Science.gov

Sample records for actuator deformable mirrors

  1. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  2. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented. PMID:26192533

  3. Ferroelectric actuator testing for deformable-mirror applications

    NASA Astrophysics Data System (ADS)

    Costello, Thomas P.; Schell, John D.

    1992-01-01

    Low voltage ferroelectric microdisplacement actuators are excellent candidates for use in zonal correction deformable mirrors (DMs) used in adaptive optical systems. Selection/specification is a critical process, however, since the device's electro-mechanical performance largely determines the mirror performance, and its electrical load characteristics strongly influence the cost of drive electronics. Several commercially available low voltage actuator devices were tested to establish a database for new DM designs. Both quasi-static and dynamic response characteristics were investigated. Test results are presented and conclusions are drawn concerning the merits of each device for typical deformable mirror applications.

  4. Flextensional Single Crystal Piezoelectric Actuators for Membrane Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Sahul, Raffi; Hackenberger, Wesley S.

    2006-01-01

    Large aperture and light weight space telescopes requires adaptive optics with deformable mirrors capable of large amplitude aberration corrections at a broad temperature range for space applications including NASA missions such as SAFIR, TPF, Con-X, etc. The single crystal piezoelectric actuators produced at TRS offer large stroke, low hysteresis, and an excellent cryogenic strain response. Specifically, the recently developed low profile, low voltage flextensional single crystal piezoelectric actuators with dimensions of 18 x 5 x 1 mm showed stroke larger than 95 microns under 300 V. Furthermore, flextensional actuator retained approx. 40-50% of its room temperature strain at liquid Nitrogen environment. In this paper, ATILA FEM design of flextensional actuators, actuator fabrication, and characterization results will be presented for the future work on membrane deformable mirror.

  5. Lightweight in-plane actuated deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Shepherd, Michael J.

    This research focused on lightweight, in-plane actuated, deformable mirrors, with the ultimate goal of developing a 20-meter or larger diameter light gathering aperture for space telescopes. Membrane optics is the study of these structures which may be stowed compactly and unfurled in orbit. This effort comprised four research areas: modelling, analytical solutions, surface control strategy, and scaling. Initially, experimental results were compared to theory using a 0.127 meter diameter deformable mirror testbed. The mirror was modelled using finite elements with MSC.Nastran software, where a boundary tension field was determined using laser vibrometer data. A non-linear solution technique was used to incorporate the membrane stiffening from the applied tension. Statically obtained actuator influence functions were compared to experimentally achieved data, and then a least squares approach was used as the basis for creating a quasi-static control algorithm. Experimental simultaneous tracking of Zernike tip, tilt, and defocus modes was successfully demonstrated. The analytical solutions to plate-membrane and beam-string ordinary differential equation representing the deformable mirror equations were developed. A simplified approach to modelling the axisymmetric cases was also presented. Significantly, it was shown both analytically and through numerical analysis that static actuation for a mirror with a discrete electrode pattern and a high tension-to-stiffness ratio was simply a localized piston displacement in the region of the actuator. Next, a novel static control strategy, the Modal Transformation Method, was developed for membrane mirrors. The method was implemented in finite element simulation, and shows the capability of the in-plane actuated mirror to form Zernike surfaces within an interior, or clear aperture, region using a number of statically-actuated structural modes. Lastly, the scaling problem for membrane optics was addressed. Linear modelling was

  6. Smart structures for deformable mirrors actuated by shape memory alloy

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.; Zerbi, F. M.

    2010-07-01

    Deformable mirrors actuated by smart structures are promising devices for next generation astronomical instrumentation. Thermal activated Shape Memory Alloys are materials able to recover their original shape, after an external deformation, if heated above a characteristic temperature. If the recovery of the shape is completely or partially prevented by the presence of constraints, the material can generate recovery stress. Thanks to this feature, these materials can be positively exploited in Smart Structures if properly embedded into host materials. This paper will show the technological processes developed for an efficient use of SMA-based actuators embedded in smart structures tailored to astronomical instrumentation. In particular the analysis of the interface with the host material. Some possible modeling approaches to the actuators behavior will be addressed taking into account trade-offs between detailed analysis and overall performance prediction as a function of the computational time. We developed a combined Finite Element and Raytracing analysis devoted to a parametric performance predictions of a SMA based substrate applicable to deformable mirrors. We took in detail into account the possibility to change the focal length of the mirror keeping a satisfactory image quality. Finally a possible approach with some preliminary results for an efficient control system for the strongly non-linear SMA actuators will be presented.

  7. Smart structures for deformable mirrors actuated by piezocomposites

    NASA Astrophysics Data System (ADS)

    Riva, M.; Di Sanzo, D.; Airoldi, A.; Sala, G.; Zerbi, F. M.

    2010-07-01

    Deformable mirrors actuated by smart structures are promising devices for next generation astronomical instrumentation. The piezo technology and in particular piezoceramics is currently among the most investigated structural materials. Fragility makes Ceramic materials extremely vulnerable to accidental breakage during bonding and embedding processes and limits the ability to comply to curved surfaces (typical of mirrors). Moreover lead-based piezoceramics typically have relevant additional masses. To overcome these limitations, we studied the applicability of composites piezoceramics actuators to smart structures with these purposes. We developed a combined Finite Element and Raytracing analysis devoted to a parametric performance predictions of a smart Piezocomposites based substrate applicable to deformable mirrors. We took in detail into account the possibility to change the focal length of the mirror keeping a satisfactory image quality. In this paper we present a specific type of Piezocomposite actuators and numerical/experimental techniques purposely developed to integrate them into smart structures. We evaluated numerical and experimental results comparing bonding and embedding of these devices.

  8. Actuating the deformable mirror: a multiphysics design approach

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Ciro; Biasi, Roberto; Gallieni, Daniele; Riccardi, Armando; Spairani, Roberto

    2008-07-01

    The crucial component of an Adaptive Optics unit is the actuation system of the deformable mirror. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Due to the extreme accuracy required by the optics, a proper design of the actuator is essential in order to fulfill the specifications. In the device, mechanics, electrostatics, electromagnetism and thermal effects are mutually related, and they have to be properly considered in the design phase. This paper analyzes such a multiphysics behavior of the actuation system, providing an inter-disciplinary approach able to define the optimized device: a capacitive sensor measuring the displacements at the nanometer accuracy and a closed loop linear motor delivering the requested force with the lowest possible power dissipation, in order to minimize the degrading of the optical waves propagation.

  9. Deformable mirror with combined piezoelectric and electrostatic actuators

    NASA Astrophysics Data System (ADS)

    Merkle, F.; Freischlad, K.; Reischmann, H.-L.

    1982-10-01

    An adaptive optics system with modal phase correction for reconstituting astronomical images passing through the atmosphere is described. An active mirror in a gimbal mount houses an electrostatic deformable membrane for the modal corrections. Piezoelectric actuators are attached behind the mirror for tilt correction. Wavefronts triggering the electrode detectors in the mirror also result in generation of a map of the wave-front errors. Compensating phase distributions for successive waves are calculated automatically by an expansion of the phase distortions into modes of a set of basis functions. Turbulence compensation is accomplished with Zernike polynomials if only a small number of modes is present, while Karhunen-Loeve functions serve for any number of modes. Phase aberrations are detected by diode arrays connected to amplifier tubes. Actual measurement of the wavefront phase is performed by a shearing interferometer and by use of an iterative algorithm to assay the intensity distribution of the image.

  10. Computation of Static Shapes and Voltages for Micromachined Deformable Mirrors with Nonlinear Electrostatic Actuators

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.; Hadaegh, F. Y.

    1996-01-01

    In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.

  11. Control and network system of force actuators for deformable mirror active optics in LAMOST

    NASA Astrophysics Data System (ADS)

    Zhang, Shengtao; Zhang, Zhenchao; Wang, You

    2007-12-01

    The reflecting Schmidt plate M A of LAMOST consists of 24 segmented hexagonal sub-mirrors. Each sub-mirror is 25mm thick and 1.1m in diagonal. There are 34 force actuators on the back of one sub-mirror which need to be controlled to offer precise load to create correct mirror deformation. This paper presents the control method and network configuration of force actuators for one sub-mirror. Master computer running Windows NT operation system and slave controllers running DOS operation system are connected together via Ethernet local area network (ELAN) by means of TCP/IP protocol. Adopting five slave controllers, 34 force actuators are combined into a distributed system. Master computer controls five slave controllers and five slave controllers operate 34 force actuators. Master computer communicates with slave controllers normally, which receives state of each force actuator from slave controllers and sends instructions to slave controllers via Ethernet LAN. Each slave controller operates 8 force actuators to offer correct load. Axial load capacity of force actuator is +/-150N (pull and push) with accuracy RMS <=0.05N. Force sensor is used as close-loop feedback apparatus to detect the micro load of the actuator.

  12. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  13. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    NASA Technical Reports Server (NTRS)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  14. Sub-nanometer flattening of 45 cm long, 45 actuator x-ray deformable mirror.

    PubMed

    Poyneer, Lisa A; McCarville, Thomas; Pardini, Tommaso; Palmer, David; Brooks, Audrey; Pivovaroff, Michael J; Macintosh, Bruce

    2014-06-01

    We have built a 45 cm long x-ray deformable mirror (XDM) of super-polished single-crystal silicon that has 45 actuators along the tangential axis. After assembly, the surface height error was 19 nm rms. With use of high-precision visible-light metrology and precise control algorithms, we have actuated the XDM and flattened its entire surface to 0.7 nm rms controllable figure error. This is, to our knowledge, the first sub-nanometer active flattening of a substrate longer than 15 cm.

  15. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field.

  16. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field. PMID:10883986

  17. Evaluation of control laws and actuator locations for control systems applicable to deformable astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.

    1973-01-01

    Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.

  18. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  19. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  20. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  1. A novel deformable mirror with curvature and tip/tilt control based on the spider actuator concept

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Button, Tim; Meggs, Carl; Michette, Alan; Pfauntsch, Slawka; James, Ady; Willis, Graham; Dunare, Camelia; Stevenson, Tom; Parkes, William

    2012-06-01

    The Smart X-Ray Optics (SXO) project comprises a UK-based consortium developing active/adaptive micro-structured optical arrays (MOAs). MOA devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels. Adaptability is achieved using a combination of piezoelectric actuators, which bend the edges of the silicon chip, and a spider structure, which forms a series of levers connecting the edges of the chip with the active area at the centre, effectively amplifying the bend radius. The spider actuation concept, in combination with deep silicon etching stopped close to the surface, can also be used to create deformable mirrors where the curvature and tip/tilt angles of the mirror can be controlled. Finite Element Analysis (FEA) modelling, carried out for the optimization of the spider MOA device, indicates that deformable mirrors with curvature varying from flat to 5cm ROC and control over the tip/tilt angles of the mirror of +/-3mrad could be achieved. Test spider structures, manufactured using a Viscous Plastic Processing Process for the PZT piezoelectric actuators and a single wet etch step using <111> planes in a (110) silicon wafer for both the silicon channels and the spider structure, have been bent to a radius of curvature smaller than 5 cm. This paper evaluates the spider MOA's concept as a means to achieve deformable mirrors with controllable ROC and control over the tip/tilt angles. FEA modelling results are compared with obtained characterization data of prototype structures. Finally, manufacturing and integration methods and design characteristics of the device, such its scalability, are also discussed.

  2. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  3. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  4. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  5. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  6. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  7. The actuator design and the experimental tests of a new technology large deformable mirror for visible wavelengths adaptive optics

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Ciro; Agapito, Guido; Arcidiacono, Carmelo; Carbonaro, Luca; Marignetti, Fabrizio; De Santis, Enzo; Biliotti, Valdemaro; Riccardi, Armando

    2012-07-01

    Recently, Adaptive Secondary Mirrors showed excellent on-sky results in the Near Infrared wavelengths. They currently provide 30mm inter-actuator spacing and about 1 kHz bandwidth. Pushing these devices to be operated at visible wavelengths is a challenging task. Compared to the current systems, working in the infrared, the more demanding requirements are the higher spatial resolution and the greater correction bandwidth. In fact, the turbulence scale is shorter and the parameter variation is faster. Typically, the former is not larger than 25 mm (projected on the secondary mirror) and the latter is 2 kHz, therefore the actuator has to be more slender and faster than the current ones. With a soft magnetic composite core, a dual-stator and a single-mover, VRALA, the actuator discussed in this paper, attains unprecedented performances with a negligible thermal impact. Pre-shaping the current required to deliver a given stroke greatly simplifies the control system, whose output supplies the current generator. As the inductance depends on the mover position, the electronics of this generator, provided with an inductance measure circuit, works also as a displacement sensor, supplying the control system with an accurate feed-back signal. A preliminary prototype, built according to the several FEA thermo-magnetic analyses, has undergone some preliminary laboratory tests. The results of these checks, matching the design results in terms of power and force, show that the the magnetic design addresses the severe specifications.

  8. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  9. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  10. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  11. Unimorph piezoelectric deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Rausch, P.; Verpoort, S.; Wittrock, U.

    2016-07-01

    We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC.

  12. Fabrication Methods for Adaptive Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio

    2013-01-01

    Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon

  13. Nanolaminate Mirrors With "Piston" Figure-Control Actuators

    NASA Technical Reports Server (NTRS)

    Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy

    2003-01-01

    Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.

  14. Deformable mirrors based on magnetic liquids

    NASA Astrophysics Data System (ADS)

    Laird, Phil R.; Borra, Ermanno F.; Bergamasco, Rosangela; Gingras, Julie; Truong, Long; Ritcey, Anna

    2004-10-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems such as multi-conjugate adaptive optics is driving the need for deformable mirrors with a large number of low cost actuators. Other applications require strokes larger than those readily available from conventional mirrors. Magnetically deformable liquid mirrors are a potential solution to both these problems. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We have demonstrated a reflective coating that is stable for more than 30 days with a reflectivity of 50% in the near infrared. Additional experiments indicate that MELLF coatings can provide near infrared reflectivity values in excess of 80%. We also report on recent response time measurements of liquid deformable mirrors. We have demonstrated liquid mirror actuators with slew rates of 800 μm/s, corresponding to an actuator bandwidth of approximately 40 Hz and 80 Hz for strokes of 10 μm and 5 μm respectively.

  15. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  16. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  17. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  18. Modeling electrostrictive deformable mirrors in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Hom, Craig L.; Dean, Peter D.; Winzer, Stephen R.

    2000-06-01

    Adaptive optics correct light wavefront distortion caused by atmospheric turbulence or internal heating of optical components. This distortion often limits performance in ground-based astronomy, space-based earth observation and high energy laser applications. The heart of the adaptive optics system is the deformable mirror. In this study, an electromechanical model of a deformable mirror was developed as a design tool. The model consisted of a continuous, mirrored face sheet driven with multilayered, electrostrictive actuators. A fully coupled constitutive law simulated the nonlinear, electromechanical behavior of the actuators, while finite element computations determined the mirror's mechanical stiffness observed by the array. Static analysis of the mirror/actuator system related different electrical inputs to the array with the deformation of the mirrored surface. The model also examined the nonlinear influence of internal stresses on the active array's electromechanical performance and quantified crosstalk between neighboring elements. The numerical predictions of the static version of the model agreed well with experimental measurements made on an actual mirror system. The model was also used to simulate the systems level performance of a deformable mirror correcting a thermally bloomed laser beam. The nonlinear analysis determined the commanded actuator voltages required for the phase compensation and the resulting wavefront error.

  19. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  20. Testing of thermally piezoelectric deformable mirror with buried functionality

    NASA Astrophysics Data System (ADS)

    Reinlein, C.; Appelfelder, M.; Goy, M.; Gebhardt, S.; Gutzeit, N.

    2014-03-01

    Laser-induced mirror deformation and thermal lensing in optical high power systems shall be compensated by a thermally-piezoelectric deformable mirror (DM). In our device, the laser-induced thermal lensing is compensated by heating of the DM as previously described with compound loading. We experimentally show the capability of this mirror for wavefront shaping of up to 6.2 kW laser power and power densities of 2 kW/cm2. The laser-induced defocussing of the membrane is compensated by mirror heating. We introduce a new mirror setup with buried heater and temperature sensor elements. Therewith, the compensation of laser-induced mirror deformation is possible within the same time scale. The piezoelectric stroke of the single actuators depends on their position on the membrane, and is not affected by the reflected laser power.

  1. Next-generation deformable mirror electronics

    NASA Astrophysics Data System (ADS)

    Barberio, Michael J.; Wagner, Karl

    2004-10-01

    Full-custom electronics have been designed to drive Xinetics deformable mirrors, for use with the PYRAMIR (Calar Alto) and LINC/NIRVANA (Large Binocular Telescope) AO instruments, under contract to the Max-Planck-Institut fur Astronomie (MPIA). Significant enhancements to the original 1998 design for ALFA (Calar Alto) have been incorporated, including an embedded 2.1 Gb/s fiber link, temperature-controlled bias voltage, and multiple tip-tilt control outputs. Each 7U chassis with integral power supplies can drive mirrors of up to 349 actuators, and may be cascaded to support larger mirrors. A customized 600 MHz 'C6415 DSP module was specified to minimize latency, with frame rates above 7.5 KHz demonstrated for the 349-actuator DM. Power op-amps with 0.38 W/channel quiescent dissipation were chosen to reduce heat load, while supporting full-power (60 Vpp) bandwidth to above 300 Hz. These subsystems were successfully integrated in Heidelberg during November, 2003. The engineering firm responsible for the design, Cambridge Innovations, has since been awarded two additional contracts for DM electronics, including a new full-custom design for AURA (Gemini Observatory) to drive multiple high-voltage CILAS piezo bimorph DMs.

  2. Design and fabrication of a continuous membrane deformable mirror

    NASA Astrophysics Data System (ADS)

    Hammer, Jay A.; Banish, Michele R.; Whitley, Michael R.; Hao, Zhili; Warren, Keith O.; Sanchez, Sharon; Harchanko, John S.

    2003-01-01

    Adaptive optics systems are used to maintain an optical system at its optimum performance through real time corrections of a wavefront. Deformable mirrors have traditionally been relatively large, expensive devices, suitable for systems such as large telescopes. The objective of the present work is to expand the range of systems that can employ adaptive optics by developing a small, low-cost MEMS deformable mirror. This deformable mirror uses a continuous membrane and has 61 actuators arranged in to approximate a circular pattern. Each actuator has an associated spring suspension, allowing it to push as well as pull on the membrane, producing locally convex or concave curvature. The folded springs are positioned so as to maximize the lateral stability. Maximum actuator displacement is six microns at less than 200 volts. The actuator resonant frequency, is greater than 10 kHz, allowing high-frequency updates of the mirror shape. To operate at high speed, the device must be sealed in a low-pressure environment. Each microactuator uses a vertical comb drive to achieve large travel at a reasonable voltage. The continuous membranes are made of silicon or silicon nitride. Both the actuator and membrane are fabricated with bulk micromachine process technologies. The design targets laser based communication specifications and medical imaging applications.

  3. Unimorph deformable mirror for space telescopes: environmental testing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2016-01-25

    We have developed and manufactured a unimorph deformable mirror for space telescopes based on piezoelectric actuation. The mirror features 44 actuators, has an aperture of 50 mm, and is designed to reproduce low-order Zernike modes with a stroke of several tens of μm. We assessed the space compliance by operating the mirror in thermal vacuum, and exposing it to random and sinusoidal vibrations, as well as to ionizing irradiation. Additionally, the operational life time and the laser power handling capability were tested. The mirror was successfully operated in thermal vacuum at 100 K. We report on the conducted tests and the methods used to evaluate the mirror's performance, and discuss the compliance with the demanded requirements. PMID:26832532

  4. Unimorph deformable mirror for space telescopes: environmental testing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2016-01-25

    We have developed and manufactured a unimorph deformable mirror for space telescopes based on piezoelectric actuation. The mirror features 44 actuators, has an aperture of 50 mm, and is designed to reproduce low-order Zernike modes with a stroke of several tens of μm. We assessed the space compliance by operating the mirror in thermal vacuum, and exposing it to random and sinusoidal vibrations, as well as to ionizing irradiation. Additionally, the operational life time and the laser power handling capability were tested. The mirror was successfully operated in thermal vacuum at 100 K. We report on the conducted tests and the methods used to evaluate the mirror's performance, and discuss the compliance with the demanded requirements.

  5. Large aperture nanocomposite deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  6. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  7. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  8. Finite element analysis of low-cost membrane deformable mirrors for high-order adaptive optics

    NASA Astrophysics Data System (ADS)

    Winsor, Robert S.; Sivaramakrishnan, Anand; Makidon, Russell B.

    1999-10-01

    We demonstrate the feasibility of glass membrane deformable mirror (DM) support structures intended for very high order low-stroke adaptive optics systems. We investigated commercially available piezoelectric ceramics. Piezoelectric tubes were determined to offer the largest amount of stroke for a given amount of space on the mirror surface that each actuator controls. We estimated the minimum spacing and the maximum expected stroke of such actuators. We developed a quantitative understanding of the response of a membrane mirror surface by performing a Finite Element Analysis (FEA) study. The results of the FEA analysis were used to develop a design and fabrication process for membrane deformable mirrors of 200 - 500 micron thicknesses. Several different values for glass thickness and actuator spacing were analyzed to determine the best combination of actuator stoke and surface deformation quality. We considered two deformable mirror configurations. The first configuration uses a vacuum membrane attachment system where the actuator tubes' central holes connect to an evacuated plenum, and atmospheric pressure holds the membrane against the actuators. This configuration allows the membrane to be removed from the actuators, facilitating easy replacement of the glass. The other configuration uses precision bearing balls epoxied to the ends of the actuator tubes, with the glass membrane epoxied to the ends of the ball bearings. While this kind of DM is not serviceable, it allows actuator spacings of 4 mm, in addition to large stroke. Fabrication of a prototype of the latter kind of DM was started.

  9. Unimorph deformable mirror for space telescopes: design and manufacturing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2015-07-27

    Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror. PMID:26367605

  10. Unimorph deformable mirror for space telescopes: design and manufacturing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2015-07-27

    Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror.

  11. Mounting with compliant cylinders for deformable mirrors.

    PubMed

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  12. Ferrofluid based deformable mirrors: a new approach to adaptive optics using liquid mirrors

    NASA Astrophysics Data System (ADS)

    Laird, Phil R.; Bergamasco, R.; Bérubé, Vincent; Borra, Ermanno F.; Gingras, Julie; Ritcey, Anna-Marie R.; Rioux, Myriam; Robitaille, Nathalie; Thibault, Simon; Vieira da Silva, L., Jr.; Yockell-Lelièvre, Helene

    2003-02-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  13. Adaptive PVDF piezoelectric deformable mirror system.

    PubMed

    Sato, T; Ishida, H; Ikeda, O

    1980-05-01

    An adaptive mirror system whose surface deforms smoothly according to the desired curve has been made of polyvinylidene fluoride (PVDF) piezoelectric film and laminar glass plate. One surface of the glass plate was evaporated with silver, and this side was used as the mirror surface. A PVDF film, whose shape was determined by the deformation curve, was pasted tightly on the other surface. The mirror deforms smoothly along this curve with the application of a single voltage to the film. Holographic filter and feedback were lso considered to improve the static and dynamic characteristics. Typically, deformation along ax(2)+bx(3) was obtained. PMID:20221054

  14. Development of a novel actuator concept for position control of segmented mirrors of ELT

    NASA Astrophysics Data System (ADS)

    Janssen, H.; Geurink, R.; Teuwen, M.; v. Bree, B.

    2006-06-01

    Currently, a number of astrophysical institutes all over the world are working on the design of Extremely Large Telescopes (ELT). Due to the enormous size of the primary mirror these telescopes make use of segmented mirrors. These segments have to be positioned with respect to each other with nanometer accuracy in spite of all kind of external disturbances such as wind loads, thermal loads, deformation of the base frame, varying orientation with respect to the field of gravity, etc. Janssen Precision Engineering (JPE) developed a revolutionary position actuator called the HiPAC which is able to fulfill the demanding requirements for this kind of actuators. The actuator is based on an integrated system of a pneumatic actuator, an electric voice coil and smart control strategy and has the following features: high positioning accuracy performance due to play-free and frictionless actuation; high reliability and maintenance free operation due to flexure-based frictionless guiding; system behavior is constant in time, because no parts affected by wear are used in the actuator; low cost, because no highly accurate machined parts required to reach high end performance; the position actuator acts as an integrated vibration isolator which isolates the segmented mirrors from external vibrations induced in the telescope frame; In this paper the design, simulation and measurements of the HiPAC actuator will be presented.

  15. Development of a novel actuator concept for position control of segmented mirrors of ELT

    NASA Astrophysics Data System (ADS)

    Janssen, H.; Geurink, R.; Teuwen, M.; v. Bree, B.

    2008-07-01

    Currently, a number of astrophysical institutes all over the world are working on the design of Extremely Large Telescopes (ELT). Due to the enormous size of the primary mirror these telescopes make use of segmented mirrors. These segments have to be positioned with respect to each other with nanometer accuracy in spite of all kind of external disturbances such as wind loads, thermal loads, deformation of the base frame, varying orientation with respect to the field of gravity, etc. Janssen Precision Engineering (JPE) developed a revolutionary position actuator called the HiPAC which is able to fulfill the demanding requirements for this kind of actuators. The actuator is based on an integrated system of a pneumatic actuator, an electric voice coil and smart control strategy and has the following features: high positioning accuracy performance due to play-free and frictionless actuation; high reliability and maintenance free operation due to flexure-based frictionless guiding; system behavior is constant in time, because no parts affected by wear are used in the actuator; low cost, because no highly accurate machined parts required to reach high end performance; the position actuator acts as an integrated vibration isolator which isolates the segmented mirrors from external vibrations induced in the telescope frame; In this paper the design, simulation and measurements of the HiPAC actuator will be presented.

  16. Actuation profiles to form Zernike shapes with a thermal active mirror.

    PubMed

    Saathof, Rudolf; Schutten, Gerrit Jan M; Spronck, Jo W; Munnig Schmidt, Robert H

    2015-01-15

    In EUV lithography, the absorption of EUV light causes wavefront distortion that deteriorates the imaging process. An adaptive optics system has been developed ["Adaptive optics to counteract thermal aberrations," Ph.D. thesis (TU Delft, 2013)] to correct for this distortion using an active mirror (AM). This AM is thermally actuated by absorbing an irradiance profile exposed by a projector onto the AM. Due to thermal conductivity and bimorph-like deformation of the AM, the relation between actuation profile and actuated shape is not trivial. Therefore, this Letter describes how actuation profiles are obtained to generate Zernike shapes. These actuation profiles have been obtained by a finite-element-based optimization procedure. Furthermore, these actuation profiles are exposed to the AM, and the resulting deformations are measured. This Letter shows actuated Zernike shapes with purities higher than 0.9 for most actuation profiles. In addition, superimposed actuation profiles resulted in superimposed Zernike shapes, showing linearity needed to apply modal wavefront correction. Therefore, this approach can be used to obtain actuation profiles for this AM concept, which can be used for highly precise wavefront correction. PMID:25679845

  17. A new concept for large deformable mirrors for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Andersen, Torben; Owner-Petersen, Mette; Ardeberg, Arne; Korhonen, Tapio

    2006-06-01

    For extremely large telescopes, there is strong need for thin deformable mirrors in the 3-4 m class. So far, feasibility of such mirrors has not been demonstrated. Extrapolation from existing techniques suggests that the mirrors could be highly expensive. We give a progress report on a study of an approach for construction of large deformable mirrors with a moderate cost. We have developed low-cost actuators and deflection sensors that can absorb mounting tolerances in the millimeter range, and we have tested prototypes in the laboratory. Studies of control laws for mirrors with thousands of sensors and actuators are in good progress and simulations have been carried out. Manufacturing of thin, glass mirror blanks is being studied and first prototypes have been produced by a slumping technique. Development of polishing procedures for thin mirrors is in progress.

  18. MEMS Deformable Mirrors for Adaptive Optics in Astronomical Imaging

    NASA Astrophysics Data System (ADS)

    Cornelissen, S.; Bierden, P. A.; Bifano, T.

    We report on the development of micro-electromechanical (MEMS) deformable mirrors designed for ground and space-based astronomical instruments intended for imaging extra-solar planets. Three different deformable mirror designs, a 1024 element continuous membrane (32x32), a 4096 element continuous membrane (64x64), and a 331 hexagonal segmented tip-tilt-piston are being produced for the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) program, the Gemini Planet Imaging Instrument, and the visible nulling coronograph developed at JPL for NASA's TPF mission, respectively. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that was pioneered at Boston University and has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors will have an active aperture of up to 25.2mm consisting of thin silicon membrane mirror supported by an array of 1024 to 4096 electrostatic actuators exhibiting no hysteresis and sub-nanometer repeatability. The continuous membrane deformable mirrors, coated with a highly reflective metal film, will be capable of up to 4μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. The segmented device will have a range of motion of 1um of piston and a 600 arc-seconds of tip/tilt simultaneously and a surface finish of 1nm RMS. The individual mirror elements in this unique device, are designed such that they will maintain their flatness throughout the range of travel. New design features and fabrication processes are combined with a proven device architecture to achieve the desired performance and high reliability. Presented in this paper are device characteristic and performance results of these devices.

  19. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  20. A new deformable mirror architecture for coronagraphic instrumentation

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Lemmer, Aaron; Eldorado Riggs, A. J.

    2016-07-01

    Coronagraphs are a promising solution for the next generation of exoplanet imaging instrumentation. While a coronagraph can have very good contrast and inner working angle performance, it is highly sensitive to optical aberrations. This necessitates a wavefront control system to correct aberrations within the telescope. The wavefront requirements and desired search area in a deformable mirror (DM) demand control of the electric field out to relatively high spatial frequencies. Conventional wisdom leads us to high stroke, high actuator density DMs that are capable of reaching these spatial frequencies on a single surface. Here we model a different architecture, where nearly every optical surface, powered or unpowered, is a controllable element. Rather than relying on one or two controllable surfaces for the success of the entire instrument the modeled instrument consists of a series of lower actuator count deformable mirrors to achieve the same result by leveraging the conjugate planes that exist in a coronagraphic instrument. To make such an instrument concept effective the imaging optics themselves must become precision deformable elements, akin to the deformable secondary mirrors at major telescope facilities. Such a DM does not exist commercially; all current DMs, while not necessarily incapable of carrying optical power, are manufactured with flat nominal surfaces. This simplifies control and manufacturing, but complicates their integration into an optical system because there is oftentimes a need to pack several into collimated space. Furthermore, high actuator count DMs cannot approximate low order shapes such as focus or tip-tilt without significant mid-spatial frequency residuals, which is not acceptable for a coronagraphic high-contrast imager. The ability to integrate the wavefront control system into the nominal coronagraphic optical train simplifies packaging, reduces cost and complexity, and increases optical throughput of any coronagraphic instrument

  1. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2016-04-01

    The Naval Postgraduate School's segmented mirror telescope (SMT) was developed using prototype silicon carbide active hybrid mirror technology to demonstrate lower cost and rapid manufacture of primary mirror segments for a space telescope. The developmental mirror segments used too few actuators limiting the ability to adequately correct the surface figure error. To address the unintended shortfall of the developmental mirrors, a deformable mirror is added to the SMT and control techniques are developed. The control techniques are similar to woofer-tweeter adaptive optics, where the SMT segment represents the woofer and the deformable mirror represents the tweeter. The optical design of an SMT woofer-tweeter system is presented, and the impacts of field angle magnification on the placement and size of the deformable mirror are analyzed. A space telescope woofer-tweeter wavefront control technique is proposed using a global influence matrix and closed-loop constrained minimization controller. The control technique simultaneously manipulates the woofer and tweeter mirrors. Simulation and experimental results demonstrate a significant improvement in wavefront error of the primary mirror and the control technique shows significant wavefront error improvement compared to sequentially controlling the woofer and tweeter mirrors.

  2. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  3. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.

