner, Douglas K.

    1988-01-01

    A linear dc motor (LDCM) has been proposed as an actuator for the COFS I mast and the COFS program ground test Mini-Mast. The basic principles of operation of the LDCM as an actuator for vibration suppression in large flexible structures are reviewed. Because of force and stroke limitations, control loops are required to stabilize the actuator, which results in a non-standard actuator-plant configuration. A simulation model that includes LDCM actuator control loops and a finite element model of the Mast is described, with simulation results showing the excitation capability of the actuator.

  8. Actuator selection for large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.; Ruan, Mifang

    1990-01-01

    The paper discusses the process of selecting the actuator locations and the determination of the required number of actuators for large space structures. The selection is based on the definitions of the degree of controllability, the independence of actuators, and the effectiveness of the individual actuators. An algorithm is developed that can be used for the selection of the essential number of actuators and for finding some defects of the system, such as the insuffiency of the available actuator locations for effective control of the whole system or a too crowded frequency distribution. The efficiency of the algorithm was demonstrated by an application to the Space Station.

  9. Sensor/Actuator Selection for Gust and Turbulence Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1998-01-01

    From aircraft fuselages and space stations to vacuum cleaners and automobiles, active control of noise and/or vibration has come of age. Determining the number of active control devices (e.g. actuators) to be placed and where they are to be placed is the prototypical location problem. However, unlike typical location problems, where the customer is readily identified and is actively engaged in the assessment of the performance of the chosen locations, the customers that active control devices serve are not so easily identified and their impact on system performance issues may be unclear. For example, consider the problem of where to locate actuators to attenuate cabin noise in a propeller driven aircraft. Clearly, the ultimate customers are the passengers who will travel in these aircraft. But to decide whether one set of actuator locations is better than another it is unlikely we will ask passengers to fly in the aircraft and fill out a questionnaire about noise levels. Instead a set of sensors (pseudo-customers) are placed and the system performance of the actuators, as measured by these sensors, is recorded. Hence, we have yet another location problem. How many sensors should there be and where should they be located? In many instances collocation of sensors and actuators is the answer but in other instances it is not. A variety of approaches have been taken to address these sensor/actuator location problems. With regard to damping vibrations in truss structures (space station prototypes) it was formulated a new noxious location problem and generated high-quality solutions with a combination of LP-relaxations and heuristic search procedures. Other related efforts are summarized the actuator location problem for a single frequency interior noise control problem was examined for an idealized aircraft cabin. A tabu search procedure was shown to generate better locations for the actuators than a modal decomposition approach. The model was extended to include multi

  10. Pneumatic artificial muscle actuators for compliant robotic manipulators

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and

  11. Characterization of electrostatic glass actuators

    NASA Astrophysics Data System (ADS)

    Moser, R.; Wüthrich, R.; Sache, L.; Higuchi, T.; Bleuler, H.

    2003-06-01

    Electrostatic glass actuators are a promising concept for various applications. The use of the interaction between glassy substances and electrostatic fields allows synchronous propulsion akin to the electret actuator. Even though some properties of electrostatic glass motors have been observed and described, a characterization is still missing. The authors would like to present the experimental work leading to the determination of the optimal glass blend and to the optimal electrode pattern in order to maximize the exploitable forces. An analytical model is also presented, satisfactorily close to the measured data. These measurements and models constitute a tool to design electrostatic glass actuators such as, for example, a miniature disk drive, which is presented as one of several promising applications.

  12. Wellhead with hydraulic pump actuator

    SciTech Connect

    Brown, H.D.; Brown, M.A.; Rohling, L.J.

    1984-07-31

    A wellhead assembly especially suited for oil wells has a wide working pressure range and employs three components which fit together to seal the well casing, hold the tubing against high wellhead pressures, and provide a connection to the tubing through which the sucker rods are operated. The primary casing seal is formed by the mating contact of metal surfaces that are not subject to deterioration. The actuator for the subsurface pump is a vertically disposed hydraulic cylinder unit aligned with the sucker rods and forming the uppermost section of an elongated cylindrical housing, which also has a lowermost section on the wellhead that provides the outlets for the fluid pumped from the well, and an intermediate, control section that contains a spool valve for controlling the hydraulic actuator. The spool is shifted by the piston and rod of the hydraulic actuator at the upper and lower limits of their stroke to thereby reciprocate the sucker rods and operate the subsurface pump.

  13. A Parylene Bellows Electrochemical Actuator

    PubMed Central

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2011-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized through a careful examination of geometrical factors. Overall, a maximum pump efficiency of 90% was achieved in the case of electroplated electrodes, and a deflection of over 1.5 mm was demonstrated. Real-time wireless operation was achieved. The complete fabrication process and the materials used in this actuator are bio-compatible, which makes it suitable for biological and medical applications. PMID:21318081

  14. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  15. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.

  16. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  17. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications. PMID:26512734

  18. Biomimetic flexible plate actuators are faster and more efficient with a passive attachment

    NASA Astrophysics Data System (ADS)

    Yeh, Peter D.; Alexeev, Alexander

    2016-09-01

    Using three-dimensional computer simulations, we probe biomimetic free swimming of an internally actuated flexible plate in the regime near the first natural frequency. The plate is driven by an oscillating internal moment approximating the actuation mechanism of a piezoelectric macro fiber composite (MFC) bimorph. We show in our simulations that the addition of a passive attachment increases both swimming velocity and efficiency. Specifically, if the active and passive sections are of similar size, the overall performance is the best. We determine that this optimum is a result of two competing factors. If the passive section is too large, then the actuated portion is unable to generate substantial deflection to create sufficient thrust. On the other hand, a large actuated section leads to a bending pattern that is inefficient at generating thrust especially at higher frequencies.

  19. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  20. Single myosin cross-bridge orientation in cardiac papillary muscle detects lever-arm shear strain in transduction.

    PubMed

    Burghardt, Thomas P; Josephson, Matthew P; Ajtai, Katalin

    2011-09-13

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley-Simmons model for myosin based contraction [Huxley and Simmons ( 1971 ) Nature 233 , 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution.

  1. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  2. Propellant-powered actuator for gas generators

    NASA Technical Reports Server (NTRS)

    Makowski, M. J.

    1972-01-01

    Hydrazine operated monopropellant generators are used for spacecraft rocket engines and propellant pressurization systems. Measured work output of monopropellant actuators compares favorably with output of squib-type actuators.

  3. New electrode materials for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Lam, Tuling; Biggs, James; Hu, Liangbing; Yu, Zhibin; Ha, Soonmok; Xi, Dongjuan; Senesky, Matthew K.; Grüner, George; Pei, Qibing

    2007-04-01

    Dielectric elastomer actuators exert strain due to an applied electric field. With advantageous properties such as high efficiency and their light weight, these actuators are attractive for a variety of applications ranging from biomimetic robots, medical prosthetics to conventional pumps and valves. The performance and reliability however, are limited by dielectric breakdown which occurs primarily from localized defects inherently present in the polymer film during actuation. These defects lead to electric arcing, causing a short circuit that shuts down the entire actuator and can lead to actuator failure at fields significantly lower than the intrinsic strength of the material. This limitation is particularly a problem in actuators using large-area films. Our recent studies have shown that the gap between the strength of the intrinsic material and the strength of large-area actuators can be reduced by electrically isolating defects in the dielectric film. As a result, the performance and reliability of dielectric elastomers actuators can be substantially improved.

  4. Long-Lever-Arm Manipulation Under Anesthesia With Resultant Traumatic Anterior Shoulder Dislocation.

    PubMed

    Roubal, Paul J; Placzek, Jeffrey D

    2016-08-01

    The patient was a 61-year-old woman who underwent long-lever manipulation under anesthesia (MUA) for adhesive capsulitis. Two weeks following MUA, the constellation of clinical findings raised concern for possible adverse outcomes. Radiographs were obtained, as well as subsequent magnetic resonance imaging and computed tomography scans. Images revealed anterior shoulder dislocation with Bankart and Hill-Sachs lesions, and an anterior rotator cuff tear. J Orthop Sports Phys Ther 2016;46(8):707. doi:10.2519/jospt.2016.0412.

  5. Displacement response, detection limit, and dynamic range of fiber-optic lever sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.

    1991-01-01

    The authors present the evaluation of the displacement response, detection limit, and dynamic range of fiber-optic lever sensors in a general format to establish their dependence on fiber sizes, optoelectronic detector specifications, input power, and other relevant parameters. The formations for the normalized reflected optical power change are derived for the evaluation of the optimal sensor response, the linearity range, and the minimum detectable displacement. The theoretical models are verified by an experiment which determines sensor response, modulation index, reflected optical power change, and linear response range through dynamic measurement. The application of this theoretical model to the study of a fiber-optic microphone for acoustic pressure detection is considered.

