Science.gov

Sample records for actuator disk theory

  1. Semi-actuator disk theory for compressor choke flutter

    NASA Technical Reports Server (NTRS)

    Micklow, J.; Jeffers, J.

    1981-01-01

    A mathematical anaysis predict the unsteady aerodynamic utilizing semi actuator theory environment for a cascade of airfoils harmonically oscillating in choked flow was developed. A normal shock is located in the blade passage, its position depending on the time dependent geometry, and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade. Calculated unsteady aerodynamics were compared with isolated airfoil wind tunnel data, and choke flutter onset boundaries were compared with data from testing of an F100 high pressure compressor stage.

  2. Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.

    1978-01-01

    An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.

  3. On the simple actuator disk

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.

    2003-11-01

    The standard textbook model of a helicopter rotor in vertical translation, a disk loaded with a uniform pressure jump in inviscid fluid, is revisited in search of correct descriptions of the far-field velocity and of the vortex sheet, allowing a rigorous control-volume analysis. The translation rate is not required to be large compared with the induced velocity. The classical results for induced power are unchanged, and now have a strong foundation: they are exact within the steady inviscid problem statement, instead of depending on a quasi-one-dimensional approximation as in the literature. Conversely, even with a uniform pressure jump the induced velocity is far from uniform over the disk, again in conflict with common beliefs and with any quasi-one-dimensional argument: the flow is upwards near the rim, both inside and outside it. The cross-section of the vortex sheet probably begins with a 45° spiral, as opposed to the smooth funnel shape that has been sketched, in the literature and below. A viscous numerical solution supports this conjecture. Plausible boundaries between the translation rates that produce the two ‘clean’ streamtube flow types, namely climb/hover and rapid descent, and those in-between that produce the vortex-ring state are also discussed.

  4. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  5. Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2015-11-01

    This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.

  6. Turbulence characteristics in a free wake of an actuator disk: comparisons between a rotating and a non-rotating actuator disk in uniform inflow

    NASA Astrophysics Data System (ADS)

    Olivares-Espinosa, H.; Breton, S.-P.; Masson, C.; Dufresne, L.

    2014-12-01

    An Actuator Disk (AD) model is implemented in the CFD platform OpenFOAM® with the purpose of studying the characteristics of the turbulent flow in the wake of the rotor of a horizontal-axis wind turbine. This AD model is based on the blade-element theory and it employs airfoil data to calculate the distribution of forces over the disk of a conceptual 5 MW offshore wind turbine. A uniform, non-turbulent flow is used as inflow so the turbulence is only produced in the wake of the AD. Computations are performed using Large-Eddy Simulations (LES) to capture the unsteady fluctuations in the flow. Additionally, a classic Smagorinsky Sub-Grid Scale (SGS) technique is employed to model the unfiltered motions. This new AD implementation makes use of a control system to adjust the rotational velocity of the rotor (below rated power) to the local conditions of the wind flow. The preliminary results show that the wake characteristics are influenced by the force distribution on the disk when compared to the wake produced by a uniformly loaded AD. Also, we observe that the simulated rotor reacts correctly to the introduction of the control system, although operating below the optimal power.

  7. Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Taro; Reusch, Markus; Holc, Katarzyna; Iankov, Dimitre; Zuerbig, Verena; Zukauskaite, Agne; Nebel, Christoph E.; Ambacher, Oliver; Lebedev, Vadim

    2016-04-01

    A great potential of the use of aluminum nitride (AlN) to enhance the actuation of nanocrystalline diamond (NCD) microelectromechanical system disk resonators is revealed. A disk resonator with a unimorph (AlN/NCD) structure is fabricated by depositing a c-axis oriented AlN on a capacitive NCD disk resonator. The unimorph resonator is piezoelectrically actuated with flexural whispering gallery modes with a relatively large electrode gap spacing, i.e., the spacing which is greater than 1 μm, although this is not possible for the capacitive NCD disk resonator. This result is explained by a finite element method simulation where the piezoelectric actuation turns out to be more effective than the capacitive actuation when the electrode gap spacing is >0.8 μm. The simulation also shows that the electrode gap spacing required for the capacitive actuation to be more effective than the piezoelectric actuation exponentially decreases when the resonator dimension is scaled down for higher frequency operations. Our study indicates that the use of AlN is promising to decrease impedance levels of NCD disk resonators especially for their higher frequency operations.

  8. Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk due to Rotor-Stator Interaction

    PubMed Central

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-01-01

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction. PMID:25004151

  9. Foundations of Black Hole Accretion Disk Theory

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.; Fragile, P. Chris

    2013-12-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  10. Dynamic Head-Disk Interface Modeling and Adaptive Control of a Hybrid Actuator for Optical Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Wu, Zhizheng; Li, Yang; Wang, Pei; Liu, Mei

    2015-01-01

    In the near-field recording (NFR) system, the gap between the lens and disk will drop down to 100 nm. However, the disk vibration and force disturbance make it difficult to maintain the desired flying height during disk operation, and the lens-disk collision can easily occur. It is proposed in this article to design a hybrid actuator system which combines both advantages of the flying slider used in hard disk drives and the voice coil actuator used in optical disk drives. The dynamic head-disk interface model of the hybrid actuator is first developed, then an adaptive regulation approach is proposed to control the flying height at its desired value despite the unknown disturbances. Simulation and experimental results are presented to illustrate the effectiveness of the proposed flying height control approach.

  11. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips

    PubMed Central

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-01-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736

  12. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.

    PubMed

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-03-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.

  13. Fabrication of Beam-rotating Actuator for Multiple-beam Disk Drive

    NASA Astrophysics Data System (ADS)

    Kim, Boung Jun; Kim, Soo Hyun; Kwak, Yoon Keun

    2002-05-01

    Current trends in computer and communication industries are towards increasingly higher resolution images and video processing techniques. However, such sophisticated processing tasks require massive storage systems such as a compact disk read only memory (CD-ROM) and digital versatile disc (DVD). Current demands in the development of such systems are higher data density storage media and an improved data transfer rate. The latter is discussed in this paper. A multiple-beam optical disk drive is presented as a method for improving the effective data transfer rate by increasing the beam spot number formed on an optical disk. The beam-rotating actuator is necessary for positioning the multiple-beam onto more than one track. Ray tracing was also employed for the real system setup. The beam-rotating actuator is made up of piezoelectric material, a high-stiffness wire hinge and a dove prism. The actuator has an approximately 1 kHz resonance frequency and a suitable operational range. The dynamic equation for the actuator is derived for the control of the real system.

  14. Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2014-11-01

    The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.

  15. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    PubMed Central

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788

  16. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    PubMed

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  17. Robust H∞ stabilization of a hard disk drive system with a single-stage actuator

    NASA Astrophysics Data System (ADS)

    Harno, Hendra G.; Kiin Woon, Raymond Song

    2015-04-01

    This paper considers a robust H∞ control problem for a hard disk drive system with a single stage actuator. The hard disk drive system is modeled as a linear time-invariant uncertain system where its uncertain parameters and high-order dynamics are considered as uncertainties satisfying integral quadratic constraints. The robust H∞ control problem is transformed into a nonlinear optimization problem with a pair of parameterized algebraic Riccati equations as nonconvex constraints. The nonlinear optimization problem is then solved using a differential evolution algorithm to find stabilizing solutions to the Riccati equations. These solutions are used for synthesizing an output feedback robust H∞ controller to stabilize the hard disk drive system with a specified disturbance attenuation level.

  18. Development of Rotary-Type Voice Coil Motor Actuator for Small-Form-Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Lee, Dong‑Ju; Park, Se‑June; Oh, Jeseung; Park, No‑Cheol; Park, Young‑Pil; Jung, Ho‑Seop

    2006-02-01

    We propose the miniaturized rotary-type voice coil motor (VCM) actuator that has an effective focusing mechanism and a sufficient bandwidth for a small-form-factor (SFF) optical disk drive (ODD) based on Blu-ray disk (BD) 1× specifications.

  19. Prospect of the Theory of Black Hole Accretion Disks

    NASA Astrophysics Data System (ADS)

    Ju, Q.; Wang, W.

    2011-12-01

    The theory of black hole accretion disks is one of the most important basic theories and advanced topics in astrophysics. There are four known models of black hole accretion disks: standard thin disk (SSD), Shapiro-Lightman-Eardley (SLE) disk, optically thick advection dominated accretion flows (ADAF) theory (slim disk) and optically thin ADAF theory. During the past decades, they have made great contributions to the development of astrophysics. Despite their great successes in both theory and application, there are still many open questions. First of all, this paper will briefly introduce these four models. Then it will discuss several limitations of these models and review present possible solutions to address these problems. Our review work will contribute to further research of black hole accretion disks to a certain extent.

  20. Overview of recent advances in accretion disk theory

    NASA Astrophysics Data System (ADS)

    Ohsuga, Ken

    2012-07-01

    The accretion disk theory, which is initiated in 1970's, has made a success for understanding the powerful compact objects, XRBs, AGNs, and so on. Although one- dimensional accretion disk models (standard disk, slim disk, RIAF) were constructed based on the phenomenological α-viscosity prescription, multi-dimensional MHD/Radiation-MHD simulations are recently performed to resolve the disk structure and dynamics from the first principle. The time variations of the disk and the disk-jet connection are also investigated by the multi-dimensional study. We briefly summarize the disk models and introduce the recent advances of the numerical simulations of the black-hole accretion flows and outflows.

  1. Momentum theory of Joukowsky actuator discs with swirl

    NASA Astrophysics Data System (ADS)

    van Kuik, Gijs A. M.

    2016-09-01

    Actuator disc theory is the basis for most rotor design methods, be it with many extensions and engineering rules added to make it a well-established method. However, the off-design condition of a very low rotational speed Ω of the disc is still a topic for scientific discussions. Several authors have presented solutions of the associated momentum theory for actuator discs with a constant circulation, the so-called Joukowsky discs, showing the efficiency Cp → ∞ for Ω → 0. The momentum balance is very sensitive to the choice of the vortex core radius δ as the pressure and velocity gradients become infinite for δ → 0. Viscous vortex cores do not show this singular behaviour so an inviscid core model is sought which removes the momentum balance sensitivity to singular flow. A vortex core with a constant δ does so. Applying this results in Cp → 0 for Ω → 0, instead of Cp → ∞. The Joukowsky actuator disc theory is confirmed by a very good match with the numerically obtained results. It gives higher Cp values than corresponding solutions for discs with a Goldstein-based wake circulation published in literature.

  2. Transition state theory and the dynamics of hard disks.

    PubMed

    Barnett-Jones, M; Dickinson, P A; Godfrey, M J; Grundy, T; Moore, M A

    2013-11-01

    The dynamics of two- and five-disk systems confined in a square has been studied using molecular dynamics simulations and compared with the predictions of transition state theory. We determine the partition functions Z and Z(‡) of transition state theory using a procedure first used by Salsburg and Wood for the pressure. Our simulations show this procedure and transition state theory are in excellent agreement with the simulations. A generalization of the transition state theory to the case of a large number of disks N is made and shown to be in full agreement with simulations of disks moving in a narrow channel. The same procedure for hard spheres in three dimensions leads to the Vogel-Fulcher-Tammann formula for their alpha relaxation time.

  3. Theory of bending waves with applications to disk galaxies

    SciTech Connect

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.

  4. Development of “L-Shaped” Rotary Voice Coil Motor Actuator for Ultra Slim Optical Disk Drive Using Integrated Design Method based on Coupled-Field Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ju; Woo, Jung-Hyun; Kim, Sa-Ung; Oh, Je-Seung; Yoo, Jeong-Hoon; Park, No-Cheol; Park, Young-Pil; Shimano, Takeshi; Nakamura, Shigeo

    2007-06-01

    In this paper, we propose an “L-shaped” rotary voice coil motor (VCM) actuator for an ultra slim optical disk drive (ODD) with a CF II card size using the integrated design method that integrates coupled-field analysis and design methods.

  5. Applicability of Dynamic Facilitation Theory to Binary Hard Disk Systems

    NASA Astrophysics Data System (ADS)

    Isobe, Masaharu; Keys, Aaron S.; Chandler, David; Garrahan, Juan P.

    2016-09-01

    We numerically investigate the applicability of dynamic facilitation (DF) theory for glass-forming binary hard disk systems where supercompression is controlled by pressure. By using novel efficient algorithms for hard disks, we are able to generate equilibrium supercompressed states in an additive nonequimolar binary mixture, where microcrystallization and size segregation do not emerge at high average packing fractions. Above an onset pressure where collective heterogeneous relaxation sets in, we find that relaxation times are well described by a "parabolic law" with pressure. We identify excitations, or soft spots, that give rise to structural relaxation and find that they are spatially localized, their average concentration decays exponentially with pressure, and their associated energy scale is logarithmic in the excitation size. These observations are consistent with the predictions of DF generalized to systems controlled by pressure rather than temperature.

  6. Stability of differentially rotating disks in f( T) theory

    NASA Astrophysics Data System (ADS)

    Li, Shoulong; Wei, Hao

    2016-11-01

    To explain the accelerated expansion of our universe, many dark energy models and modified gravity theories have been proposed so far. It is argued in the literature that they are difficult to be distinguished on the cosmological scales. Therefore, it is well motivated to consider the relevant astrophysical phenomena on (or below) the galactic scales. In this work, we study the stability of self-gravitating differentially rotating galactic disks in f( T) theory, and obtain the local stability criteria in f( T) theory, which are valid for all f( T) theories satisfying f(T=0)=0 and f_T (T=0)not =0, if the adiabatic approximation and the weak field limit are considered. The information of the function f( T) is mainly encoded in the parameter α ≡ 1/f_T(T=0). We find that the local stability criteria in f( T) theory are quite different from the ones in Newtonian gravity, general relativity, and other modified gravity theories such as f( R) theory. We consider that this might be a possible hint to distinguish f( T) theory from general relativity and other modified gravity theories on (or below) the galactic scales.

  7. Hydrogel core flexible matrix composite (H-FMC) actuators: theory and preliminary modelling

    NASA Astrophysics Data System (ADS)

    Dicker, M. P. M.; Weaver, P. M.; Rossiter, J. M.; Bond, I. P.

    2014-09-01

    The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FMC) that minimizes the hydrogel's volume expansion while swelling. This constraint serves to maximize the fixed charge density and resulting osmotic pressure, the driving force behind actuation. In addition, for certain FMC fibre orientations the Poisson's ratio of the anisotropic FMC laminate converts previously unused hydrogel swelling in the radial and circumferential directions into useful axial strains. The potential benefit of the H-FMC concept to hydrogel actuator performance is shown through comparison of force-stroke curves and evaluation of improvements in useful actuation work. The model used to achieve this couples chemical and electrical components, represented with the Nernst-Plank and Poisson equations, as well as a linear elastic mechanical material model, encompassing limited geometric nonlinearities. It is found that improvements in useful actuation work in the order of 1500% over bare hydrogel performance are achieved by the H-FMC concept. A parametric study is also undertaken to determine the effect of various FMC design parameters on actuator free strain and blocking stress. A comparison to other actuator concepts is also included.

  8. How does the presence of a body affect the performance of an actuator disk ?

    NASA Astrophysics Data System (ADS)

    de Oliveira, G.; Pereira, R. B.; Ragni, D.; Avallone, F.; van Bussel, G.

    2016-09-01

    The article seeks to unify the treatment of conservative force interactions between axi-symmetric bodies and actuators in inviscid flow. Applications include the study of hub interference, diffuser augmented wind turbines and boundary layer ingestion propeller configurations. The conservation equations are integrated over infinitesimal streamtubes to obtain an exact momentum model contemplating the interaction between an actuator and a nearby body. No assumptions on the shape or topology of the body are made besides (axi)symmetry. Laws are derived for the thrust coefficient, power coefficient and propulsive efficiency. The proposed methodology is articulated with previous efforts and validated against the numerical predictions of a planar vorticity equation solver. Very good agreement is obtained between the analytical and numerical methods.

  9. Theory of transition times: Catalysis at rotating disk electrodes

    SciTech Connect

    Scherson, Daniel A.; Ross, Philip N.

    1981-03-10

    An exact solution to the problem of convective diffusion to a rotating disk electrode with a prescribed initial profile and current step conditions at the surface is presented. Based on this solution a current density-transition time relationship is established which in the limit reduces to a previously proposed expression that accounts for experimentally observed deviations from the Sand equation. Applications of this theory in connection with the determination of rate parameters for electroactive species undergoing a catalytic reaction at the electrode surface are discussed.

  10. Optimization of Seesaw Swing Arm Actuator Design for Small Form Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Po-Chien Chou,; Yu-Cheng Lin,; Stone Cheng,

    2010-05-01

    Many small form factor (SFF) optical pickup heads based on the swing arm design utilize a piezoelectric material or the slim metal plate to perform the focusing action. The seesaw-type actuator is a new mechanism used in the focusing action for SFF optical data storage devices. The swing arm nutates along a pivot instead of a hinge in the vertical movement. In this paper, an optimized design of a biaxial voice coil motor (VCM), in which the tracking and focusing VCMs are combined in the rear of the swing arm, is proposed. Simulation and experiment results demonstrate the effectiveness of the proposed design methodology by showing that the stress magnitude distribution characteristics, mechanism stiffness, and driving stability of the optimized design are enhanced in comparison with those of the original.

  11. Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1996-01-01

    A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.

  12. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    PubMed

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  13. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  14. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    PubMed

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results. PMID:26329224

  15. Design of high performance piezo composites actuators

    NASA Astrophysics Data System (ADS)

    Almajid, Abdulhakim A.

    Design of high performance piezo composites actuators are developed. Functionally Graded Microstructure (FGM) piezoelectric actuators are designed to reduce the stress concentration at the middle interface existed in the standard bimorph actuators while maintaining high actuation performance. The FGM piezoelectric laminates are composite materials with electroelastic properties varied through the laminate thickness. The elastic behavior of piezo-laminates actuators is developed using a 2D-elasticity model and a modified classical lamination theory (CLT). The stresses and out-of-plane displacements are obtained for standard and FGM piezoelectric bimorph plates under cylindrical bending generated by an electric field throughout the thickness of the laminate. The analytical model is developed for two different actuator geometries, a rectangular plate actuator and a disk shape actuator. The limitations of CLT are investigated against the 2D-elasticity model for the rectangular plate geometry. The analytical models based on CLT (rectangular and circular) and 2D-elasticity are compared with a model based on Finite Element Method (FEM). The experimental study consists of two FGM actuator systems, the PZT/PZT FGM system and the porous FGM system. The electroelastic properties of each layer in the FGM systems were measured and input in the analytical models to predict the FGM actuator performance. The performance of the FGM actuator is optimized by manipulating the thickness of each layer in the FGM system. The thickness of each layer in the FGM system is made to vary in a linear or non-linear manner to achieve the best performance of the FGM piezoelectric actuator. The analytical and FEM results are found to agree well with the experimental measurements for both rectangular and disk actuators. CLT solutions are found to coincide well with the elasticity solutions for high aspect ratios while the CLT solutions gave poor results compared to the 2D elasticity solutions for

  16. Tandem-disk theory - With particular reference to vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Healey, J. V.

    1981-08-01

    The effect of blade shape on the performance of straight-blade turbines is investigated, and an attempt is made to establish the tandem disk system as a model for vertical axis wind turbines. Two unknowns are chosen as independent parameters, and expressions for the windspeeds and power coefficients are obtained in terms of these parameters. Pressure is varied between the two disks, and the power coefficient for the tandem disk model is evaluated. The range of validity of the momentum theory is determined, although with some difficulty, for the single-disk and tandem models. Finally, the theory can be alternatively combined with the blade-element theory, which yields two additional equations, thus resolving the indeterminacy.

  17. Planet formation in transition disks: Modeling, spectroscopy, and theory

    NASA Astrophysics Data System (ADS)

    Liskowsky, Joseph Paul

    An important field of modern astronomy is the study of planets. Literally for millennia, careful observers of the night sky have tracked these 'wanderers', with their peculiar motions initiating avenues of inquiry not able to elucidated by a study of the stars alone: we have discovered that the planets (as well as Earth) orbit the sun and that the stars are so far away, even their relative positions do not seem to shift perceptibly when Earth's position moves hundreds of millions of miles. With the advent of the telescope, and subsequent improvements upon it over the course of centuries, accelerating to the dramatically immense telescopes available today and those on the horizon, we have been able to continuously probe farther and in more detail than the previous generation of scientists and telescopes allowed. Now, we are just entering the time when detection of planets outside of our own solar system has become possible, and we have found that planets are extraordinarily common in the galaxy (and by extrapolation, the universe). At the time of this document's composition, there are several thousand such examples of planets around other stars (being dubbed 'exoplanets'). We have discovered that planets are plentiful, but multiple open questions remain which are relevant to this work: How do planets form and, when a planet does form from its circumstellar envelope, what are the important processes that influence its formation? This work adds to the understanding of circumstellar disks, the intermediate stage between a cold collapsing cloud (of gas and dust) and a mature planetary system. Specifically, we study circumstellar disks in an evolved state termed 'transition disks'. This state corresponds to a time period where the dust in the disk has either undergone grain growth—where the microscopic grains have clumped together to form far fewer dust particles of much higher mass, or the inner portion (or an inner annulus) of the disk has lost a large amount of gas

  18. A Hot Big Bang Theory: Magnetic Fields and the Early Evolution of the Protolunar Disk

    NASA Astrophysics Data System (ADS)

    Gammie, C. F.; Liao, Wei-Ting; Ricker, P. M.

    2016-09-01

    The leading theory for the formation of Earth’s Moon invokes a collision between a Mars-sized body and the proto-Earth to produce a disk of orbiting material that later condenses to form the Moon. We show that the disk opacity is large, and cooling is therefore inefficient ({t}{cool}{{Ω }}\\gg 1). In this regime, angular momentum transport in the disk leads to steady heating unless α \\lt {({t}{cool}{{Ω }})}-1\\ll 1. Following earlier work by Charnoz and Michaut, and Carballido et al., we show that once the disk is completely vaporized it is well coupled to the magnetic field. We consider a scenario in which turbulence driven by magnetic fields leads to a brief, hot phase where the disk is geometrically thick, with strong turbulent mixing. The disk cools by spreading until it decouples from the field. We point out that approximately half the accretion energy is dissipated in the boundary layer where the disk meets the Earth’s surface. This creates high entropy material close to the Earth, driving convection and mixing. Finally, a hot magnetized disk could drive bipolar outflows that remove mass and angular momentum from the Earth-Moon system.

  19. A Hot Big Bang Theory: Magnetic Fields and the Early Evolution of the Protolunar Disk

    NASA Astrophysics Data System (ADS)

    Gammie, C. F.; Liao, Wei-Ting; Ricker, P. M.

    2016-09-01

    The leading theory for the formation of Earth’s Moon invokes a collision between a Mars-sized body and the proto-Earth to produce a disk of orbiting material that later condenses to form the Moon. We show that the disk opacity is large, and cooling is therefore inefficient ({t}{cool}{{Ω }}\\gg 1). In this regime, angular momentum transport in the disk leads to steady heating unless α \\lt {({t}{cool}{{Ω }})}-1\\ll 1. Following earlier work by Charnoz and Michaut, and Carballido et al., we show that once the disk is completely vaporized it is well coupled to the magnetic field. We consider a scenario in which turbulence driven by magnetic fields leads to a brief, hot phase where the disk is geometrically thick, with strong turbulent mixing. The disk cools by spreading until it decouples from the field. We point out that approximately half the accretion energy is dissipated in the boundary layer where the disk meets the Earth’s surface. This creates high entropy material close to the Earth, driving convection and mixing. Finally, a hot magnetized disk could drive bipolar outflows that remove mass and angular momentum from the Earth–Moon system.

  20. Circumbinary dust disks - reconciling the theory of close binary evolution with observation

    NASA Astrophysics Data System (ADS)

    Brinkworth, Carolyn; Hoard, Donald; Marsh, Tom

    2008-03-01

    The evolution of all close binary systems is driven by the loss of angular momentum from the system. Standard theory invokes two mechanisms for this loss - gravitational radiation and magnetic braking - and forms the backbone of virtually all studies based on binary evolution rates. Recent studies, however, have shown that the extrapolations in which the standard theory is based are wrong, suggesting that the true evolutionary rate of binary systems should be 10 - 10000 slower than previously predicted. To confuse the matter further, observational studies show that binary systems are actually evolving around 1000 times faster than this revised theory suggests, leading to the speculation that there is another angular momentum loss mechanism at work. One of the more likely candidates is the presence of a cool, dusty disk around the binary, which drains angular momentum from the system via tidal coupling. We propose to combine a Spitzer search for circumbinary dust disks with results from an ongoing project to directly measure the evolutionary rates of a number of detached binary systems. By modelling these disks, we will be able to test for any correlation between disk mass and evolutionary rate, and test whether the presence of these dusty disks could finally bring the theory of close binary evolution into line with observation.

  1. ASE in thin disk lasers: theory and experiment.

    PubMed

    Peterson, P; Gavrielides, A; Newell, T C; Vretenar, N; Latham, W P

    2011-12-01

    We derive equations for the ASE intensity, decay time, and heat load. The crux of our development is frequency integration over the gain lineshape followed by a spatial integration over the emitters. These integrations result in a gain length that is determined from experiment. We measure the gain as a function of incident pump power for a multi-pass pumped Yb:YAG disk doped at 9.8 at.% with an anti-ASE cap. The incident pump powers are up to 3kW. Our fit to the measured gain is within 10% of the measured gain up to pump powers where the gain starts to flatten out and roll over. In this comparison we extract the gain length that turns out to be 43% of the pump spot size of 7mm.

  2. The application of secular perturbation theory to explain warping in the circumstellar disk of Beta Pictoris

    NASA Astrophysics Data System (ADS)

    Novotny, Steven J.

    This research is a numerical investigation into the dynamical influences of planets on the dust disks surrounding young main sequence stars. Motivating this research effort are the observations of the Beta Pictoris circumstellar disk made by the 17 Department of Astronomy's mid-IR team. These IR images show with unprecedented clarity the features and asymmetries of the inner, ≤100 AU, portion of the Beta Pictoris disk; the most interesting of which is the dramatic warping of the disk's mid-plane. Analyses of prior observations have suggested that the features are attributed to the presence of a planet or a planetary system. Past dynamic analysis has focused primarily on the presence of a single planet and the resulting perturbations on the dust disk through hydrodynamic or N-body analysis. This research will show that the type of features observed in these images, specifically the warping of the disk, can also be explained with a system of two (or more) planets and secular perturbation theory while using more plausible assumptions than did other models.

