Science.gov

Sample records for actuator fault detection

  1. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  2. Simultaneous fault detection and control for switched systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Li, Jian; Yang, Guang-Hong

    2016-07-01

    This paper is concerned with the fault detection and control problem for discrete-time switched systems. The actuator faults, especially 'outage cases', are considered. The detector/controller is designed simultaneously such that the closed-loop system switches under an average dwell time, and when a fault is detected, an alarm is generated and then the controller is switched to allow the norm of the states of the subsystem to increase within the acceptable limits. Thus, a switching strategy which combines average dwell time switching with event-driven switching is proposed. Under this switching strategy, the attention is focused on designing the detector/controller such that estimation errors between residual signals and faults are minimised for the fulfillment of fault detection objectives; simultaneously, the closed-loop system becomes asymptotically stable for the fulfillment of control objectives. A two-step procedure is adopted to obtain the solutions through satisfying a set of linear matrix inequalities. An example comprising of three cases is considered. Through these cases, it is demonstrated that the fault detection and control for switched systems using a two-stage switching strategy and asynchronous switching are feasible.

  3. UIO design for singular delayed LPV systems with application to actuator fault detection and isolation

    NASA Astrophysics Data System (ADS)

    Hassanabadi, Amir Hossein; Shafiee, Masoud; Puig, Vicenc

    2016-01-01

    In this paper, the unknown input observer (UIO) design for singular delayed linear parameter varying (LPV) systems is considered regarding its application to actuator fault detection and isolation. The design procedure assumes that the LPV system is represented in the polytopic framework. Existence and convergence conditions for the UIO are established. The design procedure is formulated by means of linear matrix inequalities (LMIs). Actuator fault detection and isolation is based on using the UIO approach for designing a residual generator that is completely decoupled from unknown inputs and exclusively sensitive to faults. Fault isolation is addressed considering two different strategies: dedicated and generalised bank of observers' schemes. The applicability of these two schemes for the fault isolation is discussed. An open flow canal system is considered as a case study to illustrate the performance and usefulness of the proposed fault detection and isolation method in different fault scenarios.

  4. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  5. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  6. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  7. Integrated sensor and actuator fault-tolerant control

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.; Richter, Jan H.

    2013-04-01

    We propose a fault-tolerant control scheme that deals with sensor and actuator faults through the use of a virtual actuator (VA) and a bank of virtual sensors (VSs). A novel feature of the scheme is that the VSs implicitly integrate both fault detection and isolation (FDI) and - in conjunction with the VA - controller reconfiguration tasks. The VA and the bank of VSs operate in closed-loop with an observer-based tracking controller designed for a nominal (fault free) model of the plant. A switching rule that reconfigures the VA and engages the suitable VS from the bank is based on sets defined for measurable residual signals constructed directly from the VS signals. Our method handles abrupt actuator and sensor faults of arbitrary magnitude including complete outage. The overall scheme is shown to guarantee closed-loop boundedness and setpoint tracking under all considered fault situations. Enhancements of the scheme to deal with errors in the fault detection and isolation are also proposed. Applications of the scheme to a winding machine and an interconnected tank system are presented.

  8. Robust Fault Detection and Isolation for Stochastic Systems

    NASA Technical Reports Server (NTRS)

    George, Jemin; Gregory, Irene M.

    2010-01-01

    This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.

  9. Fault tolerant cooperative control for UAV rendezvous problem subject to actuator faults

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Meskin, N.; Sobhani-Tehrani, E.; Khorasani, K.; Rabbath, C. A.

    2007-04-01

    This paper investigates the problem of fault tolerant cooperative control for UAV rendezvous problem in which multiple UAVs are required to arrive at their designated target despite presence of a fault in the thruster of any UAV. An integrated hierarchical scheme is proposed and developed that consists of a cooperative rendezvous planning algorithm at the team level and a nonlinear fault detection and isolation (FDI) subsystem at individual UAV's actuator/sensor level. Furthermore, a rendezvous re-planning strategy is developed that interfaces the rendezvous planning algorithm with the low-level FDI. A nonlinear geometric approach is used for the FDI subsystem that can detect and isolate faults in various UAV actuators including thrusters and control surfaces. The developed scheme is implemented for a rendezvous scenario with three Aerosonde UAVs, a single target, and presence of a priori known threats. Simulation results reveal the effectiveness of our proposed scheme in fulfilling the rendezvous mission objective that is specified as a successful intercept of Aerosondes at their designated target, despite the presence of severe loss of effectiveness in Aerosondes engine thrusters.

  10. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    NASA Astrophysics Data System (ADS)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-12-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque.

  11. Robust fault detection and isolation in stochastic systems

    NASA Astrophysics Data System (ADS)

    George, Jemin

    2012-07-01

    This article outlines the formulation of a robust fault detection and isolation (FDI) scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves estimating sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the proposed robust FDI system.

  12. Solar system fault detection

    NASA Astrophysics Data System (ADS)

    Farrington, R. B.; Pruett, J. C., Jr.

    1984-05-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combing the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  13. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  14. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  15. Actuator fault tolerant multi-controller scheme using set separation based diagnosis

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.

    2010-11-01

    We present a fault tolerant control strategy based on a new principle for actuator fault diagnosis. The scheme employs a standard bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with distinctive dynamics when an estimator matches the current fault situation of the plant. Based on the information from each observer, a fault detection and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate control law from a bank of controllers, each of them designed to stabilise and achieve reference tracking for one of the given fault models. The main contribution of this article is to propose a new FDI principle which exploits the separation of sets that characterise healthy system operation from sets that characterise transitions from healthy to faulty behaviour. The new principle allows to provide pre-checkable conditions for guaranteed fault tolerance of the overall multi-controller scheme.

  16. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    PubMed

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. PMID:27180025

  17. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  18. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  19. Randomness fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1996-01-01

    A method and apparatus are provided for detecting a fault on a power line carrying a line parameter such as a load current. The apparatus monitors and analyzes the load current to obtain an energy value. The energy value is compared to a threshold value stored in a buffer. If the energy value is greater than the threshold value a counter is incremented. If the energy value is greater than a high value threshold or less than a low value threshold then a second counter is incremented. If the difference between two subsequent energy values is greater than a constant then a third counter is incremented. A fault signal is issued if the counter is greater than a counter limit value and either the second counter is greater than a second limit value or the third counter is greater than a third limit value.

  20. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  1. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  2. An algorithmic approach for fault-monitoring of electrical actuation system for all electric aircraft

    NASA Astrophysics Data System (ADS)

    Murthy, T. V. Rama; Krishnan, A.; Ajay, S.

    1991-10-01

    A current trend in fault detection and identification (FDI) is to use a combination of algorithmic procedural methods and artificial intelligence (AI) techniques. A method for monitoring faulty sensors in aircraft electrical actuators is presented. This method is based on static model based fault detection (MBFD) and parameter estimation based on on-line recursive least squares (RLS). Investigations were made of MBFD where measured variables were checked for consistency with those of the model. In the case study, owing to the wide variation of the poles of the overall transfer function, a reduced order model was chosen to model the process. Fault detection is also achieved by estimating the reduced order model parameters in the closed loop by RLS. It is found that RLS is reliable only on the addition of a PRBS dither signal to the input excitation. The combination of the two methods improves the fault detection probability while simultaneously reducing the false alarm probability. This yields a higher confidence level in the fault monitoring, especially in the context of the response of a reduced order model.

  3. Intelligent fault diagnosis and failure management of flight control actuation systems

    NASA Technical Reports Server (NTRS)

    Bonnice, William F.; Baker, Walter

    1988-01-01

    The real-time fault diagnosis and failure management (FDFM) of current operational and experimental dual tandem aircraft flight control system actuators was investigated. Dual tandem actuators were studied because of the active FDFM capability required to manage the redundancy of these actuators. The FDFM methods used on current dual tandem actuators were determined by examining six specific actuators. The FDFM capability on these six actuators was also evaluated. One approach for improving the FDFM capability on dual tandem actuators may be through the application of artificial intelligence (AI) technology. Existing AI approaches and applications of FDFM were examined and evaluated. Based on the general survey of AI FDFM approaches, the potential role of AI technology for real-time actuator FDFM was determined. Finally, FDFM and maintainability improvements for dual tandem actuators were recommended.

  4. Actuator fault estimation and accommodation for switched systems with time delay: Discrete-time case.

    PubMed

    Du, Dongsheng; Jiang, Bin

    2016-05-01

    This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results. PMID:26924247

  5. Actuator fault estimation and accommodation for switched systems with time delay: Discrete-time case.

    PubMed

    Du, Dongsheng; Jiang, Bin

    2016-05-01

    This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results.

  6. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  7. Performance evaluation of fault detection methods for wastewater treatment processes.

    PubMed

    Corominas, Lluís; Villez, Kris; Aguado, Daniel; Rieger, Leiv; Rosén, Christian; Vanrolleghem, Peter A

    2011-02-01

    Several methods to detect faults have been developed in various fields, mainly in chemical and process engineering. However, minimal practical guidelines exist for their selection and application. This work presents an index that allows for evaluating monitoring and diagnosis performance of fault detection methods, which takes into account several characteristics, such as false alarms, false acceptance, and undesirable switching from correct detection to non-detection during a fault event. The usefulness of the index to process engineering is demonstrated first by application to a simple example. Then, it is used to compare five univariate fault detection methods (Shewhart, EWMA, and residuals of EWMA) applied to the simulated results of the Benchmark Simulation Model No. 1 long-term (BSM1_LT). The BSM1_LT, provided by the IWA Task Group on Benchmarking of Control Strategies, is a simulation platform that allows for creating sensor and actuator faults and process disturbances in a wastewater treatment plant. The results from the method comparison using BSM1_LT show better performance to detect a sensor measurement shift for adaptive methods (residuals of EWMA) and when monitoring the actuator signals in a control loop (e.g., airflow). Overall, the proposed index is able to screen fault detection methods.

  8. Row fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  9. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  10. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  11. Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai F.; Curran, Simon

    2009-01-01

    Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electro-mechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy to severity of fault conditions.

  12. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures.

    PubMed

    Jiang, Ye; Hu, Qinglei; Ma, Guangfu

    2010-01-01

    In this paper, a robust adaptive fault-tolerant control approach to attitude tracking of flexible spacecraft is proposed for use in situations when there are reaction wheel/actuator failures, persistent bounded disturbances and unknown inertia parameter uncertainties. The controller is designed based on an adaptive backstepping sliding mode control scheme, and a sufficient condition under which this control law can render the system semi-globally input-to-state stable is also provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. Moreover, in the design, the control law does not need a fault detection and isolation mechanism even if the failure time instants, patterns and values on actuator failures are also unknown for the designers, as motivated from a practical spacecraft control application. In addition to detailed derivations of the new controller design and a rigorous sketch of all the associated stability and attitude error convergence proofs, illustrative simulation results of an application to flexible spacecraft show that high precise attitude control and vibration suppression are successfully achieved using various scenarios of controlling effective failures.

  13. Robust fault detection filter design

    NASA Astrophysics Data System (ADS)

    Douglas, Randal Kirk

    The detection filter is a specially tuned linear observer that forms the residual generation part of an analytical redundancy system designed for model-based fault detection and identification. The detection filter has an invariant state subspace structure that produces a residual with known and fixed directional characteristics in response to a known design fault direction. In addition to a parameterization of the detection filter gain, three methods are given for improving performance in the presence of system disturbances, sensor noise, model mismatch and sensitivity to small parameter variations. First, it is shown that by solving a modified algebraic Riccati equation, a stabilizing detection filter gain is found that bounds the H-infinity norm of the transfer matrix from system disturbances and sensor noise to the detection filter residual. Second, a specially chosen expanded-order detection filter is formed with fault detection properties identical to a set of independent reduced-order filters that have no structural constraints. This result is important to the practitioner because the difficult problem of finding a detection filter insensitive to disturbances and sensor noise is converted to the easier problem of finding a set of uncoupled noise insensitive filters. Furthermore, the statistical properties of the reduced-order filter residuals are easier to find than the statistical properties of the structurally constrained detection filter residual. Third, an interpretation of the detection filter as a special case of the dual of the restricted decoupling problem leads to a new detection filter eigenstructure assignment algorithm. The new algorithm places detection filter left eigenvectors, which annihilate the detection spaces, rather than right eigenvectors, which span the detection spaces. This allows for a more flexible observer based fault detection system structure that could not be formulated as a detection filter. Furthermore, the link to the dual

  14. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  15. Expert System Detects Power-Distribution Faults

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Quinn, Todd M.

    1994-01-01

    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  16. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  17. Design of a dual fault tolerant space shuttle payload deployment actuator

    NASA Technical Reports Server (NTRS)

    Teske, D. R.

    1985-01-01

    As the Shuttle Transportation System (STS) becomes operational, the number and variety of payloads will increase. The need to deploy these cargo elements will require a variety of unique actuator designs, all of which will have to conform with STS safety policy. For those missions where payload operations extend beyond the payload bay door envelope, this policy deems the prevention of door closure as a catastrophic hazard. As such, it must be controlled by independent, primary and backup methods. The combination of these methods must be two fault tolerant. The design of such an actuator is described. The device consists of a single linear ballscrew with two ballnuts, each bellnut forming an independent actuator using the common ballscrew. The design requirements, concept development, hardware configuration, and fault tolerance rationale are highlighted.

  18. Time Delay Fault Tolerant Controller for Actuator Failures during Aircraft Autolanding

    NASA Astrophysics Data System (ADS)

    Lee, Jangho; Choi, Hyoung Sik; Lee, Sangjong; Kim, Eung Tai; Shin, Dongho

    A time delay control methodology is adopted to cope with degraded control performance due to control surface damage of unmanned aerial vehicles, especially in the case of the automatic landing phase. It is a crucial challenge to maintain consistent control performance even under fault environments such as stuck and/or incipient actuator faults. Flight control systems designed using conventional feedback control methods in such cases may result in unsatisfactory performance, and even worse, may not guarantee the closed-loop stability, which is fatal for aircraft in the state of auto-landing. To overcome the shortfalls of the conventional approach, the time delay control scheme is adopted. This scheme is known to be robust against disturbance, model uncertainties and so on. Motivated by the fact that the abrupt and/or incipient actuator faults focused on in this paper could be considered as model uncertainties, we consider the application of the time delay controller to designing a fault tolerant control system. To show the effectiveness of the time delay control method, a nonlinear 6-DOF simulation is performed under model uncertainties and wind disturbances, and control performance is compared with that of conventional controllers in the case of multiple and single actuator faults.

  19. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  20. Model-based fault detection of blade pitch system in floating wind turbines

    NASA Astrophysics Data System (ADS)

    Cho, S.; Gao, Z.; Moan, T.

    2016-09-01

    This paper presents a model-based scheme for fault detection of a blade pitch system in floating wind turbines. A blade pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be detected at the early stage to prevent failures. To detect faults of blade pitch actuators and sensors, an appropriate observer should be designed to estimate the states of the system. Residuals are generated by a Kalman filter and a threshold based on H optimization, and linear matrix inequality (LMI) is used for residual evaluation. The proposed method is demonstrated in a case study that bias and fixed output in pitch sensors and stuck in pitch actuators. The simulation results show that the proposed method detects different realistic fault scenarios of wind turbines under the stochastic external winds.

  1. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  2. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  3. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  4. Fault detection in electromagnetic suspension systems with state estimation methods

    SciTech Connect

    Sinha, P.K.; Zhou, F.B.; Kutiyal, R.S. . Dept. of Engineering)

    1993-11-01

    High-speed maglev vehicles need a high level of safety that depends on the whole vehicle system's reliability. There are many ways of attaining high reliability for the system. Conventional method uses redundant hardware with majority vote logic circuits. Hardware redundancy costs more, weigh more and occupy more space than that of analytically redundant methods. Analytically redundant systems use parameter identification and state estimation methods based on the system models to detect and isolate the fault of instruments (sensors), actuator and components. In this paper the authors use the Luenberger observer to estimate three state variables of the electromagnetic suspension system: position (airgap), vehicle velocity, and vertical acceleration. These estimates are compared with the corresponding sensor outputs for fault detection. In this paper, they consider FDI of the accelerometer, the sensor which provides the ride quality.

  5. Negative Selection Algorithm for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.

  6. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  7. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    PubMed

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks.

  8. Tunable architecture for aircraft fault detection

    NASA Technical Reports Server (NTRS)

    Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)

    2012-01-01

    A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.

  9. Fault Detection in Differential Algebraic Equations

    NASA Astrophysics Data System (ADS)

    Scott, Jason Roderick

    Fault detection and identification (FDI) is important in almost all real systems. Fault detection is the supervision of technical processes aimed at detecting undesired or unpermitted states (faults) and taking appropriate actions to avoid dangerous situations, or to ensure efficiency in a system. This dissertation develops and extends fault detection techniques for systems modeled by differential algebraic equations (DAEs). First, a passive, observer-based approach is developed and linear filters are constructed to identify faults by filtering residual information. The method presented here uses the least squares completion to compute an ordinary differential equation (ODE) that contains the solution of the DAE and applies the observer directly to this ODE. While observers have been applied to ODE models for the purpose of fault detection in the past, the use of observers on completions of DAEs is a new idea. Moreover, the resulting residuals are modified requiring additional analysis. Robustness with respect to disturbances is also addressed by a novel frequency filtering technique. Active detection, as opposed to passive detection where outputs are passively monitored, allows the injection of an auxiliary control signal to test the system. These algorithms compute an auxiliary input signal guaranteeing fault detection, assuming bounded noise. In the second part of this dissertation, a novel active detection approach for DAE models is developed by taking linear transformations of the DAEs and solving a bi-layer optimization problem. An efficient real-time detection algorithm is also provided, as is the extension to model uncertainty. The existence of a class of problems where the algorithm breaks down is revealed and an alternative algorithm that finds a nearly minimal auxiliary signal is presented. Finally, asynchronous signal design, that is, applying the test signal on a different interval than the observation window, is explored and discussed.

  10. State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system.

    PubMed

    Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco

    2016-03-01

    This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories. PMID:26708303

  11. State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system.

    PubMed

    Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco

    2016-03-01

    This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories.

  12. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  13. Detect and classify faults using neural nets

    SciTech Connect

    Kezunovic, M.; Rikalo, I.

    1996-10-01

    The analysis of transmission line faults is essential to the proper performance of the power system. It is required if protective relays are to take the appropriate action and in monitoring the performance of relays, circuit breakers, and other protective and control elements. The detection and classification of transmission line faults is a fundamental component of such fault analysis. Another application of fault analysis is in software packages for automated analysis of digital fault recorder (DFR) files. Recently, such a package, called DFR Assistant, was developed for substation applications. This program can be installed locally in a substation, in which case it is connected directly to the DFR via a high speed parallel link, or it can be installed at a central station, in which case it can be configured to automatically analyze events coming from all DFRs.

  14. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  15. Analysis, testing, and evaluation of faulted and unfaulted Wye, Delta, and open Delta connected electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Nehl, T. W.; Demerdash, N. A.

    1983-01-01

    Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology.

  16. Analysis, testing, and evaluation of faulted and unfaulted Wye, Delta, and open Delta connected electromechanical actuators

    NASA Astrophysics Data System (ADS)

    Nehl, T. W.; Demerdash, N. A.

    1983-07-01

    Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology.

  17. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  18. Adaptive fuzzy backstepping control for a class of switched nonlinear systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Hou, Yingxue; Tong, Shaocheng; Li, Yongming

    2016-11-01

    This paper investigates the problem of fault-tolerant control (FTC) for a class of switched nonlinear systems. These systems are under arbitrary switchings and are subject to both lock-in-place and loss-of-effectiveness actuator faults. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. Under the framework of the backstepping control design, FTC, fuzzy adaptive control and common Lyapunov function stability theory, an adaptive fuzzy control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop switched system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighbourhood of the origin. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.

  19. Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Jia, Yingmin

    2016-06-01

    In this paper, a distributed output feedback consensus tracking control scheme is proposed for second-order multi-agent systems in the presence of uncertain nonlinear dynamics, external disturbances, input constraints, and partial loss of control effectiveness. The proposed controllers incorporate reduced-order filters to account for the unmeasured states, and the neural networks technique is implemented to approximate the uncertain nonlinear dynamics in the synthesis of control algorithms. In order to compensate the partial loss of actuator effectiveness faults, fault-tolerant parts are included in controllers. Using the Lyapunov approach and graph theory, it is proved that the controllers guarantee a group of agents that simultaneously track a common time-varying state of leader, even when the state of leader is available only to a subset of the members of a group. Simulation results are provided to demonstrate the effectiveness of the proposed consensus tracking method.

  20. HVAC Fault Detection and Diagnosis Toolkit

    2004-12-31

    This toolkit supports component-level model-based fault detection methods in commercial building HVAC systems. The toolbox consists of five basic modules: a parameter estimator for model calibration, a preprocessor, an AHU model simulator, a steady-state detector, and a comparator. Each of these modules and the fuzzy logic rules for fault diagnosis are described in detail. The toolbox is written in C++ and also invokes the SPARK simulation program.

  1. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Wang, Han; Song, Gangbing

    2011-08-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H_{\\infty } formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions.

  2. Fault detection and diagnosis of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  3. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  4. All row, planar fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  5. A hybrid fault detection and isolation strategy for a team of cooperating unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Tousi, M. M.; Khorasani, K.

    2015-01-01

    In this paper, a hybrid fault detection and isolation (FDI) methodology is developed for a team of cooperating unmanned vehicles. The proposed approach takes advantage of the cooperative nature of the team to detect and isolate relatively low-severity actuator faults that are otherwise not detectable and isolable by the vehicles themselves individually. The approach is hybrid and consists of both low-level (agent/team level) and high-level [discrete-event systems (DES) level] FDI modules. The high-level FDI module is formulated in the DES supervisory control framework, whereas the low-level FDI module invokes classical FDI techniques. By properly integrating the two FDI modules, a larger class of faults can be detected and isolated as compared to the existing techniques in the literature that rely on each level separately. Simulation results for a team of five unmanned aerial vehicles are also presented to demonstrate the effectiveness and capabilities of our proposed methodology.

  6. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  7. Signal Injection as a Fault Detection Technique

    PubMed Central

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801

  8. Signal injection as a fault detection technique.

    PubMed

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801

  9. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers

    NASA Astrophysics Data System (ADS)

    Li, Boyuan; Du, Haiping; Li, Weihua

    2016-05-01

    Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.

  10. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy. An application via parity space approach

    NASA Astrophysics Data System (ADS)

    Aitouche, A.; Yang, Q.; Ould Bouamama, B.

    2011-05-01

    This paper presents a procedure dealing with the issue of fault detection and isolation (FDI) using nonlinear analytical redundancy (NLAR) technique applied in a proton exchange membrane (PEM) fuel cell system based on its mathematic model. The model is proposed and simplified into a five orders state space representation. The transient phenomena captured in the model include the compressor dynamics, the flow characteristics, mass and energy conservation and manifold fluidic mechanics. Nonlinear analytical residuals are generated based on the elimination of the unknown variables of the system by an extended parity space approach to detect and isolate actuator and sensor faults. Finally, numerical simulation results are given corresponding to a faults signature matrix.

  11. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    PubMed

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance.

  12. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    PubMed Central

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  13. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  14. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  15. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel

    2016-06-01

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  16. Statistical Fault Detection & Diagnosis Expert System

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component hasmore » degraded.« less

  17. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis

    PubMed Central

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  18. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis.

    PubMed

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-04-16

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods.

  19. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  20. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    PubMed

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem.

  1. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  2. Hybrid analysis techniques for software fault detection

    SciTech Connect

    Young, M.T.

    1989-01-01

    Since the question Does program P obey specification S' can not be decided in general, every practical software validation technique must compromise accuracy in some way. Testing techniques admit the possibility that a fault will be undetected, as the price for quitting after a finite number of test cases. Formal verification admits the possibility that a proof will not be found for a valid assertion, as the price for quitting after a finite amount of proof effort. No technique so dominates others that a wise validation strategy consists of applying that technique alone; rather, effective validation requires applying several techniques. This dissertation contributes to the understanding of synergistic combinations of fault detection techniques. A framework for comparing techniques and considering their combinations is developed. Techniques that fold a state space depend critically on leaving out the right details to make the space smaller or more regular. One often wishes to argue that simplifications will not hide any of the errors a technique is designed to detect. This claim is formalized as a relation between models of execution, and sufficient conditions for establishing the relation with respect to specification formulas expressed in temporal logic are proved. The framework and theory are applied to two problems in reachability analysis of concurrent software. A method for limiting combinatorial explosion by parceling the analysis of large systems is described. It is justified by showing that analysis of each parcel is an error-preserving abstraction of the global analysis. To ameliorate the problem of spurious error reports, a technique combining reachability analysis with symbolic execution is devised. Soundness of the hybrid technique is established by showing that reachability analysis is an error-preserving abstraction of symbolic execution. A prototype implementation of tools to support analysis of concurrent software is described.

  3. High impedance fault detection in low voltage networks

    SciTech Connect

    Christie, R.D. . Dept. of Electrical Engineering); Zadehgol, H.; Habib, M.M. )

    1993-10-01

    High impedance faults are those with fault current magnitude similar to load currents. Experimental results were obtained that conform operating experience that such faults can occur in the low voltage (600V and below) underground distribution networks typically found in urban power systems. These faults produce current waveforms qualitatively similar to those found on overhead feeders, but quantitatively smaller. Loose connectors can produce similar, but cleaner current characteristics. Noisy loads remain a major impediment to reliable detection. Design and installation of an inexpensive prototype fault detector on the Seattle City Light street network is described.

  4. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure

    PubMed Central

    Zhao, Bo; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  5. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  6. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  7. Active interrogation of helicopter main rotor faults using trailing edge flap actuation

    NASA Astrophysics Data System (ADS)

    Stevens, Patricia Lynn

    Over the past decade, the helicopter community has become increasingly interested in health monitoring. The rotor system, however, is not sufficiently covered in the current Health and Usage Monitoring Systems (HUMS). This dissertation describes the development and evaluation of a new approach for detecting helicopter rotor faults in which active trailing edge flaps are used to interrogate the system. This work is based on the presumption that trailing edge flaps would be installed for the primary purpose of vibration and/or noise control; health monitoring is a secondary use. Using this approach, the blade is excited by an interrogation signal, which is a low amplitude oscillation at a few discrete frequencies. The blade response is measured and the health of the system is determined using a frequency domain damage identification algorithm. Damage detection and location are achieved via the residual force vector. The residual force vector, coupled with an understanding of the system physics, also provides nature characterization. Quantification of damage extent is achieved via a frequency domain adaptation of the Asymmetric Minimum Rank Perturbation Theory. The active interrogation system is evaluated using an aeroelastic finite element model of the rotor system in hover, including an advanced unsteady aerodynamic model to predict the trailing edge flap loads. Realistic damage models, including distributed bending stiffness damage, torsional stiffness damage, control system stiffness damage, cracks and ballistic damage, are seeded in the rotor system model. Results demonstrate detection, location and quantification of extent of all of the faults tested. The effects of noise and modeling errors are discussed and mitigation techniques are developed. Additionally, a measurability study is included. Benefits of this work include both improved health monitoring for rotorcraft as well as insights into the application of structural damage detection algorithms to a

  8. Adaptive attitude controller for a satellite based on neural network in the presence of unknown external disturbances and actuator faults

    NASA Astrophysics Data System (ADS)

    Fazlyab, Ali Reza; Fani Saberi, Farhad; Kabganian, Mansour

    2016-01-01

    In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite. The proposed attitude control is based on nonlinear modified Rodrigues parameters feedback control in the presence of unknown terms like external disturbances and actuator faults. In order to eliminate the effect of the uncertainties, a multilayer neural network with a new learning rule will be designed appropriately. In this method, asymptotic stability of the proposed algorithm has been proven in the presence of unknown terms based on Lyapunov stability theorem. Finally, the performance of the designed attitude controller is investigated by simulations.

  9. Fault detection filter design for stochastic time-delay systems with sensor faults

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Jian; Yang, Guang-Hong

    2012-08-01

    This article considers the fault detection (FD) problem for a class of Itô-type stochastic time-delay systems subject to external disturbances and sensor faults. The main objective is to design a fault detection filter (FDF) such that it has prescribed levels of disturbance attenuation and fault sensitivity. Sufficient conditions for guaranteeing these levels are formulated in terms of linear matrix inequalities (LMIs), and the corresponding fault detection filter design is cast into a convex optimisation problem which can be efficiently handled by using standard numerical algorithms. In order to reduce the conservatism of filter design with mixed objectives, multi-Lyapunov functions approach is used via Projection Lemma. In addition, it is shown that our results not only include some previous conditions characterising H ∞ performance and H - performance defined for linear time-invariant (LTI) systems as special cases but also improve these conditions. Finally, two examples are employed to illustrate the effectiveness of the proposed design scheme.

  10. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  11. Bearing Fault Detection in Induction Motor-Gearbox Drivetrain

    NASA Astrophysics Data System (ADS)

    Cibulka, Jaroslav; Ebbesen, Morten K.; Robbersmyr, Kjell G.

    2012-05-01

    The main contribution in the hereby presented paper is to investigate the fault detection capability of a motor current signature analysis by expanding its scope to include the gearbox, and not only the induction motor. Detecting bearing faults outside the induction motor through the stator current analysis represents an interesting alternative to traditional vibration analysis. Bearing faults cause changes in the stator current spectrum that can be used for fault diagnosis purposes. A time-domain simulation of the drivetrain model is developed. The drivetrain system consists of a loaded single stage gearbox driven by a line-fed induction motor. Three typical bearing faults in the gearbox are addressed, i.e. defects in the outer raceway, the inner raceway, and the rolling element. The interaction with the fault is modelled by means of kinematical and mechanical relations. The fault region is modelled in order to achieve gradual loss and gain of contact. A bearing fault generates an additional torque component that varies at the specific bearing defect frequency. The presented dynamic electromagnetic dq-model of an induction motor is adjusted for diagnostic purpose and considers such torque variations. The bearing fault is detected as a phase modulation of the stator current sine wave at the expected bearing defect frequency.

  12. Expert system structures for fault detection in spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Watson, Karan; Russell, B. Don; Hackler, Irene

    1988-01-01

    This paper presents an architecture for an expert system structure suitable for use with power system fault detection algorithms. The system described is not for the purpose of reacting to faults which have occurred, but rather for the purpose of performing on-line diagnostics and parameter evaluation to determine potential or incipient fault conditions. The system is also designed to detect high impedance or arcing faults which cannot be detected by conventional protection devices. This system is part of an overall monitoring computer hierarchy which would provide a full evaluation of the status of the power system and react to both incipient and catastrophic faults. An approximate hardware structure is suggested and software requirements are discussed. Modifications to CLIPS software, to capitalize on features offered by expert systems, are presented. It is suggested that such a system would have significant advantages over existing protection philosophy.

  13. Creating an automated chiller fault detection and diagnostics tool using a data fault library.

    PubMed

    Bailey, Margaret B; Kreider, Jan F

    2003-07-01

    Reliable, automated detection and diagnosis of abnormal behavior within vapor compression refrigeration cycle (VCRC) equipment is extremely desirable for equipment owners and operators. The specific type of VCRC equipment studied in this paper is a 70-ton helical rotary, air-cooled chiller. The fault detection and diagnostic (FDD) tool developed as part of this research analyzes chiller operating data and detects faults through recognizing trends or patterns existing within the data. The FDD method incorporates a neural network (NN) classifier to infer the current state given a vector of observables. Therefore the FDD method relies upon the availability of normal and fault empirical data for training purposes and therefore a fault library of empirical data is assembled. This paper presents procedures for conducting sophisticated fault experiments on chillers that simulate air-cooled condenser, refrigerant, and oil related faults. The experimental processes described here are not well documented in literature and therefore will provide the interested reader with a useful guide. In addition, the authors provide evidence, based on both thermodynamics and empirical data analysis, that chiller performance is significantly degraded during fault operation. The chiller's performance degradation is successfully detected and classified by the NN FDD classifier as discussed in the paper's final section. PMID:12858981

  14. All-to-all sequenced fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  15. Fault detection for singular switched linear systems with multiple time-varying delay in finite frequency domain

    NASA Astrophysics Data System (ADS)

    Zhai, Ding; Lu, Anyang; Li, Jinghao; Zhang, Qingling

    2016-10-01

    This paper deals with the problem of the fault detection (FD) for continuous-time singular switched linear systems with multiple time-varying delay. In this paper, the actuator fault is considered. Besides, the systems faults and unknown disturbances are assumed in known frequency domains. Some finite frequency performance indices are initially introduced to design the switched FD filters which ensure that the filtering augmented systems under switching signal with average dwell time are exponentially admissible and guarantee the fault input sensitivity and disturbance robustness. By developing generalised Kalman-Yakubovic-Popov lemma and using Parseval's theorem and Fourier transform, finite frequency delay-dependent sufficient conditions for the existence of such a filter which can guarantee the finite-frequency H- and H∞ performance are derived and formulated in terms of linear matrix inequalities. Four examples are provided to illustrate the effectiveness of the proposed finite frequency method.