  6. Long-Lever-Arm Manipulation Under Anesthesia With Resultant Traumatic Anterior Shoulder Dislocation.

    PubMed

    Roubal, Paul J; Placzek, Jeffrey D

    2016-08-01

    The patient was a 61-year-old woman who underwent long-lever manipulation under anesthesia (MUA) for adhesive capsulitis. Two weeks following MUA, the constellation of clinical findings raised concern for possible adverse outcomes. Radiographs were obtained, as well as subsequent magnetic resonance imaging and computed tomography scans. Images revealed anterior shoulder dislocation with Bankart and Hill-Sachs lesions, and an anterior rotator cuff tear. J Orthop Sports Phys Ther 2016;46(8):707. doi:10.2519/jospt.2016.0412. PMID:27477474

  7. Flight Control System Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Snell, S. A.

    1997-01-01

    Actuator rate saturation is an important factor adversely affecting the stability and performance of aircraft flight control systems. It has been identified as a catalyst in pilot-induced oscillations, some of which have been catastrophic. A simple design technique is described that utilizes software rate limiters to improve the performance of control systems operating in the presence of actuator rate saturation. As described, the technique requires control effectors to be ganged such that any effector is driven by only a single compensated error signal. Using an analysis of the steady-state behavior of the system, requirements are placed upon the type of the loop transmissions and compensators in the proposed technique. Application of the technique to the design of a multi-input/multi-output, lateral-directional control system for a simple model of a high-performance fighter is demonstrated as are the stability and performance improvements that can accrue with the technique.

  8. SPRING DRIVEN ACTUATING MECHANISM FOR NUCLEAR REACTOR CONTROL

    DOEpatents

    Bevilacqua, F.; Uecker, D.F.; Groh, E.F.

    1962-01-23

    l962. rod in a nuclear reactor to shut it down. The control rod or an extension thereof is wound on a drum as it is withdrawn from the reactor. When an emergency occurs requiring the reactor to be shut down, the drum is released so as to be free to rotate, and the tendency of the control rod or its extension coiled on the drum to straighten itself is used for quickly returning the control rod to the reactor. (AEC)

  9. Actuation properties of electrochemically driven polypyrrole free-standing films

    SciTech Connect

    Chiarelli, P.; De Rossi, D. |; Della Santa, A.; Mazzoldi, A.

    1994-12-31

    In this paper the authors report about investigations on coupled electrochemomechanical phenomena in polypyrrole (PPy) free-standing films. Quantitative measurements of isotonic length and relaxed elastic modulus changes are performed on PPy samples during cyclic voltammetry and square-wave amperometry. The link between dimensional and mechanical changes in the samples and doping salt exchange kinetics is investigated and a possible interpretation is proposed.

  10. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  11. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  12. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  13. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented. PMID:26192533

  14. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  15. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  16. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  17. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  18. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating

  19. Piezoelectrically-driven Thermoacoustic Refrigerator

    NASA Astrophysics Data System (ADS)

    Chinn, Daniel George

    Thermoacoustic refrigeration is an emerging refrigeration technology which does not require any moving parts or harmful refrigerants in its operation. This technology uses acoustic waves to pump heat across a temperature gradient. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this thesis, the design, construction, operation, and modeling of a piezoelectrically-driven thermoacoustic refrigerator are detailed. This refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across an 18 degree C temperature difference with an input power of 7.6 W. The performance characteristics of this class of thermoacoustic-piezoelectric refrigerators are modeled by using DeltaEC software and the predictions are experimentally validated. The obtained results confirm the validity of the developed model. Furthermore, the potential of piezoelectric actuation as effective means for driving thermoacoustic refrigerators is demonstrated as compared to the conventional electromagnetic loudspeakers which are heavy and require high actuation energy. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of other piezoelectrically-driven thermoacoustic refrigerator configurations.

  20. Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin

    SciTech Connect

    J Brown; V Senthil Kumar; E ONeall-Hennessey; L Reshetnikova; H Robinson; M Nguyen-McCarty; A Szent-Gyorgyi; C Cohen

    2011-12-31

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  1. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin

    SciTech Connect

    Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.; O'Neall-Hennessey, E.; Reshetnikova, L.; Nguyen-McCarty, M.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-01-04

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  2. Response-independent milk delivery enhances persistence of pellet-reinforced lever pressing by rats.

    PubMed Central

    Grimes, J A; Shull, R L

    2001-01-01

    If, during training, one stimulus is correlated with a higher rate of reinforcement than another, responding will be more resistant to extinction in the presence of that higher rate signal, even if many of the reinforcers have been presented independently of responding. For the present study we asked if the response-independent reinforcers must be the same as the response-dependent reinforcers to enhance the response's persistence. Twelve Long-Evans hooded rats obtained 45-mg food pellets by lever pressing (variable-interval 100-s schedules) in the presence of two discriminative stimuli (blinking vs. steady lights) that alternated every minute during daily sessions. Also, in the presence of one of the stimuli (counterbalanced across rats), the rats received additional response-independent deliveries of sweetened condensed milk (a variable-time schedule). Extinction sessions were exactly like training sessions except that neither pellets nor milk were presented. Lever pressing was more resistant to extinction in the presence of the milk-correlated stimulus when (a) the size of the milk deliveries during training (under a variable-time 30 s schedule) was 0.04 ml (vs. 0.01 ml) and (b) 120-s or 240-s blackouts separated components. Response-independent reinforcers do not have to be the same as the response-dependent reinforcers to enhance persistence. PMID:11599638

  3. Post-buckled precompressed piezoelectric flight control actuator design, development and demonstration

    NASA Astrophysics Data System (ADS)

    Barrett, Ron; McMurtry, Ross; Vos, Roelof; Tiso, Paolo; DeBreuker, Roeland

    2006-10-01

    This paper describes a new class of flight control actuators using post-buckled precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory (CLPT) models are shown to work very well in capturing the behavior of the free, unloaded elements. A new high transverse deflection model which employs nonlinear structural relations is shown to successfully predict the performance of the PBP actuators as they are exposed to higher and higher levels of axial force, which induces post-buckling deflections. A proof-of-concept empennage assembly and actuator were fabricated using the principles of PBP actuation. A single grid-fin flight control effector was driven by a 3.5'' (88.9 mm) long piezoceramic bimorph PBP actuator. By using the PBP configuration, deflections were controllably magnified 4.5-fold with excellent correlation between theory and experiment. Quasi-static bench testing showed deflection levels in excess of ± 6° at rates exceeding 15 Hz. The new solid state PBP actuator was shown to reduce the part count with respect to conventional servoactuators by an order of magnitude. Power consumption dropped from 24 W to 100 mW, weight was cut from 108 to 14 g, slop went from 1.6° to 0.02° and current draw went from 5 A to 1.4 mA. The result was that the XQ-138 subscale UAV family experienced nearly a 4% reduction in operating empty weight via the switch from conventional to PBP actuators, while in every other measure gross performance was significantly enhanced.

  4. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  5. Fish-skeleton visualization of bending actuators

    NASA Astrophysics Data System (ADS)

    Nakshatharan, Sunjai; Punning, Andres; Assi, Siim; Johanson, Urmas; Aabloo, Alvo

    2016-04-01

    We present a novel experimental method for qualitative visualization and quantitative characterization of the time-dependent behavior of bending ionic electroactive polymer actuators. The thin fibers, attached to the actuator, represent the surface normal at the given points of the bending actuator. The structure, formed by the skeleton of many adjacent fibers, amplifies the visual overview about the whole actuator. The four coordinates formed by four tips of two fibers enable determining the axial as well as the bending strains of a bending actuator.

  6. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Domm, Lukas; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea

    2012-01-01

    The search for present or past life in the Universe is one of the most important objectives of NASA's exploration missions. Drills for subsurface sampling of rocks, ice and permafrost are an essential tool for astrobiology studies on other planets. Increasingly, it is recognized that drilling via a combination of rotation and hammering offers an efficient and effective rapid penetration mechanism. The rotation provides an intrinsic method for removal of cuttings from the borehole while the impact and shear forces aids in the fracturing of the penetrated medium. Conventional drills that use a single actuator are based on a complex mechanism with many parts and their use in future mission involves greater risk of failure and/or may require lubrication that can introduce contamination. In this paper, a compact drill is reported that uses a single piezoelectric actuator to produce hammering and rotation of the bit. A horn with asymmetric grooves was design to impart a longitudinal (hammering) and transverse force (rotation) to a keyed free mass. The drill requires low axial pre-load since the hammering-impacts fracture the rock under the bit kerf and rotate the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations 'fluidize' the powdered cuttings inside the flutes reducing the friction with the auger surface. This action reduces the consumed power and heating of the drilled medium helping to preserve the pristine content of the acquired samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This can reduce the development/fabrication cost and complexity. In this paper, the drill mechanism will be described and the test results will be reported and discussed.