  3. Size-dependent bistability of an electrostatically actuated arch NEMS based on strain gradient theory

    NASA Astrophysics Data System (ADS)

    Tajaddodianfar, Farid; Nejat Pishkenari, Hossein; Hairi Yazdi, Mohammad Reza; Maani Miandoab, Ehsan

    2015-06-01

    This paper deals with the investigation of the size-dependent nature of nonlinear dynamics, in a doubly clamped shallow nano-arch actuated by spatially distributed electrostatic force. We employ strain gradient theory together with the Euler-Bernoulli and shallow arch assumptions in order to derive the nonlinear partial differential equation governing the transverse motion of the arch with mid-plane stretching effects. Using the Galerkin projection method, we derive the lumped single degree of freedom model which is then used for the study of the size effects on the nonlinear snap-through and pull-in instabilities of the arch nano-electro-mechanical-system (NEMS). Moreover, using strain gradient theory, the size-dependent bistability and fundamental frequencies of the nano-arch are scrutinized, revealing that, despite what is predicted by the classical theory, the bistability region in the parameter space of the nano-structure shrinks as the structure scales down. Also, we show that the minimum initial elevation, required for bistability, increases as the nano-arch scales down.

  4. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    SciTech Connect

    Mirocha, J. D.; Kosovic, B.; Aitken, M. L.; Lundquist, J. K.

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  5. Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory

    NASA Astrophysics Data System (ADS)

    Sedighi, Hamid M.

    2014-02-01

    This paper presents the impact of vibrational amplitude on the dynamic pull-in instability and fundamental frequency of actuated microbeams by introducing the second order frequency-amplitude relationship. The nonlinear governing equation of microbeam predeformed by an electric force including the fringing field effect, based on the strain gradient elasticity theory is considered. The predicted results of the strain gradient elasticity theory are compared with the outcomes that arise from the classical and modified couple stress theory. The influences of basic nondimensional parameters on the pull-in instability as well as the natural frequency are investigated by a powerful asymptotic approach namely the Parameter Expansion Method (PEM). It is demonstrated that two terms in series expansions are sufficient to produce an acceptable solution of the microstructure. The phase portrait of the microstructure shows that by increasing the actuation voltage parameter, the stable center point loses its stability and coalesces with unstable saddle node.

  6. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  7. Determining tidal turbine farm efficiency in the Western Passage using the disc actuator theory

    NASA Astrophysics Data System (ADS)

    Rao, Shivanesh; Xue, Huijie; Bao, Min; Funke, Simon

    2016-01-01

    Tidal power potential is determined across the Western Passage in Passamaquoddy Bay using the Finite Volume Community Ocean Model (FVCOM). The tidal turbines are implemented in FVCOM using the disc actuator theory method to determine the power potential for different densities and arrangements of tidal turbines. At the most efficient setting for 10 turbines across the Western Passage, the optimal turbine drag coefficient is 2.0 and the average power output, in a 2-week period, is ˜819 kW. Results suggest that for a single row of turbines, the addition of turbines decreases the efficiency of the turbine farm, but this decrease in efficiency is less than 7 %. A parallel distribution of turbines in an array diminishes the average power for turbines in the shadow of other turbines, while staggered distribution in an array increases the average power extraction for some turbines, due to the speed gains in the gaps between turbines. A simple tidal farm optimization using the OpenTidalFarm (OTF) model suggests a similar tidal farm distribution.

  8. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE PAGES

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  9. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  10. Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures

    NASA Astrophysics Data System (ADS)

    Barrio, C.; Solana, J. R.

    2001-01-01

    A procedure previously developed by the authors to obtain the equation of state for a mixture of additive hard spheres on the basis of a pure fluid equation of state is applied here to a binary mixture of additive hard disks in two dimensions. The equation of state depends on two parameters which are determined from the second and third virial coefficients for the mixture, which are known exactly. Results are compared with Monte Carlo calculations which are also reported. The agreement between theory and simulation is very good. For the fourth and fifth virial coefficients of the mixture, the equation of state gives results which are also in close agreement with exact numerical values reported in the literature.

  11. Actuator-valve interface optimization

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1986-01-01

    A computer code, Actuator Valve Response (AVR), has been developed to optimize the explosive actuator-valve interface parameters so that the valve plunger velocity is at a maximum when the plunger reaches the valve tubes. The code considers three forces to act on the valve plunger before the plunger reaches the valve tubes. These are the pressure force produced by the actuator, the shear force necessary to shear the seal disks on the actuator and the valve plunger, and the friction force caused by friction between the plunger and the plunger bore. The three forces are modeled by expressions that are explicitly functions of the plunger displacement. A particular actuator-valve combination was analyzed with the computer code AVR with four different combinations of valve plunger seal disk shear strength and initial friction force. (LEW)

  12. Reconfigurable control of aircraft undergoing sensor and actuator failures

    NASA Astrophysics Data System (ADS)

    Bajpai, Gaurav

    2001-07-01

    Significant number of fatal aircraft accidents in recent years have been linked to component failures. With the predicted increase in air traffic these numbers are likely to increase. With reduction of fatal accidents as motivation, this dissertation investigates design of fault tolerant control systems for aircrafts undergoing sensor and/or actuator failures. Given that the nominal controller may perform inadequately in the event of sensors and/or actuator failure, the feasible approach for such a control scheme is to predesign various controllers anticipating these failures and then switching to an appropriate controller when the failure occurs. This is enabled by the available redundancy in sensing and actuation and allows the system to perform adequately even when these failures occur. The predesign of controllers for sensor and actuator failures is considered. Sensor failures are easily accommodated if certain detectability conditions are met. However, the predesign for actuator failures is not trivial as the position at which the actuators fail is not known a priori. It is shown that this problem can be tackled by reducing it to the classical control problem of disturbance decoupling, in which, the functional control enables the steady state output of dynamical system to reject any disturbance due to the failed actuators. For linear systems, conditions for existence of a controller capable of accommodating these failures can be understood in geometric terms and calculations are linked to solvability of coupled matrix equations. Although control design for aircrafts is done using linear techniques, failures can cause excursions into nonlinear regimes due to ensuing changes in the flight conditions. This dissertation also uses the recent results in the nonlinear regulator theory to address actuator failures in nonlinear systems. The utility of design techniques is illustrated using flight control examples with failures. The symbolic computational tools are

  13. The dynamics of particle disks. III - Dense and spinning particle disks. [development of kinetic theory for planetary rings

    NASA Technical Reports Server (NTRS)

    Araki, Suguru

    1991-01-01

    The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.

  14. Consequences of a dark disk for the Fermi and PAMELA signals in theories with a Sommerfeld enhancement

    SciTech Connect

    Cholis, Ilias; Goodenough, Lisa E-mail: lcg261@nyu.edu

    2010-09-01

    Much attention has been given to dark matter explanations of the PAMELA positron fraction and Fermi electronic excesses. For those theories with a TeV-scale WIMP annihilating through a light force-carrier, the associated Sommerfeld enhancement provides a natural explanation of the large boost factor needed to explain the signals, and the light force-carrier naturally gives rise to hard cosmic ray spectra without excess π{sup 0}-gamma rays or anti-protons. The Sommerfeld enhancement of the annihilation rate, which at low relative velocities v{sub rel} scales as 1/v{sub rel}, relies on the comparatively low velocity dispersion of the dark matter particles in the smooth halo. Dark matter substructures in which the velocity dispersion is smaller than in the smooth halo have even larger annihilation rates. N-body simulations containing only dark matter predict the existence of such structures, for example subhalos and caustics, and the effects of these substructures on dark matter indirect detection signals have been studied extensively. The addition of baryons into cosmological simulations of disk-dominated galaxies gives rise to an additional substructure component, a dark disk. The disk has a lower velocity dispersion than the spherical halo component by a factor ∼ 6, so the contributions to dark matter signals from the disk can be more significant in Sommerfeld models than for WIMPs without such low-velocity ehancements. We consider the consequences of a dark disk on the observed signals of e{sup +}e{sup −}, p p-bar and γ-rays as measured by Fermi and PAMELA in models where the WIMP annihilations are into a light boson. We find that both the PAMELA and Fermi results are easily accomodated by scenarios in which a disk signal is included with the standard spherical halo signal. If contributions from the dark disk are important, limits from extrapolations to the center of the galaxy contain significant uncertainties beyond those from the spherical halo profile

  15. Resonance excitation of spiral density waves in a gaseous disk. II - A nonlinear theory and application to the 3 kiloparsec arm

    SciTech Connect

    Yuan, Chi; Cheng, Ye National Tsing Hua University, Hsinchu STX Corp., New York )

    1991-07-01

    The present nonlinear theory of spiral density waves in a thin, viscous, self-gravitating gaseous disk views the waves as generated near the Lindblad resonance by periodic disturbances through an excitation mechanism. The suggestion of Yuan (1984), that either a minor oval distortion or an uneven distribution of mass in the center can excite a spiral density wave whose radial velocity and mass concentration are in excellent agreement with observations of the 3 kpc arm of the Galaxy, is confirmed. Reliable results are obtained for nonlinear density waves either in a gaseous disk or in the gas components of a galactic disk. 17 refs.

  16. A DOUBLE OUTBURST FROM IGR J00291+5934: IMPLICATIONS FOR ACCRETION DISK INSTABILITY THEORY

    SciTech Connect

    Hartman, Jacob M.; Galloway, Duncan K.; Chakrabarty, Deepto

    2011-01-01

    The accretion-powered millisecond pulsar IGR J00291+5934 underwent two {approx}10 day long outbursts during 2008, separated by 30 days in quiescence. Such a short quiescent period between outbursts has never been seen before from a neutron star X-ray transient. X-ray pulsations at the 599 Hz spin frequency are detected throughout both outbursts. For the first time, we derive a pulse phase model that connects two outbursts, providing a long baseline for spin frequency measurement. Comparison with the frequency measured during the 2004 outburst of this source gives a spin-down during quiescence of -(4 {+-} 1) x 10{sup -15} Hz s{sup -1}, approximately an order of magnitude larger than the long-term spin-down observed in the 401 Hz accretion-powered pulsar SAX J1808.4-3658. If this spin-down is due to magnetic dipole radiation, it requires a 2 x 10{sup 8} G field strength, and its high spin-down luminosity may be detectable with the Fermi Large Area Telescope. Alternatively, this large spin-down could be produced by gravitational wave emission from a fractional mass quadrupole moment of Q/I = 1 x 10{sup -9}. The rapid succession of the outbursts also provides a unique test of models for accretion in low-mass X-ray binaries. Disk instability models generally predict that an outburst will leave the accretion disk too depleted to fuel a second outburst after such a brief quiescence. We suggest a modification in which the outburst is shut off by the onset of a propeller effect before the disk is depleted. This model can explain the short quiescence and the unusually slow rise of the light curve of the second 2008 outburst.

  17. Theory and numerical simulation of three-dimensional vortices in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph Andrew

    2004-12-01

    We show (via 3D spectral anelastic hydrodynamic simulations) that finite- amplitude perturbations in a stably stratified protoplanetary disk lead to the natural formation of 3D, long-lived, coherent vortices. This is in contrast to previous 3D constant density studies that, showed that perturbations to Keplerian shear always rapidly decay. Our results are also entirely distinct from the numerous 2D studies of vortex dynamics in the midplane of Keplerian disks: We show that vortices in the midplane are linearly unstable with an e - folding time of only a few orbital periods; the nonlinear development of the instability leads to the destruction of vortices in the midplane. In our numerical simulations, a midplane vortex (prior to its destruction) was a source of perturbations: as it oscillated, it excited internal gravity waves which would propagate away from the midplane, break, and create vorticity (a baroclinic effect). The regions of vorticity above and below the midplane would coalesce into new vortices. Whereas the midplane vortex would eventually succumb to the instability, the off-midplane vortices were stable (to infinitesimal and finite-amplitude perturbations) and long-lived. The key ingredient for stable 3D vortices is stable stratification: the vertical component of protostellar gravity vanishes in the midplane, so the gas is unstratified there; off the midplane, the magnitudes of gravity and stratification increase linearly with height. Stable. 3D off-midplane vortices may play two key roles in star and planet formation: in cool, nonmagnetized disks, vortices may transport angular momentum outward so that mass can continue to accrete onto the growing protostar; and vortices rapidly sweep-up and concentrate dust particles, which may help in the formation of planetesimals, the basic "building blocks" of planets, either by increasing the efficiency of binary agglomeration, or by seeding a local gravitational instability.

  18. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Currie, T.

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.

  19. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B)(exp 1): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Muto, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M; Currie, T.; Ohashi, N.; Okamoto, Y.; Momose, M.; Honda, M.; Inutsuka, S.; Takeuchi, T.; Dong, R.; Abe, L.; Brandner, W.; Brandt, T.; Carson, J.; Egner, S.; Feldt, M.; Fukue, T.; Goto, M.

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru /HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 1353448). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r <= 46 AU, our observations reveal the presence of scattered light components as close as O".2 (approx 28 AU) from the star. Moreover , we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx. 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes. independently from sub-nun observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations,

  20. DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY

    SciTech Connect

    Muto, T.; Takeuchi, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M.; Currie, T.; Ohashi, N.; Okamoto, Y.; Momose, M.; Honda, M.; Inutsuka, S.; Dong, R.; Brandt, T.; Abe, L.; Brandner, W.; and others

    2012-04-01

    We present high-resolution, H-band imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of a dust-depleted cavity at r {<=} 46 AU, our observations reveal the presence of scattered light components as close as 0.''2 ({approx} 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.''5 ({approx} 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h {approx} 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelength observations.

  1. Characterization of electrostatic glass actuators

    NASA Astrophysics Data System (ADS)

    Moser, R.; Wüthrich, R.; Sache, L.; Higuchi, T.; Bleuler, H.

    2003-06-01

    Electrostatic glass actuators are a promising concept for various applications. The use of the interaction between glassy substances and electrostatic fields allows synchronous propulsion akin to the electret actuator. Even though some properties of electrostatic glass motors have been observed and described, a characterization is still missing. The authors would like to present the experimental work leading to the determination of the optimal glass blend and to the optimal electrode pattern in order to maximize the exploitable forces. An analytical model is also presented, satisfactorily close to the measured data. These measurements and models constitute a tool to design electrostatic glass actuators such as, for example, a miniature disk drive, which is presented as one of several promising applications.

  2. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  3. Actuator mechanism

    NASA Technical Reports Server (NTRS)

    Stange, W. C. (Inventor)

    1978-01-01

    An actuator mechanism is described, having a frame with a rotatable shaft supported in the frame, a positioning mechanism coupled to the shaft for rotating the shaft in two rotary positions, disposed approximately 180 degrees apart, and a pair of plungers coupled to the shaft. Each plunger is responsive to a control signal for applying bi-directional rotation to the shaft.

  4. Strong Evidence for the Density-wave Theory of Spiral Structure in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia; Davis, Benjamin L.; Shields, Douglas W.; Shameer Abdeen, Mohamed

    2016-08-01

    The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy’s image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range of wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image (B-band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 μm) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B-band and 3.6 μm images have smaller pitch angles than the infrared 8.0 μm image in all cases, in agreement with the prediction of density-wave theory. We also used images in the ultraviolet from Galaxy Evolution Explorer, whose pitch angles agreed with the measurements made at 8 μm.

  5. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  6. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  7. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

  8. THE EVOLUTION OF CIRCUMPLANETARY DISKS AROUND PLANETS IN WIDE ORBITS: IMPLICATIONS FOR FORMATION THEORY, OBSERVATIONS, AND MOON SYSTEMS

    SciTech Connect

    Shabram, Megan; Boley, Aaron C.

    2013-04-10

    Using radiation hydrodynamics simulations, we explore the evolution of circumplanetary disks around wide-orbit proto-gas giants. At large distances from the star ({approx}100 AU), gravitational instability followed by disk fragmentation can form low-mass substellar companions (massive gas giants and/or brown dwarfs) that are likely to host large disks. We examine the initial evolution of these subdisks and their role in regulating the growth of their substellar companions, as well as explore consequences of their interactions with circumstellar material. We find that subdisks that form in the context of GIs evolve quickly from a very massive state. Long-term accretion rates from the subdisk onto the proto-gas giant reach {approx}0.3 Jupiter masses kyr{sup -1}. We also find consistency with previous simulations, demonstrating that subdisks are truncated at {approx}1/3 of the companion's Hill radius and are thick, with (h/r) of {approx}> 0.2. The thickness of subdisks draws to question the use of thin-disk approximations for understanding the behavior of subdisks, and the morphology of subdisks has implications for the formation and extent of satellite systems. These subdisks create heating events in otherwise cold regions of the circumstellar disk and serve as planet formation beacons that can be detected by instruments such as ALMA.

  9. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  10. Flexure-based nanomagnetic actuators

    NASA Astrophysics Data System (ADS)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  11. Herniated Disk

    MedlinePlus

    ... keep them in place. As you age, the disks break down or degenerate. As they do, they lose their cushioning ability. This can lead to pain if the back is stressed. A herniated disk is a disk that ruptures. This allows the ...

  12. Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory.

    PubMed

    Fakhrabadi, Mir Masoud Seyyed; Rastgoo, Abbas; Ahmadian, Mohammad Taghi

    2013-01-01

    The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes.

  13. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  14. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  15. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  16. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    SciTech Connect

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  17. High-bandwidth macro/microactuation for hard-disk drive

    NASA Astrophysics Data System (ADS)

    Ma, Jianxu; Ang, Marcelo H., Jr.

    2000-10-01

    The track density of hard disk drives had been increasing of 30%/year in these last years. The increase in bandwidth is limited by the presence of mechanical resonance modes and other nonlinear in the voice coil motor (VCM) actuators. One approach to overcoming the problem is by using a dual-stage servo mechanism. Dual stage actuator systems composed of a micro actuator and a conventional actuator (VCM)-macro actuator may enable such high track densities to be attained. In this paper, a novel piezoelectric microactuator was successfully designed and mounted on the suspension in hard disk drives. The microactuator is based on the deformation in piezoelectric effect, and drives the head suspension assembly. The paper describes the structure of macro/micro actuators, its principles of operation and mechanical characteristics. The actuators system in hard disk has a high bandwidth, simple structure, and low cost.

  18. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  19. Adding realism to simulated sensors and actuators.

    PubMed

    Rosen, C; Jeppsson, U; Rieger, L; Vanrolleghem, P A

    2008-01-01

    In this paper, we propose a statistical theoretical framework for incorporation of sensor and actuator faults in dynamic simulations of wastewater treatment operation. Sensor and actuator faults and failures are often neglected in simulations for control strategy development and testing, although it is well known that they represent a significant obstacle for realising control at full-scale facilities. The framework for incorporating faults and failures is based on Markov chains and displays the appealing property of easy transition of sensor and actuator history into a model for fault generation. The paper briefly describes Markov theory and how this is used together with models for sensor and actuator dynamics to achieve a realistic simulation of measurements and actuators.

  20. DISK-SATELLITE INTERACTION IN DISKS WITH DENSITY GAPS

    SciTech Connect

    Petrovich, Cristobal; Rafikov, Roman R.

    2012-10-10

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them that can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly non-uniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existing prescriptions: most of the torque is exerted in a rather narrow region near the gap edge where Lindblad resonances accumulate, followed by an exponential falloff with the distance from the perturber. Despite these differences, for a given gap profile, the full integrated torque exerted on the disk agrees with the conventional uniform disk theory prediction at the level of {approx}10%. The nonlinearity of the density wave excited by the perturber is shown to decrease as the wave travels out of the gap, slowing down its nonlinear evolution and damping. Our results suggest that gap opening in protoplanetary disks and gas clearing around SMBH binaries can be more efficient than the existing theories predict. They pave the way for self-consistent calculations of the gap structure and the orbital evolution of the perturber using accurate prescription for the torque density behavior.

  1. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  2. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  3. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  4. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  5. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  6. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  7. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  8. Implications of Marcus-Hush theory for steady-state heterogeneous electron transfer at an inlaid disk electrode.

    PubMed

    Feldberg, Stephen W

    2010-06-15

    For an outer-sphere heterogeneous electron transfer, Ox + e = Red, between an electrode and a redox couple, the Butler-Volmer formalism predicts that the operative heterogeneous rate constant, k(red) (cm s(-1)) for reduction (or k(ox) for oxidation) increases without limit as an exponential function of -alpha (E - E(0)) for reduction (or (1 - alpha)(E - E(0)) for oxidation), where E is the applied electrode potential, alpha (~1/2) is the transfer coefficient and E(0) is the formal potential. The Marcus-Hush formalism, as exposited by Chidsey (Chidsey, C. E. D. Science 1991, 215, 919), predicts that the value of k(red) or k(ox) limits at sufficiently large values of -(E - E(0)) or (E - E(0)). The steady-state currents at an inlaid disk electrode obtained for a redox species in solution were computed using both formalisms with the Oldham-Zoski approximation (Oldham, K. B.; Zoski, C. G. J. Electroanal. Chem. 1988, 256, 11). Significant differences are noted for the two formalisms. When k(0)r(0)/D is sufficiently small (k(0) is the standard rate constant, r(0) is the radius of the disk electrode, and D is the diffusion coefficient of the redox species), the Marcus-Hush formalism effects a limiting current that can be significantly smaller than the mass transport limited current. This is easily explained in terms of the limiting values of k(red) and k(ox) predicted by the Marcus-Hush formalism. The experimental conditions that must be met to effect significant differences in behavior are discussed; experimental conditions that effect virtually identical behavior are also discussed. As a caveat for experimentalists, applications of the Butler-Volmer formalism to systems that are more properly described using the Marcus-Hush formalism are shown to yield incorrect values of k(0) and meaningless values of alpha, which serves only as a fitting parameter.

  9. Herniated disk

    MedlinePlus

    ... roots. Slipped disks occur more often in middle-aged and older men, usually after strenuous activity. Other ... calm the nerves Muscle relaxants to relieve back spasms LIFESTYLE CHANGES If you are overweight, diet and ...

  10. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  11. Design and control of dual servo actuator for near field optical recording system

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Choi, Young-Man; Lee, Jun-Hee; Yoon, Hyoung-Kil; Gweon, Dae-Gab

    2005-12-01

    Near field recording (NFR) has been introduced as a new optical data storage method to realize higher data density beyond the diffraction limit. As the data density increases, the track pitch is remarkably reduced to about 400nm. Thus, more precise actuator is required and we propose a dual servo actuator to improve the accuracy of actuator. The proposed dual servo actuator consists of a coarse actuator and a fine actuator, multisegmented magnet array (MSMA) voice coil motor (VCM) and PMN-PT actuator. In design of VCM actuator, a novel magnetic circuit of VCM with MSMA is proposed. It can generate higher air gap flux density than the magnetic circuit of VCM with the conventional magnet array. In design of fine actuator, the fine actuator including PMN-PT single crystal instead of the conventional PZT is proposed. The displacement gain of PMN-PT fine actuator is 26 nm/V and that of PZT fine actuator is 17 nm/V. The displacement gain is increased by 53 %. To evaluate tracking performance of the manufactured dual servo actuator and to assign the proper role to each actuator, the PQ method is selected. From experiment results, the total bandwidth of the dual servo actuator is increased to 2.5kHz and the resolution is 25 nm. Comparing with the resolution of one servo actuator, 70 nm, we can find that the accuracy of actuator is remarkably improved. And the proposed dual servo actuator shows satisfactory performances to be applied to NFR and it can be applied to other future disk drives.

  12. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  13. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  14. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  15. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  16. Increasing the Number of Replications in Item Response Theory Simulations: Automation through SAS and Disk Operating System

    ERIC Educational Resources Information Center

    Gagne, Phill; Furlow, Carolyn; Ross, Terris

    2009-01-01

    In item response theory (IRT) simulation research, it is often necessary to use one software package for data generation and a second software package to conduct the IRT analysis. Because this can substantially slow down the simulation process, it is sometimes offered as a justification for using very few replications. This article provides…

  17. Actuating Fibers: Design and Applications.

    PubMed

    Stoychev, Georgi V; Ionov, Leonid

    2016-09-21

    Actuators are devices capable of moving or controlling objects and systems by applying mechanical force on them. Among all kinds of actuators with different shapes, fibrous ones deserve particular attention. In spite of their apparent simplicity, actuating fibers allow for very complex actuation behavior. This review discusses different approaches for the design of actuating fibers, and their advantages and disadvantages. We also discuss the prospects for the design of fibers with advanced architectures and complex actuation behavior. PMID:27571481

  18. Lock for hydraulic actuators

    NASA Technical Reports Server (NTRS)

    Wood, R. H.

    1981-01-01

    Two clamps hold rod in fixed extension from cylinder even when power is off, converting actuator into stiff structural member. Locked actuator is useful as mechanical support or linkage or as fail-safe device in case of loss of hydraulic pressure. Potential applications include manufacturing processes and specialized handling and holding devices.

  19. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  20. Theory-based development of high-performance magnostrictive particulate actuated polymer composite transducer materials with strongly improved cyclic strain endurance

    NASA Astrophysics Data System (ADS)

    Armstrong, William D.

    2001-07-01

    The present experimental effort characterizes the development of damage in two different forms of experimental magnetostrictive composite material. This effort is intended to identify the various forms of damage mechanisms operating in the two very different materials, and to identify how the development of fine scale damage influences the overall magnetostrictive behavior and performance. Optical examination of as-magneto-strain cycled Terfenol-D particle actuated epoxy matrix composite material strongly suggests the following primary damage processes, particle fracture under cyclic internal stress, severe degradation of the particle to epoxy matrix interfacial bond, and ultimate sample failure by matrix crack coalescence leading to complete granulation.