  16. Soft Computing Application in Fault Detection of Induction Motor

    SciTech Connect

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  17. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  18. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  19. Convolutional Neural Network Based Fault Detection for Rotating Machinery

    NASA Astrophysics Data System (ADS)

    Janssens, Olivier; Slavkovikj, Viktor; Vervisch, Bram; Stockman, Kurt; Loccufier, Mia; Verstockt, Steven; Van de Walle, Rik; Van Hoecke, Sofie

    2016-09-01

    Vibration analysis is a well-established technique for condition monitoring of rotating machines as the vibration patterns differ depending on the fault or machine condition. Currently, mainly manually-engineered features, such as the ball pass frequencies of the raceway, RMS, kurtosis an crest, are used for automatic fault detection. Unfortunately, engineering and interpreting such features requires a significant level of human expertise. To enable non-experts in vibration analysis to perform condition monitoring, the overhead of feature engineering for specific faults needs to be reduced as much as possible. Therefore, in this article we propose a feature learning model for condition monitoring based on convolutional neural networks. The goal of this approach is to autonomously learn useful features for bearing fault detection from the data itself. Several types of bearing faults such as outer-raceway faults and lubrication degradation are considered, but also healthy bearings and rotor imbalance are included. For each condition, several bearings are tested to ensure generalization of the fault-detection system. Furthermore, the feature-learning based approach is compared to a feature-engineering based approach using the same data to objectively quantify their performance. The results indicate that the feature-learning system, based on convolutional neural networks, significantly outperforms the classical feature-engineering based approach which uses manually engineered features and a random forest classifier. The former achieves an accuracy of 93.61 percent and the latter an accuracy of 87.25 percent.

  20. Distributed fault detection over sensor networks with Markovian switching topologies

    NASA Astrophysics Data System (ADS)

    Ge, Xiaohua; Han, Qing-Long

    2014-05-01

    This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.

  1. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-23

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  2. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  3. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  4. Optimal Sensor Allocation for Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann

    2004-01-01

    Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.

  5. Observer-based reliable stabilization of uncertain linear systems subject to actuator faults, saturation, and bounded system disturbances.

    PubMed

    Fan, Jinhua; Zhang, Youmin; Zheng, Zhiqiang

    2013-11-01

    A matrix inequality approach is proposed to reliably stabilize a class of uncertain linear systems subject to actuator faults, saturation, and bounded system disturbances. The system states are assumed immeasurable, and a classical observer is incorporated for observation to enable state-based feedback control. Both the stability and stabilization of the closed-loop system are discussed and the closed-loop domain of attraction is estimated by an ellipsoidal invariant set. The resultant stabilization conditions in the form of matrix inequalities enable simultaneous optimization of both the observer gain and the feedback controller gain, which is realized by converting the non-convex optimization problem to an unconstrained nonlinear programming problem. The effectiveness of proposed design techniques is demonstrated through a linearized model of F-18 HARV around an operating point.

  6. An adaptive high and low impedance fault detection method

    SciTech Connect

    Yu, D.C. ); Khan, S.H. )

    1994-10-01

    An integrated high impedance fault (HIF) and low impedance fault (LIF) detection method is proposed in this paper. For a HIF detection, the proposed technique is based on a number of characteristics of the HIF current. These characteristics are: fault current magnitude, magnitude of the 3rd harmonic current, magnitude of the 5th harmonic current, the angle of the third harmonic current, the angle difference between the third harmonics current and the fundamental voltage, negative sequence current of HIF. These characteristics are identified by modeling the distribution feeders in EMTP. Apart from these characteristics, the above ambient (average) negative sequence current is also considered. An adjustable block out region around the average load current is provided. The average load current is calculated at every 18,000 cycles (5 minutes) interval. This adaptive feature will not only make the proposed scheme more sensitive to the low fault current, but it will also prevent the relay from tripping during the normal load current. In this paper, the logic circuit required for implementing the proposed HIF detection methods is also included. With minimal modifications, the logic developed for the HIF detection can be applied for the low impedance fault (LIF) detection. A complete logic circuit which detects both the HIF and LIF is proposed. Using this combined logic, the need of installing separate devices for HIF and LIF detection can be eliminated.

  7. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  8. Space shuttle main engine fault detection using neural networks

    NASA Technical Reports Server (NTRS)

    Bishop, Thomas; Greenwood, Dan; Shew, Kenneth; Stevenson, Fareed

    1991-01-01

    A method for on-line Space Shuttle Main Engine (SSME) anomaly detection and fault typing using a feedback neural network is described. The method involves the computation of features representing time-variance of SSME sensor parameters, using historical test case data. The network is trained, using backpropagation, to recognize a set of fault cases. The network is then able to diagnose new fault cases correctly. An essential element of the training technique is the inclusion of randomly generated data along with the real data, in order to span the entire input space of potential non-nominal data.

  9. Detecting surface faults on solar mirrors

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Shumate, M. S.; Walker, W. L.; Zanteson, R. A.

    1980-01-01

    Two quality control tests determine reflectivity and curvature faults of concave solar mirrors. Curvature defects in solar mirrors are easily revealed by photographing mirror surface. Calibrated aperture placed in front of camera lens admits rays reflecting only from acceptable areas of mirror, blocking out diverging rays reflected from defective areas. Defects can pinpoint problems that may exist in production. Same photograph can be obtained using calibrated disk instead of aperture, except that, this time, only defective areas would be exposed.

  10. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1987-01-01

    Multi-version or N-version programming is proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. These versions are executed in parallel in the application environment; each receives identical inputs and each produces its version of the required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In practice there may be some disagreement. If this occurs, the results of the majority are taken to be the correct output, and that is the output used by the system. A total of 27 programs were produced. Each of these programs was then subjected to one million randomly-generated test cases. The experiment yielded a number of programs containing faults that are useful for general studies of software reliability as well as studies of N-version programming. Fault tolerance through data diversity and analytic models of comparison testing are discussed.

  11. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    SciTech Connect

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  12. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  13. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  14. Sparsity-based algorithm for detecting faults in rotating machines

    NASA Astrophysics Data System (ADS)

    He, Wangpeng; Ding, Yin; Zi, Yanyang; Selesnick, Ivan W.

    2016-05-01

    This paper addresses the detection of periodic transients in vibration signals so as to detect faults in rotating machines. For this purpose, we present a method to estimate periodic-group-sparse signals in noise. The method is based on the formulation of a convex optimization problem. A fast iterative algorithm is given for its solution. A simulated signal is formulated to verify the performance of the proposed approach for periodic feature extraction. The detection performance of comparative methods is compared with that of the proposed approach via RMSE values and receiver operating characteristic (ROC) curves. Finally, the proposed approach is applied to single fault diagnosis of a locomotive bearing and compound faults diagnosis of motor bearings. The processed results show that the proposed approach can effectively detect and extract the useful features of bearing outer race and inner race defect.

  15. MIL-M-38510/470 test vectors: Fault detection efficiency measurement via hardware fault simulation. [rca 1802 microprocessor

    NASA Technical Reports Server (NTRS)

    Timoc, C. C.

    1980-01-01

    The stuck fault detection efficiency of the test vectors developed for the MIL-M-38510/470 NASA was measured using a hardware stuck fault simulator for the 1802 microprocessor. Thirty-nine stuck faults were not detected out of a total of 874 injected into the combinatorial and sequential parts of the microprocessor. Since undetected faults can create catastrophic errors in equipment designed for high reliability applications, it is recommended that the MIL-M-38510/470 NASA be enhanced with additional test vectors so as to achieve 100% stuck fault detection efficiency.

  16. An observer based approach for achieving fault diagnosis and fault tolerant control of systems modeled as hybrid Petri nets.

    PubMed

    Renganathan, K; Bhaskar, VidhyaCharan

    2011-07-01

    In this paper, we propose an approach for achieving detection and identification of faults, and provide fault tolerant control for systems that are modeled using timed hybrid Petri nets. For this purpose, an observer based technique is adopted which is useful in detection of faults, such as sensor faults, actuator faults, signal conditioning faults, etc. The concepts of estimation, reachability and diagnosability have been considered for analyzing faulty behaviors, and based on the detected faults, different schemes are proposed for achieving fault tolerant control using optimization techniques. These concepts are applied to a typical three tank system and numerical results are obtained.

  17. Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection

    NASA Technical Reports Server (NTRS)

    Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje

    2005-01-01

    This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.

  18. Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems.

    PubMed

    Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed

    2015-07-01

    The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework.

  19. Online Monitoring System for Performance Fault Detection

    SciTech Connect

    Gioiosa, Roberto; Kestor, Gokcen; Kerbyson, Darren J.

    2014-05-19

    To achieve the exaFLOPS performance within a contain power budget, next supercomputers will feature hundreds of millions of components operating at low- and near-threshold voltage. As the probability that at least one of these components fails during the execution of an application approaches certainty, it seems unrealistic to expect that any run of a scientific application will not experience some performance faults. We believe that there is need of a new generation of light-weight performance and debugging tools that can be used online even during production runs of parallel applications and that can identify performance anomalies during the application execution. In this work we propose the design and implementation of a monitoring system that continuously inspects the evolution of run

  20. Online Monitoring System for Performance Fault Detection

    SciTech Connect

    Gioiosa, Roberto; Kestor, Gokcen; Kerbyson, Darren J.

    2014-12-31

    To achieve the exaFLOPS performance within a contained power budget, next generation supercomputers will feature hundreds of millions of components operating at low- and near-threshold voltage. As the probability that at least one of these components fails during the execution of an application approaches certainty, it seems unrealistic to expect that any run of a scientific application will not experience some performance faults. We believe that there is need of a new generation of light-weight performance and debugging tools that can be used online even during production runs of parallel applications and that can identify performance anomalies during the application execution. In this work we propose the design and implementation of such a monitoring system.

  1. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.

  2. Fuzzy model-based observers for fault detection in CSTR.

    PubMed

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions.

  3. Fuzzy model-based observers for fault detection in CSTR.

    PubMed

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. PMID:26521723

  4. Fault detection in reciprocating compressor valves under varying load conditions

    NASA Astrophysics Data System (ADS)

    Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias

    2016-03-01

    This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.

  5. Induction motor inter turn fault detection using infrared thermographic analysis

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.

    2016-07-01

    Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.

  6. Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures.

    PubMed

    Song, Qi; Song, Yong-Duan

    2011-12-01

    This paper investigates the position and velocity tracking control problem of high-speed trains with multiple vehicles connected through couplers. A dynamic model reflecting nonlinear and elastic impacts between adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived. Neuroadaptive fault-tolerant control algorithms are developed to account for various factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train forces in the system simultaneously. The resultant control scheme is essentially independent of system model and is primarily data-driven because with the appropriate input-output data, the proposed control algorithms are capable of automatically generating the intermediate control parameters, neuro-weights, and the compensation signals, literally producing the traction/braking force based upon input and response data only--the whole process does not require precise information on system model or system parameter, nor human intervention. The effectiveness of the proposed approach is also confirmed through numerical simulations.

  7. Method of Fault Detection and Rerouting

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Gibson, Tracy L. (Inventor); Lewis, Mark E. (Inventor)

    2013-01-01

    A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.

  8. Battery Fault Detection with Saturating Transformers

    NASA Technical Reports Server (NTRS)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  9. Fault detection and bypass in a sequence information signal processor

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Chow, Edward T. (Inventor)

    1992-01-01

    The invention comprises a plurality of scan registers, each such register respectively associated with a processor element; an on-chip comparator, encoder and fault bypass register. Each scan register generates a unitary signal the logic state of which depends on the correctness of the input from the previous processor in the systolic array. These unitary signals are input to a common comparator which generates an output indicating whether or not an error has occurred. These unitary signals are also input to an encoder which identifies the location of any fault detected so that an appropriate multiplexer can be switched to bypass the faulty processor element. Input scan data can be readily programmed to fully exercise all of the processor elements so that no fault can remain undetected.

  10. Envelope order tracking for fault detection in rolling element bearings

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Liu, Ting-Wei; Na, Jing; Fung, Rong-Fong

    2012-12-01

    An envelope order tracking analysis scheme is proposed in the paper for the fault detection of rolling element bearing (REB) under varying-speed running condition. The developed method takes the advantages of order tracking, envelope analysis and spectral kurtosis. The fast kurtogram algorithm is utilized to obtain both optimal center frequency and bandwidth of the band-pass filter based on the maximum spectral kurtosis. The envelope containing vibration features of the incipient REB fault can be extracted adaptively. The envelope is re-sampled by the even-angle sampling scheme, and thus the non-stationary signal in the time domain is represented as a quasi-stationary signal in the angular domain. As a result, the frequency-smear problem can be eliminated in order spectrum and the fault diagnosis of REB in the varying-speed running condition of the rotating machinery is achieved. Experiments are conducted to verify the validity of the proposed method.

  11. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  12. An Indirect Adaptive Control Scheme in the Presence of Actuator and Sensor Failures

    NASA Technical Reports Server (NTRS)

    Sun, Joy Z.; Josh, Suresh M.

    2009-01-01

    The problem of controlling a system in the presence of unknown actuator and sensor faults is addressed. The system is assumed to have groups of actuators, and groups of sensors, with each group consisting of multiple redundant similar actuators or sensors. The types of actuator faults considered consist of unknown actuators stuck in unknown positions, as well as reduced actuator effectiveness. The sensor faults considered include unknown biases and outages. The approach employed for fault detection and estimation consists of a bank of Kalman filters based on multiple models, and subsequent control reconfiguration to mitigate the effect of biases caused by failed components as well as to obtain stability and satisfactory performance using the remaining actuators and sensors. Conditions for fault identifiability are presented, and the adaptive scheme is applied to an aircraft flight control example in the presence of actuator failures. Simulation results demonstrate that the method can rapidly and accurately detect faults and estimate the fault values, thus enabling safe operation and acceptable performance in spite of failures.

  13. Fault Detection and Isolation for Hydraulic Control

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.

  14. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    NASA Astrophysics Data System (ADS)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  15. Incipient fault detection study for advanced spacecraft systems

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Black, Michael C.; Hovenga, J. Mike; Mcclure, Paul F.

    1986-01-01

    A feasibility study to investigate the application of vibration monitoring to the rotating machinery of planned NASA advanced spacecraft components is described. Factors investigated include: (1) special problems associated with small, high RPM machines; (2) application across multiple component types; (3) microgravity; (4) multiple fault types; (5) eight different analysis techniques including signature analysis, high frequency demodulation, cepstrum, clustering, amplitude analysis, and pattern recognition are compared; and (6) small sample statistical analysis is used to compare performance by computation of probability of detection and false alarm for an ensemble of repeated baseline and faulted tests. Both detection and classification performance are quantified. Vibration monitoring is shown to be an effective means of detecting the most important problem types for small, high RPM fans and pumps typical of those planned for the advanced spacecraft. A preliminary monitoring system design and implementation plan is presented.

  16. Nanotube Aerogel Sheet Flutter for Actuation, Power Generation, and Infrasound Detection

    PubMed Central

    Kang, Tae June; Kim, Taewoo; Jang, Eui Yun; Im, Hyeongwook; Lepro-Chavez, Xavier; Ovalle-Robles, Raquel; Oh, Jiyoung; Kozlov, Mikhail E.; Baughman, Ray H.; Lee, Hong H.; Kim, Yong Hyup

    2014-01-01

    Electromagnetic induction (EMI) is a mechanism of classical physics that can be utilized to convert mechanical energy to electrical energy or electrical to mechanical energy. This mechanism has not been exploited fully because of lack of a material with a sufficiently low force constant. We here show that carbon nanotube (CNT) aerogel sheets can exploit EMI to provide mechanical actuation at very low applied voltages, to harvest mechanical energy from small air pressure fluctuations, and to detect infrasound at inaudible frequencies below 20 Hz. Using conformal deposition of 100 nm thick aluminum coatings on the nanotubes in the sheets, mechanical actuation can be obtained by applying millivolts, as compared with the thousand volts needed to achieve giant-stroke electrostatic actuation of carbon nanotube aerogel sheets. Device simplicity and performance suggest possible applications as an energy harvester of low energy air fluctuations and as a sensor for infrasound frequencies. PMID:25130708

  17. Nanotube aerogel sheet flutter for actuation, power generation, and infrasound detection.

    PubMed

    Kang, Tae June; Kim, Taewoo; Jang, Eui Yun; Im, Hyeongwook; Lepro-Chavez, Xavier; Ovalle-Robles, Raquel; Oh, Jiyoung; Kozlov, Mikhail E; Baughman, Ray H; Lee, Hong H; Kim, Yong Hyup

    2014-01-01

    Electromagnetic induction (EMI) is a mechanism of classical physics that can be utilized to convert mechanical energy to electrical energy or electrical to mechanical energy. This mechanism has not been exploited fully because of lack of a material with a sufficiently low force constant. We here show that carbon nanotube (CNT) aerogel sheets can exploit EMI to provide mechanical actuation at very low applied voltages, to harvest mechanical energy from small air pressure fluctuations, and to detect infrasound at inaudible frequencies below 20 Hz. Using conformal deposition of 100 nm thick aluminum coatings on the nanotubes in the sheets, mechanical actuation can be obtained by applying millivolts, as compared with the thousand volts needed to achieve giant-stroke electrostatic actuation of carbon nanotube aerogel sheets. Device simplicity and performance suggest possible applications as an energy harvester of low energy air fluctuations and as a sensor for infrasound frequencies. PMID:25130708

  18. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  19. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  20. Documentation of the current fault detection, isolation and reconfiguration software of the AIPS fault-tolerant processor

    NASA Technical Reports Server (NTRS)

    Lanning, David T.; Shepard, Allen W.; Johnson, Sally C.

    1987-01-01

    Documentation is presented of the December 1986 version of the ADA code for the fault detection, isolation, and reconfiguration (FDIR) functions of the Advanced Information processing System (AIPS) Fault-Tolerant Processor (FTP). Because the FTP is still under development and the software is constantly undergoing changes, this should not be considered final documentation of the FDIR software of the FTP.

  1. Composite Bending Box Section Modal Vibration Fault Detection

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy

    2002-01-01

    One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.

  2. Performance Analysis of Fault Detection and Identification for Multiple Faults in GNSS and GNSS/INS Integration

    NASA Astrophysics Data System (ADS)

    Alqurashi, Muwaffaq; Wang, Jinling

    2015-03-01

    For positioning, navigation and timing (PNT) purposes, GNSS or GNSS/INS integration is utilised to provide real-time solutions. However, any potential sensor failures or faulty measurements due to malfunctions of sensor components or harsh operating environments may cause unsatisfactory estimation for PNT parameters. The inability for immediate detecting faulty measurements or sensor component failures will reduce the overall performance of the system. So, real time detection and identification of faulty measurements is required to make the system more accurate and reliable for different applications that need real time solutions such as real time mapping for safety or emergency purposes. Consequently, it is necessary to implement an online fault detection and isolation (FDI) algorithm which is a statistic-based approach to detect and identify multiple faults.However, further investigations on the performance of the FDI for multiple fault scenarios is still required. In this paper, the performance of the FDI method under multiple fault scenarios is evaluated, e.g., for two, three and four faults in the GNSS and GNSS/INS measurements under different conditions of visible satellites and satellites geometry. Besides, the reliability (e.g., MDB) and separability (correlation coefficients between faults detection statistics) measures are also investigated to measure the capability of the FDI method. A performance analysis of the FDI method is conducted under the geometric constraints, to show the importance of the FDI method in terms of fault detectability and separability for robust positioning and navigation for real time applications.

  3. Improved Hidden-Markov-Model Method Of Detecting Faults

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.

    1994-01-01

    Method of automated, continuous monitoring to detect faults in complicated dynamic system based on hidden-Markov-model (HMM) approach. Simpler than another, recently proposed HMM method, but retains advantages of that method, including low susceptibility to false alarms, no need for mathematical model of dynamics of system under normal or faulty conditions, and ability to detect subtle changes in characteristics of monitored signals. Examples of systems monitored by use of this method include motors, turbines, and pumps critical in their applications; chemical-processing plants; powerplants; and biomedical systems.

  4. Distributed fault detection and isolation resilient to network model uncertainties.

    PubMed

    Teixeira, Andre; Shames, Iman; Sandberg, Henrik; Johansson, Karl H

    2014-11-01

    The ability to maintain state awareness in the face of unexpected and unmodeled errors and threats is a defining feature of a resilient control system. Therefore, in this paper, we study the problem of distributed fault detection and isolation (FDI) in large networked systems with uncertain system models. The linear networked system is composed of interconnected subsystems and may be represented as a graph. The subsystems are represented by nodes, while the edges correspond to the interconnections between subsystems. Considering faults that may occur on the interconnections and subsystems, as our first contribution, we propose a distributed scheme to jointly detect and isolate faults occurring in nodes and edges of the system. As our second contribution, we analyze the behavior of the proposed scheme under model uncertainties caused by the addition or removal of edges. Additionally, we propose a novel distributed FDI scheme based on local models and measurements that is resilient to changes outside of the local subsystem and achieves FDI. Our third contribution addresses the complexity reduction of the distributed FDI method, by characterizing the minimum amount of model information and measurements needed to achieve FDI and by reducing the number of monitoring nodes. The proposed methods can be fused to design a scalable and resilient distributed FDI architecture that achieves local FDI despite unknown changes outside the local subsystem. The proposed approach is illustrated by numerical experiments on the IEEE 118-bus power network benchmark.

  5. Fault detection and multiclassifier fusion for unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Yan, Weizhong

    2001-03-01

    UAVs demand more accurate fault accommodation for their mission manager and vehicle control system in order to achieve a reliability level that is comparable to that of a pilot aircraft. This paper attempts to apply multi-classifier fusion techniques to achieve the necessary performance of the fault detection function for the Lockheed Martin Skunk Works (LMSW) UAV Mission Manager. Three different classifiers that meet the design requirements of the fault detection of the UAAV are employed. The binary decision outputs from the classifiers are then aggregated using three different classifier fusion schemes, namely, majority vote, weighted majority vote, and Naieve Bayes combination. All of the three schemes are simple and need no retraining. The three fusion schemes (except the majority vote that gives an average performance of the three classifiers) show the classification performance that is better than or equal to that of the best individual. The unavoidable correlation between the classifiers with binary outputs is observed in this study. We conclude that it is the correlation between the classifiers that limits the fusion schemes to achieve an even better performance.

  6. Scalable and Fault Tolerant Failure Detection and Consensus

    SciTech Connect

    Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J; Engelmann, Christian

    2015-01-01

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.

  7. Active fault detection and isolation of discrete-time linear time-varying systems: a set-membership approach

    NASA Astrophysics Data System (ADS)

    Mojtaba Tabatabaeipour, Seyed

    2015-08-01

    Active fault detection and isolation (AFDI) is used for detection and isolation of faults that are hidden in the normal operation because of a low excitation signal or due to the regulatory actions of the controller. In this paper, a new AFDI method based on set-membership approaches is proposed. In set-membership approaches, instead of a point-wise estimation of the states, a set-valued estimation of them is computed. If this set becomes empty the given model of the system is not consistent with the measurements. Therefore, the model is falsified. When more than one model of the system remains un-falsified, the AFDI method is used to generate an auxiliary signal that is injected into the system for detection and isolation of faults that remain otherwise hidden or non-isolated using passive FDI (PFDI) methods. Having the set-valued estimation of the states for each model, the proposed AFDI method finds an optimal input signal that guarantees FDI in a finite time horizon. The input signal is updated at each iteration in a decreasing receding horizon manner based on the set-valued estimation of the current states and un-falsified models at the current sample time. The problem is solved by a number of linear and quadratic programming problems, which result in a computationally efficient algorithm. The method is tested on a numerical example as well as on the pitch actuator of a benchmark wind turbine.

  8. Double fault detection of cone-shaped redundant IMUs using wavelet transformation and EPSA.

    PubMed

    Lee, Wonhee; Park, Chan Gook

    2014-02-19

    A model-free hybrid fault diagnosis technique is proposed to improve the performance of single and double fault detection and isolation. This is a model-free hybrid method which combines the extended parity space approach (EPSA) with a multi-resolution signal decomposition by using a discrete wavelet transform (DWT). Conventional EPSA can detect and isolate single and double faults. The performance of fault detection and isolation is influenced by the relative size of noise and fault. In this paper; the DWT helps to cancel the high frequency sensor noise. The proposed technique can improve low fault detection and isolation probability by utilizing the EPSA with DWT. To verify the effectiveness of the proposed fault detection method Monte Carlo numerical simulations are performed for a redundant inertial measurement unit (RIMU).

  9. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  10. Fault detection and isolation of sensors in aeration control systems.

    PubMed

    Carlsson, Bengt; Zambrano, Jesús

    2016-01-01

    In this paper, we consider the problem of fault detection (FD) and isolation in the aeration system of an activated sludge process. For this study, the dissolved oxygen in each aerated zone is assumed to be controlled automatically. As the basis for an FD method we use the ratio of air flow rates into different zones. The method is evaluated in two scenarios: using the Benchmark Simulation Model no. 1 (BSM1) by Monte Carlo simulations and using data from a wastewater treatment plant. The FD method shows good results for a correct and early FD and isolation.

  11. Guaranteed robust fault detection and isolation techniques for small satellites

    NASA Astrophysics Data System (ADS)

    Valavani, L.; Tantouris, N.

    2013-12-01

    The paper presents two generic fault detection and isolation (FDI) techniques which have shown remarkable robustness when applied to the SIMULINK model of a small satellite for thruster failures. While fundamentally different in their design approach, they both generate ʽstructured residuals' which accurately capture the failure mode. The diagnosis criterion in both methods relies on residuals direction rather than magnitude, which avoids the delays and expense of setting accurate thresholds for residuals magnitudes. Most importantly, this fact can account for the enhanced robustness to disturbances and sensor noise, as well as to significant parametric variations. Extensive Monte Carlo simulations are presented validating the robust performance of the two algorithms.

  12. Incipient fault detection and power system protection for spaceborne systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  13. Novel neural networks-based fault tolerant control scheme with fault alarm.

    PubMed

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  14. Detecting Hidden Faults and Other Lineations with UAVSAR

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Glasscoe, M. T.; Donnellan, A.

    2013-12-01

    Jay Parker, Margaret Glasscoe, Andrea Donnellan Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA The M7.2 El Mayor Cucapah Earthquake of April 4, 2010 is the main earthquake to date observed by the NASA UAVSAR. By observing with repeat passes (October 2009, April 2010 captures the coseismic strain pattern, and subsequent flights capture the postseismic process) over the adjoining portion of California, the interferometric phase maps of geodetic displacements are exceptionally high definition (pixel size is roughly 7 m) records of the extended deformation field from the earthquake process, including revelation of a rich network of plate parallel and conjugate faulting, apparently slipping sympathetically to the earthquake-induced quasistatic changes in stress. While the most significant of these faults have been documented by cooperative use of UAVSAR maps and field research, a subsequent opportunity arises: to use this data to develop and validate an automated approach to detecting faults and other lineations directly from the UAVSAR unwrapped phase product that corresponds to a single-component deformation map. The Canny edge detection algorithm is employed, after a preparation stage to clean the data. This preprocessing step is tailored to the nature of the radar phase data: data dropouts in single pixels and extended areas (blown sand dunes, farms) are a much larger problem than background white noise. Blocks of typically 3x3 pixels are currently reduced to a single value, the average after bad pixels are discarded. The smoothing methods typically used with the Canny method are minimized (smoothing makes data drop-out problems worse). The aperture size that determines a gradient estimation is chosen large (7 vs. the typical 3), as this is found to produce continuous (rather than dashed) lineations. The main Canny threshold is chosen to correspond to a user selected slip threshold in mm. Reasonable maps of lineations in the Salton

  15. Computational Effective Fault Detection by Means of Signature Functions

    PubMed Central

    Baranski, Przemyslaw; Pietrzak, Piotr

    2016-01-01

    The paper presents a computationally effective method for fault detection. A system’s responses are measured under healthy and ill conditions. These signals are used to calculate so-called signature functions that create a signal space. The current system’s response is projected into this space. The signal location in this space easily allows to determine the fault. No classifier such as a neural network, hidden Markov models, etc. is required. The advantage of this proposed method is its efficiency, as computing projections amount to calculating dot products. Therefore, this method is suitable for real-time embedded systems due to its simplicity and undemanding processing capabilities which permit the use of low-cost hardware and allow rapid implementation. The approach performs well for systems that can be considered linear and stationary. The communication presents an application, whereby an industrial process of moulding is supervised. The machine is composed of forms (dies) whose alignment must be precisely set and maintained during the work. Typically, the process is stopped periodically to manually control the alignment. The applied algorithm allows on-line monitoring of the device by analysing the acceleration signal from a sensor mounted on a die. This enables to detect failures at an early stage thus prolonging the machine’s life. PMID:26949942

  16. Understanding Vibration Spectra of Planetary Gear Systems for Fault Detection

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne

    2003-01-01

    An understanding of the vibration spectra is very useful for any gear fault detection scheme based upon vibration measurements. The vibration measured from planetary gears is complicated. Sternfeld noted the presence of sidebands about the gear mesh harmonics spaced at the planet passage frequency in spectra measured near the ring gear of a CH-47 helicopter. McFadden proposes a simple model of the vibration transmission that predicts high spectral amplitudes at multiples of the planet passage frequency, for planetary gears with evenly spaced planets. This model correctly predicts no strong signal at the meshing frequency when the number of teeth on the ring gear is not an integer multiple of the number of planets. This paper will describe a model for planetary gear vibration spectra developed from the ideas started in reference. This model predicts vibration to occur only at frequencies that are multiples of the planet repetition passage frequency and clustered around gear mesh harmonics. Vibration measurements will be shown from tri-axial accelerometers mounted on three different planetary gear systems and compared with the model. The model correctly predicts the frequencies with large components around the first several gear mesh harmonics in measurements for systems with uniformly and nonuniformly spaced planet gears. Measurements do not confirm some of the more detailed features predicted by the model. Discrepancies of the ideal model to the measurements are believed due to simplifications in the model and will be discussed. Fault detection will be discussed applying the understanding will be discussed.

  17. Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures.

    PubMed

    Song, Qi; Song, Yong-Duan

    2011-12-01

    This paper investigates the position and velocity tracking control problem of high-speed trains with multiple vehicles connected through couplers. A dynamic model reflecting nonlinear and elastic impacts between adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived. Neuroadaptive fault-tolerant control algorithms are developed to account for various factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train forces in the system simultaneously. The resultant control scheme is essentially independent of system model and is primarily data-driven because with the appropriate input-output data, the proposed control algorithms are capable of automatically generating the intermediate control parameters, neuro-weights, and the compensation signals, literally producing the traction/braking force based upon input and response data only--the whole process does not require precise information on system model or system parameter, nor human intervention. The effectiveness of the proposed approach is also confirmed through numerical simulations. PMID:22167352

  18. FINDS: A fault inferring nonlinear detection system. User's guide

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.; Caglayan, A. K.

    1983-01-01

    The computer program FINDS is written in FORTRAN-77, and is intended for operation on a VAX 11-780 or 11-750 super minicomputer, using the VMS operating system. The program detects, isolates, and compensates for failures in navigation aid instruments and onboard flight control and navigation sensors of a Terminal Configured Vehicle aircraft in a Microwave Landing System environment. In addition, FINDS provides sensor fault tolerant estimates for the aircraft states which are then used by an automatic guidance and control system to land the aircraft along a prescribed path. FINDS monitors for failures by evaluating all sensor outputs simultaneously using the nonlinear analytic relationships between the various sensor outputs arising from the aircraft point mass equations of motion. Hence, FINDS is an integrated sensor failure detection and isolation system.

  19. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    PubMed

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  20. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    PubMed Central

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  1. RCS propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The operational flight instrumentation required for performance monitoring and fault detection are presented. Measurements by the burn through monitors are presented along with manifold and helium source pressures.

  2. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    PubMed

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-04-09

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires.

  3. Design of H(infinity) robust fault detection filter for linear uncertain time-delay systems.

    PubMed

    Bai, Leishi; Tian, Zuohua; Shi, Songjiao

    2006-10-01

    In this paper, the robust fault detection filter design problem for linear time-delay systems with both unknown inputs and parameter uncertainties is studied. Using a multiobjective optimization technique, a new performance index is introduced, which takes into account the robustness of the fault detection filter against disturbances and sensitivity to faults simultaneously. The reference residual model is then designed based on this performance index to formulate the robust fault detection filter design problem as an H(infinity) model-matching problem. By applying robust H(infinity) optimization control technique, the existence condition of the robust fault detection filter for linear time-delay systems with both unknown inputs and parameter uncertainties is presented in terms of linear matrix inequality formulation, independently of time delay. In order to detect the fault, an adaptive threshold which depends on the inputs is finally determined. An illustrative design example is used to demonstrate the validity of the proposed approach.

  4. Fault detection of planetary gearboxes using new diagnostic parameters

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Kong, Detong; Lin, Jing; Zuo, Ming J.

    2012-05-01

    Planetary gearboxes are commonly used in modern industry because of their large transmission ratio and strong load-bearing capacity. They generally work under heavy load and tough working environment and therefore their key components including sun gear, planet gears, ring gear, etc are subject to severe pitting and fatigue crack. Planetary gearboxes significantly differ from fixed-axis gearboxes and exhibit unique behavior, which invalidates the use of the diagnostic parameters developed and suitable for fixed-axis gearboxes. Therefore, there is a need to develop parameters specifically for detecting and diagnosing faults of planetary gearboxes. In this study, two diagnostic parameters are proposed based on the examination of the vibration characteristics of planetary gearboxes in both time and frequency domains. One is the root mean square of the filtered signal (FRMS) and the other is the normalized summation of positive amplitudes of the difference spectrum between the unknown signal and the healthy signal (NSDS). To test the proposed diagnostic parameters, we conducted experiments on a planetary gearbox test rig with sun gear faults including a cracked tooth and a pitted tooth. The vibration signals were measured under different motor speeds. The proposed parameters are compared with the existing parameters reported in the literature. The comparison results show the proposed diagnostic parameters perform better than others.