  4. HIGH-CONTRAST IMAGING VIA MODAL CONVERGENCE OF DEFORMABLE MIRROR

    SciTech Connect

    Wang Feiling

    2012-06-01

    For extremely high contrast imaging, such as direct observation of faint stellar companions, an adaptive optics system is required to produce low-halo and low-speckle regions in the focal plane. A method for deformable mirror control is proposed to achieve this goal. The method relies on a modal convergence of the deformable mirror driven by a focal-plane metric. The modal sets are derived from the Walsh functions. The Walsh-function modes serve two purposes: the expansion of the actuator displacements and the expansion of the phase functions. Taking advantage of the unique properties of the modal functions, a universal control algorithm is devised for the realization of high-contrast focal planes with and without the help of conventional coronagraphy. Numerical modeling is conducted to simulate complete imaging systems under various scenarios. It is shown that the proposed method reliably produces high-contrast focal planes using either a segmented or a membrane mirror. In the presence of random aberration the method is shown to be able to maintain high-contrast focal planes. Requiring neither retrieval of electric fields nor detailed knowledge of the deformable mirrors, this technique may allow high-contrast imaging in real time.

  5. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  6. Fabrication processes for MEMS deformable mirrors in the next generation telescope instruments

    NASA Astrophysics Data System (ADS)

    Diouf, Alioune

    This dissertation advances three critical technology areas at the frontier of research for micro electro-mechanical systems (MEMS) deformable minors (DMs) needed for next generation telescopes (NGTs). High actuator-count MEMS deformable minors are needed for future ground-based large astronomical telescopes. Scaling up the current MEMS DMs to unprecedented numbers of independent actuators---up to 10,000 on a single DM---will require new electrical connection architecture for the actuators in order to replace the wire-bonded scheme that has been used to date. A through-wafer via interconnection fabrication process for MEMS DMs is developed to offer a path to transform the frontier of high actuator count MEMS micromirrors. In a class of NGTs instrument known as the Multi-Object Adaptive Optics (MOAO), the correction made by the DM of the wavefront phase error over the entire telescope field view is not accessible to the sensing unit. To achieve compensation, precise, single step "open-loop" commands must be developed for the DM. Due to the nonlinear relationship between applied voltage and actuation displacement at each actuator, and the mechanical coupling among actuators through the mirror membrane, such open-loop control is a formidable task. A combination of mirror surface modeling and sparse actuator empirical calibration is used to demonstrate open-loop control of MEMS deformable minors to the accuracy of closed-loop control over the entire available DM stroke. Shapes at the limit of achievable minor spatial frequencies with up to 2.5microm amplitudes have been achieved within 20nm RMS error accuracy of closed-loop control. The calibration of a single actuator to be used for predicting shapes results in an additional 14nm RMS surface error compared to parallel calibration of all actuators in the deformable minor. The ubiquitous reflective coatings for MEMS deformable minors are gold and aluminum. Emerging adaptive optics application require broadband optical

  7. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  8. Miniature non-mechanical zoom camera using deformable MOEMS mirrors

    NASA Astrophysics Data System (ADS)

    Kaylor, Brant M.; Wilson, Christopher R.; Greenfield, Nathan J.; Roos, Peter A.; Seger, Eric M.; Moghimi, Mohammad J.; Dickensheets, David L.

    2012-03-01

    We present a miniature non-mechanical zoom camera using deformable MOEMS mirrors. Bridger Photonics, Inc. (Bridger) in collaboration with Montana State University (MSU), has developed electrostatically actuated deformable MEMS mirrors for use in compact focus control and zoom imaging systems. Applications including microscopy, endomicroscopy, robotic surgery and cell-phone cameras. In comparison to conventional systems, our MEMS-based designs require no mechanically moving parts. Both circular and elliptical membranes are now being manufactured at the wafer level and possess excellent optical surface quality (membrane flatness < λ/4). The mirror diameters range from 1 - 4 mm. For membranes with a 25 μm air gap, the membrane stroke is 10 μm. In terms of the optical design, the mirrors are considered variable power optical elements. A device with 2 mm diameter and 10 μm stroke can vary its optical power over 40 diopters or 0.04mm∧(-1). Equivalently, this corresponds to a focal length ranging from infinity to 25 mm. We have designed and demonstrated a zoom system using two MOEMS elements and exclusively commercial off-the-shelf optical components to achieve an optical zoom of 1.9x with a 15° full field of view. The total optical track length of the system is 36 mm. The design is approximately 30 mm x 30 mm x 20 mm including the optomechanical housing and image sensor. With custom optics, we anticipate achieving form factors that are compatible with incorporation into cell phones.

  9. Modeling of microelectromechanical systems deformable mirror diffraction grating

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Pluzhnik, Eugene; Belikov, Ruslan

    2016-07-01

    Model-based wavefront control methods such as electric field conjugation require accurate optical propagation models to create high-contrast regions in the focal plane using deformable mirrors (DMs). Recently, it has been shown that it is possible to exceed the controllable outer-working angle imposed by the Nyquist limit based on the number of actuators by utilizing a diffraction grating. The print-through pattern on MEMS-based DMs formed during the fabrication process creates both an amplitude and a phase diffraction grating that can be used to enable Super-Nyquist wavefront control. Using interferometric measurements of a DM-actuator, we develop a DM-diffraction grating model. We compare the total energy enclosed in the first diffraction order due to the phase, amplitude, and combined phase-amplitude gratings with laboratory measurements.

  10. Hysteresis Compensation for a Piezo Deformable Mirror - Poster Paper

    NASA Astrophysics Data System (ADS)

    Song, H.; Fraanje, R.; Schitter, G.; Verhaegen, M.; Vdovin, G.

    2008-01-01

    The field of adaptive optics (AO) has received rapidly increasing attention in recent years, the intrinsic hysteresis of the piezo deformable mirror (DM) imposes a limit in the accuracy when the stroke of the piezo-actuator is on the order of micrometers. This contribution discusses the hysteresis compensation of a piezo DM by an inverse Preisach hysteresis model. The inverse Preisach hysteresis model is identified from the measured input-output data with a neural network and with a hinging hyperplane based approach. Experimental results demonstrate that hysteresis of the piezo-actuator can be reduced from 20% to about 6% and 9% by the neural network and by the hinging hyperplanes, respectively.

  11. Deformable mirror design of Subaru LGSAO system

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Arimoto, Nobuo; Colley, Stephen; Eldred, Michael; Kane, Thomas; Hattori, Masayuki; Saito, Yoshihiko; Kamata, Yukiko; Kobayashi, Naoto; Minowa, Yosuke; Goto, Miwa; Takato, Naruhisa

    2004-10-01

    As an upgrade plan of Subaru adaptive optics facility, laser-guide-star adaptive-optics (LGSAO) project is on going. One of key components of the project is a deformable mirror (DM). The DM for LGSAO is a bimorph type of PZT with 188 control elements. The specification of design is presented together with the analysis of stroke and vibration properties by FEM.

  12. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  13. Micro-flex mirror and instability actuation technique

    SciTech Connect

    Garcia, E.J.

    1997-12-01

    This paper reports on the design and fabrication of a surface micromachined mirror system which is capable of producing the required moments to rotate a mirror structure out of the plane of fabrication. The planar structures created by surface micromachining present difficulties with developing a sufficient moment to move structures out of the x-y plane when actuated by those same planar structures. This is due to the short moment arms (in thickness direction z) that can be created in the fabrication process. The instability actuation technique reported here has general application to moving 2-dimensional structures up and out of the plane of their original fabrication. This technique can be applied to build truly 3-dimensional structures from a nearly 2-dimensional fabrication process. Surface micromachining can now be considered a 3-dimensional process where 3-dimensional structures are built by raising up structures by the instability actuation technique and making appropriate mechanical interconnections.

  14. Demonstration of a 17 cm robust carbon fiber deformable mirror for adaptive optics

    SciTech Connect

    Ammons, S M; Hart, M; Coughenour, B; Romeo, R; Martin, R; Rademacher, M

    2011-09-12

    Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is {approx}43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20 C and 33 nm RMS at -5 C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.

  15. Thermomechanical characterization of a membrane deformable mirror.

    PubMed

    Morse, Kathleen A; McHugh, Stuart L; Fixler, Jeff

    2008-10-10

    A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 degrees C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 degrees C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 degrees C.

  16. Performance of the deformable mirror for Subaru LGSAO

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Bouvier, Aurelien; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Hattori, Masayuki; Saito, Yoshihiko; Itoh, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras

    2006-06-01

    The performance of a deformable mirror with 188 electrodes is reported in this paper. The deformable mirror has been manufactured by CILAS for a new adaptive optics system at Subaru Telescope equipped with laser-guide-star. The type of deformable mirror is bimorph PZT with the blank diameter of 130 mm (beam size 90 mm).

  17. Dual-use bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, M. S.; Laycock, L. C.; Bagshaw, J. M.; Rowe, D.

    2005-11-01

    Adaptive Optics (AO) is a critical underpinning technology for future optical countermeasures, laser delivery, target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. AO is also well established in ground based astronomy, and is finding applications in free space optical communications and ophthalmology. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS ATC is developing multi-element Deformable Bimorph Mirrors (DBMs) for such applications. A traditional bimorph deformable mirror uses a set of edge electrodes outside the active area in order to meet the required boundary conditions for the active aperture. This inflicts a significant penalty in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. We have devised a number of novel mounting arrangements that reduce dead space and thus provide a much improved trade-off between bandwidth and stroke. These schemes include a novel method for providing vertical displacement at the periphery of the aperture, a method for providing a continuous compliant support underneath the bimorph mirror, and a method for providing a three point support underneath the bimorph. In all three cases, there is no requirement for edge electrodes to provide the boundary conditions, resulting in devices of much higher bandwidth. The target is to broaden the use of these types of mirror beyond the current limits of either low order/low bandwidth, to address the high order, high bandwidth systems required by long range, horizontal path applications. This paper will discuss the different mirror designs, and present experimental results for the most recently assembled mirrors.

  18. Thermally Actuated Primary Mirror for Space Exoplanet Imaging

    NASA Astrophysics Data System (ADS)

    Angel, J. R.; Kang, T.; Cuerden, B.; Stahl, P.; Guyon, O.

    2007-05-01

    Figure correction by thermal actuation of telescope primary mirrors will be valuable for space telescopes aimed at very high contrast imaging. It is planned that the primary mirror of TOPS (Telescope to Observe Planetary Systems) will be made with this technology. TOPS will use phase induced intensity apodization (PIAA, Guyon et al, 2003-2007) to obtain very high suppression of diffracted light at very close inner working angle. TOPS II, a scaled-up version with a 2 m primary would readily detect earth-like planets in the habitable zone of nearby stars, provided low order wavefront errors are very accurately controlled. This is best done at the primary, to avoid propagation effects. The correction concept relies on the low but finite thermal expansion of honeycomb mirrors made from fused silica, a material commonly used for precision lightweight space optics. The mirror will be figured for the highest accuracy passive figure. The residual low order errors with likely few nm amplitude will be sensed on-orbit and nulled out by slightly varying the temperature of the back faceplate and individual rib elements. Resistive heating will be balanced in a servo control loop against radiative loss to cold fingers inserted in each honeycomb cell. Preliminary finite element models indicate that, for a mirror with n cells, up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. For a honeycomb test mirror of borosilicate glass interferometric measurements show a single cell influence function with 300 nm stroke and 5 minute time constant is readily achieved. As the next step, it is planned that full actuation of all cells of a prototype mirror will be undertaken at MSFC, leading toward a 2 m flight demonstrator.

  19. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  20. Test results for an AOA-Xinetics grazing incidence x-ray deformable mirror

    NASA Astrophysics Data System (ADS)

    Lillie, Charles; Egan, Richard; Landers, Franklin; Cavaco, Jeffrey; Ezzo, Kevin; Khounsary, Ali

    2014-09-01

    X-ray telescopes use grazing incidence mirrors to focus X-ray photons from celestial objects. To achieve the large collecting areas required to image faint sources, thousands of thin, doubly curved mirrors are arranged in nested cylindrical shells to approximate a filled aperture. These mirrors require extremely smooth surfaces with precise figures to provide well-focused beams and small image spot sizes. The Generation-X telescope proposed by SAO would have a 12-meter aperture, a 50 m2 collecting area and 0.1 arc-second spatial resolution. This resolution would be obtained by actively controlling the mirror figure with piezoelectric actuators deposited on the back of each 0.4 mm thick mirror segment. To support SAO's Generation-X study, Northrop Grumman used internal funds to look at the feasibility of using Xinetics deformable mirror technologies to meet the Generation-X requirements. We designed and fabricated two 10 x 30 cm Platinum-coated silicon mirrors with 108 surface-parallel electrostrictive Lead Magnesium Niobate (PMN) actuators bonded to the mirror substrates. These mirrors were tested at optical wavelengths by Xinetics to assess the actuator's performance, but no funds were available for X-ray tests. In 2013, after receiving an invitation to evaluate the mirror's performance at Argonne National Laboratory, the mirrors were taken out of storage, refurbished, retested at Xinetics and transported to ANL for metrology measurements with a Long Trace Profilometer, a Fizeau laser interferometer, and X-ray tests. This paper describes the development and testing of the adaptive x-ray mirrors at AOAXinetics. Marathe, et al, will present the results of the tests at Argonne.

  1. Payload characterization for CubeSat demonstration of MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Marinan, Anne; Cahoy, Kerri; Webber, Matthew; Belikov, Ruslan; Bendek, Eduardo

    2014-08-01

    Coronagraphic space telescopes require wavefront control systems for high-contrast imaging applications such as exoplanet direct imaging. High-actuator-count MEMS deformable mirrors (DM) are a key element of these wavefront control systems yet have not been flown in space long enough to characterize their on-orbit performance. The MEMS Deformable Mirror CubeSat Testbed is a conceptual nanosatellite demonstration of MEMS DM and wavefront sensing technology. The testbed platform is a 3U CubeSat bus. Of the 10 x 10 x 34.05 cm (3U) available volume, a 10 x 10 x 15 cm space is reserved for the optical payload. The main purpose of the payload is to characterize and calibrate the onorbit performance of a MEMS deformable mirror over an extended period of time (months). Its design incorporates both a Shack Hartmann wavefront sensor (internal laser illumination), and a focal plane sensor (used with an external aperture to image bright stars). We baseline a 32-actuator Boston Micromachines Mini deformable mirror for this mission, though the design is flexible and can be applied to mirrors from other vendors. We present the mission design and payload architecture and discuss experiment design, requirements, and performance simulations.

  2. Characterization of vibrating shape of a bimorph deformable mirror

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Minowa, Yosuke; Hattori, Masayuki; Watanabe, Makoto; Hayano, Yutaka; Itoh, Megru; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Guyon, Olivier; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras

    2008-07-01

    Actual measurement of vibrating shape of a bimorph deformable mirror is presented to discuss the characteristics of resonance. Understanding the vibration properties of a bimorph deformable mirror is a key issue to overcome resonance problem, a major drawback of this type of deformable mirror, and to make full use of its advantages. Two-dimensional vibrating shape of the deformable mirror surface, not only at a point, is essential to figure out the resonance behavior. The results are informative for improvement of mechanical design or control software.

  3. Unimorph-type deformable mirror for cryogenic telescopes

    NASA Astrophysics Data System (ADS)

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Kinast, Jan

    2014-07-01

    Deformable mirrors can be used in cryogenic instruments to compensate for temperature-induced deformations. A unimorph-type deformable mirror consists of a mirror substrate and a piezoelectric layer bonded on substrates rear surface. A challenge in the design of the deformable mirror is the lack of knowledge about material properties. Therefore, we measured the coefficient of thermal expansion (CTE) of the substrate material TiAl6V4 between 295 K and 86 K. The manufactured mirror is characterized by an adaptive optical measurement setup in front of a test cryostat. The measured mirror deformations are feedback into a finite element model to calculate the CTE of the piezoelectric layer. We compare our obtained results to other published CTE-values for the piezoelectric material PIC151.

  4. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  5. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror.

    PubMed

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system.

  6. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror.

    PubMed

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  7. Prototype Small Footprint Amplifier for Piezoelectric Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Caputa, Kris; Herriot, Glen; Niebergal, Joel; Zielinski, Adam

    2011-09-01

    AO subsystems of the ELT observatories will incorporate deformable mirrors with an order of magnitude larger number of piezoelectric actuators than the AO systems currently deployed. Simply scaling up the drive electronics that are presently available commercially would substantially drive up the AO cost, pose unacceptably high demands for the supply power and heat dissipation, and occupy large physical volume. We have set out to prototype a high voltage amplifier that is compact enough to allow packaging 100 amplifier channels on a single 6U Eurocard with the goal to have a DM drive channel density of 1200 per 6U VME crate. Individual amplifier circuits should be driven by a multichannel A/D converter, consume no more than 0.5W from the +/-400V power supply, be slew rate limited in hardware, and be short-circuit protected. The component cost should be an order of magnitude less than the integrated circuit high voltage amplifiers currently on the market. We started out with modeling candidate circuits in SPICE, then built physical prototypes using inexpensive off the shelf components. In this paper we present experimental results of exposing several prototype circuits to both normal operating conditions and foreseeable fault conditions. The performance is evaluated against the AO requirements for the output range and bandwidth and the DM actuator safety requirements.

  8. Method of determining the thermal deformations of astronomical mirrors

    NASA Technical Reports Server (NTRS)

    Khablo-Grossvald, Y. G.

    1986-01-01

    Procedures are given for calculating thermal fields and associated thermal deformations in astronomical mirrors. A technique is described for thermal strain simulation when complex thermal fields develop in astronomical mirrors. Thermal strains in pyroceramic, quartz and pyrex mirrors can be effectively determined at temperatures ranging from -70 to 150 C by this technique.

  9. Patched Off-Axis Bending/Twisting Actuators for Thin Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Tzou, Horn-Sen

    2005-01-01

    Two documents present updates on thin-shell, adjustable, curved mirrors now being developed for use in spaceborne imaging systems. These mirrors at an earlier stage of development were reported in Nanolaminate Mirrors With Integral Figure-Control Actuators (NPO-30221), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 80. To recapitulate: These mirrors comprise metallic film reflectors on nanolaminate substrates that contain "in-plane" actuators for controlling surface figures with micron-level precision. The actuators are integral parts of the mirror structures, typically fabricated as patches that are bonded onto the rear (nonreflective) surfaces of the mirror shells. The current documents discuss mathematical modeling of mirror deflections caused by actuators arranged in unit cells distributed across the rear mirror surfaces. One of the documents emphasizes an actuator configuration in which a mirror surface is divided into hexagonal unit cells. Each unit cell contains four rectangular actuator patches in an off-axis cruciform pattern to induce a combination of bending and twisting. For deflections to reduce certain optical aberrations, it is found that, relative to other configurations, this configuration involves a smaller areal density of actuators.

  10. A large stroke magnetic fluid deformable mirror for focus control

    NASA Astrophysics Data System (ADS)

    Min, Ling-kun; Wu, Zhi-zheng; Huang, Ming-shuang; Kong, Xiang-hui

    2016-03-01

    A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film (MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror (MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.

  11. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  12. Concept and modeling analysis of a high fidelity multimode deformable mirror.

    PubMed

    Zhou, Chao; Li, Yun; Wang, Anding; Xing, Tingwen

    2015-06-10

    Conventional deformable mirrors (DM) cannot meet the requirement of aberration controlling for advanced lithography tools. This paper illustrates an approach using the property that deformation of a thin plate is similar to optical modes to realize a high fidelity multimode deformable mirror whose deformation has characteristics of optical aberration modes. The way to arrange actuators is also examined. In this paper, a 36-actuator deformable mirror is taken as an example to generate low-order Zernike modes. The result shows that this DM generates the fourth fringe Zernike mode (Z4) defocus, and primary aberration Z5-Z8 with an error less than 0.5%, generates the fifth-order aberration Z10-Z14, and generates the seventh-order aberration Z17-Z20 with an error less than 1.1%. The high fidelity replication of the Zernike mode indicates that the DM satisfies the demand of controlling aberrations corresponding to the first 20 Zernike modes in an advanced lithography tool. PMID:26192845

  13. Extreme Adaptive Optics Testbed: High Contrast Measurements with a MEMS Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Reza, L; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; Sommargren, G

    2005-08-16

    ''Extreme'' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. We use a simple optical design to minimize wavefront error and maximize the experimentally achievable contrast. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Previously, we have demonstrated RMS wavefront errors of <1.5 nm and a contrast of >10{sup 7} over a substantial region using a shaped pupil without a deformable mirror. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical-Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines for active wavefront control. Using the PSDI as the wavefront sensor we have flattened the deformable mirror to <1 nm within the controllable spatial frequencies and measured a contrast in the far field of >10{sup 6}. Consistent flattening required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  14. Characterization and annealing of high-stroke monolithic gold MEMS deformable mirror for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2011-03-01

    Adaptive optics for the next generation of extremely large telescopes (30 - 50 meter diameter primary mirrors) requires high-stroke (10 microns), high-order (100x100) deformable mirrors at lower-cost than current technology. Lowering the cost while improving the performance of deformable mirrors is possible using Micro-Electro-Mechanical Systems (MEMS) technology. In this paper the fabrication and testing of an array of high-stroke gold MEMS X-beam actuators attached to a continuous gold facesheet will be described. Both the actuator and the facesheet were fabricated monolithically in gold plated onto a thermally matched ceramic-glass substrate (WMS-15) using a high-aspect ratio fabrication process. Continuous facesheets that are deformed due to stress gradients have been annealed at high temperature and for an extended amount of time. The facesheet was flattened to the point where features such as etch holes and support post topography were easily distinguishable. Initial root-mean-square (RMS) topography at center of facesheet attached to a 16x16 X-beam actuator array with 1mm pitch was measured to be ~13.8μm. After annealing, the surface topography was measured to be ~1.0μm.

  15. A 1-metre Ni coated CFRP demonstrator for large deformable mirrors

    NASA Astrophysics Data System (ADS)

    Thompson, Samantha J.; Doel, Peter; Brooks, David; Strangwood, Martin

    We present results from our current project to develop an alternative substrate for large deformable mirrors, particularly with the European Extremely Large Telescope (E-ELT) in mind. Our mirror substrate consists of a carbon-fibre reinforced polymer (CFRP) core encapsulated in a thick (50µm) coating of nickel; the coating entirely covers the CFRP front, back and edges. The benefits of CFRP are: that it has high tensile strength, making it exceptionally resistant to breakage and able to withstand high inter-actuator forces; that it can be fabricated in large sections, allowing the production of a 2.6 m monolithic mirror, simplifying system control and eliminating additional diffraction/scattering introduced by segmented mirror systems; its low density (< 1800 kgm-3 for a Ni coated substrate). By the end of summer this year (2009) we aim to have constructed a 19 cm diameter fully actuated (37 piezo-stack actuators on a 29 mm triangular grid) prototype and a 1.0 m diameter substrate mounted on a static set of points to demonstrate the scalability of the technology. We discuss the processes involved in forming a Ni-CFRP mirror, the results obtained so far and a current status update.

  16. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  17. Modeling of Intellite 3 Layer Deformable Mirror

    SciTech Connect

    Papavasiliou, A

    2002-04-15

    This is a report on modeling of the Intellite three layer membrane mirror design. The goal of this project was to provide Intellite with a model that will allow them to design a mirror with confidence.

  18. Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Reinlein, Claudia; Appelfelder, Michael; Gebhardt, Sylvia; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2013-01-01

    This paper reports on the thermomechanical modeling and characterization of a micro-opto-electro-mechanical systems deformable mirror (DM). This unimorph DM offers a low-temperature cofired ceramic substrate with screen-printed piezoceramic actuators on its rear surface and a machined copper layer on its front surface. We present the DM setup, thermomechanical modeling, and hybrid fabrication. The setup of the DM is transferred into a thermomechanical model in ANSYS Multiphysics. The thermomechanical modeling of the DM evaluates and optimizes the mount material and the copper-layer thickness for the loading cases: homogeneous thermal loading and laser-loading of the mirror. Subsequently, the developed and theoretically optimized DM setup is experimentally validated. The homogeneous loading of the optimized design results in a membrane deformation with a rate of -0.2 μm K-1, whereas the laser loading causes an opposed change with a rate of -0.2 μm W-1. Therefore, the proposed mirror design is suitable to precompensate laser-generated mirror deformations by homogeneous thermal loading (heating). We experimentally show that a 35-K preheating of the mirror assembly compensates for an absorbed laser power of 1.25 W. Therefore, the novel compensation regime "compound loading" for the suppression of laser-induced deformations is developed and proven.

  19. Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror

    NASA Astrophysics Data System (ADS)

    Costa, Christopher; Bradu, Adrian; Rogers, John; Phelan, Pauline; Podoleanu, Adrian

    2015-01-01

    We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented.

  20. Actuating dielectric elastomers in pure shear deformation by elastomeric conductors

    SciTech Connect

    Wang, Yin; Chen, Baohong; Zhou, Jinxiong; Bai, Yuanyuan; Wang, Hong

    2014-02-10

    Pure shear experiments are commonly used to characterize dielectric elastomer (DE) material properties and to evaluate DE actuator/generator performance. It is increasingly important for many applications to replace conventional carbon grease electrodes with stretchable elastomeric conductors. We formulate a theory for DE with elastomeric conductors, synthesize transparent hydrogel as ionic conductors, and measure actuation of DE in pure shear deformation. Maximum 67% actuation strain is demonstrated. The theory agrees well with our measurement and also correlates well with reported experiments on DE with electronic conductors.

  1. Structure modulated electrostatic deformable mirror for focus and geometry control.

    PubMed

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

  2. Position actuators for the primary mirror of the W. M. Keck Telescope

    SciTech Connect

    Meng, J.D.; Franck, J.; Gabor, G.; Jared, R.C.; Minor, R.H.; Schaefer, B.

    1989-07-01

    The pistons and tilts of the 36 segments of the W. M. Keck Telescope primary mirror are under active control. The mechanical and electronic designs of the actuators used to achieve this control are described along with the performance of the actuators under a variety of tests. In use, the actuators will move in four-nanometer increments. This resolution and the accuracy of the actuator moves are adequate for stabilizing the figure of the primary mirror to the precision required for optical and infrared astronomy.

  3. VLT deformable secondary mirror: integration and electromechanical tests results

    NASA Astrophysics Data System (ADS)

    Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.

    2012-07-01

    The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.

  4. Static modeling for membrane deformable mirror used in high-power laser

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Chen, Haiqing; Li, Jie; Yu, Hongbin

    2007-01-01

    The technology of membrane deformable mirror (DMs) that has the potential to achieve comprehensive wavefront compensation and control in high power laser has been developed rapidly in recent years. Experimental results reveal that strong nonlinearity is induced to the deformation of DMs with respect to the square of input voltage when operating voltage is more than 120V. The nonlinear response and strong coupling effect of control channel in DMs make it difficult to obtain the desired mirror surface shapes. A test bed is built up to measure the deformation of DMs driven by specified voltages. An efficient nonlinear model of deformation with respect to input voltages is presented using a back propagation neural network (BPNN). Deformation due to arbitrary actuator voltages applied to actuators to correct wavefront aberration can be calculated directly with a higher precision using the BPNN model proposed. The residual relative error of the proposed model shows the improvement of accuracy of an order about 5 as compared to that of linear model, and with no significant increase of time consumption. A preliminary open-loop control experiment of laser wavefront compensation is performed to exam the validity of applying the proposed BPNN model in laser wavefront compensation application.

  5. Simulating wavefront correction via deformable mirrors at x-ray beamlines

    NASA Astrophysics Data System (ADS)

    Pardini, Tommaso; Poyneer, Lisa A.; Plinta, Audrey; Cavaco, Jeffrey L.; Pivovaroff, Michael J.

    2012-10-01

    Deformable mirrors (DMs) have been successfully used in astronomical adaptive optics at visible and near-infrared wavelengths, greatly reducing atmospheric-induced aberrations. Building upon the extensive techniques and methods developed for these applications, we propose to extend this capability to the soft and hard x-ray regime in order to take full advantage of the beam quality characteristic of new facilities such as the National Synchrotron Light Source (NSLS-II), and the Linac Coherent Light Source (LCLS). Achieving this goal challenges both current mirror manufacturing techniques and wavefront propagation modeling. Lawrence Livermore National Laboratory (LLNL), in collaboration with Northrop Grumman AOA Xinetics Inc., is currently developing an x-ray deformable mirror to correct for wave-front aberrations introduced along the beam path of a typical x-ray beamline. To model the expected performance of such a mirror, we have developed a simulation based on the wavefront propagation code PROPER. We will present the current implementation of the software, which models actuation of a deformable mirror and evaluates its effect on wavefront correction.

  6. Adaptive optics with a magnetic deformable mirror: applications in the human eye

    NASA Astrophysics Data System (ADS)

    Fernandez, Enrique J.; Vabre, Laurent; Hermann, Boris; Unterhuber, Angelika; Povazay, Boris; Drexler, Wolfgang

    2006-10-01

    A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

  7. An image stabilization optical system using deformable freeform mirrors.

    PubMed

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-01

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors. PMID:25599423

  8. An image stabilization optical system using deformable freeform mirrors.

    PubMed

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-15

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors.

  9. An Image Stabilization Optical System Using Deformable Freeform Mirrors

    PubMed Central

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-01

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors. PMID:25599423

  10. Thermal correction of deformations in a telescope mirror

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.

    1973-01-01

    Orbiting astronomical observatories have the potential for making observations far superior to those from earth-based mirrors. In order for this performance to be realized, the contour of the primary mirror must be very accurately controlled. A preliminary investigation of the use of thermally induced elastic strains for correcting axisymmetric deformations in space telescope mirrors has been presented. The relation between axial deformation and thermal inputs was determined by a finite difference solution of the equations for thin elastic shells. The use of this technique was demonstrated analytically on a beryllium paraboloid. This mirror had 10 equally spaced thermal inputs and results are presented which show the nature of the temperature distribution required to correct deformations due to an acceleration-type loading.

  11. Experimental evaluation of a positive-voltage-driven unimorph deformable mirror for astronomical applications

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Ma, Jianqiang; Mao, Yuxin; Liu, Ying; Li, Baoqing; Chu, Jiaru

    2015-11-01

    A modified low-cost unimorph deformable mirror (DM) driven only by positive voltages for atmospheric turbulence compensation is presented. The 214 patterned inner actuators generate convex deformations for aberration correction, while one outer ring actuator generates an overall concave bias. To evaluate the aberration correction capability of the proposed DM, the iterative reconstruction of Zernike aberrations and correction were performed in an adaptive optics test system. The experimental results indicate that the fabricated DM has an excellent aberration correction capability, particularly matching the first 20 term Zernike aberrations with the normalized residual root-mean-square (RMS) error <5%. Furthermore, the random atmospheric turbulence aberrations were simulated based on Karhunen-Loève coefficients and reconstructed using the fabricated DM. The simulative and experimental results show that the atmospheric turbulence aberrations can be steadily compensated with λ/40 (λ=2.2 μm) RMS residual error, indicating the prospect for atmospheric applications.

  12. Precision Linear Actuators for the Spherical Primary Optical Telescope Demonstration Mirror

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Pfenning, David

    2006-01-01

    The Spherical Primary Optical Telescope (SPOT) is an ongoing research effort at Goddard Space Flight Center developing wavefront sensing and control architectures for future space telescopes. The 03.5-m SPOT telescope primary mirror is comprise9 of six 0.86-m hexagonal mirror segments arranged in a single ring, with the central segment missing. The mirror segments are designed for laboratory use and are not lightweighted to reduce cost. Each primary mirror segment is actuated and has tip, tilt, and piston rigid-body motions. Additionally, the radius of curvature of each mirror segment may be varied mechanically. To provide these degrees of freedom, the SPOT mirror segment assembly requires linear actuators capable of actuators must withstand high static loads as they must support the mirror segment, which has a mass of -100 kg. A stepper motor driving a differential satellite roller screw was designed to meet these demanding requirements. Initial testing showed that the actuator is capable of sub-micron repeatability over the entire 6-mm range, and was limited by 100-200 nm measurement noise levels present in the facility. Further testing must be accomplished in an isolated facility with a measurement noise floor of <5 nm. Such a facility should be ready for use at GSFC in the early summer of 2006, and will be used to better characterize this actuator.