  1. Quasi-Static Analysis of LaRC THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  2. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  3. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  4. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  5. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  6. Ultrasonically Actuated Tools for Abrading Rock Surfaces

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin; Sherrit, Stewart; Bar-Cohen, Yoseph; Rainen, Richard; Askin, Steve; Bickler, Donald; Lewis, Donald; Carson, John; Dawson, Stephen; Bao, Xiaoqi; Chang, Zensheu; Peterson, Thomas

    2006-01-01

    An ultrasonic rock-abrasion tool (URAT) was developed using the same principle of ultrasonic/sonic actuation as that of the tools described in two prior NASA Tech Briefs articles: Ultrasonic/ Sonic Drill/Corers With Integrated Sensors (NPO-20856), Vol. 25, No. 1 (January 2001), page 38 and Ultrasonic/ Sonic Mechanisms for Drilling and Coring (NPO-30291), Vol. 27, No. 9 (September 2003), page 65. Hence, like those tools, the URAT offers the same advantages of low power demand, mechanical simplicity, compactness, and ability to function with very small axial loading (very small contact force between tool and rock). Like a tool described in the second of the cited previous articles, a URAT includes (1) a drive mechanism that comprises a piezoelectric ultrasonic actuator, an amplification horn, and a mass that is free to move axially over a limited range and (2) an abrasion tool bit. A URAT tool bit is a disk that has been machined or otherwise formed to have a large number of teeth and an overall shape chosen to impart the desired shape (which could be flat or curved) to the rock surface to be abraded. In operation, the disk and thus the teeth are vibrated in contact with the rock surface. The concentrated stresses at the tips of the impinging teeth repeatedly induce microfractures and thereby abrade the rock. The motion of the tool induces an ultrasonic transport effect that displaces the cuttings from the abraded area. The figure shows a prototype URAT. A piezoelectric-stack/horn actuator is housed in a cylindrical container. The movement of the actuator and bit with respect to the housing is aided by use of mechanical sliders. A set of springs accommodates the motion of the actuator and bit into or out of the housing through an axial range between 5 and 7 mm. The springs impose an approximately constant force of contact between the tool bit and the rock to be abraded. A dust shield surrounds the bit, serving as a barrier to reduce the migration of rock debris to

  7. Vector diffraction analysis of optical disk readout.

    PubMed

    Cheng, X; Jia, H; Xu, D

    2000-12-01

    The optical disk readout signals from ROM disks are presented by use of a rigorous three-dimensional vector diffraction method. The optical disk is modeled as a crossed metal grating without restriction on the form of the information marks, and the permittivity of the metal is taken into account. The diffracted field from the disk is obtained by means of decomposing the focused incident beam into a spectrum of plane waves and then calculating the diffracted plane waves for each respective incident component. The readout signal is obtained by integration of the energy-flux density of the diffracted field according to the detection scheme of the optical disk system. A typical digital versatile disk (DVD) system is applied with this theory, and the result is far from that of scalar diffraction theory. PMID:18354657

  8. Electrothermal linear actuator

    NASA Technical Reports Server (NTRS)

    Derr, L. J.; Tobias, R. A.

    1969-01-01

    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward.

  9. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  10. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  11. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  12. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  13. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  14. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  15. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  16. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  17. Electrostatic Linear Actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Curry, Kenneth C.

    1990-01-01

    Electrically charged helices attract or repel each other. Proposed electrostatic linear actuator made with intertwined dual helices, which holds charge-bearing surfaces. Dual-helix configuration provides relatively large unbroken facing charged surfaces (relatively large electrostatic force) within small volume. Inner helix slides axially in outer helix in response to voltages applied to conductors. Spiral form also makes components more rigid. Actuator conceived to have few moving parts and to be operable after long intervals of inactivity.

  18. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  19. Actuation of polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  20. Actuation of polypyrrole nanowires.

    PubMed

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  1. Actuating dielectric elastomers in pure shear deformation by elastomeric conductors

    SciTech Connect

    Wang, Yin; Chen, Baohong; Zhou, Jinxiong; Bai, Yuanyuan; Wang, Hong

    2014-02-10

    Pure shear experiments are commonly used to characterize dielectric elastomer (DE) material properties and to evaluate DE actuator/generator performance. It is increasingly important for many applications to replace conventional carbon grease electrodes with stretchable elastomeric conductors. We formulate a theory for DE with elastomeric conductors, synthesize transparent hydrogel as ionic conductors, and measure actuation of DE in pure shear deformation. Maximum 67% actuation strain is demonstrated. The theory agrees well with our measurement and also correlates well with reported experiments on DE with electronic conductors.

  2. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  3. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    SciTech Connect

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  4. Accommodating Actuator Failures in Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Siwakosit, W.; Chung, J.

    1998-01-01

    A technique for the design of flight control systems that can accommodate a set of actuator failures is presented. As employed herein, an actuator failure is defined as any change in the parametric model of the actuator which can adversely affect actuator performance. The technique is based upon the formulation of a fixed feedback topology which ensures at least stability in the presence of the failures in the set. The fixed compensation is obtained from a loop-shaping design procedure similar to Quantitative Feedback Theory and provides stability robustness in the presence of uncertainty in the vehicle dynamics caused by the failures. System adaptation to improve performance after actuator failure(s) occurs through a static gain adjustment in the compensator followed by modification of the system prefilter. Precise identification of the vehicle dynamics is unnecessary. Application to a single-input, single-output design using a simplified model of the longitudinal dynamics of the NASA High Angle of Attack Research Vehicle is discussed. Non-real time simulations of the system including a model of the pilot demonstrate the effectiveness and limitations of the approach.

  5. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  6. Development report for dual-burst disks

    SciTech Connect

    Fusco, A.M.

    1996-11-01

    Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were studied to determine the optimum design of the burst disk. These parameters include thickness, diameter, area/pressure ratio, scoring, and disk geometry. The disk material was limited to 304L stainless steel. Factors that were considered essential to the optimization of the design were robustness, manufacturability, and burst pressure variability. The thicknesses of the disks that were studied range from 0.003 in. to 0.010 in. A model for predicting burst pressures of the burst disks was derived. The model combines membrane stress theory with force/displacement data to predict the burst pressure of various designs to within {+-}10%. This model results from studies that characterize the behavior of individual small and large disks. Welding techniques used to join the dual-disk assembly are discussed. Laser welds are used to join and seal the disks to the bulkhead. These welds were optimized for repeatability and robustness. Resistance upset welding is suggested for joining the dual-disk assembly to the pressure vessel body. Resistance upset weld parameters were developed for this particular design so as to minimize the side effects on the burst-disk performance and to provide high-quality welds.

  7. Photostrictive actuators for photonic control of shallow spherical shells

    NASA Astrophysics Data System (ADS)

    Shih, Hui-Ru; Tzou, Horn-Sen

    2007-10-01

    Photostrictive materials, exhibiting light-induced strain, are of interest for the future generation of wireless remote control photo-actuators. Photostrictive actuators are expected to be used as the driving component in optically controlled flexible structures. In this paper, the photonic control of flexible spherical shells using discrete photostrictive actuators is investigated. This paper presents a coupled opto-piezothermoelastic shell theory that incorporates photovoltaic, pyroelectric and piezoelectric effects, and has the capability to predict the response of a spherical shell driven by the photostrictive actuators. In this study, the effects of actuator location as well as membrane and bending components on the control action have been analyzed. The results obtained indicate that the control forces are mode and location dependent. Analysis also shows that the membrane control action is much more significant than the bending control action.

  8. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  9. Actuating critical care therapeutics.

    PubMed

    Stone, David J; Csete, Marie

    2016-10-01

    Viewing the intensive care unit (ICU) as a control system with inputs (patients) and outputs (outcomes), we focus on actuation (therapies) of the system and how to enhance our understanding of status of patients and their trajectory in the ICU. To incorporate the results of these analytics meaningfully, we feel that a reassessment of predictive scoring systems and of ways to optimally characterize and display the patient's "state space" to clinicians is important. Advances in sensing (diagnostics) and computation have not yet led to significantly better actuation, and so we focus on ways that data can be used to improve actuation in the ICU, in particular by following therapeutic burden along with disease severity. This article is meant to encourage discussion about how the critical care community can best deal with the data they see each day, and prepare for recommendations that will inevitably arise from application of major federal and state initiatives in big data analytics and precision medicine.

  10. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  11. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  12. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  13. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  14. Sensor-actuator system for dynamic chloride ion determination.

    PubMed

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor.

  15. "High Angular Resolution Observations of Protoplanetary Disks with Adaptive Optics"

    NASA Technical Reports Server (NTRS)

    Roddier, Francois

    1999-01-01

    Significant results were obtained and published in the literature. The first optical detection of a circumbinary disk was reported in the ApJ at millimetric wavelengths. The size and inclination of this disk were found to be consistent with millimetric observations. Evidence was found for a cavity inside the disk as theory predicts from dust clearing by the stellar companion.

  16. A Laboratory Project on the Theory, Fabrication, and Characterization of a Silicon-on-Insulator Micro-Comb Drive Actuator with Fixed-Fixed Beams

    ERIC Educational Resources Information Center

    Abbas, K.; Leseman, Z. C.

    2012-01-01

    A laboratory course on the theory, fabrication, and characterization of microelectromechanical systems (MEMS) devices for a multidisciplinary audience of graduate students at the University of New Mexico, Albuquerque, has been developed. Hands-on experience in the cleanroom has attracted graduate students from across the university's engineering…

  17. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  18. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  19. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  20. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  1. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  2. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  3. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  4. Inline-actuated suspension for the fine head positioning of HDD

    NASA Astrophysics Data System (ADS)

    Lau, Gih Keong; Du, Hejun

    2006-07-01

    A new design of inline-actuated suspension is developed for application in the dual-stage head positioning of hard disk drives (HDD). This design exploits a parallel mechanism to convert longitudinal piezoelectric actuation into a lateral stroke. It is embodied in an elongated portion of a slender load beam. Besides serving the intended function of adequate stroke, the new design significantly improves shock resistance and dynamics. Its sway frequency improves by 19%, as compared to a push-pull design. In addition, the piezoelectric plate for inline actuation is subjected to 66% less shock-induced stress than the pair for push-pull actuation. The new actuator only requires standard manufacturing and assembly processes for realization and no costly miniaturization.

  5. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  6. Application of photothermal effect to manufacture ultrasonic actuators (abstract)

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-yi; Cheng, Li-ping; Shui, Xiu-ji; Yu, Jiong; Dong, Shu-xiang

    2003-01-01

    Photothermal (PT) effect has been applied to manufacture disks [A. C. Tam, a lecture at the Institute of Acoustics, Nanjing University, People's Republic of China (1996)] and magnetic head sliders for disk drives [A. C. Tam, C. C. Poon, and L. Crawforth, Analyt. Sci. 17, s 419 (2001)]. Now we apply the PT effect to manufacture ultrasonic motors (actuators). Recently, the ultrasonic actuators with different ultrasonic modes, such as Rayleigh (surface acoustic) mode, Lamb (plate) mode, etc., have been developed. We have designed and fabricated two rotary motors driven by surface acoustic wave (SAW) with different frequencies, but lower than 30 MHz [L. P. Cheng, G. M. Zhang, S. Y. Zhang, J. Yu, and X. J. Shui, Ultrasonics 39, 591 (2002)]. On the SAW motors (actuators), two Rayleigh wave beams were generated and propagating along the surface of a 128° YK-LiNbO3 substrate in opposite directions with each other as a stator, and a plastic disk with balls distributed along the circle of the disk was as a rotor. For miniaturizing the rotary SAW motors, and increasing the rotation velocity, the SAW frequency must be increased. Then we improve the manufacturing technology of the mechanical structure by PT effect instead of the conventional mechanical processes of the stator and rotor of the motor. A new type of rotary SAW motor (actuator) has been fabricated, in which both SAW beams with opposite propagating directions are excited by two pairs of interdigital transducers with the frequency between 30-50 MHz. In the surface of the stator (128° YX-LiNbO3 substrate), a hole with the depth about 500 μm is impinged by a focused pulsed Nd:YAG laser beam (PT effect) between two SAW propagating ways on the 128° YX-LiNbO3 substrate for fixing the axis of the motor, with the frequency between 30-50 MHz. In the bottom of the rotor (plastic disk), a lot of crown (flange) blocks with the high of 20-30 μm and the diameter of also 20-30 μm can be made by the focused pulsed Nd

  7. Generation of droplets to serpentine threads on a rotating compact-disk platform

    NASA Astrophysics Data System (ADS)

    Kar, Shantimoy; Joshi, Sumit; Chaudhary, Kaustav; Maiti, Tapas Kumar; Chakraborty, Suman

    2015-12-01

    We generate stable monodisperse droplets of nano-liter volumes and long serpentine liquid threads in a single, simple "Y"-shaped microchannel mounted on a rotationally actuated lab-on-a-compact-disk platform. Exploitation of Coriolis force offers versatile modus operandi of the present setup, without involving any design complications. Based on the fundamental understanding and subsequent analysis, we present scaling theories consistent with the experimental observations. We also outline specific applications of this technique, in the biological as well as in the physical domain, including digital polymerase chain reaction (PCR), controlled release of medical components, digital counting of colony forming units, hydrogel engineering, optical sensors and scaffolds for living tissues, to name a few.

  8. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  9. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  10. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  11. Solar actuated drain system

    SciTech Connect

    Sarver, G. E.; Worstell, B. W.

    1985-04-30

    A temperature actuated drain system is provided that comprises a siphon that has an inlet end for immersing in a pool of water to be drained from a roof surface and a discharge end communicating with a pressure-responsive one-way valve. A solar actuated enclosed chamber that contains a solar heat energy collector is located on the roof surface and is in open communication with the siphon by means of a tubular member that has its inlet end positioned closely adjacent the bottom of the interior of the chamber. The arrangement causes any appreciable amounts of water that accumulate within the chamber to be discharged from the chamber during the pumping action created by the heating and cooling of air within the chamber.

  12. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  13. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  14. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  15. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  16. Automatic rotary valve actuator

    SciTech Connect

    Cook, W.E.

    1985-03-28

    This report describes the design, construction, and operation of a microcomputer-controlled valve actuator for operating test valves requiring rotary motion of the valve stem. An AIM 65 microcomputer, using a FORTH language program, controls an air motor and air clutch mounted within an oven to accomplish testing at elevated temperatures. The valve actuator closes the test valve until a preset torque is reached and then opens the valve to its initial starting point. The number of cycles and extremes of rotation are tallied and printed as the test progresses. Provisions are made to accept remote signals to stop the test and to indicate to a remote device when the test has been stopped.

  17. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  18. Dissolution actuated sample container

    DOEpatents

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  19. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  20. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  1. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  2. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  3. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  4. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  5. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  6. Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations.

    PubMed

    Shams, Qamar A; Soto, Hector L; Zuckerwar, Allan J

    2009-09-01

    Crosstalk in electrostatic actuator calibrations is defined as the ratio of the microphone response to the actuator excitation voltage at a given frequency with the actuator polarization voltage turned off to the response, at the excitation frequency, with the polarization voltage turned on. It consequently contributes to the uncertainty of electrostatic actuator calibrations. Two sources of crosstalk are analyzed: the first attributed to the stray capacitance between the actuator electrode and the microphone backplate, and the second to the ground resistance appearing as a common element in the actuator excitation and microphone input loops. Measurements conducted on 1/4, 1/2, and 1 in. air condenser microphones reveal that the crosstalk has no frequency dependence up to the membrane resonance frequency and that the level of crosstalk lies at about -60 dB for all three microphones-conclusions that are consistent with theory. The measurements support the stray capacitance model. The contribution of crosstalk to the measurement standard uncertainty of an electrostatic actuator calibration is therewith 0.01 dB. PMID:19739723

  7. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  8. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  9. High power thrust vector actuation

    NASA Astrophysics Data System (ADS)

    Kittock, M. J.

    1993-06-01

    Modern missile programs are frequently favoring electro-mechanical (EM) thrust vector actuation (TVA) over hydraulic for a variety of reasons. However, actuation system performance requirements are not relaxed for EM systems. Thus the development of EM systems with greater power output is required. The configuration of EM actuator studied consists of a DC brushless motor driving a spur gear train, which drives a ballscrew that converts rotary motion to rectilinear motion. This design produces an actuator with high levels of performance in a compact mechanical package. Design for manufacturability and assembly (DFMA) was part of the design process, resulting in an actuator that can be assembled easily and will operate reliably. This paper will discuss the mechanical details of the resultant actuator and report test results on a prototype derivative.

  10. Aircraft Interior Noise Control Using Distributed Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sun, Jian Q.

    1996-01-01

    Developing a control system that can reduce the noise and structural vibration at the same time is an important task. This talk presents one possible technical approach for accomplishing this task. The target application of the research is for aircraft interior noise control. The emphasis of the present approach is not on control strategies, but rather on the design of actuators for the control system. In the talk, a theory of distributed piezoelectric actuators is introduced. A uniform cylindrical shell is taken as a simplified model of fuselage structures to illustrate the effectiveness of the design theory. The actuators developed are such that they can reduce the tonal structural vibration and interior noise in a wide range of frequencies. Extensive computer simulations have been done to study various aspects of the design theory. Experiments have also been conducted and the test results strongly support the theoretical development.

  11. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  12. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  13. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  14. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  15. Adaptive control of nonlinear systems with actuator failures and uncertainties

    NASA Astrophysics Data System (ADS)

    Tang, Xidong

    2005-11-01

    Actuator failures have damaging effect on the performance of control systems, leading to undesired system behavior or even instability. Actuator failures are unknown in terms of failure time instants, failure patterns, and failure parameters. For system safety and reliability, the compensation of actuator failures is of both theoretical and practical significance. This dissertation is to further the study of adaptive designs for actuator failure compensation to nonlinear systems. In this dissertation a theoretical framework for adaptive control of nonlinear systems with actuator failures and system uncertainties is established. The contributions are the development of new adaptive nonlinear control schemes to handle unknown actuator failures for convergent tracking performance, the specification of conditions as a guideline for applications and system designs, and the extension of the adaptive nonlinear control theory. In the dissertation, adaptive actuator failure compensation is studied for several classes of nonlinear systems. In particular, adaptive state feedback schemes are developed for feedback linearizable systems and parametric strict-feedback systems. Adaptive output feedback schemes are deigned for output-feedback systems and a class of systems with unknown state-dependent nonlinearities. Furthermore, adaptive designs are addressed for MIMO systems with actuator failures, based on two grouping techniques: fixed grouping and virtual grouping. Theoretical issues such as controller structures, actuation schemes, zero dynamics, observation, grouping conditions, closed-loop stability, and tracking performance are extensively investigated. For each scheme, design conditions are clarified, and detailed stability and performance analysis is presented. A variety of applications including a wing-rock model, twin otter aircraft, hypersonic aircraft, and cooperative multiple manipulators are addressed with simulation results showing the effectiveness of the

  16. Understanding Floppy Disks.

    ERIC Educational Resources Information Center

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  17. Mixed-Modal Disk Gas Squeeze Film Theoretical and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yanzhong; Wei, Bin

    2013-09-01

    In order to investigate the gas squeeze film characteristics with mixed-modal disk excitation, an actuator with piezo-electric components is designed. Experiments show that different modal shapes of the disk are excited along with the changes of the actuator excitation frequency. The amplitude of the modal shape can reach the same order of magnitude as the squeeze film thickness, so the modal effects on the squeeze film characteristics cannot be ignored. In this paper, the simulating and fitting of the exciting disk modal shapes were finished by ANSYS and MATLAB. The actual film thickness equation was amended by the modal shape fitting curve. The gas film characteristic can be obtained by solving the Reynolds equation which is coupled with film thickness and motion equation. In this study, finite element simulation and differential numerical calculation results provided a good guidance to the piezoelectric actuator design.

  18. Inlet flow distortion in turbomachinery. I - Comparison of theory and experiment in a transonic fan stage. II - A parameter study

    NASA Technical Reports Server (NTRS)

    Seidel, B. S.; Matwey, M. D.; Adamczyk, J. J.

    1980-01-01

    In the present paper, a semi-actuator-disk theory is reviewed that was developed previously for the distorted inflow to a single-stage axial-flow compressor. Flow distortion occurs far upstream; it may be a distortion in stagnation temperature, stagnation pressure, or both. Losses, quasi-steady deviation angles, and reference incidence correlations are included in the analysis, and both subsonic and transonic relative Mach numbers are considered. The theory is compared with measurements made in a transonic fan stage, and a parameter study is carried out to determine the influence of solidity on the attenuation of distortions in stagnation pressure and stagnation temperature.

  19. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  20. Pneumatically actuated micropipetting device

    NASA Astrophysics Data System (ADS)

    Szita, Nicolas; Buser, Rudolf A.

    1998-03-01

    We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.

  1. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  2. Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks

    SciTech Connect

    Draper, Zachary H.; Wisniewski, John P.; Bjorkman, Karen S.; Bjorkman, Jon E.; Meade, Marilyn R.; Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C. E-mail: karen.bjorkman@utoledo.edu E-mail: meade@astro.wisc.edu E-mail: carciofi@usp.br

    2014-05-10

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen and Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10{sup –11} and ≈4 × 10{sup –12} g cm{sup –3} during quasi steady state periods given there maximum observed polarization.

  3. Disk-loss and Disk-renewal Phases in Classical Be Stars. II. Contrasting with Stable and Variable Disks

    NASA Astrophysics Data System (ADS)

    Draper, Zachary H.; Wisniewski, John P.; Bjorkman, Karen S.; Meade, Marilyn R.; Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C.; Bjorkman, Jon E.

    2014-05-01

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10-11 and ≈4 × 10-12 g cm-3 during quasi steady state periods given there maximum observed polarization.

  4. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  5. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  6. HNC IN PROTOPLANETARY DISKS

    SciTech Connect

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  7. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  8. A bioinspired soft actuated material.

    PubMed

    Roche, Ellen T; Wohlfarth, Robert; Overvelde, Johannes T B; Vasilyev, Nikolay V; Pigula, Frank A; Mooney, David J; Bertoldi, Katia; Walsh, Conor J

    2014-02-26

    A class of soft actuated materials that can achieve lifelike motion is presented. By embedding pneumatic actuators in a soft material inspired by a biological muscle fibril architecture, and developing a simple finite element simulation of the same, tunable biomimetic motion can be achieved with fully soft structures, exemplified here by an active left ventricle simulator.

  9. Smart actuators with piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Janocha, Hartmut; Jendritza, Daniel J.; Scheer, Peter

    1996-04-01

    Piezoelectric solid-state actuators continue to gain in technical and economic significance for a great variety of applications such as quick fine-positioning tasks, control of structural stability and active noise and vibration control due to the high driving forces, short reaction times and compact construction of these actuators. Microelectronics and signal processing must be combined intelligently to form `smart actuators' in order to do justice to the growing demand for precision, miniaturization, efficiency and cost. Energy transducers with piezoelectric PZT ceramics (PZT: lead-zirconate-titanate) simultaneously possess actuator and sensor capacities. An important requirement for the construction of smart actuators is fulfilled by separating the sensor information (charge approximately external force) from the actuator control quantities (elongation approximately electric field strength). A closed-loop control structure with digital signal processing and a voltage controlled power amplifier were developed to enable nearly load-independent linearization of the actuator's response characteristic (elongation-voltage curve) even under dynamic operating conditions by making use of the `self-sensing' effect and without using extra force or displacement sensors. The effectiveness of the developed approach for realizing smart actuators was verified and specified with the help of a computerized large-signal measurement set-up using a low-voltage piezoelectric ceramic stack as an example.

  10. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  11. Rotary actuator for space applications

    NASA Astrophysics Data System (ADS)

    Andión, J. A.; Burgui, C.; Migliorero, G.

    2005-07-01

    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  12. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  13. A Completely New Type of Actuator -or- This Ain't Your Grandfather's Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Gore, Brian W.; Hawkins, Gary F.; Hess, Peter A.; Moore, Teresa A.; Fournier, Eric W.

    2010-01-01

    A completely new type of actuator - one that is proposed for use in a variety of environments from sea to land to air to space - has been designed, patented, built, and tested. The actuator is loosely based on the principle of the internal combustion engine, except that it is a completely closed system, only requiring electrical input, and the working fuel is water. This paper outlines the theory behind the electrolysis- and ignition-based cycle upon which the actuator operates and describes the performance capability test apparatus and results for the actuator. A mechanism application that harnessed the unit s power to twist a scaled rotor blade is also highlighted.

  14. Reliability studies of electrostrictive actuators

    SciTech Connect

    Kumar, U.; Randall, M.; Hock, J.; Ritter, A.

    1994-12-31

    Multilayer electrostrictive actuators have numerous applications. Frequently these applications involve harsh mechanical and electrical loads. Furthermore, it is typically expected that these loads be incurred for >10{sup 8} repetitions (ideally for an infinite number of cycles). This paper describes the electrical and electro-mechanical analyses used at AVX Corporation to assess the performance characteristics of multilayer ceramic actuators, and addresses the effects of electro-mechanical cycling on selected device properties. In this study, lead magnesium niobate based multilayer electrostrictive actuators were subjected to a.c. fields at rated device voltage. Capacitance, dissipation factor, displacement vs. voltage, displacement hysteresis, electro-mechanical quality factor, and resonant frequency were monitored as a function of electro-mechanical cycling. The actuators exhibited highly stable displacements throughout the investigation. Changes observed in other properties indicate a possibility of using them as NDE techniques to assess the actuator reliability.

  15. Quasi-Static Analysis of Round LaRC THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  16. Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Sun, Wenjie; Chen, Hualing; Liu, Lei; Li, Bo; Li, Dichen

    2016-03-01

    A conical Dielectric Elastomer Actuator (DEA) undergoes large actuation strain in longitudinal direction when subject to a voltage across the membrane. The conical DEA is modeled using continuum mechanics and multilayered material thermodynamic theories which can consider not only the inhomogeneous deformation of the DEA but also the effect of elastomeric electrodes on the DEA. Hydrogels with lithium chloride electrolyte are synthesized and introduced as electrodes. The theory coincides well with the experimental results and succeeds in predicting the occurrence of loss of tension. At a low level of pre-stretch λp=2 , electric breakdown always occurs before the loss of tension, independent of shear modulus of hydrogels. When the pre-stretch increases to 4, the dominating failure mode changes from electric breakdown to loss of tension. At μGE L=6 kPa , loss of tension and electric breakdown almost happen simultaneously and the maximum actuation strain occurs at λp=4 .

  17. An Electrostatic Microactuator for Positioning a Hard-Disk Drive Magnetic Head

    NASA Astrophysics Data System (ADS)

    Yoshino, Tomonori; Toshiyoshi, Hiroshi; Mita, Makoto; Kobayashi, Dai; Fujita, Hiroyuki

    We have newly developed a prototype model of silicon microfabricated piggyback actuator for positioning a read/write head of magnetic hard-disk drive, which is usually referred to as a dual servo system because the piggyback actuator for fine control is used in collaboration with the voice-coil motor for coarse control. The actuator is made of a 50-micron-thick SOI (silicon on insulator) wafer processed by deep RIE (reactive ion etching) of high-aspect ratio. Actuation mechanism is based upon electrostatic force generated by multiple parallel plates. Maximum displacement of 0.2μ with a dc driving voltage of 20V has been achieved with a 1mm × 0.3mm actuator of its resonance at 25kHz. An analytical model for predicting electromechanical performance has also been developed.

  18. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  19. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  20. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  1. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gamma

  2. Dynamics of acoustically levitated disk samples

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  3. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  4. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. Theory of low frequency noise transmission through turbines

    NASA Technical Reports Server (NTRS)

    Matta, R. K.; Mani, R.

    1979-01-01

    Improvements of the existing theory of low frequency noise transmission through turbines and development of a working prediction tool are described. The existing actuator-disk model and a new finite-chord model were utilized in an analytical study. The interactive effect of adjacent blade rows, higher order spinning modes, blade-passage shocks, and duct area variations were considered separately. The improved theory was validated using the data acquired in an earlier NASA program. Computer programs incorporating the improved theory were produced for transmission loss prediction purposes. The programs were exercised parametrically and charts constructed to define approximately the low frequency noise transfer through turbines. The loss through the exhaust nozzle and flow(s) was also considered.

