35 Hz shape memory alloy actuator with bending-twisting mode.
Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon
2016-02-19
Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators.
35 Hz shape memory alloy actuator with bending-twisting mode
Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon
2016-01-01
Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators. PMID:26892438
Telescoping cylindrical piezoelectric fiber composite actuator assemblies
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2010-01-01
A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.
Modular droplet actuator drive
NASA Technical Reports Server (NTRS)
Pollack, Michael G. (Inventor); Paik, Philip (Inventor)
2011-01-01
A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.
Flight control actuation system
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2004-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Flight control actuation system
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2006-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Nanostructured carbon materials based electrothermal air pump actuators
NASA Astrophysics Data System (ADS)
Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong
2014-05-01
Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa). Electronic supplementary information (ESI) available: A movie showing the weight-lifting actuation process of the GO/SWCNT actuator. See DOI: 10.1039/c4nr00536h
Superconducting linear actuator
NASA Technical Reports Server (NTRS)
Johnson, Bruce; Hockney, Richard
1993-01-01
Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.
Inou, Norio
2013-01-01
An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868
Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio
2013-01-01
An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.
Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Koklu, Mehti
2016-01-01
Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.
Note: A novel rotary actuator driven by only one piezoelectric actuator.
Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han
2013-09-01
This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.
Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
NASA Technical Reports Server (NTRS)
Rey, Nancy M. (Inventor); Miller, Robin M. (Inventor); Tillman, Thomas G. (Inventor); Rukus, Robert M. (Inventor); Kettle, John L. (Inventor); Dunphy, James R. (Inventor); Chaudhry, Zaffir A. (Inventor); Pearson, David D. (Inventor); Dreitlein, Kenneth C. (Inventor); Loffredo, Constantino V. (Inventor)
2001-01-01
A gas turbine engine includes a variable area nozzle having a plurality of flaps. The flaps are actuated by a plurality of actuating mechanisms driven by shape memory alloy (SMA) actuators to vary fan exist nozzle area. The SMA actuator has a deformed shape in its martensitic state and a parent shape in its austenitic state. The SMA actuator is heated to transform from martensitic state to austenitic state generating a force output to actuate the flaps. The variable area nozzle also includes a plurality of return mechanisms deforming the SMA actuator when the SMA actuator is in its martensitic state.
High flow, low mobile weight quick disconnect system
NASA Technical Reports Server (NTRS)
Smith, Ronn G. (Inventor); Nagy, Jr., Zoltan Frank (Inventor); Moszczienski, Joseph Roch (Inventor)
2010-01-01
A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.
Extended Task Space Control for Robotic Manipulators
NASA Technical Reports Server (NTRS)
Backes, Paul G. (Inventor); Long, Mark K. (Inventor)
1996-01-01
The invention is a method of operating a robot in successive sampling intervals to perform a task, the robot having joints and joint actuators with actuator control loops, by decomposing the task into behavior forces, accelerations, velocities and positions of plural behaviors to be exhibited by the robot simultaneously, computing actuator accelerations of the joint actuators for the current sampling interval from both behavior forces, accelerations velocities and positions of the current sampling interval and actuator velocities and positions of the previous sampling interval, computing actuator velocities and positions of the joint actuators for the current sampling interval from the actuator velocities and positions of the previous sampling interval, and, finally, controlling the actuators in accordance with the actuator accelerations, velocities and positions of the current sampling interval. The actuator accelerations, velocities and positions of the current sampling interval are stored for use during the next sampling interval.
Development of novel textile and yarn actuators using plasticized PVC gel
NASA Astrophysics Data System (ADS)
Furuse, A.; Hashimoto, M.
2017-04-01
Soft actuators based on polymers are expected to be used for power sources to drive wearable robots which required in a wide range of fields such as medical, care and welfare, because they are light weight, flexible and quiet. Plasticized PVC gel which has a large deformation by applying a voltage and high driving stability in the atmosphere is considered as a suitable candidate material for development of soft actuator. Then, we proposed two kinds of novel flexible actuators constructed like yarn and textile by using plasticized PVC gel to develop soft actuator to realize a higher flexibility and low-voltage driving. In this study, we prepared prototypes of these actuators and clarify their characteristic. In addition, we considered the deformation model from its characteristics and geometric calculation. When a voltage was applied to their actuators, textile type actuator was contracted, while the twisted yarn type actuator was expanded. The deformation behavior of the proposed actuators could be found at a low voltage of 200V, the contraction strain of the textile actuator was about 27 %, and the expanding ratio of the yarn actuator was 0.4 %. Maximum contraction strain of textile actuator and expansion ratio of yarn actuator was 53% and 1.4% at 600 V, respectively. The calculation results from the proposed model were in roughly agreement with the experimental values. It indicated that deformation behavior of these actuators could estimate from models.