  13. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications.

    PubMed

    Wlodarczyk, Krystian L; Bryce, Emma; Schwartz, Noah; Strachan, Mel; Hutson, David; Maier, Robert R J; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Kirk, Katherine; Hand, Duncan P

    2014-02-01

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  14. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications

    SciTech Connect

    Wlodarczyk, Krystian L. Maier, Robert R. J.; Hand, Duncan P.; Bryce, Emma; Hutson, David; Kirk, Katherine; Schwartz, Noah; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Strachan, Mel

    2014-02-15

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  15. Concept, modeling, and performance prediction of a low-cost, large deformable mirror.

    PubMed

    Heimsten, Rikard; MacMynowski, Douglas G; Andersen, Torben; Owner-Petersen, Mette

    2012-02-10

    While it is attractive to integrate a deformable mirror (DM) for adaptive optics (AO) into the telescope itself rather than using relay optics within an instrument, the resulting large DM can be expensive, particularly for extremely large telescopes. A low-cost approach for building a large DM is to use voice-coil actuators connected to the back of the DM through suction cups. Use of such inexpensive voice-coil actuators leads to a poorly damped system with many structural modes within the desired bandwidth. Control of the mirror dynamics using electro-mechanical sensors is thus required for integration within an AO system. We introduce a distributed control approach, and we show that the "inner" back sensor control loop does not need to function at low frequencies, leading to significant cost reduction for the sensors. Incorporating realistic models of low-cost actuators and sensors together with an atmospheric seeing model, we demonstrate that the low-cost mirror strategy is feasible within a closed-loop AO system. PMID:22330282

  16. Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Sun, Wenjie; Chen, Hualing; Liu, Lei; Li, Bo; Li, Dichen

    2016-03-01

    A conical Dielectric Elastomer Actuator (DEA) undergoes large actuation strain in longitudinal direction when subject to a voltage across the membrane. The conical DEA is modeled using continuum mechanics and multilayered material thermodynamic theories which can consider not only the inhomogeneous deformation of the DEA but also the effect of elastomeric electrodes on the DEA. Hydrogels with lithium chloride electrolyte are synthesized and introduced as electrodes. The theory coincides well with the experimental results and succeeds in predicting the occurrence of loss of tension. At a low level of pre-stretch λp=2 , electric breakdown always occurs before the loss of tension, independent of shear modulus of hydrogels. When the pre-stretch increases to 4, the dominating failure mode changes from electric breakdown to loss of tension. At μGE L=6 kPa , loss of tension and electric breakdown almost happen simultaneously and the maximum actuation strain occurs at λp=4 .

  17. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  18. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    DOE PAGES

    Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now, precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si-, Au-, and Pt-coated KB mirrors under prolonged synchrotron X-ray radiation and low-temperature vacuum annealing will be discussed in terms of film stress relaxation and Si plastic deformation.

  19. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    SciTech Connect

    Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si, Au-, and Pt-coated KB mirrors under prolonged synchrotron x-ray radiation and low-temperature vacuum annealing will be discussed in terms of film-stress relaxation and Si plastic deformation.

  20. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Bauman, B; Cornelissen, S; Jones, S; Macintosh, B; Palmer, D; Isaacs, J

    2010-12-17

    We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.

  1. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  2. A two-dimensional laser scanning mirror using motion-decoupling electromagnetic actuators.

    PubMed

    Shin, Bu Hyun; Oh, Dongho; Lee, Seung-Yop

    2013-03-27

    This work proposes a two-dimensional (2-D) laser scanning mirror with a novel actuating structure composed of one magnet and two coils. The mirror-actuating device generates decoupled scanning motions about two orthogonal axes by combining two electromagnetic actuators of the conventional moving-coil and the moving-magnet types. We implement a finite element analysis to calculate magnetic flux in the electromagnetic system and experiments using a prototype with the overall size of 22 mm (W) × 20 mm (D) × 15 mm (H) for the mirror size of 8 mm × 8 mm. The upper moving-coil type actuator to rotate only the mirror part has the optical reflection angle of 15.7° at 10 Hz, 90° at the resonance frequency of 60 Hz at ±3 V (±70 mA) and the bandwidth of 91 Hz. The lower moving-magnet type actuator has the optical reflection angle of 16.20° at 10 Hz and 50° at the resonance frequency of 60 Hz at ±5 V (±34 mA) and the bandwidth of 88 Hz. The proposed compact and simple 2-D scanning mirror has advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

  3. Modeling and design of a normal stress electromagnetic actuator with linear characteristics for fast steering mirror

    NASA Astrophysics Data System (ADS)

    Long, Yongjun; Wei, Xiaohui; Wang, Chunlei; Dai, Xin; Wang, Shigang

    2014-05-01

    A new rotary normal stress electromagnetic actuator for fast steering mirror (FSM) is presented. The study includes concept design, actuating torque modeling, actuator design, and validation with numerical simulation. To achieve an FSM with compact structure and high bandwidth, the actuator is designed with a cross armature magnetic topology. By introducing bias flux generated by four permanent magnets (PMs), the actuator has high-force density similar to a solenoid but also has essentially linear characteristics similar to a voice coil actuator, leading to a simply control algorithm. The actuating torque output is a linear function of both driving current and rotation angle and is formulated with equivalent magnetic circuit method. To improve modeling accuracy, both the PM flux and coil flux leakages are taken into consideration through finite element simulation. Based on the established actuator model, optimal design of the actuator is presented to meet the requirement of our FSM. Numerical simulation is then presented to validate the concept design, established actuator model, and designed actuator. It is shown that the calculated results are in a good agreement with the simulation results.

  4. Numerical simulation of deformation and figure quality of precise mirror

    NASA Astrophysics Data System (ADS)

    Vit, Tomáš; Melich, Radek; Sandri, Paolo

    2015-01-01

    The presented paper shows results and a comparison of FEM numerical simulations and optical tests of the assembly of a precise Zerodur mirror with a mounting structure for space applications. It also shows how the curing of adhesive film can impact the optical surface, especially as regards deformations. Finally, the paper shows the results of the figure quality analysis, which are based on data from FEM simulation of optical surface deformations.

  5. Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates

    NASA Astrophysics Data System (ADS)

    Zeng, Chunmei; Yu, Xia; Guo, Peiji

    2014-08-01

    A regularization stiffness coefficient method was verified further to optimize lay-up sequences of quasi-isotropic laminates for carbon fiber reinforced polymer (CFRP) composite mirrors. Firstly, the deformation due to gravity of 1G and temperature difference of 20-100°C and the modal were analyzed by finite element method (FEM). Secondly, the influence of angle error of ply stacking on quasi-isotropic of bending stiffness was evaluated. Finally, an active support system of 49 actuators in circular arrangement is designed for a 500mm CFRP mirror, and its goal is to deform the spherical CFRP mirror to a parabolic. Therefore, the response functions of the actuators were gotten, and the surface form errors and stresses were calculated and analyzed. The results show that the CFRP mirrors designed by the method have a better symmetrical bending deformation under gravity and thermal load and a higher fundamental frequency, and the larger n the better symmetry (for π/n quasi-isotropic laminates); the method reduces the sensitivity to misalignment of ply orientation for symmetric bending, and the mirror's maximum von Mises stress and maximum shear stress are less compared to those laminates not optimized in lay-up sequence.

  6. Lightweight deformable mirrors for ground- and space-based imaging systems

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah

    2006-08-01

    The next generation of ground- and space-based astronomical observatories will generate an increased requirement for lightweight and robust deformable optics. In space ultra-lightweight actively controlled mirrors will enable a continuing increase of aperture sizes, whilst large adaptive mirrors will become increasingly standard features in the optical design of adaptive optics-optimised Extremely Large Telescopes on the ground. This thesis presents results from a project to design, manufacture and test a prototype active mirror in a nickel-carbon fibre reinforced polymer (CFRP), which has been suggested in the literature to be a promising candidate material for such applications. Extensive finite element analysis results from gravitational sag and thermal models, as well as finite element-based predictions of the central actuator influence function profile, are presented. The main problems were encountered as a result of the in-mold nickel coating process, which resulted in residual form errors, and poor design of the support structures, leading to deterioration of the mirror surface quality. No fundamental reason ruling this material out for the use of precision deformable optics was identified. The finite element analysis results show significant promise for increased use of the method in optical design, as well as in integrated optical simulations for Extremely Large Telescopes.

  7. Extreme Adaptive Optics Testbed: Performance and Characterization of a 1024 Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; REza, L; Gavel, D; Palmer, D

    2005-10-30

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  8. PACT: the actuator to support the primary mirror of the ELT

    NASA Astrophysics Data System (ADS)

    Kamphues, F.; Nijenhuis, J.; den Breeje, R.; van den Dool, T. C.; Ponsioen, J.

    2008-07-01

    The European Southern Observatory (ESO) has started technology development for their next generation optical telescope. Due to its ultra large collecting area, The European Extremely Large Telescope (E-ELT) will require a paradigm shift in telescope design to keep the overall program cost at an acceptable level. The E-ELT will feature a 42 meter segmented primary mirror and will make extensive use of active and adaptive optics. Each primary mirror segment will be supported by three actuators that control piston and tilt. TNO has developed a low cost nanopositioning actuator (PACT) for the primary mirror segments. The actuators will be tested by IAC and ESO, with support from TNO, under operational conditions in a Wind Evaluation Breadboard (WEB) at the Roque de Los Muchachos observatory in La Palma.

  9. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  10. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  11. Assessing the stability of an ALPAO deformable mirror for feed-forward operation.

    PubMed

    Bitenc, Urban; Bharmal, Nazim A; Morris, Timothy J; Myers, Richard M

    2014-05-19

    A deformable mirror (DM) is a mirror whose surface can be deformed in order to correct for optical aberrations. If a DM is used in a feed-forward operation (i.e. without feed-back, also known as open-loop) it is, among other requirements, crucial that a set of actuator commands repeatedly results in the same surface shape. We have tested an ALPAO DM against this criterion, by repeatedly applying a set of actuator commands over hours and monitoring the DM shape with an interferometer. We found that if the surface shape was held to shape A for several hours, then changed to a second shape, ℬ, the DM surface will drift from this new shape over the course of several hours. During this period the root-mean-square (RMS) of the deviation from shape ℬ can exceed 30% of the RMS of the difference between shapes A and ℬ. This can correspond to a surface deviation with RMS of several hundred nanometers, and would severely impact the resulting performance of an AO system using such a DM in a feed-forward operation. We have developed a model to correct for the time-varying surface shape in software by continuously adapting the actuator commands over the stabilization period. Application of the stabilisation procedure allows the surface to remain stable to within 4 nm RMS after a period of 6 minutes. We also provide a suggestion on how to improve the repeatability of surface response to different sets of actuator commands, which can be affected by the surface drift. PMID:24921361

  12. Development of Robust, Light-weight, Agile Deformable Mirrors in Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Hart, M.; Ammons, S. M.; Coughenour, B.; Richardson, L.,; Romeo, R.; Martin, R.

    2012-09-01

    Carbon fiber reinforced polymer (CFRP) has recently been developed to the point that surfaces of high optical quality can be routinely replicated. Building on this advance, we are developing a new generation of deformable mirrors (DMs) for adaptive optics application that extends long-standing expertise at the University of Arizona in large, optically powered DMs for astronomy. Our existing mirrors, up to 90 cm in diameter and with aspheric deformable facesheets, are deployed on a number of large astronomical telescopes. With actuator stroke of up to 50 microns and no hysteresis, they are delivering the best imaging ever seen from an astronomical AO system. Their Zerodur glass ceramic facesheets though are not well suited to non-astronomical applications. In this paper, we describe developmental work to replace the glass components of the DMs with CFRP, an attractive material for optics fabrication because of its high stiffness-to-weight ratio, strength, and very low coefficient of thermal expansion. Surface roughness arising from fiber print-through in the CFRP facesheets is low, < 3 nm PTV across a range of temperature, and the optical figure after correction of static terms by the DM actuators is on the order of 20 nm rms. After initial investment in an optical quality mandrel, replication costs of identical units in CFRP are very low, making the technology ideal for rapid mass production.

  13. Wave-front correction of a femtosecond laser using a deformable mirror

    NASA Astrophysics Data System (ADS)

    Daly, Elizabeth; Dainty, Christopher; O'Connor, Gerard; Glynn, Thomas

    2005-04-01

    Typical applications of ultra-high-power femtosecond lasers include precision drilling and surface micro-machining of metals, and micro-structuring of transparent materials. However, high peak-power pulsed lasers are difficult to focus close to the diffraction limit because of aberrations that induce deviations from a perfect spatial wave-front. The sources of these aberrations include thermally induced and nonlinear optical distortions, as well as static distortions such as those introduced by gratings used in chirped-pulse amplification (CPA). A spatially clean beam is desirable to achieve the highest possible intensity on-target, and to minimize the energy deposited outside the central focus. One way to achieve this is to correct the wave-front using an adaptive optical element such as a deformable mirror, a more cost-effective solution than increasing peak intensity by providing further pulse amplification. The wave-front of the femtosecond system is measured using a Hartmann-Shack wave-front sensor, and corrected with a 37-channel deformable membrane mirror used slightly off-axis. The deformable mirror has been tested with a FISBA OPTIK μPhase HR digital interferometer, which is also used to calibrate the performance of the wave-front sensor. The influence of fluctuations of the laser on the measurement is minimised by averaging the centroid positions obtained from several consecutive frames. The distorted wave-front is compared to a reference flat wave-front which is obtained from a collimated laser diode operating at the same wavelength as the femtosecond system. The voltages on the deformable mirror actuators are then set to minimise the difference between the measured and reference wave-fronts using a simple least squares approach. Wave-front sensor and correction software is implemented in Matlab.

  14. Wave-front sensing and deformable-mirror control in strong scintillation

    PubMed

    Roggemann; Koivunen

    2000-05-01

    Recent studies of coherent wave propagation through turbulence have shown that under conditions where scintillation is significant a continuous phase function does not in general exist, owing to the presence of branch points in the complex optical field. Because of branch points and the associated branch cuts, least-squares approaches to wave-front reconstruction and deformable-mirror control can have large errors. Branch-point reconstructors are known to provide superior performance to least-squares reconstructors, but they require that branch points be explicitly detected. Detecting branch points is a significant practical impediment owing to spatial sampling and measurement noise in real wave-front sensors. Branch points are associated with real zeros in an optical field, and hence information about the phase of the field is encoded in the amplitude of the wave. We present a new wave-front-sensor processing algorithm that exploits this observation in the wave-front-reconstruction and deformable-mirror-control process. This algorithm jointly processes three intensity measurements by using light from the beacon field to develop a set of deformable-mirror actuator commands that are maximally consistent with three intensity measurements: (1) the entire wave-front-sensor image, (2) a pupil intensity image, and (3) a conventional image. Owing to the nonlinear nature of the resulting algorithm, we have used a simulation to evaluate performance. We find that in a focused laser beam projection paradigm that uses a point-source beacon, the new algorithm provides significantly improved performance over that of conventional Hartmann sensor least-squares deformable-mirror control based on centroid processing of wave-front-sensor outputs. The performance of the new algorithm approaches, the performance of an idealized branch-point reconstructor that requires pointwise phase differences for operation.

  15. "Pocket" Deformable Mirror for an Integrated On-Mirror Adaptive System

    NASA Astrophysics Data System (ADS)

    Beresnev, L.; Voronstov, M.; Wangsness, P.

    Existing HEL beam control architectures are extremely complicated because they require installation and alignment of a large number of optical elements, resulting in substantial increase of the entire HEL system size, weight and cost. There is a strong interest in designing new robust beam control capabilities integrated directly to a beam director system. The discussed technical effort is focused on development and demonstration of a new adaptive beam director (ABD) consisting of a beam forming telescope with wavefront compensation integrated solely on its ultra-lightweight primary mirror. This on-mirror AO system will be controlled using a stochastic parallel gradient descent (SPGD) controller specifically designed for target-in-the-loop (TIL) operation. The key component of the on-mirror AO system is its primary mirror. This mirror contains an array of pockets machined on its backside, called a pocket-mirror. A special dielectric layer deposited on the front surface of the pocket-mirror is highly reflective for the HEL wavelength ???HEL, and semi-transparent for the laser illuminator wavelength ?ILL. Thus the wave ?ILL scattered by the target surface enters inside the mirror pockets, while the outgoing HEL beam with wavelength ?HEL is totally reflected. The pockets of the ABD pocket-mirror include opto-electronic components that can provide local (inside pocket-window) wavefront correction and sensing. Wavefront correction at each pocket aperture is performed using electrically sectioned piezo-ceramic annular rings made from thin (~0.3 mm) bimorph discs glued to the pocket bottoms. Control voltages applied to these electrodes result in mechanical deformation of the pocket-window front surface thus providing compensation of low-order aberrations at each pocket-window. Packaging the pockets with a high fill factor allows high resolution control of the beam director primary mirror shape. Preliminary analysis has shown that surface stroke near 3 microns with

  16. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  17. Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry

    PubMed Central

    Horsley, David A.; Park, Hyunkyu; Laut, Sophie P.; Werner, John S.

    2008-01-01

    The static and dynamic characteristics of a bimorph deformable mirror (DM) for use in an adaptive optics system are described. The DM is a 35-actuator device composed of two disks of lead magnesium niobate (PMN), an electrostrictive ceramic that produces a mechanical strain in response to an imposed electric field. A custom stroboscopic phase-shifting interferometer was developed to measure the deformation of the mirror in response to applied voltage. The ability of the mirror to replicate optical aberrations described by the Zernike polynomials was tested as a measure of the mirror’s static performance. The natural frequencies of the DM were measured up to 20 kHz using both stroboscopic interferometry as well as a commercial laser Doppler vibrometer (LDV). Interferometric measurements of the DM surface profile were analyzed by fitting the surface with mode-shapes predicted using classical plate theory for an elastically supported disk. The measured natural frequencies were found to be in good agreement with the predictions of the theoretical model. PMID:19122798

  18. Carbon fibre composite deformable mirrors: developments at UCL

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter; Brooks, David; King, Andrew M.; Dorn, Chris; Dwan, Richard M.; Yates, Chris; Dando, Glyn; Richardson, Ian; Evans, Glynn

    2006-06-01

    Adaptive optics performance is essential for achieving the demanding science goals set for the ground-based optical telescopes of the future - the so-called extremely large telescopes (ELTs). Research into novel technologies for lightweight and robust active and adaptive mirrors is crucial for ensuring this capability. Surface quality, form, and a high level of stability during operation are very important criteria for such mirrors. In 2004 we reported initial results from a project into the design and manufacture of a prototype carbon fibre reinforced polymer (CFRP) deformable mirror. This system has now been extensively characterised and tested, and results of dynamical testing and influence function measurements are discussed here. Manual grinding and polishing resulted in a residual form error of the order of 10 μm P-V and a surface roughness of approximately 5 nm rms. A good agreement was observed between the modeling data and experimental results.

  19. Modeling and optimization of a novel two-axis mirror-scanning mechanism driven by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Jing, Zijian; Xu, Minglong; Feng, Bo

    2015-02-01

    Mirror-scanning mechanisms are a key component in optical systems for diverse applications. However, the applications of existing piezoelectric scanners are limited due to their small angular travels. To overcome this problem, a novel two-axis mirror-scanning mechanism, which consists of a two-axis tip-tilt flexure mechanism and a set of piezoelectric actuators, is proposed in this paper. The focus of this research is on the design, theoretical modeling, and optimization of the piezoelectric-driven mechanism, with the goal of achieving large angular travels in a compact size. The design of the two-axis tip-tilt flexure mechanism is based on two nonuniform beams, which translate the limited linear output displacements of the piezoelectric actuators into large output angles. To exactly predict the angular travels, we built a voltage-angle model that characterizes the relationship between the input voltages to the piezoelectric actuators and the output angles of the piezoelectric-driven mechanism. Using this analytical model, the optimization is performed to improve the angular travels. A prototype of the mirror-scanning mechanism is fabricated based on the optimization results, and experiments are implemented to test the two-axis output angles. The experimental result shows that the angular travels of the scanner achieve more than 50 mrad, and the error between the analytical model and the experiment is about 11%. This error is much smaller than the error for the model built using the previous method because the influence of the stiffness of the mechanical structure on the deformation of the piezoelectric stack is considered in the voltage-angle model.

  20. Integrated modeling for determining launch survival and limitations of actuated lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Cohan, Lucy E.; Miller, David W.

    2008-07-01

    The future of space telescopes lies in large, lightweight, segmented aperture systems. Segmented apertures eliminate manufacturability and launch vehicle fairing diameter as apertures size constraints. Low areal density, actuated segments allow the systems to meet both launch mass restrictions and on-orbit wavefront error requirements. These systems, with silicon carbide as a leading material, have great potential for increasing the productivity, affordability, and manufacturability of future space-based optical systems. Thus far, progress has been made on the manufacturing, sensing, actuation, and on-orbit control of such systems. However, relatively little attention has been paid to the harsh environment of launch. The launch environment may dominate aspects of the design of the mirror segments, with survivability requirements eliminating many potentially good designs. Integrated modeling of a mirror segment can help identify trends in mirror geometries that maximize launch performance, ensuring survivability without drastically over designing the mirror. A finite element model of a single, ribbed, actuated, silicon carbide mirror segment is created, and is used to develop a dynamic, state-space model, with launch load spectra as disturbance inputs, and mirror stresses as performance outputs. The parametric nature of this model allows analysis of many geometrically different mirror segments, helping to identify key parameters for launch survival. The modeling method described herein will enable identification of the design decisions that are dominated by launch, and will allow for development of launch-load alleviation techniques to further push the areal density boundaries in support of the creation of larger and lighter mirrors than previously possible.

  1. Membrane-based deformable mirror: intrinsic aberrations and alignment issues

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, A.; Louis, Rohan E.; Chatterjee, S.; Mathew, Shibu K.; Venkatakrishnan, P.

    2015-03-01

    A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 degree) of incidence in the optical path. To this effect, we estimate to a first order, the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel Micro-machined Membrane Deformable Mirror for various angles of incidence. It is observed that astigmatism is a dominant aberration which was determined by measuring the difference between the tangential and sagital focal planes. We justify our results on the basis of theoretical simulations and discuss the feasibility of using such a system for adaptive optics considering a trade-off between wavefront correction and astigmatism due to deformation.

  2. Application of a new high-speed magnetic deformable mirror for in-vivo retinal imaging

    NASA Astrophysics Data System (ADS)

    Balderas-Mata, Sandra E.; Jones, Steven M.; Zawadzki, Robert J.; Werner, John S.

    2011-08-01

    Nowadays in ophthalmologic practice several commercial instruments are available to image patient retinas in vivo. Many modern fundus cameras and confocal scanning laser ophthalmoscopes allow acquisition of two dimensional en face images of the retina with both back reflected as well as fluorescent light. Additionally, optical coherence tomography systems allow non-invasive probing of three-dimensional retinal morphology. For all of these instruments the available lateral resolution is limited by optical quality of the human eye used as the imaging objective. To improve lateral resolution and achieve diffraction-limited imaging, adaptive optics (AO) can be implemented with any of these imaging systems to correct both static and dynamic aberrations inherent in human eyes. Most of the wavefront correctors used previously in AO systems have limited dynamic range and an insufficient number of actuators to achieve diffraction-limited correction of most human eyes. Thus, additional corrections were necessary, either by trial lenses or additional deformable mirrors (DMs). The UC Davis AO flood-illuminated fundus camera system described in this paper has been previously used to acquire in vivo images of the photoreceptor mosaic and for psychophysical studies on normal and diseased retinas. These results were acquired using a DM manufactured by Litton ITEK (DM109), which has 109 actuators arranged in a hexagonal array below a continuous front-surface mirror. It has an approximate surface actuator stroke of +/-2μm. Here we present results with a new hi-speed magnetic DM manufactured by ALPAO (DM97, voice coil technology), which has 97 actuators and similar inter-actuator stroke (>3μm, mirror surface) but much higher low-order aberration correction (defocus stroke of at least +/-30μm) than the previous one. In this paper we report results of testing performance of the ALPAO DM for the correction of human eye aberrations. Additionally changes made to our AO flood

  3. Design and performance test of a two-axis fast steering mirror driven by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Fang, Chu; Guo, Jin; Yang, Guo-qing; Jiang, Zhen-hua; Xu, Xin-hang; Wang, Ting-feng

    2016-09-01

    A novel design of a two-axis fast steering mirror (FSM) with piezoelectric actuators is proposed for incoherent laser beam combination. The mechanical performance of the FSM is tested. The results show that the tilting range of the mirror is about 4 mrad, and the 1st-order resonance frequency is about 250 Hz. A self-designed grating encoder is taken as the sensor, which ensures the optimal precision of 10 μrad. The novel mechanical design can meet the requirement of engineering in incoherent laser beam combination.

  4. Thin zoom camera module by large-stroke micromachined deformable mirrors

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hung; Lin, Yu-Hung; Su, Guo-Dong J.

    2012-10-01

    Miniaturization is the key point to design image system for portable devices. Motor-driven lens technique is the traditional way to achieve auto-focus and zoom functions, this method usually requires a larger space and causes greater power consumption. Reflective optics is a technology not only can make the space application become more efficient and flexible, but also has the advantage that it induces low chromatic aberrations. In this paper, we use organic deformable mirror (DM) as reflective element of the system. PDMS used as an actuated membrane of DM has lower young's modulus and residual stress. The maximum stoke is 90 um and corresponding diopter is 39.964m(-1) . The system we designed with MEMS deformable mirror is a 5M pixel zoom image system which is only 10mm in thickness before packaging and 16mm in thickness after packaging. The smallest EFL (effective focal length) is 4.7 mm at full field angle of 52° and the f/# is 4.4. The longest EFL of the module is 9.4 mm and the f/# is 6.4.

  5. Improved DMD configurations for image correlation. [deformable mirror devices

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Lin, Tsen-Hwang; Wu, Wen-Rong; Juday, Richard D.

    1990-01-01

    Two novel deformable mirror structures have been developed for spatial light modulators: an 'AM torsion beam' and a 'phase-mostly single-quadrant cantilever' beam. Both devices are well-suited to optical correlator input and filtering functions. Which the optical modulation characteristic of the torsion-beam modulator is essential amplitude only, which is well suited for use as the input modulator of the optical correlator, the characteristic of the one-quadrant modulator is a phase-mostly modulation whose amplitude changes are coupled to the phase changes; this renders it operable in the Fourier plane of the optical correlator as the filtering device.

  6. Steerable diffraction limited line illumination system using deformable mirror

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Kim, Dae Wook; Shimura, Kei; Burge, James H.

    2013-09-01

    Many scientific and industrial applications often require high performance optical systems utilizing spatially shaped illumination patterns of laser beams. Precisely shaped line illumination can be used for various line scanning systems or surface inspection devices. In order to achieve the highest resolution or superior signal to noise ratio limited by the fundamental theory, a diffraction limited illumination optical system (e.g. <0.8 Strehl ratio) gives the narrowest illumination line width determined by the system's NA (Numerical Aperture) value. For high precision and in-factory industrial applications, the Diffraction Limited Line Illumination (DLLI) needs to be controlled in three dimensional space rapidly as the target object under the illumination may not be always aligned with respect to the illumination system. A steerable DLLI system with three degrees of freedom (i.e. axial displacement, rotation, and tilt) is developed using an adaptive optics system. By electronically controlling the Zernike based surface shapes of the deformable mirror, the DLLI in free space is actively positioned and oriented with high accuracy. The geometrical optics based mathematical model to control the Zernike modes of the deformable mirror and the performance of a bench-top proof-ofconcept system will be presented with experimental data and analysis results.

  7. High-speed and large-scale electromagnetically actuated MEMS scanning-mirror

    NASA Astrophysics Data System (ADS)

    Mu, Canjun; Zhang, Feiling; Wu, Yaming

    2008-03-01

    Large-scale micro-electromechanical systems (MEMS) scanning mirrors play a primary role in many fields of manipulating light beam scanning, such as rapid optical spectrum analyzers (OSAs) based on dispersive gratings using in near infrared (NIR) region. According to the applications, a high speed electromagnetically actuated MEMS scanning mirror with large mirror area of 9×6mm2 has been developed. The MEMS scanning mirror chip, which is fabricated using bulk silicon micromachining process and electroplating technique, is immersed in a constant 365 mT magnetic field parallel to the coil plane and generates the maximum optical deflection angle of +/-11.15° at the 1.39 kHz resonant frequency. The quality factor, Q, of 77 is achieved in air corresponding to a low power consumption of 102.6 mW. In addition, the surface roughness of less than 20nm for scanning mirror has been measured and the optical reflectivity at the wavelength of 1550nm is high up to 87%. The results show that the device is adequate for mm-sized scanning systems and compatible with smart OSAs applications.

  8. USB-based controller for generic MEM device deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan; Teare, Scott; Wilcox, Christopher; Restaino, Sergio; Martinez, Ty; Payne, Don

    2006-01-01

    The use of Micro-Electro-Machined (MEM) devices as deformable mirrors (DM) for active and adaptive optics is increasing dramatically. Such increases are due to both the cost and simplicity of use of these devices. Our experience with MEM DMs has been positive, however the controlling protocols of these devices presents some issues. Based on our experience and needs we decided to design a generic controller based on a fast communication protocol. These requirements have pushed us to design a system around a USB 2.0 protocol. In this paper we present our architectural design for such controller. We present also experimental data and analysis on the performance of the controller. We describe the pros and cons of such approach versus other techniques. We will address how general such architecture is and how portable is to other systems.

  9. Deformable mirrors for x-ray astronomy and beyond

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, M. E.; Vaynman, S.; Cao, J.; Takacs, P. Z.

    2011-05-01

    We discuss a technique of shape modification that can be applied to thin walled (~; 100-400 micron thickness) electroformed replicated optics or slumped glass optics to improve the near net shape of the mirror as well as the mid-frequency ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a permanently magnetic material. The MSM material exhibits strains about 400 times stronger than ordinary ferromagnetic materials. The deformation process involves a magnetic write head which traverses the surface, and under the guidance of active metrology feedback,locally magnetizes the surface to impart strain where needed. Designs and basic concepts as applied to space borne X-ray optics will be described.

  10. Path Length Control in a Nulling Coronagraph with a MEMS Deformable Mirror and a Calibration Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.; Wallacea, J. Kent; Samuele, Rocco; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul; Lane, Benjamin; Levine, B. Martin; Mendillo, Chris; Schmidtlin, Edouard; Shao, Mike; Stewart, Jason B.

    2008-01-01

    We report progress on a nulling coronagraph intended for direct imaging of extrasolar planets. White light is suppressed in an interferometer, and phase errors are measured by a second interferometer. A 1020-pixel MEMS deformable mirror in the first interferometer adjusts the path length across the pupil. A feedback control system reduces deflections of the deformable mirror to order of 1 nm rms.

  11. Design of a prototype primary mirror segment positioning actuator for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Lorell, Kenneth R.; Aubrun, Jean-Noël; Clappier, Robert R.; Miller, Scott W.; Sirota, Mark

    2006-06-01

    The Thirty Meter Telescope (TMT) is a collaborative project between the California Institute of Technology (CIT), the University of California (UC), the Association of Universities for Research in Astronomy (AURA), and the Association of Canadian Universities for Research in Astronomy (ACURA). In order for the Thirty Meter Telescope (TMT) to achieve the required optical performance, each of its 738 primary mirror segments must be positioned relative to adjacent segments with nanometer-level accuracy. Three in plane degrees of freedom are controlled via a passive Segment Support Assembly which is described in another paper presented at this conference (paper 6273-45). The remaining three out of plane degrees of freedom, tip, tilt, and piston, are controlled via three actuators for each segment. Because of its size and the shear number of actuators, TMT will require an actuator design, departing from that used on the Keck telescopes, its successful predecessor. Sensitivity to wind loads and structural vibrations, the large dynamic range, low operating power, and extremely reliable operation, all achieved at an affordable unit cost, are the most demanding design requirements. This paper describes a concept that successfully meets the TMT requirements, along with analysis and performance predictions. The actuator concept is based on a prototype actuator developed for the California Extremely Large Telescope (CELT) project. It relies on techniques that achieve the required accuracy while providing a substantial amount of vibration attenuation and damping. A development plan consisting of a series of prototype actuators is envisioned to verify cost, reliability, and performance before mass production is initiated. The first prototype (P I) of this development plan is now being built and should complete initial testing by the end of 2 nd QTR 06.