  6. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  7. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  8. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  9. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  10. Astounding Jumping Disk.

    ERIC Educational Resources Information Center

    Guzdziol, Edward S.

    1991-01-01

    Activities involving concave rubber disks are utilized to illustrate the scientific principles of kinetic and potential energy. Provides teacher instructions and questions related to the activity. (MDH)

  11. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  12. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  13. Planet Masses from Disk Spirals

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Young, forming planets can generate immense spiral structures within their protoplanetary disks. A recent study has shown that observations of these spiral structures may allow astronomers to measure the mass of the planets that create them.Spirals From WavesSnapshots of the surface density of a protoplanetary disk in a 2D simulation, 3D simulation, and synthesized scattered-light image. Click for a closer look! [Fung Dong, 2015]Recent studies have shown that a single planet, if it is massive enough, can excite multiple density waves within a protoplanetary disk as it orbits. These density waves can then interfere to produce a multiple-armed spiral structure in the disk inside of the planets orbit a structure which can potentially be observed in scattered-light images of the disk.But what do these arms look like, and what factors determine their structure? In a recently published study, Jeffrey Fung and Ruobing Dong, two researchers at the University of California at Berkeley, have modeled the spiral arms in an effort to answer these questions.Arms Provide AnswersA useful parameter for describing the structure is the azimuthal separation (sep) between the primary and secondary spiral arms. If you draw a circle within the disk and measure the angle between the two points where the primary and secondary arms cross it, thats sep.Azimuthal separation of the primary and secondary spiral arms, as a function of the planet-to-star mass ratio q. The different curves represent different disk aspect ratios. [Fung Dong, 2015]The authors find thatsep stays roughly constant for different radii, but its strongly dependent on the planets mass: for larger planets, sep increases. They discover that sep scales as a power of the planet mass for companions between Neptune mass and 16 Jupiter masses, orbiting around a solar-mass star. For larger, brown-dwarf-size companions, sep is a constant 180.If this new theory is confirmed, it could have very interesting implications for

  14. Structure and dynamics of Andromeda's stellar disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire Elise

    2015-10-01

    Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with Lambda

  15. Accretion disk viscosity and internal waves in disks

    NASA Astrophysics Data System (ADS)

    Huang, Min

    1992-01-01

    Recently, Vishniac, Jin and Diamond suggested that internal waves in accretion disks play a critical role in generating magnetic fields, and consequently are indirectly responsible for angular momentum transfer in thin, conducting, and non-self-gravitational disk systems. A project in which we will construct a quantitative model of the internal wave spectrum in accretion disks is started. It includes two aspects of work. The physical properties of the waves in a thin, non-self-gravitational, and non-magnetized accretion disk with realistic vertical structure is cataloged and examined. Besides the low frequency internal waves discovered by Vishniac and Diamond, it was found that sound waves with low frequency and low axisymmetry (with small absolute value of m) are capable of a driving dynamo because they are (1) well confined in a layer with thickness 2(absolute value of m)H where H is the disk scale height; (2) highly dispersive so they may survive the strong dissipation caused by the coherent nonlinear interaction their high frequency partners experience; and (3) elliptically polarized because they are confined in the z-direction. As a first step towards constructing a quantitative theory of this dynamo effect, a framework of calculating resonant nonlinear interaction among waves in disk is established. We are developing a numerical code which will compute the steady spectrum of the wave field in this framework. For simplicity, we only include the low frequency internal waves suggested by Vishniac and Diamond in the present stage. In the vicinity of the static state, the time step whose length is determined by the evolution of the modes with the largest amplitudes is too large for the modes with smaller amplitudes and overshooting occurs. Through nonlinear coupling, this overshooting is amplified and appears as a numerical instability affecting the evolution of the large amplitude modes. Shorter time steps may delay the appearance of the instability but not cure

  16. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Pujari, B. S.; Becker, Peter A.

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsudawould radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  17. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    SciTech Connect

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  18. Reprocessing in Luminous Disks

    NASA Astrophysics Data System (ADS)

    Bell, K. R.

    1999-11-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, blackbody spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles that are not power-law at all radii but are consistently shallower than r-3/4. Including the disk as a radiation source (as in the case of active accretion) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance (``decreasing curvature'' disks) exhibit nearly power-law temperature profiles that result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally have this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the inner disk. Reprocessing throughout the disk depends sensitively on the inner disk shape and emitted temperature profile. We show that the thermal instability outburst models of Bell & Lin reproduce trends in the observed SEDs of FU Ori systems with T~r-3/4 in the inner disk (r<~0.25 AU corresponding to λ<~10 μm) and T~r-1/2 in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1-10 AU). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass flux, outer disk (Ṁ=10

  19. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  20. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  1. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A.; Eide, S.A.

    1993-04-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  2. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A. ); Eide, S.A. )

    1993-01-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  3. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  4. Magnetostrictive Actuators For Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1996-01-01

    Linear-translation motors containing magnetostrictive actuator elements proposed for use in making fine position adjustments on scientific instruments at temperatures from near absolute zero to room temperature. Actuators produce small increments of linear motion and operate in "set-and-forget" mode in sense they automatically lock themselves against motion when power not applied. Do not consume or dissipate power when stationary. Proposed linear-translation motors also made to produce large maximum displacements.

  5. Sensors, actuators, and smart materials

    NASA Astrophysics Data System (ADS)

    Troiler-McKinstry, S.; Newnham, R. E.

    1993-04-01

    Electroceramic materials are presently noted to have a wide array of sensing and actuating functions which can be incorporated into smart-material designs. The sensor types extend to temperature, piezoelectricity and piezoresistivity, and the presence of oxygen. Attention is given to the prospects for developing composite smart materials that encompass various sensing and actuating functions; these may ultimately reach a level of complexity and sophistication that may be termed 'biomimetric' in its approximation to the functions of the living tissues of organisms.

  6. Modeling liquid crystal elastomers: actuators, pumps, and robots

    NASA Astrophysics Data System (ADS)

    Selinger, Robin L. B.; Mbanga, Badel L.; Selinger, Jonathan V.

    2008-02-01

    We model the dynamics of shape evolution of liquid crystal elastomers (LCE) in three dimensions using finite element elastodynamics. The model predicts the macroscopic mechanical response induced by changes in nematic order, e.g. by heating or cooling through the isotropic/nematic transition or, in azo-doped materials, by exposure to light. We model the performance of LCE actuator devices including multicomponent actuators, peristaltic pumps and self-propelled robots. The goal of this work is to build a bridge between basic soft matter theory and practical materials engineering/device design. Supported by NSF-DMR-0605889.

  7. Electromechanical actuation for thrust vector control applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  8. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  9. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  10. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  11. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  12. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  13. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  14. Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab on a disk application.

    PubMed

    Höfflin, Jens; Torres Delgado, Saraí M; Suárez Sandoval, Fralett; Korvink, Jan G; Mager, Dario

    2015-06-21

    We present a design for wireless power transfer, via inductively coupled coils, to a spinning disk. The rectified and stabilised power feeds an Arduino-compatible microcontroller (μC) on the disc, which in turn drives and monitors various sensors and actuators. The platform, which has been conceived to flexibly prototype such systems, demonstrates the feasibility of a wireless power supply and the use of a μC circuit, for example for Lab-on-a-disk applications, thereby eliminating the need for cumbersome slip rings or batteries, and adding a cogent and new degree of freedom to the setup. The large number of sensors and actuators included demonstrate that a wide range of physical parameters can be easily monitored and altered. All devices are connected to the μC via an I(2)C bus, therefore can be easily exchanged or augmented by other devices in order to perform a specific task on the disk. The wireless power supply takes up little additional physical space and should work in conjunction with most existing Lab-on-a-disk platforms as a straightforward add-on, since it does not require modification of the rotation axis and can be readily adapted to specific geometrical requirements. PMID:25968976

  15. Magnetic Actuators and Suspension for Space Vibration Control

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Allaire, Paul E.; Lewis, David W.

    1993-01-01

    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals.

  16. A planar nano-positioner driven by shear piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Dong, W.; Li, H.; Du, Z.

    2016-08-01

    A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  17. Analytical and experimental investigation of flutter suppression by piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1993-01-01

    The objective of this research was to analytically and experimentally study the capabilities of piezoelectric plate actuators for suppressing flutter. Piezoelectric materials are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two-degree-of-freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system that permitted a translational and a rotational degree of freedom. The model was designed such that flutter was encountered within the testing envelope of the wind tunnel. Actuators made of piezoelectric material were affixed to leaf springs of the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed by using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. They demonstrate that small, carefully placed actuating plates can be used effectively to control aeroelastic response.

  18. Uncertainty models for control of distributed actuator and sensor arrays

    NASA Astrophysics Data System (ADS)

    Gorinevsky, Dimitry; Stein, Gunter

    2000-06-01

    This paper considers control analysis approaches for systems incorporating large actuator and sensor arrays. Applications of such systems are increasingly common because of the development of micro-systems technology. Many imaging systems have large one-dimensional or two-dimensional arrays of actuators. This includes RF or optical reflectors, display, printing, and other systems. Signal processing for large sensor arrays has well-established theory and applications, especially in imaging. At the same time, approaches to control of large distributed actuator and sensor arrays are much less developed. This paper considers one of the fundamental issues in design and analysis of large actuator and sensor array systems. The key notion in modern feedback control theory is the notion of uncertainty and associated notion of control robustness to this uncertainty. In control of dynamical systems evolving in time, structured uncertainty models are commonly accepted for theoretical analysis (Structured Singular Value or (mu) -analysis) and practical control design. In control of spatially distributed processes, there is a need to establish appropriate models of the uncertainty of the system spatial and dynamical characteristics. This paper discusses an extension of structured uncertainty models towards controlled systems with spatially distributed arrays of actuators and sensors. Unlike a dynamical uncertainty, spatial uncertainty is not casual in the spatial coordinate. This leads to related but different uncertainty models in the two cases. For spatial coordinates, boundary effects also contribute to the modeling error. By using the discussed uncertainty models, the existing methods of robust control design and analysis can be extended towards spatially distributed systems. As an illustrative example, this paper demonstrates an application of the developed approach to a one-dimensional model of a flexible reflector with a distrusted actuator array for shape control.

  19. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  20. The LDCM actuator for vibration suppression

    NASA Technical Reports Server (NTRS)

    Ide, Eric N.; Lindner, Douglas K.

    1988-01-01

    A linear dc motor (LDCM) has been proposed as an actuator for the COFS I mast and the COFS program ground test Mini-Mast. The basic principles of operation of the LDCM as an actuator for vibration suppression in large flexible structures are reviewed. Because of force and stroke limitations, control loops are required to stabilize the actuator, which results in a non-standard actuator-plant configuration. A simulation model that includes LDCM actuator control loops and a finite element model of the Mast is described, with simulation results showing the excitation capability of the actuator.

  1. Actuator selection for large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.; Ruan, Mifang

    1990-01-01

    The paper discusses the process of selecting the actuator locations and the determination of the required number of actuators for large space structures. The selection is based on the definitions of the degree of controllability, the independence of actuators, and the effectiveness of the individual actuators. An algorithm is developed that can be used for the selection of the essential number of actuators and for finding some defects of the system, such as the insuffiency of the available actuator locations for effective control of the whole system or a too crowded frequency distribution. The efficiency of the algorithm was demonstrated by an application to the Space Station.

  2. Nanoscale heat transfer in the head-disk interface for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Haoyu; Xiong, Shaomin; Canchi, Sripathi; Schreck, Erhard; Bogy, David

    2016-02-01

    Laser heating has been introduced in heat-assisted magnetic recording in order to reduce the magnetic coercivity and enable data writing. However, the heat flow inside a couple of nanometers head-disk gap is still not well understood. An experimental stage was built for studying heat transfer in the head-disk interface (HDI) and the heat-induced instability of the HDI. A laser heating system is included to produce a heated spot on the disk at the position of the slider. A floating air bearing slider is implemented in the stage for sensing the temperature change of the slider due to the heat transfer from the disk by the use of an embedded contact sensor, and the gap between the two surfaces is controlled by the use of a thermal fly-height control actuator. By using this system, we explore the dependency of the heat transfer on the gap spacing as well as the disk temperature.

  3. Ripples in disk galaxies

    NASA Astrophysics Data System (ADS)

    Schweizer, Francois; Seitzer, Patrick

    1988-05-01

    The authors present evidence that ripples ("shells") occur not only in ellipticals, as hitherto believed, but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. This evidence includes the discovery of ripples in the northern disk galaxies NGC 3032, 3619, 4382, 5548 (a Seyfert), and 5739, and in the "diskless S0" NGC 7600. It is argued that these ripples cannot usually have resulted form transient spiral waves or other forced vibrations in the existing disks, but instead consist of extraneous sheet-like matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers, but also through mass transfer from neighbor galaxies.

  4. Hot Accretion Disks Revisited

    NASA Astrophysics Data System (ADS)

    Bjoernsson, Gunnlaugur; Abramowicz, Marek A.; Chen, Xingming; Lasota, Jean-Pierre

    1996-08-01

    All previous studies of hot (Tp 1010-1012 K), optically thin accretion disks have neglected either the presence of e+ e- pairs or advective cooling. Thus all hot disk models constructed previously have not been self-consistent. In this paper we calculate local disk models including pair physics, relevant radiative processes in the hot plasma, and the effect of advective cooling. We use a modification of the Björnsson & Svensson mapping method. We find that the role of e+ e- pairs in the structure of hot, optically thin accretion disks is far less significant than was previously thought. The improved description of the radiation-matter interactions provided in the present paper modify the previously obtained values of the critical parameters characterizing advectively dominated flows.

  5. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The l ifetime of gas in a disk has far-reaching consequences. including lim iting the time available for giant planet formation and controlling t he migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from i nfrared studies with the Spitzer Space Telescope. Exciting upcoming o pportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be p erformed using the Herschel Space Observatory, as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Project.

  6. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The lifetime of gas in a disk has far-reaching consequences, including limiting the time available for giant planet formation and controlling the migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from infrared studies with the Spitzer Space Telescope. Exciting upcoming opportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be performed using the Herschel Space Observatory, as part of the 'Gas in Protoplanetary Systems' (GASPS) Open Time Key Project.

  7. Organizing Your Hard Disk.

    ERIC Educational Resources Information Center

    Stocker, H. Robert; Hilton, Thomas S. E.

    1991-01-01

    Suggests strategies that make hard disk organization easy and efficient, such as making, changing, and removing directories; grouping files by subject; naming files effectively; backing up efficiently; and using PATH. (JOW)

  8. Accretion Disks and the Formation of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin Michelle

    2011-02-01

    In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.

  9. New Approach to Diagnosing Properties of Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1998-01-01

    In this paper we suggest that subjecting the observationally derived properties of protoplanetary disks to the evolutionary interpretation yields new insights into the working of those disks, and offers valuable constraints on their models. We propose that the global properties of individual disks, such as their accretion rates and disk masses, sorted by the mass of the central star, can be indexed by the age of the star to simulate the evolution of a single disk. Using data from published surveys of T Tauri stars, we show that accretion rate data, and disk mass data for the lowest mass stars, form well-defined evolutionary tracks. The higher mass stars show a definitive negative correlation between accretion rates and star ages. We use the time-dependent alpha-disk model of the viscous protoplanetary disk to link the theory to observations. The data are consistent with the standard theoretical paradigm, but not with the layered accretion model. The best fits to the data are obtained for the standard models that start with disks that are about one-third of the mass of the central star and have their angular momenta, j, and alpha-coefficients linked by the relationship j varies as Solar mass(exp 3/2)alpha(exp 1/3). The proportionality constant in this relationship, when derived from the accretion rate data, differs from the constant derived from the disk mass data. We argue that the accretion rate data are more reliable. Taking into account typical values of the specific angular momentum of disk-forming matter, we obtain alpha is greater than or equal to 10(exp -2). A complete time-dependent standard disk model, built on the parameters determined from the best-fit procedure, is presented. Such a model constitutes a good point of departure for various theoretical studies aimed at the issue of formation of planetary systems and the character of protoplanetary disks.

  10. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  11. Wellhead with hydraulic pump actuator

    SciTech Connect

    Brown, H.D.; Brown, M.A.; Rohling, L.J.

    1984-07-31

    A wellhead assembly especially suited for oil wells has a wide working pressure range and employs three components which fit together to seal the well casing, hold the tubing against high wellhead pressures, and provide a connection to the tubing through which the sucker rods are operated. The primary casing seal is formed by the mating contact of metal surfaces that are not subject to deterioration. The actuator for the subsurface pump is a vertically disposed hydraulic cylinder unit aligned with the sucker rods and forming the uppermost section of an elongated cylindrical housing, which also has a lowermost section on the wellhead that provides the outlets for the fluid pumped from the well, and an intermediate, control section that contains a spool valve for controlling the hydraulic actuator. The spool is shifted by the piston and rod of the hydraulic actuator at the upper and lower limits of their stroke to thereby reciprocate the sucker rods and operate the subsurface pump.

  12. A Parylene Bellows Electrochemical Actuator

    PubMed Central

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2011-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized through a careful examination of geometrical factors. Overall, a maximum pump efficiency of 90% was achieved in the case of electroplated electrodes, and a deflection of over 1.5 mm was demonstrated. Real-time wireless operation was achieved. The complete fabrication process and the materials used in this actuator are bio-compatible, which makes it suitable for biological and medical applications. PMID:21318081

  13. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  14. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  15. Planet Forming Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen

    1998-01-01

    The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

  16. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  17. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  18. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  19. Method and apparatus for actuating vehicle transmission

    SciTech Connect

    Ishida, H.; Ishihara, M.; Uriuhara, M.

    1988-11-15

    This patent describes a method of actuating a vehicle parallel-gear transmission having gears and an internal lever for moving shift blocks connected with shift rods and shift forks for changing gear ratios of the transmission, a hydraulically controlled select actuator operatively connected to the internal lever for moving the internal lever in a select direction, a hydraulically controlled shift actuator operatively connected to the internal lever for moving the internal lever in a shift direction substantially normal to the select direction, a hydraulically controlled clutch actuator for connecting and disconnecting a clutch of the transmission, and a common fluid discharge passage connected to fluid discharge ports of the select and shift actuators and a fluid discharge port of the clutch actuator, the select and shift actuators being alternately actuatable to effect a gear changing operation.

  20. Propellant-powered actuator for gas generators

    NASA Technical Reports Server (NTRS)

    Makowski, M. J.

    1972-01-01

    Hydrazine operated monopropellant generators are used for spacecraft rocket engines and propellant pressurization systems. Measured work output of monopropellant actuators compares favorably with output of squib-type actuators.

  1. New electrode materials for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Lam, Tuling; Biggs, James; Hu, Liangbing; Yu, Zhibin; Ha, Soonmok; Xi, Dongjuan; Senesky, Matthew K.; Grüner, George; Pei, Qibing

    2007-04-01

    Dielectric elastomer actuators exert strain due to an applied electric field. With advantageous properties such as high efficiency and their light weight, these actuators are attractive for a variety of applications ranging from biomimetic robots, medical prosthetics to conventional pumps and valves. The performance and reliability however, are limited by dielectric breakdown which occurs primarily from localized defects inherently present in the polymer film during actuation. These defects lead to electric arcing, causing a short circuit that shuts down the entire actuator and can lead to actuator failure at fields significantly lower than the intrinsic strength of the material. This limitation is particularly a problem in actuators using large-area films. Our recent studies have shown that the gap between the strength of the intrinsic material and the strength of large-area actuators can be reduced by electrically isolating defects in the dielectric film. As a result, the performance and reliability of dielectric elastomers actuators can be substantially improved.

  2. Fast, Capacious Disk Memory Device

    NASA Technical Reports Server (NTRS)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  3. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  4. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  5. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented. PMID:26192533

  6. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  7. Vector diffraction and polarization effects in an optical disk system.

    PubMed

    Yeh, W H; Li, L; Mansuripur, M

    1998-10-10

    The track pitch of current optical disks is comparable with the wavelength of the laser source. In this domain of the pitch-to-wavelength ratio, the complex-diffraction amplitudes are different for different incident polarization states, and the validity of the scalar diffraction theory is questionable. Furthermore, the use of multilayer coatings and high-numerical-aperture beams in modern optical disk technology inevitably entails the excitation of surface waves, which can disturb the baseball pattern significantly. To describe the interaction of a focused beam with a grooved multilayer system fully, it is necessary to have a rigorous vector theory. We use a rigorous vector theory to model the diffraction of light at the optical disk. We present the simulation and the experimental results and demonstrate the ability of this approach to predict or model accurately all essential features of beam-disk interaction, including the polarization effects and the excitation of surface waves. PMID:18301517

  8. Vector Diffraction and Polarization Effects in an Optical Disk System

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hung; Li, Lifeng; Mansuripur, M.

    1998-10-01

    The track pitch of current optical disks is comparable with the wavelength of the laser source. In this domain of the pitch-to-wavelength ratio, the complex-diffraction amplitudes are different for different incident polarization states, and the validity of the scalar diffraction theory is questionable. Furthermore, the use of multilayer coatings and high-numerical-aperture beams in modern optical disk technology inevitably entails the excitation of surface waves, which can disturb the baseball pattern significantly. To describe the interaction of a focused beam with a grooved multilayer system fully, it is necessary to have a rigorous vector theory. We use a rigorous vector theory to model the diffraction of light at the optical disk. We present the simulation and the experimental results and demonstrate the ability of this approach to predict or model accurately all essential features of beam disk interaction, including the polarization effects and the excitation of surface waves.

  9. Vector diffraction and polarization effects in an optical disk system.

    PubMed

    Yeh, W H; Li, L; Mansuripur, M

    1998-10-10

    The track pitch of current optical disks is comparable with the wavelength of the laser source. In this domain of the pitch-to-wavelength ratio, the complex-diffraction amplitudes are different for different incident polarization states, and the validity of the scalar diffraction theory is questionable. Furthermore, the use of multilayer coatings and high-numerical-aperture beams in modern optical disk technology inevitably entails the excitation of surface waves, which can disturb the baseball pattern significantly. To describe the interaction of a focused beam with a grooved multilayer system fully, it is necessary to have a rigorous vector theory. We use a rigorous vector theory to model the diffraction of light at the optical disk. We present the simulation and the experimental results and demonstrate the ability of this approach to predict or model accurately all essential features of beam-disk interaction, including the polarization effects and the excitation of surface waves.

  10. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  11. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  12. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  13. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  14. Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.

    PubMed

    Wen, Fuh Liang; Yen, Chi Yung; Ouyang, Minsun

    2003-08-01

    The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.

  15. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  16. Piezoelectrically actuated insect scale flapping wing

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sujoy; Ganguli, Ranjan

    2010-04-01

    An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

  17. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  18. Mind the Gap: Timing Planet Formation by Looking in the Holes and Gaps of Dusty Disks

    NASA Astrophysics Data System (ADS)

    Calvet, Nuria; Espaillat, Catherine; Furlan, Elise; Hartmann, Lee; Muzerolle, James; Watson, Dan

    2008-03-01

    Uncovering the details of disk dissipation is critical to understanding the formation of planetary systems. In the past few years Spitzer has greatly aided in this task by giving us an unprecedented view of dust clearing in the inner regions of protoplanetary disks, most notably through observations of stars with inner disks that are mostly devoid of small dust i.e. the 'transitional disks.' Recently, Spitzer has identified a new class of 'pre-transitional disks' with significant near-infrared excesses which indicate the presence of an optically thick inner disk separated from an optically thick outer disk, suggesting the incipient development of disk gaps as opposed to the inner holes seen in transitional disks. Here we propose for five hours of IRS time to study variability in 18 transitional and pre-transitional disks in Taurus and Chamaeleon in order to refine planet formation theories. The prospect of detecting variability in these objects is favorable based on IRS data taken in the past few weeks showing that transitional disks exhibit extreme variability due to the behavior of optically thin dust within the inner disk hole. Variability in transitional and pre-transitional disks can be linked with planets interacting with dust in the holes and gaps of these disks and therefore this study will help provide estimates of spatial inhomogeneities and characteristic timescales of changes for planet formation models.

  19. Thermal stability of a thin disk with magnetically driven winds

    SciTech Connect

    Li, Shuang-Liang; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2014-05-01

    The absence of thermal instability in the high/soft state of black hole X-ray binaries, in disagreement with the standard thin disk theory, has been a long-standing riddle for theoretical astronomers. We have tried to resolve this question by studying the thermal stability of a thin disk with magnetically driven winds in the M-dot −Σ plane. It is found that disk winds can greatly decrease the disk temperature and thus help the disk become more stable at a given accretion rate. The critical accretion rate, M-dot {sub crit}, corresponding to the thermal instability threshold, is significantly increased in the presence of disk winds. For α = 0.01 and B {sub φ} = 10B {sub p}, the disk is quite stable even for a very weak initial poloidal magnetic field [β{sub p,0}∼2000,β{sub p}=(P{sub gas}+P{sub rad})/(B{sub p}{sup 2}/8π)]. However, when B {sub φ} = B {sub p} or B {sub φ} = 0.1B {sub p}, a somewhat stronger (but still weak) field (β{sub p,} {sub 0} ∼ 200 or β{sub p,} {sub 0} ∼ 20) is required to make the disk stable. Nevertheless, despite the great increase of M-dot {sub crit}, the luminosity threshold, corresponding to instability, remains almost constant or decreases slowly with increasing M-dot {sub crit} due to decreased gas temperature. The advection and diffusion timescales of the large-scale magnetic field threading the disk are also investigated in this work. We find that the advection timescale can be smaller than the diffusion timescale in a disk with winds, because the disk winds take away most of the gravitational energy released in the disk, resulting in the decrease of the magnetic diffusivity η and the increase of the diffusion timescale.

  20. On the Gravitational Stability of Gravito-turbulent Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Kratter, Kaitlin M.

    2016-06-01

    Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ˜60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.

  1. Planetesimal Disk Microlensing

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Keeton, Charles R.

    2009-12-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  2. Radio pulsar disk electrodynamics

    SciTech Connect

    Michel, F.C.

    1983-03-01

    We outline the macroscopic physics of a disk close to an isolated, magnetized, rotating neutron star. It seems likely that such systems are formed from time to time in the universe. The neutron star acts as a Faraday disk dynamo, and the disk acts as both a load and a neutral sheet, permitting the polar cap current to return to the neutron star and also splitting a dipolar magnetic field into two monopolar halves. Michel and Dessler have proposed that such systems are radio pulsars. The dominant energy loss is from the stellar wind torque (giving a deceleration index n = 7/3), and the next contribution is dissipation in the ''auroral'' zones, where the current returns to the star in a sheet about 5 cm thick. The latter is comparable to the observed radio luminosities and is in reasonable accord with the data. The disk itself may be a source of visible radiation comparable to that in pulsed radiofrequency emission. As the pulsar ages, the disk expands and narrows into a ring, the plausible consequence of which could be cessation of pulsed emission at periods of a few seconds.