  5. Probabilistic Model of Fault Detection in Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Pathak, A.

    Since the introduction of quantum computation, several protocols (such as quantum cryptography, quantum algorithm, quantum teleportation) have established quantum computing as a superior future technology. Each of these processes involves quantum circuits, which are prone to different kinds of faults. Consequently, it is important to verify whether the circuit hardware is defective or not. The systematic procedure to do so is known as fault testing. Normally testing is done by providing a set of valid input states and measuring the corresponding output states and comparing the output states with the expected output states of the perfect (fault less) circuit. This particular set of input vectors are known as test set [6]. If there exists a fault then the next step would be to find the exact location and nature of the defect. This is known as fault localization. A model that explains the logical or functional faults in the circuit is a fault model. Conventional fault models include (i) stuck at faults, (ii) bridge faults, and (iii) delay faults. These fault models have been rigorously studied for conventional irreversible circuit. But with the advent of reversible classical computing and quantum computing it has become important to enlarge the domain of the study on test vectors.

  6. An underwater ship fault detection method based on Sonar image processing

    NASA Astrophysics Data System (ADS)

    Hong, Shi; Fang-jian, Shan; Bo, Cong; Wei, Qiu

    2016-02-01

    For the research of underwater ship fault detection method in conditions of sailing on the ocean especially in poor visibility muddy sea, a fault detection method under the assist of sonar image processing was proposed. Firstly, did sonar image denoising using the algorithm of pulse coupled neural network (PCNN); secondly, edge feature extraction for the image after denoising was carried out by morphological wavelet transform; Finally, interested regions Using relevant tracking method were taken, namely fault area mapping. The simulation results presented here proved the feasibility and effectiveness of the sonar image processing in underwater fault detection system.

  7. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  8. Resonant piezoelectric AlN-actuated microcantilevers for detection of antigen/antibody interactions

    NASA Astrophysics Data System (ADS)

    Oliver, M. J.; Hernando-García, J.; Ababneh, A.; Seidel, H.; Schmid, U.; Olivares, J.; Iborra, E.; Pobedinskas, P.; Haenen, K.; Sánchez-Rojas, J. L.

    2011-06-01

    Resonant microcantilevers are widely spread for different applications, such as atomic force microscopy or biosensor devices. The use of piezoelectric films on top of the cantilevers is a very promising technology due to the possibility of implementing an all electrical actuation/detection scheme. Among the different piezoelectric materials, polycrystalline aluminium nitride (AlN) is a very attractive material as, in contrast to typical alternatives such as lead zirconate titanate or zinc oxide, it is fully compatible with standard silicon technology, what facilitates its integration in silicon-based devices. In this study, our objective is to use sputter-deposited polycrystalline AlN as the actuation material for cantilever-based biosensors and to study the performance of high frequency modes for bio-detection in liquid media. Our results demonstrate a limit of mass detection of 0.07 ng for a 300x200 μm2 cantilever in liquid media, which represents a value below the mass of a monolayer of IgG on a 300x200 μm2 area.

  9. Fault detection and isolation in manufacturing systems with an identified discrete event model

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Schneider, Stefan; Lesage, Jean-Jacques; Litz, Lothar

    2012-10-01

    In this article a generic method for fault detection and isolation (FDI) in manufacturing systems considered as discrete event systems (DES) is presented. The method uses an identified model of the closed-loop of plant and controller built on the basis of observed fault-free system behaviour. An identification algorithm known from literature is used to determine the fault detection model in form of a non-deterministic automaton. New results of how to parameterise this algorithm are reported. To assess the fault detection capability of an identified automaton, probabilistic measures are proposed. For fault isolation, the concept of residuals adapted for DES is used by defining appropriate set operations representing generic fault symptoms. The method is applied to a case study system.

  10. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Oostdyk, Rebecca; Perotti, Jose

    2009-01-01

    When setting out to model and/or simulate a complex mechanical or electrical system, a modeler is faced with a vast array of tools, software, equations, algorithms and techniques that may individually or in concert aid in the development of the model. Mature requirements and a well understood purpose for the model may considerably shrink the field of possible tools and algorithms that will suit the modeling solution. Is the model intended to be used in an offline fashion or in real-time? On what platform does it need to execute? How long will the model be allowed to run before it outputs the desired parameters? What resolution is desired? Do the parameters need to be qualitative or quantitative? Is it more important to capture the physics or the function of the system in the model? Does the model need to produce simulated data? All these questions and more will drive the selection of the appropriate tools and algorithms, but the modeler must be diligent to bear in mind the final application throughout the modeling process to ensure the model meets its requirements without needless iterations of the design. The purpose of this paper is to describe the considerations and techniques used in the process of creating a functional fault model of a liquid hydrogen (LH2) system that will be used in a real-time environment to automatically detect and isolate failures.

  11. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  12. Fault-Detection Tool Has Companies 'Mining' Own Business

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A successful launching of NASA's Space Shuttle hinges heavily on the three Space Shuttle Main Engines (SSME) that power the orbiter. These critical components must be monitored in real time, with sensors, and compared against expected behaviors that could scrub a launch or, even worse, cause in- flight hazards. Since 1981, SSME faults have caused 23 scrubbed launches and 29 percent of total Space Shuttle downtime, according to a compilation of analysis reports. The most serious cases typically occur in the last few seconds before ignition; a launch scrub that late in the countdown usually means a period of investigation of a month or more. For example, during the launch attempt of STS-41D in 1984, an anomaly was detected in the number three engine, causing the mission to be scrubbed at T-4 seconds. This not only affected STS-41D, but forced the cancellation of another mission and caused a 2-month flight delay. In 2002, NASA s Kennedy Space Center, the Florida Institute of Technology, and Interface & Control Systems, Inc., worked together to attack this problem by creating a system that could automate the detection of mechanical failures in the SSMEs fuel control valves.

  13. Application of H-Infinity Fault Detection to Model-Scale Autonomous Aircraft

    NASA Astrophysics Data System (ADS)

    Vasconcelos, J. F.; Rosa, P.; Kerr, Murray; Latorre Sierra, Antonio; Recupero, Cristina; Hernandez, Lucia

    2015-09-01

    This paper describes the development of a fault detection system for a model scale autonomous aircraft. The considered fault scenario is defined by malfunctions in the elevator, namely bias and stuck-in-place of the surface. The H∞ design methodology is adopted, with an LFT description of the aircraft longitudinal dynamics, that allows for fault detection explicitly synthesized for a wide range of operating airspeeds. The obtained filter is validated in two stages: in a Functional Engineering Simulator (FES), providing preliminary results of the filter performance; and with experimental data, collected in field tests with actual injection of faults in the elevator surface.

  14. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators

    NASA Astrophysics Data System (ADS)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of

  15. Data-driven and adaptive statistical residual evaluation for fault detection with an automotive application

    NASA Astrophysics Data System (ADS)

    Svärd, Carl; Nyberg, Mattias; Frisk, Erik; Krysander, Mattias

    2014-03-01

    An important step in model-based fault detection is residual evaluation, where residuals are evaluated with the aim to detect changes in their behavior caused by faults. To handle residuals subject to time-varying uncertainties and disturbances, which indeed are present in practice, a novel statistical residual evaluation approach is presented. The main contribution is to base the residual evaluation on an explicit comparison of the probability distribution of the residual, estimated online using current data, with a no-fault residual distribution. The no-fault distribution is based on a set of a priori known no-fault residual distributions, and is continuously adapted to the current situation. As a second contribution, a method is proposed for estimating the required set of no-fault residual distributions off-line from no-fault training data. The proposed residual evaluation approach is evaluated with measurement data on a residual for fault detection in the gas-flow system of a Scania truck diesel engine. Results show that small faults can be reliably detected with the proposed approach in cases where regular methods fail.

  16. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  17. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    PubMed Central

    Moghadas, Amin A.; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  18. Test generation and fault detection for VLSI PPL circuits

    SciTech Connect

    Amin, A.A.M.

    1987-01-01

    The problem of design for testability of PPL logic circuits is addressed. A test-generation package was developed which utilizes the special features of PPL logic to generate high fault coverage test vectors at a reduced computational cost. The test strategy assumes that one of the scan design techniques is used. A new methodology for test-vectors compaction without compromising the fault coverage is also proposed. A fault-oriented test-generation algorithm combined with a heuristic test-generation algorithm are the essential ingredients of this package. The fault-oriented algorithm uses a modified D-algorithm which includes look-ahead features and a new seven-valued logic to improve the average speed of the test-generation process. Fault coverages in the 90% range were obtained using the test sequences generated by this package.

  19. Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; McGuire, J. J.

    2007-12-01

    Seismicity triggered by aseismic deformation, such as magmatic intrusions or afterslip, can be used to detect the occurrence of these otherwise difficult to observe processes. Recent studies suggest that aseismic deformation can trigger large amounts of seismicity in a variety of plate tectonic settings. We have developed a new technique that takes advantage of this triggered seismicity to estimate the time-history of aseismic stressing rate on a fault- zone by combining the rate and state dependent friction and the Epidemic Type Aftershock Sequence (ETAS) models of seismicity-rate [ Dieterich, 1994; Ogata, 1988]. In the rate-state model, the integration of an observed seismicity rate results in an estimate of the stress rate acting in a given space-time window. However, the seismicity rate observed in any catalog comes from 3 primary sources: coseismically-triggered seismicity (aftershocks), tectonically-triggered seismicity (i.e., from long-term tectonic loading), and aseismically-triggered seismicity (e.g., from dike intrusion, aseismic slip transients, or fluid migration). In catalogs dominated by directly triggered aftershocks (i.e., ETAS branching ratios >~0.7), the coseismically-triggered seismicity rate will be much larger than the aseismically-triggered rate and will dominate the estimate of stressing-rate, obscuring the aseismic transient of interest if the rate-state method is applied directly. The challenge therefore lies in isolating the aseismically-triggered seismicity rate from the coseismically-triggered seismicity rate. The ETAS model [ Ogata, 1988] provides a natural way to separate the aseismic and coseismic seismicity rates, as the ETAS parameter μ essentially reflects the aseismically-triggered rate (as well as the background tectonically-triggered rate). To develop a method that can resolve the magnitude and time history of aseismic stress transients even in high branching ratio regions, we combine the rate-state and ETAS models into a

  20. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy.

  1. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  2. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  3. Fault Detection and Diagnosis Techniques for Liquid-Propellant Rocket Propellant Engines

    NASA Astrophysics Data System (ADS)

    Wua, Jianjun; Tanb, Songlin

    2002-01-01

    Fault detection and diagnosis plays a pivotal role in the health-monitoring techniques for liquid- propellant rocket engines. This paper firstly gives a brief summary on the techniques of fault detection and diagnosis utilized in liquid-propellant rocket engines. Then, the applications of fault detection and diagnosis algorithms studied and developed to the Long March Main Engine System(LMME) are introduced. For fault detection, an analytical model-based detection algorithm, a time-series-analysis algorithm and a startup- transient detection algorithm based on nonlinear identification developed and evaluated through ground-test data of the LMME are given. For fault diagnosis, neural-network approaches, nonlinear-static-models based methods, and knowledge-based intelligent approaches are presented. Keywords: Fault detection; Fault diagnosis; Health monitoring; Neural networks; Fuzzy logic; Expert system; Long March main engines Contact author and full address: Dr. Jianjun Wu Department of Astronautical Engineering School of Aerospace and Material Engineering National University of Defense Technology Changsha, Hunan 410073 P.R.China Tel:86-731-4556611(O), 4573175(O), 2219923(H) Fax:86-731-4512301 E-mail:jjwu@nudt.edu.cn

  4. Detection of high impedance arcing faults using a multi-layer perceptron

    SciTech Connect

    Sultan, F.F.; Swift, G.W. ); Fedirchuk, D.J. )

    1992-10-01

    A feed-forward three-layer perceptron was trained by high impedance fault, fault-like load, and normal load current patterns, using the back-propagation training algorithm. This paper reports that the neural network parameters were embodied in a high impedance arcing faults detection algorithm, which uses a simple preprocessing technique to prepare the information input to the network. The algorithm was tested by traces of normal load current disturbed by currents of faults on dry and wet soil, an arc welder, computers, and fluorescent lights.

  5. Experimental application of nonlinear minimum variance estimation for fault detection systems

    NASA Astrophysics Data System (ADS)

    Alkaya, Alkan; Grimble, Michael John

    2016-09-01

    The purpose of this paper is to present an experimental design and application of a novel model-based fault detection technique by using a nonlinear minimum variance (NMV) estimator. The NMV estimation technique is used to generate a residual signal which is then used to detect faults in the system. The main advantage of the approach is the simplicity of the nonlinear estimator theory and the straightforward structure of the resulting solution. The proposed method is implemented and validated experimentally on DC servo system. Experimental results demonstrate that the technique can produce acceptable performance in terms of fault detection and false alarm.

  6. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  7. Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zi, Yanyang; He, Zhengjia; Yuan, Jing

    2013-07-01

    Due to the character of diversity and complexity, the compound faults detection of rotating machinery under non-stationary operation turns into a challenging task. Multiwavelet with two or more base functions and many excellent properties provides a possibility to detect and extract all the features of compound faults at one time. However, the fixed basis functions independent of the vibration signal may decrease the accuracy of fault detection. Moreover, the decomposition result of discrete multiwavelet transform does not possess time invariance, which is harmful to extract the feature of periodical impulses. To overcome these deficiencies, based on the Hermite splines interpolation, taking the minimum envelope spectrum entropy as the optimization objective, adaptive redundant lifting multiwavelet is developed. Additionally, in order to eliminate error propagation of decomposition results, adaptive redundant lifting multiwavelet is improved by adding the normalization factors. As an effective method, Hilbert transform demodulation analysis is used to extract the fault feature from the high frequency modulation signal. The proposed method incorporating improved adaptive redundant lifting multiwavelet (IARLM) with Hilbert transform demodulation analysis is applied to compound faults detection for the simulation experiment, rolling element bearing test bench and traveling unit of electric locomotive. Compared with some other fault detection methods, the results show the superior effectiveness and reliability on the compound faults detection.

  8. Residual generation for fault detection and isolation in a class of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Jun; Yang, Guang-Hong

    2013-02-01

    This article studies the problem of fault detection and isolation (FDI) for a class of uncertain nonlinear systems via a residual signal generated by a novel nonlinear adaptive observer. The considered faults are modelled by a set of time-varying vectors, in which a prescribed subset of faults are specially monitored and thus separable from the other faults. In the presence of Lipschitz-like nonlinearities and modelling uncertainties, the sensitivity of the residual signal to the monitored faults and its insensitivity to the other faults are rigorously analysed. Under a persistent excitation condition, the performances of the proposed fault diagnosis scheme, including the robustness to uncertainties, the quickness of estimation, the accuracy of estimation, the sensitivity to the monitored faults and the insensitivity to the complement faults, are quantified by a series of explicit design functions relevant to the observer parameters. It turns out that the number of faults which can be completely diagnosed is independent of the number of output sensors. A simulation example is given to illustrate the effectiveness of the proposed FDI method.

  9. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  10. Construction and selection of lifting-based multiwavelets for mechanical fault detection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; He, Zhengjia; Zi, Yanyang; Wei, Ying

    2013-11-01

    The essence of wavelet transforms is a similar measurement between the signal and the wavelet basis functions. Thus, the construction and selection of the proper wavelet basis functions similar to the fault feature and possessing good properties such as vanishing moments have vital importance to the effective fault diagnosis. In this paper, the construction of lifting-based adaptive multiwavelets with various vanishing moments and the selection rules for different mechanical fault detection are proposed. On the basis of the fixed cubic Hermite multiwavelets, lifting schemes are adopted to construct new changeable multiwavelets with diverse vanishing moments. Then, the defined local spectral entropy minimization rules are proposed to determine the optimum multiwavelets providing the proper vanishing moments, classified into the typical shaft faults, gear faults and rolling bearing faults. The proposed method is applied to incipient fault diagnosis of rolling bearing and gearbox fault diagnosis of rolling mill to verify its effectiveness and feasibility in comparison with different wavelet transforms and spectral kurtosis. The results show that the proposed method can act as a promising tool for mechanical fault detection.

  11. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  12. Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines

    SciTech Connect

    Johnson, K. E.; Fleming, P. A.

    2011-06-01

    The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

  13. ASCS online fault detection and isolation based on an improved MPCA

    NASA Astrophysics Data System (ADS)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  14. a New Online Distributed Process Fault Detection and Isolation Approach Using Potential Clustering Technique

    NASA Astrophysics Data System (ADS)

    Bahrampour, Soheil; Moshiri, Behzad; Salahshoor, Karim

    2009-08-01

    Most of process fault monitoring systems suffer from offline computations and confronting with novel faults that limit their applicabilities. This paper presents a new online fault detection and isolation (FDI) algorithm based on distributed online clustering approach. In the proposed approach, clustering algorithm is used for online detection of a new trend of time series data which indicates faulty condition. On the other hand, distributed technique is used to decompose the overall monitoring task into a series of local monitoring sub-tasks so as to locally track and capture the process faults. This algorithm not only solves the problem of online FDI, but also can handle novel faults. The diagnostic performances of the proposed FDI approach is evaluated on the Tennessee Eastman process plant as a large-scale benchmark problem.

  15. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  16. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  17. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  18. On-line early fault detection and diagnosis of municipal solid waste incinerators.

    PubMed

    Zhao, Jinsong; Huang, Jianchao; Sun, Wei

    2008-11-01

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI. PMID:18255276

  19. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).

  20. Fault detection and isolation for a nonlinear railway vehicle suspension with a Hybrid Extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Jesussek, Mathias; Ellermann, Katrin

    2013-10-01

    Fault detection is considered to be one way to improve system reliability and dependability for railway vehicles. The secondary lateral and anti-yaw dampers are the most critical parts in railway suspension systems. So far, the dampers have been modelled as linear components in the fault detection and isolation observer design. In this work, a Hybrid Extended Kalman filter is used to capture the nonlinear characteristics of the dampers. In order to detect and isolate faults, a nonlinear residual generator is developed, which can distinguish clearly between different types of faults. A lateral half train model serves as an example for the proposed technique. The results show that failures in the nonlinear suspension system can be detected and isolated accurately.

  1. Fault detection and diagnosis of power converters using artificial neural networks

    SciTech Connect

    Swarup, K.S.; Chandrasekharaiah, H.S.

    1995-12-31

    Fault detection and diagnosis in real-time are areas of research interest in knowledge-based expert systems. Rule-based and model-based approaches have been successfully applied to some domains, but are too slow to be effectively applied in a real-time environment. This paper explores the suitability of using artificial neural networks for fault detection and diagnosis of power converter systems. The paper describes a neural network design and simulation environment for real-time fault diagnosis of thyristor converters used in HVDC power transmission systems.

  2. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOEpatents

    Almasi, Gheorghe [Ardsley, NY; Blumrich, Matthias Augustin [Ridgefield, CT; Chen, Dong [Croton-On-Hudson, NY; Coteus, Paul [Yorktown, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk I [Ossining, NY; Singh, Sarabjeet [Mississauga, CA; Steinmacher-Burow, Burkhard D [Wernau, DE; Takken, Todd [Brewster, NY; Vranas, Pavlos [Bedford Hills, NY

    2008-06-03

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored in memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.

  3. Sparse representation based latent components analysis for machinery weak fault detection

    NASA Astrophysics Data System (ADS)

    Tang, Haifeng; Chen, Jin; Dong, Guangming

    2014-06-01

    Weak machinery fault detection is a difficult task because of two main reasons (1) At the early stage of fault development, signature of fault related component performs incompletely and is quite different from that at the apparent failure stage. In most instances, it seems almost identical with the normal operating state. (2) The fault feature is always submerged and distorted by relatively strong background noise and macro-structural vibrations even if the fault component already performs completely, especially when the structure of fault components and interference are close. To solve these problems, we should penetrate into the underlying structure of the signal. Sparse representation provides a class of algorithms for finding succinct representations of signal that capture higher-level features in the data. With the purpose of extracting incomplete or seriously overwhelmed fault components, a sparse representation based latent components decomposition method is proposed in this paper. As a special case of sparse representation, shift-invariant sparse coding algorithm provides an effective basis functions learning scheme for capturing the underlying structure of machinery fault signal by iteratively solving two convex optimization problems: an L1-regularized least squares problem and an L2-constrained least squares problem. Among these basis functions, fault feature can be probably contained and extracted if optimal latent component is filtered. The proposed scheme is applied to analyze vibration signals of both rolling bearings and gears. Experiment of accelerated lifetime test of bearings validates the proposed method's ability of detecting early fault. Besides, experiments of fault bearings and gears with heavy noise and interference show the approach can effectively distinguish subtle differences between defect and interference. All the experimental data are analyzed by wavelet shrinkage and basis pursuit de-noising (BPDN) method for comparison.

  4. Enhanced Fault Detection of Rolling Element Bearing Based on Cepstrum Editing and Stochastic Resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Hu, Niaoqing; Hu, Lei; Fan, Bin; Cheng, Zhe

    2012-05-01

    By signal pre-whitening based on cepstrum editing,the envelope analysis can be done over the full bandwidth of the pre-whitened signal, and this enhances the bearing characteristic frequencies. The bearing faults detection could be enhanced without knowledge of the optimum frequency bands to demodulate, however, envelope analysis over full bandwidth brings more noise interference. Stochastic resonance (SR), which is now often used in weak signal detection, is an important nonlinear effect. By normalized scale transform, SR can be applied in weak signal detection of machinery system. In this paper, signal pre-whitening based on cepstrum editing and SR theory are combined to enhance the detection of bearing fault. The envelope spectrum kurtosis of bearing fault characteristic components is used as indicators of bearing faults. Detection results of planted bearing inner race faults on a test rig show the enhanced detecting effects of the proposed method. And the indicators of bearing inner race faults enhanced by SR are compared to the ones without enhancement to validate the proposed method.

  5. Teager energy operator for multi-modulation extraction and its application for gearbox fault detection

    NASA Astrophysics Data System (ADS)

    Soltani Bozchalooi, I.; Liang, Ming

    2010-07-01

    This paper presents a parameter-free and broadband approach to detecting gear faults based on vibration signals. The technique is implemented using the Teager energy operator (TEO). It is shown that this operator can extract amplitude, phase and frequency modulations that are associated with various gear faults. Spectral analysis of the TEO-transformed signal provides the necessary information for fault detection. To improve the effectiveness of the proposed technique, we also devised a wavelet de-noising step based on online threshold estimation. In the de-noising step, the threshold estimation is performed through a frequency domain median absolute deviation (FMAD) scheme. The proposed fault detection technique is tested on simulated as well as experimental data acquired from a single-stage bevel gearbox and a two-stage parallel gearbox. US patent pending (serial number: 12/631,528).

  6. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors

    NASA Astrophysics Data System (ADS)

    Yang, Jing-li; Chen, Yin-sheng; Zhang, Li-li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  7. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors. PMID:27370486

  8. Detection of fault structures with airborne LiDAR point-cloud data

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Du, Lei

    2015-08-01

    The airborne LiDAR (Light Detection And Ranging) technology is a new type of aerial earth observation method which can be used to produce high-precision DEM (Digital Elevation Model) quickly and reflect ground surface information directly. Fault structure is one of the key forms of crustal movement, and its quantitative description is the key to the research of crustal movement. The airborne LiDAR point-cloud data is used to detect and extract fault structures automatically based on linear extension, elevation mutation and slope abnormal characteristics. Firstly, the LiDAR point-cloud data is processed to filter out buildings, vegetation and other non-surface information with the TIN (Triangulated Irregular Network) filtering method and Burman model calibration method. TIN and DEM are made from the processed data sequentially. Secondly, linear fault structures are extracted based on dual-threshold method. Finally, high-precision DOM (Digital Orthophoto Map) and other geological knowledge are used to check the accuracy of fault structure extraction. An experiment is carried out in Beiya Village of Yunnan Province, China. With LiDAR technology, results reveal that: the airborne LiDAR point-cloud data can be utilized to extract linear fault structures accurately and automatically, measure information such as height, width and slope of fault structures with high precision, and detect faults in areas with vegetation coverage effectively.

  9. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  10. Detectability of slow slip beneath the seismogenic zone of strike-slip faults using borehole tiltmeters

    NASA Astrophysics Data System (ADS)

    Chery, J.

    2015-12-01

    During the last decades, geodetic tools like C-GPS allowed the detection of slow slip events associated with transient motion below the seismogenic zone. This new class of fault motion lead us to revise the standard version of the seismic cycle simply including coseismic, postseismic and interseismic phases. Most of these discoveries occurred on subduction margins in various places like Japan, Cascadia, Chile and Indonesia. By contrast, GPS and strainmeters have provided little evidence of slow slip beneath the seismogenic zone of large continental faults like the San Andreas fault or the North Anatolian fault. Because the detectability of such motions is mostly tributary from instrumental precision, we examine the theoretical capability of tiltmeter arrays for detecting horizontal motion of a buried vertical fault. We define the slipping part of the strike-slip fault like a buried rectangular patch submitted to horizontal motion. This motion provides horizontal and vertical surface deformation as a function of both patch geometry (length, width, depth) and motion amplitude. Using a dislocation buried at 15km depth, we compute the maximum motion and tilt as a function of seismic moment. Assuming yields of detectability of 1mm for GPS horizontal motion and 10 nrad for a tiltmeter, we show that small slip events could be better detected using high resolution and stability tiltmeters. We then examine how tiltmeters arrays could be used for such a purpose. In particular, we discuss how to deal with usual problems often plaguing tiltmeters data like instrumental drift, borehole coupling and hydrological strain.

  11. ARX model-based gearbox fault detection and localization under varying load conditions

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Makis, Viliam

    2010-11-01

    The development of the fault detection schemes for gearbox systems has received considerable attention in recent years. Both time series modeling and feature extraction based on wavelet methods have been considered, mostly under constant load. Constant load assumption implies that changes in vibration data are caused only by deterioration of the gearbox. However, most real gearbox systems operate under varying load and speed which affect the vibration signature of the system and in general make it difficult to recognize the occurrence of an impending fault. This paper presents a novel approach to detect and localize the gear failure occurrence for a gearbox operating under varying load conditions. First, residual signal is calculated using an autoregressive model with exogenous variables (ARX) fitted to the time-synchronously averaged (TSA) vibration data and filtered TSA envelopes when the gearbox operated under various load conditions in the healthy state. The gear of interest is divided into several sections so that each section includes the same number of adjacent teeth. Then, the fault detection and localization indicator is calculated by applying F-test to the residual signal of the ARX model. The proposed fault detection scheme indicates not only when the gear fault occurs, but also in which section of the gear. Finally, the performance of the fault detection scheme is checked using full lifetime vibration data obtained from the gearbox operating from a new condition to a breakdown under varying load.

  12. Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.

  13. Similarity ratio analysis for early stage fault detection with optical emission spectrometer in plasma etching process.

    PubMed

    Yang, Jie; McArdle, Conor; Daniels, Stephen

    2014-01-01

    A Similarity Ratio Analysis (SRA) method is proposed for early-stage Fault Detection (FD) in plasma etching processes using real-time Optical Emission Spectrometer (OES) data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy etching process. By comparing with the SRA library, a Similarity Ratio (SR) statistic is then calculated for each spectrum scan as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A), takes the SR values as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm, and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but with fault testing conducted only after each process run completes. PMID:24755865

  14. Enhanced detection of rolling element bearing fault based on stochastic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Hu, Niaoqing; Cheng, Zhe; Hu, Lei

    2012-11-01

    Early bearing faults can generate a series of weak impacts. All the influence factors in measurement may degrade the vibration signal. Currently, bearing fault enhanced detection method based on stochastic resonance(SR) is implemented by expensive computation and demands high sampling rate, which requires high quality software and hardware for fault diagnosis. In order to extract bearing characteristic frequencies component, SR normalized scale transform procedures are presented and a circuit module is designed based on parameter-tuning bistable SR. In the simulation test, discrete and analog sinusoidal signals under heavy noise are enhanced by SR normalized scale transform and circuit module respectively. Two bearing fault enhanced detection strategies are proposed. One is realized by pure computation with normalized scale transform for sampled vibration signal, and the other is carried out by designed SR hardware with circuit module for analog vibration signal directly. The first strategy is flexible for discrete signal processing, and the second strategy demands much lower sampling frequency and less computational cost. The application results of the two strategies on bearing inner race fault detection of a test rig show that the local signal to noise ratio of the characteristic components obtained by the proposed methods are enhanced by about 50% compared with the band pass envelope analysis for the bearing with weaker fault. In addition, helicopter transmission bearing fault detection validates the effectiveness of the enhanced detection strategy with hardware. The combination of SR normalized scale transform and circuit module can meet the need of different application fields or conditions, thus providing a practical scheme for enhanced detection of bearing fault.

  15. Similarity ratio analysis for early stage fault detection with optical emission spectrometer in plasma etching process.

    PubMed

    Yang, Jie; McArdle, Conor; Daniels, Stephen

    2014-01-01

    A Similarity Ratio Analysis (SRA) method is proposed for early-stage Fault Detection (FD) in plasma etching processes using real-time Optical Emission Spectrometer (OES) data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy etching process. By comparing with the SRA library, a Similarity Ratio (SR) statistic is then calculated for each spectrum scan as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A), takes the SR values as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm, and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but with fault testing conducted only after each process run completes.

  16. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  17. A universal, fault-tolerant, non-linear analytic network for modeling and fault detection

    SciTech Connect

    Mott, J.E. ); King, R.W.; Monson, L.R.; Olson, D.L.; Staffon, J.D. )

    1992-03-06

    The similarities and differences of a universal network to normal neural networks are outlined. The description and application of a universal network is discussed by showing how a simple linear system is modeled by normal techniques and by universal network techniques. A full implementation of the universal network as universal process modeling software on a dedicated computer system at EBR-II is described and example results are presented. It is concluded that the universal network provides different feature recognition capabilities than a neural network and that the universal network can provide extremely fast, accurate, and fault-tolerant estimation, validation, and replacement of signals in a real system.

  18. Fundamental design concepts in multi-lane smart electromechanical actuators

    NASA Astrophysics Data System (ADS)

    Annaz, Fawaz Yahya

    2005-12-01

    The most fundamental concept in designing multi-lane smart electromechanical actuation systems, besides meeting performance requirements, is the realization of high integrity. The essential requirements for realizing high integrity (and in any safety-critical system) are hardware redundancy and intelligent monitoring. To correctly detect, identify, isolate and replace redundant components, an intelligent fault detection and fault isolation scheme is required. The effectiveness of any fault detection and fault isolation system is assessed by examining promptness of detection, sensitivity, missed fault detection, the rate of false alarms, and incorrect fault identification. These terms are very much dependent on the threshold values of the monitoring devices imbedded in the system. The main aim of this paper is to provide fundamental consolidation designs and monitoring schemes in different architectures. It will address single-type and two-type summing architectures and highlight feedback sensor integration and monitoring strategies in the former, and explore the suitability of different threshold setting methodologies such as a simulation-graphical based Monte Carlo method, decision theory and analysis of variance. The paper will also address other fundamentals that are essential at the design stage, such as control surface load estimation, force fight (between mismatch lanes) reduction through lane equalization, and threshold setting concepts (scheduled and unscheduled) in a multi-mode operation system. The analysis is based on a four-lane actuation system capable of driving aerodynamic and inertial loads (with two lanes failed) of an aileron control surface similar to that of the Sea Harrier.

  19. Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)

    2001-01-01

    This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.

  20. Fault Detection in the Blade and Pitch System of a Wind Turbine with H2 PI Observers

    NASA Astrophysics Data System (ADS)

    Sales-Setién, Ester; Peñarrocha, Ignacio; Dolz, Daniel; Sanchis, Roberto

    2015-11-01

    In this work, we present a fault detection strategy applicable to the blade and pitch system in offshore wind turbines. First, we model the system and possible faults and propose a PI observer to identify the faults. Then, the observer is designed accounting the sensors measurement noise, and addressing a trade off between the needs of false alarm rate, minimum detectable fault and detection time. By means of a well known benchmark, several simulations show the goodness of the approach and its flexibility to explicitly fix the fault detector performance.

  1. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1995-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  2. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1993-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  3. Fault detection and accommodation testing on an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.

  4. A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection

    PubMed Central

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-01-01

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments. PMID:25365463

  5. A novel dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection.

    PubMed

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-01-01

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments. PMID:25365463

  6. A novel dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection.

    PubMed

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-10-31

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments.

  7. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  8. Fault detection of helicopter gearboxes using the multi-valued influence matrix method

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1993-01-01

    In this paper we investigate the effectiveness of a pattern classifying fault detection system that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes. For detection, the measurements are monitored on-line and flagged upon the detection of abnormalities, so that they can be attributed to a faulty or normal case. As such, the detection system is composed of two components, a quantization matrix to flag the measurements, and a multi-valued influence matrix (MVIM) that represents the behavior of measurements during normal operation and at fault instances. Both the quantization matrix and influence matrix are tuned during a training session so as to minimize the error in detection. To demonstrate the effectiveness of this detection system, it was applied to vibration measurements collected from a helicopter gearbox during normal operation and at various fault instances. The results indicate that the MVIM method provides excellent results when the full range of faults effects on the measurements are included in the training set.