  12. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  13. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    NASA Astrophysics Data System (ADS)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  14. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    SciTech Connect

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  15. A planar monolithic large size resonant scanning mirror actuated by electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Oliveira, Luiz C. M.; Ferreira, Luiz O. S.

    2008-11-01

    A new design of resonant scanning mirror actuated by electromagnetic induction is presented. It is a planar device that was manufactured from 0.5 mm thick phosphor bronze by batch photofabrication. The monolithic mechanical structure have a frame, tree torsion bars and two rotors. Folded torsion bars connect the frame to the rotors, and a straight torsion bar interconnects both rotors. One rotor is devoted to the armature (moving coil), and the other rotor carries the mirror. There is a hole in the armature where a branch of the actuating magnetic core (stator) passes through, carrying the magnetic flux generated by an excitation coil of the stator. The efficiency on converting electric power to mechanical motion was increased two orders of magnitude from a previously published inductive planar device (0.005 W/deg against 2.2 W/deg). A prototype measuring 69 x 49 mm2 oscillating at 64.4 Hz presented deflection angle of 12°pp, and a quality factor Q of 200. A mathematical model was derived and a design procedure was developed. The results shown that this device has potential to replace conventional resonant scanners on high-aperture optical systems or high-power laser applications.

  16. Analysis of the deformational behaviour of a bimorph configuration with piezoelectric actuation

    NASA Astrophysics Data System (ADS)

    Beckert, Wieland; Pfundtner, Goesta

    2002-08-01

    The stimulation of controlled deformation in lightweight constructions by means of actuator units as an integrated part of the structure currently represents an attractive subject in engineering. A common design uses a piezoelectric film that is bonded to a shell component by an adhesive layer and induces a bending deformation in the structure. A simplified beam design has been used as a test set-up to characterize the actuator performance of a given system under practical conditions. The bimorph configuration consists of an actuator unit, the bonding adhesive and the substrate material from which the lateral bending deflection of the free end, induced by actuation of the piezoelectric film, is measured. An improved theoretical approach is presented that combines a comprehensive composite theory analysis of the bending with a detailed analytical approach for the gradual stress transfer from the edges of the piezoceramic induced by a deformational misfit between the layers. The results are validated by a finite element analysis of the system. They reveal a substantial influence of the assumptions for the transverse (width direction) state of deformation for which free bending appears to be the most realistic for the test geometry. The study is completed by an experimental analysis that investigates the influence of adhesive stiffness and layer thickness on the actuator performance of a system consisting of a steel substrate and a carbon fibre reinforced substrate and a prototypic PZT actuator module. The results are correlated to the model providing a confirmation of the essential trends.

  17. Characterization, fabrication, and analysis of soft dielectric elastomer actuators capable of complex 3D deformation

    NASA Astrophysics Data System (ADS)

    Lai, William

    Inspired by nature, the development of soft actuators has drawn large attention to provide higher flexibility and allow adaptation to more complex environment. This thesis is focused on utilizing electroactive polymers as active materials to develop soft planar dielectric elastomer actuators capable of complex 3D deformation. The potential applications of such soft actuators are in flexible robotic arms and grippers, morphing structures and flapping wings for micro aerial vehicles. The embraces design for a freestanding actuator utilizes the constrained deformation imposed by surface stiffeners on an electroactive membrane to avert the requirement of membrane pre-stretch and the supporting frames. The proposed design increases the overall actuator flexibility and degrees-of-freedom. Actuator design, fabrication, and performance are presented for different arrangement of stiffeners. Digital images correlation technique were utilized to evaluate the in-plane finite strain components, in order to elucidate the role of the stiffeners in controlling the three dimensional deformation. It was found that a key controlling factor was the localized deformation near the stiffeners, while the rest of the membrane would follow through. A detailed finite element modeling framework was developed with a user-material subroutine, built into the ABAQUS commercial finite element package. An experimentally calibrated Neo-Hookean based material model that coupled the applied electrical field to the actuator mechanical deformation was employed. The numerical model was used to optimize different geometrical features, electrode layup and stacking sequence of actuators. It was found that by splitting the stiffeners into finer segments, the force-stroke characteristics of actuator were able to be adjusted with stiffener configuration, while keeping the overall bending stiffness. The efficacy of actuators could also be greatly improved by increasing the stiffener periodicity. The developed

  18. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  19. Characterization of a MEMS deformable mirror by far field intensity evaluation

    NASA Astrophysics Data System (ADS)

    Greiner, Cherry; Finn, Susanna; Choi, Stacey; Doble, Nathan

    2013-03-01

    The performance of an adaptive optics (AO) system is typically measured using the wavefront sensor (WFS). However, another method is to use the point spread function (PSF), which is sensitive to scatter, does not act as a low pass filter and is not dependent on the WFS calibration. We decided to examine the performance of an AO system built for vision science that employed a micromechanical systems (MEMS) based deformable mirror (DM). Specifically, the MEMS DM consists of 489 actuators, resulting in 163 segments each with individual piston/tip/tilt control. Initial evaluation of the DM with a model eye included determining the ability of the DM to generate individual Zernike polynomials and evaluating the far field PSF to measure wavefront correction performance. For individual Zernike polynomial terms, the DM was found to be capable of correcting the aberration magnitudes expected from previously published human population studies.1, 2 Finally, the DM was used in an AO fundus camera to successfully acquire images of cone photoreceptors in a living human eye. This is part of ongoing work which will incorporate the MEMS DM into both an AO scanning laser ophthalmoscope (SLO) and an AO optical coherence tomography (OCT) system where the form of the PSF at the confocal pinhole/optical fiber is important for optimal imaging.

  20. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  1. Temperature deformations of the mirror of a radio telescope antenna

    NASA Technical Reports Server (NTRS)

    Avdeyev, V. I.; Grach, S. A.; Kozhakhmetov, K. K.; Kostenko, F. I.

    1979-01-01

    The stress informed state of the mirror of an antenna, with a diameter of 3 m, for a radio interferometer used in space, and located in a temperature field is examined. The mirror represents a parabolic shell, consisting of 19 identical parts. The problem is based on representations of the thermoelasticity of thin shells.

  2. The Development and Optimisation of High Bandwidth Bimorph Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Rowe, D.; Laycock, L.; Griffith, M.; Archer, N.

    Our first mirror designs were based on a standard bimorph construction and exhibited a resonant frequency of 1 kHz with a maximum stroke of ±5 μm. These devices were limited by the requirement to have a "dead space" between the inner active area and the mirror boundary. This was necessary to ensure that the requirements for both the stroke and the static boundary conditions at the edge of the mirror could be met simultaneously, but there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of design iteration steps, we have created mounting arrangements that seek not only to reduce dead space, but also to improve ruggedness and temperature stability through the use of a repeatable and reliable assembly procedure. As a result, the most recently modeled mirrors display a resonance in excess of 5 kHz, combined with a maximum stroke in excess of ±10 μm. This has been achieved by virtually eliminating the "dead space" around the mirror. By careful thermal matching of the mirror and piezoelectric substrates, operation over a wide temperature range is possible. This paper will discuss the outcomes from the design study and present our initial experimental results for the most recently assembled mirror.

  3. Northop Grumman/Xinetics Deformable Mirrors: Enabling Reliable Advanced Imaging for 20 Years and Beyond

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Jeff Cavaco, Northrop Grumman Xinetics

    2015-01-01

    Adaptive Optics Xinetics (AOX), a wholly-owned subsidiary of Northrop Grumman, has manufactured and delivered more than 300 deformable mirrors (DMs) since 1995. With more than 32 gigacycles of use, these mirrors have significantly increased the scientific return of ground based astronomical telescopes by removing atmospheric distortion from the image plane. AOX deformable mirrors exhibit little or no hysteresis, aging or creep, making them highly reliable and predictable. A range of space -based applications are currently in development or under consideration as key enablers for future astronomical missions. We will review a variety of AOX DMs and discuss a number of their real world applications and results.

  4. Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model

    NASA Astrophysics Data System (ADS)

    Gu, Guo-Ying; Gupta, Ujjaval; Zhu, Jian; Zhu, Li-Min; Zhu, Xiang-Yang

    2015-07-01

    In the practical applications of actuators, the control of their deformation or driving force is a key issue. Most of recent studies on dielectric elastomer actuators (DEAs) focus on issues of mechanics, physics, and material science, whereas less importance is given to the control of these soft actuators. In this paper, we underline the importance of a nonlinear dynamic model as the basis for a feedforward deformation control approach of a rubber-based DEA. Experimental evidence shows the effectiveness of the feedforward controller. The present study confirms that a DEA's trajectory can be finely controlled with a solid nonlinear dynamic model despite the presence of material nonlinearities and electromechanical coupling. The effective control of DEAs may pave the way for extensive emerging applications to soft robots.

  5. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  6. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  7. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    PubMed

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  8. Micro drilling using deformable mirror for beam shaping of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Smarra, Marco; Strube, Anja; Dickmann, Klaus

    2016-03-01

    Using ultra-short laser pulses for micro structuring or drilling applications reduces the thermal influence to the surrounding material. The best achievable beam profile equals a Gaussian beam. Drilling with this beam profile results in cylindrical holes. To vary the shape of the holes, the beam can either be scanned or - for single pulse and percussion drilling - manipulated by masks or lenses. A high flexible method for beam shaping can be realized by using a deformable mirror. This mirror contains a piezo-electric ceramic, which can be deformed by an electric potential. By separating the ceramic into independent controllable segments, the shape of the surface can be varied individually. Due to the closed surface of the mirror, there is no loss of intensity due to diffraction. The mirror deformation is controlled by Zernike polynomials and results e.g. in a lens behavior. In this study a deformable mirror was used to generate e.g. slits in thin steel foils by percussion drilling using ultra-short laser pulses. The influence of the cylindrical deformation to the laser beam and the resulting geometry of the generated holes was studied. It was demonstrated that due to the high update rate up to 150 Hz the mirror surface can be varied in each scan cycle, which results in a high flexible drilling process.

  9. Structural design and mitigation of mirror deformations in lunar-based telescopes

    NASA Astrophysics Data System (ADS)

    Luz, Paul L.

    1993-09-01

    A driving concern of the Lunar Ultraviolet Telescope Experiment (LUTE) preliminary design study was the degradation of the LUTE optical figure due to thermal deformations, during a temperature cycle of 65 K to 265 K at the reference 40 deg latitude, 0 deg longitude landing site. A multidisciplinary analysis process was developed, temperature effects were characterized, and primary mirror thermal deformations calculated for use in the optical analyses. Trade studies evaluated the qualitative performance of various design schemes. Results indicated that kinematic mirror supports with bottom-mounted flexures rendered less optical disturbance under thermal loading than mirror supports at the inner or outer periphery. Another trade indicated that a telescope's baseplate should be athermalized by matching thermal distortion coefficients. A comparison of three materials for the primary mirror predicted that silicon carbide would be the best material for resisting thermally induced figure deformations on the moon.

  10. A dielectric elastomer actuator coupled with water: snap-through instability and giant deformation

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2015-04-01

    A dielectric elastomer actuator is one class of soft actuators which can deform in response to voltage. Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we conduct experiments to investigate the performance of a dielectric elastomer actuator which is coupled with water. The membrane is subject to a constant water pressure, which is found to significantly affect the electromechanical behaviour of the membrane. When the pressure is small, the membrane suffers electrical breakdown before snap-through instability, and achieves a small voltage-induced deformation. When the pressure is higher to make the membrane near the verge of the instability, the membrane can achieve a giant voltage-induced deformation, with an area strain of 1165%. When the pressure is large, the membrane suffers pressure-induced snap-through instability and may collapse due to a large amount of liquid enclosed by the membrane. Theoretical analyses are conducted to interpret these experimental observations.

  11. Development of high-order segmented MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Helmbrecht, Michael A.; He, Min; Kempf, Carl J.

    2012-03-01

    The areas of biological microscopy, ophthalmic research, and atmospheric turbulence correction require high-order DMs to obtain diffraction-limited images. Iris AO has been developing high-order MEMS DMs to address these requirements. Recent development has resulted in fully functional 489-actuator DMs capable of 9.5 µm stroke. For laser applications, the DMs were modified to make them compatible with high-reflectance dielectric coatings. Experimental results for the 489-actuator DMs with dielectric coatings shows they can be made with superb optical quality λ/93.3 rms (11.4 nm rms) and λ/75.9 rms (20.3 nm rms) for 1064 nm and 1540 nm coatings. Laser testing has demonstrated 300 W/cm2 power handling with off-the-shelf packaging. Power handling of 2800 W/cm2 is projected when incorporating packaging optimized for heat transfer.

  12. Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere.

    PubMed

    Roggemann, M C; Lee, D J

    1998-07-20

    A two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere is presented. This system uses a deformable mirror and a Fourier-transforming mirror to adjust the amplitude of the wave front in the telescope pupil, similar to kinoforms used in laser beam shaping. A second deformable mirror is used to correct the phase of the wave front before it leaves the aperture. The phase applied to the deformable mirror used for controlling the beam amplitude is obtained with a technique based on the Fienup phase-retrieval algorithm. Simulations of propagation through a single turbulent layer sufficiently distant from the beacon observation and laser beam transmission aperture to cause scintillation shows that, for an ideal deformable-mirror system, this field-conjugation approach improves the on-axis field amplitude by a factor of approximately 1.4 to 1.5 compared with a conventional phase-only correction system.

  13. Programmable surface deformation: thickness-mode electroactive polymer actuators and their applications

    NASA Astrophysics Data System (ADS)

    Prahlad, Harsha; Pelrine, Ron; Kornbluh, Roy; von Guggenberg, Philip; Chhokar, Surjit; Eckerle, Joseph; Rosenthal, Marcus; Bonwit, Neville

    2005-05-01

    Many different actuator configurations based on SRI International"s dielectric elastomer (DE) type of electroactive polymer (EAP) have been developed for a variety of applications. These actuators have shown excellent actuation properties including maximum actuation strains of up to 380% and energy densities of up to 3.4 J/g, using the planar mode of actuation. Recently, SRI has investigated different configurations of DE actuators that allow complex changes in surface shape and thus the creation of active surface texture. In this configuration, the "active" polymer film is bonded or coated with a thicker passive layer, such that changes in the polymer thickness during actuation of the DE device are at least partially transferred to (and often amplified by) the passive layer. Although the device gives out-of-plane motion, it can nonetheless be fabricated using two-dimensional patterning. The result is a rugged, flexible, and conformal skin that can be spatially actuated by subjecting patterned electrodes on a polymer substrate to an electric field. Using thickness-mode DE, we have demonstrated thickness changes of the order of 0.5 - 2 mm by laminating a passive elastomeric layer to a DE polymer that is only 60 μm in thickness. Such thickness changes would otherwise require a very large number of stacked layers of the DE film to produce comparable surface deformations. Preliminary pressures of 4.2 kPa (0.6 psi) in a direction normal to the plane of the DE film have been measured. However, theoretical calculations indicate that pressures of the order of 100 kPa are feasible using a single layer of DE film. Stacking multiple layers of DE film can lead to a further increase in achievable actuation pressures. Even with current levels of thickness change and actuation pressures, potential applications of such surface texture change are numerous. A thin, compliant pad made from these actuators can have a massaging or sensory augmentation function, and can be incorporated

  14. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  15. Deformed quantum cohomology and (0,2) mirror symmetry

    NASA Astrophysics Data System (ADS)

    Guffin, Josh; Katz, Sheldon

    2010-08-01

    We compute instanton corrections to correlators in the genus-zero topological subsector of a (0, 2) supersymmetric gauged linear sigma model with target space {mathbb{P}^1} × {mathbb{P}^1} , whose left-moving fermions couple to a deformation of the tangent bundle. We then deduce the theory’s chiral ring from these correlators, which reduces in the limit of zero deformation to the (2, 2) ring. Finally, we compare our results with the computations carried out by Adams et al. [1] and Katz and Sharpe [17]. We find immediate agreement with the latter and an interesting puzzle in completely matching the chiral ring of the former.

  16. Structural design and mitigation of mirror deformations in lunar-based telescopes

    NASA Astrophysics Data System (ADS)

    Luz, Paul L.

    1994-11-01

    Structural design and analysis of the optical systems for lunar-based telescopes is a challenging task. A driving concern of the Lunar Ultraviolet Telescope Experiment (LUTE) preliminary design study was the degradation of the LUTE optical figure due to thermal deformations, during a temperature cycle of 65 to 265 K at the reference 40 deg latitude, 0 deg longitude landing site. In addressing this task, temperature effects were characterized, and primary-mirror thermal deformations calculated for use in the optical analyses. Trade studies evaluated the qualitative performance of various design schemes. Results indicated that statically determinate mirror supports with bottom-mounted flexures created less optical disturbance under thermal loading than mirror supports at the inner or outer periphery. Another trade indicated that a telescope's baseplate must be athermalized with respect to the mirrors by matching thermal distortion coefficients. A comparison of three materials for the primary mirror predicted that silicon carbide would be the best material for resisting thermally induced figure deformations on the moon.

  17. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frederic

    2004-09-01

    Since micro deformable mirrors based on Micro-Opto-Electronico-Mechanical Systems (MOEMS) technology would be essential in next generation adaptive optics system, we are designing, realizing and characterizing blocks of this key-component. An in-house designed tiltable mirror (170*100 μm2) has been processed by surface micromachining in the Cronos foundry, and a dedicated characterization bench has been developed for the complete analysis of building blocks as well as operational deformable mirrors. This modular Twyman-Green interferometer allows high in-plane resolution (4μm) or large field of view (40mm). Out-of-plane measurements are performed with phase-shifting interferometry showing highly repeatable results (standard deviation<5nm). Features such as optical quality or electro-mechanical behavior are extracted from these high precision three-dimensional component maps. Range is increased without loosing accuracy by using two-wavelength phase-shifting interferometry authorizing large steps measurements such as 590 nm print-through steps caused by the Cronos process. Dynamic analysis like vibration mode and cut-off frequency is realized with time-averaged interferometry. Rotation mode frequency of 31-3kHz of the micro tiltable mirror, and a resonance with a tuned damping at 1.1kHz of the commercial OKO deformable mirror are revealed.

  18. Picard-Fuchs uniformization and geometric isomonodromic deformations: Modularity and variation of the mirror map

    NASA Astrophysics Data System (ADS)

    Doran, Charles Francis, Jr.

    1999-12-01

    In the first half of this thesis we determine geometric criteria for when the Picard-Fuchs equations of certain families of elliptic curves and K3 surfaces orbifold uniformize their base spaces. This problem is motivated by the Mirror-Moonshine Conjecture of Lian and Yau, which asserts that for a particular class of K3 surface families the local inverse to the period mapping (the ``mirror map'') is a McKay-Thompson series. We completely answer the related question, ``When is the mirror map a modular function?'', for families of elliptic curves with a section and certain lattice polarized families of K3 surfaces, in terms of the functional and generalized functional invariants. In the second half of the thesis we define, via the Gauss-Manin connection, a new class of algebraic solutions to isomonodromic deformation equations. Given a suitable family of varieties fibered over P1, with positions of the singular fibers varying, the associated family of Picard-Fuchs equations is monodromy preserving. Any family of monodromy preserving differential equations defines a solution to an auxiliary completely integrable Hamiltonian system-the isomonodromic deformation equation. We call the solutions coming from deformations of Picard-Fuchs equations, through Picard-Fuchs equations, ``geometric isomonodromic deformations''. These describe the variation of the mirror map in families.

  19. Theory and computation of three cosmic origin spectrograph aspheric gratings recorded with a multimode deformable mirror.

    PubMed

    Duban, M

    1999-03-01

    The theory of three Cosmic Origin Spectrograph holographic gratings recorded with a deformable plane mirror is presented. Their working conditions are severe, since they have to correct the strong spherical aberration and the field astigmatism of the Hubble Space Telescope. Recorded on aspherized substrates, the gratings produce images that are diffraction limited with regard to spectral resolution. PMID:18305717

  20. Interferometric nulling limits with tip-tilt-piston deformable mirrors and a pinhole spatial filter array

    NASA Astrophysics Data System (ADS)

    Hicks, Brian A.; Chakrabarti, Supriya; Cook, Timothy A.

    2015-01-01

    We explore the use of hexagonal segment tip-tilt-piston deformable mirrors alone and paired with pinhole spatial filter arrays for high-order wavefront correction of nulling interferometers used for visible light study of exoplanetary systems at 107 to 1010 contrast within regions extending ˜0.1 to 6 arc s from a parent star. A similar system has been proposed using a single-mode fiber array as an alternative to using multiple deformable mirrors to correct both phase aberrations and balance electric field amplitude, the benefit being drastically reduced component and control complexity. Performance is compared using measured deformable mirror data for hexagonal arrays consisting of a number of rings NR=2 to 18, emphasizing the trade between throughput and the additional contrast gained from suppressing wavefront errors introduced by the deformable mirror at spatial frequencies Λ≥NR that are otherwise present in the image at corresponding field locations. Taking into account effects of loss of throughput and vignetting, the nulled signal-to-noise ratio is shown to improve for filtered systems in the outer portion of the field of view. Modeled performance shows no significant change in signal-to-noise in the inner field of view.

  1. Design, fabrication and characterization of high-stroke high-aspect ratio micro electro mechanical systems deformable mirrors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernandez Rocha, Bautista

    Adaptive optic (AO) systems for next generation of extremely large telescopes (30--50 meter diameter primary mirrors) require high-stroke (10 microns), high-order (100x100) deformable mirrors at lower-cost than current technology. The required specifications are achievable with Micro Electro Mechanical Systems (MEMS) devices fabricated with high-aspect ratio processing techniques. This dissertation will review simulation results compared with displacement measurements of actuators utilizing a white-light interferometer. It will also review different actuator designs, materials and post-processing procedures fabricated in three different high-aspect ratio processes, Microfabrica's Electrochemical Fabrication (EFAB(TM)), HT-Micro's Precision Fabrication Technology (HTPF(TM)), and Innovative Micro Technologies (IMT) fabrication process. These manufacturing processes allow high-precision multilayer fabrication and their sacrificial layer thicknesses can be specified by the designer, rather than by constraints of the fabrication process. Various types of high-stroke gold actuators for AO consisting of folded springs with rectangular and circular membranes as well as X-beam actuators supported diagonally by beams were designed, simulated, fabricated, and tested individually and as part of a continuous facesheet DM system. The design, modeling and simulation of these actuators are compared to experimental measurements of their pull-in voltages, which characterizes their stiffness and maximum stroke. Vertical parallel plate ganged actuators fabricated with the EFAB(TM) process have a calculated pull-in voltage of 95V for a 600mum size device. In contrast, the pull-in voltages for the comb-drive actuators ranged from 55V for the large actuator, to 203V for the smallest actuator. Simulations and interferometer scans of actuator designs fabricated with HT-Micro's Precision Fabrication (HTPF(TM)) two wafer bonded process with different spring supports have shown the ability of

  2. Modeling of electro-statically actuated two-axis (tip-tilt) MEMS torsion micro-mirrors for laser beamsteering

    NASA Astrophysics Data System (ADS)

    Edwards, C. L.; Boone, B. G.; Levine, W. S.; Davis, C. C.

    2007-04-01

    The availability of recently developed MEMS micro-mirror technology provides an opportunity to replace macro-scale actuators for free-space laser beamsteering in lidar and communication systems. Such an approach is under investigation at the Johns Hopkins University Applied Physics Laboratory for use on space-based platforms. Precision modeling of mirror pointing and its dynamics are critical to optimal design and control of MEMS beamsteerers. Beginning with Hornbeck's torque approach, this paper presents a first-principle, analytically closed-form torque model for an electro-statically actuated two-axis (tip-tilt) MEMS structure. An Euler dynamic equation formulation describes the gimbaled motion as a coupled pair of damped harmonic oscillators with a common forcing function. Static physical parameters such as MEMS mirror dimensions, facet mass, and height are inputs to the model as well as dynamic harmonic oscillator parameters such as damping and restoring constants fitted from measurements. A Taylor series expansion of the torque function provides valuable insights into basic one dimensional as well as two dimensional MEMS behavior, including operational sensitivities near "pull-in." The model also permits the natural inclusion and analysis of pointing noise sources such as electrical drive noise, platform vibration, and molecular Brownian motion. MATLAB and SIMULINK simulations illustrate performance sensitivities, controllability, and physical limitations, important considerations in the design of optimal pointing systems.

  3. Analysis investigation of supporting and restraint conditions on the surface deformation of a collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; You, Zhen-Ting; Huang, Bo-Kai; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-09-01

    For meeting the requirements of the high-precision telescopes, the design of collimator is essential. The diameter of the collimator should be larger than that of the target for the using of alignment. Special supporting structures are demanded to reduce the deformation of gravity and to control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors. By using finite element analysis, a ZERODUR® mirror of a diameter of 620 mm will be analyzed to obtain the deformation induced by the supporting structures. Zernike polynomials will also be adopted to fit the optical surface and separate corresponding aberrations. Through the studies under different boundary conditions and supporting positions of the inner ring, it is concluded that the optical performance will be excellent under a strong enough supporter.

  4. Operation of a deformable mirror device as a Fourier plane phase modulating filter

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Giles, Michael K.; Smith, Jeffery Z.

    1988-01-01

    The operation of a deformable mirror device (DMD) as a Fourier plane phase modulating filter is described. An analysis of the optical characteristics of the DMD elements as phase modulators is summarized. Analytical and experimental results indicating the existence of a quasi-phase-only operational mode are presented. These results are used to specify the mirror deflection required to implement a binary phase-only image correlation operation. An optical correlator system is implemented using the DMD Fourier plane filter and experimental results from this system are compared with computer simulations of the correlator operation.

  5. New technologies for the actuation and controls of large aperture lightweight quality mirrors

    NASA Technical Reports Server (NTRS)

    Lih, S. S.; Yang, E. H.; Gullapalli, S. N.; Flood, R.

    2003-01-01

    This paper presents a set of candidate components: MEMS based large stroke (>100 microns) ultra lightweight (0.01 gm) discrete inch worm actuator technology, and a distributed actuator technology, in the context of a novel lightweight active flexure-hinged substrate concept that uses the nanolaminate face sheet.

  6. Development of an ELT XAO testbed using a Mach-Zehnder wavefront sensor: calibration of the deformable mirror

    NASA Astrophysics Data System (ADS)

    Delacroix, Christian; Langlois, Maud P.; Loupias, Magali; Thiébaut, Eric; Adjali, Louisa; Leger, Jonathan; Tallon, Michel

    2015-09-01

    Extreme adaptive optics (XAO) encounters severe difficulties to cope with the high speed (<1kHz), high accuracy and high order requirements for future extremely large telescopes. An innovative high order adaptive optics system using a self-referenced Mach-Zehnder wavefront sensor (MZWFS) allows counteracting these limitations. This sensor estimates very accurately the wavefront phase at small spatial scale by measuring intensity differences between two outputs, with a λ/4 path length difference between its two legs, but is limited in dynamic range due to phase ambiguity. During the past few years, such an XAO system has been studied by our team in the framework of 8-meter class telescopes. In this work, we report on our latest results with the XAO testbed recently installed in our lab, and dedicated to high contrast imaging with 30m-class telescopes (such as the E-ELT or the TMT). After reminding the principle of a MZWFS and describing the optical layout of our experiment, we will show the results of the assessment of the woofer-tweeter phase correctors, i.e., a Boston Micromachine continuous membrane deformable mirror (DM) and a Boulder Nonlinear Systems liquid crystal spatial light modulator (SLM). In particular, we will detail the calibration of the DM using Zygo interferometer metrology. Our method consists in the precise measurement of the membrane deformation while applying a constant deformation to 9 out of 140 actuators at the same time. By varying the poke voltage across the DM operating range, we propose a simple but efficient way of modeling the DM influence function using a Gaussian model. Finally, we show the DM flattening on the MZWFS allowing to compensate for low order aberrations. This work is carried out in synergy with the validation of fast iterative wavefront reconstruction algorithms, and the optimal treatment of phase ambiguities in order to mitigate the dynamical range limitation of such an MZWFS.

  7. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  8. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications. PMID:26512734

  9. Continuous optical zoom module based on two deformable mirrors for mobile device applications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hung; Su, Guo-Dung J.

    2011-10-01

    In recent years, optical zoom function of the mobile camera phones has been studied. However, traditional systems use motors to change separation of lenses to achieve zoom function, suffering from long total length and high power consumption, which is not suitable for mobile phones use. Adopting MEMS polymer deformable mirrors in zoom systems has the potential to reduce thickness and have the advantage of low chromatic aberration. In this paper, we presented a 2X continuous optical zoom systems for mobile phones, using two deformable mirrors, suitable for 5-Mega-pixel image sensors. In our design, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.7 mm at full field angle of 52° and the f/# is 4.4. The longest EFL of the module is 9.4 mm and the f/# is 6.4.

  10. Using a deformable mirror to generate custom laser guidestar asterisms: simulation and laboratory results

    NASA Astrophysics Data System (ADS)

    Norton, Andrew P.; Srinath, Srikar; Gavel, Donald; Kupke, Renate; Dillon, Daren

    2014-08-01

    It is possible to create custom laser guidestar (LGS) asterisms from a single beam by using a deformable mirror to pattern the phase of the outgoing laser guidestar beam. This avoids the need for multiple laser launch assemblies, and in principle would allow one to position the multiple LGS spots in any desired arrangement around the science target, as well as dynamically rotate the LGS pattern on-sky and control the distribution of intensity in each spot. Simulations and laboratory experiments indicate that a PTT111 and PTT489 IrisAO MEMS deformable mirror and a Hamamatsu X8267 spatial light modulator may have applications for creating small LGS asterisms for biological imaging with adaptive optics. For astronomy applications, the phase values required to produce the "3+1" laser guidestar asterism of Keck's Next Generation AO system is also investigated.

  11. Thumb reconstruction without formal pollicization in mirror hand deformity: a series of four cases.

    PubMed

    Al-Qattan, M M; Al-Kahtani, A R; Al-Sharif, E M; Al-Otaibi, N J

    2013-11-01

    Thumb reconstruction in mirror hands is usually done by pollicization. However, objective pinch strength and power grip data in mirror hands following pollicization are lacking. Alternative thumb reconstruction techniques include doing nothing, rotation osteotomy or syndactylization of the radial digits. In this article, we report a series of four cases of mirror hand deformity where the thumb was not reconstructed by formal pollicization. Two cases had non-classic mirror hand deformity (the forearm contained a radius and an ulna) and the other two had classic ulnar dimelia. In all cases, thumb reconstruction was done by keeping one of the radial fingers in place (without pollicization) as the new thumb; and then (if required) performing a secondary osteotomy procedure to rotate the new thumb into pronation. The four cases were recalled back to the clinic for functional assessment at ages 20 years, 5 years, 4 years and 2 years, respectively. The overall hand function was considered 'fair' in the case with concurrent unique features, and was considered 'excellent' in the other three cases. It was concluded that the technique of thumb reconstruction used in the current series is an acceptable option. However, objective measurements, especially with regards to pinch strength and power grip, need to be compared with the pollicization technique.

  12. Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Gale, Richard O.

    1988-01-01

    Attention is given to experimental results for a binary phase-only filter implementation's correlation operations, using the deformable mirror device (DMD) spatial light modulator as the Fourier plane filter. These results demonstrate the basic capabilities of the DMD in an image correlator system which, in combination with the potential 8-kHz frame rate for 128 x 128 DMDs, can constitute a very high speed pattern recognition system. The DMD has the further capability of operating in the analog mode.