  7. Fabrication and Characterization of a Micromachined Swirl-Shaped Ionic Polymer Metal Composite Actuator with Electrodes Exhibiting Asymmetric Resistance

    PubMed Central

    Feng, Guo-Hua; Liu, Kim-Min

    2014-01-01

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370

  8. Myosin VI must dimerize and deploy its unusual lever arm in order to perform its cellular roles.

    PubMed

    Mukherjea, Monalisa; Ali, M Yusuf; Kikuti, Carlos; Safer, Daniel; Yang, Zhaohui; Sirkia, Helena; Ropars, Virginie; Houdusse, Anne; Warshaw, David M; Sweeney, H Lee

    2014-09-11

    It is unclear whether the reverse-direction myosin (myosin VI) functions as a monomer or dimer in cells and how it generates large movements on actin. We deleted a stable, single-α-helix (SAH) domain that has been proposed to function as part of a lever arm to amplify movements without impact on in vitro movement or in vivo functions. A myosin VI construct that used this SAH domain as part of its lever arm was able to take large steps in vitro but did not rescue in vivo functions. It was necessary for myosin VI to internally dimerize, triggering unfolding of a three-helix bundle and calmodulin binding in order to step normally in vitro and rescue endocytosis and Golgi morphology in myosin VI-null fibroblasts. A model for myosin VI emerges in which cargo binding triggers dimerization and unfolds the three-helix bundle to create a lever arm essential for in vivo functions.

  9. Photogated humidity-driven motility

    NASA Astrophysics Data System (ADS)

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min-1. The element can lift objects ~85 times heavier and can transport cargos ~20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  10. Photogated humidity-driven motility

    PubMed Central

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-01-01

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day–night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min−1. The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids. PMID:26067649

  11. Photogated humidity-driven motility.

    PubMed

    Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče

    2015-06-11

    Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min(-1). The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.

  12. [Actuator placement for active sound and vibration control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  13. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  14. Gain compression effect on the modulation dynamics of an optically injection-locked semiconductor laser using gain lever

    NASA Astrophysics Data System (ADS)

    Sarraute, J.-M.; Schires, K.; LaRochelle, S.; Grillot, F.

    2016-03-01

    The modulation response of an optically-injected gain lever semiconductor laser is studied and calculations show that a gain-lever laser operating under medium to strong optical injection provides a unique and robust configuration for ultra large bandwidth enhancement. Modulation bandwidths above nine times the relaxation oscillation frequency of the free-running laser can be reached using injection-locking conditions that are reasonable for practical applications. The impact of the gain compression on the modulation dynamic is discussed for the first time. This work is of prime importance for the development of directly-modulated broadband optical sources for high-speed operation at 40 Gbps and beyond.

  15. Actuator placement for active sound and vibration control of cylinders

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  16. Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.

  17. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  18. Impact micro-positioning actuator

    NASA Technical Reports Server (NTRS)

    Cuerden, Brian (Inventor); Angel, J. Roger P. (Inventor); Burge, James H. (Inventor); DeRigne, Scott T. (Inventor)

    2006-01-01

    An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut.

  19. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  20. Propeller pitch change actuation system

    SciTech Connect

    Kusiak, E.H.

    1988-06-28

    An apparatus is described for adjusting the pitch of a variable pitch propeller blade characterized by: an actuator for setting the pitch of the propeller blade the actuator having; a rotatable screw for setting propeller pitch, a nut mounted for longitudinal motion along the screw as the screw is rotated, means for connecting the nut to the propeller blade to adjust the pitch of the propeller blade as the screw rotates, and a rotatable means mounted within the nut for locking the nut against longitudinal motion if the rotatable means is not rotating with the longitudinal motion of the nut and for allowing the nut to move longitudinally if the rotatable means is rotating with the longitudinal motion of the nut.

  1. Enhancing the force capability of permanent magnet latching actuators for electromechanical valve actuation systems

    NASA Astrophysics Data System (ADS)

    Rens, J.; Clark, R. E.; Jewell, G. W.; Howe, D.

    2005-05-01

    This article introduces a topology of parallel-polarized permanent magnet latching actuator for use in electromagnetic valve actuation systems for internal combustion engines. The actuator has a number of advantages over reluctance actuators, commonly employed in such systems, in terms of reduced starting currents and fail-safe capability. The influence of a number of design features on actuator performance, such as tooth tapering, additional magnets to improve the main magnet flux path and prevent the onset of saturation, and mechanical clearances required to protect the permanent magnet from shock loads are investigated. The design study findings are verified by measurements on a prototype actuator.

  2. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  3. An investigation of electrochemomechanical actuation of conductive Polyacrylonitrile (PAN) nanofiber composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.; Walter, Wayne W.

    2014-03-01

    A polymer-based nanofiber composite actuator designed for contractile actuation was fabricated by electrospinning, stimulated by electrolysis, and characterized by electrochemical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural kinetics and mechanics of muscle needed to provide breakthroughs in the bio-medical and robotic fields. In this study, activated Polyacrylonitrile (PAN) fibers have demonstrated biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN has also been shown to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers (~500 nm) especially show faster response to changes in environmental pH and improved mechanical properties compared to larger diameter fibers. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Voltage driven transient effects of localized pH were examined to address pHdefined actuation thresholds of PAN fibers. Electrochemical contraction rates of the PAN/Graphite composite actuator demonstrated up to 25%/min. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Further improvements, however, to contraction rates and Young's moduli were found essential to capture the function and performance of skeletal muscles appropriately.

  4. Electro-active paper for biomimetic actuator activated in low humidity condition

    NASA Astrophysics Data System (ADS)

    Yun, Sung-Ryul; Yun, Gyu Young; Jyoti, Nayak; Chen, Yi; Kim, Heung Soo; Zhao, Li Jie; Kim, Jaehwan

    2007-07-01

    Electro-Active Paper(EAPap) actuator materials based on cellulose has been discovered as a smart material that has merits in terms of low voltage operation, lightweight, dryness, low power consumption, bio-degradability, abundance and low price. Since EAPap material requires low power consumption, a remotely driven actuator has been proposed by using microwave power transmission. This concept is attractive for many biomimetic systems such as crawling micro-insect robots, flying objects like dragon fly, and smart wall papers. However, the actuation performance of EAPap is sensitive to humidity. Thus, in this paper, a new EAPap that is less sensitive to humidity is studied. The fabrication of EAPap is explained and the actuations are shown with actuating voltage, frequency, humidity level and time. The fabrication process includes dissolving cellulose fibers, eliminating solvent and Li ions with DI (deionized) water and IPA (Isopropyl alcohol) mixture, washing with water, drying and gold coating. Morphology of the fabricated EAPap is analyzed by taking scanning electron microscope images and X-ray diffractogram. The actuator performance is tested in terms of bending displacement with frequency and humidity level.

  5. A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application.

    PubMed

    Hu, Ying; Lan, Tian; Wu, Guan; Zhu, Zicai; Chen, Wei

    2014-11-01

    Bimorph actuators, consisting of two layers with asymmetric expansion and generating bending displacement, have been widely researched. Their actuation performances greatly rely on the difference of coefficients of thermal expansion (CTE) between the two material layers. Here, by introducing a spongy graphene (sG) paper with a large negative CTE as well as high electrical-to-thermal properties, an electromechanical sG/PDMS bimorph actuator is designed and fabricated, showing an ultra-large bending displacement output under low voltage stimulation (curvature of about 1.2 cm(-1) at 10 V for 3 s), a high displacement-to-length ratio (∼0.79), and vibration motion at AC voltage (up to 10 Hz), which is much larger and faster than that of the other electromechanical bimorph actuators. Based on the sG/PDMS bimorph serving as the "finger", a mechanical gripper is constructed to realize the fast manipulation of the objects under 0.1 Hz square wave voltage stimulation (0-8 V). The designed bimorph actuator coupled with ultra-large bending displacement, low driven voltage, and the ease of fabrication may open up substantial possibilities for the utilization of electromechanical actuators in practical biomimetic device applications. PMID:25220910

  6. Osmotic actuation modelling for innovative biorobotic solutions inspired by the plant kingdom.

    PubMed

    Sinibaldi, E; Puleo, G L; Mattioli, F; Mattoli, V; Di Michele, F; Beccai, L; Tramacere, F; Mancuso, S; Mazzolai, B