  9. Set-theoretic methods in robust detection and isolation of sensor faults

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Puig, Vicenç; Ocampo-Martinez, Carlos; Olaru, Sorin; Stoican, Florin

    2015-10-01

    This paper proposes a sensorfault detection and isolation (FDI) approach based on interval observers and invariant sets. In fault detection (FD), both interval observer-based and invariant set-based mechanisms are used to provide real-time fault alarms. In fault isolation (FI), the proposed approach also uses these two different mechanisms. The former, based on interval observers, aims to isolate faults during the transient-state operation induced by faults. If the former does not succeed, the latter, based on both interval observers and invariant sets, is started to guarantee FI after the system enters into steady state. Besides, a collection of invariant set-based FDI conditions are established by using all available system-operating information provided by all interval observers. In order to reduce computational complexity, a method to remove all available but redundant/unnecessary system-operating information is incorporated into this approach. If the considered faults satisfy the proposed FDI conditions, it can be guaranteed that they are detectable and isolable after their occurrences. This paper concludes with a case study based on a subsystem of a wind turbine benchmark, which can illustrate the effectiveness of this FDI technique.

  10. Detecting arcing downed-wires using fault current flicker and half-cycle asymmetry

    SciTech Connect

    Sultan, A.F.; Swift, G.W. . Dept. of Electrical and Computer Engineering); Fedirchuk, D.J. . System Operating Dept.)

    1994-01-01

    The downed-wires problem, known as high impedance faults, is described. A high voltage laboratory setup was devised to investigate the phenomenon. The laboratory model results agreed with field test results, and previous research efforts. The arcing fault model was justified. The setup was used as a source of fault current signal. A simple approach was taken to design an arcing fault detector. The algorithm utilizes the random behavior of the fault current. It compares the positive and negative current peaks in one cycle to those in the next cycle to measure the flicker in the current signal. The asymmetry of the current is calculated by comparing the positive peak to the negative peak, for each cycle; the moving window length is half a cycle. Both values are used as a signature of arcing. The result is filtered and compared with a suitable detection threshold. The algorithm was tested by traces of normal load, and no-load current disturbed by currents of faults on dry and wet soil, arc welders, computers, and fluorescent light loads, as well as short circuit currents. The algorithm performed well under the test conditions, except for the arc welder load. This load is also a source of insecurity for other algorithms. The detection criterion will be integrated with another detection method to improve the security during arcing load events. On-line testing is required to demonstrate algorithm dependability.

  11. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  12. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    PubMed

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. PMID:27038887

  13. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    PubMed

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  14. Light emitting diode fault detection using p-n junction photovoltaic effect.

    PubMed

    Li, Ping; Wen, Yumei; Cai, Youhai; Li, Lian

    2009-05-01

    This paper proposes an online noncontact fault detection method during light emitting diode (LED) chip packaging, which is based on the photovoltaic effect in p-n junctions. Once a LED chip bonded on a lead frame is illuminated, the photocurrent will flow through the loop circuits formed by the lead frame. Through characterization of the weak photovoltaic response in the lead frame with the 20 LED chips, five LED faults, including chip defects (chip quality and chip contamination) and bonding deficiencies (disconnection, debonding, and rebonding), can be detected before packaging. A high-sensitivity photocurrent detection instrument has been developed to detect different color (red, yellow, green, and blue) and different size LED chips (9-15 mil) on LED assembly line. A key feature of the new instrument is the capability to tune and implement the maximum output power (photocurrent) in the loop lead frame by designing the high-efficiency magnetic core, the magnetic coil and the detecting system. Experiments demonstrate that the photovoltaic behaviors for LED p-n junctions are directly related to the LED electroluminescent characteristics, and the internal optoelectronic characteristics and the external Ohmic contact performances can be derived by detecting the photocurrent of LED chips. The LED online noncontact fault detection instrument based on the photovoltaic effect can be used to substitute for the ordinary electroluminescence online contact fault detection instrument.

  15. Seismic slip propagation along a fault in the Shimanto accretionary prism detected by vitrinite reflectance studies

    NASA Astrophysics Data System (ADS)

    Kitamura, M.; Mukoyoshi, H.; Hirose, T.

    2011-12-01

    Quantitative assessment of heat generation along faults during fault movement is of primary importance in understanding the dynamics of earthquakes. Last several years localized heat anomaly in a fault zone due to rapid seismic sliding has been detected by various analyses of fault zone materials, such as ferromagnetic resonance signal (Fukuchi et al., 2005), trace elements and isotopes (e.g., Ishikawa et al., 2008) and mineralogical change of clay (e.g., Hirono et al., 2008) and vitrinite reflectance (O'Hara, 2004). Here we report a heat anomaly found in a fault zone in the Shimanto accretionary complex by vitrinite reflectance measurements. Mature faults in nature mostly experience multiple seismic events, resulting in integrated heat anomaly. Thus, in addition to vitrinite reflectance measurements across natural faults, we performed high-velocity friction experiments on a mixture of quartz and vitrinite grains to evaluate how multiple rapid-slip events affect vitrinite reflectance in a fault zone. A localized heat anomaly is found in one of fault zones which are developed within a mélange unit in the Cretaceous Shimanto belt, SW Japan. A principle slip zone with thickness of ~5 mm forms within cataclastic damage zone with thickness of ~3 m. The slip zone is mainly composed of well-foliated clay minerals. Host rocks are characterized by a block-in-matrix texture: aligned sandstone and chert blocks embedded in mudstone matrix. We measured vitrinite reflectance across the fault zone by the same method as reported in Sakaguchi et al., (2011). The measurement reveals that the principle slip zone underwent localized temperature of more than 220°C, while background temperature of both damage zone and host rocks is ~170°C. Since fault motion along most active faults occurs seismological, that inevitably generates frictional heat, the localized heat anomaly is possibly caused by the rapid seismic slip. In order to evaluate the change in vitrinite reflectance by

  16. Statistical Fault Detection for Parallel Applications with AutomaDeD

    SciTech Connect

    Bronevetsky, G; Laguna, I; Bagchi, S; de Supinski, B R; Ahn, D; Schulz, M

    2010-03-23

    Today's largest systems have over 100,000 cores, with million-core systems expected over the next few years. The large component count means that these systems fail frequently and often in very complex ways, making them difficult to use and maintain. While prior work on fault detection and diagnosis has focused on faults that significantly reduce system functionality, the wide variety of failure modes in modern systems makes them likely to fail in complex ways that impair system performance but are difficult to detect and diagnose. This paper presents AutomaDeD, a statistical tool that models the timing behavior of each application task and tracks its behavior to identify any abnormalities. If any are observed, AutomaDeD can immediately detect them and report to the system administrator the task where the problem began. This identification of the fault's initial manifestation can provide administrators with valuable insight into the fault's root causes, making it significantly easier and cheaper for them to understand and repair it. Our experimental evaluation shows that AutomaDeD detects a wide range of faults immediately after they occur 80% of the time, with a low false-positive rate. Further, it identifies weaknesses of the current approach that motivate future research.

  17. Design of a novel knowledge-based fault detection and isolation scheme.

    PubMed

    Zhao, Qing; Xu, Zhihan

    2004-04-01

    In this paper, a real-time fault detection and isolation (FDI) scheme for dynamical systems is developed, by integrating the signal processing technique with neural network design. Wavelet analysis is applied to capture the fault-induced transients of the measured signals in real-time, and the decomposed signals are pre-processed to extract details about a fault. A Regional Self-Organizing feature Map (R-SOM) neural network is synthesized to classify the fault types. The R-SOM neural network adopts two regions adjustment in the learning algorithm, thus it has high precision in clustering and matching, especially when the noise, disturbance and other uncertainties exist in the systems. As a result, the proposed FDI scheme is robust and accurate. The design is implemented on a stirred tank system and satisfactory online testing results are obtained.

  18. Fuzzy logic based on-line fault detection and classification in transmission line.

    PubMed

    Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam

    2016-01-01

    This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application. PMID:27398278

  19. Method and system for early detection of incipient faults in electric motors

    DOEpatents

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  20. Fuzzy logic based on-line fault detection and classification in transmission line.

    PubMed

    Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam

    2016-01-01

    This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application.

  1. Fault and dyke detectability in high resolution seismic surveys for coal: a view from numerical modelling*

    NASA Astrophysics Data System (ADS)

    Zhou, Binzhong 13Hatherly, Peter

    2014-10-01

    Modern underground coal mining requires certainty about geological faults, dykes and other structural features. Faults with throws of even just a few metres can create safety issues and lead to costly delays in mine production. In this paper, we use numerical modelling in an ideal, noise-free environment with homogeneous layering to investigate the detectability of small faults by seismic reflection surveying. If the layering is horizontal, faults with throws of 1/8 of the wavelength should be detectable in a 2D survey. In a coal mining setting where the seismic velocity of the overburden ranges from 3000 m/s to 4000 m/s and the dominant seismic frequency is ~100 Hz, this corresponds to a fault with a throw of 4-5 m. However, if the layers are dipping or folded, the faults may be more difficult to detect, especially when their throws oppose the trend of the background structure. In the case of 3D seismic surveying we suggest that faults with throws as small as 1/16 of wavelength (2-2.5 m) can be detectable because of the benefits offered by computer-aided horizon identification and the improved spatial coherence in 3D seismic surveys. With dykes, we find that Berkhout's definition of the Fresnel zone is more consistent with actual experience. At a depth of 500 m, which is typically encountered in coal mining, and a 100 Hz dominant seismic frequency, dykes less than 8 m in width are undetectable, even after migration.

  2. Effective confidence interval estimation of fault-detection process of software reliability growth models

    NASA Astrophysics Data System (ADS)

    Fang, Chih-Chiang; Yeh, Chun-Wu

    2016-09-01

    The quantitative evaluation of software reliability growth model is frequently accompanied by its confidence interval of fault detection. It provides helpful information to software developers and testers when undertaking software development and software quality control. However, the explanation of the variance estimation of software fault detection is not transparent in previous studies, and it influences the deduction of confidence interval about the mean value function that the current study addresses. Software engineers in such a case cannot evaluate the potential hazard based on the stochasticity of mean value function, and this might reduce the practicability of the estimation. Hence, stochastic differential equations are utilised for confidence interval estimation of the software fault-detection process. The proposed model is estimated and validated using real data-sets to show its flexibility.

  3. Fault detection in the distillation column process using Kullback Leibler divergence.

    PubMed

    Aggoune, Lakhdar; Chetouani, Yahya; Raïssi, Tarek

    2016-07-01

    Chemical plants are complex large-scale systems which need designing robust fault detection schemes to ensure high product quality, reliability and safety under different operating conditions. The present paper is concerned with a feasibility study of the application of the black-box modeling method and Kullback Leibler divergence (KLD) to the fault detection in a distillation column process. A Nonlinear Auto-Regressive Moving Average with eXogenous input (NARMAX) polynomial model is firstly developed to estimate the nonlinear behavior of the plant. Furthermore, the KLD is applied to detect abnormal modes. The proposed FD method is implemented and validated experimentally using realistic faults of a distillation plant of laboratory scale. The experimental results clearly demonstrate the fact that proposed method is effective and gives early alarm to operators.

  4. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  5. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa‑1 for the best devices.

  6. A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection

    NASA Astrophysics Data System (ADS)

    Yang, Mao

    A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection is developed. The coupled rotor/fuselage/vibration absorbers (bifilar type) system incorporates consistent structural, aerodynamic and inertial couplings. The aeroelastic analysis is based on finite element methods in space and time. The coupled rotor, absorbers and fuselage equations are transformed into the modal space and solved in the fixed coordinate system. A coupled trim procedure is used to solve the responses of rotor, fuselage and vibration absorber, rotor trim control and vehicle orientation simultaneously. Rotor system faults are modeled by changing blade structural, inertial and aerodynamic properties. Both adjustable and component faults, such as misadjusted trim-tab, misadjusted pitch-control rod (PCR), imbalanced mass and pitch-control bearing freeplay, are investigated. Detailed SH-60 helicopter fuselage NASTRAN model is integrated into the analysis. Validation study was performed using SH-60 helicopter flight test data. The prediction of fuselage natural frequencies show fairly large error compared to shake test data. Analytical predictions of fuselage baseline (without fault) 4/rev vibration and fault-induced 1/rev vibration and blade displacement deviations are compared with SH-60 flight test (with prescribed fault) data. The fault-induced 1/rev fuselage vibration (magnitude and phase) predicted by present analysis generally capture the trend of the flight test data, although prediction under-predicts. The large discrepancy of fault-induced 1/rev vibration magnitude at hover between prediction and flight test data partially comes from the variation of flight condition (not perfect hover) and partially due to the effect of the rotor-fuselage aerodynamic interaction (wake effect) at low speed which is not considered in the analysis. Also the differences in the phase prediction is not clear since only the magnitude and phase information were given instead of the

  7. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault

  8. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  9. Fault detection and diagnosis in an industrial fed-batch cell culture process.

    PubMed

    Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E

    2007-01-01

    A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.

  10. The Marshall Space Flight Center Fault Detection Diagnosis and Recovery Laboratory

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.; Gamble, Jonathan; Rabban, Michael

    2008-01-01

    The Fault Detection Diagnosis and Recovery Lab (FDDR) has been developed to support development of,fault detection algorithms for the flight computer aboard the Ares I and follow-on vehicles. It consists of several workstations using Ethernet and TCP/IP to simulate communications between vehicle sensors, flight computers, and ground based support computers. Isolation of tasks between workstations was set up intentionally to limit information flow and provide a realistic simulation of communication channels within the vehicle and between the vehicle and ground station.

  11. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  12. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    NASA Astrophysics Data System (ADS)

    Schlechtingen, Meik; Ferreira Santos, Ilmar

    2011-07-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based approaches, which are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and stator temperature anomalies. The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required for model development and the remaining operational time after first indication of damage. The general nonlinear neural network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault visibility and thus led to the highest confidence level.

  13. Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    PubMed Central

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789

  14. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device.

    PubMed

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2016-07-01

    This paper considers incipient sensor fault detection issue for a class of nonlinear systems with "observer unmatched" uncertainties. A particular fault detection sliding mode observer is designed for the augmented system formed by the original system and incipient sensor faults. The designed parameters are obtained using LMI and line filter techniques to guarantee that the generated residuals are robust to uncertainties and that sliding motion is not destroyed by faults. Then, three levels of novel adaptive thresholds are proposed based on the reduced order sliding mode dynamics, which effectively improve incipient sensor faults detectability. Case study of on the traction system in China Railway High-speed is presented to demonstrate the effectiveness of the proposed incipient senor faults detection schemes. PMID:27156675

  15. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device.

    PubMed

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2016-07-01

    This paper considers incipient sensor fault detection issue for a class of nonlinear systems with "observer unmatched" uncertainties. A particular fault detection sliding mode observer is designed for the augmented system formed by the original system and incipient sensor faults. The designed parameters are obtained using LMI and line filter techniques to guarantee that the generated residuals are robust to uncertainties and that sliding motion is not destroyed by faults. Then, three levels of novel adaptive thresholds are proposed based on the reduced order sliding mode dynamics, which effectively improve incipient sensor faults detectability. Case study of on the traction system in China Railway High-speed is presented to demonstrate the effectiveness of the proposed incipient senor faults detection schemes.

  16. To err is robotic, to tolerate immunological: fault detection in multirobot systems.

    PubMed

    Tarapore, Danesh; Lima, Pedro U; Carneiro, Jorge; Christensen, Anders Lyhne

    2015-02-02

    Fault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours. Behaviours unrecognized by the model are consequently labelled abnormal or faulty. MRS employing these models do not transition well to scenarios involving temporal variations in behaviour (e.g., online learning of new behaviours, or in response to environment perturbations). The vertebrate immune system is a complex distributed system capable of learning to tolerate the organism's tissues even when they change during puberty or metamorphosis, and to mount specific responses to invading pathogens, all without the need of a genetically hardwired characterization of normality. We present a generic abnormality detection approach based on a model of the adaptive immune system, and evaluate the approach in a swarm of robots. Our results reveal the robust detection of abnormal robots simulating common electro-mechanical and software faults, irrespective of temporal changes in swarm behaviour. Abnormality detection is shown to be scalable in terms of the number of robots in the swarm, and in terms of the size of the behaviour classification space.

  17. To err is robotic, to tolerate immunological: fault detection in multirobot systems.

    PubMed

    Tarapore, Danesh; Lima, Pedro U; Carneiro, Jorge; Christensen, Anders Lyhne

    2015-01-01

    Fault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours. Behaviours unrecognized by the model are consequently labelled abnormal or faulty. MRS employing these models do not transition well to scenarios involving temporal variations in behaviour (e.g., online learning of new behaviours, or in response to environment perturbations). The vertebrate immune system is a complex distributed system capable of learning to tolerate the organism's tissues even when they change during puberty or metamorphosis, and to mount specific responses to invading pathogens, all without the need of a genetically hardwired characterization of normality. We present a generic abnormality detection approach based on a model of the adaptive immune system, and evaluate the approach in a swarm of robots. Our results reveal the robust detection of abnormal robots simulating common electro-mechanical and software faults, irrespective of temporal changes in swarm behaviour. Abnormality detection is shown to be scalable in terms of the number of robots in the swarm, and in terms of the size of the behaviour classification space. PMID:25642825

  18. A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo

    2009-01-01

    An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.

  19. Detection and Modeling of High-Dimensional Thresholds for Fault Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    Many Fault Detection and Diagnosis (FDD) systems use discrete models for detection and reasoning. To obtain categorical values like oil pressure too high, analog sensor values need to be discretized using a suitablethreshold. Time series of analog and discrete sensor readings are processed and discretized as they come in. This task isusually performed by the wrapper code'' of the FDD system, together with signal preprocessing and filtering. In practice,selecting the right threshold is very difficult, because it heavily influences the quality of diagnosis. If a threshold causesthe alarm trigger even in nominal situations, false alarms will be the consequence. On the other hand, if threshold settingdoes not trigger in case of an off-nominal condition, important alarms might be missed, potentially causing hazardoussituations. In this paper, we will in detail describe the underlying statistical modeling techniques and algorithm as well as the Bayesian method for selecting the most likely shape and its parameters. Our approach will be illustrated by several examples from the Aerospace domain.

  20. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2016-09-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  1. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2015-06-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  2. Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette

    2010-01-01

    Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.

  3. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2009-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  4. Analysis of microseismic activity detected by the WIZARD array, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Feenstra, J. P.; Roecker, S. W.; Thurber, C. H.; Lord, N.; O'Brien, G.; Pesicek, J. D.; Townend, J.; Bannister, S. C.

    2012-12-01

    A primary goal for the UW-Madison-RPI WIZARD array is the characterization of background seismicity around the Deep Fault Drilling Project (DFDP) site on the Alpine Fault, South Island, New Zealand. The WIZARD array consists of 20 stations, half broadband, deployed for a planned 2-year period around the Whataroa Valley DFDP-2 drill site. Two neighboring arrays, SAMBA (Victoria University of Wellington) to the southwest and ALFA'12 (GNS Science) to the northeast, along with several GeoNet permanent stations, provide broad coverage of the region. The earthquakes that are detected will (1) help to define the geometry of the Alpine Fault and other active faults at depth, (2) provide data for seismic imaging, focal mechanisms, and shear-wave splitting analysis, and (3) enable the assessment of possible changes in seismic activity induced by future fault zone drilling. We are currently analyzing data from the first 2 months of the deployment. Dozens of nearby earthquakes (S-P time of up to a few seconds) have been detected, far more than are in the New Zealand GeoNET catalog. This is expected because the magnitude completion level of the GeoNet seismometer network is around 2.5 in the Whataroa region, due to a relatively sparse station coverage. In this presentation, we report on earthquake location results for 8 months of WIZARD data, along with focal mechanisms for selected larger events.

  5. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  6. An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Xu, Guanghua; Luo, Ailing; Liang, Lin; Jiang, Kuosheng

    2016-04-01

    Vibration analysis has been proved to be an effective and powerful tool for the condition monitoring and fault diagnosis of rolling bearings. During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications. In recent years, order tracking methods based on time-frequency representation have been proposed for bearing fault detection under speed variation operating conditions. However, the methods are only applicable for offline bearing fault detection. Aiming at the shortcomings of the current tacholess order tracking techniques, an online tacholess order tracking method is proposed in this paper. The proposed method is on the basis of extracting the instantaneous tachometer information from the collected vibration signal itself continuously, and resampling the original signal with equal angle increment. The envelope order spectrum is used for bearing fault identification. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals.

  7. Remote sensing analysis for fault-zones detection in the Central Andean Plateau (Catamarca, Argentina)

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Massironi, Matteo; Zampieri, Dario; Carli, Cristian

    2015-04-01

    Remote sensing techniques have been extensively used to detect the structural framework of investigated areas, which includes lineaments, fault zones and fracture patterns. The identification of these features is fundamental in exploration geology, as it allows the definition of suitable sites for the exploitation of different resources (e.g. ore mineral, hydrocarbon, geothermal energy and groundwater). Remote sensing techniques, typically adopted in fault identification, have been applied to assess the geological and structural framework of the Laguna Blanca area (26°35'S-66°49'W). This area represents a sector of the south-central Andes localized in the Argentina region of Catamarca, along the south-eastern margin of the Puna plateau. The study area is characterized by a Precambrian low-grade metamorphic basement intruded by Ordovician granitoids. These rocks are unconformably covered by a volcano-sedimentary sequence of Miocene age, followed by volcanic and volcaniclastic rocks of Upper Miocene to Plio-Pleistocene age. All these units are cut by two systems of major faults, locally characterized by 15-20 m wide damage zones. The detection of main tectonic lineaments in the study area was firstly carried out by classical procedures: image sharpening of Landsat 7 ETM+ images, directional filters applied to ASTER images, medium resolution Digital Elevation Models analysis (SRTM and ASTER GDEM) and hill shades interpretation. In addition, a new approach in fault zone identification, based on multispectral satellite images classification, has been tested in the Laguna Blanca area and in other sectors of south-central Andes. In this perspective, several prominent fault zones affecting basement and granitoid rocks have been sampled. The collected fault gouge samples have been analyzed with a Field-Pro spectrophotometer mounted on a goniometer. We acquired bidirectional reflectance spectra, from 0.35μm to 2.5μm with 1nm spectral sampling, of the sampled fault rocks

  8. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  9. Construction of customized redundant multiwavelet via increasing multiplicity for fault detection of rotating machinery

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zuo, Ming J.; Zi, Yanyang; He, Zhengjia

    2014-01-01

    Fault detection from the vibration measurement data of rotating machinery is significant for avoiding serious accidents. However, non-stationary vibration signal with a large amount of noise makes this task challenging. Multiwavelet not only owns the advantage on multi-resolution analysis but also can offer multiple wavelet basis functions. So it has the possibility of detecting various fault features preferably. However, the fixed basis functions which are not related to the given signal may lower the accuracy of fault detection. Moreover, another major intrinsic deficiency of multiwavelet lies in its critically sampled filter-bank, which causes shift-variance and is harmful to extract the feature of periodical impulses. To overcome these deficiencies, a new method called customized redundant multiwavelet (CRM) is constructed via increasing multiplicity (IM). IM is a simple method to design a series of changeable multiwavelet which are available for the subsequent optimization process. By the rule of the envelope spectrum entropy minimum principle, optimal multiwavelet is searched for. Based on the customized multiwavelet filters, the filters of CRM can be calculated by inserting zeros. The proposed method is applied to analyze the simulation, gearbox and rolling element bearing vibration signals. Compared with some other conventional methods, the results demonstrate that the proposed method possesses robust performance in detecting fault features of rotating machinery.

  10. Application of fault detection techniques to spiral bevel gear fatigue data

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Handschuh, Robert F.; Decker, Harry J.

    1994-01-01

    Results of applying a variety of gear fault detection techniques to experimental data is presented. A spiral bevel gear fatigue rig was used to initiate a naturally occurring fault and propagate the fault to a near catastrophic condition of the test gear pair. The spiral bevel gear fatigue test lasted a total of eighteen hours. At approximately five and a half hours into the test, the rig was stopped to inspect the gears for damage, at which time a small pit was identified on a tooth of the pinion. The test was then stopped an additional seven times throughout the rest of the test in order to observe and document the growth and propagation of the fault. The test was ended when a major portion of a pinion tooth broke off. A personal computer based diagnostic system was developed to obtain vibration data from the test rig, and to perform the on-line gear condition monitoring. A number of gear fault detection techniques, which use the signal average in both the time and frequency domain, were applied to the experimental data. Among the techniques investigated, two of the recently developed methods appeared to be the first to react to the start of tooth damage. These methods continued to react to the damage as the pitted area grew in size to cover approximately 75% of the face width of the pinion tooth. In addition, information gathered from one of the newer methods was found to be a good accumulative damage indicator. An unexpected result of the test showed that although the speed of the rig was held to within a band of six percent of the nominal speed, and the load within eighteen percent of nominal, the resulting speed and load variations substantially affected the performance of all of the gear fault detection techniques investigated.

  11. Fault detection for T-S fuzzy time-delay systems: delta operator and input-output methods.

    PubMed

    Li, Hongyi; Gao, Yabin; Wu, Ligang; Lam, H K

    2015-02-01

    This paper focuses on the problem of fault detection for Takagi-Sugeno fuzzy systems with time-varying delays via delta operator approach. By designing a filter to generate a residual signal, the fault detection problem addressed in this paper can be converted into a filtering problem. The time-varying delay is approximated by the two-term approximation method. Fuzzy augmented fault detection system is constructed in δ -domain, and a threshold function is given. By applying the scaled small gain theorem and choosing a Lyapunov-Krasovskii functional in δ -domain, a sufficient condition of asymptotic stability with a prescribed H∞ disturbance attenuation level is derived for the proposed fault detection system. Then, a solvability condition for the designed fault detection filter is established, with which the desired filter can be obtained by solving a convex optimization problem. Finally, an example is given to demonstrate the feasibility and effectiveness of the proposed method.

  12. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  13. Simultaneous fault detection and control for stochastic time-delay systems

    NASA Astrophysics Data System (ADS)

    Meng, Xian-Ji; Yang, Guang-Hong

    2014-05-01

    This paper is concerned with the simultaneous fault detection and control problem for Itô-type stochastic time-delay systems. A full-order dynamic output feedback controller is designed to achieve the desired control and detection objectives. The main contributions of this paper are as follows: (1) for stochastic time-delay systems, the controller design with multiple objectives can be addressed by employing the multiple Lyapunov functions approach, (2) the dynamic output feedback controller synthesis conditions described by linear matrix inequalities (LMIs) are derived and (3) within the proposed fault detection and control framework, a better integrated control and detection performance can be obtained. Some numerical examples including the comparison results are presented to show the advantages of the proposed method.

  14. Gear-box fault detection using time-frequency based methods

    SciTech Connect

    Odgaard, Peter F.; Stoustrup, Jakob

    2015-12-31

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected. Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.

  15. Unknown Input and Sensor Fault Estimation Using Sliding-Mode Observers

    SciTech Connect

    Kalsi, Karanjit; Hui, Stefen; Zak, Stanislaw

    2011-06-29

    Sliding-mode observers are used to construct unknown input estimators. Then, these unknown input estimators are combined with sensor fault estimation schemes into one architecture that employs two sliding-mode observers for simultaneously estimating the plant’s actuator faults (part of the unknown input) and detecting sensor faults. Closed form expressions are presented for the estimates of unknown inputs and sensor faults. A benchmark example of a controlled inverted pendulum system from the literature is utilized in the simulation study. The study shows that the observers analyzed in this paper generate good estimates of the unknown input and sensor faults signals in noisy environments for nonlinear plants.

  16. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    NASA Technical Reports Server (NTRS)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  17. A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes

    PubMed Central

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong

    2012-01-01

    Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults. PMID:22438750

  18. A method based on multi-sensor data fusion for fault detection of planetary gearboxes.

    PubMed

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong

    2012-01-01

    Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.

  19. An adaptive confidence limit for periodic non-steady conditions fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong

    2016-05-01

    System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.

  20. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  1. Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Lu, Na; Xiao, Zhihuai; Malik, O. P.

    2015-02-01

    State identification to diagnose the condition of rotating machinery is often converted to a classification problem of values of non-dimensional symptom parameters (NSPs). To improve the sensitivity of the NSPs to the changes in machine condition, a novel feature extraction method based on adaptive multiwavelets and the synthetic detection index (SDI) is proposed in this paper. Based on the SDI maximization principle, optimal multiwavelets are searched by genetic algorithms (GAs) from an adaptive multiwavelets library and used for extracting fault features from vibration signals. By the optimal multiwavelets, more sensitive NSPs can be extracted. To examine the effectiveness of the optimal multiwavelets, conventional methods are used for comparison study. The obtained NSPs are fed into K-means classifier to diagnose rotor faults. The results show that the proposed method can effectively improve the sensitivity of the NSPs and achieve a higher discrimination rate for rotor fault diagnosis than the conventional methods.

  2. Adding realism to simulated sensors and actuators.

    PubMed

    Rosen, C; Jeppsson, U; Rieger, L; Vanrolleghem, P A

    2008-01-01

    In this paper, we propose a statistical theoretical framework for incorporation of sensor and actuator faults in dynamic simulations of wastewater treatment operation. Sensor and actuator faults and failures are often neglected in simulations for control strategy development and testing, although it is well known that they represent a significant obstacle for realising control at full-scale facilities. The framework for incorporating faults and failures is based on Markov chains and displays the appealing property of easy transition of sensor and actuator history into a model for fault generation. The paper briefly describes Markov theory and how this is used together with models for sensor and actuator dynamics to achieve a realistic simulation of measurements and actuators.

  3. A new detection method for crosstalk delay faults in VLSI circuits using chaotic ant colony algorithms

    NASA Astrophysics Data System (ADS)

    Pan, Zhongliang; Chen, Ling; Zhang, Guangzhao

    2008-12-01

    In the current circuit design technology, due to increasing device density and operation speed, crosstalk effects are induced between circuit elements. A new method for the detection of crosstalk faults in digital circuits is presented in this paper, the method is based on both the energy function model of digital circuits and the chaotic ant colony algorithms. First of all, the energy function models of basic gate circuits are constructed, then the energy function corresponding to a digital circuit is built. The energy function of a circuit is the summation of all energy functions of the gates in the circuit. The test vectors of crosstalk delay faults in the circuit are produced by computing the minimal energy states of energy functions. Secondly, a chaotic ant colony algorithm is designed to compute the minimal energy states. Experimental results show the method proposed in this paper is able to produce the test vectors of crosstalk delay faults if there are the test vectors for the faults, therefore the high fault coverage can be obtained by the proposed method.

  4. Spin-system dynamics and fault detection in threshold networks

    SciTech Connect

    Kirkland, Steve; Severini, Simone

    2011-01-15

    We consider an agent on a fixed but arbitrary node of a known threshold network, with the task of detecting an unknown missing link. We obtain analytic formulas for the probability of success when the agent's tool is the free evolution of a single excitation on an XX spin system paired with the network. We completely characterize the parameters, which allows us to obtain an advantageous solution. From the results emerges an optimal (deterministic) algorithm for quantum search, from which a quadratic speedup with respect to the optimal classical analog and in line with well-known results in quantum computation is gained. When attempting to detect a faulty node, the chosen setting appears to be very fragile and the probability of success too small to be of any direct use.

  5. Real time automatic detection of bearing fault in induction machine using kurtogram analysis.

    PubMed

    Tafinine, Farid; Mokrani, Karim

    2012-11-01

    A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.

  6. Detection of Structural Faults by Modal Data, Lower Bounds and Shadow Sites

    NASA Astrophysics Data System (ADS)

    Contursi, T.; Mangialardi, L. M.; Messina, A.

    1998-02-01

    Different algorithms have recently been developed for the diagnosis of many types of civil and mechanical structures using modal data, such as natural frequencies and mode shapes. Although many solutions have been proposed, some important questions seem to be absent in the technical literature. If changes in a structure's modal parameters are able to reflect structural faults, it is important to know what is the smallest detectable physical change in that structure.It is suggested that damage detection by means of modal data can be useful for macro-damage rather than for micro-damage. This resulted from numerical and experimental tests using a simple correlation between measurement noise and sensitivity of modal data, with respect to structural changes in different parts of a system. An automatic sensitivity approach is presented to obtain the lower bound of structural faults for the particular structure under study. The same automatic procedure is able to detect possible shadow sites within the frequency range analyzed.

  7. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters

    NASA Astrophysics Data System (ADS)

    Jesussek, Mathias; Ellermann, Katrin

    2014-12-01

    Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour.

  8. Laser ultrasound technology for fault detection on carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Seyrkammer, Robert; Reitinger, Bernhard; Grün, Hubert; Sekelja, Jakov; Burgholzer, Peter

    2014-05-01

    The marching in of carbon fiber reinforced polymers (CFRPs) to mass production in the aeronautic and automotive industry requires reliable quality assurance methods. Laser ultrasound (LUS) is a promising nondestructive testing technique for sample inspection. The benefits compared to conventional ultrasound (US) testing are couplant free measurements and an easy access to complex shapes due to remote optical excitation and detection. Here the potential of LUS is present on composite test panels with relevant testing scenarios for industry. The results are evaluated in comparison to conventional ultrasound used in the aeronautic industry.

  9. Disk Crack Detection for Seeded Fault Engine Test

    NASA Technical Reports Server (NTRS)

    Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)

    2004-01-01

    Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.