  13. Analysis of time-dependent deformation of a CFRP mirror under hot and humid conditions

    NASA Astrophysics Data System (ADS)

    Arao, Yoshihiko; Koyanagi, Jun; Utsunomiya, Shin; Takeda, Shin-Ichi; Kawada, Hiroyuki

    2009-05-01

    The long-term micro-dimensional stability of a carbon fiber reinforced plastic (CFRP) mirror was investigated in terms of creep deformation, moisture swelling and self-shrinkage. A 4-point bending creep test was carried out using specimens made from pitch-based high-modulus CFRP laminates to obtain a creep constant based on linear viscoelasticity, and we then investigated the weight change and geometrical change during a moisture absorption test using a CFRP specimen. The anisotropic diffusivities and coefficients of moisture expansion (CMEs) in CFRP laminates were obtained by fitting analytical data into the experimental data. Finally, the shrinkage behavior caused by physical aging of the polymeric material was examined using a fiber Bragg grating (FBG) sensor embedded in the neat resin specimen. Applying these results, we analyzed the geometrical changes in a CFRP mirror that resulted from time-dependent deformation by the mirror’s weight, moisture absorption and physical aging, respectively. We discuss which factor is dominant in the deformation of CFRP mirrors under various conditions.

  14. Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors

    NASA Astrophysics Data System (ADS)

    Subramanian, V. R.; Achenbach, S.; Dolton, W.; Wells, G.; Hallin, E.; Klymyshyn, D. M.; Augustin, M.

    2010-06-01

    SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system to allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.

  15. Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors

    SciTech Connect

    Subramanian, V. R.; Dolton, W.; Wells, G.; Hallin, E.; Achenbach, S.; Klymyshyn, D. M.; Augustin, M.

    2010-06-23

    SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system to allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.

  16. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    PubMed

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  17. Development and testing of a high-precision high-stiffness linear actuator for the focus-center mechanism of the SOFIA secondary mirror

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Schwab, Philippe; Gallieni, Daniele

    2000-06-01

    The SOFIA telescope chopping secondary mirror is mounted on a Focus Centering Mechanism. This system is a novel type of parallel manipulator (hexapod) made of six linear actuators which provide active alignment and focus of the chopper unit with respect to the top ring frame. We describe the development of the compact high-precision linear actuator used for this hexapod mechanism. The paper reports the test results measured on the actuator prototype proving its submicron position accuracy capability as well as its high stiffness and force. The prototype was designed to be largely representative of the flight unit ones currently in the construction phase.

  18. Liquid metal actuators: correctable mounting and assembly of thin-shell x-ray telescope mirrors

    NASA Astrophysics Data System (ADS)

    Bruccoleri, Alexander R.; Klingensmith, Martin; Chalifoux, Brandon; Heilmann, Ralf K.; Schattenburg, Mark L.

    2015-09-01

    An ideal bonding agent for thin-shell x-ray mirrors could be quickly applied to joints and set with deterministic and stable properties. Unfortunately, mirror assembly methods have typically utilized various epoxy formulations which are messy, slow to apply and cure, and far from deterministic or stable. Problems include shrinkage, creep and high thermal and humidity sensitivity. Once the bond is set errors are frozen in and cannot be corrected. We are developing a new method for bonding thin-foil mirrors that has the potential to solve these problems. Our process to bond mirrors to housing reference points is achieved via small beads of a low-melting-point bonding agent (such as solder or thermoset). The mirror is bonded to small contact surface points under real-time metrology. If the position of the mirror needs to be adjusted after bonding, a small force is applied normal or parallel to the contact surface and a pulsed fiber laser is used to melt an ultrathin layer of the solder for a very short time. The joint is then compressed, stretched or sheared while molten before refreezing in a new position, enabling repeatable and stable mirror position adjustments along the direction of the force in nm-level steps with minimal heat input. We present results from our prototype apparatus demonstrating proof of principle. The initial experiment includes developing a technique to bond D263 glass to Kovar, designing and building a one-dimensional stage to precisely apply force, and using an infrared laser pulse to heat the joint while measuring position and force.

  19. Effect of the particular temperature field on a National Ignition Facility deformable mirror

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Huang, Lei; Ma, Xingkun; Xue, Qiao; Gong, Mali

    2016-09-01

    The changes caused by temperature in the surface shape of a deformable mirror used at the National Ignition Facility has been investigated previously. In this paper the temperature induced surface shape under different temperature fields is further studied. We find that the changes of the peak and valley (PV) or root-mean-square (RMS) value rely on the temperature gradient as well as the difference between the mirror and the environment with a certain rule. This work analyzes these quantitative relationship, using the finite element method. Some experiments were carried out to verify the analysis results. The conclusion provides guidance to minimize the effect of the temperature field on the surface shape. Considerations about how to improve the temperature induced faceplate in actual work are suggested finally.

  20. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is 300 μm × 300 μm in size, was mounted on a silicon substrate in order to minimize distortion and prevent it from being permanently damaged by thermal stresses introduced by cooling. The silicon substrate was oxidized to obtain electric insulation and had a metal fan-out pattern on the surface. For cryogenic tests, we constructed a measurement system consisting of a Fizeau interferometer, a cryostat cooled by liquid N2, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  1. Rollable Thin-Shell Nanolaminate Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Barbee, Troy, Jr.

    2003-01-01

    A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror.

  2. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  3. Joint-transform correlator systems using deformable-mirror spatial light modulators

    NASA Technical Reports Server (NTRS)

    Florence, James M.

    1989-01-01

    Two joint-transform correlator systems based on deformable-mirror-device (DMD) spatial light modulators and CCD video cameras are described. The system designs provide for real-time correlation between video-formatted input scenes and stored reference images. The DMD light modulators are used exclusively for inputting data in the optical stages of these systems, and the CCD cameras are used to provide the critical square-law detection required in joint-transform achitectures. Experimental verification of the functionality of these DMD/CCD joint-transform systems is also presented.

  4. Measurement of thermal deformation of an engine piston using a conical mirror and ESPI

    NASA Astrophysics Data System (ADS)

    Albertazzi, Armando, Jr.; Melao, Iza; Devece, Eugenio

    1998-07-01

    An experimental technique is developed to measure the radial displacement component of cylindrical surfaces using a conical mirror for normal illumination and observation. Single illumination ESPI is used to obtain fringe patterns related to the radial displacement field. Some data processing strategies are presented and discussed to properly extract the measurement data. Data reduction algorithms are developed to quantify and compensate the rigid body displacements: translations and rotations. The displacement component responsible for shape distortion (deformation) can be separated from the total displacement field. The thermal radial deformation of an aluminum engine piston with a steel sash is measured by this technique. A temperature change of about 2 degrees Celsius was applied to the engine piston by means of an electrical wire wrapped up in the first engine piston grove. The fringe patterns are processed and the results are presented as polar graphics and 3D representation. The main advantages and limitations of the developed technique are discussed.

  5. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  6. Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper.

    PubMed

    Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra

    2013-11-01

    We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

  7. Optical stabilization system based on deformable mirrors for retina-like sensors.

    PubMed

    Hao, Qun; Fan, Fan; Cheng, Xuemin; Wang, Dongdong; Jiang, Yang

    2016-07-20

    This paper presents an optical stabilization system based on deformable mirrors (DMs) for retina-like sensors. This system achieves image stabilization by changing the reflective plate of the DM's compensating tilt angle. The mathematical model is constructed with relative parameters, and the simulation experiments and parameter analysis are discussed to verify the system's reliability. The experimental results show that this system achieved optical image stabilization. The maximum relative error of the compensation angle is 8.78%. The system is close to the diffraction limit, and the distortion is less than 0.33%. This study presents an image stabilization system and offers possible improvement in the aberrations in the system, which will provide great support to retina-like sensors.

  8. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE PAGES

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  9. X-ray metrology and performance of a 45-cm long x-ray deformable mirror.

    PubMed

    Poyneer, Lisa A; Brejnholt, Nicolai F; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-01

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experiment at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.

  10. Optical stabilization system based on deformable mirrors for retina-like sensors.

    PubMed

    Hao, Qun; Fan, Fan; Cheng, Xuemin; Wang, Dongdong; Jiang, Yang

    2016-07-20

    This paper presents an optical stabilization system based on deformable mirrors (DMs) for retina-like sensors. This system achieves image stabilization by changing the reflective plate of the DM's compensating tilt angle. The mathematical model is constructed with relative parameters, and the simulation experiments and parameter analysis are discussed to verify the system's reliability. The experimental results show that this system achieved optical image stabilization. The maximum relative error of the compensation angle is 8.78%. The system is close to the diffraction limit, and the distortion is less than 0.33%. This study presents an image stabilization system and offers possible improvement in the aberrations in the system, which will provide great support to retina-like sensors. PMID:27463916

  11. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  12. Application of modern-control-design methodologies to a multi-segmented deformable-mirror system. Master's thesis

    SciTech Connect

    Vaughan, E.M.

    1991-05-23

    The multi-segmented deformable mirror system is proposed as an element for a portion of a ballistic missile defense system. The size of the mirror required for this defense function requires that the mirror be developed in segments, and then these segments should be phased together to produce one continuous, large optic. The application of multivariable control system synthesis techniques to provide closed-loop wavefront control of the deformable mirror system is the problem discussed in this thesis. The method of H at infinity control system synthesis using loop-shaping techniques was used to develop a controller that meets a robust performance specification. The number and location of sensors was treated as a design variable, and the structured singular value (mu) was used to determine the performance robustness of the deformable mirror system. Decentralized control issues are also addressed through the use of necessary conditions in an effort to determine a suitable decentralized control structure with performance similar to that of the centralized controller.

  13. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    PubMed

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films. PMID:25322105

  14. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    PubMed

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  15. Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror.

    PubMed

    Vdovin, G; Kiyko, V

    2001-06-01

    A silicon micromachined membrane deformable mirror with a diameter of 10 mm, reflectivity of better than 99.8%, and a surface deflection range of 3mum has been used for intracavity control of an industrial 200-W cw Nd:YAG laser. When it was placed in the resonator, the mirror demonstrated continuous (more than 40-h) stable operation under an ~550-W cw optical load, with beam diameters in the range 3-6 mm. Periodic modulation of the curvature of the deformable mirror with a frequency of 250 Hz produced quick switching between stable and unstable resonator configurations, which resulted in pulse-period Q -switched generation with average power in the range 50-200 W, modulation depth from 95% to 10%, and an M(2) parameter of 6.5 to 30. PMID:18040454

  16. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  17. Finite Element Modeling of a Semi-Rigid Hybrid Mirror and a Highly Actuated Membrane Mirror as Candidates for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Craig, Larry; Jacobson, Dave; Mosier, Gary; Nein, Max; Page, Timothy; Redding, Dave; Sutherlin, Steve; Wilkerson, Gary

    2000-01-01

    Advanced space telescopes, which will eventually replace the Hubble Space Telescope (HTS), will have apertures of 8 - 20 n. Primary mirrors of these dimensions will have to be foldable to fit into the space launcher. By necessity these mirrors will be extremely light weight and flexible and the historical approaches to mirror designs, where the mirror is made as rigid as possible to maintain figure and to serve as the anchor for the entire telescope, cannot be applied any longer. New design concepts and verifications will depend entirely on analytical methods to predict optical performance. Finite element modeling of the structural and thermal behavior of such mirrors is becoming the tool for advanced space mirror designs. This paper discusses some of the preliminary tasks and study results, which are currently the basis for the design studies of the Next Generation Space Telescope.

  18. Optical zoom lens module using MEMS deformable mirrors for portable device

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  19. High voltage, high resolution, digital-to-analog converter for driving deformable mirrors

    NASA Astrophysics Data System (ADS)

    Kittredge, Jeffrey

    Digital-to-analog converters with a range over 50 volts are required for driving micro-electro mechanical system deformable mirrors used in adaptive optics. An existing tested and deployed DM driver has 1024 channels and resolution of 15mV per Least Significant Bit. DMs used in the search for exoplanets require 3mV per LSB resolution. A technique is presented to employ a secondary high resolution and low voltage DAC which has for it's ground the output of the high voltage DAC. The entire system then has the range of high voltage DAC yet the resolution of the low voltage DAC. A method for providing signal and power to the floating system is given. Rudimentary micro controller firmware and also PC software is presented to achieve complete functionality. The technique uses all off-the-shelf components. Resolution of 1.6mV per LSB, 60V range and 36mW of power per channel is achieved.

  20. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  1. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  2. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  3. Dielectric elastomer actuators for adaptive photonic microsystems

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Schröder, Henning; Marx, Sebastian; Lang, Klaus-Dieter

    2013-03-01

    Various applications in the field of photonic microsystems for Dielectric Elastomer Actuators (DEA) were shown with this research. DEA belong to the class of Electro Active Polymers (EAP) and have the potential to substitute common technologies like piezoelectric actuators. DEAs offers several advantages like compact and variable shapes, large actuation ranges and cost efficient production processes that have to be emphasized. For the market of adaptive photonic microsystems especially area actuators are very suitable. They can be used e.g. as tuneable lens, mirror or grating component and tool for optical fiber alignment. These area actuators have a similar structure like a capacitor. They consist of three layers, two electrode layers on top and bottom and one dielectric layer in the center. The dielectric layer is made of a deformable and prestretched elastomer film. When applying a voltage between both electrode layers the thickness of the dielectric film is compressed and the actuator is displaced in the plane. The use of material compositions like a polymer matrix with graphite, carbon nano particles or carbon nano tubes as well as thin metal films for the electrodes were studied. The paper presents results on suitable dielectric and electrode materials, actuator geometries and respective adaptive photonic components. The manufacturing process of area actuators is described in detail. As a basic size of the area actuators (20 × 20) mm2 were chosen. Onto the produced area actuators polymer lenses or mirrors were assembled. The deflection of the optical beam path is calculated with optical simulations and measured at the prepared adaptive optical components. Static actuations of about +/-15 μm are achieved when applying a voltage of 200 V. Also the function of a tuneable beam splitter is demonstrated to show further applications.

  4. Design, fabrication and testing of active carbon shell mirrors for space telescope applications

    NASA Astrophysics Data System (ADS)

    Steeves, John; Laslandes, Marie; Pellegrino, Sergio; Redding, David; Bradford, Samuel Case; Wallace, James Kent; Barbee, Troy

    2014-07-01

    A novel active mirror concept based on carbon fiber reinforced polymer (CFRP) materials is presented. A nanolaminate facesheet, active piezoelectric layer and printed electronics are implemented in order to provide the reflective surface, actuation capabilities and electrical wiring for the mirror. Mirrors of this design are extremely thin (500-850 µm), lightweight (~ 2 kg/m2) and have large actuation capabilities (~ 100 µm peak- to-valley deformation per channel). Replication techniques along with simple bonding/transferring processes are implemented eliminating the need for grinding and polishing steps. An outline of the overall design, component materials and fabrication processes is presented. A method to size the active layer for a given mirror design, along with simulation predictions on the correction capabilities of the mirror are also outlined. A custom metrology system used to capture the highly deformable nature of the mirrors is demonstrated along with preliminary prototype measurements.

  5. Universal method for holographic grating recording: multimode deformable mirrors generating Clebsch-Zernike polynomials.

    PubMed

    Lemaître, G R; Duban, M

    2001-02-01

    Recording methods for making aberration-corrected holographic gratings are greatly simplified by use of a plane multimode deformable mirror (MDM) upon one of the two recording beams. It is shown that MDM compensators easily provide the superposition of many interesting active optics modes, which we have named Clebsch-Zernike modes. When we apply only a uniform loading or no loading at all onto the rear side of the MDM clear aperture, the available Clebsch-Zernike modes are made to belong to a subclass of the Zernike modes that includes the three modes of the third-order aberration theory as well as a well-defined part of the Zernike higher-order modes. Such a recording method is considered to be universal, since it does not require the use of a sophisticated optical system such as a compensator. Active optics 12-arm MDM's in the vase form have been designed from the elasticity theory. The design of six-arm MDM's is currently carried out with theoretical results. As an example of the method, the recording of three holographic gratings of the Hubble Space Telescope Cosmic Origins Spectrograph has been investigated. Substantial improvements in image quality have been found by use of a six-arm MDM as recording compensator. The result is that aberrations of much higher order can simultaneously be corrected so that the residual blur images of the spectra occupy areas approximately 10 (direction of dispersion) x 3 (cross dispersion) = 30 times smaller--also in terms of pixel number--than those obtained by our American colleagues. Therefore the active optics recording method appears to provide substantial gains in resolving power and in sensitivity: (i) For all three gratings the spectral resolution would be increased by a factor of 10, and (ii), in addition, for the two higher dispersion gratings, the limiting magnitude on the sky appears to be increased by a magnitude of approximately 1-1.2. PMID:18357020

  6. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  7. Large-Stroke Self-Aligned Vertical Comb Drive Actuators for Adaptive Optics Applications

    SciTech Connect

    Carr, E J; Olivier, S S; Solgaard, O

    2005-10-27

    A high-stroke micro-actuator array was designed, modeled, fabricated and tested. Each pixel in the 4x4 array consists of a self-aligned vertical comb drive actuator. This micro-actuator array was designed to become the foundation of a micro-mirror array that will be used as a deformable mirror for adaptive optics applications. Analytical models combined with CoventorWare{reg_sign} simulations were used to design actuators that would move up to 10{micro}m in piston motion with 100V applied. Devices were fabricated according to this design and testing of these devices demonstrated an actuator displacement of 1.4{micro}m with 200V applied. Further investigation revealed that fabrication process inaccuracy led to significantly stiffer mechanical springs in the fabricated devices. The increased stiffness of the springs was shown to account for the reduced displacement of the actuators relative to the design.

  8. Discrete control of linear distributed systems with application to the deformable primary mirror of a large orbiting telescope. Ph.D. Thesis - Rhode Island Univ.

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.

    1970-01-01

    The results are presented of a detailed study of the discrete control of linear distributed systems with specific application to the design of a practical controller for a plant representative of a telescope primary mirror for an orbiting astronomical observatory. The problem of controlling the distributed plant is treated by employing modal techniques to represent variations in the optical figure. Distortion of the mirror surface, which arises primarily from thermal gradients, is countered by actuators working against a backing structure to apply a corrective force distribution to the controlled surface. Each displacement actuator is in series with a spring attached to the mirror by means of a pad intentionally introduced to restrict the excitation of high-order modes. Control is exerted over a finite number of the most significant modes.

  9. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  10. Electrothermomechanical modeling of out-of-plane deformation in single-stepped beams actuated by resistive heating

    NASA Astrophysics Data System (ADS)

    Najafi Sohi, Ali; Nieva, Patricia M.; Khajepour, Amir

    2015-03-01

    An analytical model for the electrothermomechanical analysis of out-of-plane deformation in resistively heated single-stepped beams is presented. The model takes into account the conductive heat transfer from the beam to the substrate in which it is anchored. It also considers the temperature dependence of the beam material properties and accounts for the locally enhanced resistive heating effect around the release holes in the beam to predict temperature distribution along the beam. Energy method and Euler-Bernoulli beam theory are used for the prediction of out-of-plane deformation and stress distribution of the beam, as well as the out-of-plane rotation at the middle of the beam. The model considers the nonuniformity of the air gap between the beam and the substrate and captures the resultant asymmetric temperature distribution along the beam. The out-of-plane rotations in the middle of the single-stepped beam predicted by the analytical model and measured experimentally agree within 10%. The analytical model is then used to predict the maximum actuation current, which results in high temperature plastic deformation and agrees with the experiments within 5%. The proposed analytical model provides a good approach for systematic design and analysis of out-of-plane electrothermal microactuators based on single-stepped beam design.

  11. Characterising x-ray mirror deformations with a phase measuring deflectometry system

    NASA Astrophysics Data System (ADS)

    Breunig, E.; Friedrich, P.; Proserpio, L.; Winter, A.

    2014-07-01

    MPE is developing modular x-ray mirrors for the next generation of high-energy astronomy missions. The mirror segments are based on thermally formed (a.k.a. slumped) glass sheets, with a typical thickness of 400µm. One of the major challenges is the alignment and integration of the mirror segments and the associated metrology. The optical performance of the mirror can be significantly compromised by adhesive shrinkage, gravity sag or residual stresses influenced by the properties of the mirror mounting and the integration procedure. In parallel with classic coordinate measurement techniques we utilize a deflectometry based metrology system to characterization shape errors of the mirror surfaces. A typical deflectometry setup uses a TFT display to project a sinusoidal pattern onto a specular test surface (SUT) and a camera that observes the reflected image. This reflected image contains slope information of the SUT in the form of distortions of the original displayed pattern. A phase shifting technique can be used to recover this slope information with only very few exposures and reasonable computational effort. The deflectometry system enables us to characterize bonding interfaces of slumped glass mirrors, as well as influence of temporary mounting points, handling and thermal distortions. It is also well suited to measure transient effects.

  12. Multilayer Active Shell Mirrors

    NASA Astrophysics Data System (ADS)

    Steeves, John

    This thesis presents a novel active mirror technology based on carbon fiber composites and replication manufacturing processes. Multiple additional layers are implemented into the structure in order to provide the reflective layer, actuation capabilities and electrode routing. The mirror is thin, lightweight, and has large actuation capabilities. These features, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Structural redundancy in the form of added material or support structures is replaced by thin, unsupported lightweight substrates with large actuation capabilities. Several studies motivated by the desire to improve as-manufactured figure quality are performed. Firstly, imperfections in thin CFRP laminates and their effect on post-cure shape errors are studied. Numerical models are developed and compared to experimental measurements on flat laminates. Techniques to mitigate figure errors for thicker laminates are also identified. A method of properly integrating the reflective facesheet onto the front surface of the CFRP substrate is also presented. Finally, the effect of bonding multiple initially flat active plates to the backside of a curved CFRP substrate is studied. Figure deformations along with local surface defects are predicted and characterized experimentally. By understanding the mechanics behind these processes, significant improvements to the overall figure quality have been made. Studies related to the actuation response of the mirror are also performed. The active properties of two materials are characterized and compared. Optimal active layer thicknesses for thin surface-parallel schemes are determined. Finite element simulations are used to make predictions on shape correction capabilities, demonstrating high correctabiliity and stroke over low-order modes. The effect of actuator saturation is studied and shown to significantly degrade shape correction performance. The

  13. Electrostatic repulsive out-of-plane actuator using conductive substrate

    PubMed Central

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-01-01

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542

  14. Figure control of flexible structures - Optical surfaces of thin deformable primary mirrors

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.; Ostroff, A. J.

    1980-01-01

    Application of a modal control design technique to achieve discrete control of distributed parameter systems is considered. Results are presented for application of the design technique to achieve diffraction limited performance from the primary mirror of a space telescope and to provide flutter suppression for an aircraft wing.

  15. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots.

    PubMed

    Cheng, Huhu; Liu, Jia; Zhao, Yang; Hu, Chuangang; Zhang, Zhipan; Chen, Nan; Jiang, Lan; Qu, Liangti

    2013-09-27

    Enough to make your hair curl! Moisture-responsive graphene (G) fibers can be prepared by the positioned laser reduction of graphene oxide (GO) counterparts. When exposed to moisture, the asymmetric G/GO fibers display complex, well-controlled motion/deformation in a predetermined manner. These fibers can function not only as a single-fiber walking robot under humidity alternation but also as a new platform for woven devices and smart textiles. PMID:23946272

  16. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads. PMID:18253168

  17. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads.

  18. The 8.2 metre primary mirrors of the VLT

    NASA Astrophysics Data System (ADS)

    Dierickx, P.; Enard, D.; Merkle, F.; Noethe, L.; Wilson, R. N.

    1990-08-01

    The Very Large Telescope (VLT) presently being developed at ESO is described in terms of technological advances which make its use both technically effective and feasible. The VLT capitalizes on advances in materials, polishing techniques, and mirror support systems. The VLT consists of four 8-m alt-az telescopes and a 2-m auxiliary telescope in a single-dish configuration with Zerodur meniscus mirrors passively supported on a lateral system. A discussion of the tradeoffs between glass and metal mirrors is presented, and computerized polishing is described in relation to optical specifications. The mirror is supported with 150 axial and 60 lateral supports with electromechanical actuators to modulate applied force. The active optics concept is employed via the flexibility of the primary mirror, which generates elastomechanical deformations and the position and orientation of the secondary mirror.

  19. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Stahl, P.; McKay, A.; Chaney, D.; Gallagher, B.

    2010-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The 0.67m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. The flight mirrors are all close to readiness for this final step or have started cryo-testing at the X-Ray Calibration Facility. Each mirror will then be coated with a protected Au coating prior to attachment to the flight structure. We here review the process and status of the mirror fabrication program and discuss the predicted performance of the telescope based on initial results from cryogenic mirror measurements.

  20. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  1. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future. PMID:27526166

  2. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    NASA Astrophysics Data System (ADS)

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-01

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  3. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    SciTech Connect

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-14

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  4. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  5. A two deformable-mirror concept to improve the laser efficiency of Gemini South MCAO (GeMS)

    NASA Astrophysics Data System (ADS)

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; Guzman, Dani

    2013-12-01

    Gem's is the first laser-based multi-conjugate adaptive optics offeredto the astronomical community. Its asterism of 5 laser guide stars hasrecently proved to provide very uniform turbulence correction over the85''x85'' observation field, opening the new era of wide-field highangular resolution studies from the ground. Good AO performance requireshowever good wavefront sensing measurements from the laser guide stars,which directly depends on the quality of the laser spot image. Theoptimization of the lasers launched out of the telescope requires tofollow frequent and constraining calibrations and alignments procedures(quasi-static aberrations), in order to guarantee satisfying amplitudeand phase of the beam. These complex and time-consuming procedures willstrongly penalize the availability of Gem's.A laser beam shaping concept has been recently suggested to overcomesuch issues. It consists in applying, in the beam transfer optics, afield-conjugation thanks to 2 deformable mirrors. We review thisconcept. In particular, we discuss the criterion to be optimized and thedesired amplitude and phase shapes at the output of the Gemini beamtransfer optics. We deduce the control to be applied to the mirrors fromthe optimization of the signal-to-noise ratio of the wavefront sensingin Gem's. An iterative algorithm is used to estimate the phases, with aweighted least-squares unwrapper to avoid branch points. This algorithmefficiency is demonstrated with adequate beam shaping simulations.Discussion is made about how to implement such concept at Gemini.

  6. Deformation analysis of tilted primary mirror for an off-axis beam compressor

    NASA Astrophysics Data System (ADS)

    Clark, James H., III; Penado, F. Ernesto; Dugdale, Joel

    2011-09-01

    The Navy Prototype Optical Interferometer (NPOI), located near Flagstaff, Arizona, is a ground-based interferometer that collects and transports stellar radiation from six primary flat collectors, known as siderostats, through a common vacuum relay system to a beam combiner where the beams are combined, fringes are obtained and modulated, and data are recorded for further analysis. The current number of observable stellar objects can increase from 6,000 to approximately 47,000 with the addition of down-tilting beam compressors in the optical train. The increase in photon collection area from the beam compressors opens the sky to many additional and fainter stars. The siderostats are capable of redirecting 35 cm stellar beams into the vacuum relay system. Sans beam compressors, any portion of the beam greater than the capacity of the vacuum transport system, 12.5 cm, is wasted. Engineering analysis of previously procured as-built beam compressor optics show the maximum allowable primary mirror surface sag, resulting in λ/10 peak-to-valley wavefront aberration, occurs at 2.8° down-tilt angle. At the NPOI operational down-tilt angle of 20° the wavefront aberration reduces to an unacceptable λ/4. A design modification concept that reduces tilt-induced sag was investigated. Four outwardly applied 4-lb forces on the rear surface of the mirror reduce the sag from 155 nm to 32 nm at 20° down-tilt and reduce peak-to-valley wavefront deviation to λ/8.6. This preliminary effort indicates that this solution path is a viable and economic way to repair an expensive set of optical components. However, it requires further work to optimize the locations, magnitudes, and quantity of the forces within this system and their influence on the mirror surface.

  7. Illustration of the use of multimode deformable plane mirrors to record high-resolution concave gratings: results for the Cosmic Origins Spectrograph gratings of the Hubble Space Telescope.

    PubMed

    Duban, M; Dohlen, K; Lemaitre, G R

    1998-11-01

    To illustrate the efficiency of using a deformable plane mirror to record holographic gratings, we have computed the three gratings for the Cosmic Origins Spectrograph. Their working conditions are severe, since they have to correct the residual spherical aberration of the Hubble Space Telescope. Nevertheless, all images obtained are largely diffraction limited with regard to the resolution.

  8. Illustration of the use of multimode deformable plane mirrors to record high-resolution concave gratings: results for the Cosmic Origins Spectrograph gratings of the Hubble Space Telescope.

    PubMed

    Duban, M; Dohlen, K; Lemaitre, G R

    1998-11-01

    To illustrate the efficiency of using a deformable plane mirror to record holographic gratings, we have computed the three gratings for the Cosmic Origins Spectrograph. Their working conditions are severe, since they have to correct the residual spherical aberration of the Hubble Space Telescope. Nevertheless, all images obtained are largely diffraction limited with regard to the resolution. PMID:18301548

  9. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  10. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    PubMed Central

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  11. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  12. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  13. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  14. Hysteresis compensation of the piezoelectric ceramic actuators-based tip/tilt mirror with a neural network method in adaptive optics

    NASA Astrophysics Data System (ADS)

    Wang, Chongchong; Wang, Yukun; Hu, Lifa; Wang, Shaoxin; Cao, Zhaoliang; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Xuan, Li

    2016-05-01

    The intrinsic hysteresis nonlinearity of the piezo-actuators can severely degrade the positioning accuracy of a tip-tilt mirror (TTM) in an adaptive optics system. This paper focuses on compensating this hysteresis nonlinearity by feed-forward linearization with an inverse hysteresis model. This inverse hysteresis model is based on the classical Presiach model, and the neural network (NN) is used to describe the hysteresis loop. In order to apply it in the real-time adaptive correction, an analytical nonlinear function derived from the NN is introduced to compute the inverse hysteresis model output instead of the time-consuming NN simulation process. Experimental results show that the proposed method effectively linearized the TTM behavior with the static hysteresis nonlinearity of TTM reducing from 15.6% to 1.4%. In addition, the tip-tilt tracking experiments using the integrator with and without hysteresis compensation are conducted. The wavefront tip-tilt aberration rejection ability of the TTM control system is significantly improved with the -3 dB error rejection bandwidth increasing from 46 to 62 Hz.

  15. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  16. Progress in the Fabrication and Testing of Telescope Mirrors for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Bowers, Charles

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl > or = 0.8) at .=2 m. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror (approx.0.74m) is similarly positioned in six degrees of rigid body motion. The approx..70x.51m, fixed tertiary and approx. 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial light-weighting (21 kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision (approx.10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  17. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    NASA Astrophysics Data System (ADS)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  18. Segmented mirror control system hardware for CELT

    NASA Astrophysics Data System (ADS)

    Mast, Terry S.; Nelson, Jerry E.

    2000-07-01

    The primary mirror of the proposed California Extremely Large Telescope is a 30-meter diameter mosaic of hexagonal segments. The primary mirror active control will be achieved using four systems: sensors, actuators, processor, and alignment camera. We describe here the basic requirements of sensors and actuators, sketch a sensor design, and indicate interesting actuator alternatives.

  19. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  20. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system.

  1. Alignment Mirror Mechanisms for Space Use

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin M.; Smythe, Robert F.; Palmer, Dean

    2011-01-01

    The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is +/- 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy of +/- 109 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are +/- 35 nm linear positioning capability at the actuator, which translates into +/- 0.07 arc-sec angular mirror positioning accuracy.

  2. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  3. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  4. Effects of mirror distortion by thermal deformation in an interferometry beam size monitor system at PLS-II

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Kim, Eun-San; Kim, Changbum; Huang, Jung-Yun; Kim, Dotae

    2016-10-01

    Extraction mirrors installed at the most upstream position of interferometry beam size monitor are frequently used for measuring the beam size in storage rings. These mirrors receive the high power synchrotron radiation and are distorted owing to the heat distribution that depends on the position on the mirror surface. The distortion of the mirror changes the effective separation of the slit in the interferometry beam size monitor. Estimation of the effects of the front-end mirror distortion is important for measuring the beam size accurately. In this paper, we present the result of the numerical simulation of the temperature distribution and thermal expansion of the front-end mirror using ANSYS code, the theoretical basis of the effects of mirror distortion and compare with experimental results from Pohang Light Source II (PLS-II) at the Pohang Accelerator Laboratory (PAL). The equipment in the beam diagnosis line in PLS-II and experimental set-up for measuring the distortion of the front-end mirror using a multi-hole square array Hartmann screen are described.