    2013-06-01

    Osmotic-driven plant movements are widely recognized as impressive examples of energy efficiency and low power consumption. These aspects motivate the interest in developing an original biomimetic concept of new actuators based on the osmotic principle exploited by plants. This study takes a preliminary step in this direction, by modelling the dynamic behaviour of two exemplificative yet relevant implementations of an osmotic actuator concept. In more detail, the considered implementations differ from each other in the way actuation energy storage is achieved (through a piston displacement in the former case, through membrane bulging in the latter). The dynamic problem is analytically solved for both cases; scaling laws for the actuation figures of merit (namely characteristic time, maximum force, maximum power, power density, cumulated work and energy density) as a function of model parameters are obtained for the bulging implementation. Starting from such performance indicators, a preliminary dimensioning of the envisaged osmotic actuator is exemplified, based on design targets/constraints (such as characteristic time and/or maximum force). Moreover, model assumptions and limitations are discussed towards effective prototypical development and experimental testing. Nonetheless, this study takes the first step towards the design of new actuators based on the natural osmotic principle, which holds potential for disruptive innovation in many fields, including biorobotics and ICT solutions. PMID:23648821

  7. Anisotropy of Electroactive Strain in Textured Polypyrrole Actuators

    NASA Astrophysics Data System (ADS)

    Pytel, Rachel; Thomas, Edwin; Hunter, Ian

    2006-03-01

    Polypyrrole has been extensively studied as an electroactive material, but these studies have provided little insight to the influence that morphology has on actuation at the nanoscale. By discovering and exploiting the connection between nanoscale transport events and macroscale active strain, we can learn how to process polypyrrole and other conducting polymers for improved electroactive device performance. We show that by controlling polymer chain configuration and packing, a conducting polymer actuator can be engineered that shows a significantly larger macroscopic electroactive response for a given set of driving conditions. We utilize different modes of deformation to impart orientation textures that can be observed via synchrotron x-ray diffraction and electronic and ionic resistance measurements. Certain textures enhance pathways for ion transport between polymer chains, resulting in an anisotropic electroactive strain response that can be harnessed when making polypyrrole-driven devices. This response provides valuable insight to the mechanism of polypyrrole actuation on the nanoscale, supporting a mechanism where counterions migrate to locations between the oriented polymer chains.

  8. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  9. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  10. Design of high performance piezo composites actuators

    NASA Astrophysics Data System (ADS)

    Almajid, Abdulhakim A.

    Design of high performance piezo composites actuators are developed. Functionally Graded Microstructure (FGM) piezoelectric actuators are designed to reduce the stress concentration at the middle interface existed in the standard bimorph actuators while maintaining high actuation performance. The FGM piezoelectric laminates are composite materials with electroelastic properties varied through the laminate thickness. The elastic behavior of piezo-laminates actuators is developed using a 2D-elasticity model and a modified classical lamination theory (CLT). The stresses and out-of-plane displacements are obtained for standard and FGM piezoelectric bimorph plates under cylindrical bending generated by an electric field throughout the thickness of the laminate. The analytical model is developed for two different actuator geometries, a rectangular plate actuator and a disk shape actuator. The limitations of CLT are investigated against the 2D-elasticity model for the rectangular plate geometry. The analytical models based on CLT (rectangular and circular) and 2D-elasticity are compared with a model based on Finite Element Method (FEM). The experimental study consists of two FGM actuator systems, the PZT/PZT FGM system and the porous FGM system. The electroelastic properties of each layer in the FGM systems were measured and input in the analytical models to predict the FGM actuator performance. The performance of the FGM actuator is optimized by manipulating the thickness of each layer in the FGM system. The thickness of each layer in the FGM system is made to vary in a linear or non-linear manner to achieve the best performance of the FGM piezoelectric actuator. The analytical and FEM results are found to agree well with the experimental measurements for both rectangular and disk actuators. CLT solutions are found to coincide well with the elasticity solutions for high aspect ratios while the CLT solutions gave poor results compared to the 2D elasticity solutions for

  11. Levers and linkages: mechanical trade-offs in a power-amplified system.

    PubMed

    Anderson, Philip S L; Claverie, Thomas; Patek, S N

    2014-07-01

    Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy. PMID:24635148

  12. Rover Wheel-Actuated Tool Interface

    NASA Technical Reports Server (NTRS)

    Matthews, Janet; Ahmad, Norman; Wilcox, Brian

    2007-01-01

    A report describes an interface for utilizing some of the mobility features of a mobile robot for general-purpose manipulation of tools and other objects. The robot in question, now undergoing conceptual development for use on the Moon, is the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, which is designed to roll over gentle terrain or walk over rough or steep terrain. Each leg of the robot is a six-degree-of-freedom general purpose manipulator tipped by a wheel with a motor drive. The tool interface includes a square cross-section peg, equivalent to a conventional socket-wrench drive, that rotates with the wheel. The tool interface also includes a clamp that holds a tool on the peg, and a pair of fold-out cameras that provides close-up stereoscopic images of the tool and its vicinity. The field of view of the imagers is actuated by the clamp mechanism and is specific to each tool. The motor drive can power any of a variety of tools, including rotating tools for helical fasteners, drills, and such clamping tools as pliers. With the addition of a flexible coupling, it could also power another tool or remote manipulator at a short distance. The socket drive can provide very high torque and power because it is driven by the wheel motor.

  13. Design and performance of a sub-nanoradian resolution autocollimating optical lever

    SciTech Connect

    Cowsik, R.; Srinivasan, R.; Kasturirengan, S.; Kumar, A. Senthil; Wagoner, K.

    2007-03-15

    Precision goniometry using optics has the advantage that it does not impose much stress on the object of investigation and, as such, is adopted extensively in gravitational wave detection, in torsion balances investigating fundamental forces, in specialized studies of biological samples, and it has potential applications in condensed matter physics. In this article we present the considerations that go into designing optical levers and discuss the performance of the instrument we have constructed. We motivate the design by considering an idealized setup and the limitations to the angular resolution induced by statistical fluctuations of the photon count rate and diffraction at the apertures. The effects of digitization of the count rate and of the spatial location of the photons on the image plane motivating the actual design are discussed next. Based on these considerations, we have developed an autocollimating optical lever which has a very high resolution and dynamic range. An array of 110 slits, of 90 {mu}m width and a pitch of 182 {mu}m, is located in the focal plane of a field lens, of focal length 1000 mm, and is illuminated by a CCFL tube. This array is imaged back onto the focal plane after retroreflection from a mirror placed just beyond the lens. The image is recorded on a linear charge-coupled device array at the rate of 1000 images/s and is processed through a special algorithm to obtain the centroid. The instrument has a centroid stability of {approx}3x10{sup -10} rad Hz{sup -1/2} and a dynamic range of {approx}10{sup 7}.

  14. Design and performance of a sub-nanoradian resolution autocollimating optical lever

    NASA Astrophysics Data System (ADS)

    Cowsik, R.; Srinivasan, R.; Kasturirengan, S.; Kumar, A. Senthil; Wagoner, K.

    2007-03-01

    Precision goniometry using optics has the advantage that it does not impose much stress on the object of investigation and, as such, is adopted extensively in gravitational wave detection, in torsion balances investigating fundamental forces, in specialized studies of biological samples, and it has potential applications in condensed matter physics. In this article we present the considerations that go into designing optical levers and discuss the performance of the instrument we have constructed. We motivate the design by considering an idealized setup and the limitations to the angular resolution induced by statistical fluctuations of the photon count rate and diffraction at the apertures. The effects of digitization of the count rate and of the spatial location of the photons on the image plane motivating the actual design are discussed next. Based on these considerations, we have developed an autocollimating optical lever which has a very high resolution and dynamic range. An array of 110 slits, of 90 μm width and a pitch of 182 μm, is located in the focal plane of a field lens, of focal length 1000 mm, and is illuminated by a CCFL tube. This array is imaged back onto the focal plane after retroreflection from a mirror placed just beyond the lens. The image is recorded on a linear charge-coupled device array at the rate of 1000 images/s and is processed through a special algorithm to obtain the centroid. The instrument has a centroid stability of ˜3×10-10 rad Hz-1/2 and a dynamic range of ˜107.