  3. PLANETESIMAL DISK MICROLENSING

    SciTech Connect

    Heng, Kevin; Keeton, Charles R. E-mail: keeton@physics.rutgers.ed

    2009-12-10

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  4. Thin Disk Accretion in the Magnetically-Arrested State

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan; Reynolds, Christopher S.

    2016-01-01

    Shakura-Sunyaev thin disk theory is fundamental to black hole astrophysics. Though applications of the theory are wide-spread and powerful tools for explaining observations, such as Soltan's argument using quasar power, broadened iron line measurements, continuum fitting, and recently reverberation mapping, a significant large-scale magnetic field causes substantial deviations from standard thin disk behavior. We have used fully 3D general relativistic MHD simulations with cooling to explore the thin (H/R~0.1) magnetically arrested disk (MAD) state and quantify these deviations. This work demonstrates that accumulation of large-scale magnetic flux into the MAD state is possible, and then extends prior numerical studies of thicker disks, allowing us to measure how jet power scales with the disk state, providing a natural explanation of phenomena like jet quenching in the high-soft state of X-ray binaries. We have also simulated thin MAD disks with a misaligned black hole spin axis in order to understand further deviations from thin disk theory that may significantly affect observations.

  5. The Chemistry of Nearby Disks

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.

    2016-01-01

    The gas and dust rich disks around young stars are the formation sites of planets. Observations of molecular trace species have great potential as probes of the disk structures and volatile compositions that together regulate planet formation. The disk around young star TW Hya has become a template for disk molecular studies due to a combination of proximity, a simple face-on geometry and richness in volatiles. It is unclear, however, how typical the chemistry of the TW disk is. In this proceeding, we review lessons learnt from exploring the TW Hya disk chemistry, focusing on the CO snowline, and on deuterium fractionation chemistry. We compare these results with new ALMA observations toward more distant, younger disks. We find that while all disks have some chemical structures in common, there are also substantial differences between the disks, which may be due to different initial conditions, structural or chemical evolutionary stages, or a combination of all three.

  6. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. III. EFFECTS OF DISK MASS AND SELF-GRAVITY

    SciTech Connect

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-11-10

    Previously we showed that a substantially misaligned viscous accretion disk with pressure that orbits around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. These oscillations produce periodic exchanges of the disk eccentricity with inclination. The disk KL mechanism is quite robust and operates over a wide range of binary and disk parameters. However, the effects of self-gravity, which are expected to suppress the KL oscillations for sufficiently massive disks, were ignored. Here, we analyze the effects of disk self-gravity by means of hydrodynamic simulations and compare the results with the expectations of analytic theory. The disk mass required for suppression in the simulations is a few percent of the mass of the central star and this roughly agrees with an analytical estimate. The conditions for suppression of the KL oscillations in the simulations are close to requiring that the disk be gravitationally unstable. We discuss some implications of our results for the dynamics of protoplanetary disks and the related planet formation.

  7. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  8. Fish-skeleton visualization of bending actuators

    NASA Astrophysics Data System (ADS)

    Nakshatharan, Sunjai; Punning, Andres; Assi, Siim; Johanson, Urmas; Aabloo, Alvo

    2016-04-01

    We present a novel experimental method for qualitative visualization and quantitative characterization of the time-dependent behavior of bending ionic electroactive polymer actuators. The thin fibers, attached to the actuator, represent the surface normal at the given points of the bending actuator. The structure, formed by the skeleton of many adjacent fibers, amplifies the visual overview about the whole actuator. The four coordinates formed by four tips of two fibers enable determining the axial as well as the bending strains of a bending actuator.

  9. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  10. Supersized Disk (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated ImageData Graph

    This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Monstrous disks like this one were discovered around two 'hypergiant' stars by NASA's Spitzer Space Telescope. Astronomers believe these disks might contain the early 'seeds' of planets, or possibly leftover debris from planets that already formed.

    The hypergiant stars, called R 66 and R 126, are located about 170,000 light-years away in our Milky Way's nearest neighbor galaxy, the Large Magellanic Cloud. The stars are about 100 times wider than the sun, or big enough to encompass an orbit equivalent to Earth's. The plump stars are heavy, at 30 and 70 times the mass of the sun, respectively. They are the most massive stars known to sport disks.

    The disks themselves are also bloated, with masses equal to several Jupiters. The disks begin at a distance approximately 120 times greater than that between Earth and the sun, or 120 astronomical units, and terminate at a distance of about 2,500 astronomical units.

    Hypergiant stars are the puffed-up, aging descendants of the most massive class of stars, called 'O' stars. The stars are so massive that their cores ultimately collapse under their own weight, triggering incredible explosions called supernovae. If any planets circled near the stars during one of these blasts, they would most likely be destroyed.

    The orbital distances in this picture are plotted on a logarithmic scale. This means that a given distance shown here represents proportionally larger actual distances as you move to the right. The sun and planets in our solar system have been scaled up in size for better viewing. Little Dust Grains in Giant Stellar Disks The graph above of data from NASA's Spitzer Space Telescope shows the composition of a monstrous disk of what may be planet-forming dust circling the colossal 'hypergiant' star

  11. Space Shuttle Rudder Speed Brake Actuator-A Case Study Probabilistic Fatigue Life and Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.

    2015-01-01

    The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.

  12. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  13. Slim accretion disks

    SciTech Connect

    Abramowicz, M.A.; Czerny, B.; Lasota, J.P.; Szuszkiewicz, E.

    1988-09-01

    A new branch of equilibrium solutions for stationary accretion disks around black holes is found. These solutions correspond to moderately super-Eddington accretion rates. The existence of the new branch is a consequence of an additional cooling due to general relativistic Roche lobe overflow and horizontal advection of heat. On an accretion rate versus surface density plane the new branch forms, together with the two standard branches (corresponding to the Shakura-Sunyaev accretion disk models) a characteristically S-shaped curve. This could imply a limit cycle-type behavior for black hole accretion flows with accretion rates close ot the Eddington one. 29 references.

  14. Post-buckled precompressed piezoelectric flight control actuator design, development and demonstration

    NASA Astrophysics Data System (ADS)

    Barrett, Ron; McMurtry, Ross; Vos, Roelof; Tiso, Paolo; DeBreuker, Roeland

    2006-10-01

    This paper describes a new class of flight control actuators using post-buckled precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory (CLPT) models are shown to work very well in capturing the behavior of the free, unloaded elements. A new high transverse deflection model which employs nonlinear structural relations is shown to successfully predict the performance of the PBP actuators as they are exposed to higher and higher levels of axial force, which induces post-buckling deflections. A proof-of-concept empennage assembly and actuator were fabricated using the principles of PBP actuation. A single grid-fin flight control effector was driven by a 3.5'' (88.9 mm) long piezoceramic bimorph PBP actuator. By using the PBP configuration, deflections were controllably magnified 4.5-fold with excellent correlation between theory and experiment. Quasi-static bench testing showed deflection levels in excess of ± 6° at rates exceeding 15 Hz. The new solid state PBP actuator was shown to reduce the part count with respect to conventional servoactuators by an order of magnitude. Power consumption dropped from 24 W to 100 mW, weight was cut from 108 to 14 g, slop went from 1.6° to 0.02° and current draw went from 5 A to 1.4 mA. The result was that the XQ-138 subscale UAV family experienced nearly a 4% reduction in operating empty weight via the switch from conventional to PBP actuators, while in every other measure gross performance was significantly enhanced.

  15. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  16. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  17. Actuation and ion transportation of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Xiao

    2010-04-01

    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  18. Hot stars with disks

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika D.

    The evolutionary paths of the massive O and B type stars are often defined by angular momentum transformations that involve circumstellar gas disks. This circumstellar gas is revealed in several kinds of observations, and here I describe a series of investigations of the hydrogen line emission from such disk using detailed studies of five massive binaries and a survey of 128 Be stars. By examining three sets of spectra of the active mass-transfer binary system RY Scuti, I determined masses of 7.1±1.2 [Special characters omitt ed.] for the bright supergiant and 30.0±2.1 [Special characters omitted.] for the massive companion that is hidden by an accretion torus. I also present a cartoon model of the complex mass flows in the system. Using optical spectroscopy and X-ray flux data, I investigated the mass transfer processes in four massive X-ray binaries (a massive B star with mass flowing onto a compact, neutron star companion). The B-supergiant system LS I +65 010 transfers mass via stellar winds. I find the X-ray flux modulates with the orbital period. In the other three X-ray binary systems (LS I +61 303, HDE 245770, and X Per), an outflowing circumstellar disk is responsible for the mass transfer, and in all three systems, the disk appears to be truncated by gravitational interactions with the compact companion. The disk in the microquasar system LS I +61 303 is limited in radius by the periastron separation and an increase in both Ha equivalent width and X-ray flux following periastron may be due to a density wave in the disk induced by tidal forces. Observations of HDE 245770 document what appears to be the regeneration of a circumstellar disk. The disk of X Per appears to have grown to near record proportions and the X-ray flux has dramatically increased. Tidal interaction may generate a spiral density wave in the disk and cause an increase in Ha equivalent width and mass transfer to the compact companion. During the course of the analysis of the X

  19. Giant Planet Formation by Disk Instability in Low Mass Disks?

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2010-12-01

    Forming giant planets by disk instability requires a gaseous disk that is massive enough to become gravitationally unstable and able to cool fast enough for self-gravitating clumps to form and survive. Models with simplified disk cooling have shown the critical importance of the ratio of the cooling to the orbital timescales. Uncertainties about the proper value of this ratio can be sidestepped by including radiative transfer. Three-dimensional radiative hydrodynamics models of a disk with a mass of 0.043 M sun from 4 to 20 AU in orbit around a 1 M sun protostar show that disk instabilities are considerably less successful in producing self-gravitating clumps than in a disk with twice this mass. The results are sensitive to the assumed initial outer disk (To ) temperatures. Models with To = 20 K are able to form a single self-gravitating clump, whereas models with To = 25 K form clumps that are not quite self-gravitating. These models imply that disk instability requires a disk with a mass of at least ~0.043 M sun inside 20 AU in order to form giant planets around solar-mass protostars with realistic disk cooling rates and outer-disk temperatures. Lower mass disks around solar-mass protostars must rely upon core accretion to form inner giant planets.

  20. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  1. Impact micro-positioning actuator

    NASA Technical Reports Server (NTRS)

    Cuerden, Brian (Inventor); Angel, J. Roger P. (Inventor); Burge, James H. (Inventor); DeRigne, Scott T. (Inventor)

    2006-01-01

    An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut.

  2. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  3. Propeller pitch change actuation system

    SciTech Connect

    Kusiak, E.H.

    1988-06-28

    An apparatus is described for adjusting the pitch of a variable pitch propeller blade characterized by: an actuator for setting the pitch of the propeller blade the actuator having; a rotatable screw for setting propeller pitch, a nut mounted for longitudinal motion along the screw as the screw is rotated, means for connecting the nut to the propeller blade to adjust the pitch of the propeller blade as the screw rotates, and a rotatable means mounted within the nut for locking the nut against longitudinal motion if the rotatable means is not rotating with the longitudinal motion of the nut and for allowing the nut to move longitudinally if the rotatable means is rotating with the longitudinal motion of the nut.

  4. Solar disk sextant

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Minott, P.; Endal, A. S.

    1984-01-01

    This paper presents the conceptual design of an instrument, called the solar disk sextant, to be used in space to measure the shape and the size of the sun and their variations. The instrumental parameters required to produce sufficient sensitivity to address the problems of solar oblateness, solar pulsations, and global size changes of climatic importance are given.

  5. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  6. Herniated disk repair (image)

    MedlinePlus

    ... one of the most common causes of lower back pain. The mainstay of treatment for herniated disks is an initial period of rest with pain and anti-inflammatory medications followed by physical therapy. If pain and symptoms persist, surgery to remove ...

  7. Plasmofluidic Disk Resonators

    PubMed Central

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-01-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage. PMID:26979929

  8. Equilibrium Initialization and Stability of Three-Dimensional Gas Disks

    SciTech Connect

    Wang, Hsiang-Hsu; Klessen, Ralf S.; Dullemond, Cornelis P.; Bosch, Frank C.van den; Fuchs, Burkhard; /KIPAC, Menlo Park

    2010-08-25

    We present a new systematic way of setting up galactic gas disks based on the assumption of detailed hydrodynamic equilibrium. To do this, we need to specify the density distribution and the velocity field which supports the disk. We first show that the required circular velocity has no dependence on the height above or below the midplane so long as the gas pressure is a function of density only. The assumption of disks being very thin enables us to decouple the vertical structure from the radial direction. Based on that, the equation of hydrostatic equilibrium together with the reduced Poisson equation leads to two sets of second-order non-linear differential equation, which are easily integrated to set-up a stable disk. We call one approach 'density method' and the other one 'potential method'. Gas disks in detailed balance are especially suitable for investigating the onset of the gravitational instability. We revisit the question of global, axisymmetric instability using fully three-dimensional disk simulations. The impact of disk thickness on the disk instability and the formation of spontaneously induced spirals is studied systematically with or without the presence of the stellar potential. In our models, the numerical results show that the threshold value for disk instability is shifted from unity to 0.69 for self-gravitating thick disks and to 0.75 for combined stellar and gas thick disks. The simulations also show that self-induced spirals occur in the correct regions and with the right numbers as predicted by the analytic theory.

  9. Enhancing the force capability of permanent magnet latching actuators for electromechanical valve actuation systems

    NASA Astrophysics Data System (ADS)

    Rens, J.; Clark, R. E.; Jewell, G. W.; Howe, D.

    2005-05-01

    This article introduces a topology of parallel-polarized permanent magnet latching actuator for use in electromagnetic valve actuation systems for internal combustion engines. The actuator has a number of advantages over reluctance actuators, commonly employed in such systems, in terms of reduced starting currents and fail-safe capability. The influence of a number of design features on actuator performance, such as tooth tapering, additional magnets to improve the main magnet flux path and prevent the onset of saturation, and mechanical clearances required to protect the permanent magnet from shock loads are investigated. The design study findings are verified by measurements on a prototype actuator.

  10. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  11. The MJS-77 magnetometer actuator

    NASA Technical Reports Server (NTRS)

    Stange, W. C.

    1977-01-01

    A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions is described. The magnetic field, power requirements, weight and volume of this device are discussed. The problems encountered in design and development of this mechanism are presented.

  12. The MJS-77 magnetometer actuator

    NASA Technical Reports Server (NTRS)

    Stange, W. C.

    1977-01-01

    A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) will be used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions. The magnetic field, power requirements, weight and volume of this device are very restrictive. The problems encountered in design and development of this mechanism are presented.

  13. Magnetic bearings for a spaceflight optical disk recorder

    NASA Technical Reports Server (NTRS)

    Hockney, Richard; Gondhalekar, Vijay; Hawkey, Timothy

    1991-01-01

    The development and testing of a magnetic bearing system for the translator of the read/write head in a magneto-optic disk drive are discussed. The asymmetrical three-pole actuators with permanent magnet bias support the optical head, and its tracking and focusing servos, through their radial excursion above the disk. The specifications for the magnetic bearing are presented, along with the configuration of the magnetic hardware. Development of a five degree of freedom collision model is examined which allowed assessment of the system response during large scale transients. Experimental findings and the results of performance testing are presented, including the roll-off of current-to-force due to eddy current loss in the magnetic materials.

  14. Evolution of protoplanetary disks with dynamo magnetic fields

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, M.; Stepinski, Tomasz F.

    1994-01-01

    The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self

  15. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  16. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  17. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    SciTech Connect

    Stanonik, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Peebles, P. J. E.

    2009-05-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an H I survey of SDSS void galaxies, with no optical counterpart to the H I polar disk. Yet the H I mass in the disk is comparable to the stellar mass in the galaxy. This suggests slow accretion of the H I material at a relatively recent time. There is also a hint of a warp in the outer parts of the H I disk. The central, stellar disk appears relatively blue, with faint near-UV emission, and is oriented (roughly) parallel to the surrounding wall, implying gas accretion from the voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies.

  18. Grain growth and dust trapping in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola

    2015-08-01

    Circumstellar disks around young stars are known to be the birthplace of planets. Planet formation starts with the coagulation of micron-sized particles to larger dust aggregates. This process, which covers more than forty orders of magnitude in mass, has different physical challenges. One of the oldest mysteries is how planetesimals are formed, in spite of fragmentation collisions and rapid inward drift. Radial drift theory is in disagreement with the observations of millimetre grains in the cold regions of protoplanetary disks. Nevertheless, a disk model that includes dust coagulation, fragmentation, and the presence of long-lived pressure bumps, which moderate the rapid inward migration of particles, leads to a better agreement between observations and theory. Disks with a dust depleted inner cavity, known as transition disks, are excellent candidates to investigate the dust evolution under the existence of a pressure bump. Millimetre observations of transition disks reveal crescent- and ring-shaped emissions that lend credence to the notion than planetesimals may form in localised hotspots or pressure traps. Recent ALMA observations have showed astonishing dust structures in transition disks, which together with data of CO and its isotopologues, have been giving major support for particle trapping induced by embedded planets, which can solve the old paradigm of radial drift.

  19. Compositional Effects on Electromechanical Degradation of RAINBOW Actuators

    NASA Technical Reports Server (NTRS)

    Dausch, David E.; Wise, Stephanie A.

    1998-01-01

    The effect of ceramic composition on the electromechanical displacement degradation of RAINBOW (Reduced and Internally Biased Oxide Wafer) actuators was investigated. RAINBOWs were fabricated from commercially available PZT-5H and PZT-5A piezoelectric disks as well as from tape cast PLZT piezoelectric 7/65/35 and electrostrictive 9/65/35 compositions. Displacement properties were measured at low electric fields (10 to 13 kV/cm) under loads of 0 to 500 g, and displacement degradation as a function of time was observed over 107 cycles. The PZT-5A and PLZT 9/65/35 compositions exhibited minimal decrease in displacement when load was applied. Furthermore, these compositions retained approximately 65 percent of their initial displacement after 10(exp 7) cycles under a load of 300 g. PZT-5H and PLZT 7/65/35 degraded completely under these conditions.

  20. Gait planning for a quadruped robot with one faulty actuator

    NASA Astrophysics Data System (ADS)

    Chen, Xianbao; Gao, Feng; Qi, Chenkun; Tian, Xinghua

    2015-01-01

    Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.

  1. Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors

    NASA Astrophysics Data System (ADS)

    He, Chengjian

    Rotorcraft aeroelasticity and aeromechanics analysis requires a consistent mathematical model that has an appropriate combination of structural dynamics and unsteady aerodynamics. Unfortunately, existing rotor unsteady induced flow theories, a key part of rotorcraft unsteady aerodynamics, are either too simple to capture necessary physical reality or too involved to carry out any system eigenvalue analysis or system design. To provide rotorcraft dynamists with an efficient unsteady wake model, this research aims at development of an intermediate level unsteady induced-flow theory suitable for rotorcraft aeroelastic stability, vibration, control, and aeroelastic tailoring studies. The unsteady wake theory is developed for lifting rotors based on an acceleration potential for an actuator disk. The induced inflow at the rotor disk is expressed in terms of a Fourier series azimuthally and a polynomial distribution radially. A system of first -order, ordinary differential equations in the time domain, formulated from first principles, describes the flow. The pressure at the rotor disk is discretized at each rotor blade to allow for the effect of finite number of blades. This formulation is well fitted to rotor aeroelastic analysis. The research has resulted in closed-form, analytical expressions for the induced-flow influence coefficients, one of the most critical parts in the development of the theory in forward flight. The theory has also been applied to the computation of the induced-flow distribution of helicopter rotors in forward flight. Encouragingly, the results have shown an overall good correlation with recent measurement data, both time-averaged and time-dependent, from the Army's Langley facility. The theory correctly predicts such essential characteristics as fore-to-aft induced-flow gradient, dissymmetric side-to-side induced -flow distribution in forward flight, and saw-tooth, triangular wave form of unsteady inflow associated with the passage of rotor

  2. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    SciTech Connect

    Hoadley, K.; France, K.; McJunkin, M.; Alexander, R. D.; Schneider, P. C.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.

  3. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  4. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  5. Electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Zubkow, Zygmunt

    Attention is given to the development and testing of electromechanical actuator (EMA) systems for use in first- and second-stage thrust vector control of rocket engines. An overview of the test program is also presented. Designs for both first- and second-stage actuators employ redundant dc brushless, three-phase rare-earth permanent magnet motors. The first-stage actuator is about 28 hp per motor and uses a roller screw. Second-stage thrust vector control is implemented with a much smaller actuator of about 1 hp per motor. This actuator uses a gear drive with a recycling ball screw mechanism. An operational EMA is presented. This 6.5-in. actuator is capable of a stall force of 1350 pounds per motor and a frequency response of about 5 HZ.

  6. Characterization of different types of high-performance THUNDER actuators

    NASA Astrophysics Data System (ADS)

    Mossi, Karla M.; Bishop, Richard P.

    1999-07-01

    THUNDER technology introduces a versatile new family of rugged, robust, reliable piezoelectric actuators and sensors. Because of their pre-stressed composite structure, these powerful yet lightweight devices exhibit unprecedented performance in a durable, solid state package. Both sensors and actuators can be manufactured in a variety of adaptable geometries - squares, rectangles and disks - from several millimeters to many centimeters in size. Wide bandwidth performance can be achieved and maintained even in harsh chemical and temperature environments. Based on an invention patented by NASA, THUNDER is an emerging, enabling technology that holds the promise of significant advancements in numerous 'smart' applications. Development of these applications for smart materials and structures requires extensive characterization of a variety of THUNDER devices in a range of configurations. This comprehensive characterization effort is especially challenging because of the extraordinary flexibility and range of motion demonstrated by THUNDER devices, even under significant load. This paper will discuss important new work in the ongoing program of THUNDER device characterization. The program includes not only development of the characterization process, but also design and manufacture of the test and measurement equipment necessary to conduct meaningful and reliable testing on these unique, high performance devices. Results will be presented on characterization of two configurations of THUNDER devices, including a circular and a rectangular model of different sizes constructed of varying materials. Data will be offered for a number of key performance characteristics, including displacement, block force, plus displacement vs. voltage and displacement vs. force.

  7. Lopsided dust rings in transition disks

    NASA Astrophysics Data System (ADS)

    Birnstiel, T.; Dullemond, C. P.; Pinilla, P.

    2013-02-01

    Context. Particle trapping in local or global pressure maxima in protoplanetary disks is one of the new paradigms in the theory of the first stages of planet formation. However, finding observational evidence for this effect is not easy. Recent work suggests that the large ring-shaped outer disks observed in transition disk sources may in fact be lopsided and constitute large banana-shaped vortices. Aims: We wish to investigate how effectively dust can accumulate along the azimuthal direction. We also want to find out if the size-sorting resulting from this accumulation can produce detectable signatures at millimeter wavelengths. Methods: To keep the numerical cost under control we developed a 1+1D method in which the azimuthal variations are treated separately from the radial variations. The azimuthal structure was calculated analytically for a steady-state between mixing and azimuthal drift. We derived equilibration time scales and compared the analytical solutions to time-dependent numerical simulations. Results: We found that weak, but long-lived azimuthal density gradients in the gas can induce very strong azimuthal accumulations of dust. The strength of the accumulations depends on the Péclet number, which describes the relative importance of advection and diffusion. We applied our model to transition disks and our simulated observations show that this effect would be easily observable with the Atacama Large Millimeter/submillimeter Array (ALMA) and could be used to put constraints on the strength of turbulence and the local gas density.

  8. A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1998-01-01

    This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.

  9. Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.

  10. Integrated sensing and actuation of muscle-like actuators

    NASA Astrophysics Data System (ADS)

    Gisby, T. A.; Xie, S.; Calius, E. P.; Anderson, I. A.

    2009-03-01

    The excellent overall performance and compliant nature of Dielectric Elastomer Actuators (DEAs) make them ideal candidates for artificial muscles. Natural muscle however is much more than just an actuator, it provides position feedback to the brain that is essential for the body to maintain balance and correct posture. If DEAs are to truly earn the moniker of "artificial muscles" they need to be able to reproduce, if not improve on, this functionality. Self-sensing DEAs are the ideal solution to this problem. This paper presents a system by which the capacitance of a DEA can be sensed while it is being actuated and used for feedback control. This system has been strongly influenced by the desire for portability i.e. designed for use in a battery operated microcontroller based system. It is capable of controlling multiple independent DEAs using a single high voltage power supply. These features are important developments for artificial muscle devices where accuracy and low mass are important e.g. a prosthetic hand or force-feedback surgical tools. A numerical model of the electrical behaviour of the DEA that incorporates arbitrary leakage currents and the impact of arbitrary variable capacitance has been created to model a DEA system. A robust capacitive self-sensing method that uses a slew-rate controlled Pulse Width Modulation (PWM) signal and compensates for the effects of leakage current and variable capacitance is presented. The numerical model is then used to compare the performance of this new method with an earlier method previously published by the authors.

  11. Actuation fluid adapter for hydraulically-actuated electronically-controlled fuel injector and engine using same

    DOEpatents

    Keyster, Eric S.; Merchant, Jack A.

    2002-01-01

    A fuel injector adapter consists of a block defining a pressure communication passage therethrough and an actuation fluid passage. The actuation fluid passage includes three separate branches that open through an outer surface of the block at three separate locations.

  12. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  13. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  14. Direct-drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  15. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  16. Brown dwarf disks with ALMA

    SciTech Connect

    Ricci, L.; Isella, A.; Testi, L.; De Gregorio-Monsalvo, I.; Natta, A.; Scholz, A.

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  17. Lightweight in-plane actuated deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Shepherd, Michael J.

    This research focused on lightweight, in-plane actuated, deformable mirrors, with the ultimate goal of developing a 20-meter or larger diameter light gathering aperture for space telescopes. Membrane optics is the study of these structures which may be stowed compactly and unfurled in orbit. This effort comprised four research areas: modelling, analytical solutions, surface control strategy, and scaling. Initially, experimental results were compared to theory using a 0.127 meter diameter deformable mirror testbed. The mirror was modelled using finite elements with MSC.Nastran software, where a boundary tension field was determined using laser vibrometer data. A non-linear solution technique was used to incorporate the membrane stiffening from the applied tension. Statically obtained actuator influence functions were compared to experimentally achieved data, and then a least squares approach was used as the basis for creating a quasi-static control algorithm. Experimental simultaneous tracking of Zernike tip, tilt, and defocus modes was successfully demonstrated. The analytical solutions to plate-membrane and beam-string ordinary differential equation representing the deformable mirror equations were developed. A simplified approach to modelling the axisymmetric cases was also presented. Significantly, it was shown both analytically and through numerical analysis that static actuation for a mirror with a discrete electrode pattern and a high tension-to-stiffness ratio was simply a localized piston displacement in the region of the actuator. Next, a novel static control strategy, the Modal Transformation Method, was developed for membrane mirrors. The method was implemented in finite element simulation, and shows the capability of the in-plane actuated mirror to form Zernike surfaces within an interior, or clear aperture, region using a number of statically-actuated structural modes. Lastly, the scaling problem for membrane optics was addressed. Linear modelling was

  18. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.