Actuator Feasibility Study for Active Control of Ducted Axial Fan Noise
NASA Technical Reports Server (NTRS)
Simonich, John C.
1994-01-01
A feasibility study was performed to investigate actuator technology which is relevant for a particular application of active noise control for gas turbine stator vanes. This study investigated many different classes of actuators and ranked them on the order of applicability. The most difficult requirements the actuators had to meet were high frequency response, large amplitude deflections, and a thin profile. Based on this assessment, piezoelectric type actuators were selected as the most appropriate actuator class. Specifically, Rainbows (a new class of high performance piezoelectric actuators), and unimorphs (a ceramic/metal composite) appeared best suited to the requirements. A benchtop experimental study was conducted. The performance of a variety of different actuators was examined, including high polymer films, flextensional actuators, miniature speakers, unimorphs, and Rainbows. The displacement/frequency response and phase characteristics of the actuators were measured. Physical limitations of actuator operation were also examined. This report includes the first known, high displacement, dynamic data obtained for Rainbow actuators. A new "hard" ceramic Rainbow actuator which does not appear to be limited in operation by self heating as "soft" ceramic Rainbows was designed, constructed and tested. The study concludes that a suitable actuator for active noise control in gas turbine engines can be achieved with state of the art materials and processing.
Effect of plasma actuator control parameters on a transitional flow
NASA Astrophysics Data System (ADS)
Das Gupta, Arnob; Roy, Subrata
2018-04-01
This study uses a wall-resolved implicit large eddy simulation to investigate the effects of different surface dielectric barrier discharge actuator parameters such as the geometry of the electrodes, frequency, amplitude of actuation and thermal effect. The actuator is used as a tripping device on a zero-pressure gradient laminar boundary layer flow. It is shown that the standard linear actuator creates structures like the Tollmien-Schlichting wave transition. The circular serpentine, square serpentine and spanwise actuators have subharmonic sinuous streak breakdown and behave like oblique wave transition scenario. The spanwise and square actuators cause comparably faster transition to turbulence. The square actuator adds energy into the higher spanwise wavenumber modes resulting in a faster transition compared to the circular actuator. When the Strouhal number of actuation is varied, the transition does not occur for a value below 0.292. Higher frequencies with same amplitude of actuation lead to faster transition. Small changes (<4%) in the amplitude of actuation can have a significant impact on the transition location which suggests that an optimal combination of frequency and amplitude exists for highest control authority. The thermal bumps approximating the actuator heating only shows localized effects on the later stages of transition for temperatures up to 373 K and can be ignored for standard actuators operating in subsonic regimes.
Miga Aero Actuator and 2D Machined Mechanical Binary Latch
NASA Technical Reports Server (NTRS)
Gummin, Mark A.
2013-01-01
Shape memory alloy (SMA) actuators provide the highest force-to-weight ratio of any known actuator. They can be designed for a wide variety of form factors from flat, thin packages, to form-matching packages for existing actuators. SMA actuators can be operated many thousands of times, so that ground testing is possible. Actuation speed can be accurately controlled from milliseconds to position and hold, and even electronic velocity-profile control is possible. SMA actuators provide a high degree of operational flexibility, and are truly smart actuators capable of being accurately controlled by onboard microprocessors across a wide range of voltages. The Miga Aero actuator is a SMA actuator designed specifically for spaceflight applications. Providing 13 mm of stroke with either 20- or 40-N output force in two different models, the Aero actuator is made from low-outgassing PEEK (polyether ether ketone) plastic, stainless steel, and nickel-titanium SMA wires. The modular actuator weighs less than 28 grams. The dorsal output attachment allows the Aero to be used in either PUSH or PULL modes by inverting the mounting orientation. The SPA1 actuator utilizes commercially available SMA actuator wire to provide 3/8-in. (approx. =.1 cm) of stroke at a force of over 28 lb (approx. = .125 N). The force is provided by a unique packaging of the single SMA wire that provides the output force of four SMA wires mechanically in parallel. The output load is shared by allowing the SMA wire to slip around the output attachment end to adjust or balance the load, preventing any individual wire segment from experiencing high loads during actuation. A built-in end limit switch prevents overheating of the SMA element following actuation when used in conjunction with the Miga Analog Driver [a simple MOSFET (metal oxide semiconductor field-effect transistor) switching circuit]. A simple 2D machined mechanical binary latch has been developed to complement the capabilities of SMA wire actuators. SMA actuators typically perform ideally as latch-release devices, wherein a spring-loaded device is released when the SMA actuator actuates in one direction. But many applications require cycling between two latched states open and closed.