  15. TECHNICAL NOTE: Multiple-degrees-of-freedom electroelastomer roll actuators

    NASA Astrophysics Data System (ADS)

    Pei, Qibing; Rosenthal, Marcus; Stanford, Scott; Prahlad, Harsha; Pelrine, Ron

    2004-10-01

    Electroelastomers (electroactive elastomers) such as the 3M VHB 4910 acrylic adhesive films have exhibited up to 380% strain in area expansion at 5 6 kV when they are highly prestrained. By rolling highly prestrained electroelastomer films around a compression spring, we have demonstrated multifunctional electroelastomer rolls (MERs, or spring rolls) that combine load bearing, actuation, and sensing functions. We extended the design to two-degree-of-freedom (2-DOF) and 3-DOF spring rolls by patterning the electrodes to align radially on two and four circumferential spans of the rolls, respectively. Multiple-DOF spring rolls retain the linear actuation of 1-DOF spring rolls with additional bending actuation. Mathematical equations are derived to correlate the bending angle and lateral force of the rolls with the actuated stroke in one of the electroded spans. Two-DOF spring rolls with a 1.4 cm outside diameter, 6.8 cm axial length, and 11 g weight have been fabricated; these rolls have a 90° maximum actuation bending angle, 0.7 N maximum lateral force, and up to 15 N blocked axial force. Three-DOF spring rolls with a 2.3 cm outside diameter, 9.0 cm axial length, and 29 g weight exhibit a 35° maximum bending angle and 1.0 N maximum lateral force. These specifications can be modified by variations in roll parameters according to the equations. Multi-DOF spring rolls are easy to fabricate, compact, multifunctional, and mechanically robust. They represent a radically new actuation technology and may enable a number of unique applications. We have demonstrated a small walking robot, MERbot, with one 2-DOF spring roll as each of its six legs. The robot's speed is as high as 13.6 cm s-1 or two-thirds of its length per second. 'Sushi rolls' have also been fabricated: these consist of six 2-DOF springs connected in series and monolithic in structure. The sushi rolls can be driven so as to generate wavelike or serpentine motion.

  16. Design of a radio telescope surface segment actuator based on a form-closed eccentric cam

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    2014-07-01

    As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.

  17. Optically controlled bimorph cantilever by Poly(vinylidene difluoride) and its application of optical actuator

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasuhiro; Otani, Yukitoshi

    2008-11-01

    An optically driven actuator is a non-contact method for the remote application of light energy. A new method for optically driving actuators which uses a polyvinylidine difluoride (PVDF) cantilever is proposed. The PVDF cantilever is coated with silver on one surface. The PVDF is a ferroelectric polymer that has both pyroelectric and piezoelectric properties. When one side of the cantilever is irradiated by a laser beam, an electric field is produced along cross-section of the cantilever and mechanical displacement occurs by the piezoelectric effect. The response of the PVDF cantilever is analyzed mathematically.

  18. Actuated cilial layers regulate deposition of microscopic solid particles

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajat; Buxton, Gavin A.; Berk Usta, O.; Balazs, Anna C.; Alexeev, Alexander

    2009-11-01

    We use computational modeling to examine the three-dimensional interactions between oscillating, synthetic cilia and microscopic solid particles in a fluid-filled microchannel. The synthetic cilia are elastic filaments that are tethered to a substrate and are actuated by a sinusoidal force, which is applied to their free ends. The cilia are arranged in a square pattern and a neutrally buoyant particle is initially located between these filaments. Our computational studies reveal that depending on frequency of the beating cilia, the particle can be either driven downwards toward the substrate or driven upwards and expelled into the fluid above the cilial layer. This behavior mimics the performance of biological cilia used by certain marine animals to extract suspended food particles. The findings uncover a new route for controlling the deposition of microscopic particles in microfluidic devices.

  19. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  20. Electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Zubkow, Zygmunt

    Attention is given to the development and testing of electromechanical actuator (EMA) systems for use in first- and second-stage thrust vector control of rocket engines. An overview of the test program is also presented. Designs for both first- and second-stage actuators employ redundant dc brushless, three-phase rare-earth permanent magnet motors. The first-stage actuator is about 28 hp per motor and uses a roller screw. Second-stage thrust vector control is implemented with a much smaller actuator of about 1 hp per motor. This actuator uses a gear drive with a recycling ball screw mechanism. An operational EMA is presented. This 6.5-in. actuator is capable of a stall force of 1350 pounds per motor and a frequency response of about 5 HZ.

  1. 77 FR 9890 - Solicitation of Input From Stakeholders Regarding the Smith-Lever 3(d) Children, Youth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From Stakeholders Regarding the Smith-Lever 3(d) Children, Youth, and Families at Risk Sustainable Community Projects AGENCY:...

  2. 77 FR 4982 - Solicitation of Input From Stakeholders Regarding the Smith-Lever 3(d) Extension Integrated Pest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ...-Lever 3(d) Extension Integrated Pest Management Competitive Grants Program AGENCY: National Institute of...-Grant Institutions, including Tuskegee University and West Virginia State University to compete for section 3(d) funds. Section 7417 of FCEA also provided the University of the District of Columbia...

  3. Trying to Make a Lever Work at Ages 1 to 4: The Development of "Functions" (Logico-Mathematical Thinking)

    ERIC Educational Resources Information Center

    Kamii, Constance; Miyakawa, Yoko; Kato, Tsuguhiko

    2007-01-01

    To find out if children could make functions before age 4, 73 children aged 1 to 4 were encouraged to imitate the use of a lever to make a beanbag fly up. Functions are mental relationships that preoperational children can make between 2 things at a time in a unidirectional way (Piaget, Grize, Szeminska, & Bang, 1968/1977). The child's…

  4. Multi-imager compatible actuation principles in surgical robotics.

    PubMed

    Stoianovici, D

    2005-01-01

    Today's most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using "intervention friendly" energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-Imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several

  5. Multi-imager compatible actuation principles in surgical robotics.

    PubMed

    Stoianovici, D

    2005-01-01

    Today's most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using "intervention friendly" energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-Imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several

  6. Multi-imager compatible actuation principles in surgical robotics

    PubMed Central

    Stoianovici, D

    2011-01-01

    Today’s most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using “intervention friendly” energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several

  7. Integrated sensing and actuation of muscle-like actuators

    NASA Astrophysics Data System (ADS)

    Gisby, T. A.; Xie, S.; Calius, E. P.; Anderson, I. A.

    2009-03-01

    The excellent overall performance and compliant nature of Dielectric Elastomer Actuators (DEAs) make them ideal candidates for artificial muscles. Natural muscle however is much more than just an actuator, it provides position feedback to the brain that is essential for the body to maintain balance and correct posture. If DEAs are to truly earn the moniker of "artificial muscles" they need to be able to reproduce, if not improve on, this functionality. Self-sensing DEAs are the ideal solution to this problem. This paper presents a system by which the capacitance of a DEA can be sensed while it is being actuated and used for feedback control. This system has been strongly influenced by the desire for portability i.e. designed for use in a battery operated microcontroller based system. It is capable of controlling multiple independent DEAs using a single high voltage power supply. These features are important developments for artificial muscle devices where accuracy and low mass are important e.g. a prosthetic hand or force-feedback surgical tools. A numerical model of the electrical behaviour of the DEA that incorporates arbitrary leakage currents and the impact of arbitrary variable capacitance has been created to model a DEA system. A robust capacitive self-sensing method that uses a slew-rate controlled Pulse Width Modulation (PWM) signal and compensates for the effects of leakage current and variable capacitance is presented. The numerical model is then used to compare the performance of this new method with an earlier method previously published by the authors.

  8. Actuation fluid adapter for hydraulically-actuated electronically-controlled fuel injector and engine using same

    DOEpatents

    Keyster, Eric S.; Merchant, Jack A.

    2002-01-01

    A fuel injector adapter consists of a block defining a pressure communication passage therethrough and an actuation fluid passage. The actuation fluid passage includes three separate branches that open through an outer surface of the block at three separate locations.

  9. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  10. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  11. Direct-drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  12. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  13. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  14. Reliable quantification of bite-force performance requires use of appropriate biting substrate and standardization of bite out-lever.

    PubMed

    Lappin, A Kristopher; Jones, Marc E H

    2014-12-15

    Bite-force performance is an ecologically important measure of whole-organism performance that shapes dietary breadth and feeding strategies and, in some taxa, determines reproductive success. It also is a metric that is crucial to testing and evaluating biomechanical models. We reviewed nearly 100 published studies of a range of taxa that incorporate direct in vivo measurements of bite force. Problematically, methods of data collection and processing vary considerably among studies. In particular, there is little consensus on the appropriate substrate to use on the biting surface of force transducers. In addition, the bite out-lever, defined as the distance from the fulcrum (i.e. jaw joint) to the position along the jawline at which the jaws engage the transducer, is rarely taken into account. We examined the effect of bite substrate and bite out-lever on bite-force estimates in a diverse sample of lizards. Results indicate that both variables have a significant impact on the accuracy of measurements. Maximum bite force is significantly greater using leather as the biting substrate compared with a metal substrate. Less-forceful bites on metal are likely due to inhibitory feedback from mechanoreceptors that prevent damage to the feeding apparatus. Standardization of bite out-lever affected which trial produced maximum performance for a given individual. Indeed, maximum bite force is usually underestimated without standardization because it is expected to be greatest at the minimum out-lever (i.e. back of the jaws), which in studies is rarely targeted with success. We assert that future studies should use a pliable substrate, such as leather, and use appropriate standardization for bite out-lever.

  15. The arthroscopical and radiological corelation of lever sign test for the diagnosis of anterior cruciate ligament rupture.