    PubMed

    Liu, Taoming; Cavuşoğlu, M Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype. PMID:25328804

  19. Moisture-driven actuators inspired by motility of plants

    NASA Astrophysics Data System (ADS)

    Shin, Beomjune; Lee, Minhee; Kim, Ho-Young

    2015-11-01

    We report design and fabrication of moisture-driven actuators mimicking pine cones, wild wheats and seeds of Erodium cicutarium, which can bend and even helically coil with variation of environmental humidity. The actuators adopt a bilayer configuration, one of whose layers is hygroscopically active while the other is inactive. In order to enhance the degree and speed of deformation which critically depends on moisture-responsivity of the active layer, nanofibers of hydrogel are directionally deposited on the inactive layer via electrospinning. As a result, several designs of soft robots are demonstrated which are capable of locomotion by harvesting environmental humidity energy. The dynamics of the robots are analyzed by coupling moisture diffusion kinetics and elastic theory of multi-layer bending. The theoretical predictions are compared with the experimental results, to lead to the optimal design to maximize the locomotion speed measured by travel distance normalized by body length per unit time.

  20. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas.

  1. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas. PMID:23745856

  2. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  3. Model of Head-Positioning Error Due to Rotational Vibration of Hard Disk Drives

    NASA Astrophysics Data System (ADS)

    Matsuda, Yasuhiro; Yamaguchi, Takashi; Saegusa, Shozo; Shimizu, Toshihiko; Hamaguchi, Tetsuya

    An analytical model of head-positioning error due to rotational vibration of a hard disk drive is proposed. The model takes into account the rotational vibration of the base plate caused by the reaction force of the head-positioning actuator, the relationship between the rotational vibration and head-track offset, and the sensitivity function of track-following feedback control. Error calculated by the model agrees well with measured error. It is thus concluded that this model can predict the data transfer performance of a disk drive in read mode.

  4. UNSTABLE PLANETARY SYSTEMS EMERGING OUT OF GAS DISKS

    SciTech Connect

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-05-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  5. Polypyrrole actuators: modeling and performance

    NASA Astrophysics Data System (ADS)

    Madden, John D.; Madden, Peter G.; Hunter, Ian W.

    2001-07-01

    Conducting polymer actuators generate forces that exceed those of mammalian skeletal muscle by up to two orders of magnitude for a given cross-sectional area, require only a few volts to operate, and are low in cost. However application of conducting polymer actuators is hampered by the lack of a full description of the relationship between load, displacement, voltage and current. In an effort to provide such a model, system identification techniques are employed. Stress-strain tests are performed at constant applied potential to determine polypyrrole stiffness. The admittance transfer function of polypyrrole and the associated electrolyte is measured over the potential range in which polypyrrole is highly conductive. The admittance is well described by treating the polymer as a volumetric capacitance of 8*107 F*m3 whose charging rate is limited by the electrolyte resistance and by diffusion within polypyrrole. The relationship between strain and charge is investigated, showing that strain is directly proportional to charge via the strain to charge density ratio, (alpha) = 1*10+-10 m3*C-1, at loads of up to 4 MPa. Beyond 4 MPa the strain to charge ratio is time dependent. The admittance models, stress/strain relation and strain to charge relationship are combined to form a full description of polypyrrole electromechanical response. This description predicts that large increases in strain rate and power are obtained through miniaturization, yielding bandwidths in excess of 10 kHz. The model also enables motor designers to optimize polypyrrole actuator geometries for their applications.

  6. Surface micromachined sensors and actuators

    SciTech Connect

    Sniegowski, J.J.

    1995-08-01

    A description of a three-level mechanical polysilicon surface-micromachining technology including a discussion of the advantages of this level of process complexity is presented. This technology is capable of forming mechanical elements ranging from simple cantilevered beams to complex, interconnected, interactive, microactuated micromechanisms. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Additional features of the Sandia three-level process include the use of Chemical-Mechanical Polishing (CMP) for planarization, and the integration of micromechanics with the Sandia CMOS circuit process. The latter effort includes a CMOS-first, tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing. Alternatively, a novel micromechanics-first approach wherein the micromechanical devices are processed first in a well below the surface of the CMOS starting material followed by the standard, aluminum metallization CMOS process is also being pursued. Following the description of the polysilicon surface micromachining are examples of the major sensor and actuator projects based on this technology at the Microelectronics Development Laboratory (MDL) at Sandia National Laboratories. Efforts at the MDL are concentrated in the technology of surface micromachining due to the availability of and compatibility with standard CMOS processes. The primary sensors discussed are a silicon nitride membrane pressure sensor, hot polysilicon filaments for calorimetric gas sensing, and a smart hydrogen sensor. Examples of actuation mechanisms coupled to external devices are also presented. These actuators utilize the three-level process (plus an additional passive level) and employ either surface tension or electrostatic forces.

  7. Characterization, fabrication, and analysis of soft dielectric elastomer actuators capable of complex 3D deformation

    NASA Astrophysics Data System (ADS)

    Lai, William

    framework would aid in designing and optimizing the dielectric elastomer actuator configurations for 3D prescribed deformation configuration. Finally, inspired by the membrane textures of bat wings, a study of utilizing fiber reinforcement on dielectric elastomer actuators were conducted for the mechanical and the coupled electromechanical characteristics. Woven fibers were employed on the surface of actuator membrane with different pre-deformed configurations. Experimentally, actuator stiffness changes were measured for up to four orders of magnitude. The orientation of embedded fibers controlled the level and the triggered phase of stiffness changes. A trade-off between the actuator stiffness and stroke could be controlled during the fabrication stage by the fiber orientation and the prestretch level of the base elastomer membrane. A simplified model using small-strain composite laminate theory was developed and accurately predicted the composite actuator stiffness. Additionally, compliant edge stiffeners were found had to present a marked overall effect on actuator electromechanical response. The developed simplified analytical solutions using Timoshenko-bimaterial laminate solution and composite laminate theory, as well as the developed finite element framework can be utilized in addressing more complex 3D deformation patterns and their electromechanical response.

  8. Magnetic actuator intended for left ventricular assist system

    NASA Astrophysics Data System (ADS)

    Saotome, H.; Okada, T.

    2006-04-01

    With the goal of developing an artificial heart, the authors fabricated a prototype pump employing a linear motion magnetic actuator, and carried out performance tests. The actuator is composed of two disk-shaped Nd-Fe-B magnets having a diameter of 80 mm and a thickness of 7 mm. The disks are magnetized in the direction normal to the circular surface, and are formed by semicircular pieces; one semicircle serves as a N pole and the other as a S pole. The magnets face each other in the actuator. One magnet is limited to spin around its axis while the second magnet is limited to move in linear motion along its axis. In this way, the circumferential rotation of one of the magnets produces reciprocating forces on the other magnet, causing it to move back and forth. This coupled action produces a pumping motion. Because the two magnets are magnetically coupled without any mechanical contact, the rotating magnet does not have to be implanted and should be placed outside the body. The rotating magnet is driven by a motor. The motor power is magnetically conveyed, via the rotating magnet, to the implanted linear motion magnet through the skin. The proposed system yields no problems with infection that would otherwise require careful treatment in a system employing a tube penetrating the skin for power transmission. Comparison of the proposed system with another system using a transcutaneous transformer shows that our system has good potential to occupy a smaller space in the body, because it obviates implantation of a secondary part of the transformer, a power supply, and armature windings. The dimensions of the trial pump are designed in accordance with the fluid mechanical specifications of a human left ventricle, by computing magnetic fields that provide the magnetic forces on the magnets. The output power of the trial pump, 1.0 W at 87 beats/min, is experimentally obtained under the pressure and flow conditions of water, 100 mm Hg and 4.5 l/min.

  9. Optimal Design of Rotary-Type Voice Coil Motor Using Multisegmented Magnet Array for Small Form Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Gweon, Dae-Gab

    2007-05-01

    For a small form factor optical disk drive (SFFODD), a high-performance actuator satisfying the requirements for small size, high speed, and low-power consumption simultaneously is required. In this paper, we propose a rotary-type voice coil motor (VCM) using a multisegmented magnet array (MSMA) for the SFFODD. The VCM is designed to move the entire system including miniaturized optical components, which are necessary in reading and writing data. To increase the actuating force of the VCM, the MSMA, a novel magnetic circuit, is adopted because it can provide a higher flux density than a conventional magnet array in the rotary-type VCM. To obtain the best performance from the VCM in the limit of actuator size, design optimization is performed. The manufactured actuator with optimally designed parameters is described and the potential performance of track seeking is evaluated and presented.

  10. DVD - digital versatile disks

    SciTech Connect

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  11. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  12. Dielectric elastomer actuators for adaptive photonic microsystems

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Schröder, Henning; Marx, Sebastian; Lang, Klaus-Dieter

    2013-03-01

    Various applications in the field of photonic microsystems for Dielectric Elastomer Actuators (DEA) were shown with this research. DEA belong to the class of Electro Active Polymers (EAP) and have the potential to substitute common technologies like piezoelectric actuators. DEAs offers several advantages like compact and variable shapes, large actuation ranges and cost efficient production processes that have to be emphasized. For the market of adaptive photonic microsystems especially area actuators are very suitable. They can be used e.g. as tuneable lens, mirror or grating component and tool for optical fiber alignment. These area actuators have a similar structure like a capacitor. They consist of three layers, two electrode layers on top and bottom and one dielectric layer in the center. The dielectric layer is made of a deformable and prestretched elastomer film. When applying a voltage between both electrode layers the thickness of the dielectric film is compressed and the actuator is displaced in the plane. The use of material compositions like a polymer matrix with graphite, carbon nano particles or carbon nano tubes as well as thin metal films for the electrodes were studied. The paper presents results on suitable dielectric and electrode materials, actuator geometries and respective adaptive photonic components. The manufacturing process of area actuators is described in detail. As a basic size of the area actuators (20 × 20) mm2 were chosen. Onto the produced area actuators polymer lenses or mirrors were assembled. The deflection of the optical beam path is calculated with optical simulations and measured at the prepared adaptive optical components. Static actuations of about +/-15 μm are achieved when applying a voltage of 200 V. Also the function of a tuneable beam splitter is demonstrated to show further applications.

  13. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  14. PLANETESIMALS IN DEBRIS DISKS OF SUN-LIKE STARS

    SciTech Connect

    Shannon, Andrew; Wu Yanqin

    2011-09-20

    Observations of dusty debris disks can be used to test theories of planetesimal coagulation. Planetesimals of sizes up to a couple of thousand kilometers are embedded in these disks and their mutual collisions generate the small dust grains that are observed. The dust luminosities, when combined with information on the dust spatial extent and the system age, can be used to infer initial masses in the planetesimal belts. Carrying out such a procedure for a sample of debris disks around Sun-like stars, we reach the following two conclusions. First, if we assume that colliding planetesimals satisfy a primordial size spectrum of the form dn/ds{proportional_to}s{sup -q}, observed disks strongly favor a value of q between 3.5 and 4, while both current theoretical expectations and statistics of Kuiper belt objects favor a somewhat larger value. Second, number densities of planetesimals are two to three orders of magnitude higher in detected disks than in the Kuiper belt, for comparably sized objects. This is a surprise for the coagulation models. It would require a similar increase in the disk surface density over that of the Minimum Mass Solar Nebula, which is unreasonable. Both of our conclusions are driven by the need to explain the presence of bright debris disks at a few gigayears of age.

  15. Type I planet migration in nearly laminar disks

    SciTech Connect

    Li, Hui; Li, Shengtai; Lubow, S H; Lin, D

    2008-01-01

    We describe two-dimensional hydrodynamic simulations of the migration of low-mass planets ({<=}30 M{sub {circle_plus}}) in nearly laminar disks (viscosity parameter {alpha} < 10{sup -3}) over timescales of several thousand orbit periods. We consider disk masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness parameters of H/r = 0.035 and 0.05, and a variety of {alpha} values and planet masses. Disk self-gravity is fully included. Previous analytic work has suggested that Type I planet migration can be halted in disks of sufficiently low turbulent viscosity, for {alpha} {approx} 10{sup -4}. The halting is due to a feedback effect of breaking density waves that results in a slight mass redistribution and consequently an increased outward torque contribution. The simulations confirm the existence of a critical mass (M{sub {alpha}} {approx} 10M{sub {circle_plus}}) beyond which migration halts in nearly laminar disks. For {alpha} {approx}> 10{sup -3}, density feedback effects are washed out and Type I migration persists. The critical masses are in good agreement with the analytic model of Rafikov. In addition, for {alpha} {approx}> 10{sup -4} steep density gradients produce a vortex instability, resulting in a small time-varying eccentricity in the planet's orbit and a slight outward migration. Migration in nearly laminar disks may be sufficiently slow to reconcile the timescales of migration theory with those of giant planet formation in the core accretion model.

  16. Observations of Water Ice Distribution in the HD169142 Disk

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2013-01-01

    Icy grains play an important role on planetesimal/planet formation and related matters. Therefore, to reveal ice dust distribution within a protoplanetary disk is an important work for understanding planet formation. However, observations of icy grain IN THE DISK are scarce due to various observational limitations. Here we propose observations to trace the icy grains by making K, H_2O ice, and L' imaging photometric observations of disk scattered light to derive H_2O ice dust distribution in a disk surface via 3.1 mu m absorption. For the moment, only Gemini/NICI is capable of such observations. We have already demonstrated the effectiveness of such observing method toward Herbig Fe star HD142527. Since some theoretical studies suggest that there are no ice grains at the surface of the disk around A/B stars due to intense UV irradiation, we propose to observe disks around Herbig Ae star HD169142. When we fail to detect the ice feature, it supports the theoretical prediction that photodesorption is important. While the ice feature is detected, it requires reconsideration of the theories and provides an important constraint for the disk chemistry.

  17. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan (Principal Investigator)

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.

  18. Higher order diffractions from a circular disk

    NASA Technical Reports Server (NTRS)

    Marsland, Diane P.; Balanis, Constantine A.; Brumley, Stephen A.

    1987-01-01

    The backscattering from a circular disk is analyzed using the geometrical theory of diffraction. First-, second-, and third-order diffractions are included in the hard polarization analysis, while first-, second-, and third-order slope diffractions are included for soft polarization. Improvements in the prediction of the monostatic radar cross section over previous works are noted. For hard polarization, an excellent agreement is exhibited between experimental and theoretical results, while a very good agreement is noted for soft polarization. To further improve the soft polarization results for wide angles, a model for the creeping wave or circulating current on the edge of the disk is obtained and used to find an additional component of the backscattered field. The addition of this component significantly improves the results for wide angles, leading to excellent agreement for soft polarization also. An axial-caustic correction method using equivalent currents is also included in the analysis.

  19. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  20. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  1. Microfabricated electroactive carbon nanotube actuators

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni

    2001-07-01

    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  2. Resolving the inner disk of UX Orionis

    NASA Astrophysics Data System (ADS)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  3. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  4. Integrated piezoelectric actuators in deep drawing tools

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  5. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  6. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  7. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  8. Space shuttle rudder/speedbrake actuation subsystem

    NASA Technical Reports Server (NTRS)

    Naber, R. A.

    1985-01-01

    The Rudder/Speedbrake (R/SB) Actuation Subsystem for use on the NASA Space Shuttle Orbiter is an electro-hydro-mechanical system which provides the control and positionary capability of the orbiter aero-dynamic primary flight control surface. The system is located in the vehicle's vertical stabilizer. The geared rotary actuators provide a power hinge feature of the split panel rudder. Actuation of both panels in the same direction provides conventional rudder control; actuating the panels differentially provides a speedbrake function intended to control both speed and pitch. The commands may be superimposed on one another. The system consists of one power drive unit which responds to quadredundant avionic signals to generate a rotary output, four geared rotary actuators, which develop rotary position and torque as outputs, and ten torque transmitting drive-shifts.

  9. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  10. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  11. Conducting IPN actuators for biomimetic vision system

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Plesse, Cedric; Chevrot, Claude; Teyssié, Dominique; Pirim, Patrick; Vidal, Frederic

    2011-04-01

    In recent years, many studies on electroactive polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime (several million cycles) make them very attractive for various applications including robotics. Our laboratory recently synthesized new conducting IPN actuators based on high molecular Nitrile Butadiene Rubber, poly(ethylene oxide) derivative and poly(3,4-ethylenedioxithiophene). The presence of the elastomer greatly improves the actuator performances such as mechanical resistance and output force. In this article we present the IPN and actuator synthesis, characterizations and design allowing their integration in a biomimetic vision system.

  12. Microfabrication of stacked dielectric elastomer actuator fibers

    NASA Astrophysics Data System (ADS)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  13. Inversions for axisymmetric galactic disks

    NASA Astrophysics Data System (ADS)

    Hiotelis, N.; Patsis, P. A.

    1993-08-01

    We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.

  14. Upper lumbar disk herniations.

    PubMed

    Cedoz, M E; Larbre, J P; Lequin, C; Fischer, G; Llorca, G

    1996-06-01

    Specific features of upper lumbar disk herniations are reviewed based on data from the literature and from a retrospective study of 24 cases treated surgically between 1982 and 1994 (seven at L1-L2 and 17 at L2-L3). Clinical manifestations are polymorphic, misleading (abdominogenital pain suggestive of a visceral or psychogenic condition, meralgia paresthetica, isolated sciatica; femoral neuralgia is uncommon) and sometimes severe (five cases of cauda equina syndrome in our study group). The diagnostic usefulness of imaging studies (radiography, myelography, computed tomography, magnetic resonance imaging) and results of surgery are discussed. The risk of misdiagnosis and the encouraging results of surgery are emphasized. PMID:8817752

  15. PRE-TRANSITIONAL DISK NATURE OF THE AB Aur DISK

    SciTech Connect

    Honda, M.; Inoue, A. K.; Okamoto, Y. K.; Kataza, H.; Fujiwara, H.; Kamizuka, T.; Fukagawa, M.; Yamashita, T.; Tamura, M.; Hashimoto, J.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Sakon, I.; Onaka, T.

    2010-08-01

    The disk around AB Aur was imaged and resolved at 24.6 {mu}m using the Cooled Mid-infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The Gaussian full width at half-maximum of the source size is estimated to be 90 {+-} 6 AU, indicating that the disk extends further out at 24.6 {mu}m than at shorter wavelengths. In order to interpret the extended 24.6 {mu}m image, we consider a disk with a reduced surface density within a boundary radius R{sub c} , which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor f{sub c} for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6 {mu}m is achieved with R{sub c} = 88 AU and f{sub c} = 0.01. We suggest that the extended emission at 24.6 {mu}m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at R{sub c} . Such a reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.

  16. Analysis of the effects of disk tilt on the differential-phase-detection signal in a high-density DVD read-only disk driver

    NASA Astrophysics Data System (ADS)

    Shen, Quanhong; Xu, Duanyi

    2006-06-01

    A high-density DVD (HD-DVD) is one of the high-density optical storage technology newly designed to meet the demands of high-definition video broadcasting that is very sensitive to the radial tilt of a disk. An analytic model based on diffraction theory is presented in detail to calculate the tracking error signal of a HD-DVD read-only disk driver by using the differential-phase-detection (DPD) method when radial tilt of a disk occurs. The effects of the tilt on a DPD signal in a HD-DVD read-only disk driver are quantified and compared to those in a DVD read-only disk driver. Experimental measurements for the DPD signal under different radial tilt angles in a HD-DVD read-only disk driver are also reported.

  17. Analysis of the deformational behaviour of a bimorph configuration with piezoelectric actuation

    NASA Astrophysics Data System (ADS)

    Beckert, Wieland; Pfundtner, Goesta

    2002-08-01

    The stimulation of controlled deformation in lightweight constructions by means of actuator units as an integrated part of the structure currently represents an attractive subject in engineering. A common design uses a piezoelectric film that is bonded to a shell component by an adhesive layer and induces a bending deformation in the structure. A simplified beam design has been used as a test set-up to characterize the actuator performance of a given system under practical conditions. The bimorph configuration consists of an actuator unit, the bonding adhesive and the substrate material from which the lateral bending deflection of the free end, induced by actuation of the piezoelectric film, is measured. An improved theoretical approach is presented that combines a comprehensive composite theory analysis of the bending with a detailed analytical approach for the gradual stress transfer from the edges of the piezoceramic induced by a deformational misfit between the layers. The results are validated by a finite element analysis of the system. They reveal a substantial influence of the assumptions for the transverse (width direction) state of deformation for which free bending appears to be the most realistic for the test geometry. The study is completed by an experimental analysis that investigates the influence of adhesive stiffness and layer thickness on the actuator performance of a system consisting of a steel substrate and a carbon fibre reinforced substrate and a prototypic PZT actuator module. The results are correlated to the model providing a confirmation of the essential trends.

  18. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  19. Thermodynamical Structure of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Turner, N.

    2009-12-01

    The thermodynamics of protoplanetary disks determines chemical and physical evolution of dust and gas in the disks, and thus is relevant for understanding the origin and formation of planetary systems. In this paper, the thermodynamical structure of protoplanetary disks around low-mass stars is studied using three-dimensional radiation magnetohydrodynamic (MHD) simulations. Local patches of the disk are modeled using the shearing box approximation with vertical gravity. For simplicity, the dust and gas are well mixed and have the same temperature, and ideal MHD is assumed. The frequency-integrated radiation field is evolved using the flux-limited diffusion approximation, adopting thermally averaged opacities. The heating arises from the dissipation of MHD turbulence driven by magnetorotational instability due to differential rotation of the disk, and the cooling comes from infrared radiation losses. Irradiation by the central star is treated by injecting appropriate amount of thermal energy near the disk photosphere for visible lights. The results indicate the heating is more concentrated in the disk atmosphere than in the classical model. The single-point heating rate in the atmosphere fluctuates by orders of magnitude over time intervals comparable to the orbital period due to magnetic reconnection and shocks, while the patch of disk overall sustains dynamical and thermodynamical equilibrium over many cooling times. We will discuss implications of our numerical results for line and continuum emission from protoplanetary disks.

  20. Gravitational Instability in Planetesimal Disks

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce T.; Lithwick, Yoram; Pan, Margaret; Rein, Hanno; Wu, Yanqin

    2014-11-01

    Gravitational instability (GI) has been proposed as a method of forming giant gas planets enhanced by disk thermodynamics in a protoplanetary disk (Boss, 1997, Science 276; Durisen et al., 2007, Protostars and Planets V) and as a method of forming planetesimals through the focusing of boulders by the interaction between solids and gases in a turbulent circumstellar disk (Johansen et al., 2007, Nature 448; Youdin & Goodman, 2005, Astrophys. J. 620). GI is mediated through a gaseous circumstellar disk in each each of these scenarios. We explore the possibility of GI occurring in a planetesimal disk devoid of gas. In this regime, mutual collisions between planetesimals are required to dissipate their orbital shear and velocity dispersion enough for collapse to occur as described by the Toomre stability criterion (Toomre, 1964, Astrophys. J. 139; Toomre, 1981, Structure and Evolution of Normal Galaxies). How frequent must collisions be between planetesimals in a gravitationally stable planetesimal disk for GI to occur? Are there collisional rates where GI is postponed indefinitely in an equilibrium state between gravitational stirring and collisional cooling? We present 3D shearing sheet simulations using the REBOUND N-body code with the symplectic epicyclic integrator (Rein & Liu, 2011, A&A 537; Rein & Tremaine, 2011, MNRAS 415) in which the candidate collision rates are within a few orders of magnitude of the disk dynamical lifetime. Our simulations suggest that collisions rate directly controls disk cooling. The shape of the disk cooling curve is independent of the collision rate when scaled to the collision time.

  1. Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug; Hollenbach, David; Bally, John

    1998-05-01

    disk surface temperature at ~103 K. As the PDR temperature drops, the pressure of the FUV-powered flow declines with increasing distance from θ1 Ori C, and again the EUV ionizing photons can penetrate close to the disk surface and dominate the evaporation rate. Radio, Hα, and [O III] observations of externally illuminated young stellar objects in the Trapezium region are used to determine rIF and the projected distances, d⊥, from θ1 Ori C. The observed values of rIF and d⊥ are combined with the theory to estimate the disk sizes, mass-loss rates, surface densities, and disk masses for the ensemble of extended sources in the Trapezium cluster. Observations of rIF, d⊥, and rd in HST 182-413 and a few other sources are used to calibrate parameters of the theory, especially the column of heated PDR gas. The disks have a range in sizes between 14 < log [rd/(cm)] < 15.2, mass-loss rates of -7.7 < log [Ṁ/(Msolar/yr)]<-6.2, surface densities at disk edge 0.7 < log [Σ(rd)/(g cm-2)] < 2.5 which imply disk surface densities at 1 AU from the central, embedded star of 2.8 < log [Σ0/(g cm-2)] < 3.8 and disk masses of 0.002 < Md/M⊙ < 0.07. Σ and Md scale with the adopted ionization time, ti, which we take to be 105 yr. The inferred Σ(rd) for the ensemble of disks suggest that the initial surface density power law of an individual disk, Σ ~ r-α, is bounded by 1 <~ α <~ 1.5.

  2. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  3. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  4. Hand-actuated engine starter

    SciTech Connect

    Lindstrom, F.B.

    1987-01-27

    This patent describes a hand-actuated starter for an internal combustion engine wherein a first clutch member is journalled on a first shaft and a second clutch member is mounted on an engine shaft. The first clutch member has a pulley and is axially displaceable with respect to the second clutch member in response to rotation of the pulley, the first shaft and first clutch member having first and second mutually engaging bearing surfaces respectively. The improvement described here is wherein one of the surfaces has threads and the other of the surfaces has a helical groove and a helical spring in the groove positioned to engage the threads. The spring is radially displaceable in the groove.

  5. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Smith, Gregory F. (Inventor); Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  6. Lost-motion valve actuator

    SciTech Connect

    Burris, W.J. III; Ringgenberg, P.D.

    1987-04-07

    A lost-motion valve actuator is described for a bore closure valve employed in a well bore, comprising: operating connector means adapted to move the bore closure valve between open and closed positions through longitudinal movement of the operating connector means. The operating connector means comprises an operating connector and a connector insert defining a recess therebetween; locking dog means comprising at least one locking dog received in the recess and spring biasing means adapted to urge at least one locking dog radially inwardly; and mandrel means slidably received within the operating connector means and including dog slot means associated therewith. The dog slot means comprises an annular slot on the exterior of the mandrel means adapted to lockingly receive at least one inwardly biased locking dog when proximate thereto, whereby longitudinal movement of the mandrel means is transmitted to the operating connector means.