  5. An approach to fabrication of large adaptive optics mirrors

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Rey, Justin; Blaszak, David; Cavaco, Jeffrey

    2014-07-01

    For more than two decades, Northrop Grumman Xinetics has been the principal supplier of small deformable mirrors that enable adaptive optical (AO) systems for the ground-based astronomical telescope community. With today's drive toward extremely large aperture systems, and the desire of telescope designers to include adaptive optics in the main optical path of the telescope, Xinetics has recognized the need for large active mirrors with the requisite bandwidth and actuator stoke. Presented in this paper is the proposed use of Northrop Grumman Xinetics' large, ultra-lightweight Silicon Carbide substrates with surface parallel actuation of sufficient spatial density and bandwidth to meet the requirements of tomorrow's AO systems, while reducing complexity and cost.

  6. Common-pull, multiple-push, vacuum-activated telescope mirror cell.

    PubMed

    Ruiz, Elfego; Sohn, Erika; Salas, Luis; Luna, Esteban; Araiza-Durán, José A

    2014-11-20

    A new concept for push-pull active optics is presented, where the push-force is provided by means of individual airbag type actuators and a common force in the form of a vacuum is applied to the entire back of the mirror. The vacuum provides the pull-component of the system, in addition to gravity. Vacuum is controlled as a function of the zenithal angle, providing correction for the axial component of the mirror's weight. In this way, the push actuators are only responsible for correcting mirror deformations, as well as for supporting the axial mirror weight at the zenith, allowing for a uniform, full dynamic-range behavior of the system along the telescope's pointing range. This can result in the ability to perform corrections of up to a few microns for low-order aberrations. This mirror support concept was simulated using a finite element model and was tested experimentally at the 2.12 m San Pedro Mártir telescope. Advantages such as stress-free attachments, lighter weight, large actuator area, lower system complexity, and lower required mirror-cell stiffness could make this a method to consider for future large telescopes.

  7. The Case for Aggressive Segmentation of the Primary Mirror of the Next Generation Space Telescope and Future ORIGINS Missions

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Zelders, Glenn W., Jr.

    1998-01-01

    Optical performance variations are considered from several factors including the gap between regular hexagonal mirror segments, the relative ability of segments of different size to be manufactured with low wavefront error, and expected mirror deformations. Additionally a weight variation function will be driven by recently postulated relationships which can be expressed so as to determine thickness of the mirror segment to satisfy: (1) polishing pressures (2) 1-g sage deflection, and (3) thermal induced stress as well as ancillary masses including actuators, wiring, and electronics. The result will be to survey the trade space of segment number and size for a range of apertures from 4 to 20 meters.

  8. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  9. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  10. High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine

    SciTech Connect

    Baker, K; Stappaerts, E; Gavel, D; Wilks, S; Tucker, J; Silva, D; Olsen, J; Olivier, S; Young, P; Kartz, M; Flath, L; Kruelivitch, P; Crawford, J; Azucena, O

    2004-03-04

    Atmospheric propagation results for a high-speed, large-actuator-number, adaptive optics system are presented. The system uses a MEMS-based spatial light modulator correction device with 1024 actuators. Tests over a 1.35 km path achieved correction speeds in excess of 800 Hz and Strehl ratios close to 0.5. The wave-front sensor was based on a quadrature interferometer that directly measures phase. This technique does not require global wave-front reconstruction, making it relatively insensitive to scintillation and phase residues. The results demonstrate the potential of large actuator number MEMS-based spatial light modulators to replace conventional deformable mirrors.

  11. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  12. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  13. The design of an active support control system for a thin 1.2m primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Li, Xiaojin; Liu, Haitao; Wang, Hongqiao

    2014-09-01

    Active support system is a low-frequency wavefront error correction system, which is often used to correct the mirror deformation resulting from gravity, temperature, wind load, manufacture, installation and other factors. In addition, the active support technology can improve the efficiency of grinding and polishing by adjusting the surface shape in the process of manufacturing large mirrors. This article describes the design of an active support control system for a thin 1.2m primary mirror. The support system consists of 37 axial pneumatic actuators. And in order to change the shape of thin primary mirror we need to precisely control the 37 pneumatic actuators. These 37 pneumatic actuators are divided into six regions. Each region is designed with a control circuit board to realize force closed-loop control for the pneumatic actuators, and all control panels are connected to the PC by CAN bus. The control panels have to support: receive commands from the host PC; control the actuators; periodically return result of control. The whole control system is composed by hardware and control algorithm and communication program.

  14. Deformation verification and surface improvement of active stressed lap for 4  m-class primary mirror fabrication.

    PubMed

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2015-04-01

    The surface shape accuracy of the active stressed lap impacts the performance of grinding and polishing in the fabrication of large mirrors. We introduce a model of active stressed lap for the fabrication of a 4 m f/1.5 mirror based on finite element analysis (FEA), and the lap surface accuracy achieves RMS<1.8  μm in the FEA method. Using the lap surface measurement system, experimental verification is put forward, and the RMS of the measured lap surface is within 2 μm in practice. A general improvement in lap surface accuracy using the Zernike polynomial is shown. After compensating the calculation errors, the lap surface accuracy is improved by 8%-23%, and achieves RMS<1.5  μm, which is appropriate for practical grinding and polishing. PMID:25967173

  15. On electrostatically actuated NEMS/MEMS circular plates

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Alvarado, Iris

    2011-04-01

    This paper deals with electrostatically actuated micro and nano-electromechanical (MEMS/NEMS) circular plates. The system under investigation consists of two bodies, a deformable and conductive circular plate placed above a fixed, rigid and conductive ground plate. The deformable circular plate is electrostatically actuated by applying an AC voltage between the two plates. Nonlinear parametric resonance and pull-in occur at certain frequencies and relatively large AC voltage, respectively. Such phenomena are useful for applications such as sensors, actuators, switches, micro-pumps, micro-tweezers, chemical and mass sensing, and micro-mirrors. A mathematical model of clamped circular MEMS/NEMS electrostatically actuated plates has been developed. Since the model is in the micro- and nano-scale, surface forces, van der Waals and/or Casimir, acting on the plate are included. A perturbation method, the Method of Multiple Scales (MMS), is used for investigating the case of weakly nonlinear MEMS/NEMS circular plates. Two time scales, fast and slow, are considered in this work. The amplitude-frequency and phase-frequency response of the plate in the case of primary resonance are obtained and discussed.

  16. Low temperature nickel titanium iron shape memory alloys: Actuator engineering and investigation of deformation mechanisms using in situ neutron diffraction at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinu B.

    Shape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable fatigue response. Overall, this work is an investigation of selected science and engineering aspects of low temperature NiTiFe shape memory alloys. The scientific study was performed using in situ neutron diffraction measurements at the newly developed low temperature loading capability on the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory and encompasses three aspects of the behavior of Ni46.8Ti50Fe3.2 at 92 K (the lowest steady state temperature attainable with the capability). First, in order to study deformation mechanisms in the R-phase in NiTiFe, measurements were performed at a constant temperature of 92 K under external loading. Second, with the objective of examining NiTiFe in one-time, high-stroke, actuator applications (such as in safety valves), a NiTiFe sample was strained to approximately 5% (the R-phase was transformed to B19' phase in the process) at 92 K and subsequently heated to full strain recovery under a load. Third, with the objective of examining NiTiFe in cyclic, low-stroke, actuator applications (such as in cryogenic thermal switches), a NiTiFe sample was strained to 1% at 92 K and subsequently heated to full strain recovery under load. Neutron diffraction spectra were recorded at selected time and stress intervals during these experiments. The spectra were subsequently used to obtain quantitative information related to the phase-specific strain, texture and phase fraction evolution using the

  17. Development of lightweight mirror elements for the Euro50 mirrors

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Romeo, Robert C.; Shaffer, Joseph J.; Chen, Peter C.

    2004-07-01

    New, very large telescopes with apertures of 30, 50, and 100 meters are being proposed by the astronomical community. Superpolished or ultrapolished mirrors with low scattered light levels and the use of adaptive optics for near-diffraction-limited performance would make such large telescopes a turning point in astronomy. The secondary mirror for the Euro50 will be a four meter adaptive optic made of a low expansion graphite-filled cyanate ester resin composite produced using a replica transfer technique. We have made three 1/3rd meter diameter prototype composite adaptive optic mirrors of this cyanate ester composite material. Because of the embedded graphite fibers, the composite material has a measured expansion coefficient in the 10-8 range, as has Zerodur or ULE glass. It is very much lighter, more rugged and more economical than Zerodur or ULE, and can be fabricated in weeks, not months. The Zerodur mandrels upon which these replica transfer mirrors are made are superpolished using centrifugal elutriation, so the replica surface has an rms roughness of 0.6 to 0.8 nm. It thus scatters about an order of magnitude less light than typical conventionally polished astronomical mirrors. In adaptive optic mirrors with sub-mm thick faceplates the number of plies used is insufficient to produce an isotropic surface. For mirrors 2 mm thick, with more plies, the surfaces are isotropic, and the slight astigmatism sometimes resulting from the mesh in the ply can be corrected by actuators to make them attractive mirrors. They must be supported to maintain a good optical figure over a meter diameter mirror. The support requirement may be met by using a new type of mechanical/piezoelectric actuator adjustable to a fraction of a wavelength. The mechanical actuators have a coarse adjust of over an mm and a fine adjust of less than a wavelength of light. They can be used in series with a novel type of piezoelectric actuator for final static adjustment. The low voltage, up to 2

  18. Manufacturing and testing a thin glass mirror shell with piezoelectric active control

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Barbera, M.; Collura, A.; Basso, S.; Candia, R.; Civitani, M.; Di Bella, M.; Di Cicca, G.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.; Varisco, S.

    2015-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto the non-optical side of the mirrors, and several groups are already at work on this approach. The concept we are developing consists of actively integrating thin glass foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays. The actuators are commercial components, while the tension signals are carried by a printed circuit obtained by photolithography, and the driving electronic is a multi-channel low power consumption voltage supply developed inhouse. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array are determined in X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we describe the manufacturing steps to obtain a first active mirror prototype and the very first test performed in X-rays.

  19. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  20. Structure analysis of the primary mirror support for the TIM using computer-aided finite element method

    NASA Astrophysics Data System (ADS)

    Farah Simon, Alejandro; Pedrayes, Maria H.; Ruiz Schneider, Elfego; Sierra, Gerardo; Quiros-Pacheco, Fernando; Godoy, Javier; Sohn, Erika

    2000-08-01

    The Mexican Infrared Telescope is one of the most important projects in the Institute for Astronomy of the National University of Mexico. As part of the design we pretend to simulate different components of the telescope by the Finite Element Method (FEM). One of the most important parts of the structure is the primary mirror support. This structure is under stress, causing deformations in the primary mirror; these deformations shouldn't be over 40 nanometers, which is the maximum permissible tolerance. One of the most interesting subjects to develop in this project is to make the segmented primary mirror to work like if it were a monolithic one. Each segment has six degrees of freedom, whose control needs actuators and sensors with stiff mechanical structures. Our purpose is to achieve these levels of design using FEM aided by computer and we pretend to study several models of the structure array using the Conceptual Design Method, in an effort to optimize the design.

  1. Active thermal figure control for the TOPS II primary mirror

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil

    2007-09-01

    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  2. Manufacturing an active X-ray mirror prototype in thin glass.

    PubMed

    Spiga, D; Barbera, M; Collura, A; Basso, S; Candia, R; Civitani, M; Di Bella, M S; Di Cicca, G; Lo Cicero, U; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L; Varisco, S

    2016-01-01

    Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X-rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X-ray illumination in an intra-focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described. PMID:26698046

  3. An error function minimization approach for the inverse problem of adaptive mirrors tuning

    NASA Astrophysics Data System (ADS)

    Vannoni, Maurizio; Yang, Fan; Siewert, Frank; Sinn, Harald

    2014-09-01

    Adaptive x-ray optics are more and more used in synchrotron beamlines, and it is probable that they will be considered for the future high-power free-electron laser sources, as the European XFEL now under construction in Hamburg, or similar projects now in discussion. These facilities will deliver a high power x-ray beam, with an expected high heat load delivered on the optics. For this reason, bendable mirrors are required to actively compensate the resulting wavefront distortion. On top of that, the mirror could have also intrinsic surface defects, as polishing errors or mounting stresses. In order to be able to correct the mirror surface with a high precision to maintain its challenging requirements, the mirror surface is usually characterized with a high accuracy metrology to calculate the actuators pulse functions and to assess its initial shape. After that, singular value decomposition (SVD) is used to find the signals to be applied into the actuators, to reach the desired surface deformation or correction. But in some cases this approach could be not robust enough for the needed performance. We present here a comparison between the classical SVD method and an error function minimization based on root-mean-square calculation. Some examples are provided, using a simulation of the European XFEL mirrors design as a case of study, and performances of the algorithms are evaluated in order to reach the ultimate quality in different scenarios. The approach could be easily generalized to other situations as well.

  4. Manufacturing an active X-ray mirror prototype in thin glass.

    PubMed

    Spiga, D; Barbera, M; Collura, A; Basso, S; Candia, R; Civitani, M; Di Bella, M S; Di Cicca, G; Lo Cicero, U; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L; Varisco, S

    2016-01-01

    Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X-rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X-ray illumination in an intra-focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described.

  5. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the

  6. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  7. Smart materials optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.

    2014-08-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes embedded in an epoxy matrix. CNT/epoxy is a multifunctional or `smart' composite material that has sensing capabilities and can be made to incorporate self-actuation as well. Moreover, since the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and 3D printing. The technology therefore holds promise for development of a new generation of lightweight, compact `smart' telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics. We discuss possible paths for future development.

  8. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    NASA Astrophysics Data System (ADS)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  9. Multiconjugate adaptive optics for large telescopes: analytical control of the mirror shapes.

    PubMed

    Owner-Petersen, Mette; Goncharov, Alexander

    2002-03-01

    We present an analytical algorithm for deriving the shapes of the deformable mirrors to be used for multiconjugate adaptive correction on a large telescope. The algorithm is optimal in the limit where the overlap of the wave-front contributions from relevant atmospheric layers probed by the guide stars is close to the size of the pupil. The fundamental principle for correction is based on a minimization of the sum of the residual power spectra of the phase fluctuations seen by the guide stars after correction. On the basis of the expressions for the mirror shapes, so-called layer transfer functions describing the distribution of the correction of a single atmospheric layer among the deformable mirrors and the resulting correction of that layer have been derived. It is shown that for five guide stars distributed in a regular cross, two- and three-mirror correction will be possible only up to a maximum frequency defined by the largest separation of the conjugate altitudes of the mirrors and by the angular separation of the guide stars. The performance of the algorithm is investigated in the K band by using a standard seven-layer atmosphere. We present results obtained for two guide-star configurations: a continuous distribution within a given angular radius and a five-star cross pattern with a given angular arm length. The wave-front fluctuations are subjected to correction using one, two, and three deformable mirrors. The needed mirror dynamic range is derived as required root-mean-square stroke and actuator pitch. Finally the performance is estimated in terms of the Strehl ratio obtained by the correction as a function of field angle. No noise has been included in the present analysis, and the guide stars are assumed to be at infinity.

  10. Multi-mirror adaptive optics for control of thermally induced aberrations in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Habets, Michel; Scholten, Joni; Weiland, Siep; Coene, Wim

    2016-03-01

    The imaging quality of the projection optics of an extreme ultraviolet lithography scanner degrades under the influence of thermally induced deformations of its mirrors. Wavefronts of different reticle points encounter different parts of the deformed mirrors, resulting in a field dependent wavefront error. This paper presents how ideas from multi-conjugate adaptive optics can be used to reduce these thermally induced aberrations. To this end a generic deformable mirror model is implemented. Linear actuator sensitivities are derived directly, based on nominal ray locations and directions, enabling fast prototyping. An integrated opto-thermo-mechanical mirror heating model is used to determine the evolution of thermally induced abberations over time. This transient simulation is used to analyze four different adaptive optics configurations and two different control algorithms. It is shown that by employing the multi-objective goal-attainment method, it is possible to improve the optical performance significantly when compared to minimizing the l2-norm of the total residual wavefront error vector.

  11. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  12. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  13. Variable area nozzle for gas turbine engines driven by shape memory alloy actuators

    NASA Technical Reports Server (NTRS)

    Rey, Nancy M. (Inventor); Miller, Robin M. (Inventor); Tillman, Thomas G. (Inventor); Rukus, Robert M. (Inventor); Kettle, John L. (Inventor); Dunphy, James R. (Inventor); Chaudhry, Zaffir A. (Inventor); Pearson, David D. (Inventor); Dreitlein, Kenneth C. (Inventor); Loffredo, Constantino V. (Inventor)

    2001-01-01

    A gas turbine engine includes a variable area nozzle having a plurality of flaps. The flaps are actuated by a plurality of actuating mechanisms driven by shape memory alloy (SMA) actuators to vary fan exist nozzle area. The SMA actuator has a deformed shape in its martensitic state and a parent shape in its austenitic state. The SMA actuator is heated to transform from martensitic state to austenitic state generating a force output to actuate the flaps. The variable area nozzle also includes a plurality of return mechanisms deforming the SMA actuator when the SMA actuator is in its martensitic state.

  14. Distributed control system for active mirrors

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Williams, Mark R.; Castro, Javier; Cruz, A.; Gonzalez, Juan C.; Mack, Brian; Martin, Carlos; Pescador, German; Sanchez, Vicente; Sosa, Nicolas A.

    1994-06-01

    This paper presents the IAC (Instituto de Astrofisica de Canaries, Spain) proposal of a distributed control system intended for the active support of a 8 m mirror. The system incorporates a large number of compact `smart' force actuators, six force definers, and a mirror support computer (MSC) for interfacing with the telescope control system and for general housekeeping. We propose the use of a network for the interconnection of the actuators, definers and the MSC, which will minimize the physical complexity of the interface between the mirror support system and the MSC. The force actuator control electronics are described in detail, as is the system software architecture of the actuator and the MSC. As the network is a key point for the system, we also detail the evaluation of three candidates, before electing the CAN bus.

  15. Mechanical principles of large mirror supports

    NASA Astrophysics Data System (ADS)

    Kärcher, Hans J.; Eisenträger, Peter; Süss, Martin

    2010-07-01

    Large thin meniscus mirrors use force-controlled shape actuators to obtain the required optical performance. The shape actuators can be interpreted as an advancement of classical mirror supports as whiffle trees or iso-static levers, which worked purely mechanical. The paper develops, after a short historical overview, the theoretical background of mirror mechanics. Different combinations of force-controlled shape actuators with mechanical, hydraulic or pneumatic whiffle trees or iso-static levers are analyzed in regard of their impact on optical performance, dynamic and control behavior. The investigations were the basis for the choice of the shape actuator system for the E-ELT M2, executed by MT Mechatronics under an ESO contract in 2008-09.

  16. LST secondary mirror articulation mechanism

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The analysis, design, manufacture, test, and delivery of one secondary mirror articulation mechanism for the large space telescope (LST) are reported. The mechanism provides angular freedom about two axes that are perpendicular to the optical axis of the secondary mirror. Motion in each axis is controlled from two sources; one source provides alignment, the other source provides stabilization. Two articulation mechanism configurations were evaluated. In one configuration the stabilization system was assembled with piezoelectric actuators. In the second configuration the stabilization system utilized flexure torque motor actuators. The alignment system was the same for both configurations. System testing confirmed performance that met or exceeded all operational requirements. The two types of stabilization actuators had different performance characteristics. Both types demonstrated position resolution and frequency response better than specified limits.

  17. Software for Alignment of Segments of a Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Hall, Drew P.; Howard, Richard T.; Ly, William C.; Rakoczy, John M.; Weir, John M.

    2006-01-01

    The Segment Alignment Maintenance System (SAMS) software is designed to maintain the overall focus and figure of the large segmented primary mirror of the Hobby-Eberly Telescope. This software reads measurements made by sensors attached to the segments of the primary mirror and from these measurements computes optimal control values to send to actuators that move the mirror segments.

  18. Finite element analysis of a meniscus mirror

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.

    1989-10-01

    Finite element analyses were carried out for a 7.5 m meniscus mirror of 20 cm thickness. Calculations were made for deformations of the mirror surface due to the gravity and the effect of a hole through which a lateral supporting mechanism would be installed. Vibrational eigenmodes were also calculated when the mirror is fixed by three axial and three lateral hard points.

  19. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y

    2013-10-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.

  20. Endoscopic optical coherence tomography imaging probe using a MEMS actuator

    NASA Astrophysics Data System (ADS)

    Zara, Jason M.; Izatt, Joseph A.; Oberhardt, Bruce J.; Smith, Stephen W.

    2004-07-01

    Endoscopic optical coherence tomography (EOCT) is a medical imaging technique that uses infrared light delivered via an endoscope to produce high-resolution images of tissue microstructure of the gastrointestinal tract. A key component of an EOCT system is the method used to scan the infrared beam across the tissue surface. We have begun developing electrostatic MEMS micromirror devices for use in EOCT. These devices consist of 1 mm square gold-plated silicon mirrors on polyimide tables that tilt on 3 micron thick torsion hinges. The MEMS actuator used to tilt the mirror, the integrated forces array (IFA) is a thin (2.2 μm) polyimide membrane consisting of hundreds of thousands of deformable capacitors that can produce strains up to 20% and forces equivalent to 13 mg with applied voltages from 30-120 V. Measurements of optical deflections of these devices range from 18° at low frequencies to more than 120° near the resonant frequencies of the structures (30-60 Hz). The support structures, hinges, and actuators are fabricated from polyimide on silicon using photolithography. These electrostatic MEMS micromirrors were inserted into the scanning arm of an OCT imaging system to take in vitro images of porcine tissue and in vivo images of human skin at frame rates from 4-8 Hz. SLA probe tips were designed and fabricated to align the optics of the device and to protect the fragile polyimide devices during endoscopic imaging. In addition, devices are being fabricated that combine the IFA and mirror structures onto a single silicon wafer, reducing fabrication difficulty.

  1. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  2. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  3. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  4. Chiral mirrors

    NASA Astrophysics Data System (ADS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  5. Active shape correction of a thin glass/plastic x-ray mirror

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Barbera, M.; Basso, S.; Civitani, M.; Collura, A.; Dell'Agostino, S.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.

    2014-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the preliminary simulations and the first steps taken in this project.

  6. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  7. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  8. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  9. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  10. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  11. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  12. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  13. Actuator mechanism

    NASA Technical Reports Server (NTRS)

    Stange, W. C. (Inventor)

    1978-01-01

    An actuator mechanism is described, having a frame with a rotatable shaft supported in the frame, a positioning mechanism coupled to the shaft for rotating the shaft in two rotary positions, disposed approximately 180 degrees apart, and a pair of plungers coupled to the shaft. Each plunger is responsive to a control signal for applying bi-directional rotation to the shaft.

  14. 35 Hz shape memory alloy actuator with bending-twisting mode

    PubMed Central

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-01-01

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators. PMID:26892438

  15. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  16. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  17. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  18. Slumped mirrors

    NASA Astrophysics Data System (ADS)

    Pteancu, Mircea; Dragan, Dorin; Dragan, Olivier; Miron, Andrei; Stanescu, Octavian

    2008-02-01

    The authors discusse the construction of slumped mirrors, their fabrication and testing (polishing and lapping). An important topic of the discussion is thermal fabrication of mirrors by using of matrixes. One of the authors of the entry is combining astronomy and aquariums construction.

  19. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  20. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-01-01

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively. PMID:26110409

  1. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  2. Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror

    NASA Technical Reports Server (NTRS)

    Moore, James D.; Carson, Johnathan W.

    2011-01-01

    A complete, self-contained fast-steering- mirror (FSM) mechanism is reported consisting of a housing, a mirror and mirror-mounting cell, three PZT (piezoelectric) actuators, and a counterbalance mass. Basically, it is a comparatively stiff, two-axis (tip-tilt), self-balanced FSM. The present invention requires only three (or three pairs for flight redundancy) actuators. If a PZT actuator degrades, the inherent balance remains, and compensation for degraded stroke is made by simply increasing the voltage to the PZT. Prior designs typically do not pivot at the mirror optical center, creating unacceptable beam shear.

  3. Mirror, Mirror on the Wall...?

    ERIC Educational Resources Information Center

    Pflaster, Gail

    1979-01-01

    The study determined the value of using a mirror for speech teaching by recording manner, place, voicing, and blend errors produced by 27 hearing-impaired children (5-13 years old) while imitating consonant-vowel syllables under three conditions (audition alone, audition plus direct vision, and audition plus vision using a mirror). (Author)

  4. Optical properties of relativistic plasma mirrors

    PubMed Central

    Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  5. Null Lens Assembly for X-Ray Mirror Segments

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2011-01-01

    A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.

  6. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  7. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  8. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  9. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  10. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

  11. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  12. Membrane mirror light modulator technology

    NASA Astrophysics Data System (ADS)

    Warde, Cardinal; McCann, James T.; Shrauger, Vern; Ieong, H.-H.; Ersen, Ali; Wang, X. Y.; Hubbard, J.

    2000-03-01

    We have incorporated membrane mirror technology over a discrete array of pixel wells to create both high-efficiency optical shutters and spatial light modulators (SLM). A continuous metalized-membrane mirror with greater than 98% reflectivity minimizes optical insertion loss. This mirror is electrostatically deformed into the wells with either a common electrode (shutter) or pixilated electrodes (SLM). By using a spatial filter, analog intensity optical modulation is realized. Both 1-D (linear) and 2-D grating pixel patterns have been investigated. With the appropriate pixel dimensions, both coherent monochromatic and broadband incoherent light within the 0.25 to 10.6 micron range can be modulated with contrast ratios up to 1000:1. Small well sizes (approximately 10-micron diameter) allow for modulation speeds up to 1 MHz. The theoretical foundations for the well layout, the membrane mirror deformation and its diffraction properties, and the design trade-offs are detailed. We have applied our membrane mirror technology to CMOS VLSI circuits creating a high-speed, high-efficiency spatial light modulator capable of 80 X 64 resolution and scalable to HDTV standards. The membrane mirror SLM provides either amplitude or phase modulation. In the phase modulation mode, at least two waves of stroke per discrete well are possible.

  13. Ball Semi-Rigid Advanced Mirror System Demonstrator (AMSD)

    NASA Technical Reports Server (NTRS)

    Kendrick, Stephen; Russell, Kevin (Technical Monitor)

    2001-01-01

    The AMSD Program is to design, fabricate, and test a 1.4-m point-to-point hexagon mirror system. The Ball semi-rigid approach will be described and its current status presented, The mirror system includes a lightweighted beryllium mirror that is attached through flexures and actuators to a composite reaction structure enabling optical performance at ambient and cryogenic temperatures and allowing changes of curvature to be imposed via actuation. This program is administered through NASA MSFC and is jointly funded by NASA, the USAF, and the NRO.

  14. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  15. Electrically actuatable temporal tristimulus-color device

    DOEpatents

    Koehler, Dale R.

    1992-01-01

    The electrically actuated light filter operates in a cyclical temporal mode to effect a tristimulus-color light analyzer. Construction is based on a Fabry-Perot interferometer comprised of a high-speed movable mirror pair and cyclically powered electrical actuators. When combined with a single vidicon tube or a monochrome solid state image sensor, a temporally operated tristimulus-color video camera is effected. A color-generated is accomplished when constructed with a companion light source and is a flicker-free colored-light source for transmission type display systems. Advantages of low cost and small physical size result from photolithographic batch-processing manufacturability.

  16. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  17. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  18. Numerical study on 3D composite morphing actuators

    NASA Astrophysics Data System (ADS)

    Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru

    2015-04-01

    There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.

  19. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  20. [Mirror neurons].

    PubMed

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  1. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  2. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  3. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  4. Conicoid Mirrors

    ERIC Educational Resources Information Center

    Castano, Diego J.; Hawkins, Lawrence C.

    2011-01-01

    The first-order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources. (Contains 3 figures.)

  5. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  6. Vibration damping for the Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  7. Primary mirror back surface shape research of GEO laser communication system

    NASA Astrophysics Data System (ADS)

    Liu, Weida; Zhang, Li-zhong; Meng, Li-xin

    2015-11-01

    The research of laser communication system primary mirror deformation caused by back surface shape variation was done in this paper. The usual mirror back surface shapes were sphere, double arch, flat and biconcave shape and so on. Based on the four shape mirror, with the center hole rim support pattern, the four shape mirror temperature distribution equation was inferred by thermal elastic theory, deformation are compared in 1-5℃ radius direction temperature difference, in the case of minor weight gap and equal maximum thickness. As a result, the deformation of sphere back surface shape mirror is minimal. So sphere back surface shape is fit for the primary mirror.

  8. Mirror Metrology Using Nano-Probe Supports

    NASA Technical Reports Server (NTRS)

    Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing

    2012-01-01

    Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to

  9. Active X-ray mirror development at UCL: preliminary results

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Doel, Peter; Yao, Jun; Brooks, David; Thompson, Samantha; Willingale, Richard; Feldman, Charlotte; Button, Tim; Zhang, Dou; James, Ady

    2007-12-01

    The Smart X-ray Optics project is a UK based consortium consisting of several institutions to investigate the application of active/adaptive optics upon both small and large scale grazing incidence x-ray optics. The work done at University College London (UCL) focuses on the application of piezoelectric materials to large scale optics in order to actively deform the mirror's surface. These optics are geared towards the next generation of x-ray telescopes and it is hoped that the project will be able to achieve a resolution greater than that currently available by Chandra (0.5"). One of the aims of the consortium is to produce a working prototype. The initial design is based on a thin nickel ellipsoid segment with an x-ray reflective coating, on the back of which will be bonded a series of piezoelectric actuators. Investigation into the specification of the design of an active x-ray optic prototype and suitable support test structure has been undertaken. The dimensions and constraints upon the prototype, and the manufacturing process to produce a nickel shell are discussed. Finite element analysis (FEA) of the physical characteristics of piezoelectric materials has shown the ability to deform the nickel surface to correct for errors of several microns. FEA has also been utilised in the specification of the prototype's support structure to ensure that gravitational sag upon the optic is kept to a minimum. Laboratory experiments have tested a series of materials, different actuators and bonding methods, which could then be applied to the prototype.

  10. Finite element analysis of lightweight active primary mirror

    NASA Astrophysics Data System (ADS)

    Lu, Wei Xin; Guan, Chun Lin; Rao, Chang Hui

    2012-09-01

    With the increasing requirement on spatial resolution to achieve ideal performance in space-based optical imaging system, there is a need to enlarge primary apertures. However, primary mirrors of such systems cannot maintain its optical tolerances across the mirror surface after sending to space, because of gravity change and varying ambient temperature. It necessitates active optics technology of primary mirror surface correction. Since mass-to-orbit is expensive and limited, lightweight primary mirror is needed. The paper investigates a lightweight, active primary mirror. This primary mirror structure includes lightweight face sheet and substrate with surface-parallel actuators embedded in the recess of web support ribs. Finite element models of lightweight, active primary mirror structures with different structural parameters are established and simulated. Using the response function matrixes acquired from finite element analysis, the fitting errors for Zernike polynomials are computed by MATLAB. Correctability comparisons of lightweight, active primary mirror structures with different parameters are carried out. To get best correctability, the mirrors should have small recess depth, high and thin ribs, thick face sheets and long actuators. The structural analysis result will be valuable for the design of lightweight, active primary mirror.