    PubMed

    Deveci, Alper; Cankaya, Deniz; Yilmaz, Serdar; Özdemir, Güzelali; Arslantaş, Emrah; Bozkurt, Murat

    2015-01-01

    The aim of the current study was to evaluate the sensitivity of the lever sign test and the widely used basic tests of the Lachman, anterior drawer and pivot shift tests, both under anaesthesia and without anaesthesia, according to the gold standard diagnostic arthroscopic results in patients undergoing anterior cruciate ligament reconstruction. The study included 117 patients, diagnosed with ACL tear which was definitively determined during an arthroscopic surgical procedure applied. Before anaesthesia and while under anaesthesia, the Lachman, anterior drawer, pivot shift and lever sign tests were applied to all patients. Evaluation was made of MR images for each patient and documented. The patients comprised 96 males and 21 females, witha mean age of 25.8 ± 5.9 years (range, 17-45 years). Total tear was determined in 82 cases, anteromedial (AM) bundle in 14, posterolateral (PL) bundle in 13 and elongation in 8. Pre-anaesthesia positivity was found in lever sign at 94.2 %, Lachman at 80.5 %, pivot shift at 62.3 % and anterior drawer at 60.1 %. These rates were determined after anaesthesia as lever sign 98.4 %, Lachman 88.7 %, pivot shift 88.3 % and anterior drawer 84.2 %. The lever sign test can be easily applied clinically and it seems to have higher sensitivity than the Lachman test which is the basis of classic information, it should be included in routine clinical practice. In the light of the results of this study, further studies are required to review the accepted view that the Lachmann test is the most reliable test.

  16. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    SciTech Connect

    Minoda, Hiroki; Okabe, Tatsuhiro; Inayoshi, Yuhri; Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru; Katayama, Eisaku; Wakabayashi, Takeyuki; Akimoto, Tsuyoshi; Sugi, Haruo

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  17. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    SciTech Connect

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  18. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    NASA Astrophysics Data System (ADS)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to

  19. Polypyrrole actuators: modeling and performance

    NASA Astrophysics Data System (ADS)

    Madden, John D.; Madden, Peter G.; Hunter, Ian W.

    2001-07-01

    Conducting polymer actuators generate forces that exceed those of mammalian skeletal muscle by up to two orders of magnitude for a given cross-sectional area, require only a few volts to operate, and are low in cost. However application of conducting polymer actuators is hampered by the lack of a full description of the relationship between load, displacement, voltage and current. In an effort to provide such a model, system identification techniques are employed. Stress-strain tests are performed at constant applied potential to determine polypyrrole stiffness. The admittance transfer function of polypyrrole and the associated electrolyte is measured over the potential range in which polypyrrole is highly conductive. The admittance is well described by treating the polymer as a volumetric capacitance of 8*107 F*m3 whose charging rate is limited by the electrolyte resistance and by diffusion within polypyrrole. The relationship between strain and charge is investigated, showing that strain is directly proportional to charge via the strain to charge density ratio, (alpha) = 1*10+-10 m3*C-1, at loads of up to 4 MPa. Beyond 4 MPa the strain to charge ratio is time dependent. The admittance models, stress/strain relation and strain to charge relationship are combined to form a full description of polypyrrole electromechanical response. This description predicts that large increases in strain rate and power are obtained through miniaturization, yielding bandwidths in excess of 10 kHz. The model also enables motor designers to optimize polypyrrole actuator geometries for their applications.

  20. Surface micromachined sensors and actuators

    SciTech Connect

    Sniegowski, J.J.

    1995-08-01

    A description of a three-level mechanical polysilicon surface-micromachining technology including a discussion of the advantages of this level of process complexity is presented. This technology is capable of forming mechanical elements ranging from simple cantilevered beams to complex, interconnected, interactive, microactuated micromechanisms. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Additional features of the Sandia three-level process include the use of Chemical-Mechanical Polishing (CMP) for planarization, and the integration of micromechanics with the Sandia CMOS circuit process. The latter effort includes a CMOS-first, tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing. Alternatively, a novel micromechanics-first approach wherein the micromechanical devices are processed first in a well below the surface of the CMOS starting material followed by the standard, aluminum metallization CMOS process is also being pursued. Following the description of the polysilicon surface micromachining are examples of the major sensor and actuator projects based on this technology at the Microelectronics Development Laboratory (MDL) at Sandia National Laboratories. Efforts at the MDL are concentrated in the technology of surface micromachining due to the availability of and compatibility with standard CMOS processes. The primary sensors discussed are a silicon nitride membrane pressure sensor, hot polysilicon filaments for calorimetric gas sensing, and a smart hydrogen sensor. Examples of actuation mechanisms coupled to external devices are also presented. These actuators utilize the three-level process (plus an additional passive level) and employ either surface tension or electrostatic forces.

  1. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    PubMed

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses. PMID:27557270

  2. Dielectric elastomer actuators for adaptive photonic microsystems

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Schröder, Henning; Marx, Sebastian; Lang, Klaus-Dieter

    2013-03-01

    Various applications in the field of photonic microsystems for Dielectric Elastomer Actuators (DEA) were shown with this research. DEA belong to the class of Electro Active Polymers (EAP) and have the potential to substitute common technologies like piezoelectric actuators. DEAs offers several advantages like compact and variable shapes, large actuation ranges and cost efficient production processes that have to be emphasized. For the market of adaptive photonic microsystems especially area actuators are very suitable. They can be used e.g. as tuneable lens, mirror or grating component and tool for optical fiber alignment. These area actuators have a similar structure like a capacitor. They consist of three layers, two electrode layers on top and bottom and one dielectric layer in the center. The dielectric layer is made of a deformable and prestretched elastomer film. When applying a voltage between both electrode layers the thickness of the dielectric film is compressed and the actuator is displaced in the plane. The use of material compositions like a polymer matrix with graphite, carbon nano particles or carbon nano tubes as well as thin metal films for the electrodes were studied. The paper presents results on suitable dielectric and electrode materials, actuator geometries and respective adaptive photonic components. The manufacturing process of area actuators is described in detail. As a basic size of the area actuators (20 × 20) mm2 were chosen. Onto the produced area actuators polymer lenses or mirrors were assembled. The deflection of the optical beam path is calculated with optical simulations and measured at the prepared adaptive optical components. Static actuations of about +/-15 μm are achieved when applying a voltage of 200 V. Also the function of a tuneable beam splitter is demonstrated to show further applications.

  3. Policy initiation and political levers in health policy: lessons from Ghana’s health insurance

    PubMed Central

    2012-01-01

    Background Understanding the health policy formulation process over the years has focused on the content of policy to the neglect of context. This had led to several policy initiatives having a still birth or ineffective policy choices with sub-optimal outcomes when implemented. Sometimes, the difficulty has been finding congruence between different values and interests of the various stakeholders. How can policy initiators leverage the various subtle mechanisms that various players draw on to leverage their interests during policy formulation. This paper attempts to conceptualise these levers of policy formulation to enhance an understanding of this field of work based on lived experience. Methodology This is a qualitative participant observation case study based on retrospective recollection of the policy process and political levers involved in developing the Ghana National Health Insurance Scheme. The study uses a four-concept framework which is agenda setting, symbols manipulation, constituency preservation and coalition building to capture the various issues, negotiations and nuanced approaches used in arriving at desired outcomes. Results Technical experts, civil society, academicians and politicians all had significant influence on setting the health insurance agenda. Each of these various stakeholders carefully engaged in ways that preserved their constituency interests through explicit manoeuvres and subtle engagements. Where proposals lend themselves to various interpretations, stakeholders were quick to latch on the contentious issues to preserve their constituency and will manipulate the symbols that arise from the proposals to their advantage. Where interests are contested and the price of losing out will leave government worse off which will favour its political opponent, it will push for divergent interests outside parliamentary politics through intense negotiations to build coalitions so a particular policy may pass. Conclusions This paper has

  4. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  5. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  6. Microfabricated electroactive carbon nanotube actuators

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni

    2001-07-01

    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  7. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  8. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  9. Integrated piezoelectric actuators in deep drawing tools

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  10. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  11. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  12. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  13. Adding realism to simulated sensors and actuators.

    PubMed

    Rosen, C; Jeppsson, U; Rieger, L; Vanrolleghem, P A

    2008-01-01

    In this paper, we propose a statistical theoretical framework for incorporation of sensor and actuator faults in dynamic simulations of wastewater treatment operation. Sensor and actuator faults and failures are often neglected in simulations for control strategy development and testing, although it is well known that they represent a significant obstacle for realising control at full-scale facilities. The framework for incorporating faults and failures is based on Markov chains and displays the appealing property of easy transition of sensor and actuator history into a model for fault generation. The paper briefly describes Markov theory and how this is used together with models for sensor and actuator dynamics to achieve a realistic simulation of measurements and actuators.

  14. Space shuttle rudder/speedbrake actuation subsystem

    NASA Technical Reports Server (NTRS)

    Naber, R. A.