  7. Magnetic actuation of hair cells

    PubMed Central

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-01-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368

  8. Magnetic actuation of hair cells.

    PubMed

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-11-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368

  9. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  10. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  11. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications. PMID:27214895

  12. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  13. LQR Control of Shell Vibrations Via Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A model-based Linear Quadratic Regulator (LQR) method for controlling vibrations in cylindrical shells is presented. Surface-mounted piezo-ceramic patches are employed as actuators which leads to unbounded control input operators. Modified Donnell-Mushtari shell equations incorporating strong or Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated in terms of sesquilinear forms. This provides a framework amenable for proving model well-posedness and convergence of LQR gains using analytic semigroup results combined with LQR theory for unbounded input operators. Finally, numerical examples demonstrating the effectiveness of the method are presented.

  14. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  15. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  16. Magnetic suspension characteristics of electromagnetic actuators

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, J.; Zorzi, E.

    1993-01-01

    Electromagnetic actuators that use a current-carrying coil (which is placed in a magnetic field) to generate mechanical force are conceptually attractive components for active control of rotating shafts. In one concept that is being tested in the laboratory, the control forces from such actuators are applied on the flexibly supported bearing housings of the rotor. Development of this concept into a practical reality requires a clear and thorough understanding of the role of electromechanical parameters of these actuators in delivering the right amount of control force at the right phase into the rotor. The electromechanical parameters of the actuators investigated are the mass of the armature, stiffness of its suspension, electrical resistance, and inductance of the coils. Improper selection of these parameters can result in degradation in their performance, leading to mistuning between the actuator and the rotor. Through a simple analysis, it is shown that use of such mistuned actuators could result in sharp fluctuations in the phase of the control force delivered into the rotor around the critical speeds. These sharp fluctuations in phase, called 'Phase Glitches', are undesirable. Hence, future designs of controllers should take into account the undesirable mistuning effects between the actuator and the rotor caused by the phase glitches.

  17. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  18. Dielectric elastomer actuators with hydrostatic coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2009-03-01

    The rapidly growing adoption of dielectric elastomer (DE) actuators as a high performance EAP technology for many kinds of new applications continuously opens new technical challenges, in order to take always the most from each adopted device and actuating configuration. This paper presents a new type of DE actuators, which show attractive potentialities for specific application needs. The concept here proposed adopts an incompressible fluid to mechanically couple active and passive parts. The active parts work according to the DE actuation principle, while the passive parts represent the end effector, in contact with the load. The fluid is used to transfer actuation hydrostatically from an active to a passive part and, then, to the load. This can provide specific advantages, including improved safety and less stringent design constraints for the architecture of the actuator, especially for soft end effectors. Such a simple concept can be readily implemented according to different shapes and intended functionalities of the resulting actuators. The paper describes the structure and the performance of the first prototype devices developed so far.

  19. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  20. Patterned magnetic traps for magnetophoretic assembly and actuation of microrotor pumps

    NASA Astrophysics Data System (ADS)

    Henighan, T.; Giglio, D.; Chen, A.; Vieira, G.; Sooryakumar, R.

    2011-03-01

    We demonstrate a microscopic magnetic rotor pump for fluidic channels whose components are assembled in situ and powered by weak external magnetic fields (<150 Oe). A platform of patterned Permalloy microdisks and microcavities provided for the transport, trapping, and rotation of the superparamagnetic spherical microrotors. Parallel actuation of several rotors without direct physical link to external energy sources, tunable rotation speeds, and reversible drive torques offers significant advantages over macroscopic techniques to control flow within microfluidic devices. The effectiveness of trapping and transporting magnetic nanoparticles by the disks illustrate scalability to smaller, submicrometer sized devices.

  1. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  2. Dynamics simulation of MEMS device embedded-hard-disk-drive system

    NASA Astrophysics Data System (ADS)

    Yang, Jiaping; Chai, Jie; Lim, Boon Baun; Chen, Shixin

    2002-04-01

    Currently, hard disk drives (HHD) use rotating disks to store digital data and magnetic recording heads are flying on the disk to read/write data. The recording heads are mounted on a slider- suspension assembly, which makes heads move from one track to another on the disk. The heads movement is controlled by close-loop feedback servo system. It is well known that dynamic behaviors of head-slider-suspension-assembly (HSA) system are of great influence on the track per inch capacity of HDD1,2. As the problem is structurally complex, it is usually investigated using experimental methods or finite element simulation models 3. Furthermore, the dual-stage servo system, that is, a conventional VCM as the primary stage and a MEMS actuator as the secondary stage for MEMS device embedded HAS, has resulted in more difficulties in predicting HDD dynamic performance. This paper presents studies of the problem using macromodeling simulation approach. It applies efficient FEM based sub-structuring synthesis (SSS)4 and fast boundary element method (BEM) approaches incorporated with system dynamics technology to investigate dynamic characteristics of MEMS actuator embedded HAS system for HDD.

  3. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  4. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

  5. Scattering from Thin Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1984-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectric properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T is sufficiently large the disk will always be in one or the other of these regimes (T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  6. THREE-DIMENSIONAL DISK-PLANET TORQUES IN A LOCALLY ISOTHERMAL DISK

    SciTech Connect

    D'Angelo, Gennaro; Lubow, Stephen H. E-mail: lubow@stsci.ed

    2010-11-20

    We determine an expression for the Type I planet migration torque involving a locally isothermal disk, with moderate turbulent viscosity (5 x 10{sup -4} {approx}< {alpha} {approx}< 0.05), based on three-dimensional nonlinear hydrodynamical simulations. The radial gradients (in a dimensionless logarithmic form) of density and temperature are assumed to be constant near the planet. We find that the torque is roughly equally sensitive to the surface density and temperature radial gradients. Both gradients contribute to inward migration when they are negative. Our results indicate that two-dimensional calculations with a smoothed planet potential, used to account for the effects of the third dimension, do not accurately determine the effects of density and temperature gradients on the three-dimensional torque. The results suggest that substantially slowing or stopping planet migration by means of changes in disk opacity or shadowing is difficult and appears unlikely for a disk that is locally isothermal. The scalings of the torque and torque density with planet mass and gas sound speed follow the expectations of linear theory. We also determine an improved formula for the torque density distribution that can be used in one-dimensional long-term evolution studies of planets embedded in locally isothermal disks. This formula can be also applied in the presence of mildly varying radial gradients and of planets that open gaps. We illustrate its use in the case of migrating super-Earths and determine some conditions sufficient for survival.

  7. Accretion Disks and Jets Around Black Holes

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh

    2008-04-01

    Some of the most luminous objects in the universe involve accretion disks around black holes. In these systems, gas spirals into the black hole and converts a fraction of its gravitational binding energy into thermal energy and radiation. Sometimes, twin relativistic jets are ejected along the angular momentum axis of the disk. Understanding the physics of black hole accretion disks and jets is a major focus of modern astrophysics. Because the object at the center is a black hole, one must work with a relativistic theory. More importantly, one must allow for the effects of magnetic fields. These play an extremely important role, both in the extraction of angular momentum from the accreting gas -- which is what allows the gas to fall into the hole -- and in the launching, acceleration and collimation of the relativistic jets. Thus, at a minimum, one must work with the relativistic single-fluid MHD equations. The talk will briefly summarize our current understanding of black hole accretion, and outline some of the major unsolved problems.

  8. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; Muto, T.; Kotani, T.; Kusakabe, N. B.; Follette, K.; Bonnefoy, M.; Feldt, M.; Sitko, M.; Takami, M.; Karr, J.; Tamura, M.

    2014-01-01

    where only half of the disk is seen in scattered light at H. We will discuss our survey results in terms of spiral arm theory, dust trapping vortices, and systematic differences in the relative scale height of these disks compared to those around Solar-mass stars. For the disks with spiral arms we discuss the planet-hosting potential, and limits on where giant planets can be located. We also discuss the implications for imaging with extreme adaptive optics instruments. Grady is supported under NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. JPW is supported NSF AST 100314. 0) in marked contrast to protoplanetary disks, transitional disks exhibit wide range of structural features1) arm visibility correlated with relative scale height in disk2) asymmetric and possibly variable shadowing of outer portions some transitional disks3) confirm pre-transitional disk nature of Oph IRS 48, MWC 758, HD 169142, etc.

  9. Bluff Body Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  10. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  11. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  12. Microcantilever actuation via periodic internal heating

    SciTech Connect

    Lee, Jungchul; King, William P.

    2007-12-15

    This paper reports electrothermal actuation of silicon microcantilevers having integrated resistive heaters. Periodic electrical excitation induced periodic resistive heating in the cantilever, while the cantilever deflection was monitored with a photodetector. Excitation was either at the cantilever resonant frequency, f{sub 0}, f{sub 0}/2, or f{sub 0}/3. When the time averaged maximum cantilever temperature was 174 deg. C, the cantilever out-of-plane actuation amplitude was 484 nm near the cantilever resonance frequency of 24.9 kHz. This actuation was sufficiently large to operate the cantilever in intermittent contact mode and scan a calibration grating of height of 20 nm.

  13. Refreshable Braille Displays Using EAP Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2010-01-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators..

  14. Refreshable Braille displays using EAP actuators

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2010-04-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators.

  15. Peristaltic pump made of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2009-03-01

    The functional principle of peristaltic motion is inspired by the pattern in which hollow organs move. The technology of dielectric elastomer actuators provides the possibility to design a very compact peristaltic pump. The geometries of the whole pump and the actuator elements have been determined by numerical simulations of the mechanical behaviour and the fluid dynamics. With eight independent actuators the pumping channel is self-sealing and there is no need for any valves. The first generation of this pump is able to generate flow rates up to 0.36 μl/min.

  16. Optimization Strategies for Sensor and Actuator Placement

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Kincaid, Rex K.

    1999-01-01

    This paper provides a survey of actuator and sensor placement problems from a wide range of engineering disciplines and a variety of applications. Combinatorial optimization methods are recommended as a means for identifying sets of actuators and sensors that maximize performance. Several sample applications from NASA Langley Research Center, such as active structural acoustic control, are covered in detail. Laboratory and flight tests of these applications indicate that actuator and sensor placement methods are effective and important. Lessons learned in solving these optimization problems can guide future research.

  17. Misfire tolerant combustion-powered actuation

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Kuehl, Michael A.

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  18. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will

  19. Deflection of cross-ply composite laminates induced by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2010-01-01

    The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate. PMID:22315564

  20. Optical disk technology and information.

    PubMed

    Goldstein, C M

    1982-02-12

    The optical video disk, spawned by the home entertainment industry, and its counterpart, the optical digital disk, both hold great promise for information storage and retrieval and the scientific enterprise. Optical digital disks for computer mass storage are currently under development by many firms. In addition, efforts are under way to allow encoding of digital information on video disks. This is desirable as an inexpensive publication medium for machine-readable data as well as a means of obtaining both video and digital information on one disk. Potential applications of this technology include inexpensive on-line storage, random access graphics to complement on-line information systems, hybrid network architectures, office automation systems, and archival storage.

  1. Post-buckled precompressed (PBP) elements: a new class of flight control actuators enhancing high-speed autonomous VTOL MAVs

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald; McMurtry, Ross; Vos, Roelof; Tiso, Paolo; Breuker, Roeland D.

    2005-05-01

    This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory (CLPT) models are shown to work very well in capturing the behavior of the free, unloaded elements. A new high transverse deflection model which employs nonlinear structural relations is shown to successfully predict the performance of the PBP actuators as they are exposed to higher and higher levels of axial force, which induces post buckling deflections. A proof-of-concept empennage assembly and actuator were fabricated using the principles of PBP actuation. A single grid-fin flight control effector was driven by a 3.5" (88.9mm) long piezoceramic bimorph PBP actuator. By using the PBP configuration, deflections were controllably magnified 4.5 times with excellent correlation between theory and experiment. Quasi-static bench testing showed deflection levels in excess of +/-6° at rates exceeding 15 Hz. The new solid state PBP actuator was shown to reduce the part count with respect to conventional servoactuators by an order of magnitude. Power consumption dropped from 24W to 100mW, weight was cut from 108g to 14g, slop went from 1.6° to 0.02° and current draw went from 5A to 1.4mA. The result was that the XQ-138 subscale UAV family experienced nearly a 4% reduction in operating empty weight via the switch from conventional to PBP actuators while in every other measure, gross performance was significantly enhanced.

  2. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  3. High output paraffin actuators: Utilization in aerospace mechanisms

    NASA Technical Reports Server (NTRS)

    Tibbitts, Scott

    1988-01-01

    High Output Paraffin (HOP) thermal actuators were developed to provide an alternative to conventional aerospace actuators: HOP actuators directly convert temperature changes to useful mechanical work. When fabricated with internal resistance heating elements, they provide an electric linear motor. For applications in which slower response times are acceptable or preferred, HOP actuators have distinct advantages over conventional approaches.

  4. Multiwavelength search for protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Neuhaeuser, Ralph; Schmidt-Kaler, Theodor

    1994-01-01

    Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.

  5. Berkeley Disk Resource Manager

    2004-02-27

    The Berkeley Disk Resource Manager (B-DRM) is a middleware component whose function is to provide dynamic space allocation and file management of a shared disk system on the Grid. It provides space allocation and dynamic information on storage availability for the planning and execution of Grid jobs. The B-DRM manages two types of resources: space and files. Vi1en managing space, the B-DRM allocates space to the requesting client based on a default space quota, Thenmore » managing files, the B-DRM allocates space for files, invokes file transfer services to move files into the space, pins files for a certain lifetime, releases files upon the client’s request, and uses file replacement policies to optimize the use of the shared space. The B-DRM is designed to provide effective sharing of files, by monitoring the activity of shared files, and making dynamic decisions on which files to replace when space is needed. In addition, the B-DRM performs automatic garbage collection of unused files when space is needed by removing selected files that were released by the client or whose lifetime has expired. The BDRM supports requests to get multiple files in a single call, manages a queue of the requested files, brings in as many files as the space quota permits, and continues to reuse the space when files are released to stream files to the client until the entire request is satisfied. Similarly, the B-DRM supports requests to put multiple files into its space, streaming files into the allocated space and reusing the space if necessary.« less

  6. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    SciTech Connect

    Tanigawa, Takayuki; Maruta, Akito; Machida, Masahiro N.

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  7. Low-state disks and low-beta disks

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kusnose, Masaaki; Matsumoto, Ryoji

    1995-01-01

    Stellar black hole candidates (BHCs) exhibit bimodal spectral states. We calculate nonthermal disk spectra, demonstrating that a large photon index (alpha (sub x) approximately 2-3) observed in the soft (high) state is due to a copious soft photon supply, whereas soft photon starvation leads to a smaller index (alpha (sub x) approximately 1.5-2) in the hard (low) state. Thus, the absence of the soft component flux in the low state cannot be due to obscuration. A possible disk configuration during the low state is discussed. We proposed that a low-state disk may be a low-beta disk in which magnetic pressure may exceed gas pressure becuase of the suppression of field escape by a strong shear. As a result, disk material will take the form of blobs constricted by mainly toroidal magnetic fields. Fields are dissipated mainly by occasional reconnection events with a huge energy release. This will account for large-amplitude, aperiodic X-ray variations (flickering) and high-energy radiation with small alpha(sub x) from hard state BHCs and possibly from active galactic nuclei. Further, we propose a hysteretic relation between the mass-flow rate and plasma-beta, a ratio of gas pressure to magnetic pressure, for the spectral evolution of transient BHCs. The disk is in the low-beta state in quiescence and early rise. The low-beta disk is optically thin and affected by advection. A hard-to-soft transition occurs before the peak luminosity, since there is no advection-dominated branch at higher luminosities. An optically thick, high-beta disk appears at small radii. In the decay phase of the light curve, the standard-type disk becomes effectively optically thin, when a soft-hard transition is triggered. High-beta plasmas in the main body shrink to form minute blobs, and low-beta coronal plasma fills interblob space.

  8. MIGRATION OF PLANETS EMBEDDED IN A CIRCUMSTELLAR DISK

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J. E-mail: skenyon@cfa.harvard.edu

    2011-07-01

    Planetary migration poses a serious challenge to theories of planet formation. In gaseous and planetesimal disks, migration can remove planets as quickly as they form. To explore migration in a planetesimal disk, we combine analytic and numerical approaches. After deriving general analytic migration rates for isolated planets, we use N-body simulations to confirm these results for fast and slow migration modes. Migration rates scale as m{sup -1} (for massive planets) and (1 + (e{sub H}/3){sup 3}){sup -1}, where m is the mass of a planet and e{sub H} is the eccentricity of the background planetesimals in Hill units. When multiple planets stir the disk, our simulations yield the new result that large-scale migration ceases. Thus, growing planets do not migrate through planetesimal disks. To extend these results to migration in gaseous disks, we compare physical interactions and rates. Although migration through a gaseous disk is an important issue for the formation of gas giants, we conclude that migration has little impact on the formation of terrestrial planets.

  9. Chondrules and the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Jones, Rhian; Scott, Ed

    2011-03-01

    Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV

  10. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  11. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  12. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  13. Research on Plasma Synthetic Jet Actuator

    NASA Astrophysics Data System (ADS)

    Che, X. K.; Nie, W. S.; Hou, Z. Y.

    2011-09-01

    Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.

  14. Actuator grouping optimization on flexible space reflectors

    NASA Astrophysics Data System (ADS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-03-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required accuracy, precision surface control is needed on these lightweight reflectors. While studies have shown that domain control of space reflectors via Polyvinylidene Fluoride (PVDF) actuators is promising, the challenge is to realistically control a large number of distributed actuators with limited number of power supplies. In this research, a new En Mass Elimination method is synthesized to determine the optimal grouping of actuators when the actuator number exceeds the number of power supplies available. An analytical model is developed and the methodology is demonstrated numerically through system simulation on the derived model.

  15. Actuators based on liquid crystalline elastomer materials

    NASA Astrophysics Data System (ADS)

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-05-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCE materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic fields, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the properties of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described.

  16. Feasibility of transparent flexible ultrasonic haptic actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  17. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  18. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  19. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  20. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  1. Serpentine Robot Arm Contains Electromagnetic Actuators

    NASA Technical Reports Server (NTRS)

    Moya, Israel A.; Studer, Philip A.

    1994-01-01

    Identical modules assembled into flexible robot arm configured in serpentlike fashion to manipulate objects while avoiding obstacles. Each module includes integral electromagnetic actuators energized selectively to produce variety of motions, stationary configurations, and combinations thereof.

  2. Conducting polymers are simultaneous sensing actuators

    NASA Astrophysics Data System (ADS)

    Córdova, Fransisco G.; Ismail, Yahya A.; Martinez, Jose G.; Al Harrasi, Ahmad S.; Otero, Toribio F.

    2013-04-01

    Conducting polymers are soft, wet and reactive gels capable of mimicking biological functions. They are the electrochemomechanical actuators having the ability to sense the surrounding variables simultaneously. The sensing and actuating signals are sent/received back through the same two connecting wires in these materials. The sensing ability is a general property of all conducting polymers arises from the unique electrochemical reaction taking place in them. This sensing ability is verified for two different conducting polymers here - for an electrochemically generated polypyrrole triple layer bending actuator exchanging cations and for a chemically generated polytoluidine linear actuator exchanging anions. The configuration of the polypyrrole actuator device corresponds to polypyrrole-dodecyl benzene sulfonate (pPy-DBS) film/tape/ pPy-DBS film in which the film on one side of the triple layer is acted as anode and the film on the other side acted as cathode simultaneously, and the films interchanged their role when move in the opposite direction. The polytoluidine linear actuator was fabricated using a hydrgel microfiber through in situ chemical polymerization. The sensing characteristics of these two actuators were studied as a function of their working conditions: applied current, electrolyte concentration and temperature in aqueous electrolytes. The chronopotentiometric responses were studied by applying square electrical currents for a specified time. For the pPy actuator it was set to produce angular movement of +/- 45° by the free end of the actuator, consuming constant charges of 60 mC. In both the actuators the evolution of the muscle potential along the electrical current cycle was found to be a function of chemical and physical variables acting on the polymer reaction rates: electrolyte concentration, temperature or driving electrical current. The muscle potential evolved decreases with increasing electrolyte concentrations, increasing temperatures or

  3. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  4. The average size and temperature profile of quasar accretion disks

    SciTech Connect

    Jiménez-Vicente, J.; Mediavilla, E.; Muñoz, J. A.; Motta, V.; Falco, E.

    2014-03-01

    We use multi-wavelength microlensing measurements of a sample of 10 image pairs from 8 lensed quasars to study the structure of their accretion disks. By using spectroscopy or narrowband photometry, we have been able to remove contamination from the weakly microlensed broad emission lines, extinction, and any uncertainties in the large-scale macro magnification of the lens model. We determine a maximum likelihood estimate for the exponent of the size versus wavelength scaling (r{sub s} ∝λ {sup p}, corresponding to a disk temperature profile of T∝r {sup –1/p}) of p=0.75{sub −0.2}{sup +0.2} and a Bayesian estimate of p = 0.8 ± 0.2, which are significantly smaller than the prediction of the thin disk theory (p = 4/3). We have also obtained a maximum likelihood estimate for the average quasar accretion disk size of r{sub s}=4.5{sub −1.2}{sup +1.5} lt-day at a rest frame wavelength of λ = 1026 Å for microlenses with a mean mass of M = 1 M {sub ☉}, in agreement with previous results, and larger than expected from thin disk theory.

  5. Unusual and Superfast Temperature-Triggered Actuators.

    PubMed

    Jiang, Shaohua; Liu, Fangyao; Lerch, Arne; Ionov, Leonid; Agarwal, Seema

    2015-09-01

    A superfast actuator based on a bilayer fibrous mat shows folding/unfolding and the formation of 3D structures in a fraction of a second. The actuation is reversible for many cycles without losing its form and size, with unfolding at room temperature and folding above 35 °C. The system is promising for making 3D bioscaffolds, electrodes, and micro-/macroactuators. PMID:26186175

  6. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  7. Redundancy of hydraulic flight control actuators

    NASA Technical Reports Server (NTRS)

    Chenoweth, C. C.; Ryder, D. R.

    1976-01-01

    The constraint of requiring airplanes to have inherent aerodynamic stability can be removed by using active control systems. The resulting airplane requires control system reliability approaching that of the basic airframe. Redundant control actuators can be used to achieve the required reliability, but create mechanization and operational problems. Of numerous candidate systems, two different approaches to solving the problems associated with redundant actuators which appear the most likely to be used in advanced airplane control systems are described.

  8. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  9. Handbook of actuators and edge alignment sensors

    SciTech Connect

    Krulewich, D A

    1992-11-01

    This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

  10. Design-oriented aeroservoelastic optimization of strain-actuated aircraft

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.

    An integrated design-oriented aeroservoelastic optimization capability for strain-actuated aircraft is presented. This capability is called SMART and it encompasses a suite of computer applications created for conceptual and preliminary design of aircraft augmented with "smart" actuation technologies. The SMART suite of applications includes: (1) a dedicated pre-processor for vehicle geometry, material, actuator, mechanism, and sensor layout; (2) a dedicated finite element automesher for conventional and strain-actuated flight vehicles; (3) integration of structural dynamics with a state of the art commercial unsteady aerodynamics code (ZAERO) via automated pre- and post-processors; (4) a database architecture for analyzing multiple designs and flight conditions; and (5) automated open- and closed-loop aeroservoelastic (ASE) model preparation. The analysis techniques used as the basis for SMART are suitable (within the range of application of linear theory) for modeling real flight vehicles with real large-scale structural, aerodynamic, and control systems. These techniques include: (6) dedicated linear finite element infrastructure for modeling conventional and strain-actuated (temperature and voltage induced) flight structures; (7) dedicated static and dynamic finite element solvers; (8) state space stability analysis for coupled aeroservoelastic systems; (9) computational tools for LQR controller design; and (10) analysis tools for the calculation of random response of linear systems to random inputs. SMART can compute: (11) static aeroelastic deformations and stresses in trimmed maneuvering elastic airplanes; (12) open-loop aeroelastic poles; (13) closed-loop (control by LQR) aeroservoelastic poles; (14) gust response (random gusts) of the open-loop and closed-loop aeroservoelastic system, and, also, when aerodynamic loads are not present; and (15) deformation and stresses of passive or actively-controlled structures subject to dynamic and static loads. To

  11. Photoevaporating Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    Ultraviolet radiation from the central star or from a nearby massive star heats the surfaces of protoplanetary disks and causes the outer, less gravitationally bound part of the disks, to photoevaporate into interstellar space. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks. We focus in this talk on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We discuss recent models of the effects of the radiation from the central low mass star including both the predicted infrared spectra from the heated disks as well as preliminary results on the photoevaporation rates.

  12. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Yorke, Harold W.; Johnstone, Doug; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the, inner disk (r approx. less than A 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approximately greater than 10 AU. Disk dispersed timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question.

  13. Heating and Cooling Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Turner, Neal

    Many of the disks of gas and dust orbiting young Sun-like stars produce mid-infrared emission from water and other oxygen- and carbon-bearing molecules, as discovered in the last few years using the Spitzer Space Telescope. The emission reveals the temperatures, columns and chemical composition of the gas in the disk atmosphere within 2 AU of the star, directly overlying the region where the planets form. Better understanding of the processes governing the line emission is vital for converting this new class of measurements into information about the planets' raw ingredients. We propose to combine MHD models of the turbulence driving the disk accretion flows, with a thermal-chemical model of the disk atmospheres, to predict emergent spectra that will capture the dynamics, heating, and chemical composition. By comparing the predicted and observed spectra we can determine the strength of the turbulence that heats and mixes the gas, and test ideas about the conditions in the disk interior. We will investigate the coupling of the turbulence to the thermal and chemical evolution, seek to locate the line emission's power source, gauge the rate at which the atmosphere and interior exchange material, and obtain new independent measures of the disk mass accretion rates. These efforts will help infrared spectroscopy of protostellar disks reach its full potential as a diagnostic of the environments in which planets form.

  14. Bringing "The Moth" to Light: A Planet-Perturbed Disk Scenario for the HD 61005 System

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul G.; Millar-Blanchaer, Max; Wang, Jason

    2015-12-01

    The HD 61005 debris disk ("The Moth") is notable for its unusual swept-back "wing" morphology, brightness asymmetries, dust ring offset, and a cleared region inside of ~50 AU. Here we present Gemini Planet Imager data that reveal this disk in scattered light down to Jupiter-like separations of <10 AU. Complementary W.M. Keck NIRC2/AO J,H,K imaging shows the disk's outer regions with high angular resolution. Based on these data, we propose a new explanation for the disk's features: that of an unseen planet on an inclined, eccentric orbit perturbing the disk material. To test this scenario, we used secular perturbation theory to construct 3-D dust distributions that informed 2-D scattered-light models, which we then compared with the data via an MCMC analysis. We found that the best-fit models reproduced morphological disk features similar to those observed, indicating that the perturber scenario is plausible for this system.