  10. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  11. Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator

    NASA Astrophysics Data System (ADS)

    Kim, Eunho; Restuccia, Francesco; Yang, Jinkyu; Daraio, Chiara

    2015-12-01

    We experimentally and numerically investigate a diagnostic method for detecting hidden delamination in composite panels, using highly nonlinear solitary waves. Solitary waves are a type of nonlinear waves with strong energy intensity and non-distortive nature, which can be controllably generated in one-dimensional granular crystals. In this study, we use granular crystals as a combined sensor and actuator to detect hidden delamination in carbon fiber reinforced polymer (CFRP) composite panels. Specifically, we locally excite a CFRP composite specimen using the granular crystal as an actuator and measure the reflected waves that carry the specimen’s diagnostic information using the same device as a sensor. We first investigate the effect of the panel’s boundary conditions on the response of the reflected solitary waves. We then investigate the interactions of a solitary wave with delamination hidden in the CFRP composite specimen. Lastly, we define a damage index based on the solitary waves’ responses to identify the location of the hidden delamination in the CFRP composite panel. The solitary wave-based diagnostic method can provide unique merits, such as portable and fast sensing of composites’ hidden damage, thereby with the potential of being used for hot spot monitoring of composite-based structures.

  12. NMESys: An expert system for network fault detection

    NASA Technical Reports Server (NTRS)

    Nelson, Peter C.; Warpinski, Janet

    1991-01-01

    The problem of network management is becoming an increasingly difficult and challenging task. It is very common today to find heterogeneous networks consisting of many different types of computers, operating systems, and protocols. The complexity of implementing a network with this many components is difficult enough, while the maintenance of such a network is an even larger problem. A prototype network management expert system, NMESys, implemented in the C Language Integrated Production System (CLIPS). NMESys concentrates on solving some of the critical problems encountered in managing a large network. The major goal of NMESys is to provide a network operator with an expert system tool to quickly and accurately detect hard failures, potential failures, and to minimize or eliminate user down time in a large network.

  13. Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings

    NASA Astrophysics Data System (ADS)

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Xu, Xiaoqiang

    2016-10-01

    De-noising and enhancement of the weak fault signature from the noisy signal are crucial for fault diagnosis, as features are often very weak and masked by the background noise. Deconvolution methods have a significant advantage in counteracting the influence of the transmission path and enhancing the fault impulses. However, the performance of traditional deconvolution methods is greatly affected by some limitations, which restrict the application range. Therefore, this paper proposes a new deconvolution method, named sparse maximum harmonics-noise-ratio deconvolution (SMHD), that employs a novel index, the harmonics-to-noise ratio (HNR), to be the objective function for iteratively choosing the optimum filter coefficients to maximize HNR. SMHD is designed to enhance latent periodic impulse faults from heavy noise signals by calculating the HNR to estimate the period. A sparse factor is utilized to further suppress the noise and improve the signal-to-noise ratio of the filtered signal in every iteration step. In addition, the updating process of the sparse threshold value and the period guarantees the robustness of SMHD. On this basis, the new method not only overcomes the limitations associated with traditional deconvolution methods, minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD), but visual inspection is also better, even if the fault period is not provided in advance. Moreover, the efficiency of the proposed method is verified by simulations and bearing data from different test rigs. The results show that the proposed method is effective in the detection of various bearing faults compared with the original MED and MCKD.

  14. Including Faults Detected By Near-Surface Seismic Methods in the USGS National Seismic Hazard Maps - Some Restrictions Apply

    NASA Astrophysics Data System (ADS)

    Williams, R. A.; Haller, K. M.

    2014-12-01

    Every 6 years, the USGS updates the National Seismic Hazard Maps (new version released July 2014) that are intended to help society reduce risk from earthquakes. These maps affect hundreds of billions of dollars in construction costs each year as they are used to develop seismic-design criteria of buildings, bridges, highways, railroads, and provide data for risk assessment that help determine insurance rates. Seismic source characterization, an essential component of hazard model development, ranges from detailed trench excavations across faults at the ground surface to less detailed analysis of broad regions defined mainly on the basis of historical seismicity. Though it is a priority for the USGS to discover new Quaternary fault sources, the discovered faults only become a part of the hazard model if there are corresponding constraints on their geometry (length and depth extent) and slip-rate (or recurrence interval). When combined with fault geometry and slip-rate constraints, near-surface seismic studies that detect young (Quaternary) faults have become important parts of the hazard source model. Examples of seismic imaging studies with significant hazard impact include the Southern Whidbey Island fault, Washington; Santa Monica fault, San Andreas fault, and Palos Verdes fault zone, California; and Commerce fault, Missouri. There are many more faults in the hazard model in the western U.S. than in the expansive region east of the Rocky Mountains due to the higher rate of tectonic deformation, frequent surface-rupturing earthquakes and, in some cases, lower erosion rates. However, the recent increase in earthquakes in the central U.S. has revealed previously unknown faults for which we need additional constraints before we can include them in the seismic hazard maps. Some of these new faults may be opportunities for seismic imaging studies to provide basic data on location, dip, style of faulting, and recurrence.

  15. Failure detection and fault management techniques for flush airdata sensing systems

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.

    1992-01-01

    Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.

  16. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  17. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    SciTech Connect

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  18. Rolling bearing fault detection using an adaptive lifting multiwavelet packet with a {1\\frac{1}{2}} dimension spectrum

    NASA Astrophysics Data System (ADS)

    Jiang, Hongkai; Xia, Yong; Wang, Xiaodong

    2013-12-01

    Defect faults on the surface of rolling bearing elements are the most frequent cause of malfunctions and breakages of electrical machines. Due to increasing demands for quality and reliability, extracting fault features in vibration signals is an important topic for fault detection in rolling bearings. In this paper, a novel adaptive lifting multiwavelet packet with {1\\frac{1}{2}} dimension spectrum to detect defects in rolling bearing elements is developed. The adaptive lifting multiwavelet packet is constructed to match vibration signal properties based on the minimum singular value decomposition (SVD) entropy using a genetic algorithm. A {1\\frac{1}{2}} dimension spectrum is further employed to extract rolling bearing fault characteristic frequencies from background noise. The proposed method is applied to analyze the vibration signal collected from electric locomotive rolling bearings with outer raceway and inner raceway defects. The experimental investigation shows that the method is accurate and robust in rolling bearing fault detection.

  19. Reconfigurable control of aircraft undergoing sensor and actuator failures

    NASA Astrophysics Data System (ADS)

    Bajpai, Gaurav

    2001-07-01

    Significant number of fatal aircraft accidents in recent years have been linked to component failures. With the predicted increase in air traffic these numbers are likely to increase. With reduction of fatal accidents as motivation, this dissertation investigates design of fault tolerant control systems for aircrafts undergoing sensor and/or actuator failures. Given that the nominal controller may perform inadequately in the event of sensors and/or actuator failure, the feasible approach for such a control scheme is to predesign various controllers anticipating these failures and then switching to an appropriate controller when the failure occurs. This is enabled by the available redundancy in sensing and actuation and allows the system to perform adequately even when these failures occur. The predesign of controllers for sensor and actuator failures is considered. Sensor failures are easily accommodated if certain detectability conditions are met. However, the predesign for actuator failures is not trivial as the position at which the actuators fail is not known a priori. It is shown that this problem can be tackled by reducing it to the classical control problem of disturbance decoupling, in which, the functional control enables the steady state output of dynamical system to reject any disturbance due to the failed actuators. For linear systems, conditions for existence of a controller capable of accommodating these failures can be understood in geometric terms and calculations are linked to solvability of coupled matrix equations. Although control design for aircrafts is done using linear techniques, failures can cause excursions into nonlinear regimes due to ensuing changes in the flight conditions. This dissertation also uses the recent results in the nonlinear regulator theory to address actuator failures in nonlinear systems. The utility of design techniques is illustrated using flight control examples with failures. The symbolic computational tools are

  20. FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.

    1985-01-01

    Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.

  1. Single molecule actuation and detection on a lab-on-a-chip magnetoresistive platform

    NASA Astrophysics Data System (ADS)

    Chaves, R. C.; Bensimon, D.; Freitas, P. P.

    2011-03-01

    On-chip magnetic tweezers based on current loops were integrated with magnetoresistive sensors. Magnetic forces up to 1.0±0.3pN are produced to actuate on DNA anchored to the surface of a flow cell and labeled with micrometer-sized magnetic beads. The levitation of the beads stretches the immobilized DNA. The relative position of the magnetic beads is monitored using spin-valve sensors. A bead vertical displacement resolution of 60nm is derived for DNA molecular motor activity in a tweezer steady current regime.

  2. An adaptive SK technique and its application for fault detection of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; Liang, Ming

    2011-07-01

    In this paper, we propose an adaptive spectral kurtosis (SK) technique for the fault detection of rolling element bearings. The primary contribution is adaptive determination of the bandwidth and center frequency. This is implemented with successive attempts to right-expand a given window along the frequency axis by merging it with its subsequent neighboring windows. Influence of the parameters such as the initial window function, bandwidth and window overlap on the merged windows as well as how to choose those parameters in practical applications are explored. Based on simulated experiments, it can be found that the proposed technique can further enhance the SK-based method as compared to the kurtogram approach. The effectiveness of the proposed method in fault detection of the rolling element bearings is validated using experimental signals.

  3. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  4. Fault Detection of Aircraft System with Random Forest Algorithm and Similarity Measure

    PubMed Central

    Park, Wookje; Jung, Sikhang

    2014-01-01

    Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure. Twelve available coefficients among healthy and faulty status data group were used to determine the decision. Similarity measure weighting was done and obtained through random forest algorithm (RFA); RF provides data priority. In order to get a fast response of decision, a limited number of coefficients was also considered. Relation of detection rate and amount of feature data were analyzed and illustrated. By repeated trial of similarity calculation, useful data amount was obtained. PMID:25057508

  5. Fault detection in digital and analog circuits using an i(DD) temporal analysis technique

    NASA Technical Reports Server (NTRS)

    Beasley, J.; Magallanes, D.; Vridhagiri, A.; Ramamurthy, Hema; Deyong, Mark

    1993-01-01

    An i(sub DD) temporal analysis technique which is used to detect defects (faults) and fabrication variations in both digital and analog IC's by pulsing the power supply rails and analyzing the temporal data obtained from the resulting transient rail currents is presented. A simple bias voltage is required for all the inputs, to excite the defects. Data from hardware tests supporting this technique are presented.

  6. Chaotic extension neural network theory-based XXY stage collision fault detection using a single accelerometer sensor.

    PubMed

    Hsieh, Chin-Tsung; Yau, Her-Terng; Wu, Shang-Yi; Lin, Huo-Cheng

    2014-11-14

    The collision fault detection of a XXY stage is proposed for the first time in this paper. The stage characteristic signals are extracted and imported into the master and slave chaos error systems by signal filtering from the vibratory magnitude of the stage. The trajectory diagram is made from the chaos synchronization dynamic error signals E1 and E2. The distance between characteristic positive and negative centers of gravity, as well as the maximum and minimum distances of trajectory diagram, are captured as the characteristics of fault recognition by observing the variation in various signal trajectory diagrams. The matter-element model of normal status and collision status is built by an extension neural network. The correlation grade of various fault statuses of the XXY stage was calculated for diagnosis. The dSPACE is used for real-time analysis of stage fault status with an accelerometer sensor. Three stage fault statuses are detected in this study, including normal status, Y collision fault and X collision fault. It is shown that the scheme can have at least 75% diagnosis rate for collision faults of the XXY stage. As a result, the fault diagnosis system can be implemented using just one sensor, and consequently the hardware cost is significantly reduced.

  7. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2016-10-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  8. Automatic characteristic frequency association and all-sideband demodulation for the detection of a bearing fault

    NASA Astrophysics Data System (ADS)

    Firla, Marcin; Li, Zhong-Yang; Martin, Nadine; Pachaud, Christian; Barszcz, Tomasz

    2016-12-01

    This paper proposes advanced signal-processing techniques to improve condition monitoring of operating machines. The proposed methods use the results of a blind spectrum interpretation that includes harmonic and sideband series detection. The first contribution of this study is an algorithm for automatic association of harmonic and sideband series to characteristic fault frequencies according to a kinematic configuration. The approach proposed has the advantage of taking into account a possible slip of the rolling-element bearings. In the second part, we propose a full-band demodulation process from all sidebands that are relevant to the spectral estimation. To do so, a multi-rate filtering process in an iterative schema provides satisfying precision and stability over the targeted demodulation band, even for unsymmetrical and extremely narrow bands. After synchronous averaging, the filtered signal is demodulated for calculation of the amplitude and frequency modulation functions, and then any features that indicate faults. Finally, the proposed algorithms are validated on vibration signals measured on a test rig that was designed as part of the European Innovation Project 'KAStrion'. This rig simulates a wind turbine drive train at a smaller scale. The data show the robustness of the method for localizing and extracting a fault on the main bearing. The evolution of the proposed features is a good indicator of the fault severity.

  9. Customized Multiwavelets for Planetary Gearbox Fault Detection Based on Vibration Sensor Signals

    PubMed Central

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-01

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. PMID:23334609

  10. A neural network approach to fault detection in spacecraft attitude determination and control systems

    NASA Astrophysics Data System (ADS)

    Schreiner, John N.

    This thesis proposes a method of performing fault detection and isolation in spacecraft attitude determination and control systems. The proposed method works by deploying a trained neural network to analyze a set of residuals that are defined such that they encompass the attitude control, guidance, and attitude determination subsystems. Eight neural networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each of the neural networks were analyzed to determine the accuracy of the networks with respect to isolating the faulty component or faulty subsystem within the ADCS. The performance of the proposed neural network-based fault detection and isolation method was compared and contrasted with other ADCS FDI methods. The results obtained via simulation showed that the best neural networks employing this method successfully detected the presence of a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time and the faulty components within the faulty subsystem were isolated 37% of the time.

  11. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  12. Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals.

    PubMed

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-18

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox.

  13. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  14. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    NASA Astrophysics Data System (ADS)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  15. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  16. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  17. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  18. PEM fuel cell fault detection and identification using differential method: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Frappé, E.; de Bernardinis, A.; Bethoux, O.; Candusso, D.; Harel, F.; Marchand, C.; Coquery, G.

    2011-05-01

    PEM fuel cell performance and lifetime strongly depend on the polymer membrane and MEA hydration. As the internal moisture is very sensitive to the operating conditions (temperature, stoichiometry, load current, water management…), keeping the optimal working point is complex and requires real-time monitoring. This article focuses on PEM fuel cell stack health diagnosis and more precisely on stack fault detection monitoring. This paper intends to define new, simple and effective methods to get relevant information on usual faults or malfunctions occurring in the fuel cell stack. For this purpose, the authors present a fault detection method using simple and non-intrusive on-line technique based on the space signature of the cell voltages. The authors have the objective to minimize the number of embedded sensors and instrumentation in order to get a precise, reliable and economic solution in a mass market application. A very low number of sensors are indeed needed for this monitoring and the associated algorithm can be implemented on-line. This technique is validated on a 20-cell PEMFC stack. It demonstrates that the developed method is particularly efficient in flooding case. As a matter of fact, it uses directly the stack as a sensor which enables to get a quick feedback on its state of health.

  19. A novel end-to-end fault detection and localization protocol for wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Zeng, Hongqing; Vukovic, Alex; Huang, Changcheng

    2005-09-01

    Recently the wavelength division multiplexing (WDM) networks are becoming prevalent for telecommunication networks. However, even a very short disruption of service caused by network faults may lead to high data loss in such networks due to the high date rates, increased wavelength numbers and density. Therefore, the network survivability is critical and has been intensively studied, where fault detection and localization is the vital part but has received disproportional attentions. In this paper we describe and analyze an end-to-end lightpath fault detection scheme in data plane with the fault notification in control plane. The endeavor is focused on reducing the fault detection time. In this protocol, the source node of each lightpath keeps sending hello packets to the destination node exactly following the path for data traffic. The destination node generates an alarm once a certain number of consecutive hello packets are missed within a given time period. Then the network management unit collects all alarms and locates the faulty source based on the network topology, as well as sends fault notification messages via control plane to either the source node or all upstream nodes along the lightpath. The performance evaluation shows such a protocol can achieve fast fault detection, and at the same time, the overhead brought to the user data by hello packets is negligible.

  20. Fault-tolerant quantum computation with a soft-decision decoder for error correction and detection by teleportation.

    PubMed

    Goto, Hayato; Uchikawa, Hironori

    2013-01-01

    Fault-tolerant quantum computation with quantum error-correcting codes has been considerably developed over the past decade. However, there are still difficult issues, particularly on the resource requirement. For further improvement of fault-tolerant quantum computation, here we propose a soft-decision decoder for quantum error correction and detection by teleportation. This decoder can achieve almost optimal performance for the depolarizing channel. Applying this decoder to Knill's C4/C6 scheme for fault-tolerant quantum computation, which is one of the best schemes so far and relies heavily on error correction and detection by teleportation, we dramatically improve its performance. This leads to substantial reduction of resources.

  1. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2010-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  2. Online sensor fault detection based on an improved strong tracking filter.

    PubMed

    Wang, Lijuan; Wu, Lifeng; Guan, Yong; Wang, Guohui

    2015-01-01

    We propose a method for online sensor fault detection that is based on the evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to improve the accuracy of making estimates in a nonlinear case. A residual is the difference in value between an estimated value and the true value. A residual will be regarded as a signal that includes fault information. The threshold is set at a reasonable level, and will be compared with residuals to determine whether or not the sensor is faulty. The proposed method requires only a nominal plant model and uses STCKF to estimate the original state vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. PMID:25690553

  3. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  4. Online Sensor Fault Detection Based on an Improved Strong Tracking Filter

    PubMed Central

    Wang, Lijuan; Wu, Lifeng; Guan, Yong; Wang, Guohui

    2015-01-01

    We propose a method for online sensor fault detection that is based on the evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to improve the accuracy of making estimates in a nonlinear case. A residual is the difference in value between an estimated value and the true value. A residual will be regarded as a signal that includes fault information. The threshold is set at a reasonable level, and will be compared with residuals to determine whether or not the sensor is faulty. The proposed method requires only a nominal plant model and uses STCKF to estimate the original state vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. PMID:25690553

  5. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; Xiang, Jiawei; Markert, Richard; Liang, Ming

    2016-01-01

    Condition-based maintenance via vibration signal processing plays an important role to reduce unscheduled machine downtime and avoid catastrophic accidents in industrial enterprises. Many machine faults, such as local defects in rotating machines, manifest themselves in the acquired vibration signals as a series of impulsive events. The spectral kurtosis (SK) technique extends the concept of kurtosis to that of a function of frequency that indicates how the impulsiveness of a signal. This work intends to review and summarize the recent research developments on the SK theories, for instance, short-time Fourier transform-based SK, kurtogram, adaptive SK and protrugram, as well as the corresponding applications in fault detection and diagnosis of the rotating machines. The potential prospects of prognostics using SK technique are also designated. Some examples have been presented to illustrate their performances. The expectation is that further research and applications of the SK technique will flourish in the future, especially in the fields of the prognostics.

  6. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  7. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    PubMed

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  8. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Ghazali, Abu Bakar; Ibrahim, Maslina Mohd

    2016-01-01

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either `yes' or `no' state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.

  9. A New 600 V Punch Through-Insulated Gate Bipolar Transistor with the Monolithic Fault Protection Circuit Using the Floating p-Well Voltage Detection

    NASA Astrophysics Data System (ADS)

    Ji, In-Hwan; Jeon, Byung-Chul; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo

    2006-10-01

    A new fault sensing scheme of the insulated gate bipolar transistor (IGBT) employing the floating p-well, which detects the over-voltage of the floating p-well under the short circuit fault condition, is proposed and implemented by fabricating the main IGBT and gate voltage pull-down circuit using the widely used planar IGBT process. The floating p-well structure also improves the avalanche energy of IGBT in addition to detecting the fault signal. The detection of fault and gate voltage pull-down operation is achieved by the proposed fault protection scheme employing the floating p-well voltage detection. The proposed fault protection circuit was measured under the hard switching fault (HSF) and fault under load (FUL) conditions. The normal switching behavior of the main IGBT with the proposed protection circuit was also investigated under inductive load switching conditions.

  10. Direct Adaptive Control of Systems with Actuator Failures: State of the Art and Continuing Challenges

    NASA Technical Reports Server (NTRS)

    Tao, Gang; Joshi, Suresh M.

    2008-01-01

    In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.

  11. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  12. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  13. Fault detection and isolation for discrete-time switched linear systems based on average dwell-time method

    NASA Astrophysics Data System (ADS)

    Li, Jian; Yang, Guang-Hong

    2013-12-01

    This article is concerned with the problem of fault detection and isolation (FDI) for discrete-time switched linear systems based on the average dwell-time method. The proposed FDI framework consists of a bank of FDI filters, which are divided into N groups for N subsystems. The FDI filters belonging to one group correspond to the faults for a subsystem, and generate a residual signal to guarantee the fault sensitivity performance for the subsystem, the fault attenuation performance for other subsystems and the disturbance attenuation performance for all subsystems. Different form employing the weighting matrices to restrict the frequency ranges of faults for each subsystem, the finite-frequency H - performance for switched systems is first defined. Sufficient conditions are established by linear matrix inequalities (LMIs), and the filter gains are characterised in terms of the solution of a convex optimisation problem. Two examples are used to demonstrate the effectiveness of the proposed design method.

  14. Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis

    NASA Astrophysics Data System (ADS)

    Girondin, Victor; Pekpe, Komi Midzodzi; Morel, Herve; Cassar, Jean-Philippe

    2013-07-01

    The objective of this paper is to propose a vibration-based automated framework dealing with local faults occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based on the monitoring of the theoretical frequencies may lead to wrong decisions. In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical frequencies using the redundancy introduced by the harmonics. The proposed method provides the confidence index of the readjusted frequency. Minor variations in shaft speed may induce random jitters. The change of the contact surface or of the transmission path brings also a random component in amplitude and phase. These random components in the signal destroy spectral localization of frequencies and thus hide the fault occurrence in the spectrum. Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope spectrum can reveal that hidden patterns. In order to provide an indicator estimating fault severity, statistics are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square distributed and a signal-to-noise indicator is proposed. The algorithms are then tested with data from two test benches and from flight conditions. The bearing type and the radial load are the main differences between the experiences on the benches. The fault is mainly visible in the

  15. Tools for Evaluating Fault Detection and Diagnostic Methods for HVAC Secondary Systems

    NASA Astrophysics Data System (ADS)

    Pourarian, Shokouh

    Although modern buildings are using increasingly sophisticated energy management and control systems that have tremendous control and monitoring capabilities, building systems routinely fail to perform as designed. More advanced building control, operation, and automated fault detection and diagnosis (AFDD) technologies are needed to achieve the goal of net-zero energy commercial buildings. Much effort has been devoted to develop such technologies for primary heating ventilating and air conditioning (HVAC) systems, and some secondary systems. However, secondary systems, such as fan coil units and dual duct systems, although widely used in commercial, industrial, and multifamily residential buildings, have received very little attention. This research study aims at developing tools that could provide simulation capabilities to develop and evaluate advanced control, operation, and AFDD technologies for these less studied secondary systems. In this study, HVACSIM+ is selected as the simulation environment. Besides developing dynamic models for the above-mentioned secondary systems, two other issues related to the HVACSIM+ environment are also investigated. One issue is the nonlinear equation solver used in HVACSIM+ (Powell's Hybrid method in subroutine SNSQ). It has been found from several previous research projects (ASRHAE RP 825 and 1312) that SNSQ is especially unstable at the beginning of a simulation and sometimes unable to converge to a solution. Another issue is related to the zone model in the HVACSIM+ library of components. Dynamic simulation of secondary HVAC systems unavoidably requires an interacting zone model which is systematically and dynamically interacting with building surrounding. Therefore, the accuracy and reliability of the building zone model affects operational data generated by the developed dynamic tool to predict HVAC secondary systems function. The available model does not simulate the impact of direct solar radiation that enters a zone

  16. Tools for Evaluating Fault Detection and Diagnostic Methods for HVAC Secondary Systems

    NASA Astrophysics Data System (ADS)

    Pourarian, Shokouh

    Although modern buildings are using increasingly sophisticated energy management and control systems that have tremendous control and monitoring capabilities, building systems routinely fail to perform as designed. More advanced building control, operation, and automated fault detection and diagnosis (AFDD) technologies are needed to achieve the goal of net-zero energy commercial buildings. Much effort has been devoted to develop such technologies for primary heating ventilating and air conditioning (HVAC) systems, and some secondary systems. However, secondary systems, such as fan coil units and dual duct systems, although widely used in commercial, industrial, and multifamily residential buildings, have received very little attention. This research study aims at developing tools that could provide simulation capabilities to develop and evaluate advanced control, operation, and AFDD technologies for these less studied secondary systems. In this study, HVACSIM+ is selected as the simulation environment. Besides developing dynamic models for the above-mentioned secondary systems, two other issues related to the HVACSIM+ environment are also investigated. One issue is the nonlinear equation solver used in HVACSIM+ (Powell's Hybrid method in subroutine SNSQ). It has been found from several previous research projects (ASRHAE RP 825 and 1312) that SNSQ is especially unstable at the beginning of a simulation and sometimes unable to converge to a solution. Another issue is related to the zone model in the HVACSIM+ library of components. Dynamic simulation of secondary HVAC systems unavoidably requires an interacting zone model which is systematically and dynamically interacting with building surrounding. Therefore, the accuracy and reliability of the building zone model affects operational data generated by the developed dynamic tool to predict HVAC secondary systems function. The available model does not simulate the impact of direct solar radiation that enters a zone

  17. Intelligent detection and diagnosis of lightning arrester faults using digital thermovision image processing techniques

    NASA Astrophysics Data System (ADS)

    Laurentys Almeida, Carlos A.; Caminhas, Walmir M.; Braga, Antonio P.; Paiva, Vinicius; Martins, Helvio; Torres, Rodolfo

    2005-03-01

    This paper describes a methodology that aims to detect and diagnosis faults in lightning arresters, using the thermovision technique. Thermovision is a non-destructive technique used in diverse services of maintenance, having the advantage not to demand the disconnection of the equipment under inspection. It uses a set of neuro-fuzzy networks to achieve the lightning arresters fault classification. The methodology also uses a digital image processing algorithm based on the Watershed Transform in order to get the segmentation of the lightning arresters. This procedure enables the automatic search of the maximum and minimum temperature on the lightning arresters. These variables are necessary to generate the diagnosis. By appling the methodology is possible to classify lightning arresters operative condition in: faulty, normal, light, suspicious and faulty. The computacional system generated by the proposed methodology train its neuro-fuzzy network by using a historical thermovision data. During the train phase, a heuristic is proposed in order to set the number of networks in the diagnosis system. This system was validated using a database provided by the Eletric Energy Research Center, with a hundreds of different faulty scenarios. The validation error of the set of neuro-fuzzy and the automatic digital thermovision imagem processing was about 10 percent. The diagnosis system described has been sucessefully used by Eletric Energy Research Center as an auxiliar tool for lightning arresters fault diagnosis.

  18. Estimating the detectability of faults in 3D-seismic data - A valuable input to Induced Seismic Hazard Assessment (ISHA)

    NASA Astrophysics Data System (ADS)

    Goertz, A.; Kraft, T.; Wiemer, S.; Spada, M.

    2012-12-01

    In the past several years, some geotechnical operations that inject fluid into the deep subsurface, such as oil and gas development, waste disposal, and geothermal energy development, have been found or suspected to cause small to moderate sized earthquakes. In several cases the largest events occurred on previously unmapped faults, within or in close vicinity to the operated reservoirs. The obvious conclusion drawn from this finding, also expressed in most recently published best practice guidelines and recommendations, is to avoid injecting into faults. Yet, how certain can we be that all faults relevant to induced seismic hazard have been identified, even around well studied sites? Here we present a probabilistic approach to assess the capability of detecting faults by means of 3D seismic imaging. First, we populate a model reservoir with seed faults of random orientation and slip direction. Drawing random samples from a Gutenberg-Richter distribution, each seed fault is assigned a magnitude and corresponding size using standard scaling relations based on a circular rupture model. We then compute the minimum resolution of a 3D seismic survey for given acquisition parameters and frequency bandwidth. Assuming a random distribution of medium properties and distribution of image frequencies, we obtain a probability that a fault of a given size is detected, or respectively overlooked, by the 3D seismic. Weighting the initial Gutenberg-Richter fault size distribution with the probability of imaging a fault, we obtain a modified fault size distribution in the imaged volume from which we can constrain the maximum magnitude to be considered in the seismic hazard assessment of the operation. We can further quantify the value of information associated with the seismic image by comparing the expected insured value loss between the image-weighted and the unweighted hazard estimates.

  19. Detecting Aseismic Transient Motion on Faults Using New Optical Tiltmeters and Seismometers

    NASA Astrophysics Data System (ADS)

    Chery, J.; Boudin, F.; Seat, H.; Cattoen, M.; Chawah, P.; Plantier, G.; Sourice, A.; Bernard, P.; Brunet, C.; Gaffet, S.; Boyer, D.

    2012-12-01

    Measurements low frequency strain associated to active faulting is mandatory for understanding the behaviour of these systems. In the future, risk mitigation will depend on our capability to detect in a reliable way small precursors of large seismic events and to assess the seismic/aseismic spatial and temporal distribution and evolution of crustal strain in these unstable systems. The robustness of strain and motion detection is primary linked to measurement accuracy, but also to the number and repartition of instrument. This implies that instrument cost and maintenance are essential for the development of networks. To date, only GPS sensors are robust enough to be deployed for long period of time with limited problem of maintenance. Seismometers and strainmeters capabilities are often plagued by numerous technical problems limiting their usefulness. On the basis of existing or prototype sensors, we developed new instruments (seismometers, tiltmeters, strainmeters) using an interferometric motion measurement. Both Laser source and fringe analysis are connected to the mechanical sensor with long optic fiber (0.1 - 3 km) depending on applications (volcanoes, sea bottom) The fiber signal transmission appears to be a major improvement by comparison with usual electric wires (cost, data channels, lightning, weight). Also, the absence of embedded electronic on the sensor is a guarantee for reliability and toughness. The developed optical device includes a double modulation of the Laser Diode's wavelength, aiming to reconstruct the displacement of the mechanical sensor with a nanometric resolution. Differential measurements also lead removing internal sensor drift as well as the influence of atmospheric forcing. Three instruments (seismometer, hydrostatic tiltmeter, borehole tiltmeter) have been developed and tested at the Laboratoire Souterrain à Bas Bruit (LSBB), Vaucluse. We will herewith present the development of the instruments and their performance after 9 months

  20. Multiple tests for wind turbine fault detection and score fusion using two- level multidimensional scaling (MDS)

    NASA Astrophysics Data System (ADS)

    Ye, Xiang; Gao, Weihua; Yan, Yanjun; Osadciw, Lisa A.

    2010-04-01

    Wind is an important renewable energy source. The energy and economic return from building wind farms justify the expensive investments in doing so. However, without an effective monitoring system, underperforming or faulty turbines will cause a huge loss in revenue. Early detection of such failures help prevent these undesired working conditions. We develop three tests on power curve, rotor speed curve, pitch angle curve of individual turbine. In each test, multiple states are defined to distinguish different working conditions, including complete shut-downs, under-performing states, abnormally frequent default states, as well as normal working states. These three tests are combined to reach a final conclusion, which is more effective than any single test. Through extensive data mining of historical data and verification from farm operators, some state combinations are discovered to be strong indicators of spindle failures, lightning strikes, anemometer faults, etc, for fault detection. In each individual test, and in the score fusion of these tests, we apply multidimensional scaling (MDS) to reduce the high dimensional feature space into a 3-dimensional visualization, from which it is easier to discover turbine working information. This approach gains a qualitative understanding of turbine performance status to detect faults, and also provides explanations on what has happened for detailed diagnostics. The state-of-the-art SCADA (Supervisory Control And Data Acquisition) system in industry can only answer the question whether there are abnormal working states, and our evaluation of multiple states in multiple tests is also promising for diagnostics. In the future, these tests can be readily incorporated in a Bayesian network for intelligent analysis and decision support.

  1. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  2. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    PubMed Central

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  3. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  4. Implementation of a Fractional Model-Based Fault Detection Algorithm into a PLC Controller

    NASA Astrophysics Data System (ADS)

    Kopka, Ryszard

    2014-12-01

    This paper presents results related to the implementation of model-based fault detection and diagnosis procedures into a typical PLC controller. To construct the mathematical model and to implement the PID regulator, a non-integer order differential/integral calculation was used. Such an approach allows for more exact control of the process and more precise modelling. This is very crucial in model-based diagnostic methods. The theoretical results were verified on a real object in the form of a supercapacitor connected to a PLC controller by a dedicated electronic circuit controlled directly from the PLC outputs.

  5. Orbital maneuvering subsystem functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The functional paths of the Orbital Maneuver Subsystem (OMS) is defined. The operational flight instrumentation required for performance monitoring, fault detection, and annunciation is described. The OMS is a pressure fed rocket engine propulsion subsystem. One complete OMS shares each of the two auxiliary propulsion subsystem pods with a reaction control subsystem. Each OMS is composed of a pressurization system, a propellant tanking system, and a gimbaled rocket engine. The design, development, and operation of the system are explained. Diagrams of the system are provided.

  6. Towards Certification of a Space System Application of Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Markosian, Lawrence Z.

    2008-01-01

    Advanced fault detection, isolation and recovery (FDIR) software is being investigated at NASA as a means to the improve reliability and availability of its space systems. Certification is a critical step in the acceptance of such software. Its attainment hinges on performing the necessary verification and validation to show that the software will fulfill its requirements in the intended setting. Presented herein is our ongoing work to plan for the certification of a pilot application of advanced FDIR software in a NASA setting. We describe the application, and the key challenges and opportunities it offers for certification.