    1985-01-01

    The Rudder/Speedbrake (R/SB) Actuation Subsystem for use on the NASA Space Shuttle Orbiter is an electro-hydro-mechanical system which provides the control and positionary capability of the orbiter aero-dynamic primary flight control surface. The system is located in the vehicle's vertical stabilizer. The geared rotary actuators provide a power hinge feature of the split panel rudder. Actuation of both panels in the same direction provides conventional rudder control; actuating the panels differentially provides a speedbrake function intended to control both speed and pitch. The commands may be superimposed on one another. The system consists of one power drive unit which responds to quadredundant avionic signals to generate a rotary output, four geared rotary actuators, which develop rotary position and torque as outputs, and ten torque transmitting drive-shifts.

  15. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  16. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  17. Conducting IPN actuators for biomimetic vision system

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Plesse, Cedric; Chevrot, Claude; Teyssié, Dominique; Pirim, Patrick; Vidal, Frederic

    2011-04-01

    In recent years, many studies on electroactive polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime (several million cycles) make them very attractive for various applications including robotics. Our laboratory recently synthesized new conducting IPN actuators based on high molecular Nitrile Butadiene Rubber, poly(ethylene oxide) derivative and poly(3,4-ethylenedioxithiophene). The presence of the elastomer greatly improves the actuator performances such as mechanical resistance and output force. In this article we present the IPN and actuator synthesis, characterizations and design allowing their integration in a biomimetic vision system.

  18. Microfabrication of stacked dielectric elastomer actuator fibers

    NASA Astrophysics Data System (ADS)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  19. Application of photothermal effect to manufacture ultrasonic actuators (abstract)

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-yi; Cheng, Li-ping; Shui, Xiu-ji; Yu, Jiong; Dong, Shu-xiang

    2003-01-01

    Photothermal (PT) effect has been applied to manufacture disks [A. C. Tam, a lecture at the Institute of Acoustics, Nanjing University, People's Republic of China (1996)] and magnetic head sliders for disk drives [A. C. Tam, C. C. Poon, and L. Crawforth, Analyt. Sci. 17, s 419 (2001)]. Now we apply the PT effect to manufacture ultrasonic motors (actuators). Recently, the ultrasonic actuators with different ultrasonic modes, such as Rayleigh (surface acoustic) mode, Lamb (plate) mode, etc., have been developed. We have designed and fabricated two rotary motors driven by surface acoustic wave (SAW) with different frequencies, but lower than 30 MHz [L. P. Cheng, G. M. Zhang, S. Y. Zhang, J. Yu, and X. J. Shui, Ultrasonics 39, 591 (2002)]. On the SAW motors (actuators), two Rayleigh wave beams were generated and propagating along the surface of a 128° YK-LiNbO3 substrate in opposite directions with each other as a stator, and a plastic disk with balls distributed along the circle of the disk was as a rotor. For miniaturizing the rotary SAW motors, and increasing the rotation velocity, the SAW frequency must be increased. Then we improve the manufacturing technology of the mechanical structure by PT effect instead of the conventional mechanical processes of the stator and rotor of the motor. A new type of rotary SAW motor (actuator) has been fabricated, in which both SAW beams with opposite propagating directions are excited by two pairs of interdigital transducers with the frequency between 30-50 MHz. In the surface of the stator (128° YX-LiNbO3 substrate), a hole with the depth about 500 μm is impinged by a focused pulsed Nd:YAG laser beam (PT effect) between two SAW propagating ways on the 128° YX-LiNbO3 substrate for fixing the axis of the motor, with the frequency between 30-50 MHz. In the bottom of the rotor (plastic disk), a lot of crown (flange) blocks with the high of 20-30 μm and the diameter of also 20-30 μm can be made by the focused pulsed Nd

  20. Controller for Driving a Piezoelectric Actuator at Resonance

    NASA Technical Reports Server (NTRS)

    Aldrich, Jack; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi; Chang, Zensheu

    2008-01-01

    A digital control system based partly on an extremum-seeking control algorithm tracks the changing resonance frequency of a piezoelectric actuator or an electrically similar electromechanical device that is driven by a sinusoidal excitation signal and is required to be maintained at or near resonance in the presence of uncertain, changing external loads and disturbances. Somewhat more specifically, on the basis of measurements of the performance of the actuator, this system repeatedly estimates the resonance frequency and alters the excitation frequency as needed to keep it at or near the resonance frequency. In the original application for which this controller was developed, the piezoelectric actuator is part of an ultrasonic/sonic drill/corer. Going beyond this application, the underlying principles of design and operation are generally applicable to tracking changing resonance frequencies of heavily perturbed harmonic oscillators. Resonance-frequency-tracking analog electronic circuits are commercially available, but are not adequate for the present purpose for several reasons: The input/output characteristics of analog circuits tend to drift, often necessitating recalibration, especially whenever the same controller is used in driving a different resonator. In the case of an actuator in a system that has multiple modes characterized by different resonance frequencies, an analog controller can tune erroneously to one of the higher-frequency modes. The lack of programmability of analog controllers is problematic when faults occur, and is especially problematic for preventing tuning to a higher-frequency mode. In contrast, a digital controller can be programmed to restrict itself to a specified frequency range and to maintain stability even when the affected resonator is driven at high power and subjected to uncertain disturbances and variable loads. The present digital control system (see figure) is implemented by means of an algorithm that comprises three main

  1. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  2. Practical design of the optical lever intracavity topology of gravitational-wave detectors

    SciTech Connect

    Danilishin, S. L.; Khalili, F. Ya.

    2006-01-15

    The quantum nondemolition (QND) intracavity topologies of gravitational-wave detectors proposed several years ago allow us, in principle, to obtain sensitivity significantly better than the standard quantum limit using relatively small amount of optical pumping power. In this article we consider an improved more practical version of the optical lever intracavity scheme. It differs from the original version by the symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it provides the means to inject optical pumping inside the scheme without increase of optical losses. We consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity topologies. Two variants of the local meter are analyzed, which are based on the spectral variation measurement and on the discrete sampling variation measurement, correspondingly. The former one, while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain the best sensitivity and thus can be considered as an ideal 'asymptotic case' for all other schemes. The DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of view search of new methods of mechanical QND measurements probably based on improved DSVM scheme or which combine the local meter with the pondermotive squeezing technique, is necessary.

  3. Experimental Investigation of Liquid-propellant Laser Propulsion with a Horizontal Momentum Measuring Lever

    SciTech Connect

    Wang Bin; Li Long; Tang Zhiping; Cai Jian

    2010-05-06

    Thrust performance of Liquid-propellant laser propulsion (LLP) is seriously influenced by factors like laser parameters, choice of propellants and ablation materials. For the purpose of studying these influences, series of impulse measuring experiments for various propellants and ablation materials were conducted. The key device is a Horizontal Momentum Measuring Lever, which covers a C{sub m} measuring range from 10{sup 3} Ns/MJ to about 1.6x10{sup 4} Ns/MJ. A Nd:YAG laser was used as the laser source. From the result, it is found that laser energy density plays an important role on LLP efficiency, higher energy density leads to higher C{sub m} and I{sub sp}. Highest C{sub m} of about 10{sup 4} Ns/MJ with the I{sub sp} of 3.57s was achieved by focusing the laser to the average energy density of 8.83x10{sup 8} W/cm{sup 2}. Besides of that, it is also found that when the energy density is certainly high, C{sub m} of LLP increases stably with the increase of the propellant thickness, which gives a potential way to further improve the thrust performance in LLP.

  4. Effects of nucleus accumbens core and shell lesions on autoshaped lever-pressing

    PubMed Central

    Chang, Stephen E.; Holland, Peter C.

    2013-01-01

    Certain Pavlovian conditioned stimuli (CSs) paired with food unconditioned stimuli (USs) come to elicit approach and even consumption-like behaviors in rats (sign-tracking). We investigated the effects of lesions of the nucleus accumbens core (ACbC) or shell (ACbS) on the acquisition of sign-tracking in a discriminative autoshaping procedure in which presentation of one lever CS was followed by delivery of sucrose, and another was not. Although we previously found that bilateral lesions of the whole ACb disrupted the initial acquisition of sign-tracking, neither ACbC or ACbS lesions affected the rate or percentage of trials in which rats pressed the CS+. In addition, detailed video analysis showed no effect of either lesion on the topography of the sign-tracking conditioned response (CR). These and other results from lesion studies of autoshaping contrast with those from previous sign-tracking experiments that used purely visual cues (Parkinson, Robbins, and Everitt, 2000a; Parkinson, Willoughby, Robbins, and Everitt, 2000b), suggesting that the neural circuitry involved in assigning incentive value depends upon the nature of the CS. PMID:23933141

  5. Practical design of the optical lever intracavity topology of gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Danilishin, S. L.; Khalili, F. Ya.