  15. Networked Rectenna Array for Smart Material Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.

    2000-01-01

    The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.

  16. Dielectric Elastomer Actuated Systems and Methods

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.

  17. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  18. Three DOF actuator for optical parts micropositioning

    NASA Astrophysics Data System (ADS)

    Nitu, Constantin; Comeaga, Constantin D.; Gramescu, Bogdan

    2005-08-01

    The actual growth of high-technologies and future applications in micro- and nano-manufacturing have raised the need for low cost / high performance micro-positioners. Photonic packaging, optical device testing, MEMS positioning/alignment, fiber alignment, micromachining, micro-manipulation, semiconductor handling systems, microsurgery are some examples of applications, from which the most are in the optical field. Very often, micro-positioning systems with micron or submicron resolution m needed to be run open loop, without feedback position sensors. Such devices are achievable with strain actuators like piezoelectric, magnetostrictive or electrostrictive ones. Two kinds of actuators could be used, with continuous motion or with discrete motion. The first could reach all the points from a space but request real time control. The second could reach only a finite number of points in space, but the command is binary, easy to implement. The working space for discrete actuators can be reached using a lot of actuators, series connected. The paper presents a piezoelectric actuator with 3 DOF, that could be used for micro-positioning. The investigated actuator is a scale model, for checking the principle and the models.

  19. Resonantly driven nonlinear density waves in protostellar disks

    NASA Technical Reports Server (NTRS)

    Yuan, Chi; Cassen, Pat

    1994-01-01

    Recent observations of binary, pre-main-sequence, solar-type stars provide evidence that such systems may coexist with circumstellar disks. The binary disk systems, besides being of general interest for the study of star formation, potentially provide useful tests of companion-disk interaction theories prominent in current hypotheses of planet formation. In this paper, we apply an asymptotic analysis of the nonlinear, resonant interaction of a stellar companion with a disk to understand the dependence of such interactions on the properties of the system: the binary mass ratio, the physical properties of the disk, and the effective dissipation (treated herein as viscosity). The method is based on a WKBJ approximation and exploits the conditions that the disk is thin and much less massive than the primary, but does not require that the companion-induced disturbance be small. Both isothermal and adiabatic responses are treated. Only circular orbit resonances are considered in this paper. It is demonstrated that the temperature of the disk as well as the relative mass of the companion affects the degree of nonlinearity, and that nonlinearity promotes high wave compression ratios, long wavelengths, and increased propagation distances. Nevertheless, the total torque exerted between the companion and the disk is well represented by linear theory. The amplitudes of density disturbances are reduced by viscosity and nonisothermality. Because resonant interactions are generally strong and capable of driving rapid evolution, one might expect observations of systems undergoing strong, resonant-driven evolution to be rare. In this connection, it is pointed out that the m = 1 resonance is distinguished by being anomalously weaker than the others and is therefore of observational interest. It is speculated that, in conditions of intrinsically small dissipation, the propagation of resonant-driven density waves is limited by the tendency of their wavelength to diminish with distance

  20. Actuator for automatic cruising system

    SciTech Connect

    Suzuki, K.

    1989-03-07

    An actuator for an automatic cruising system is described, comprising: a casing; a control shaft provided in the casing for rotational movement; a control motor for driving the control shaft; an input shaft; an electromagnetic clutch and a reduction gear which are provided between the control motor and the control shaft; and an external linkage mechanism operatively connected to the control shaft; wherein the reduction gear is a type of Ferguson's mechanical paradox gear having a pinion mounted on the input shaft always connected to the control motor; a planetary gear meshing with the pinion so as to revolve around the pinion; a static internal gear meshing with the planetary gear and connected with the electromagnetic clutch for movement to a position restricting rotation of the static internal gear; and a rotary internal gear fixed on the control shaft and meshed with the planetary gear, the rotary internal gear having a number of teeth slightly different from a number of teeth of the static internal gear; and the electromagnetic clutch has a tubular electromagnetic coil coaxially provided around the input shaft and an engaging means for engaging and disengaging with the static internal gear in accordance with on-off operation of the electromagnetic coil.

  1. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  2. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  3. Fully redundant mechanical release actuator

    NASA Technical Reports Server (NTRS)

    Lucy, Melvin H. (Inventor)

    1987-01-01

    A system is described for performing a mechanical release function exhibiting low shock. This system includes two pyrotechnic detents fixed mounted in opposing axial alignment within a cylindrical housing having two mechanical bellows. Two mechanical bellow assemblies, each having one end hermetically bonded to the housing and the other to the respective actuator pin extending from either end of the housing, ensure that all outgassing and contamination from the operation of the pyrotechnic devices will be contained within the housing and bellows. The pin on one end of the assembly is fixed mounted and supported, via a bolt or ball-and-socket joint so that when the charge corresponding to that pin ignites, the entire assembly will exhibit rectilinear movement, including the opposing pin providing the unlatching motion. The release detent pin is supported by a linear bearing and when its corresponding pyrotechnic charge ignites the pin is retracted within the housing producing the same unlatching motion without movement of the entire assembly, thus providing complete mechanical, electrical and pyrotechnic redundancy for the unlatching pin.

  4. Lightweight Exoskeletons with Controllable Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mavrodis, Constantinos; Melli-Huber, Juan; Fisch, Avi (Alan)

    2004-01-01

    A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human-strength-amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers strengths in the performance of military, law-enforcement, and industrial tasks. An exoskeleton according to the proposal would include adjustable lightweight graphite/epoxy struts and would be attached to the wearer's body by belts made of hook-and-pile material. At selected rotary and linear joints, the exoskeleton would be fitted, variously, with lightweight, low-power-consumption rotary and linear brakes, clutches, and motors. The exoskeleton would also be equipped with electronic circuitry for monitoring, control, and possibly communication with external electronic circuits that would perform additional monitoring and control functions.

  5. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  6. Double nanoplate-based NEMS under hydrostatic and electrostatic actuations

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Hosseini, S. H. S.

    2016-05-01

    Presented herein is a comprehensive investigation on the nonlinear vibration behavior of nanoplate-based nano electromechanical systems (NEMS) under hydrostatic and electrostatic actuations based on nonlocal elasticity and Gurtin-Murdoch theory. Using nonlinear strain-displacement relations, the geometrical nonlinearity is modeled. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. Nonlocal plate theory and Hamilton's principle are utilized for deriving the governing equations. Furthermore, the differential quadrature method (DQM) is employed to compute the nonlinear frequency. In addition, pull-in voltage and hydrostatic pressure are considered by comparing the results obtained from nanoplates made of two different materials including aluminum (Al) and silicon (Si). Finally, the influences of important parameters including the small scale, thickness of the nanoplate, center gap and Winkler coefficient in the actuated nanoplate are thoroughly studied. The plots for the ratio of nonlinear-to-linear frequencies against thickness, maximum transverse amplitude and non-dimensional center gap of nanoplate are also presented.

  7. Larger-Stroke Piezoelectrically Actuated Microvalve

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be

  8. Piezoelectric control of the static behaviour of flextensional actuators with constricted hinges

    NASA Astrophysics Data System (ADS)

    Przybylski, Jacek

    2014-06-01

    The objective of this paper is to present the mathematical modelling and computational testing of the static operational performance and effectiveness of flextensional actuators comprised of two rectilinear or initially deflected beams placed equidistantly from a centrally located piezoceramic stack in the form of a rod. The beams are mounted by stiff links with an offset to a piezoelectric transformer. A monolithic hinge lever mechanism is applied by cutting constricted hinges at the links to generate and magnify the in-plane displacement created by the application of a voltage to the piezorod. Structures of such a type have been commonly used as passive or active actuators since the manufacturing of the mechanism’s prototypes in the form of Moonie or cymbal actuators. An analytical model of the actuator is developed on the basis of stationary values of the total potential energy principle with the use of the von Kármán non-linear strains theory. During the numerical computations, the deflection and internal axial force generated by both the externally distributed load and the the application of an electric field are determined by changing the actuator properties such as the distance between the beams and the rod, the amplitude of the beam’s initial displacement as well as the stiffness of the constricted hinges. Additionally, the application of structure prestressing is considered to avoid an undesired stretching of the piezo stack. It has been shown that for the flextensional actuator with a very high flexibility of constricted hinges, the generated transverse displacement is limited by the maximum electric field as the characteristic property for each piezoceramic material. A vast number of numerical results exhibit the mechanical responses of the transducer of different geometrical and physical properties to piezoelectric stimulation; this has potential applications in the design process of such actuators.

  9. Streaming potential near a rotating porous disk.

    PubMed

    Prieve, Dennis C; Sides, Paul J

    2014-09-23

    Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

  10. Two-way actuation of graphene oxide arising from quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-10-01

    Using density functional theory (DFT) calculations, two stable phases were found for several graphene oxide (GO) crystals with linearly aligned epoxy groups. Upon electron injection, they exhibit two-way actuation behavior. This two-way actuation is named by the observations that one piece of monolayer GO crystal is able to expand or contract upon electron injection, namely, contraction of the stable phase, and expansion of the meta-stable phase. The obtained maximum in-plane strains are as high as 8% and -5%. Such large deformation in opposite directions obtained from a single piece GO material offers unique opportunities in designing highly tunable and integrated actuators for microelectromechanical or nanoelectromechanical systems.

  11. Induced Velocities Near a Lifting Rotor with Nonuniform Disk Loading

    NASA Technical Reports Server (NTRS)

    Heyson, Harry H; Katzoff, S

    1957-01-01

    A method is given for converting known uniformly loaded rotor induced velocities to correspond with arbitrary axisymmetric nonuniform disk load distributions. Numerical results for two specific distributions are given in chart form. Symmetry relations and relations between radial disk loading and wake velocities are developed. Experimental flow measurements are presented and compared with theory. Reasonable agreement is shown in the forward part of the flow when nonuniform loading is assumed, but far behind the rotor the flow is more like that of a wing.

  12. Gravitational instabilities in protostellar disks

    NASA Technical Reports Server (NTRS)

    Tohline, J. E.

    1994-01-01

    The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.

  13. An analytical and experimental investigation of flutter suppression via piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1992-01-01

    The objective of this research was to analytically and experimentally study the capabilities of adaptive material plate actuators for suppressing flutter. Piezoelectrics are materials which are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two degree of freedom wind-tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system which permitted translational and rotational degrees of freedom. Actuators, made of piezoelectric material were affixed to leaf springs on the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the closed-loop damping and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element methods, laminated plate theory, and aeroelastic analysis tools. A flutter suppression control law was designed, implemented on a digital control computer, and tested to conditions 20 percent above the passive flutter speed of the model. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. It demonstrates that small, carefully-placed actuating plates can be used effectively to control aeroelastic response.

  14. Wing box transonic-flutter suppression using piezoelectric self-sensing actuators attached to skin

    NASA Astrophysics Data System (ADS)

    Otiefy, R. A. H.; Negm, H. M.

    2010-12-01

    The main objective of this research is to study the capability of piezoelectric (PZT) self-sensing actuators to suppress the transonic wing box flutter, which is a flow-structure interaction phenomenon. The unsteady general frequency modified transonic small disturbance (TSD) equation is used to model the transonic flow about the wing. The wing box structure and piezoelectric actuators are modeled using the equivalent plate method, which is based on the first order shear deformation plate theory (FSDPT). The piezoelectric actuators are bonded to the skin. The optimal electromechanical coupling conditions between the piezoelectric actuators and the wing are collected from previous work. Three main different control strategies, a linear quadratic Gaussian (LQG) which combines the linear quadratic regulator (LQR) with the Kalman filter estimator (KFE), an optimal static output feedback (SOF), and a classic feedback controller (CFC), are studied and compared. The optimum actuator and sensor locations are determined using the norm of feedback control gains (NFCG) and norm of Kalman filter estimator gains (NKFEG) respectively. A genetic algorithm (GA) optimization technique is used to calculate the controller and estimator parameters to achieve a target response.

  15. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.

    PubMed

    Otten, Alexander; van Vuuren, Wieke; Stienen, Arno; van Asseldonk, Edwin; Schouten, Alfred; van der Kooij, Herman

    2011-01-01

    Robotics used for diagnostic measurements on, e.g. stroke survivors, require actuators that are both stiff and compliant. Stiffness is required for identification purposes, and compliance to compensate for the robots dynamics, so that the subject can move freely while using the robot. A hydraulic actuator can act as a position (stiff) or a torque (compliant) actuator. The drawback of a hydraulic actuator is that it behaves nonlinear. This article examines two methods for controlling a nonlinear hydraulic actuator. The first method that is often applied uses an elastic element (i.e. spring) connected in series with the hydraulic actuator so that the torque can be measured as the deflection of the spring. This torque measurement is used for proportional integral control. The second method of control uses the inverse of the model of the actuator as a linearizing controller. Both methods are compared using simulation results. The controller designed for the series elastic hydraulic actuator is faster to implement, but only shows good performance for the working range for which the controller is designed due to the systems nonlinear behavior. The elastic element is a limiting factor when designing a position controller due to its low torsional stiffness. The model-based controller linearizes the nonlinear system and shows good performance when used for torque and position control. Implementing the model-based controller does require building and validating of the detailed model. PMID:22275654

  16. Rewriteable optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Rinsland, Pamela L.

    1991-01-01

    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented.

  17. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko

    2010-10-20

    We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, {approx}140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas-grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H{sub 2}O and CO{sub 2}. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH{sub 3}OH, HCOOCH{sub 3}, and CH{sub 3}OCH{sub 3} to potentially observable values (i.e., a fractional abundance of {approx}>10{sup -11}).

  18. Centrally-Rupturing Squib-Closure Disks

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1986-01-01

    Rupture-disk design makes squib action more predictable. In new design, center of rupture disk contains cruciform indentation in which thickness reduced to about 0.5 mil (0.013 mm). Reduces strength of center of rupture disk in same manner as that of pull tabs on beverage cans; therefore, disk will fail predictably in center.

  19. Overall life cycle comprehensive assessment of pneumatic and electric actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Yeming; Cai, Maolin

    2014-05-01

    Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be

  20. Design of an innovative magnetostrictive patch actuator

    NASA Astrophysics Data System (ADS)

    Cinquemani, S.; Giberti, H.

    2015-04-01

    Magnetostrictive actuators can be profitably used to reduce vibration in structures. However, this technology has been exploited only to develop inertial actuators, while patches actuators have not been ever used in practice. Patches actuators consist on a layer of magnetostrictive material, which has to be stuck to the surface of the vibrating structure, and on a coil surrounding the layer itself. However, the presence of the winding severely limits the use of such devices. As a matter of fact, the scientific literature reports only theoretical uses of such actuators, but, in practice it does not seem they were ever used. This paper presents an innovative solution to improve the structure of the actuator patches, allowing their use in several practical applications. The principle of operation of these devices is rather simple. The actuator patch is able to generate a local deformation of the surface of the vibrating structure so as to introduce an equivalent damping that dissipates the kinetic energy associated to the vibration. This deformation is related to the behavior of the magnetostrictive material immersed in a variable magnetic field generated by the a variable current flowing in the winding. Contrary to what suggested in the theoretical literature, the designed device has the advantage of generating the variable magnetic field no longer in close proximity of the material, but in a different area, thus allowing a better coupling. The magnetic field is then conveyed through a suitable ferromagnetic structure to the magnetostrictive material. The device has been designed and simulated through FEA. Results confirm that the new configuration can easily overcome all the limits of traditional devices.

  1. Position Sensor Integral with a Linear Actuator

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Alhorn, Dean C.

    2004-01-01

    A noncontact position sensor has been designed for use with a specific two-dimensional linear electromagnetic actuator. To minimize the bulk and weight added by the sensor, the sensor has been made an integral part of the actuator: that is to say, parts of the actuator structure and circuitry are used for sensing as well as for varying position. The actuator (see Figure 1) includes a C-shaped permanent magnet and an armature that is approximately centered in the magnet gap. The intended function of the actuator is to cause the permanent magnet to translate to, and/or remain at, commanded x and y coordinates, relative to the armature. In addition, some incidental relative motion along the z axis is tolerated but not controlled. The sensor is required to measure the x and y displacements from a nominal central position and to be relatively insensitive to z displacement. The armature contains two sets of electromagnet windings oriented perpendicularly to each other and electrically excited in such a manner as to generate forces in the x,y plane to produce the required motion. Small sensor excitation coils are mounted on the pole tips of the permanent magnet. These coils are excited with a sine wave at a frequency of 20 kHz. This excitation is transformer-coupled to the armature windings. The geometric arrangement of the excitation coils and armature windings is such that the amplitudes of the 20-kHz voltages induced in the armature windings vary nearly linearly with x and y displacements and do not vary significantly with small z displacements. Because the frequency of 20 kHz is much greater than the maximum frequency characteristic of the actuation signals applied to the armature windings, there is no appreciable interference between actuator and sensor functions of the armature windings.

  2. Scalability of Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2008-01-01

    Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

  3. Outflows from Accretion Disks around Compact Objects

    NASA Astrophysics Data System (ADS)

    Jiao, Cheng-Liang; Wu, Xue-Bing

    2013-02-01

    We solve the set of hydrodynamic equations for accretion disks in the spherical coordinates (rθφ) to obtain the explicit structure along the θ direction. The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev Disks (SSDs) and thicker, sub-Keplerian disks for Advection Dominated Accretion Flows (ADAFs) and slim disks, which are consistent with previous popular analytical models, while an inflow region and an outflow region always exist, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and stronger in slim disks and ADAFs.

  4. GROWTH OF GRAINS IN BROWN DWARF DISKS

    SciTech Connect

    Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-09-01

    We perform coagulation and fragmentation simulations using the new physically motivated model by Garaud et al. to determine growth locally in brown dwarf disks. We show that large grains can grow and that if brown dwarf disks are scaled-down versions of T Tauri disks (in terms of stellar mass, disk mass, and disk radius) growth at an equivalent location with respect to the disk truncation radius can occur to the same size in both disks. We show that similar growth occurs because the collisional timescales in the two disks are comparable. Our model may therefore potentially explain the recent observations of grain growth to millimeter sizes in brown dwarf disks, as seen in T Tauri disks.

  5. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  6. Force control of ionic polymer-metal composite actuators with cellular actuator method

    NASA Astrophysics Data System (ADS)

    Inoue, Yushiro; Kamamichi, Norihiro

    2014-03-01

    Ionic polymer-metal composite (IPMC) is one of the electro-active polymer materials which respond to electric stimuli with shape change. IPMC actuators can be activated with simple driving circuit and common control approach; however, dynamic characteristics change from environmental conditions such as the temperature or humidity. The output force of IPMC is very small, and the stress relaxation exists depending on the type of the counter-ions in the electrolyte. Therefore, it is desirable to construct robust controllers and connection of multiple actuator units to obtain stable and large output force. In this study, we apply a control method for cellular actuators to solve above problems. The cellular actuator is a concept of the actuators which consist of multiple actuator units. The actuator units connect in parallel or series, and each unit is controlled by distributed controllers, which are switched ON/OFF state stochastically depending on the broadcast error signal which is generated in the central controller. In this paper, we verify the control performance of the cellular actuator method through numerical simulations. In the simulations, we assume that the one hundred units of IPMC connected in parallel, the output force is controlled to the desired value. The control performance is investigated in the case of some mixed ratio of units whose counter-ions are Sodium (Na) ion or Tetraethylammonium (TEA). As a result of simulation, it was confirmed that the tracking performance is improved by combining the fast response actuator units of Na ions and the large output actuator units of TEA ions.

  7. Kilohertz scanning all-fiber optical delay line using piezoelectric actuation

    NASA Astrophysics Data System (ADS)

    Henderson, David A.; Hoffman, Conrad; Culhane, Robert; Viggiano, Dan, III

    2004-12-01

    Commercial applications for fiber sensing and low-coherence interferometry are rapidly growing in medical, industrial and aerospace markets. These new instruments must be smaller, more robust and less expensive. An all-fiber optical delay line or "fiber stretcher", using piezoelectric (PZT) actuation, offers a simple solid-state solution that eliminates free space optics. The challenges for PZT fiber stretchers include: reducing non-linearity and hysteresis, achieving sufficient scan range with minimum fiber length, maximizing scan frequency and reducing losses in the drive electronics. PZT actuators are essentially large ceramic capacitors that must be rapidly charged and discharged to achieve fast scanning. The mechanical response of the PZT ceramic is greater than 10 kHz which makes it practical to scan at four kilohertz. A thin-walled piezoelectric disk or cylinder achieves 4.5 millimeters of fiber stretch using 20 meters of coiled fiber. Digitally controlled series resonant electronics produce a 1200 volt sinusoidal drive signal at a fixed frequency of four kilohertz while dissipating only 16 Watts. An all-fiber optical delay line module, using piezoelectric actuators and a series resonant drive, is a miniature, robust and efficient alternative to free-space optics with dithering mirrors or spinning polygons.

  8. Validation of the Actuator Line Model with coarse resolution in atmospheric sheared and turbulent inflow

    NASA Astrophysics Data System (ADS)

    Draper, M.; Guggeri, A.; Usera, G.

    2016-09-01

    Wind energy has become cost competitive in recent years for several reasons. Among them, wind turbines have become more efficient, increasing its size, both rotor diameter and tower height. This growth in size makes the prediction of the wind flow through wind turbines more challenging. To avoid the computational cost related to resolve the blade boundary layer as well as the atmospheric boundary layer, actuator models have been proposed in the past few years. Among them, the Actuator Line Model (ALM) has shown to reproduce with reasonable accuracy the wind flow in the wake of a wind turbine with moderately computational cost. However, its use to simulate the flow through wind farms requires a spatial resolution and a time step that makes it unaffordable in some cases. The present paper aims to assess the ALM with coarser resolution and larger time step than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition and comparing the results with the Actuator Disk Model with Rotation (ADM-R) and experimental data. To accomplish this, a well known wind tunnel campaign is considered as validation case.

  9. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  10. Experimental investigation of resonant MEMS switch with ac actuation

    NASA Astrophysics Data System (ADS)

    Pal, Jitendra; Zhu, Yong; Wang, Boyi; Lu, Junwei; Khan, Fahimullah; Viet Dao, Dzung; Wang, Yifan

    2016-06-01

    In this letter, modeling, analysis, and experimental investigation for a resonant MEMS switch are presented. The resonant switch harnesses its mechanical resonance to lower the required actuation voltage by a substantial factor over the switch with static actuation. With alternating actuation voltage at its mechanical resonance frequency of 6.6 kHz, the average capacitance is tuned by changing the gap between fixed and movable electrodes. Based on the proposed actuation method, the device offers 57.44% lower actuation voltage compared with the switch with static actuation.

  11. Interfacing dielectric elastomer actuators with liquids

    NASA Astrophysics Data System (ADS)

    Poulin, Alexandre; Maffli, Luc; Rosset, Samuel; Shea, Herbert

    2015-04-01

    Methods and materials for liquid encapsulation in thin (19 μm) silicone membranes are presented in this work. A set of 12 liquids including solvents, oils, silicone pre-polymers and one ionic liquid are experimentally tested. We show that all selected liquids are chemically inert to silicone and that vapor pressure is the key parameter for stable encapsulation. It is demonstrated that encapsulated volume of silicone pre-polymers and ionic liquids can stay stable for more than 1 month. The actuation of dielectric elastomer actuators (DEAs) in conductive liquids is also investigated. An analysis of the equivalent electrical circuits of immersed DEAs shows that non-overlapping regions of the electrodes should be minimized. It also provides guidelines to determine when the electrodes should be passivated. The effects of immersion in a conductive liquid are assessed by measuring the actuation strain and capacitance over periodic actuation. The experimental results show no sign of liquid-induced degradation over more than 45k actuation cycles.

  12. A wireless actuating drug delivery system

    NASA Astrophysics Data System (ADS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-04-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s-1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator.

  13. Actuators, biomedicine, and cell-biology

    NASA Astrophysics Data System (ADS)

    Jager, Edwin W. H.

    2012-04-01

    Conducting polymers such as polypyrrole are well-known for their volume changing capacity and their use as actuating material. Actuators based on polypyrrole have been demonstrated in dimensions ranging from centimetres down to micrometres as well as in linear strain and bending beam actuation modes. The polypyrrole (micro-)actuators can be operated in salt solutions including cell culture media and blood. In addition, polypyrrole is known to be biocompatible making them a good choice for applications within cell biology and medicine. Applications of polypyrrole actuators within micromechanical devices, such as microrobotics and valves, will be presented. Opportunities and devices for the medical device industry, especially vascular surgery will be shown. This includes a rotating PCTA balloon system, a steerable guide wire, and an implantable drug delivery system. In addition, novel mechanostimulation chips for cell biology will be introduced. Using these devices, we can stretch cells and show the cellular response to this mechanical stimulation. Since the dawn of eukaryotic cells many parallel molecular mechanisms that respond to mechanical stimuli have evolved. This technology allows us to begin the investigation of these mechanisms on a single cell level.

  14. Curved Piezoelectric Actuators for Stretching Optical Fibers

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  15. Evolutionary flight and enabling smart actuator devices

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  16. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  17. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  18. Graphene-nanoplatelet-based photomechanical actuators

    NASA Astrophysics Data System (ADS)

    Loomis, James; King, Ben; Burkhead, Tom; Xu, Peng; Bessler, Nathan; Terentjev, Eugene; Panchapakesan, Balaji

    2012-02-01

    This paper reports large light-induced reversible and elastic responses of graphene nanoplatelet (GNP) polymer composites. Homogeneous mixtures of GNP/polydimethylsiloxane (PDMS) composites (0.1-5 wt%) were prepared and their infrared (IR) mechanical responses studied with increasing pre-strains. Using IR illumination, a photomechanically induced change in stress of four orders of magnitude as compared to pristine PDMS polymer was measured. The actuation responses of the graphene polymer composites depended on the applied pre-strains. At low levels of pre-strain (3-9%) the actuators showed reversible expansion while at high levels (15-40%) the actuators exhibited reversible contraction. The GNP/PDMS composites exhibited higher actuation stresses compared to other forms of nanostructured carbon/PDMS composites, including carbon nanotubes (CNTs), for the same fabrication method. An extraordinary optical-to-mechanical energy conversion factor (ηM) of 7-9 MPa W-1 for GNP-based polymer composite actuators is reported.

  19. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  20. Bio inspired Magnet-polymer (Magpol) actuators

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2014-03-01

    Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.