  11. Focus tunable mirrors made by ionic polymer-metal composite

    NASA Astrophysics Data System (ADS)

    Li, Chung-Min; Su, Guo-Dung

    2014-09-01

    In order to meet modern requirement, electronic products are made smaller and thinner. We used deformable mirrors (DMs) in optical systems that can make camera modules thinner and lighter in electronic products. An Ionic-Polymer Metal Composite (IPMC) plays the critical role in our design of deformable mirrors. It has good bending feature and can be driven by low voltage (usually less than 5 volts). Other technologies such as liquid lenses, MEMS deformable mirrors, and liquid crystal lens, all need higher voltage to reach similar optical power of IPMC. After fabrication of IPMC deformable mirrors, we used PDMS on one surface to improve the surface roughness before reflective metal is deposited. Key characteristics of IPMC deformable mirror are demonstrated in the paper. By coating a silver layer on the smoothed IPMC surface, the reflection is up to 90%. From simulation results, the zoom ratio of this module can be expected 1.8 times. Experimentally, the deformable mirror can be changed from flat to 65 diopters (m-1) by only 3 volts. In this paper, we demonstrated a reflective optical zoom module with three mirrors and two deformable mirrors.

  12. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  13. Dynamic characteristics of a hydraulic amplification mechanism for large displacement actuators systems.

    PubMed

    Arouette, Xavier; Matsumoto, Yasuaki; Ninomiya, Takeshi; Okayama, Yoshiyuki; Miki, Norihisa

    2010-01-01

    We have developed a hydraulic displacement amplification mechanism (HDAM) and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS) membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation. PMID:22319281

  14. Optimum shape control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions.

  15. Micro-control actions of segmented actuators on shallow paraboloidal shell reflectors

    NASA Technical Reports Server (NTRS)

    Lih, S.; Hickey, G.; Ding, J. H.; Tzou, H. S.

    2002-01-01

    Shallow paraboloidal shells of revolution are common components for reflectors, mirrors, etc. This study is to investigate the micro-control actions and distributed control effectiveness of precision paraboloidal shell structures laminated with segmented actuator patches.

  16. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  17. Toward a large lightweight mirror for AO: development of a 1m Ni coated CFRP mirror

    NASA Astrophysics Data System (ADS)

    Thompson, S. J.; Doel, A. P.; Brooks, D.; Strangwood, M.

    2008-07-01

    We present our recent developments towards the construction of a large, thin, single-piece mirror for adaptive optics (AO). Our current research program aims to have completed fabrication and testing of a 1m diameter, nickel coated carbon-fibre reinforced cyanate ester resin mirror by the last quarter of 2009. This composite mirror material is being developed to provide a lightweight and robust alternative to thin glass shell mirrors, with the challenge of future large deformable mirrors such as the 2.5m M4 on the E-ELT in mind. A detailed analysis of the material properties of test mirror samples is being performed at the University of Birmingham (UK), the first results of which are discussed and presented here. We discuss the project progress achieved so far, including fabrication of the 1m flat moulds for the replication process, manufacturing and testing methods for 20 cm diameter sample mirrors and system simulations.

  18. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  19. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  20. Improved cryogenic aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Don, Ken; Sumner, Richard E.

    1998-09-01

    Optical surface deformation of metal mirrors used at cryogenic temperatures is reduced through the use of a new process of plating amorphous aluminum on aluminum. The AlumiPlateTM process (produced by AlumiPlate, Inc. in Minneapolis, MN) plates a layer of 99.9+% high purity aluminum about 125 micrometers thick atop the substrate. Very good surface finishes are produced by direct diamond turning of the plating, with some samples below 40 angstroms RMS. Optical testing of a 175-mm diameter, 550-mm optical radius of curvature 6061-T651/AlumiPlateTM aluminum sphere was performed at 65 K to determine cryogenic optical surface figure stability. In five cycles from 300 to 65 K, an average optical surface change of 0.047 wave RMS (1 wave equals 633 nm) was observed. A total optical figure change of 0.03 wave RMS at 65 K was observed from the first to last cycle. The cause of this relatively small long-term change is not yet determined. The test mirror is bi-concave, with a semi- kinematic toroidal mount, and is machined from the axis of a billet. An `uphill quench' heat treatment consisting of five cycles from liquid nitrogen to boiling water temperatures is used to minimize residual stress in the test mirror. Initial diamond turning of the mirror by the Optical Filter Corp., Keene, NH, produced a 300 K unmounted optical surface figure of 0.380 wave peak-to-valley and 0.059 wave RMS. A second effort at diamond turning by II-VI, Inc., Saxonburg, PA produced a 300 K optical figure of 0.443 wave peak-to-valley and 0.066 wave RMS, with a surface roughness varying from 29 to 42 angstroms.

  1. Wind responses of the LSST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Vogiatzis, Konstantinos; Sebag, Jacques; Neill, Douglas R.

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) optical design calls for a large annular 3.4 m diameter meniscus convex aspheric Secondary Mirror (M2). The M2 has a mass of approximately 1.5 metric tons and the optimized mirror support system consists of 72 axial actuators, mounted at the mirror back surface, and 6 tangent link lateral supports mounted around the outer edge. A fully integrated M2 Finite Element Model (FEM) including the mirror and the support systems has been developed to investigate the performance of the M2 assembly and to determine the image degradation due to dynamic wind loading. Detailed wind response analysis was performed based on the input from Computational Fluid Dynamics (CFD) simulations. Image quality calculations of the time history responses and Power Spectrum Density (PSD) are addressed.

  2. A smart soft actuator using a single shape memory alloy for twisting actuation

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Eul; Quan, Ying-Jun; Wang, Wei; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2015-12-01

    Recently, robots have become a topic of interest with regard to their functionality as they need to complete a large number of diverse tasks in a variety of environments. When using traditional mechanical components, many parts are needed to realize complex deformations, such as motors, hinges, and cranks. To produce complex deformations, this work introduces a smart soft composite torsional actuator using a single shape memory alloy (SMA) wire without any additional elements. The proposed twisting actuator is composed of a torsionally prestrained SMA wire embedded at the center of a polydimethylsiloxane matrix that twists by applying an electric current upon joule heating of the SMA wire. This report shows the actuator design, fabrication method, and results for the twisting angle and actuation moment. Results show that a higher electric current helps reach the maximum twisting angle faster, but that if the current is too low or too high, it will not be able to reach its maximum deformation. Also, both the twisting angle and the twisting moment increase with a large applied twisting prestrain, but this increase has an asymptotic behavior. However, results for both the width and the thickness of the actuator show that a larger width and thickness reduce the maximum actuation angle of the actuator. This paper also presents a new mechanism for an SMA-actuated active catheter using only two SMA wires with a total length of 170 mm to bend the tip of the catheter in multiple directions. The fabricated active catheter’s maximum twisting angle is 270°, and the maximum bending curvature is 0.02 mm-1.

  3. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  4. Dielectric elastomer actuators as self-sensing devices: a new method of superimposing actuating and sensing signals

    NASA Astrophysics Data System (ADS)

    Landgraf, Maximilian; Zorell, Ulrich; Wetzel, Thomas; Reitelshöfer, Sebastian; Yoo, In Seong; Franke, Jörg

    2015-04-01

    Dielectric elastomer actuators (DEAs) have a lot of advantages such as high energy efficiency, unrivaled power-toweight ratio and soft structure. Furthermore this new kind of actuator is capable of sensing its deformation and status without additional sensing devices. Therefore, DEAs are acknowledged as self-sensing actuators. In this contribution a new self-sensing technique for DEAs is presented, in which the capacitance of DEAs under deformation is measured using high voltage signals. For this purpose, simple signal processing algorithms and a novel method of superimposing actuating and sensing signals are implemented. By connecting the ground potential electrode of the DEA to a sinusoidal sensing signal, the DEA is used as a passive first order high-pass filter. The other electrode of the DEA is connected to the actuation voltage, which is superimposed with the sinusoidal signal. The amplitude of this signal is basically dependent on the capacitance of the actuator. Therefore, the change of the capacitance induced by contraction of the actuator alters the amplitude of the sinusoidal signal. The amplitude change can then be interpreted as capacity change and can be used to estimate the mechanical deformation of the DEA. In comparison to existing methods, this approach is promising for a miniaturized circuit and therefore for later use in mobile systems. In this paper, the new concept of superimposing actuating and sensing signals for self-sensing DEAs is validated with an experimental setup and several known capacities. The first results are presented and discussed in detail.

  5. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  6. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  7. Part Design of Giant Magnetostrictive Actuator

    NASA Astrophysics Data System (ADS)

    Sun, Zhonglei; Zhao, Meiying; Yin, Zidong

    The key parts of giant magnetostrictive actuator, flexure hinge and pre-stress disc spring, were designed and analyzed. Rotation stiffness and strength characteristics of flexure hinge were analyzed, calculation equations for rotation stiffness and strength were established as well. Fatigue characteristic was also analyzed as flexure hinge usually worked under high frequency situation. In order to improve output efficiency of the giant magnetostrictive actuator and reduce energy loss, an ideal spring force-deformation curve, whose shape was bilinear broken line, of the pre- stress disc spring was put forward, and a disc spring was designed by configuring its geometric parameters to make its spring force-deformation curve was approximate to the ideal spring force-deformation curve.

  8. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  9. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  10. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    PubMed

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles. PMID:26367106

  11. Hierarchically arranged helical fibre actuators driven by solvents and vapours

    NASA Astrophysics Data System (ADS)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  12. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    PubMed

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  13. Multi-actuator adaptive lens for wavefront correction in optical coherence tomography and two-photon excitation fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Lee, Sujin; Jian, Yifan; Cua, Michelle; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a new type of adaptive lens with 18 actuators that can correct up the 4th order of aberration. The Multi-actuator Adaptive Lens (M-AL) can guarantee a good level of aberration correction for many applications and, with respect to deformable mirror, it allows the realization of more compact and simple optical systems. The adaptive lens is based on the use of piezoelectric actuators and, without any obstruction or electrodes in the clear aperture, can guarantee a fast response time, in the order of about 10ms. The clear aperture of the M-AL allows its use in "classical" Adaptive Optics configuration together with a wavefront sensor. To introduce a further simplification to the optical system design we show that the adaptive lens can be also driven with a wavefront sensorless control algorithm during in vivo optical coherence tomography of the human retina and for two-photon excitation fluorescence microscopy. In the experimental setup we used two aberration correcting devices a commercial adaptive lens (AL) with a high dynamic range to correct for defocus and the Multi-actuator Adaptive Lens (M-AL) to correct for the Zernike aberrations up to the 4th order. Experimental results show that the ocular aberrations of human eyes can be successfully corrected with our M-AL for pupils of 5mm and that retinal cones can be readily imaged.

  14. Design of an innovative magnetostrictive patch actuator

    NASA Astrophysics Data System (ADS)

    Cinquemani, S.; Giberti, H.

    2015-04-01

    Magnetostrictive actuators can be profitably used to reduce vibration in structures. However, this technology has been exploited only to develop inertial actuators, while patches actuators have not been ever used in practice. Patches actuators consist on a layer of magnetostrictive material, which has to be stuck to the surface of the vibrating structure, and on a coil surrounding the layer itself. However, the presence of the winding severely limits the use of such devices. As a matter of fact, the scientific literature reports only theoretical uses of such actuators, but, in practice it does not seem they were ever used. This paper presents an innovative solution to improve the structure of the actuator patches, allowing their use in several practical applications. The principle of operation of these devices is rather simple. The actuator patch is able to generate a local deformation of the surface of the vibrating structure so as to introduce an equivalent damping that dissipates the kinetic energy associated to the vibration. This deformation is related to the behavior of the magnetostrictive material immersed in a variable magnetic field generated by the a variable current flowing in the winding. Contrary to what suggested in the theoretical literature, the designed device has the advantage of generating the variable magnetic field no longer in close proximity of the material, but in a different area, thus allowing a better coupling. The magnetic field is then conveyed through a suitable ferromagnetic structure to the magnetostrictive material. The device has been designed and simulated through FEA. Results confirm that the new configuration can easily overcome all the limits of traditional devices.

  15. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  16. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  17. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will

  18. Primary mirror dynamic disturbance models for TMT: vibration and wind

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Colavita, M. Mark; Skidmore, Warren; Vogiatzis, Konstantinos

    2010-07-01

    The principal dynamic disturbances acting on a telescope segmented primary mirror are unsteady wind pressure (turbulence) and narrowband vibration from rotating equipment. Understanding these disturbances is essential for the design of the segment support assembly (SSA), segment actuators, and primary mirror control system (M1CS). The wind disturbance is relatively low frequency, and is partially compensated by M1CS; the response depends on the control bandwidth and the quasi-static stiffness of the actuator and SSA. Equipment vibration is at frequencies higher than the M1CS bandwidth; the response depends on segment damping, and the proximity of segment support resonances to dominant vibration tones. We present here both disturbance models and parametric response. Wind modeling is informed by CFD and based on propagation of a von Karman pressure screen. The vibration model is informed by analysis of accelerometer and adaptive optics data from Keck. This information is extrapolated to TMT and applied to the telescope structural model to understand the response dependence on actuator design parameters in particular. Whether the vibration response or the wind response is larger depends on these design choices; "soft" (e.g. voice-coil) actuators provide better vibration reduction but require high servo bandwidth for wind rejection, while "hard" (e.g. piezo-electric) actuators provide good wind rejection but require damping to avoid excessive vibration transmission to the primary mirror segments. The results for both nominal and worst-case disturbances and design parameters are incorporated into the TMT actuator performance assessment.

  19. Performance of The Far Ultraviolet Spectroscopic Explorer Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Ohi, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffery; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four coaligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 x 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50 percent and 95 percent slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The far-ultraviolet reflectivity of the SiC- and AlLiF-coated mirrors decreased about six percent and three percent, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  20. Alignment displacements of the solar optical telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Medenica, W. V.

    1978-01-01

    Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.

  1. News Note: Breakthrough in mirror control at SALT

    NASA Astrophysics Data System (ADS)

    2016-08-01

    The 91 segments of the SALT primary need to be kept precisely aligned in order to obtain the best images. As is well-known, the initial alignment process uses a type of Shack-Hartmann wavefront sensor in an auxiliary tower to send feedback to control the mirror actuators. This note reveals the success of new edge-sensors that keep the mirrors in alignment for several days at a time without the need for Shack-Hartmann testing.

  2. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  3. Responder fast steering mirror

    NASA Astrophysics Data System (ADS)

    Bullard, Andrew; Shawki, Islam

    2013-10-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  4. Responder fast steering mirror

    NASA Astrophysics Data System (ADS)

    Bullard, Andrew; Shawki, Islam

    2013-09-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  5. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  6. Rotational MEMS mirror with latching arm for silicon photonics

    NASA Astrophysics Data System (ADS)

    Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.

    2015-02-01

    We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.

  7. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  8. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  9. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  10. Thrust Production and Wake Structure of an Actuated Lamprey Model

    NASA Astrophysics Data System (ADS)

    Buchholz, James; Smits, Alexander

    2004-11-01

    Thrust generation is studied for a flexible lamprey model which is actuated periodically to produce a streamwise traveling wave. Shape memory alloy actuators are used to achieve this deformation. The flow field is investigated using DPIV and flow visualization for a range of Strouhal numbers based on peak-to-peak amplitude of the trailing edge. The vortex kinematics in the spanwise and streamwise planes are examined, and a three-dimensional unsteady vortex model of the wake will be discussed.

  11. A low-cost mirror mount control system for optics setups

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Maithreyi; Gühr, Markus

    2015-02-01

    We describe a flexible, simple to build, low-cost, and computer-controlled optical mirror actuator system, developed for undergraduate research laboratories. Geared motors for hobby robotics are controlled by an Arduino microcontroller in combination with an H bridge to finely position mirror mount actuators. We present a graphical user interface based on the Python script language. The price of the fully controlled actuator system is only a small fraction of the price of a commercial system. It can be quickly implemented due to the use of open-hardware electronics. We discuss the performance of the system and give an outlook for future expansions and use in advanced optical setups.

  12. Ultrathin Alvarez lens system actuated by artificial muscles.

    PubMed

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems. PMID:27139677

  13. Solar simulator mirror refurbishment

    NASA Technical Reports Server (NTRS)

    Leverton, W. R.

    1974-01-01

    Solar simulator mirrors were refurbished. Two different refurbishment methods were employed. In the first, the electroformed mirror replica was removed from the casting and replaced with a new mirror replica. In the second, only the aluminized surface, with its protective overcoat, was removed from the mirror and replaced after cleaning of the nickel surface.

  14. GMT primary mirror support

    NASA Astrophysics Data System (ADS)

    Hull, Charlie

    2014-07-01

    The GMT primary mirror support draws on the heritage developed for the 3.5 m, 6.5 m, and 8.4 m mirrors from the Steward Observatory Mirror Lab. While similar in design philosophy and concept, each successive generation has incorporated refinements based on the experience gained from previous mirrors.

  15. Bio inspired Magnet-polymer (Magpol) actuators

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2014-03-01

    Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.

  16. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4μm. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  17. Floating mirror mount

    SciTech Connect

    Koop, D.E.

    1989-01-03

    This patent describes a floating mirror mount for a mirror of a laser is described consisting of: a mirror having a front surface and a back surface, a keeper encircling the mirror and having a peripheral flange engaging the front surface of the mirror when the mirror is not installed in a laser, a retainer positioned rearwardly of the back surface of the mirror and connected to the keeper and having a spring seating surface, spring means engageable with the spring seating surface of the retainer for exerting a resilient biasing force on the mirror, and fastening means for connecting the retainer to the mirror positioning structure of the laser on installation of the mirror mount in the laser.

  18. Actuating Fibers: Design and Applications.

    PubMed

    Stoychev, Georgi V; Ionov, Leonid

    2016-09-21

    Actuators are devices capable of moving or controlling objects and systems by applying mechanical force on them. Among all kinds of actuators with different shapes, fibrous ones deserve particular attention. In spite of their apparent simplicity, actuating fibers allow for very complex actuation behavior. This review discusses different approaches for the design of actuating fibers, and their advantages and disadvantages. We also discuss the prospects for the design of fibers with advanced architectures and complex actuation behavior. PMID:27571481

  19. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting

    NASA Astrophysics Data System (ADS)

    Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon

    2015-12-01

    A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.

  20. Effect of organo-clay on actuation response of silicone rubber actuators

    NASA Astrophysics Data System (ADS)

    Gharavi, N.; Razzaghi Kashani, M.; Moradi, A.

    2009-03-01

    Dielectric elastomers are light weight, low-cost, and highly deformable smart materials widely in used as sensors and actuators. Compounding of silicone rubber with various fillers can enhance efficiency of smart materials. Effect of organically modified Montmorillonite (OMMT) nanoclay on improvement of dielectric properties and actuation stress was considered in this study. Room Temperature Vulcanized (RTV) silicone rubber was compound with 2% and 5% of OMMT by solution method and a composite film was cast. Dielectric measurements show enhancement of both dielectric permittivity and dielectric loss in these composites. Actuation stress for different composites was measured by using an in-house actuation set-up, which showed that actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Furthermore, time dependent actuation response of the samples was evaluated. Dielectric properties of the composites were measured under AC electric fields, and results were compared with the reference silicone rubbers with no filler. Results shows increase in both storage and loss dielectric constants of base silicone rubber when it is compounded with OMMT.

  1. Adaptive optics actuation by means of van der Waals forces: a novel nanotechnology strategy to steer light by light

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-11-01

    The feasibility to carry out the contactless actuation and control of both continuous facesheet deformable mirrors and MOEMS segmented micromirrors by manipulating van der Waals forces between electrically neutral surfaces is discussed. As we show, appropriately engineering such surface forces allows for adaptive optics strategies that are fully scalable down to the nanostructure level and that are intimately based on the optical properties of the materials involved. Since the magnitude of unretarded van der Waals forces diverges as the third power of the distance between the adaptive surface and the back-facing, actuating boundary, the novel approach proposed herein remains effective as the device size decreases even enabling one to address individual atoms. In some implementations, the actuation mechanism is driven by the dependence of van der Waals forces in semiconductors on illumination. Therefore the possibility exists, with adequate power levels, to design feed-back loops driven exclusively by light. A remarkable property of dispersion forces is their drastic behavior as a function of the topology of the interacting surfaces. This fact, at the frontier of contemporary numerical investigations, leads to the consideration of geometries in which dispersion forces are expected to change from attractive to repulsive. Finally, van der Waals forces exist between all neutral materials and contactless actuation can be achieved, for instance, even if the reflecting surface is not a conductor. This will open new multidimensional parameter space to the use of suitably designed classes of adaptive optics materials, including dielectrics, semiconductors, and multilayered structures, such as photonic-band-gap crystals.

  2. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2013-06-01

    A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.

  3. Lock for hydraulic actuators

    NASA Technical Reports Server (NTRS)

    Wood, R. H.

    1981-01-01

    Two clamps hold rod in fixed extension from cylinder even when power is off, converting actuator into stiff structural member. Locked actuator is useful as mechanical support or linkage or as fail-safe device in case of loss of hydraulic pressure. Potential applications include manufacturing processes and specialized handling and holding devices.

  4. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  5. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon

    2011-10-01

    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  6. Genetic Adaptive Control for PZT Actuators

    NASA Technical Reports Server (NTRS)

    Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.

    1995-01-01

    A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.

  7. Active supports and force optimization for the MMT primary mirror

    NASA Astrophysics Data System (ADS)

    Martin, Hubert M.; Callahan, Shawn P.; Cuerden, Brian; Davison, Warren B.; Derigne, S. T.; Dettmann, Lee R.; Parodi, G.; Trebisky, T. J.; West, Steve C.; Williams, Joseph T.

    1998-08-01

    We describe the active support system and optimization of support forces for the 6.5 m primary mirror for the Multiple Mirror Telescope Conversion. The mirror was figured to an accuracy of 26 nm rms surface error, excluding certain flexible bending modes that will be controlled by support forces in the telescope. On installation of the mirror into its telescope support cell, an initial optimization of support forces is needed because of minor differences between the support used during fabrication and that in the telescope cell. The optimization is based on figure measurements made interferometrically in the vibration- isolated test tower of the Steward Observatory Mirror Lab. Actuator influence functions were determined by finite- element analysis and verified by measurement. The optimization is performed by singular value decomposition of the influence functions into normal modes. Preliminary results give a wavefront accuracy better than that of the atmosphere in 0.11 arcsecond seeing.

  8. Electromechanical performance of piezoelectric scanning mirrors for medical endoscopy

    PubMed Central

    Gilchrist, Kristin H.; Dausch, David E.; Grego, Sonia

    2012-01-01

    The electromechanical performance of piezoelectric scanning mirrors for endoscopy imaging is presented. The devices are supported by a single actuating cantilever to achieve a high fill factor, the ratio of mirror area to the combined mirror and actuator area. The largest fill factor devices (74%) achieved 10° mechanical scan range at +/−10V with a 300 μm long cantilever. The largest angular displacement of 30° mechanical scan range was obtained with a 500 μm long cantilever device with a 63% fill factor driven at 40 Vpp. A systematic investigation of device performance (displacement and speed) as a function of fabrication and operational parameters including the stress balance in the cantilever revealed unexpectedly large displacements with lack of inversion at the coercive field. An interpretation of the results is presented based on piezoelectric film domain orientation and clamping with supporting piezoelectric film characterization measurements. PMID:22773894

  9. Impact of resolution in multi-conjugate adaptive optics systems using segmented mirrors

    NASA Astrophysics Data System (ADS)

    Corej, Thomas A.; Schmidt, Jason D.

    2009-08-01

    In moderate-to-strong scintillation, multi-conjugate adaptive optics (MCAO) appears promising to compensate for amplitude and phase fluctuations. In this research, a MCAO system is simulated with a segmented deformable mirror (DM) reshaping the amplitude and the second DM (continuous) flattening the phase after propagation from the segmented mirror. A Gerchberg-Saxton (GS) type algorithm is used with Fresnel propagation between DM planes. The effects of varying the phase's apparent resolution on a segmented DM in the pupil plane is investigated. Results show the mean square error in the reshaped beam decreases as D/ro and Rytov number increase over the range of conditions tested (ro: 0.11 m - 0.36 m). The field-estimated Strehl ratio drops precipitously when the number of subapertures is increased beyond about 36 across, using a branch-pointtolerant unwrapper, due to the presence of branch points. On the second DM, by using the mean of the phase within each subaperture before back propagating to the first DM plane (inside the GS loop), the Strehl ratio was improved 6 - 11 percent using 4 - 19 actuators across. Further a novel method of cascading segmented DMs, of increasingly higher resolution, doing amplitude reshaping followed by a continuous DM to flatten the phase is explored.

  10. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    NASA Astrophysics Data System (ADS)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  11. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  12. The VST active primary mirror support system

    NASA Astrophysics Data System (ADS)

    Schipani, Pietro; Capaccioli, Massimo; D'Orsi, Sergio; Ferragina, Luigi; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; De Paris, Giacinto; Fierro, Davide; Tomelleri, Raffaele; Rossettini, Pierfrancesco; Perina, Francesco; Recchia, Stefano; Magrin, Demetrio

    2010-07-01

    The 2.6-m primary mirror of the VST telescope is equipped with an active optics system in order to correct low-order aberrations, constantly monitoring the optical quality of the image and controlling the relative position and the shape of the optical elements. Periodically an image analyser calculates the deviation of the image from the best quality. VST is equipped with both a Shack-Hartmann in the probe system and a curvature sensor embedded in the OmegaCAM instrument. The telescope control software decomposes the deviation into single optical contributions and calculates the force correction that each active element has to perform to achieve the optimal quality. The set of correction forces, one for each axial actuator, is computed by the telescope central computer and transmitted to the local control unit of the primary mirror system for execution. The most important element of the VST active optics is the primary mirror, with its active support system located within the primary mirror cell structure. The primary mirror support system is composed by an axial and a lateral independent systems and includes an earthquake safety system. The system is described and the results of the qualification test campaign are discussed.

  13. Thermal deformation of concentrators in an axisymmetric temperature field

    NASA Technical Reports Server (NTRS)

    Bairamov, R.; Machuev, Y. I.; Nazarov, A.; Sokolov, Y. V.; Solodovnikova, L. A.; Fokin, V. G.

    1985-01-01

    Axisymmetric thermal deformations of paraboloid mirrors, due to heating, are examined for a mirror with a optical axis oriented toward the Sun. A governing differential equation is derived using Mushtari-Donnel-Vlasov simplifications, and a solution is presented which makes it possible to determine the principal deformation characteristics.

  14. Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    High, James W.; Wilkie, W. Keats

    2003-01-01

    The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.

  15. Shape-memory alloy micro-actuator

    NASA Technical Reports Server (NTRS)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  16. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  17. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  18. A generalized electrostatic micro-mirror (GEM) model for a two-axis convex piecewise linear shaped MEMS mirror

    NASA Astrophysics Data System (ADS)

    Edwards, C. L.; Edwards, M. L.

    2009-05-01

    MEMS micro-mirror technology offers the opportunity to replace larger optical actuators with smaller, faster ones for lidar, network switching, and other beam steering applications. Recent developments in modeling and simulation of MEMS two-axis (tip-tilt) mirrors have resulted in closed-form solutions that are expressed in terms of physical, electrical and environmental parameters related to the MEMS device. The closed-form analytical expressions enable dynamic time-domain simulations without excessive computational overhead and are referred to as the Micro-mirror Pointing Model (MPM). Additionally, these first-principle models have been experimentally validated with in-situ static, dynamic, and stochastic measurements illustrating their reliability. These models have assumed that the mirror has a rectangular shape. Because the corners can limit the dynamic operation of a rectangular mirror, it is desirable to shape the mirror, e.g., mitering the corners. Presented in this paper is the formulation of a generalized electrostatic micromirror (GEM) model with an arbitrary convex piecewise linear shape that is readily implemented in MATLAB and SIMULINK for steady-state and dynamic simulations. Additionally, such a model permits an arbitrary shaped mirror to be approximated as a series of linearly tapered segments. Previously, "effective area" arguments were used to model a non-rectangular shaped mirror with an equivalent rectangular one. The GEM model shows the limitations of this approach and provides a pre-fabrication tool for designing mirror shapes.

  19. Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Kaneto, K.

    2016-04-01

    Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.

  20. Electrothermal linear actuator

    NASA Technical Reports Server (NTRS)

    Derr, L. J.; Tobias, R. A.

    1969-01-01

    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward.

  1. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  2. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  3. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  4. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  5. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  6. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  7. Light, Color, and Mirrors.

    ERIC Educational Resources Information Center

    Tiburzi, Brian; Tamborino, Laurie; Parker, Gordon A.

    2000-01-01

    Describes an exercise in which students can use flashlights, mirrors, and colored paper to discover scientific principles regarding optics. Addresses the concepts of angles of incidence and reflection, colored vs. white light, and mirror images. (WRM)

  8. Prototype Secondary Mirror Assembly For The Space Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1988-04-01

    We describe our concept for a liquid helium temperature prototype secondary mirror assembly (PSMA) for the Space Infrared Telescope Facility. SIRTF, a NASA "Great Observatory" to be launched in the 1990's, is a superfluid heliumcooled 1-meter class telescope with much more stringent performance requirements than its precursor the Infrared Astronomical Satellite (IRAS). The SIRTF secondary mirror assembly must operate near 4 K and provide the functions of 2-axis dynamic tilting ("chopping") in addition to the conventional functions of focus and centering. The PSMA must be able to withstand random vibration testing and provide all of the functions needed by the SIRTF observatory. Our PSMA concept employs a fused quartz mirror kinematically attached at its center to an aluminum cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feed-back provided by pairs of eddy current position sensors. The actuators are mounted on a second flexure-pivoted mass providing angular momentum compensation and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose AL/L characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a focus and centering mechanism based upon the six degree of freedom secondary mirror assembly developed for the Hubble Space Telescope.

  9. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  10. Research on axial support technology of large aperture primary mirror

    NASA Astrophysics Data System (ADS)

    Yao, Hui

    2010-05-01

    In ground-based optical detection system, when large aperture primary mirror in a different pitch angle detection, the surface shape error of primary mirror is affected by its weight deformation, and the surface shape error of primary mirror is one of the key factors affecting imaging quality. The primary mirror support system, including axial support and radial support, and the axial support is main factor affecting the surface shape error of primary mirror, the position and number of axial support is very important for surface shape error of primary mirror. The support technology of Φ1.2m primary mirror was studied detailedly in this paper, the parameterized model of primary mirror was built based on ANSYS, the relationship between the surface shape error of primary mirror and the ratio of its diameter to thickness was analyzed, the axial support was optimized, and the support-ring number, support-ring radius and support point position of axial support were optimum designed. The result of analysis showed that the Root-Mean-Square (RMS) value of the surface shape error of primary mirror was 1.8 nm, when the primary mirror pointed to zenith, met to the design need of the optical system, and the axial support system was verified.

  11. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  12. Electrostatic Linear Actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Curry, Kenneth C.

    1990-01-01

    Electrically charged helices attract or repel each other. Proposed electrostatic linear actuator made with intertwined dual helices, which holds charge-bearing surfaces. Dual-helix configuration provides relatively large unbroken facing charged surfaces (relatively large electrostatic force) within small volume. Inner helix slides axially in outer helix in response to voltages applied to conductors. Spiral form also makes components more rigid. Actuator conceived to have few moving parts and to be operable after long intervals of inactivity.

  13. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  14. Actuation of polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  15. Actuation of polypyrrole nanowires.

    PubMed

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  16. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  17. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators

    NASA Astrophysics Data System (ADS)

    Najem, Joseph; Sarles, Stephen A.; Akle, Barbar; Leo, Donald J.

    2012-09-01

    This paper presents the design, fabrication, and characterization of a biomimetic jellyfish robot that uses ionic polymer metal composites (IPMCs) as flexible actuators for propulsion. The shape and swimming style of this underwater vehicle are based on the Aequorea victoria jellyfish, which has an average swimming speed of 20 mm s-1 and which is known for its high swimming efficiency. The Aequorea victoria is chosen as a model system because both its bell morphology and kinematic properties match the mechanical properties of IPMC actuators. This medusa is characterized by its low swimming frequency, small bell deformation during the contraction phase, and high Froude efficiency. The critical components of the robot include the flexible bell that provides the overall shape and dimensions of the jellyfish, a central hub and a stage used to provide electrical connections and mechanical support to the actuators, eight distinct spars meant to keep the upper part of the bell stationary, and flexible IPMC actuators that extend radially from the central stage. The bell is fabricated from a commercially available heat-shrinkable polymer film to provide increased shape-holding ability and reduced weight. The IPMC actuators constructed for this study demonstrated peak-to-peak strains of ˜0.7% in water across a frequency range of 0.1-1.0 Hz. By tailoring the applied voltage waveform and the flexibility of the bell, the completed robotic jellyfish with four actuators swam at an average speed 0.77 mm s-1 and consumed 0.7 W. When eight actuators were used the average speed increased to 1.5 mm s-1 with a power consumption of 1.14 W.