    2006-01-01

    The quantum nondemolition (QND) intracavity topologies of gravitational-wave detectors proposed several years ago allow us, in principle, to obtain sensitivity significantly better than the standard quantum limit using relatively small amount of optical pumping power. In this article we consider an improved more practical version of the optical lever intracavity scheme. It differs from the original version by the symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it provides the means to inject optical pumping inside the scheme without increase of optical losses. We consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity topologies. Two variants of the local meter are analyzed, which are based on the spectral variation measurement and on the discrete sampling variation measurement, correspondingly. The former one, while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain the best sensitivity and thus can be considered as an ideal “asymptotic case” for all other schemes. The DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of view search of new methods of mechanical QND measurements probably based on improved DSVM scheme or which combine the local meter with the pondermotive squeezing technique, is necessary.

  6. The neck region of the myosin motor domain acts as a lever arm to generate movement.

    PubMed Central

    Uyeda, T Q; Abramson, P D; Spudich, J A

    1996-01-01

    The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8633089

  7. Position control of fishing line artificial muscles (coiled polymer actuators) from nylon thread

    NASA Astrophysics Data System (ADS)

    Arakawa, Takeshi; Takagi, Kentaro; Tahara, Kenji; Asaka, Kinji

    2016-04-01

    Recently, fishing line artificial muscle has been developed and is paid much attention due to the properties such as large contraction, light weight and extremely low cost. Typical fishing line artificial muscle is made from Nylon thread and made by just twisting the polymer. In this paper, because of the structure of the actuator, such actuators may be named as coiled polymer actuators (CPAs). In this paper, a CPA is fabricated from commercial Nylon fishing line and Ni-Cr alloy (Nichrome) wire is wound around it. The CPA contracts by the Joule heat generated by applied voltage to the Nichrome wire. For designing the control system, a simple model is proposed. According to the physical principle of the actuator, two first-order transfer functions are introduced to represent the actuator model. One is a system from the input power to the temperature and the other is a system from the temperature to the deformation. From the system identification result, it is shown that the dominant dynamics is the system from the input power to the temperature. Using the developed model, position control of the voltage-driven CPA is discussed. Firstly, the static nonlinearity from the voltage to the power is eliminated. Then, a 2-DOF PID controller which includes an inversion-based feed forward controller and a PID controller are designed. In order to demonstrate the proposed controller, experimental verification is shown.

  8. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    PubMed

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  9. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    PubMed

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design. PMID:25822633

  10. All inkjet-printed electroactive polymer actuators for microfluidic lab-on-chip systems

    NASA Astrophysics Data System (ADS)

    Pabst, Oliver; Beckert, Erik; Perelaer, Jolke; Schubert, Ulrich S.; Eberhardt, Ramona; Tünnermann, Andreas

    2013-04-01

    Piezoelectric electroactive polymers (EAP) are promising materials for applications in microfluidic lab-on-chip systems. In such systems, fluids can be analyzed by different chemical or physical methods. During the analysis the fluids need to be distributed through the channels of the chip, which requires a pumping function. We present here all inkjet-printed EAP actuators that can be configured as a membrane-based micropump suitable for direct integration into lab-on-chip systems. Drop-on-demand inkjet printing is a versatile digital deposition technique that is capable of depositing various functional materials onto a wide variety of substrates in an additive way. Compared to conventional lithography-based processing it is cost-efficient and flexible, as no masking is required. The actuators consist of a polymer foil substrate with an inkjet-printed EAP layer sandwiched between a set of two electrodes. The actuators are printed using a commercially available EAP solution and silver nanoparticle inks. When a voltage is applied across the polymer layer, piezoelectric strain leads to a bending deflection of the beam or membrane. Circular membrane actuators with 20 mm diameter and EAP thicknesses of 10 to 15 μm exhibit deflections of several μm when driven at their resonance frequency with voltages of 110 V. From the behavior of membrane actuators a pumping rate of several 100 μL/min can be estimated, which is promising for applications in lab-on-chip devices.

  11. Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device

    PubMed Central

    2011-01-01

    Background Variable structure parallel mechanisms, actuated with low-cost motors with serially added elasticity (series elastic actuator - SEA), has considerable potential in rehabilitation robotics. However, reflected masses of a SEA and variable structure parallel mechanism linked with a compliant actuator result in a potentially unstable coupled mechanical oscillator, which has not been addressed in previous studies. Methods The aim of this paper was to investigate through simulation, experimentation and theoretical analysis the necessary conditions that guarantee stability and passivity of a haptic device (based on a variable structure parallel mechanism driven by SEA actuators) when in contact with a human. We have analyzed an equivalent mechanical system where a dissipative element, a mechanical damper was placed in parallel to a spring in SEA. Results The theoretical analysis yielded necessary conditions relating the damping coefficient, spring stiffness, both reflected masses, controller's gain and desired virtual impedance that needs to be fulfilled in order to obtain stable and passive behavior of the device when in contact with a human. The validity of the derived passivity conditions were confirmed in simulations and experimentally. Conclusions These results show that by properly designing variable structure parallel mechanisms actuated with SEA, versatile and affordable rehabilitation robotic devices can be conceived, which may facilitate their wide spread use in clinical and home environments. PMID:21251299

  12. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    PubMed

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities. PMID:22550128

  13. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    PubMed

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  14. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    NASA Astrophysics Data System (ADS)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  15. Theoretical and experimental analysis of an optical driven servo system

    NASA Astrophysics Data System (ADS)

    Lu, F.; Wang, X. J.; Huang, J. H.; Liu, Y. F.

    2016-09-01

    An optical driven servo system model based on single-type PLZT ceramic is proposed in this paper. The control equation of the proposed servo system is derived based on the mathematical model of PLZT with coupled multi-physics fields. The parameters of photodeformation of the PLZT actuator during both the illumination phase and light off phase are identified through the static experiment. Then displacement response of optical driven servo system is numerically simulated based on the control equation presented in this paper. After that, the closed-loop control experiment of optical driven servo system based on PLZT single-type ceramic with a simple on-off method is carried out. The experimental results show that the optical driven servo system with simple on-off method can achieve the target displacement by applying UV light to the PLZT actuator. Furthermore, an improved on-off control strategy is proposed to decrease the undesirable fluctuation around the target displacement.

  16. Theoretical and experimental analysis of an optical driven servo system

    NASA Astrophysics Data System (ADS)

    Lu, F.; Wang, X. J.; Huang, J. H.; Liu, Y. F.

    2016-09-01

    An optical driven servo system model based on single-type PLZT ceramic is proposed in this paper. The control equation of the proposed servo system is derived based on the mathematical model of PLZT with coupled multi-physics fields. The parameters of photodeformation of the PLZT actuator during both the illumination phase and light off phase are identified through the static experiment. Then displacement response of optical driven servo system is numerically simulated based on the control equation presented in this paper. After that, the closed-loop control experiment of optical driven servo system based on PLZT single-type ceramic with a simple on–off method is carried out. The experimental results show that the optical driven servo system with simple on–off method can achieve the target displacement by applying UV light to the PLZT actuator. Furthermore, an improved on–off control strategy is proposed to decrease the undesirable fluctuation around the target displacement.

  17. Hand-actuated engine starter

    SciTech Connect

    Lindstrom, F.B.

    1987-01-27

    This patent describes a hand-actuated starter for an internal combustion engine wherein a first clutch member is journalled on a first shaft and a second clutch member is mounted on an engine shaft. The first clutch member has a pulley and is axially displaceable with respect to the second clutch member in response to rotation of the pulley, the first shaft and first clutch member having first and second mutually engaging bearing surfaces respectively. The improvement described here is wherein one of the surfaces has threads and the other of the surfaces has a helical groove and a helical spring in the groove positioned to engage the threads. The spring is radially displaceable in the groove.

  18. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Smith, Gregory F. (Inventor); Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  19. Lost-motion valve actuator

    SciTech Connect

    Burris, W.J. III; Ringgenberg, P.D.

    1987-04-07

    A lost-motion valve actuator is described for a bore closure valve employed in a well bore, comprising: operating connector means adapted to move the bore closure valve between open and closed positions through longitudinal movement of the operating connector means. The operating connector means comprises an operating connector and a connector insert defining a recess therebetween; locking dog means comprising at least one locking dog received in the recess and spring biasing means adapted to urge at least one locking dog radially inwardly; and mandrel means slidably received within the operating connector means and including dog slot means associated therewith. The dog slot means comprises an annular slot on the exterior of the mandrel means adapted to lockingly receive at least one inwardly biased locking dog when proximate thereto, whereby longitudinal movement of the mandrel means is transmitted to the operating connector means.

  20. Magnetic actuation of hair cells

    PubMed Central

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-01-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368