NASA Astrophysics Data System (ADS)
Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin
2018-05-01
Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.
Scaling Laws of Microactuators and Potential Applications of Electroactive Polymers in MEMS
NASA Technical Reports Server (NTRS)
Liu, Chang; Bar-Cohen, Y.
1999-01-01
Besides the scale factor that distinguishes the various species, fundamentally biological muscles changes little between species, indicating a highly optimized system. Electroactive polymer actuators offer the closest resemblance to biological muscles, however besides the large actuation displacement these materials are falling short with regards to the actuation force. As improved materials are emerging it is becoming necessary to address key issues such as the need for effective electromechanical modeling and guiding parameters in scaling the actuators. In this paper, we will review the scaling laws for three major actuation mechanisms that are of relevance to micro electromechanical systems: electrostatic actuation, magnetic actuation, thermal bimetallic actuation, and piezoelectric actuation.
Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft
NASA Technical Reports Server (NTRS)
Navarro, Robert
1997-01-01
An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.
Intelligent fault diagnosis and failure management of flight control actuation systems
NASA Technical Reports Server (NTRS)
Bonnice, William F.; Baker, Walter
1988-01-01
The real-time fault diagnosis and failure management (FDFM) of current operational and experimental dual tandem aircraft flight control system actuators was investigated. Dual tandem actuators were studied because of the active FDFM capability required to manage the redundancy of these actuators. The FDFM methods used on current dual tandem actuators were determined by examining six specific actuators. The FDFM capability on these six actuators was also evaluated. One approach for improving the FDFM capability on dual tandem actuators may be through the application of artificial intelligence (AI) technology. Existing AI approaches and applications of FDFM were examined and evaluated. Based on the general survey of AI FDFM approaches, the potential role of AI technology for real-time actuator FDFM was determined. Finally, FDFM and maintainability improvements for dual tandem actuators were recommended.
Fe₃O₄⁻Silicone Mixture as Flexible Actuator.
Song, Kahye; Cha, Youngsu
2018-05-08
In this study, we introduce Fe₃O₄-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe₃O₄-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators.
Electrostatic repulsive out-of-plane actuator using conductive substrate.
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-10-07
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.
Electrostatic repulsive out-of-plane actuator using conductive substrate
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-01-01
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542
Integrated sensing and actuation of dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng
2017-04-01
Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.
Soft, Rotating Pneumatic Actuator.
Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M
2017-09-01
This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).
Liang, Jiajie; Huang, Lu; Li, Na; Huang, Yi; Wu, Yingpeng; Fang, Shaoli; Oh, Jiyoung; Kozlov, Mikhail; Ma, Yanfeng; Li, Feifei; Baughman, Ray; Chen, Yongsheng
2012-05-22
Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational isomerization of polydiacetylene (PDA) and the outstanding intrinsic features of graphene together for the first time, we design and fabricate an electromechanical bimorph actuator composed of a layer of PDA crystal and a layer of flexible graphene paper through a simple yet versatile solution approach. Under low applied direct current (dc), the graphene-PDA bimorph actuator with strong mechanical strength can generate large actuation motion (curvature is about 0.37 cm(-1) under a current density of 0.74 A/mm(2)) and produce high actuation stress (more than 160 MPa/g under an applied dc of only 0.29 A/mm(2)). When applying alternating current (ac), this actuator can display reversible swing behavior with long cycle life under high frequencies even up to 200 Hz; significantly, while the frequency and the value of applied ac and the state of the actuators reach an appropriate value, the graphene-PDA actuator can produce a strong resonance and the swing amplitude will jump to a peak value. Moreover, this stable graphene-PDA actuator also demonstrates rapidly and partially reversible electrochromatic phenomenon when applying an ac. Two mechanisms-the dominant one, electric-induced deformation, and a secondary one, thermal-induced expansion of PDA-are proposed to contribute to these interesting actuation performances of the graphene-PDA actuators. On the basis of these results, a mini-robot with controllable direction of motion based on the graphene-PDA actuator is designed to illustrate the great potential of our discoveries for practical use. Combining the unique actuation mechanism and many outstanding properties of graphene and PDA, this novel kind of graphene-PDA actuator exhibits compelling advantages to traditional electromechanical actuation technology and may provide a new avenue for actuation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Shijie; Liu, Yinong; Ren, Yang
2016-06-08
Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultra-large elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nano bias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice higher than that (~500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa andmore » a mechanical work output of 1.08*106 J/ m3, which are about three and five times higher than that of reported two-way SMAs, respectively. It is revealed that the massive number of Nb nanoribbons in compressive state provides the high actuation stress and high work output upon cooling and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with small volume and simple construct is in favour of the miniaturization and simplification of actuators.« less
Analysis of the sweeped actuator line method
Nathan, Jörn; Masson, Christian; Dufresne, Louis; ...