  7. Fault detection in non-linear systems based on type-2 fuzzy logic

    NASA Astrophysics Data System (ADS)

    Safarinejadian, Behrooz; Ghane, Parisa; Monirvaghefi, Hossein

    2015-02-01

    This paper presents a new method for fault detection (FD) based on interval type-2 fuzzy sets. The main idea is based on a confident span using interval type-2 fuzzy systems. An estimate for upper and lower bounds of output has been taken using the designing of an optimal fuzzy system through clustering. Finally the method has been tested in two non-linear systems, a two-tank with a fluid flow and pH neutralisation process, and it is compared with a well-known method named ANFIS. Furthermore, the mathematical model and the results of simulations prove the effectiveness, usefulness and applications of our new method.

  8. Model-based fault detection and identification with online aerodynamic model structure selection

    NASA Astrophysics Data System (ADS)

    Lombaerts, T.

    2013-12-01

    This publication describes a recursive algorithm for the approximation of time-varying nonlinear aerodynamic models by means of a joint adaptive selection of the model structure and parameter estimation. This procedure is called adaptive recursive orthogonal least squares (AROLS) and is an extension and modification of the previously developed ROLS procedure. This algorithm is particularly useful for model-based fault detection and identification (FDI) of aerospace systems. After the failure, a completely new aerodynamic model can be elaborated recursively with respect to structure as well as parameter values. The performance of the identification algorithm is demonstrated on a simulation data set.

  9. Survey of artificial intelligence methods for detection and identification of component faults in nuclear power plants

    SciTech Connect

    Reifman, J.

    1997-07-01

    A comprehensive survey of computer-based systems that apply artificial intelligence methods to detect and identify component faults in nuclear power plants is presented. Classification criteria are established that categorize artificial intelligence diagnostic systems according to the types of computing approaches used (e.g., computing tools, computer languages, and shell and simulation programs), the types of methodologies employed (e.g., types of knowledge, reasoning and inference mechanisms, and diagnostic approach), and the scope of the system. The major issues of process diagnostics and computer-based diagnostic systems are identified and cross-correlated with the various categories used for classification. Ninety-five publications are reviewed.

  10. Parameter estimation scheme for fault detection and identification in dynamic systems

    SciTech Connect

    Dinca, L.; Aldemir, T.

    1996-12-31

    While several parameter estimation techniques have been proposed for fault detection and identification in dynamic systems, some difficulties in their implementation arise from (a) use of linear models to describe plant dynamics in a wide range of operating conditions, (b) accommodating noisy input data or random changes in system parameters, and (c) the need for extensive computational effort. This paper describes a parameter estimation technique that can alleviate these problems. The approach is described and illustrated using a third-order system describing temporal xenon oscillations.

  11. Support vector machine based fault detection approach for RFT-30 cyclotron

    NASA Astrophysics Data System (ADS)

    Kong, Young Bae; Lee, Eun Je; Hur, Min Goo; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-10-01

    An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.

  12. Evaluation of a dual processor implementation for a fault inferring nonlinear detection system

    NASA Technical Reports Server (NTRS)

    Godiwala, P. M.; Caglayan, A. K.; Morrell, F. R.

    1987-01-01

    The design of a modified fault inferring nonlinear detection system (FINDS) algorithm for a dual-processor configured flight computer is described. The algorithm was changed in order to divide it into its translational dynamics and rotational kinematics and to use it for parallel execution on the flight computer. The FINDS consists of: (1) a no-fail filter (NFF), (2) a set of test-of-mean detection tests, (3) a bank of first order filters to estimate failure levels in individual sensors, and (4) a decision function. NFF filter performance using flight recorded sensor data is analyzed using a filter autoinitialization routine. The failure detection and isolation capability of the partitioned algorithm is evaluated. A multirate implementation for the bias-free and bias filter gain and covariance matrices is discussed.

  13. Design considerations for flight test of a fault inferring nonlinear detection system algorithm for avionics sensors

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.; Morrell, F. R.

    1986-01-01

    The modifications to the design of a fault inferring nonlinear detection system (FINDS) algorithm to accommodate flight computer constraints and the resulting impact on the algorithm performance are summarized. An overview of the flight data-driven FINDS algorithm is presented. This is followed by a brief analysis of the effects of modifications to the algorithm on program size and execution speed. Significant improvements in estimation performance for the aircraft states and normal operating sensor biases, which have resulted from improved noise design parameters and a new steady-state wind model, are documented. The aircraft state and sensor bias estimation performances of the algorithm's extended Kalman filter are presented as a function of update frequency of the piecewise constant filter gains. The results of a new detection system strategy and failure detection performance, as a function of gain update frequency, are also presented.

  14. Hidden Markov models and neural networks for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.

  15. A new statistical modeling and detection method for rolling element bearing faults based on alpha-stable distribution

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Li, Changning; Zhang, Jianfeng

    2013-12-01

    Due to limited information given by traditional local statistics, a new statistical modeling method for rolling element bearing fault signals is proposed based on alpha-stable distribution. In order to fully take advantages of complete information provided by alpha-stable distribution, this paper focuses on testing the validity of the proposed statistical model. A number of hypothetical test methods were applied to practical bearing fault vibration signals with different fault types and degrees. Through testing on the consistency of three alpha-stable parameter estimation methods, and the probability density function fitting level between fault signals and their corresponding hypothetical alpha-stable distributions, it can be concluded that such a non-Gaussian model is sufficient to thoroughly describe the statistical characteristics of bearing fault signals with impulsive behaviors, and consequently the alpha-stable hypothesis is verified. In the meantime, a new bearing fault detection method based on kurtogram and α parameter of the alpha-stable model is proposed, experimental results have shown that the proposed method has better performance on detecting incipient bearing faults than that based on the traditional kurtogram.

  16. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed

    NASA Astrophysics Data System (ADS)

    Zhao, Dezun; Li, Jianyong; Cheng, Weidong; Wen, Weigang

    2016-09-01

    Multi-fault detection of the rolling element bearing under time-varying rotational speed presents a challenging issue due to its complexity, disproportion and interaction. Computed order analysis (COA) is one of the most effective approaches to remove the influences of speed fluctuation, and detect all the features of multi-fault. However, many interference components in the envelope order spectrum may lead to false diagnosis results, in addition, the deficiencies of computational accuracy and efficiency also cannot be neglected. To address these issues, a novel method for compound faults detection of rolling element bearing based on the generalized demodulation (GD) algorithm is proposed in this paper. The main idea of the proposed method is to exploit the unique property of the generalized demodulation algorithm in transforming an interested instantaneous frequency trajectory of compound faults bearing signal into a line paralleling to the time axis, and then the FFT algorithm can be directly applied to the transformed signal. This novel method does not need angular resampling algorithm which is the key step of the computed order analysis, and is hence free from the deficiencies of computational error and efficiency. On the other hand, it only acts on the instantaneous fault characteristic frequency trends in envelope signal of multi-fault bearing which include rich fault information, and is hence free from irrelevant items interferences. Both simulated and experimental faulty bearing signal analysis validate that the proposed method is effective and reliable on the compound faults detection of rolling element bearing under variable rotational speed conditions. The comprehensive comparison with the computed order analysis further shows that the proposed method produces higher accurate results in less computation time.

  17. Interseismic Crustal Deformation in and around the Atotsugawa Fault System, Central Japan, Detected by InSAR and GNSS

    NASA Astrophysics Data System (ADS)

    Takada, Y.; Sagiya, T.; Nishimura, T.

    2015-12-01

    Interseismic crustal deformation of active faults provides crucial information to understand the stress accumulation process on the fault planes. Recently, the interseismic surface movements are detected with very high spatial resolution using combination of InSAR and GNSS survey. Most of the successful reports, however, addressed the fault creep in less vegetated area which enables C-band SAR interferometry. In this study, we report the interseismic crustal deformation in and around the Atotsugawa fault system, a strike-slip active fault in central Japan. This area is covered with dense vegetation in summer and with heavy snow in winter. We created a series of InSAR images acquired by ALOS/PALSAR and applied SBAS based time-series analysis (Berardino et al., 2002) to extract small deformation. Next, we corrected the long wave-length phase trend by GNSS network maintained by Japanese University Group (e.g, Ohzono et al., 2011) and GSI, Japan. The mean velocity field thus obtained shows a strain concentration zone along the Ushikubi fault, a major strand of the Atotsugawa fault system. The Ushikubi fault is seismically less active than the Atotsugawa fault, but it shows good correlation with a zone of large spatial gradient of Bouguer gravity anomaly. We further discuss on the deformation style at the junction between the Atotsugawa fault and the Hida mountain range (Tateyama volcano). Acknowledgement: The PALSAR level 1.0 data were provided by JAXA via the PALSAR Interferometry Consortium to Study our Evolving Land surface (PIXEL) based on a cooperative research contract between JAXA and the ERI, the University of Tokyo. The PALSAR product is owned by JAXA and METI.

  18. Detection of faults in rotating machinery using periodic time-frequency sparsity

    NASA Astrophysics Data System (ADS)

    Ding, Yin; He, Wangpeng; Chen, Binqiang; Zi, Yanyang; Selesnick, Ivan W.

    2016-11-01

    This paper addresses the problem of extracting periodic oscillatory features in vibration signals for detecting faults in rotating machinery. To extract the feature, we propose an approach in the short-time Fourier transform (STFT) domain where the periodic oscillatory feature manifests itself as a relatively sparse grid. To estimate the sparse grid, we formulate an optimization problem using customized binary weights in the regularizer, where the weights are formulated to promote periodicity. In order to solve the proposed optimization problem, we develop an algorithm called augmented Lagrangian majorization-minimization algorithm, which combines the split augmented Lagrangian shrinkage algorithm (SALSA) with majorization-minimization (MM), and is guaranteed to converge for both convex and non-convex formulation. As examples, the proposed approach is applied to simulated data, and used as a tool for diagnosing faults in bearings and gearboxes for real data, and compared to some state-of-the-art methods. The results show that the proposed approach can effectively detect and extract the periodical oscillatory features.

  19. A Virtual Sensor for Online Fault Detection of Multitooth-Tools

    PubMed Central

    Bustillo, Andres; Correa, Maritza; Reñones, Anibal

    2011-01-01

    The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a Bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases. PMID:22163766

  20. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  1. Advanced monitoring of water systems using in situ measurement stations: data validation and fault detection.

    PubMed

    Alferes, Janelcy; Tik, Sovanna; Copp, John; Vanrolleghem, Peter A

    2013-01-01

    In situ continuous monitoring at high frequency is used to collect water quality information about water bodies. However, it is crucial that the collected data be evaluated and validated for the appropriate interpretation of the data so as to ensure that the monitoring programme is effective. Software tools for data quality assessment with a practical orientation are proposed. As water quality data often contain redundant information, multivariate methods can be used to detect correlations, pertinent information among variables and to identify multiple sensor faults. While principal component analysis can be used to reduce the dimensionality of the original variable data set, monitoring of some statistical metrics and their violation of confidence limits can be used to detect faulty or abnormal data and can help the user apply corrective action(s). The developed algorithms are illustrated with automated monitoring systems installed in an urban river and at the inlet of a wastewater treatment plant.

  2. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob A.; Lewis, Mark E.; Perotti, Jose M.; Brown, Barbara L.; Oostdyk, Rebecca L.; Goetz, Jesse W.

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC). Part of the0 overall implementation of National Aeronautics and Space Administration's (NASA's) CxP, FDIR is being implemented in three main components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) initiated a task for it under their Integrated System Health Management (ISHM) research area. This task, referred to as the FDIIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground Operations baseline. Currently, Qualtech Systems Inc (QSI) Commercial Off The Shelf (COTS) software products Testability Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. One of the most significant challenges related to integration is to ensure that FFMs developed by different organizations can be integrated easily and without errors. Software Interface

  3. Discrete Data Qualification System and Method Comprising Noise Series Fault Detection

    NASA Technical Reports Server (NTRS)

    Fulton, Christopher; Wong, Edmond; Melcher, Kevin; Bickford, Randall

    2013-01-01

    A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions.

  4. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  5. Design Method of Fault Detector for Injection Unit

    NASA Astrophysics Data System (ADS)

    Ochi, Kiyoshi; Saeki, Masami

    An injection unit is considered as a speed control system utilizing a reaction-force sensor. Our purpose is to design a fault detector that detects and isolates actuator and sensor faults under the condition that the system is disturbed by a reaction force. First described is the fault detector's general structure. In this system, a disturbance observer that estimates the reaction force is designed for the speed control system in order to obtain the residual signals, and then post-filters that separate the specific frequency elements from the residual signals are applied in order to generate the decision signals. Next, we describe a fault detector designed specifically for a model of the injection unit. It is shown that the disturbance imposed on the decision variables can be made significantly small by appropriate adjustments to the observer bandwidth, and that most of the sensor faults and actuator faults can be detected and some of them can be isolated in the frequency domain by setting the frequency characteristics of the post-filters appropriately. Our result is verified by experiments for an actual injection unit.

  6. Drugs of abuse detection in saliva based on actuated optical method

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Zhenyu; Jiang, Hong; Wang, Wenlong; Wu, Yixuan

    2014-12-01

    There has been a considerable increase in the abuse of drugs during the past decade. Combing drug use with driving is very dangerous. More than 11% of drivers in a roadside survey tested positive for drugs, while 18% of drivers killed in accidents tested positive for drugs as reported in USA, 2007. Toward developing a rapid drug screening device, we use saliva as the sample, and combining the traditional immunoassays method with optical magnetic technology. There were several methods for magnetic nanoparticles detection, such as magnetic coils, SQUID, microscopic imaging, and Hall sensors. All of these methods were not suitable for our demands. By developing a novel optical scheme, we demonstrate high-sensitivity detection in saliva. Drugs of abuse are detected at sub-nano gram per milliliter levels in less than 120 seconds. Evanescent wave principle has been applied to sensitively monitor the presence of magnetic nanoparticles on the binding surface. Like the total internal reflection fluorescence microscope (TIRFM), evanescent optical field is generated at the plastic/fluid interface, which decays exponentially and penetrates into the fluid by only a sub-wavelength distance. By disturbance total internal reflection with magnetic nanoparticles, the optical intensity would be influenced. We then detected optical output by imaging the sensor surface onto a CCD camera. We tested four drugs tetrahydrocannabinol (THC), methamphetamine (MAMP), ketamine (KET), morphine (OPI), using this technology. 100 ng mL-1 sensitivity was achieved, and obvious evidence showed that this results could be improved in further researches.

  7. Online Fault Detection of Permanent Magnet Demagnetization for IPMSMs by Nonsingular Fast Terminal-Sliding-Mode Observer

    PubMed Central

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-01-01

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance. PMID:25490582

  8. Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared- Residuals Approach

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2009-01-01

    Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.

  9. Online fault detection of permanent magnet demagnetization for IPMSMs by nonsingular fast terminal-sliding-mode observer.

    PubMed

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-12-05

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.

  10. Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Sutinen, Raimo; Hyvönen, Eija; Middleton, Maarit; Ruskeeniemi, Timo

    2014-04-01

    Postglacial faults (PGFs) are indicative of young tectonic activity providing crucial information for nuclear repository studies. Airborne LiDAR (Light Detection And Ranging) data revealed three previously unrecognized late- or postglacial faults in northernmost Finnish Lapland. Under the canopies of mountain birch (Betula pubescens ssp. czerepanovii) we also found clusters of the Pulju moraine, typically found on the ice-divide zone of the former Fennoscandian ice sheet (FIS), to be spatially associated with the fault-scarps. Tilt derivative (TDR) filtered LiDAR data revealed the previously unknown Palojärvi fault that, by the NE-SW orientation parallels with the well documented Lainio-Suijavaara PGF in northern Sweden. This suggests that PGFs are more extensive features than previously recognized. Two inclined diamond drill holes verified the fractured system of the Palojärvi fault and revealed clear signs of postglacial reactivation. Two other previously unrecognized PGFs, the W-E trending Paatsikkajoki fault and the SE-NW trending Kultima fault, differ from the Palojärvi faulting in orientation and possibly also with regard to age. The Pulju moraine, a morphological feature showing transitions from shallow (< 2-m-high) circular/arcuate ridges to sinusoidal/anastomosing esker networks was found to be concentrated within 6 km from the Kultima fault-scarp. We advocate that some of the past seismic events took place under the retreating wet-base ice sheet and the increased pore-water pressure triggered the sediment mass flows and formation of the Pulju moraine-esker landscape.

  11. Detection and localization of building insulation faults using optical-fiber DTS system

    NASA Astrophysics Data System (ADS)

    Papes, Martin; Liner, Andrej; Koudelka, Petr; Siska, Petr; Cubik, Jakub; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir

    2013-05-01

    Nowadays the trends in the construction industry are changing at an incredible speed. The new technologies are still emerging on the market. Sphere of building insulation is not an exception as well. One of the major problems in building insulation is usually its failure, whether caused by unwanted mechanical intervention or improper installation. The localization of these faults is quite difficult, often impossible without large intervention into the construction. As a proper solution for this problem might be utilization of Optical-Fiber DTS system based on stimulated Raman scattering. Used DTS system is primary designed for continuous measurement of the temperature along the optical fiber. This system is using standard optical fiber as a sensor, which brings several advantages in its application. First, the optical fiber is relatively inexpensive, which allows to cover a quite large area for a small cost. The other main advantages of the optical fiber are electromagnetic resistance, small size, safety operation in inflammable or explosive area, easy installation, etc. This article is dealing with the detection and localization of building insulation faults using mentioned system.

  12. Motion-Based System Identification and Fault Detection and Isolation Technologies for Thruster Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Sutter, David W.; Berkovitz, Dustin; Betts, Bradley J.; Kong, Edmund; delMundo, Rommel; Lages, Christopher R.; Mah, Robert W.; Papasin, Richard

    2003-01-01

    By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the improved system robustness and performance that comes with the thruster fault tolerance and system ID can be achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test results from the SPHERES implementation, as flown aboard the NASA KC-1 35A 0-g simulator aircraft in November 2003 are presented.

  13. In-process fault detection for textile fabric production: onloom imaging

    NASA Astrophysics Data System (ADS)

    Neumann, Florian; Holtermann, Timm; Schneider, Dorian; Kulczycki, Ashley; Gries, Thomas; Aach, Til

    2011-05-01

    Constant and traceable high fabric quality is of high importance both for technical and for high-quality conventional fabrics. Usually, quality inspection is carried out by trained personal, whose detection rate and maximum period of concentration are limited. Low resolution automated fabric inspection machines using texture analysis were developed. Since 2003, systems for the in-process inspection on weaving machines ("onloom") are commercially available. With these defects can be detected, but not measured quantitative precisely. Most systems are also prone to inevitable machine vibrations. Feedback loops for fault prevention are not established. Technology has evolved since 2003: Camera and computer prices dropped, resolutions were enhanced, recording speeds increased. These are the preconditions for real-time processing of high-resolution images. So far, these new technological achievements are not used in textile fabric production. For efficient use, a measurement system must be integrated into the weaving process; new algorithms for defect detection and measurement must be developed. The goal of the joint project is the development of a modern machine vision system for nondestructive onloom fabric inspection. The system consists of a vibration-resistant machine integration, a high-resolution machine vision system, and new, reliable, and robust algorithms with quality database for defect documentation. The system is meant to detect, measure, and classify at least 80 % of economically relevant defects. Concepts for feedback loops into the weaving process will be pointed out.

  14. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  15. Detection of broken rotor bar faults in induction motor at low load using neural network.

    PubMed

    Bessam, B; Menacer, A; Boumehraz, M; Cherif, H

    2016-09-01

    The knowledge of the broken rotor bars characteristic frequencies and amplitudes has a great importance for all related diagnostic methods. The monitoring of motor faults requires a high resolution spectrum to separate different frequency components. The Discrete Fourier Transform (DFT) has been widely used to achieve these requirements. However, at low slip this technique cannot give good results. As a solution for these problems, this paper proposes an efficient technique based on a neural network approach and Hilbert transform (HT) for broken rotor bar diagnosis in induction machines at low load. The Hilbert transform is used to extract the stator current envelope (SCE). Two features are selected from the (SCE) spectrum (the amplitude and frequency of the harmonic). These features will be used as input for neural network. The results obtained are astonishing and it is capable to detect the correct number of broken rotor bars under different load conditions. PMID:27329853

  16. Fault detection and isolation of aircraft air data/inertial system

    NASA Astrophysics Data System (ADS)

    Berdjag, D.; Cieslak, J.; Zolghadri, A.

    2013-12-01

    A method for failure detection and isolation (FDI) for redundant aircraft sensors is presented. The outputs of the concerned sensors are involved in the computation of flight control laws, and the objective is to eliminate any fault before propagation in the control loop when selecting a unique flight parameter among a set (generally, three) of redundant measurements. The particular case of an oscillatory failure is investigated. The proposed method allows an accurate FDI of erroneous sensor and computes a consolidated parameter based on the fusion of data from remaining valid sensors. The benefits of the presented method are to enhance the data fusion process with FDI techniques which improve the performance of the fusion when only few sources (less than three) are initially valid.

  17. Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems

    PubMed Central

    2014-01-01

    Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365

  18. Evaluation of an expert system for fault detection, isolation, and recovery in the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Rushby, John; Crow, Judith

    1990-01-01

    The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.

  19. Fault detection and safety in closed-loop artificial pancreas systems.

    PubMed

    Bequette, B Wayne

    2014-11-01

    Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365

  20. Particle Filters for Real-Time Fault Detection in Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Clancy, Dan; Koga, Dennis (Technical Monitor)

    2001-01-01

    Planetary rovers provide a considerable challenge for robotic systems in that they must operate for long periods autonomously, or with relatively little intervention. To achieve this, they need to have on-board fault detection and diagnosis capabilities in order to determine the actual state of the vehicle, and decide what actions are safe to perform. Traditional model-based diagnosis techniques are not suitable for rovers due to the tight coupling between the vehicle's performance and its environment. Hybrid diagnosis using particle filters is presented as an alternative, and its strengths and weakeners are examined. We also present some extensions to particle filters that are designed to make them more suitable for use in diagnosis problems.

  1. Fault detection in heavy duty wheels by advanced vibration processing techniques and lumped parameter modeling

    NASA Astrophysics Data System (ADS)

    Malago`, M.; Mucchi, E.; Dalpiaz, G.

    2016-03-01

    Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.

  2. Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.

    2014-01-01

    The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state

  3. Takagi-Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays.

    PubMed

    Zheng, Ying; Fang, Huajing; Wang, Hua O

    2006-08-01

    A Takagi-Sugeno (T-S) model is employed to represent a networked control system (NCS) with different network-induced delays. Comparing with existing NCS modeling methods, this approach does not require the knowledge of exact values of network-induced delays. Instead, it addresses situations involving all possible network-induced delays. Moreover, this approach also handles data-packet loss. As an application of the T-S-based modeling method, a parity-equation approach and a fuzzy-observer-based approach for fault detection of an NCS were developed. An example of a two-link inverted pendulum is used to illustrate the utility and viability of the proposed approaches.

  4. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines.

    PubMed

    Amozegar, M; Khorasani, K

    2016-04-01

    In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. PMID:26881999

  5. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines.

    PubMed

    Amozegar, M; Khorasani, K

    2016-04-01

    In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies.

  6. Engine rotor health monitoring: an experimental approach to fault detection and durability assessment

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George

    2015-03-01

    Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.

  7. Dynamic Neural Network-Based Pulsed Plasma Thruster (PPT) Fault Detection and Isolation for Formation Flying of Satellites

    NASA Astrophysics Data System (ADS)

    Valdes, A.; Khorasani, K.

    The main objective of this paper is to develop a dynamic neural network-based fault detection and isolation (FDI) scheme for the Pulsed Plasma Thrusters (PPTs) that are used in the Attitude Control Subsystem (ACS) of satellites that are tasked to perform a formation flying mission. By using data collected from the relative attitudes of the formation flying satellites our proposed "High Level" FDI scheme can detect the pair of thrusters which is faulty, however fault isolation cannot be accomplished. Based on the "High Level" FDI scheme and the DNN-based "Low Level" FDI scheme developed earlier by the authors, an "Integrated" DNN-based FDI scheme is then proposed. To demonstrate the FDI capabilities of the proposed schemes various fault scenarios are simulated.

  8. Fault-tolerant quantum computation with a soft-decision decoder for error correction and detection by teleportation.

    PubMed

    Goto, Hayato; Uchikawa, Hironori

    2013-01-01

    Fault-tolerant quantum computation with quantum error-correcting codes has been considerably developed over the past decade. However, there are still difficult issues, particularly on the resource requirement. For further improvement of fault-tolerant quantum computation, here we propose a soft-decision decoder for quantum error correction and detection by teleportation. This decoder can achieve almost optimal performance for the depolarizing channel. Applying this decoder to Knill's C4/C6 scheme for fault-tolerant quantum computation, which is one of the best schemes so far and relies heavily on error correction and detection by teleportation, we dramatically improve its performance. This leads to substantial reduction of resources. PMID:23784512

  9. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  10. Techniques for Fault Detection and Visualization of Telemetry Dependence Relationships for Root Cause Fault Analysis in Complex Systems

    NASA Astrophysics Data System (ADS)

    Guy, Nathaniel

    This thesis explores new ways of looking at telemetry data, from a time-correlative perspective, in order to see patterns within the data that may suggest root causes of system faults. It was thought initially that visualizing an animated Pearson Correlation Coefficient (PCC) matrix for telemetry channels would be sufficient to give new understanding; however, testing showed that the high dimensionality and inability to easily look at change over time in this approach impeded understanding. Different correlative techniques, combined with the time curve visualization proposed by Bach et al (2015), were adapted to visualize both raw telemetry and telemetry data correlations. Review revealed that these new techniques give insights into the data, and an intuitive grasp of data families, which show the effectiveness of this approach for enhancing system understanding and assisting with root cause analysis for complex aerospace systems.

  11. A Sensor Fault Detection Methodology applied to Piezoelectric Active Systems in Structural Health Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Tibaduiza, D.; Anaya, M.; Forero, E.; Castro, R.; Pozo, F.

    2016-07-01

    Damage detection is the basis of the damage identification task in Structural Health Monitoring. A good damage detection process can ensure the adequate work of a SHM System because allows to know early information about the presence of a damage in a structure under evaluation. However this process is based on the premise that all sensors are well installed and they are working properly, however, it is not true all the time. Problems such as debonding, cuts and the use of the sensors under different environmental and operational conditions result in changes in the vibrational response and a bad functioning in the SHM system. As a contribution to evaluate the state of the sensors in a SHM system, this paper describes a methodology for sensor fault detection in a piezoelectric active system. The methodology involves the use of PCA for multivariate analysis and some damage indices as pattern recognition technique and is tested in a blade from a wind turbine where different scenarios are evaluated including sensor cuts and debonding.

  12. A decentralized fault detection and isolation scheme for spacecraft: bridging the gap between model-based fault detection and isolation research and practice

    NASA Astrophysics Data System (ADS)

    Indra, S.; Travé-Massuyès, L.; Chanthery, E.

    2013-12-01

    This paper introduces a decentralized fault diagnosis and isolation (FDI) architecture for spacecraft and applies it to the attitude determination and control system (ADCS) of a satellite. A system is decomposed into functional subsystems. The architecture is composed of local diagnosers for subsystems which work with local models. Fault ambiguities due to interactions between subsystems are resolved at a higher level by a supervisor, which combines the partial view of the local diagnosers and performs isolation on request. The architecture is hierarchically scalable. The structure of the ADCS is modeled as constraints and variables and used to demonstrate the decentralized architecture.

  13. Pulse-modulated control of switching valves for an electro-hydraulic servo actuator

    NASA Astrophysics Data System (ADS)

    Tersteegen, Johannes

    1992-02-01

    The consequent step in using digital technology in servohydraulics leads to the use of fast switching electrohydraulic control valves. By changing the pulse duty ratio between opening and closing (pulse width modulation) a quasi-continuous control of the fluid flow can be achieved. The essential design criteria of a valve controlled actuator including the pulse modulated closed loop position control are described. Those computer programs which are dealt with in detail include the digital control circuit with its pulse modulated control as well as fault detection and fault elimination.

  14. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor

  15. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    SciTech Connect

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  16. Analysis of faults detected in a large-scale multi-version software development experiment

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.; Caglayan, Alper K.; Walker, James L., Jr.; Eckhardt, David E.; Kelly, John P. J.; Knight, John

    1990-01-01

    In a multiversion software experiment, twenty programs were built to the same specification of an inertial navigation problem. The programs were then subjected to a three-phase testing and debugging process: an acceptance test, a certification test, and an operational test. Less than 20 percent of the faults discovered during the certification and operational testing were nonunique, i.e., the same or very similar faults would be found in more than one program. However, some of these common faults spanned as many as half of the versions. Faults discovered during the certification testing were due to specification errors and ambiguities, inadequate programmer background knowledge, insufficient programming experience, incomplete analysis, and insufficient acceptance testing. Faults discovered during the operational testing were of a more subtle nature, and were mostly due to various programmer knowledge defects and incomplete analysis errors. Techniques that might have prevented the observed faults are discussed.

  17. Holocene paleoearthquakes of the Daqingshan fault detected from knickpoint identification and alluvial soil profile

    NASA Astrophysics Data System (ADS)

    He, Zhongtai

    2016-04-01

    Are there any effective methods to reveal paleoearthquakes on normal faults except traditional trenching technique? In this paper, we study Holocene paleoearthquakes of the Daqingshan fault which is a normal fault along the Daqingshan piedmont of Inner Mongolia in China. We identify knickpoints from stream profiles and study alluvial soil profiles to reconstruct the Holocene paleoearthquakes of the fault. From the fault's footwall we extract 25 gullies from IRS-P5 DEM data, and identify knickpoints in the profile that result from fault motion disturbing each channel. We combine the retreat distances and the knickpoint retreat rates to determine each knickpoint's forming time. We study alluvial fan outcrops that contain various paleosol sequences. As three distinct Holocene paleosols developed in the Daqingshan piedmont alluvial fans, we assume that the soil profile development was interrupted by fault activity preserved by interbedded gravel between the paleosols. The gravel layer between two adjacent paleosol layers represents material transported there after a paleoseismic event. Thus we date paleosol layers which are above and below the gravel layer to constrain paleoseismic events. Since trenches had been made by our predecessors along the fault to reveal the Holocene paleoearthquakes, we identify the Holocene paleoearthquake records from both sides of the fault, and then compare the results with the results from the trenches. The final result demonstrates that the knickpoints' sequence in the footwall and the paleosols' ages in the hanging wall correspond very closely with the Holocene paleoearthquakes along the Daqingshan piedmont fault. Methods in this paper have future application value to study paleoearthquakes on other normal faults with similar structure to the Daqingshan fault.

  18. [The application of atomic absorption spectrometry in automatic transmission fault detection].

    PubMed

    Chen, Li-dan; Chen, Kai-kao

    2012-01-01

    The authors studied the innovative applications of atomic absorption spectrometry in the automatic transmission fault detection. After the authors have determined Fe, Cu and Cr contents in the five groups of Audi A6 main metal in automatic transmission fluid whose travel course is respectively 10-15 thousand kilometers, 20-26 thousand kilometers, 32-38 thousand kilometers, 43-49 thousand kilometers, and 52-58 thousand kilometers by atomic absorption spectrometry, the authors founded the database of primary metal content in the Audi A6 different mileage automatic transmission fluid (ATF). The research discovered that the main metal content in the automatic transmission fluid increased with the vehicles mileage and its normal metal content level in the automatic transmission fluid is between the two trend lines. The authors determined the main metal content of automatic transmission fluid which had faulty symptoms and compared it with its database value. Those can not only judge the wear condition of the automatic transmission which had faulty symptoms but also help the automobile detection and maintenance personnel to diagnose automatic transmission failure reasons without disintegration. This reduced automobile maintenance costs, and improved the quality of automobile maintenance.

  19. Fault Detection of Roller-Bearings Using Signal Processing and Optimization Algorithms

    PubMed Central

    Kwak, Dae-Ho; Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan

    2014-01-01

    This study presents a fault detection of roller bearings through signal processing and optimization techniques. After the occurrence of scratch-type defects on the inner race of bearings, variations of kurtosis values are investigated in terms of two different data processing techniques: minimum entropy deconvolution (MED), and the Teager-Kaiser Energy Operator (TKEO). MED and the TKEO are employed to qualitatively enhance the discrimination of defect-induced repeating peaks on bearing vibration data with measurement noise. Given the perspective of the execution sequence of MED and the TKEO, the study found that the kurtosis sensitivity towards a defect on bearings could be highly improved. Also, the vibration signal from both healthy and damaged bearings is decomposed into multiple intrinsic mode functions (IMFs), through empirical mode decomposition (EMD). The weight vectors of IMFs become design variables for a genetic algorithm (GA). The weights of each IMF can be optimized through the genetic algorithm, to enhance the sensitivity of kurtosis on damaged bearing signals. Experimental results show that the EMD-GA approach successfully improved the resolution of detectability between a roller bearing with defect, and an intact system. PMID:24368701

  20. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  1. Actuator mechanism

    NASA Technical Reports Server (NTRS)

    Stange, W. C. (Inventor)

    1978-01-01

    An actuator mechanism is described, having a frame with a rotatable shaft supported in the frame, a positioning mechanism coupled to the shaft for rotating the shaft in two rotary positions, disposed approximately 180 degrees apart, and a pair of plungers coupled to the shaft. Each plunger is responsive to a control signal for applying bi-directional rotation to the shaft.