  18. Photonic muscle active optics for space telescopes (active optics with 1023 actuators)

    NASA Astrophysics Data System (ADS)

    Ritter, Joe

    2009-08-01

    Presented is a novel optical system using Cis-Trans photoisomerization where nearly every molecule of a mirror substrate is itself an optically powered actuator. Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Areal density can be reduced by increasing actuation density. Making every molecule of a substrate an actuator approaches the limit of the areal density vs actuation design trade space. Cis-Trans photoisomerization, a reversible reorganization of molecular structure induced by light, causes a change in the shape and volume of azobenzene based molecules. Induced strain in these "photonic muscles" can be over 40%. Forces are pico-newtons/molecule. Although this molecular limit is not typically multiplied in aggregate materials we have made, considering the large number of molecules in a mole, future optimized systems may approach this limit In some π-π* mixed valence azo-polymer membranes we have made photoisomerization causes a highly controllable change in macroscopic dimension with application of light. Using different wavelengths and polarizations provides the capability to actively reversibly and remotely control membrane mirror shape and dynamics using low power lasers, instead of bulky actuators and wires, thus allowing the substitution of optically induced control for rigidity and mass. Areal densities of our photonic muscle mirrors are approximately 100 g/m2. This includes the substrate and actuators (which are of course the same). These materials are thin and flexible (similar to saran wrap) so high packing ratios are possible, suggesting the possibility of deployable JWST size mirrors weighing 6 kilograms, and the possibility of ultralightweight space telescopes the size of a football field. Photons weigh nothing

  19. Mirror Technology Roadmap for NASA's Exoplanet Exploration Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Shaklan, Stuart B.; Balasubramanian, K.

    2011-01-01

    There are several possible approaches to designing exoplanet missions: (1) Coronagraphs (2) Interferometers (3) Starshades Wavefront sensing and control is the central concern, not mirror size (1) Starlight suppression with deformable mirrors (2) Thermal and structural stability (3) Metrology for sensing and control Diffraction-limited optical primary mirrors 4-m or larger are needed to detect Earthlike planets (1) Surface figure similar to HST required (2) Smaller primary mirrors can be used with aggressive coronagraph designs, but the stability tolerances become the driving concern (3) Stability tolerances of coronagraphs are greatly reduced when larger primaries are used in conjunction with 8th-order masks Long term vision for large telescope development includes space-based segmented-mirror telescopes using actively-controlled glass segments or silicon carbide hybrid-mirror designs

  20. Final Results of the Ball AMSD Beryllium Mirror

    NASA Technical Reports Server (NTRS)

    Chaney, David M.

    2004-01-01

    The 1.4-meter semi-rigid, beryllium Advanced Mirror System Demonstrator (AMSD) mirror completed initial cryogenic testing at Marshall's X-ray Calibration Facility (XRCF) in August of 2003. Results of this testing show the mirror to have very low cryogenic surface deformation and possess exceptional figure stability. Subsequent to this cryogenic testing beryllium was selected as the material of choice for the James Webb Space Telescope (JWST) multi-segment primary mirror. Therefore, the AMSD mirror was sent back to SSG-Tinsley for additional ambient polishing to JWST requirements. The mirror was successfully polished to less than 22nm rms of low frequency error. Those additional results are presented with comparisons to the JWST requirements.

  1. A soft creeping robot actuated by dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Niu, Junyang; Liu, Liwu; Yu, Jiangcheng

    2014-03-01

    Dielectric elastomer actuator showed significant advantages at high energy density, large deformation with comparing to other artificial muscle. The robot actuated by dielectric elastomer will be more lightweight and have lower cost, which shows great potential in field of future planetary exploration based on a group of micro-robot. In this context, a quite simple structure for creeping was designed to make the robot more lightweight. The actuation unit of the robot is made of an ellipse frame which can expand and contract with membrane under electric field. After joining four actuation units, the robot can move forward in a cooperative manner. Fabrication and some preliminary experiments of the robot were presented and the proposed motion principle was demonstrated.

  2. Automated manufacturing process for DEAP stack-actuators

    NASA Astrophysics Data System (ADS)

    Tepel, Dominik; Hoffstadt, Thorben; Maas, Jürgen

    2014-03-01

    Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP), which are coated with compliant and conductive electrodes on each side. Due to the influence of an electrical field, dielectric elastomers perform a large amount of deformation. In this contribution a manufacturing process of automated fabricated stack-actuators based on dielectric electroactive polymers (DEAP) are presented. First of all the specific design of the considered stack-actuator is explained and afterwards the development, construction and realization of an automated manufacturing process is presented in detail. By applying this automated process, stack-actuators with reproducible and homogeneous properties can be manufactured. Finally, first DEAP actuator modules fabricated by the mentioned process are validated experimentally.

  3. Soft linear electroactive polymer actuators based on polypyrrole

    NASA Astrophysics Data System (ADS)

    Maziz, Ali; Khaldi, Alexandre; Persson, Nils-Krister; Jager, Edwin W. H.

    2015-04-01

    There is a growing demand for human-friendly robots that can interact and work closely with humans. Such robots need to be compliant, lightweight and equipped with silent and soft actuators. Electroactive polymers such as conducting polymers (CPs) are "smart" materials that deform in response to electrical simulation and are often addressed as artificial muscles due to their functional similarity with natural muscles. They offer unique possibilities and are perfect candidates for such actuators since they are lightweight, silent, and driven at low voltages. Most CP actuators are fabricated using electrochemical oxidative synthesis. We have developed new CP based fibres employing both vapour phase and liquid phase electrochemical synthesis. We will present the fabrication and characterisation of these fibres as well as their performance as linear actuators.

  4. Ultra-lightweight, Low Scatter, Large Mirror Technology

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2006-01-01

    A technique is being developed to fabricate a prototype lightweight composite mirror one meter in diameter. The mandrel, on which the composite mirror will be laid up, is an ultra low expansion quartz glass, TSG, whose thermal expansion coefficient, 10(exp -7)/ degC or less, is similar to that for the composite material itself. The mandrel surface will be super-polished to 6-8 A rms or better, resulting in ten times less scattered light in the visible region than is found in typical astronomical mirrors. We have shown experimentally that mandrel micro-roughnesses of this order can be successfully replicated on composite faceplates. The faceplate is very tough, and does not fracture like a thin glass faceplate. It will be supported by actuators alone, not by the edge of the mirror mount, to avoid non-uniform or non-symmetric influence functions. BOR developed actuators are designed for atmospheric correction, maintenance of optical figure, and minor tip tilt. They have a throw of a centimeter, can be controlled remotely, and have a response time of 1/2 msec. The piezoelectric part of the actuator operates in the 30-70 V range and the differential screw portion has a linearity of about +/-0.1 microns.

  5. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  6. Soft actuators based on conducting polymers: recent progress

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiichi; Somekawa, H.; Takashima, Wataru

    2003-07-01

    Deformations of conducting polymer films, such as polyaniline, polypyrrole and polythiophene, induced by electrochemical oxidation and reduction are presented and discussed in terms of the mechanisms. Soft actuators with variety of motions such as bending stick, breathing ring and shouting lip utilizing polypyrrole films are demonstrated. A new operation method is proposed using electrodeposited polypyrrole films.

  7. IPMC actuator array as a 3D haptic display

    NASA Astrophysics Data System (ADS)

    Nakano, Masanori; Mazzone, Andrea; Piffaretti, Filippo; Gassert, Roger; Nakao, Masayuki; Bleuler, Hannes

    2005-05-01

    Based on the concept of Mazzone et al., we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.

  8. Tunable lenses using transparent dielectric elastomer actuators.

    PubMed

    Shian, Samuel; Diebold, Roger M; Clarke, David R

    2013-04-01

    Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency, and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present an elastomer-liquid lens system which makes use of an inline, transparent electroactive polymer actuator. The lens requires only a minimal number of components: a frame, a passive membrane, a dielectric elastomer actuator membrane, and a clear liquid. The focal length variation was recorded to be greater than 100% with this system, responding in less than one second. Through the analysis of membrane deformation within geometrical constraints, it is shown that by selecting appropriate lens dimensions, even larger focusing dynamic ranges can be achieved. PMID:23571956

  9. Development of a two-dimensional scanning micro-mirror utilizing magnetic polymer composite

    NASA Astrophysics Data System (ADS)

    Suzuki, Junya; Onishi, Yoshiyuki; Terao, Kyohei; Takao, Hidekuni; Shimokawa, Fusao; Oohira, Fumikazu; Miyagawa, Hayato; Namazu, Takahiro; Suzuki, Takaaki

    2016-06-01

    In this study, we propose a magnetically driven micro-mirror, constructed using negative photoresist SU-8 containing magnetic particles, as a magnetic actuator and torsion bar structure. Because the magnetic polymer composite uses thick negative photoresist SU-8 as the main material, the micro-mirror is simply fabricated in just a few steps by conventional photolithography and deep reactive ion etching. A fabricated prototype of the micro-mirror, which is magnetically driven by using an external magnetic field, is shown to deflect with two-dimensional optical deflection angles of 6.5 and 12.5°. Moreover, Lissajous scanning motion of the fabricated mirror is achieved.

  10. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    an infrared wavelength, possibly that used for the AO system of the Keck telescope, instead of 0.63 microns. We have polished a 55 cm diameter mandrel to better than 1/20th wave optical figure in the visible using centrifugal elutriation. CMA has just told us that it needs to retool to get optimum mirror faceplate quality in this size, so implementing the 55 cm AO mirror may be delayed somewhat. We expect to complete our 1/3 rd meter AO mirror on time using novel piezoelectric actuators with a throw of one micrometer per volt, as compared to 0.005 micrometers per volt for conventional piezoelectric actuators. We will then demonstrate its AO performance interferometrically.

  11. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  12. Optimum mirror shapes and supports for light weight mirrors subjected to self-weight

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Richard, Ralph M.; Vukobratovich, Daniel

    1989-11-01

    A parametric design study of light weight mirror shapes with various support conditions was performed utilizing the finite element program NASTRAN. Improvements in the mirror performance were made based on the following design criteria: (1) minimization of the optical surface wavefront variations, (2) minimization of the self-weight directly related to cost of manufacturing, and (3) optimal location of support points. A preprocessor to automatically generate a finite element model for each mirror geometry was developed in order to obtain the structural deformations systematically. Additionally, a postprocessor, which prepares an input data file for FRINGE (an optical computer code) was developed for generating the optical deflections that lead to the surface wavefront variations. Procedures and modeling techniques to achieve the optimum (the lightest and stiffest mirror shape due to self-weight) are addressed.

  13. Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays

    NASA Astrophysics Data System (ADS)

    Gu, Wei; Chen, Hao; Tung, Yi-Chung; Meiners, Jens-Christian; Takayama, Shuichi

    2007-01-01

    Pneumatic actuation with multilayer soft lithography enables operation of up to thousands of valves in parallel using far fewer control lines. However, it is dependent on macroscopic switches and external pressure sources that require interconnects and limit portability. The authors present a more portable and multiplexed valve actuation strategy that uses a grid of mechanically actuated Braille pins to hydraulically, rather than pneumatically, deform elastic actuation channels that act as valves. Experimental and theoretical analyses show that the key to reliable operation of the hydraulic system is the use of nonvolatile ionic liquids as the hydraulic fluid.

  14. The fabrication and characterisation of piezoelectric actuators for active x-ray optics

    NASA Astrophysics Data System (ADS)

    Zhang, Dou; Rodriguez Sanmartin, Daniel; Button, Tim W.; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andrew; Wang, Hongchang

    2009-08-01

    Piezoelectric actuators are widely employed in adaptive optics to enable an actively controlled mirror surface and improve the optical resolution and sensitivity. Currently two new prototype adaptive X-ray optical systems are under development through the Smart X-ray Optics project in a UK based consortium. One proposed technology is micro-structured optical arrays (MOAs) which uses aligned micro-channels structures obtained by deep silicon etching using both dry and wet techniques and bonded piezoelectric actuators to produce a micro-focused X-ray source for biological applications. The other technology is large scale optics which uses a thin shell mirror segment with 20-40 bonded piezo-actuators for the next generation of X-ray telescopes with an aim to achieve a resolution greater than that currently available by Chandra (0.5"). The Functional Materials Group of Birmingham University has the capability of fabricating a wide range of piezo-actuators including, for example, unimorph, bimorph and active fibre composites (AFC) by using a viscous plastic processing technique. This offers flexibility in customising the shapes (from planar to 3-D helix) and feature sizes (>20 μm) of the actuators, as well as achieving good piezoelectric properties. PZT unimorph actuators are being developed in this programme according to the design and implementation of the proposed mirror and array structures. Precise controls on the dimension, thickness, surface finishing and the curvature have been achieved for delivering satisfactory actuators. Results are presented regarding the fabrication and characterisation of such piezo-actuators, as well as the progress on the large optic and MOAs prototypes employing the piezo-actuators.

  15. MEMS-based fabrication of multiple-degree-of-freedom ionic polymer-metal composite actuators

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Tan, Xiaobo

    2010-04-01

    Ionic polymer-metal composites (IPMC) are soft actuation materials with promising applications in robotics and biomedical devices. In this paper, a MEMS-based approach is presented for monolithic, batch fabrication of IPMC pectoral fin actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated, which shows the promise of the pectoral fin in robotic fish applications.

  16. The production of metal mirrors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Brooks, David

    This thesis demonstrates the possibility of manufacturing larger mirrors from nickel coated aluminium with a considerable cost and risk benefits compared to zero expansion glass ceramic or borosilicate. Constructing large mirrors from aluminium could cut the cost of production by one third. A new generation of very large telescopes is being designed, on the order of 100 meters diameter. The proposed designs are of mosaic type mirrors similar to the Keck Telescope primary. The enormous mass of glass required inhibits the construction, simply by its cost and production time. Very little research has been done on the processes involved in the production of large metal mirrors. However the thermal efficiency and potential improved mirror seeing benefits are documented. Space telescopes and optical telecommunications could also benefit with the application of metal mirrors. Presented here are the processes and results that culminated in the rebirth of the Birr Telescope. The main section concerns the material selection and processes in the construction of a 1.83 meter diameter 1.4 tonne aluminium primary mirror. The aluminium mirror technology developed was also applied to the construction of an aspheric thin meniscus deformable mirror. Methods employed in its production are described. Documented are the advanced computer controlled polishing methods employed in producing a one third scale model of the hyperbolic secondary mirror for the Gemini Telescopes. These were developed using an active polishing lap.

  17. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    PubMed Central

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234

  18. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets

  19. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  20. Actuating critical care therapeutics.

    PubMed

    Stone, David J; Csete, Marie

    2016-10-01

    Viewing the intensive care unit (ICU) as a control system with inputs (patients) and outputs (outcomes), we focus on actuation (therapies) of the system and how to enhance our understanding of status of patients and their trajectory in the ICU. To incorporate the results of these analytics meaningfully, we feel that a reassessment of predictive scoring systems and of ways to optimally characterize and display the patient's "state space" to clinicians is important. Advances in sensing (diagnostics) and computation have not yet led to significantly better actuation, and so we focus on ways that data can be used to improve actuation in the ICU, in particular by following therapeutic burden along with disease severity. This article is meant to encourage discussion about how the critical care community can best deal with the data they see each day, and prepare for recommendations that will inevitably arise from application of major federal and state initiatives in big data analytics and precision medicine.

  1. Static deflection control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A. M.

    1986-01-01

    This study deals with the utilization of piezo-electric actuators in controlling the static deformation of flexible beams. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezo-electric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing the structural deformation of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezo-electric actuators. The results obtained emphasize the importance of the devised rational procedure in designing beam-actuator systems with minimal elastic distortions.

  2. A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices

    NASA Astrophysics Data System (ADS)

    Cho, Il-Joo; Yoon, Euisik

    2009-08-01

    In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.

  3. A technique for designing active control systems for astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Creedon, J. F.

    1973-01-01

    The problem of designing a control system to achieve and maintain the required surface accuracy of the primary mirror of a large space telescope was considered. Control over the mirror surface is obtained through the application of a corrective force distribution by actuators located on the rear surface of the mirror. The design procedure is an extension of a modal control technique developed for distributed parameter plants with known eigenfunctions to include plants whose eigenfunctions must be approximated by numerical techniques. Instructions are given for constructing the mathematical model of the system, and a design procedure is developed for use with typical numerical data in selecting the number and location of the actuators. Examples of actuator patterns and their effect on various errors are given.

  4. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  5. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  6. A stabilized, high stress self-biasing shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Panton, B.; Zhou, Y. N.; Khan, M. I.

    2016-09-01

    A shape memory alloy (SMA) actuator that is biased internally would not need an external bias to achieve multiple actuation cycles. This would reduce cost, complexity and weight compared to standard one-way SMAs. The self-biasing actuators that have been developed to date have a lack of geometric and actuation stability. The current study developed a self-biasing NiTi actuator using a laser based vaporization process to alter the bulk composition of different regions. The martensitic laser processed NiTi region was the actuator, and un-processed austenitic base metal region was the internal bias. It was discovered that the laser processed region of the self-biasing actuator was unstable during high stress thermomechanical cycling due to the coarse grained microstructure. Cold-working of the half martensitic and half austenitic component resulted in similar deformation characteristics to single phase NiTi, which enabled the formation of a uniform nanocrystalline microstructure in both regions. When thermomechanically cycled 6000 times under stresses ranging from 180 to 400 MPa, it was discovered that this treated self-biasing actuator exhibited the stabilization behavior of traditional one-way actuators. This behavior was due to the uniform nanocrystalline microstructure, which impeded dislocation activity and ensured minimal plastic deformation.

  7. Contractive tension force stack actuator based on soft dielectric EAP

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Düring, Lukas

    2009-03-01

    Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission

  8. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  9. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  10. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    PubMed Central

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  11. Self in the mirror.

    PubMed

    Prinz, Wolfgang

    2013-09-01

    What are mirror systems good for? Several suggestions have been made in response to this question, addressing the putative functions of mirror systems in minds and brains. This paper examines possible contributions of mirror systems to the emergence of subjectivity. At the heart of the discussion is the notion of social mirroring, which has a long tradition in social philosophy and social anthropology. Taking the existence of mirror devices in minds and brains for granted, I argue that social mirroring is a prerequisite for the constitution of mental selves, and, hence, the emergence of subjectivity. However, the fact that self and subjectivity are socially created should not be taken to indicate that they are illusory. They are as real as natural facts are. PMID:23410785

  12. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  13. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, Ernest; Pardini, John A.; Walker, David E.

    1987-01-01

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  14. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, E.; Pardini, J.A.; Walker, D.E.

    1984-03-13

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  15. Articulated primary mirror /APM/ for the Solar Optical Telescope /SOT/

    NASA Technical Reports Server (NTRS)

    Gowrinathan, S.; Gottesman, J.

    1981-01-01

    Allowing the location of the primary vs secondary mirrors to be movable in space, the articulated primary mirror (APM) was designed as an inexpensive alternative, providing stable imagery, for the Solar Optical Telescope (SOT). Requirements of high resolution in the sub-arc-second region, and the ability to point the telescope through the Instrument Pointing System (IPS) were satisfied. Alignment sensors, contained within the subsystem, locate the points of coincidence of the foci of the primary and secondary optics (conic foci). These are utilized as inputs for subsystem actuators to correct via the digital controller algorithm.

  16. Primary mirror support system for the SUBARU Telescope

    NASA Astrophysics Data System (ADS)

    Iye, Masanori; Kodaira, Keiichi

    1994-06-01

    The Japan National Large Telescope `SUBARU' will be completed on the summit of Mauna Kea by the end of the century. One of the major characteristics new to the SUBARU telescope is the active support system for its large monolithic primary mirror, which has 261 points of computer-controlled actuators to maintain a precise mirror figure. This paper describes the control principle, design concepts, results of engineering experiments and numerical simulations of the active support system to ensure the high imaging performance of this system.

  17. Fast liquid crystal adaptive mirror for wavefront correction

    NASA Astrophysics Data System (ADS)

    Anderson, Michael H.; Caldwell, Loren M., Jr.; Scheffler, Craig R.

    1999-11-01

    We have designed and constructed a prototype adaptive mirror using a nematic liquid crystal as the optical phase modulating material. The mirror has 127 hexagonal elements (actuators) in a 12 mm diameter clear aperture. The liquid crystal is a dual-frequency type that can be driven both parallel to, and orthogonal to, the external driving field by changing the drive frequency. With the dual-frequency liquid crystal we have achieved 1 micron of optical phase delay with full-cycle switching times of 6 ms. The electronic driver was designed to interface with an IBM compatible PC.

  18. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition.

  19. Modelling of spring roll actuators based on viscoelastic dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Tang, Liling; Li, Bo; Sheng, Junjie; Liu, Lei

    2015-06-01

    In this article, the effect of viscoelastic deformation is analyzed theoretically to evaluate the performance of spring roll dielectric elastomer (DE) actuators. By patterning the electrodes on the rolls, respectively, two functions are studied: axial elongation and bending. The thermodynamic model of viscoelastic DE spring roll is established, and the governing equation is deduced by the free energy method. It is found that when the applied voltage is static and relatively small, both the axial elongated and bending deformed spring rolls can reach equilibrium after viscoelastic relaxation. The evolutions in different timescales and the final profile are presented. The dynamic response is studied as well, by applying a sinusoidal voltage. For the axial elongated spring roll, viscoelasticity can reduce amplitude and increase mean stretch of the actuator. For the bending deformed spring rolls, the results indicate that the spring stiffness has a more significant impact on dynamic performance compared to the effect of voltage.

  20. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  1. Strehl Ratio Meter for Focusing Segmented Mirrors 1

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    1996-01-01

    Initial focusing segmented mirrors that must be deployed in space, such as the Next Generation Space Telescope (NGST), provide challenges not faced before in the area of adaptive optics. The devices used to focus the mirror must minimize the power used and unnecessary mechanical movement. The device described in this report requires no movable parts except for the essential actuators required to move the mirror segments. Detail description of the components can be found in Coker, 1996. The primary mirror of the NGST will consist of 9 segments, a central annular segment, surrounded by 8 segments. The entire mirror assembly will be an 8 meter nearly filled circle (with the corners of the segments clipped to allow for storage in an Atlas IIe shroud). As the segments of the primary mirror are deployed to their operational positions, they must be positioned to within small fractions of a wavelength of near infrared light. When focused, the NGST will put most of its collected li-ht into the small region near the center of its focal plane. The ratio of the total light in the diffraction limited spot about the center of the focal plane to the total light in the focal plane. The purpose of this research effort is to design and build a device that will measure Strehl ratio and to use demonstrate that the Strehl ratio can be used to focus a segmented mirror.

  2. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  3. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  4. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  5. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  6. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  7. Active array design for FAME: Freeform Active Mirror Experiment

    NASA Astrophysics Data System (ADS)

    Jaskó, Attila; Aitink-Kroes, Gabby; Agócs, Tibor; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Bányai, Evelin

    2014-07-01

    In this paper a status report is given on the development of the FAME (Freeform Active Mirror Experiment) active array. Further information regarding this project can be found in the paper by Venema et al. (this conference). Freeform optics provide the opportunity to drastically reduce the complexity of the future optical instruments. In order to produce these non-axisymmetric freeform optics with up to 1 mm deviation from the best fit sphere, it is necessary to come up with new design and manufacturing methods. The way we would like to create novel freeform optics is by fine tuning a preformed high surface-quality thin mirror using an array which is actively controlled by actuators. In the following we introduce the tools deployed to create and assess the individual designs. The result is an active array having optimal number and lay-out of actuators.

  8. Optical Performance Modeling of FUSE Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  9. Geometry adaptive control of a composite reflector using PZT actuator

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang

    2015-04-01

    Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.

  10. Tactile sensor integrated dielectric elastomer actuator for simultaneous actuation and sensing

    NASA Astrophysics Data System (ADS)

    Kadooka, Kevin; Imamura, Hiroya; Taya, Minoru

    2016-04-01

    Dielectric elastomers (DE) are a subgroup of electroactive polymers which may be used as soft transducers. Such soft transducers exhibit high energy density and silent operation, which makes them desirable for life-like robotic systems such as a robotic hand. A robotic hand must be able to sense the object being manipulated, in terms of normal and shear force being applied, and note when contact has been achieved or lost. To this end, a dielectric elastomer actuator (DEA) with integrated tactile sensing has been developed to provide simultaneous actuation and sensing. The tactile sensing dielectric elastomer actuator consists of a unimorph-type structure, where the active portion is a laminate of alternating DE and electrode material which expands under applied voltage, and the sensing portion is a stiffer sensing dielectric elastomer which has no electrical connection to the active portion. Under applied voltage, the deformation of the active portion expands but is constrained on one side by the sensing portion, resulting in bending actuation. The sensing portion is a DE with electrodes patterned to form 2x2 capacitive sensing arrays. Dome-shaped bumps positioned over the sensing arrays redistribute tactile forces onto the sensor segments, so that measurement of the capacitance change across the array allows for reconstruction of magnitude and direction of the incoming force.

  11. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  12. Variable-curvature mirrors for the VLTI

    NASA Astrophysics Data System (ADS)

    Ferrari, Marc; Derie, Frederic

    1998-07-01

    A variable curvature mirror is a powerful device that can increase the field of view of optical interferometers. Such a mirror has being developed for the coherent combined focus of the European Southern Observatory Very Large Telescope Interferometer. The variable focal length permits positioning of the pupil image of an individual telescope at a precise location after the delay-line. This property is necessary to exactly remap homothetically the output pupil configuration at the image beam combiner. Given the large zoom range that is needed in the delay line, when the mirror is not stressed the optical surface is a plane while it is convex with f/2.5 at maximum stress. The mirror itself is a very small stainless steel meniscus, with a 300 micrometers thickness, because only the high elasticity of such material allows to achieve the full domain of curvature. The thickness distribution of the meniscus is calculated using elasticity theory in the case of a large deformation. The realization of this micro-optic active device requires advanced techniques in optical fabrication and in particular high precision manufacturing with numerical command lathe. This article also presents the testing of this highly variable curvature mirror and the surface quality obtained within the full curvature range.

  13. Phasing software for a free flyer space-based sparse mirror array not requiring laser interferometry

    NASA Astrophysics Data System (ADS)

    Maker, David J.

    2004-10-01

    This paper presents new software (and simulations) that would phase a space based free flyer sparse array telescope. This particular sparse array method uses mirrors that are far enough away for sensors at the focal point module to detect tip tilt by simply using the deflection of the beam from each mirror. Also the large distance allows these circle six array mirrors to be actuated flats. For piston the secondary actuated mirrors (one for each large mirror segment of these widely spaced sparse array mirrors distributed on a parabola) are moved in real time to maximize the Strehle ratio using the light from the star the planet is revolving around since that star usually has an extremely high SNR (Signal to Noise Ratio). There is then no need for a 6DOF spider web of laser interferometric beams and deep dish mirrors (as in the competing Darwin and JPL methods) to accomplish this. Also the distance between the six 3 meter aperture mirrors could be large (kilometer range) guaranteeing a high resolution and also substantial light gathering power (with these 6 large mirrors) for imaging the details on the surface of extrasolar terrestrial type planets. In any case such a multisatellite free flyer concept would then be no more complex than the European cluster which is now operational. This is a viable concept and a compelling way to image surface detail on extra solar earthlike planets. It is the ideal engineering solution to the problem of space based large baseline sparse arrays. Significant details of the software requirements have been recently developed. In this paper the Fortran code needed to both simulate and operate the actuators in the secondary mirror for this type of sparse array is discussed.

  14. Primary mirror assemblies for large space telescopes

    NASA Astrophysics Data System (ADS)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    In this report are considered the basic problems which relate to developemnt, manufacture, experimental trying out, and usage of primary mirrors (PM) of the large space telescopes intended to perform distant sounding of the Earth. Attention is concentrated on development of weight-reduced passive mirrors which ensure more reliable operation of the telescope as a whole. In the report we expressed the opinion that it is quite possible to manufacture a passive weight-reduced PM if its diameter is equal approximately to 3 m. Materials which may be used for the manufacturing of PM are beryllium and silicon carbide, physical and mechanical parameters of which are the most preferable ones. But it should be taken into consideration that this is the glass ceramic of CO115M brand which has been mastered by the industry of Russia in the greatest extent. It was confirmed that parameters of this material remain unchanged during a long period of time. Constructions of the PM, made of glass ceramic, as well as constructions of holders intended to fix the mirror, are presented in this report. A holder is used first of all to prevent lowering of a PM surface quality after a mirror has been removed from a machine and fixed in a primary mirror assembly (PMA). At present two-layer construction of a PM is preferable. This construction consists of thick base including weight reduction structure, which is in a radius which is optimum from the standpoint of deformation of a mirror operating surface. In the process of manufacture a mirror is deprived of its weight with the use of special pneumatic off-loading elements. PMA is erected in vertical plane by means of using an interferometric inspection system. In the end of this report we expressed the views on an approach to engineering of a PM by taking into account potentialities both of space ships and of carrier rockets.

  15. Modeling of biaxial gimbal-less MEMS scanning mirrors

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  16. Nonlinear finite element modeling of THUNDER piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-06-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (Thin Layer Unimorph Ferroelectric Driver) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  17. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  18. Advances in very lightweight composite mirror technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Bowers, Charles W.; Content, David A.; Marzouk, Marzouk; Romeo, Robert C.

    2000-09-01

    We report progress in the development of very lightweight (< 5 kg/m2) mirrors made by replication using graphite fiber cyanate ester resin composites. The replication process is optimized to significantly improve the surface smoothness and figure quality. Achievements include near- diffraction-limited optical performance [< 1/20 wave root mean square (rms) at 632.8 nm] in replica flats, fractional wave rms performance in curved mirrors at 90% pupil, and almost exact reproduction of the surface microroughness of the mandrel. The curved mirrors typically show some edge roll off and several waves (rms optical) of astigmatism, coma, and third-order spherical aberration. These are indications of thermal contraction in an inhomogeneous medium. This inhomogeneity is due to a systematic radial variation in density and fiber/resin ratio induced in composite plies when draped around a small and highly curved mandrel. The figure accuracy is expected to improve with larger size optics and in mirrors with longer radii of curvature. Nevertheless, the present accuracy figure is sufficient for using postfiguring techniques such as ion milling to achieve diffraction-limited performances at optical and UV wavelengths. We demonstrate active figure control using a simple apparatus of low-mass, low-force actuators to correct astigmatism. The optimized replication technique is applied to the fabrication of a 0.6-m-diam mirror with an areal density of 3.2 kg/m2. Our result demonstrates that the very lightweight, large-aperture construction used in radio telescopes can now be applied to optical telescopes.

  19. Finite element analysis of carbon fiber composite adaptive mirrors

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter

    2004-10-01

    With the advent of the new generation of ground-based telescopes with primary sizes of 30-100 m, adaptive optics (AO) technology is in rapid development. One important area of research is that of integration of AO into the telescope's operation. A possible solution for this is the use of an adaptive secondary mirror. However, for a secondary of several meters in size, this presents many problems in choice of material, as well as design for the adaptive control. An active mirror prototype made out of a carbon fibre composite material (CFC) is under development at University College London in collaboration with QinetiQ and Cobham Composites. We present here results from finite element analysis of this mirror, as well as modelling results of an adaptive secondary mirror section as might be developed for the new class of telescopes. These results indicate that CFC could indeed present a viable alternative to more traditional deformable mirror materials.

  20. The secondary mirror concept for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak

    2014-07-01

    The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.