2015-10-16
The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less
Analysis of the sweeped actuator line method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, Jörn; Masson, Christian; Dufresne, Louis
The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less
NASA Astrophysics Data System (ADS)
Nelson, Hunter Barton
A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.
NASA Technical Reports Server (NTRS)
Richard, James A. (Inventor)
2012-01-01
A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.
Fe3O4–Silicone Mixture as Flexible Actuator
Song, Kahye
2018-01-01
In this study, we introduce Fe3O4-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe3O4-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators. PMID:29738466
NASA Astrophysics Data System (ADS)
Li, Qingwei; Liu, Changhong; Fan, Shoushan
2018-04-01
Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.
2015-06-18
platform assembly 2, with micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...beam micro-mirror platform assembly 1; micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...side ( PFa ) and side opposite actuation (PFo) ........................................................ 106 xiv Figure 73: Graph of measured 10-beam
Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)
NASA Astrophysics Data System (ADS)
Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2017-04-01
Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.
Variable recruitment fluidic artificial muscles: modeling and experiments
NASA Astrophysics Data System (ADS)
Bryant, Matthew; Meller, Michael A.; Garcia, Ephrahim
2014-07-01
We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force-strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes.
Design of diaphragm actuator based on ferromagnetic shape memory alloy composite
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2003-08-01
A new diaphragm actuator based on the ferromagnetic shape memory alloy (FSMA) composite is designed where the FSMA composite is composed of ferromagnetic soft iron and superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite plate of the actuator is the hybrid mechanism that we proposed previously. This diaphragm actuator is the first design toward designing a new synthetic jet actuator that will be used for active flow control technology on airplane wings. The design of the FSMA composite diaphragm actuator was established first by using both mechanical and ferromagnetic finite element analyses with an aim of optimization of the actuator components. Based on the FEM results, the first generation diaphragm actuator system was assembled and its static and dynamic performance was experimentally evaluated.
Fabrication of wrist-like SMA-based actuator by double smart soft composite casting
NASA Astrophysics Data System (ADS)
Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon
2015-12-01
A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.
Cylindrical Piezoelectric Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
Operation of electrothermal and electrostatic MUMPs microactuators underwater
NASA Astrophysics Data System (ADS)
Sameoto, Dan; Hubbard, Ted; Kujath, Marek
2004-10-01
Surface-micromachined actuators made in multi-user MEMS processes (MUMPs) have been operated underwater without modifying the manufacturing process. Such actuators have generally been either electro-thermally or electro-statically actuated and both actuator styles are tested here for suitability underwater. This is believed to be the first time that thermal and electrostatic actuators have been compared for deflection underwater relative to air performance. A high-frequency ac square wave is used to replicate a dc-driven actuator output without the associated problem of electrolysis in water. This method of ac activation, with frequencies far above the mechanical resonance frequencies of the MEMS actuators, has been termed root mean square (RMS) operation. Both thermal and electrostatic actuators have been tested and proved to work using RMS control. Underwater performance has been evaluated by using in-air operation of these actuators as a benchmark. When comparing deflection per volt applied, thermal actuators operate between 5 and 9% of in-air deflection and electrostatic actuators show an improvement in force per volt applied of upwards of 6000%. These results agree with predictions based on the physical properties of the surrounding medium.
Percussive arc welding apparatus
Hollar, Jr., Donald L.
2002-01-01
A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.