  2. Fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangming; Li, Yongmin; Li, Ze

    2016-05-01

    This paper considers the problem of robust H∞ fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation. We aim to design a linear mode-dependent H∞ fault detection filter that ensures, the fault detection system is not only stochastically asymptotically stable in the large, but also satisfies a prescribed H∞-norm level for all admissible uncertainties. By using the Lyapunov stability theory and generalised Itô formula, some novel delay-dependent sufficient conditions in terms of linear matrix inequality are proposed to guarantee the existence of the desired fault detection filter. Explicit expression of the desired mode-dependent linear filter parameters is characterised by matrix decomposition, congruence transformation and convex optimisation technique. Sector condition method is utilised to deal with sensor saturation, a definite relation of sector condition parameters with fault detection system robustness against disturbances and sensitivity to faults is put forward, and weighting fault signal approach is employed to improve the performance of the fault detection system. A simulation example and an industrial nonisothermal continuous stirred tank reactor system are utilised to verify the effectiveness and usefulness of the proposed method.

  3. Geophysical imaging of near subsurface layers to detect fault and fractured zones in the Tournemire Experimental Platform, France.

    NASA Astrophysics Data System (ADS)

    Nhu Ba, Elise, Vi; Noble, Mark; Gélis, Céline; Gesret, Alexandrine; Cabrera, Justo

    2013-04-01

    IRSN (the French Institute for Radiological Protection and Nuclear Safety) is in charge of the expertise of the safety report of the French deep geological disposal site project in the East of France. With the goal of understanding the various transport and mechanical properties of clay-rocks, IRSN has conducted several research programs at the Tournemire Experimental Platform (TEP, in the Department of Aveyron in the South of France). Three major sub-horizontal layers characterize the sedimentary Jurassic formations of the TEP. At the base of the stratigraphic column, we find a sequence of limestones and dolomites, that is overlain by an argillaceous formation composed of a 250 m thick clay-rock layer. Above this layer, there is another sequence of limestones and dolomites. The TEP is characterized by a 2 km long tunnel, which allows in situ access to the Toarcian clay- rock layer. In addition to the main Cernon fault, secondary fault zones affect the clay-rock formation and have been observed in the galleries and also identified in several underground boreholes. These sub-vertical fault zones or fracture network display mainly subhorizontal offset (decametric scale) and a small vertical one (meter scale). In the upper limestone, these fault zones widen and fracturing becomes more scattered. In an attempt to detect fault zones in clay-rock layers such as the one described above, IRSN carried out in 2001 a 3D high-resolution seismic survey from the surface in collaboration with CGG. A sub-vertical fault was successfully picked out by the seismic data at the interface between the clay-rock formation and the underlying limestones. This fault is interpreted as the downward continuation of one of the fault zones identified in the tunnel. However, because of the weak seismic impedance contrast in the clay-rock layer and the small vertical offset of sub-vertical fault zones, these fault zones could not be identified in the clay-rock formation. No fault or fracture zone

  4. Study of Active Faults in the Three Gorges Dam region by Detecting and Relocating Aftershocks

    NASA Astrophysics Data System (ADS)

    Huang, R.; Zhu, L.; Xu, Y.

    2014-12-01

    Seismicity in the Three Gorges Dam (TGD) region and its adjacent areas increased dramatically as the water- level of the TGD reservoir rises since its completion in 2003. Accordingly, many efforts have been put forward to quantify the seismicity and geological hazards in the region. However, the precise detective of earthquakes, especially for the minor ones, remains difficulty because of sparse distribution of permanent seismic stations. From December 2013 to June 2014, we deployed 30 three-component broadband seismic stations in the TGD region. During the deployment, we recorded two earthquakes of magnitudes lager than 5.0, one occurred on December 16th 2013 in Badong and another on March 30th 2014 in Zigui. We firstly used a sliding-window cross-correlation (SCC) detection technique to supplement the events catalog from the China Earthquake Networks Center. Over 500 new events with ML lager than 0.5 were detected. We then relocated 502 events out of the total 987 events using the double-difference (DD) relocation algorithm. We also determined moment tensors of some large earthquakes using gCAP. The results clearly show two active faults along Yangtze River with dips of 50 degrees and 90 degrees to a maximum depth of 10 km, respectively. And they also reveal that water might have permeated to a depth of 6 km corresponds to the interface of sediments and metamorphic basement beneath Zigui Basin. We thus preliminarily judge that the quakes are triggered by local stress adjustment resulting of fluctuation of Three Gorges reservoir's loading.

  5. Comparison between different methodologies for detecting radon in soil along an active fault: the case of the Pernicana fault system, Mt. Etna (Italy).

    PubMed

    Giammanco, S; Immè, G; Mangano, G; Morelli, D; Neri, M

    2009-01-01

    Three different methodologies were used to measure Radon ((222)Rn) in soil, based on both passive and active detection system. The first technique consisted of solid-state nuclear track detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil (222)Rn activity was measured together with soil Thoron ((220)Rn) and soil carbon dioxide (CO(2)) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil-gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest (222)Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO(2) efflux. Time variations of (222)Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites.

  6. An innovative application of electrical resistivity methods for detecting faults in the mining industry

    SciTech Connect

    Fromm, A.J.; Taylor, R.W. ); Shapiro, A.R.; Curley, P.G.; Barden, D.E. )

    1992-01-01

    A drilling program, intended to define Silurian dolomite reserves and hydrogeologic conditions at a potential quarry near the Sandwich fault system of northeastern Illinois, revealed the presence of a 30 meter brecciated zone. For concerns over the community, quarry operations, and economic projections a geophysical investigation was conducted to access the possible existence of a fault within the site. The interpretation of the geophysical survey would then be used to guide an expanded drilling program, which would further define subsurface conditions. A discontinuity in the apparent resistivities of subsurface materials was delineated by nineteen electrical depth soundings. The discontinuity suggested the possibility of a fault along the southern end of the property. Four azimuthal resistivity surveys indicated isotropic conditions, which supported the absence of fault enhanced permeability throughout most of the property. Significant anisotropy calculated from a fifth azimuthal survey, near the southern end of the property, indicated a fault trending 300 degrees with a secondary porosity of approximately 3 percent.

  7. Feature Detection in SAR Interferograms With Missing Data Displays Fault Slip Near El Mayor-Cucapah and South Napa Earthquakes

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Glasscoe, M. T.; Stough, T.

    2015-12-01

    Edge detection identifies seismic or aseismic fault motion, as demonstrated in repeat-pass inteferograms obtained by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program. But this identification, demonstrated in 2010, was not robust: for best results, it requires a flattened background image, interpolation into missing data (holes) and outliers, and background noise that is either sufficiently small or roughly white Gaussian. Proper treatment of missing data, bursting noise patches, and tiny noise differences at short distances apart from bursts are essential to creating an acceptably reliable method sensitive to small near-surface fractures. Clearly a robust method is needed for machine scanning of the thousands of UAVSAR repeat-pass interferograms for evidence of fault slip, landslides, and other local features: hand-crafted intervention will not do. Effective methods of identifying, removing and filling in bad pixels reveal significant features of surface fractures. A rich network of edges (probably fractures and subsidence) in difference images spanning the South Napa earthquake give way to a simple set of postseismically slipping faults. Coseismic El Mayor-Cucapah interferograms compared to post-seismic difference images show nearly disjoint patterns of surface fractures in California's Sonoran Desert; the combined pattern reveals a network of near-perpendicular, probably conjugate faults not mapped before the earthquake. The current algorithms for UAVSAR interferogram edge detections are shown to be effective in difficult environments, including agricultural (Napa, Imperial Valley) and difficult urban areas (Orange County.).

  8. Detection of active faults using EMR-Technique and Cerescope at Landau area in central Upper Rhine Graben, SW Germany

    NASA Astrophysics Data System (ADS)

    Hagag, Wael; Obermeyer, Hennes

    2016-01-01

    Two conjugate sets of active faults oriented NNE-SSW and NNW-SSE have been detected at Landau area in SW Germany. These faults follow the old trends of the rift-related structures predominating in the Upper Rhine Graben (URG), which originated during Late Eocene-Miocene time. Linear and horizontal measurements were performed by using the Cerescope device and interpreted, applying the Electromagnetic Radiation (EMR) Technique. Linear EMR-profiles were helpful for mapping active faults, while the main horizontal stress (σH, N to NNE) was easily identified with EMR-horizontal measurements. Reactivation of rift-related structures of the Upper Rhine Graben at Landau area produces a new system of active shallow fractures following old trends, and has been detected through the present study by Cerescope applying the EMR-Technique. The present results imply that the Enhanced Geothermal System (EGS) to the south of Landau has a great impact on reactivation of the pre-existing rift-related faults by mechanical hydro-fracturing occurring within the reservoir rocks underneath the area.

  9. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  10. Adaptive Fault Detection on Liquid Propulsion Systems with Virtual Sensors: Algorithms and Architectures

    NASA Technical Reports Server (NTRS)

    Matthews, Bryan L.; Srivastava, Ashok N.

    2010-01-01

    Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.

  11. Integration of remote sensing and surface geophysics in the detection of faults

    NASA Technical Reports Server (NTRS)

    Jackson, P. L.; Shuchman, R. A.; Wagner, H.; Ruskey, F.

    1977-01-01

    Remote sensing was included in a comprehensive investigation of the use of geophysical techniques to aid in underground mine placement. The primary objective was to detect faults and slumping, features which, due to structural weakness and excess water, cause construction difficulties and safety hazards in mine construction. Preliminary geologic reconnaissance was performed on a potential site for an underground oil shale mine in the Piceance Creek Basin of Colorado. LANDSAT data, black and white aerial photography and 3 cm radar imagery were obtained. LANDSAT data were primarily used in optical imagery and digital tape forms, both of which were analyzed and enhanced by computer techniques. The aerial photography and radar data offered supplemental information. Surface linears in the test area were located and mapped principally from LANDSAT data. A specific, relatively wide, linear pointed directly toward the test site, but did not extend into it. Density slicing, ratioing, and edge enhancement of the LANDSAT data all indicated the existence of this linear. Radar imagery marginally confirmed the linear, while aerial photography did not confirm it.

  12. User's guide to the Fault Inferring Nonlinear Detection System (FINDS) computer program

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.; Satz, H. S.

    1988-01-01

    Described are the operation and internal structure of the computer program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is designed to provide reliable estimates for aircraft position, velocity, attitude, and horizontal winds to be used for guidance and control laws in the presence of possible failures in the avionics sensors. The FINDS algorithm was developed with the use of a digital simulation of a commercial transport aircraft and tested with flight recorded data. The algorithm was then modified to meet the size constraints and real-time execution requirements on a flight computer. For the real-time operation, a multi-rate implementation of the FINDS algorithm has been partitioned to execute on a dual parallel processor configuration: one based on the translational dynamics and the other on the rotational kinematics. The report presents an overview of the FINDS algorithm, the implemented equations, the flow charts for the key subprograms, the input and output files, program variable indexing convention, subprogram descriptions, and the common block descriptions used in the program.

  13. Fault detection on a sewer network by a combination of a Kalman filter and a binary sequential probability ratio test

    NASA Astrophysics Data System (ADS)

    Piatyszek, E.; Voignier, P.; Graillot, D.

    2000-05-01

    One of the aims of sewer networks is the protection of population against floods and the reduction of pollution rejected to the receiving water during rainy events. To meet these goals, managers have to equip the sewer networks with and to set up real-time control systems. Unfortunately, a component fault (leading to intolerable behaviour of the system) or sensor fault (deteriorating the process view and disturbing the local automatism) makes the sewer network supervision delicate. In order to ensure an adequate flow management during rainy events it is essential to set up procedures capable of detecting and diagnosing these anomalies. This article introduces a real-time fault detection method, applicable to sewer networks, for the follow-up of rainy events. This method consists in comparing the sensor response with a forecast of this response. This forecast is provided by a model and more precisely by a state estimator: a Kalman filter. This Kalman filter provides not only a flow estimate but also an entity called 'innovation'. In order to detect abnormal operations within the network, this innovation is analysed with the binary sequential probability ratio test of Wald. Moreover, by crossing available information on several nodes of the network, a diagnosis of the detected anomalies is carried out. This method provided encouraging results during the analysis of several rains, on the sewer network of Seine-Saint-Denis County, France.

  14. Multi-Sensor Data Fusion Using a Relevance Vector Machine Based on an Ant Colony for Gearbox Fault Detection.

    PubMed

    Liu, Zhiwen; Guo, Wei; Tang, Zhangchun; Chen, Yongqiang

    2015-08-31

    Sensors play an important role in the modern manufacturing and industrial processes. Their reliability is vital to ensure reliable and accurate information for condition based maintenance. For the gearbox, the critical machine component in the rotating machinery, the vibration signals collected by sensors are usually noisy. At the same time, the fault detection results based on the vibration signals from a single sensor may be unreliable and unstable. To solve this problem, this paper proposes an intelligent multi-sensor data fusion method using the relevance vector machine (RVM) based on an ant colony optimization algorithm (ACO-RVM) for gearboxes' fault detection. RVM is a sparse probability model based on support vector machine (SVM). RVM not only has higher detection accuracy, but also better real-time accuracy compared with SVM. The ACO algorithm is used to determine kernel parameters of RVM. Moreover, the ensemble empirical mode decomposition (EEMD) is applied to preprocess the raw vibration signals to eliminate the influence caused by noise and other unrelated signals. The distance evaluation technique (DET) is employed to select dominant features as input of the ACO-RVM, so that the redundancy and inference in a large amount of features can be removed. Two gearboxes are used to demonstrate the performance of the proposed method. The experimental results show that the ACO-RVM has higher fault detection accuracy than the RVM with normal the cross-validation (CV).

  15. Multi-Sensor Data Fusion Using a Relevance Vector Machine Based on an Ant Colony for Gearbox Fault Detection

    PubMed Central

    Liu, Zhiwen; Guo, Wei; Tang, Zhangchun; Chen, Yongqiang

    2015-01-01

    Sensors play an important role in the modern manufacturing and industrial processes. Their reliability is vital to ensure reliable and accurate information for condition based maintenance. For the gearbox, the critical machine component in the rotating machinery, the vibration signals collected by sensors are usually noisy. At the same time, the fault detection results based on the vibration signals from a single sensor may be unreliable and unstable. To solve this problem, this paper proposes an intelligent multi-sensor data fusion method using the relevance vector machine (RVM) based on an ant colony optimization algorithm (ACO-RVM) for gearboxes’ fault detection. RVM is a sparse probability model based on support vector machine (SVM). RVM not only has higher detection accuracy, but also better real-time accuracy compared with SVM. The ACO algorithm is used to determine kernel parameters of RVM. Moreover, the ensemble empirical mode decomposition (EEMD) is applied to preprocess the raw vibration signals to eliminate the influence caused by noise and other unrelated signals. The distance evaluation technique (DET) is employed to select dominant features as input of the ACO-RVM, so that the redundancy and inference in a large amount of features can be removed. Two gearboxes are used to demonstrate the performance of the proposed method. The experimental results show that the ACO-RVM has higher fault detection accuracy than the RVM with normal the cross-validation (CV). PMID:26334280

  16. Active fault tolerant control of a flexible beam

    NASA Astrophysics Data System (ADS)

    Bai, Yuanqiang; Grigoriadis, Karolos M.; Song, Gangbing

    2007-04-01

    This paper presents the development and application of an H∞ fault detection and isolation (FDI) filter and fault tolerant controller (FTC) for smart structures. A linear matrix inequality (LMI) formulation is obtained to design the full order robust H∞ filter to estimate the faulty input signals. A fault tolerant H∞ controller is designed for the combined system of plant and filter which minimizes the control objective selected in the presence of disturbances and faults. A cantilevered flexible beam bonded with piezoceramic smart materials, in particular the PZT (Lead Zirconate Titanate), in the form of a patch is used in the validation of the FDI filter and FTC controller design. These PZT patches are surface-bonded on the beam and perform as actuators and sensors. A real-time data acquisition and control system is used to record the experimental data and to implement the designed FDI filter and FTC. To assist the control system design, system identification is conducted for the first mode of the smart structural system. The state space model from system identification is used for the H∞ FDI filter design. The controller was designed based on minimization of the control effort and displacement of the beam. The residuals obtained from the filter through experiments clearly identify the fault signals. The experimental results of the proposed FTC controller show its e effectiveness for the vibration suppression of the beam for the faulty system when the piezoceramic actuator has a partial failure.

  17. Neotectonic fault detection and lithosphere structure beneath SW of High Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Timoulali, Youssef; Radi, Said; Azguet, Roumaissae; Bachaoui, Mostapha

    2016-08-01

    The High Atlas is a 100 km wide zone defined by E-W to NE-SW trending folds nearly orthogonal to the Atlantic coastline. The major compressional structures in the High Atlas consist of large-scale fold systems which affect Mesozoic and Cainozoic formations. The extreme West of the High Atlas including the region of Agadir is defined as an earthquake Zone. Historical seismicity data shows that the Agadir region was hit by two destructive earthquakes in 1731 and 1960 with magnitude 6.4 and 6.0, respectively. The present study has two main goals: 1) to use remote sensing techniques to detect and map the surface geological structures including faults; 2) to use the local earthquake tomography for imaging the lithosphere (subsurface) and detect deep structures. For the remote sensing techniques we used ETM + Landsat7 images and the SRTM 90 m image as a Digital Terrane Elevation Model. This study focuses on the computerized identification, feature extraction and quantitative interpretation of lineaments over the SW High Atlas. The analysis developed here is based on the numerical enhancement of a Landsat image and on the statistical processing of data generated through enhancement. The results generated by the numerical enhancement and statistical analysis are presented on fault maps, lineament maps, polar diagrams and lineament density maps. The lineaments have a high concentration of orientations around the directions N40E, N80W and N-S. For the subsurface study, seismic data sets were used to define the 3-D velocity structures. We also used local earthquake tomography to obtain the velocity map and crustal structure of the SW High Atlas region. The tomography results show a new and detailed lithosphere structure defined by a high velocity body in the northern of SW High Atlas from 15 to 45 Km depth, dipping to the north beneath the Essaouira basin in the western Meseta with P velocity variations from 6.5 to 7.8 km/s. This anomaly can be interpreted as an old

  18. Neotectonic fault detection and lithosphere structure beneath SW of High Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Timoulali, Youssef; Radi, Said; Azguet, Roumaissae; Bachaoui, Mostapha

    2016-08-01

    The High Atlas is a 100 km wide zone defined by E-W to NE-SW trending folds nearly orthogonal to the Atlantic coastline. The major compressional structures in the High Atlas consist of large-scale fold systems which affect Mesozoic and Cainozoic formations. The extreme West of the High Atlas including the region of Agadir is defined as an earthquake Zone. Historical seismicity data shows that the Agadir region was hit by two destructive earthquakes in 1731 and 1960 with magnitude 6.4 and 6.0, respectively. The present study has two main goals: 1) to use remote sensing techniques to detect and map the surface geological structures including faults; 2) to use the local earthquake tomography for imaging the lithosphere (subsurface) and detect deep structures. For the remote sensing techniques we used ETM + Landsat7 images and the SRTM 90 m image as a Digital Terrane Elevation Model. This study focuses on the computerized identification, feature extraction and quantitative interpretation of lineaments over the SW High Atlas. The analysis developed here is based on the numerical enhancement of a Landsat image and on the statistical processing of data generated through enhancement. The results generated by the numerical enhancement and statistical analysis are presented on fault maps, lineament maps, polar diagrams and lineament density maps. The lineaments have a high concentration of orientations around the directions N40E, N80W and N-S. For the subsurface study, seismic data sets were used to define the 3-D velocity structures. We also used local earthquake tomography to obtain the velocity map and crustal structure of the SW High Atlas region. The tomography results show a new and detailed lithosphere structure defined by a high velocity body in the northern of SW High Atlas from 15 to 45 Km depth, dipping to the north beneath the Essaouira basin in the western Meseta with P velocity variations from 6.5 to 7.8 km/s. This anomaly can be interpreted as an old

  19. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    PubMed

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  20. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors

    PubMed Central

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented. PMID:22400008

  1. On the design of fault-tolerant robotic manipulator systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert

    1993-01-01

    Robotic systems are finding increasing use in space applications. Many of these devices are going to be operational on board the Space Station Freedom. Fault tolerance has been deemed necessary because of the criticality of the tasks and the inaccessibility of the systems to maintenance and repair. Design for fault tolerance in manipulator systems is an area within robotics that is without precedence in the literature. In this paper, we will attempt to lay down the foundations for such a technology. Design for fault tolerance demands new and special approaches to design, often at considerable variance from established design practices. These design aspects, together with reliability evaluation and modeling tools, are presented. Mechanical architectures that employ protective redundancies at many levels and have a modular architecture are then studied in detail. Once a mechanical architecture for fault tolerance has been derived, the chronological stages of operational fault tolerance are investigated. Failure detection, isolation, and estimation methods are surveyed, and such methods for robot sensors and actuators are derived. Failure recovery methods are also presented for each of the protective layers of redundancy. Failure recovery tactics often span all of the layers of a control hierarchy. Thus, a unified framework for decision-making and control, which orchestrates both the nominal redundancy management tasks and the failure management tasks, has been derived. The well-developed field of fault-tolerant computers is studied next, and some design principles relevant to the design of fault-tolerant robot controllers are abstracted. Conclusions are drawn, and a road map for the design of fault-tolerant manipulator systems is laid out with recommendations for a 10 DOF arm with dual actuators at each joint.

  2. Ability of High-Resolution Resistivity Tomography to Detect Fault and Fracture Zones: Application to the Tournemire Experimental Platform, France

    NASA Astrophysics Data System (ADS)

    Gélis, C.; Noble, M.; Cabrera, J.; Penz, S.; Chauris, H.; Cushing, E. M.

    2016-02-01

    The Experimental Platform of Tournemire (Aveyron, France) developed by IRSN (French Institute for Radiological Protection and Nuclear Safety) is composed of a tunnel excavated in an argillite formation belonging to a limestone-argillite-limestone subhorizontal sedimentary sequence. Subvertical secondary fault zones were intercepted in argillite using drifts and boreholes in the tunnel excavated at a depth of about 250 m located under the Larzac Plateau. A 2D 2.5 km baseline large-scale electrical resistivity survey conducted in 2007 allowed detecting in the upper limestones several significantly low electrical resistivity subvertical zones (G élis et al. Appl Geophys 167(11): 1405-1418, 2010). One of these discontinuities is consistent with the extension towards the surface of the secondary fault zones identified in the argillite formation from the tunnel. In an attempt to better characterize this zone, IRSN and MINES ParisTech conducted a high-resolution electrical resistivity survey located transversally to the fault and fracture zones. A 760-m-long profile was acquired using two array geometries and take-outs of 2, 4 and 8 m, requiring several roll-alongs. These data were first inverted independently for each take-out and then using all take-outs together for a given array geometry. Different inverted 2D electrical resistivity models display the same global features with high (higher than 5000 Ωm) to low (lower than 100 Ωm) electrical resistivity zones. These electrical resistivity models are finally compared with a geological cross-section based on independent data. The subvertical conductive zones are in agreement with the fault and fracture locations inferred from the geological cross-section. Moreover, the top of a more conductive zone, below a high electrical conductive zone and between two subvertical fault zones, is located in a more sandy and argillaceous layer. This conductive zone is interpreted as the presence of a more scattered fracture zone

  3. Tacholess Envelope Order Analysis and Its Application to Fault Detection of Rolling Element Bearings with Varying Speeds

    PubMed Central

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Lei, Yaguo

    2013-01-01

    Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of rolling element bearings. Conventional diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speed. This constraint limits the bearing diagnosis to the industrial application significantly. In order to extend the conventional diagnostic methods to speed variation cases, a tacholess envelope order analysis technique is proposed in this paper. In the proposed technique, a tacholess order tracking (TLOT) method is first introduced to extract the tachometer information from the vibration signal itself. On this basis, an envelope order spectrum (EOS) is utilized to recover the bearing characteristic frequencies in the order domain. By combining the advantages of TLOT and EOS, the proposed technique is capable of detecting bearing faults under varying speeds, even without the use of a tachometer. The effectiveness of the proposed method is demonstrated by both simulated signals and real vibration signals collected from locomotive roller bearings with faults on inner race, outer race and rollers, respectively. Analyzed results show that the proposed method could identify different bearing faults effectively and accurately under speed varying conditions. PMID:23959244

  4. Multi-Fault Detection of Rolling Element Bearings under Harsh Working Condition Using IMF-Based Adaptive Envelope Order Analysis

    PubMed Central

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Li, Xuejun

    2014-01-01

    When operating under harsh condition (e.g., time-varying speed and load, large shocks), the vibration signals of rolling element bearings are always manifested as low signal noise ratio, non-stationary statistical parameters, which cause difficulties for current diagnostic methods. As such, an IMF-based adaptive envelope order analysis (IMF-AEOA) is proposed for bearing fault detection under such conditions. This approach is established through combining the ensemble empirical mode decomposition (EEMD), envelope order tracking and fault sensitive analysis. In this scheme, EEMD provides an effective way to adaptively decompose the raw vibration signal into IMFs with different frequency bands. The envelope order tracking is further employed to transform the envelope of each IMF to angular domain to eliminate the spectral smearing induced by speed variation, which makes the bearing characteristic frequencies more clear and discernible in the envelope order spectrum. Finally, a fault sensitive matrix is established to select the optimal IMF containing the richest diagnostic information for final decision making. The effectiveness of IMF-AEOA is validated by simulated signal and experimental data from locomotive bearings. The result shows that IMF-AEOA could accurately identify both single and multiple faults of bearing even under time-varying rotating speed and large extraneous shocks. PMID:25353982

  5. Detecting dominant resonant modes of rolling bearing faults using the niching genetic algorithm

    NASA Astrophysics Data System (ADS)

    Docekal, Adam; Smid, Radislav; Kreidl, Marcel; Krpata, Pavel

    2011-10-01

    In this paper we propose an improvement of methods for adaptive selection of frequency bands containing transients which indicate the presence of the dominant resonant modes of rolling bearing faults using niching genetic algorithm optimization. The main aim of this approach is to diagnose the condition of the bearings and to be able to recognize faults on various parts of bearings and possible combinations of faults. Because the vibration signals corresponding to faults on bearings are typically transients with a wide frequency range occurring around the excited mechanical resonant modes and drowned in the acquired vibration signals, it is necessary to emphasize these excited transients using a matched bank of filters. The dominant resonant modes of a bearing and the system modes produced from fault source are usually unknown, and so there is a need for robust global search methods able to deal with non-linear problems with multiple optima. Instead of applying an optimization method repeatedly for every optimum, non-dominated extensions of the genetic algorithm can be applied only one time to find and maintain multiple optimal solutions. The efficiency of the proposed approach - niching genetic algorithm with fitness sharing - was evaluated using vibration signals acquired on four tapered roller bearings with defined combinations of seeded faults.

  6. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Ran

    2016-05-01

    Many existing signal processing methods usually select a predefined basis function in advance. This basis functions selection relies on a priori knowledge about the target signal, which is always infeasible in engineering applications. Dictionary learning method provides an ambitious direction to learn basis atoms from data itself with the objective of finding the underlying structure embedded in signal. As a special case of dictionary learning methods, shift-invariant dictionary learning (SIDL) reconstructs an input signal using basis atoms in all possible time shifts. The property of shift-invariance is very suitable to extract periodic impulses, which are typical symptom of mechanical fault signal. After learning basis atoms, a signal can be decomposed into a collection of latent components, each is reconstructed by one basis atom and its corresponding time-shifts. In this paper, SIDL method is introduced as an adaptive feature extraction technique. Then an effective approach based on SIDL and hidden Markov model (HMM) is addressed for machinery fault diagnosis. The SIDL-based feature extraction is applied to analyze both simulated and experiment signal with specific notch size. This experiment shows that SIDL can successfully extract double impulses in bearing signal. The second experiment presents an artificial fault experiment with different bearing fault type. Feature extraction based on SIDL method is performed on each signal, and then HMM is used to identify its fault type. This experiment results show that the proposed SIDL-HMM has a good performance in bearing fault diagnosis.

  7. Observability analysis for model-based fault detection and sensor selection in induction motors

    NASA Astrophysics Data System (ADS)

    Nakhaeinejad, Mohsen; Bryant, Michael D.

    2011-07-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements.

  8. Development and Evaluation of Fault-Tolerant Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)

    2004-01-01

    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  9. Detection of minute signs of a small fault in a periodic or a quasi-periodic signal by the harmonic wavelet transform

    NASA Astrophysics Data System (ADS)

    Inoue, Takumi; Sueoka, Atsuo; Kanemoto, Hiroyuki; Odahara, Satoru; Murakami, Yukitaka

    2007-07-01

    If a machine in operation has a fault, signs of the fault appear in the monitored signal and are usually synchronised with the operating speed. The signs are very small when the fault is at an early stage. The fast Fourier transform (FFT) is often utilised to detect these signs, but it is very difficult to detect minute signs. In this paper, harmonic wavelet transform is utilised to detect the minute signs of small faults in a monitored signal. The monitored signal of a machine element, in ordinary operation, is regarded as periodic or quasi-periodic. It is important for the effectual detection of the minute signs to reduce the obstructive noise and the end effects in the signal. The end effect is a peculiar phenomenon to wavelet transform and hampers effective detection. Useful methods to reduce the obstructive noise and the end effects are devised herein by the authors. Even if no visible information pertaining to a fault appears in the monitored waveform, the present method is able to detect a minute sign of a small fault. It is demonstrated that the present method is capable of detecting minute signs arising from slight collisions caused by a loose coupling and a fatigue crack.

  10. H∞ mode-dependent fault detection filter design for stochastic Markovian jump systems with time-varying delays and parameter uncertainties.

    PubMed

    Zhuang, Guangming; Xia, Jianwei; Chu, Yuming; Chen, Fu

    2014-07-01

    This paper deals with the problem of robust H∞ fault detection for a class of stochastic Markovian jump systems (SMJSs) The aim is to design a linear mode-dependent fault detection filter such that the fault detection system is not only stochastically asymptotically stable in the large, but also satisfies a prescribed H∞-norm level for all admissible uncertainties. By using Lyapunov stability theory and generalized Itô formula, some novel mode-dependent and delay-dependent sufficient conditions in terms of linear matrix inequality (LMI) are proposed to insure the existence of the desired fault detection filter. A simulation example and an industrial nonisothermal continuous stirred tank reactor (CSTR) system are employed to show the effectiveness of the proposed method.

  11. A distributed model predictive control (MPC) fault reconfiguration strategy for formation flying satellites

    NASA Astrophysics Data System (ADS)

    Esfahani, N. R.; Khorasani, K.

    2016-05-01

    In this paper, an active distributed (also referred to as semi-decentralised) fault recovery control scheme is proposed that employs inaccurate and unreliable fault information into a model-predictive-control-based design. The objective is to compensate for the identified actuator faults that are subject to uncertainties and detection time delays, in the attitude control subsystems of formation flying satellites. The proposed distributed fault recovery scheme is developed through a two-level hierarchical framework. In the first level, or the agent level, the fault is recovered locally to maintain as much as possible the design specifications, feasibility, and tracking performance of all the agents. In the second level, or the formation level, the recovery is carried out by enhancing the entire team performance. The fault recovery performance of our proposed distributed (semi-decentralised) scheme is compared with two other alternative schemes, namely the centralised and the decentralised fault recovery schemes. It is shown that the distributed (semi-decentralised) fault recovery scheme satisfies the recovery design specifications and also imposes lower fault compensation control effort cost and communication bandwidth requirements as compared to the centralised scheme. Our proposed distributed (semi-decentralised) scheme also outperforms the achievable performance capabilities of the decentralised scheme. Simulation results corresponding to a network of four precision formation flight satellites are also provided to demonstrate and illustrate the advantages of our proposed distributed (semi-decentralised) fault recovery strategy.

  12. Fault Detection Using Polarimetric Single-Input-Multi-Output Ground Penetrating Radar Technique in Mason, Texas

    NASA Astrophysics Data System (ADS)

    Amara, A.; Everett, M. E.

    2014-12-01

    At the Mason Mountain Wildlife Management Area (MMWMA) near Mason, Texas, we conducted a 2D ground penetrating radar (GPR) survey using single-input-multi-output (SIMO) acquisition technique to image a Pennsylvanian high-angle normal fault. At the MMWMA, the surface geology is mapped extensively but the subsurface remains largely unknown. The main objective of our study is to develop a detailed subsurface structural image of the fault and evaluate existing hypotheses on fault development. Also, to develop and apply a new methodology based on Polarimetric SIMO acquisition geometry. This new methodology allows the subsurface structures to be viewed simultaneously from different angles and can help reduce noise caused by the heterogeneities that affect the electromagnetic waves. We used a pulseEKKO pro 200 GPR with 200 MHz antennae to acquire 8 north-south lines across the fault. Each line is 30 meters long with the transmitter starting on the Town Mountain Granite, footwall, with the receiver stepping 40 cm until the end of the line crossing the fault on to the Hickory Sandstone, hanging wall. Each pass consisted of a stationary transmitter antenna and the moving receiver antenna. The data were initially processed with standard steps including low-cut dewow filter, background subtraction filter and gain control. Advanced processing techniques include migration, phased array processing, velocity analysis, and normal moveout. We will compare the GPR results with existing geophysical datasets at the same site, including electromagnetic (EM), seismic, and seismoelectric.

  13. A Tool to Assist Pressure Management by Detecting and Localizing Low Permeability Faults

    NASA Astrophysics Data System (ADS)

    Vilarrasa, V.; Bustarret, G.; Laloui, L.

    2015-12-01

    Fluid injection and its subsequent induced seismicity have significantly increased recently. Injection of fluids due to wastewater disposal, geothermal energy, seasonal natural gas storage and geologic carbon storage causes pressure buildup, which reduces the effective stresses. This reduction brings the stress state closer to failure conditions, which may yield shear slip of pre-existing fractures or faults. Shear slip induces seismic events, which in some cases are felt by the local population. Felt induced seismicity negatively affects public acceptance and may lead to the closure of injection projects. To avoid inducing felt seismic events, a good pressure management is crucial. We propose a methodology to identify and locate undetected low permeability faults using diagnostic plots. This method is useful to assist decision making to adopt the proper mitigation measures to keep overpressure below the maximum sustainable injection pressure when a low permeability fault is causing an additional overpressure within the injection formation. Diagnostic tools allow a rapid identification of the divergence between the pressure measurements and the expected overpressure evolution in a homogeneous aquifer. The divergence time is an indicator of the presence of a low permeability fault and can be used to determine its position. We formulate the problem in its dimensionless form, so it can be generalized to all injection sites. We apply our methodology to water and CO2 injection through a horizontal well in a confined aquifer that has a fault parallel to the well. Nevertheless, the methodology can be extended to other geometrical configurations and geological settings.

  14. Detection of postseismic fault-zone collapse following the Landers earthquake

    USGS Publications Warehouse

    Massonnet, D.; Thatcher, W.; Vadon, H.

    1996-01-01

    Stress changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone.

  15. Detecting and diagnosing SSME faults using an autoassociative neural network topology

    NASA Technical Reports Server (NTRS)

    Ali, M.; Dietz, W. E.; Kiech, E. L.

    1989-01-01

    An effort is underway at the University of Tennessee Space Institute to develop diagnostic expert system methodologies based on the analysis of patterns of behavior of physical mechanisms. In this approach, fault diagnosis is conceptualized as the mapping or association of patterns of sensor data to patterns representing fault conditions. Neural networks are being investigated as a means of storing and retrieving fault scenarios. Neural networks offer several powerful features in fault diagnosis, including (1) general pattern matching capabilities, (2) resistance to noisy input data, (3) the ability to be trained by example, and (4) the potential for implementation on parallel computer architectures. This paper presents (1) an autoassociative neural network topology, i.e. the network input and output is identical when properly trained, and hence learning is unsupervised; (2) the training regimen used; and (3) the response of the system to inputs representing both previously observed and unkown fault scenarios. The effects of noise on the integrity of the diagnosis are also evaluated.

  16. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  17. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

  18. Evaluation of chiller modeling approaches and their usability for fault detection

    SciTech Connect

    Sreedharan, Priya

    2001-05-01

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as

  19. An SVM-Based Solution for Fault Detection in Wind Turbines

    PubMed Central

    Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  20. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-03-09

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.

  1. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  2. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  3. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    NASA Astrophysics Data System (ADS)

    Yu, Han; Huang, Yunsong; Guo, Bowen

    2016-07-01

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green's function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  4. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    PubMed

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. PMID:27269192

  5. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    PubMed

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results.

  6. Robust fault-tolerant tracking control design for spacecraft under control input saturation.

    PubMed

    Bustan, Danyal; Pariz, Naser; Sani, Seyyed Kamal Hosseini

    2014-07-01

    In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation. PMID:24751476

  7. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  8. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  9. Using Vibration Monitoring for Local Fault Detection on Gears Operating Under Fluctuating Load Conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.; Schoombie, W.

    2002-11-01

    Gearboxes often operate under fluctuating load conditions during service. Conventional techniques for monitoring vibration are based on the assumption that changes in the measured structural response are caused by deterioration in the condition of the gearbox. However, this assumption is not valid for fluctuating load conditions. To find a methodology that could deal with such conditions, experiments were conducted on a gearbox test rig with different levels of tooth damage severity and the capability of applying fluctuating loads to the gear system. Different levels of fluctuation in constant loads as well as in sinusoidal, step and chirp loads were considered. The test data were order tracked and time synchronously averaged with the rotation of the shaft in order to compensate for the variation in rotational speed induced by the fluctuating loads. A pseudo-Wigner-Ville distribution was then applied to the test data, in order to identify the influence of the fluctuating load conditions. In this work, a vibration waveform normalisation approach is presented, which enables the use of the pseudo-Wigner-Ville distribution to indicate deteriorating fault conditions under fluctuating load conditions. Statistical parameters and various other features were extracted from the distribution in order to indicate the linear separation of the values for various fault conditions, after applying the vibration waveform normalisation approach. Feature vectors were compiled for the various fault and load conditions. Mahalanobis distances were calculated between the various feature vectors and an average feature vector was compiled from data measured on the undamaged gearbox. It was proved that the Mahalanobis distance could be used as a single parameter, which can readily be monotonically trended to indicate the progression of a fault condition under fluctuating load conditions. It was shown that a single layer perceptron network could be trained with the perceptron learning rule

  10. Application of wavelet theory to power distribution systems for fault detection

    SciTech Connect

    Momoh, J.; Rizy, D.T.

    1996-03-01

    In this paper an investigation of the wavelet transform as a means of creating a feature extractor for Artificial Neural Network (ANN) training is presented. The study includes a teresstrial-based 3 phase delta power distribution system. Faults were injected into the system and data was obtained from experimentation. Graphical representations of the feature extractors obtained in the time domain, the frequency domain and the wavelet domain are presented to ascertain the superiority of the wavelet ``reform feature extractor.

  11. Possible fault detection in Cottonball Basin, California: an application of radar remote sensing.

    USGS Publications Warehouse

    Berlin, G.L.; Schaber, G.G.; Horstman, K.C.

    1980-01-01

    An analysis of a 3-cm wavelength radar image of Cottonball Basin in Death Valley National Monument has revealed the existence of two suspect fault traces in evaporite deposits that are less than 2000-yr old. The traces are well defined on the image because the radar system was able to differentiate surface roughness variations at the centimeter scale. The features are not recognizable on data sets recorded in the visible and near-infrared spectral bands. - from Authors

  12. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  13. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    PubMed Central

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  14. Subsurface faults detection based on magnetic anomalies investigation: A field example at Taba protectorate, South Sinai

    NASA Astrophysics Data System (ADS)

    Khalil, Mohamed H.

    2016-08-01

    Quantitative interpretation of the magnetic data particularly in a complex dissected structure necessitates using of filtering techniques. In Taba protectorate, Sinai synthesis of different filtering algorithms was carried out to distinct and verifies the subsurface structure and estimates the depth of the causative magnetic sources. In order to separate the shallow-seated structure, filters of the vertical derivatives (VDR), Butterworth high-pass (BWHP), analytic signal (AS) amplitude, and total horizontal derivative of the tilt derivative (TDR_THDR) were conducted. While, filters of the apparent susceptibility and Butterworth low-pass (BWLP) were conducted to identify the deep-seated structure. The depths of the geological contacts and faults were calculated by the 3D Euler deconvolution. Noteworthy, TDR_THDR was independent of geomagnetic inclination, significantly less susceptible to noise, and more sensitive to the details of the shallow superimposed structures. Whereas, the BWLP proved high resolution capabilities in attenuating the shorter wavelength of the near surface anomalies and emphasizing the longer wavelength derived from deeper causative structure. 3D Euler deconvolution (SI = 0) was quite amenable to estimate the depths of superimposed subsurface structure. The pattern, location, and trend of the deduced shallow and deep faults were conformed remarkably to the addressed fault system.

  15. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  16. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  17. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  18. A novel micro-Raman technique to detect and characterize 4H-SiC stacking faults

    SciTech Connect

    Piluso, N. Camarda, M.; La Via, F.

    2014-10-28

    A novel Micro-Raman technique was designed and used to detect extended defects in 4H-SiC homoepitaxy. The technique uses above band-gap high-power laser densities to induce a local increase of free carriers in undoped epitaxies (n < 10{sup 16} at/cm{sup −3}), creating an electronic plasma that couples with the longitudinal optical (LO) Raman mode. The Raman shift of the LO phonon-plasmon-coupled mode (LOPC) increases as the free carrier density increases. Crystallographic defects lead to scattering or recombination of the free carriers which results in a loss of coupling with the LOPC, and in a reduction of the Raman shift. Given that the LO phonon-plasmon coupling is obtained thanks to the free carriers generated by the high injection level induced by the laser, we named this technique induced-LOPC (i-LOPC). This technique allows the simultaneous determination of both the carrier lifetime and carrier mobility. Taking advantage of the modifications on the carrier lifetime induced by extended defects, we were able to determine the spatial morphology of stacking faults; the obtained morphologies were found to be in excellent agreement with those provided by standard photoluminescence techniques. The results show that the detection of defects via i-LOPC spectroscopy is totally independent from the stacking fault photoluminescence signals that cover a large energy range up to 0.7 eV, thus allowing for a single-scan simultaneous determination of any kind of stacking fault. Combining the i-LOPC method with the analysis of the transverse optical mode, the micro-Raman characterization can determine the most important properties of unintentionally doped film, including the stress status of the wafer, lattice impurities (point defects, polytype inclusions) and a detailed analysis of crystallographic defects, with a high spectral and spatial resolution.

  19. Pneumatically actuated micropipetting device

    NASA Astrophysics Data System (ADS)

    Szita, Nicolas; Buser, Rudolf A.

    1998-03-01

    We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.

  20. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic.

  1. 3D seismic detection of shallow faults and fluid migration pathways offshore Southern Costa Rica: Application of neural-network meta-attributes

    NASA Astrophysics Data System (ADS)

    Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.

    2013-12-01

    We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high

  2. Application of an RF Biased Langmuir Probe to Etch Reactor Chamber Matching, Fault Detection and Process Control

    NASA Astrophysics Data System (ADS)

    Keil, Douglas; Booth, Jean-Paul; Benjamin, Neil; Thorgrimsson, Chris; Brooks, Mitchell; Nagai, Mikio; Albarede, Luc; Kim, Jung

    2008-10-01

    Semiconductor device manufacturing typically occurs in an environment of both increasing equipment costs and per unit sale price shrinkage. Profitability in such a conflicted economic environment depends critically on yield, throughput and cost-of-ownership. This has resulted in increasing interest in improved fault detection, process diagnosis, and advanced process control. Achieving advances in these areas requires an integrated understanding of the basic physical principles driving the processes of interest and the realities of commercial manufacturing. Following this trend, this work examines the usefulness of an RF-biased planar Langmuir probe^1. This method delivers precise real-time (10 Hz) measurements of ion flux and tail weighted electron temperature. However, it is also mechanically non-intrusive, reliable and insensitive to contamination and deposition on the probe. Since the measured parameters are closely related to physical processes occurring at the wafer-plasma interface, significant improvements in process control, chamber matching and fault detection are achieved. Examples illustrating the improvements possible will be given. ^1J.P. Booth, N. St. J. Braithwaite, A. Goodyear and P. Barroy, Rev.Sci.Inst., Vol.71, No.7, July 2000, pgs. 2722-2727.

  3. Sensor fault detection and isolation via high-gain observers: application to a double-pipe heat exchanger.

    PubMed

    Escobar, R F; Astorga-Zaragoza, C M; Téllez-Anguiano, A C; Juárez-Romero, D; Hernández, J A; Guerrero-Ramírez, G V

    2011-07-01

    This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks. PMID:21501838

  4. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Wang, Zhenpo; Ma, Jun

    2015-10-01

    This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.

  5. Sensor fault detection and isolation via high-gain observers: application to a double-pipe heat exchanger.

    PubMed

    Escobar, R F; Astorga-Zaragoza, C M; Téllez-Anguiano, A C; Juárez-Romero, D; Hernández, J A; Guerrero-Ramírez, G V

    2011-07-01

    This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.

  6. Fault self-diagnosis designing method of the automotive electronic control system

    NASA Astrophysics Data System (ADS)

    Ding, Yangyan; Yang, Zhigang; Fu, Xiaolin

    2005-12-01

    The fault self-diagnosis system is an important component of an the automotive electronic control system. Designers of automotive electronic control systems urgently require or need a complete understanding of the self-diagnosis designing method of the control system in order to apply it in practice. Aiming at this exigent need, self-diagnosis methods of designing sensors, electronic control unit (ECU), and actuators, which are the three main parts of automotive electronic control systems, are discussed in this paper. According to the fault types and characteristics of commonly used sensors, self-diagnosis designing methods of the sensors are discussed. Then fault diagnosis techniques of sensors utilizing signal detection and analytical redundancy are analysed and summarized respectively, from the viewpoint of the self-diagnosis designing method. Also, problems about failure self-diagnosis of ECU are analyzed here. For different fault types of an ECU, setting up a circuit monitoring method and a self-detection method of the hardware circuit are adopted respectively. Using these two methods mentioned above, a real-time and on-line technique of failure self-diagnosis is presented. Furthermore, the failure self-diagnosis design method of ECU are summarized. Finally, common faults of actuators are analyzed and the general design method of the failure self-diagnosis system is presented. It is suggested that self-diagnosis design methods relative to the failure of automotive electronic control systems can offer a useful approach to designers of control systems.

  7. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  8. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  9. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Astrophysics Data System (ADS)

    Padilla, Peter A.

    1991-03-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  10. Low Cost Arc Fault Detection and Protection for PV Systems: January 30, 2012 - September 30, 2013

    SciTech Connect

    McCalmont, S.

    2013-10-01

    Final report for Tigo Energy Incubator project. The specific objective of this 18-month research effort was to develop an off-the-shelf arc-fault detector. The starting point of the project was a prototype detector that was constructed using discrete components and laboratory equipment. An intermediate objective was to build a technically viable detector using programmable components in the detector circuitry. The final objective was to build a commercially viable detector by reducing the cost of the circuitry through the use of more sophisticated programmable components and higher levels of integration.

  11. Fault Tolerant Homopolar Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  12. LiDAR detection of paleolandslides in the vicinity of the Suasselkä postglacial fault, Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Sutinen, Raimo; Hyvönen, Eija; Kukkonen, Ilmo

    2014-04-01

    Spatial distribution of paleolandslides coincides with postglacial faults (PGFs) in northern Fennoscandia, yet the timing of the seismic events and associated paleoslides is insufficiently known. We applied airborne LiDAR (Light Detection And Ranging) to record distribution of paleolandslides possibly associated with the known Suasselkä postglacial fault in Kittilä, western Finnish Lapland. Landslide-buried organic material was radiocarbon dated to bring insight if the landslides were generated by single high-magnitude (Mw > 7) earthquake or if seismic activity has continued through the Holocene. We found a total of four sets of previously unrecognized paleolandslides to indicate fault-activity in the Kittilä area. The size of the landslide scarps exceeded up to 250-300 m in width, up to 600 m in length and 10 m in the height of the back-wall. A previously unrecognized (tentatively PGF) scarp, 6 m in height and in conjunction with paleolandslides, was found in granite rock west of the Kittilä village. The slide debris was similar to local tills, yet the maximum electrical conductivity (σa) anisotropy was incoherent to any of the ice-flow (morphological) stages recognized through LiDAR or known fabric-sedimentary stratigraphy. We found peat/gyttja beneath 6 m of slide debris which yielded radiocarbon (14C) age of 4400 ± 35 BP (cal. 5055 yr BP). Our previous finding of landslide-buried woody remnants of birch (Betula ssp.) yielded cal. 9730 yr BP in Kittilä. These ages suggest that seismic activity has continued at least 5 ky after deglaciation.

  13. Bumpless switching control for switched systems with partial actuator failures

    NASA Astrophysics Data System (ADS)

    Qi, Yiwen; Bao, Wen; Zhang, Qingxin; Chang, Juntao

    2016-11-01

    This study is concerned with the bumpless transfer problem for switched systems with partial actuator failures, in order to obtain smooth system performance output transition. Taking into account that the system requires a controller switching from current sub-controller to a fault-tolerant sub-controller after actuator fault. And bumpless transfer for control input cannot be traditionally designed when the actuator fault occurs, while performance smoothing can be considered and it is actually the ultimate goal of bumpless transfer. Specifically, the actuator fault model is firstly established and partial actuator fault is considered. Then, the system performance output signal is deemed as the main design variable of bumpless transfer, and closed-loop control systems both previous and after controller switching are constructed. Moreover, by using model matching thought and the adaptive sliding mode control technique, a bumpless transfer compensator design strategy is given to drive the performance output variable (after controller switching) to track the one of reference model. At last, simulation results of numeric and application examples demonstrate the effectiveness of the proposed bumpless transfer strategy.

  14. Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P)

    SciTech Connect

    Kopecky, M.; Kub, J.; Maca, F.; Masek, J.; Pacherova, O.; Rushforth, A. W.; Gallagher, B. L.; Campion, R. P.; Novak, V.; Jungwirth, T.

    2011-06-15

    We report on high-resolution x-ray diffraction measurements of (Ga,Mn)As and (Ga,Mn)(As,P) epilayers. We observe a structural anisotropy in the form of stacking faults that are present in the (111) and (111) planes and absent in the (111) and (111) planes. They occupy 10{sup -2}%-10{sup -1}% of the ferromagnetic epilayer volume while no stacking faults are detected in the controlled, undoped GaAs epilayer. Full-potential density functional calculations provide additional evidence that the formation of the stacking faults is promoted by Mn attracted to these structural defects. The enhanced Mn density along the common [110] direction of the stacking fault planes produces a symmetry-breaking mechanism of a strength and sense that can account for the uniaxial [110]/[110] magnetocrystalline anisotropy of these ferromagnetic semiconductors.

  15. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Xu, Guanghua; Liang, Lin; Jiang, Kuosheng

    2015-03-01

    The kurtogram-based methods have been proved powerful and practical to detect and characterize transient components in a signal. The basic idea of the kurtogram-based methods is to use the kurtosis as a measure to discover the presence of transient impulse components and to indicate the frequency band where these occur. However, the performance of the kurtogram-based methods is poor due to the low signal-to-noise ratio. As the weak transient signal with a wide spread frequency band can be easily masked by noise. Besides, selecting signal just in one frequency band will leave out some transient features. Aiming at these shortcomings, different frequency bands signal fusion is adopted in this paper. Considering that manifold learning aims at discovering the nonlinear intrinsic structure which embedded in high dimensional data, this paper proposes a waveform feature manifold (WFM) method to extract the weak signature from waveform feature space which obtained by binary wavelet packet transform. Minimum permutation entropy is used to select the optimal parameter in a manifold learning algorithm. A simulated bearing fault signal and two real bearing fault signals are used to validate the improved performance of the proposed method through the comparison with the kurtogram-based methods. The results show that the proposed method outperforms the kurtogram-based methods and is effective in weak signature extraction.

  16. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. Soltani; Liang, Ming

    2008-05-01

    The vibration signal measured from a bearing contains vital information for the prognostic and health assessment purposes. However, when bearings are installed as part of a complex mechanical system, the measured signal is often heavily clouded by various noises due to the compounded effect of interferences of other machine elements and background noises present in the measuring device. As such, reliable condition monitoring would not be possible without proper de-noising. This is particularly true for incipient bearing faults with very weak signature signals. A new de-noising scheme is proposed in this paper to enhance the vibration signals acquired from faulty bearings. This de-noising scheme features a spectral subtraction to trim down the in-band noise prior to wavelet filtering. The Gabor wavelet is used in the wavelet transform and its parameters, i.e., scale and shape factor are selected in separate steps. The proper scale is found based on a novel resonance estimation algorithm. This algorithm makes use of the information derived from the variable shaft rotational speed though such variation is highly undesirable in fault detection since it complicates the process substantially. The shape factor value is then selected by minimizing a smoothness index. This index is defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. De-noising results are presented for simulated signals and experimental data acquired from both normal and faulty bearings with defective outer race, inner race, and rolling element.

  17. Robust sensor fault detection and isolation of gas turbine engines subjected to time-varying parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar

    2016-08-01

    In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.

  18. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  19. Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter

    NASA Astrophysics Data System (ADS)

    Strano, Salvatore; Terzo, Mario

    2016-06-01

    The state estimation in hydraulic actuators is a fundamental tool for the detection of faults or a valid alternative to the installation of sensors. Due to the hard nonlinearities that characterize the hydraulic actuators, the performances of the linear/linearization based techniques for the state estimation are strongly limited. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Simulations and experimental tests have been conducted and comparisons with the largely used Extended Kalman Filter (EKF) are illustrated. The results show the effectiveness of the SDRE based technique for applications characterized by not negligible nonlinearities such as dead zone and frictions.

  20. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  1. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  2. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  3. High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements

    USGS Publications Warehouse

    Langbein, J.; Bock, Y.

    2004-01-01

    A network of 13 continuous GPS stations near Parkfield, California has been converted from 30 second to 1 second sampling with positions of the stations estimated in real-time relative to a master station. Most stations are near the trace of the San Andreas fault, which exhibits creep. The noise spectra of the instantaneous 1 Hz positions show flicker noise at high frequencies and change to frequency independence at low frequencies; the change in character occurs between 6 to 8 hours. Our analysis indicates that 1-second sampled GPS can estimate horizontal displacements of order 6 mm at the 99% confidence level from a few seconds to a few hours. High frequency GPS can augment existing measurements in capturing large creep events and postseismic slip that would exceed the range of existing creepmeters, and can detect large seismic displacements. Copyright 2004 by the American Geophysical Union.

  4. Evaluate the application of modal test and analysis processes to structural fault detection in MSFC - STS project elements

    NASA Technical Reports Server (NTRS)

    Springer, William T.

    1987-01-01

    The Space Transportation System (STS) is a complex and expensive flight system intended to carry unique payloads into low Earth orbit and return. A catastrophic failure, such as STS 51-L, resulted in the loss of both human life as well as expensive and unique hardware. The impact of this incident reaffirms the need to do everything possible to ensure the integrity and reliability of STS. One means of achieving this goal is to expand the number of inspection technologies available. Reported here is the evaluation of the use of modal analysis and test techniques for the purpose of assessing the structural integrity of STS components for which Marshall Space Flight Center has responsibility. This entailed reviewing existing literature and developing a low-level experimental program determine the feasibility of using this technology for structural fault detection.

  5. Comparison of Fault Detection Algorithms for Real-time Diagnosis in Large-Scale System. Appendix E

    NASA Technical Reports Server (NTRS)

    Kirubarajan, Thiagalingam; Malepati, Venkat; Deb, Somnath; Ying, Jie

    2001-01-01

    In this paper, we present a review of different real-time capable algorithms to detect and isolate component failures in large-scale systems in the presence of inaccurate test results. A sequence of imperfect test results (as a row vector of I's and O's) are available to the algorithms. In this case, the problem is to recover the uncorrupted test result vector and match it to one of the rows in the test dictionary, which in turn will isolate the faults. In order to recover the uncorrupted test result vector, one needs the accuracy of each test. That is, its detection and false alarm probabilities are required. In this problem, their true values are not known and, therefore, have to be estimated online. Other major aspects in this problem are the large-scale nature and the real-time capability requirement. Test dictionaries of sizes up to 1000 x 1000 are to be handled. That is, results from 1000 tests measuring the state of 1000 components are available. However, at any time, only 10-20% of the test results are available. Then, the objective becomes the real-time fault diagnosis using incomplete and inaccurate test results with online estimation of test accuracies. It should also be noted that the test accuracies can vary with time --- one needs a mechanism to update them after processing each test result vector. Using Qualtech's TEAMS-RT (system simulation and real-time diagnosis tool), we test the performances of 1) TEAMSAT's built-in diagnosis algorithm, 2) Hamming distance based diagnosis, 3) Maximum Likelihood based diagnosis, and 4) HidderMarkov Model based diagnosis.

  6. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery.

  7. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery. PMID:25491826

  8. Detection of precursory slips on a fault by the quiescence and activation of seismicity relative to the ETAS model and by the anomalous trend of the geodetic time series of distances between GPS stations around the fault

    NASA Astrophysics Data System (ADS)

    Ogata, Y.

    2006-12-01

    This paper is concerned with the detection of precursory slip on a rupturing fault, supported by both seismic and geodetic records. Basically, the detection relies on the principle that, assuming precursory slip on the rupturing fault, the seismic activity around the fault should be enhanced or reduced in the zones where increment of the Coulomb failure stress (CFS) is positive or negative, respectively. However, any occurring event also affects the stress changes in neighboring regions, which can trigger further aftershock clusters. Whereas such stress transfers are too difficult to be computed precisely, due to the unknown complex fault system, the ordinary short-term occurrence rate of earthquakes in a region is easily predicted using the ETAS model of triggering seismicity; and any anomalous seismic activity, such as quiescence and activation, can be quantified by identifying a significant deviation from the predicted rate. Such anomalies are revealed to have occurred during several years leading up to the 2004 Chuetsu Earthquake of M6.8, central Honshu, and also the 2005 Western Fukuoka-Ken-Oki Earthquake of M7.0, Kyushu, Japan. Quiescence and activation in the regions coincided with negative and positive increments of the CFS, respectively, and were probably transferred from possible aseismic slips on the focal fault plane. Such slips are further supported by transient crustal movement around the source preceding the rupture. Time series records of the baseline distances between the permanent GPS stations deviated from the predicted trends, with the deviations consistent with the coseismic horizontal displacements of the stations due to these earthquakes. References Ogata, Y. (2006) Report of the Coordinating Committee for Earthquake Prediction, 76 (to appear, in Japanese).

  9. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  10. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  11. A quantum annealing approach for fault detection and diagnosis of graph-based systems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.

    2015-02-01

    Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

  12. Signal Processing and Fault Detection with Application to CH-46 Helicopter Data

    NASA Technical Reports Server (NTRS)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2000-01-01

    Central to Qualtech Systems' mission is its testability and maintenance software (TEAMS) and derivatives. Many systems comprise components equipped with self-testing capability; but, if the system is complex (and involves feedback and if the self-testing itself may occasionally be faulty) tracing faults to a single or multiple causes is difficult. However, even for systems involving many thousands of components the PC-based TEAMS provides essentially real-time system-state diagnosis. Until recently TEAMS operation was passive: its diagnoses were based on whatever data sensors could provide. Now, however, a signal-processing (SP) "frontend" matched to inference needs is available. Many standard signal processing primitives, such as filtering, spectrum analysis and multi-resolution decomposition are available; the SP toolbox is also equipped with a (supervised) classification capability based on a number of decision-making paradigms. This paper is about the SP toolbox. We show its capabilities, and demonstrate its performance on the CH-46 "Westland" data set.

  13. Analysing the reliability of actuation elements in series and parallel configurations for high-redundancy actuation

    NASA Astrophysics Data System (ADS)

    Steffen, Thomas; Schiller, Frank; Blum, Michael; Dixon, Roger

    2013-08-01

    A high-redundancy actuator (HRA) is an actuation system composed of a high number of actuation elements, increasing both travel and force above the capability of an individual element. This approach provides inherent fault tolerance: if one of the elements fails, the capabilities of the whole actuator may be reduced, but it retains core functionality. Many different configurations are possible, with different implications for the actuator capability and reliability. This article analyses the reliability of the HRA based on the likelihood of an unacceptable reduction in capability. The analysis of the HRA is a highly structured problem, but it does not fit into known reliability categories (such as the k-out-of-n system), and a fault-tree analysis becomes prohibitively large. Instead, a multi-state systems approach is pursued here, which provides an easy, concise and efficient reliability analysis of the HRA. The resulting probability distribution can be used to find the optimal configuration of an HRA for a given set of requirements.

  14. Application of a Subspace-Based Fault Detection Method to Industrial Structures

    NASA Astrophysics Data System (ADS)

    Mevel, L.; Hermans, L.; van der Auweraer, H.

    1999-11-01

    Early detection and localization of damage allow increased expectations of reliability, safety and reduction of the maintenance cost. This paper deals with the industrial validation of a technique to monitor the health of a structure in operating conditions (e.g. rotating machinery, civil constructions subject to ambient excitations, etc.) and to detect slight deviations in a modal model derived from in-operation measured data. In this paper, a statistical local approach based on covariance-driven stochastic subspace identification is proposed. The capabilities and limitations of the method with respect to health monitoring and damage detection are discussed and it is explained how the method can be practically used in industrial environments. After the successful validation of the proposed method on a few laboratory structures, its application to a sports car is discussed. The example illustrates that the method allows the early detection of a vibration-induced fatigue problem of a sports car.

  15. In-situ fault detection apparatus and method for an encased energy storing device

    DOEpatents

    Hagen, Ronald A.; Comte, Christophe; Knudson, Orlin B.; Rosenthal, Brian; Rouillard, Jean

    2000-01-01

    An apparatus and method for detecting a breach in an electrically insulating surface of an electrically conductive power system enclosure within which a number of series connected energy storing devices are disposed. The energy storing devices disposed in the enclosure are connected to a series power connection. A detector is coupled to the series connection and detects a change of state in a test signal derived from the series connected energy storing devices. The detector detects a breach in the insulating layer of the enclosure by detecting a state change in the test signal from a nominal state to a non-nominal state. A voltage detector detects a state change of the test signals from a nominal state, represented by a voltage of a selected end energy storing device, to a non-nominal state, represented by a voltage that substantially exceeds the voltage of the selected opposing end energy storing device. Alternatively, the detector may comprise a signal generator that produces the test signal as a time-varying or modulated test signal and injects the test signal into the series connection. The detector detects the state change of the time-varying or modulated test signal from a nominal state, represented by a signal substantially equivalent to the test signal, to a non-nominal state, representative by an absence of the test signal.

  16. Fault tolerant control laws

    NASA Technical Reports Server (NTRS)

    Ly, U. L.; Ho, J. K.

    1986-01-01

    A systematic procedure for the synthesis of fault tolerant control laws to actuator failure has been presented. Two design methods were used to synthesize fault tolerant controllers: the conventional LQ design method and a direct feedback controller design method SANDY. The latter method is used primarily to streamline the full-state Q feedback design into a practical implementable output feedback controller structure. To achieve robustness to control actuator failure, the redundant surfaces are properly balanced according to their control effectiveness. A simple gain schedule based on the landing gear up/down logic involving only three gains was developed to handle three design flight conditions: Mach .25 and Mach .60 at 5000 ft and Mach .90 at 20,000 ft. The fault tolerant control law developed in this study provides good stability augmentation and performance for the relaxed static stability aircraft. The augmented aircraft responses are found to be invariant to the presence of a failure. Furthermore, single-loop stability margins of +6 dB in gain and +30 deg in phase were achieved along with -40 dB/decade rolloff at high frequency.

  17. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  18. Detection of aseismic creep along the San Andreas fault near Parkfield, California with ERS-1 radar interferometry

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Rosen, Paul; Hensley, Scott; Fielding, Eric; Buckley, Sean

    1997-01-01

    The differential interferometric analysis of ERS data from Parkfield (CA) observations revealed the wide area distribution of creep along the moving fault segment of the San Andreas fault over a 15 month interval. The removal of the interferometric phase related to the surface topography was carried out. The fault was clearly visible in the differential interferogram. The magnitude of the tropospheric water vapor phase distortions is greater than the signal and hinders quantitative analysis beyond order of magnitude calculations.

  19. Two Stage Helical Gearbox Fault Detection and Diagnosis based on Continuous Wavelet Transformation of Time Synchronous Averaged Vibration Signals

    NASA Astrophysics Data System (ADS)

    Elbarghathi, F.; Wang, T.; Zhen, D.; Gu, F.; Ball, A.

    2012-05-01

    Vibration signals from a gearbox are usually very noisy which makes it difficult to find reliable symptoms of a fault in a multistage gearbox. This paper explores the use of time synchronous average (TSA) to suppress the noise and Continue Wavelet Transformation (CWT) to enhance the non-stationary nature of fault signal for more accurate fault diagnosis. The results obtained in diagnosis an incipient gear breakage show that fault diagnosis results can be improved by using an appropriate wavelet. Moreover, a new scheme based on the level of wavelet coefficient amplitudes of baseline data alone, without faulty data samples, is suggested to select an optimal wavelet.

  20. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Rockwell, Thomas K.; Ben-Zion, Yehuda

    2009-12-01

    We analyze geomorphic properties extracted from LiDAR and SRTM (Shuttle Radar Topography Mission) data to test whether the damage zone along the central San Jacinto Fault (SJF) zone can be resolved with remotely-sensed data in a quantitative fashion. The SJF is one of the most active faults in southern California, with well expressed geomorphology and a fast slip rate, as seen in the geology and by GPS. We use ArcMap and the TauDEM toolbox to compare several morphometric parameters, including drainage density (Dd), on both sides of the fault, using a 1 km and a 5 km buffer for the LiDAR and SRTM data, respectively. We also analyze the spatial patterns of Dd near the fault, using two different definitions of spatial Dd. The high resolution of the LiDAR data allows us to focus on a single fault, eliminating the effects of parallel nearby faults. From the LiDAR data we find that the highest Dd values occur in areas between two fault strands, followed generally by rocks on the northeast side of the fault, with the lowest Dd values occurring on the southwest side of the fault. The SRTM data shows a band of high Dd values centered on the main fault trace with ~ 1 km width. Our results indicate that there is a strong correlation between drainage density and proximity to the fault, with zones of structural complexity along the fault displaying the highest Dd. We interpret this to largely be an effect of degree of rock damage, as these are areas that are expected to be more damaged, and field observations support this contention. If we are correct, then it appears that the northeast side of the SJF is generally more damaged. South of the trifurcation area there is evidence that the signal is reversed on the larger scale, with more damage on the southwest side of the fault inferred from the SRTM data, possibly caused by extension between the Coyote Creek and Clark faults. The implications of the observed asymmetry could be geological evidence for rupture propagation