RSRM nozzle actuator bracket/lug fracture mechanics qualification test
NASA Technical Reports Server (NTRS)
Kelley, Peggy
1993-01-01
This is the final report for the actuator bracket/lug fracture mechanics qualification test. The test plan (CTP-0071) outlined a two-phase test program designed to answer questions about the fracture criticality of the redesigned solid rocket motor (RSRM) nozzle actuator bracket. An analysis conducted using the NASA/FLAGRO fracture mechanics computer program indicated that the actuator bracket might be a fracture critical component. In the NASA/FLAGRO analysis, a simple lug model was used to represent the actuator bracket. It was calculated that the bracket would fracture if subjected to an actuator stall load in the presence of a 0.10 in. corner crack at the actuator attachment hole. The 0.10 in. crack size corresponds to the nondestructive inspection detectability limit for the actuator bracket. The inspection method used is the dye penetrant method. The actuator stall load (103,424 lb) is the maximum load which the actuator bracket is required to withstand during motor operation. This testing was designed to establish the accuracy of the analytical model and to directly determine whether the actuator bracket is capable of meeting fracture mechanics safe-life requirements.
Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems.
Zheng, Hao; Shen, Xiangrong
2013-11-25
This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc .). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability.
Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram
2016-01-27
Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.
NASA Technical Reports Server (NTRS)
Crawley, E. F.; De Luis, J.
1986-01-01
An analytic model for structures with distributed piezoelectric actuators is experimentally verified for the cases of both surface-bonded and embedded actuators. A technique for the selection of such piezoelectric actuators' location has been developed, and is noted to indicate that segmented actuators are always more effective than continuous ones, since the output of each can be individually controlled. Manufacturing techniques for the bonding or embedding of segmented piezoelectric actuators are also developed which allow independent electrical contact to be made with each actuator. Static tests have been conducted to determine how the elastic properties of the composite are affected by the presence of an embedded actuator, for the case of glass/epoxy laminates.
Yap, Hong Kai; Sebastian, Frederick; Wiedeman, Christopher; Yeow, Chen-Hua
2017-07-01
We present the design of low-cost fabric-based Hat pneumatic actuators for soft assistive glove application. The soft assistive glove is designed to assist hand impaired patients in performing activities of daily living and rehabilitation. The actuators consist of flexible materials such as fabric and latex bladder. Using zero volume actuation concept, the 2D configuration of the actuators simplifies the manufacturing process and allows the actuators to be more compact. The actuators achieve bi-directional flexion and extension motions. Compared to previously developed inflatable soft actuators, the actuators generate sufficient force and torque to assist in both finger flexion and extension at lower air pressure. Preliminary evaluation results show that the glove is able to provide both active finger flexion and extension assistance for activities of daily living and rehabilitative training.
Electrical servo actuator bracket. [fuel control valves on jet engines
NASA Technical Reports Server (NTRS)
Sawyer, R. V. (Inventor)
1981-01-01
An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.
Modeling and development of a twisting wing using inductively heated shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Saunders, Robert N.; Hartl, Darren J.; Boyd, James G.; Lagoudas, Dimitris C.
2015-04-01
Wing twisting has been shown to improve aircraft flight performance. The potential benefits of a twisting wing are often outweighed by the mass of the system required to twist the wing. Shape memory alloy (SMA) actuators repeatedly demonstrate abilities and properties that are ideal for aerospace actuation systems. Recent advances have shown an SMA torsional actuator that can be manufactured and trained with the ability to generate large twisting deformations under substantial loading. The primary disadvantage of implementing large SMA actuators has been their slow actuation time compared to conventional actuators. However, inductive heating of an SMA actuator allows it to generate a full actuation cycle in just seconds rather than minutes while still . The aim of this work is to demonstrate an experimental wing being twisted to approximately 10 degrees by using an inductively heated SMA torsional actuator. This study also considers a 3-D electromagnetic thermo-mechanical model of the SMA-wing system and compare these results to experiments to demonstrate modeling capabilities.
Tendon Driven Finger Actuation System
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor);
2013-01-01
A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.
2011-12-15
for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage, simulation-based design
Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft
NASA Technical Reports Server (NTRS)
Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)
2000-01-01
Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.
An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology
Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao
2016-01-01
An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234
An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.
Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao
2016-01-01
An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.
Lifetime of dielectric elastomer stack actuators
NASA Astrophysics Data System (ADS)
Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.
2011-04-01
Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.
Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft
NASA Technical Reports Server (NTRS)
Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David
2000-01-01
Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.
Optimization of shape control of a cantilever beam using dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong
2018-05-01
Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.
Tunable optical assembly with vibration dampening
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2009-01-01
An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.
77 FR 36209 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... number of the installed RAT actuator, and re-identification of the actuator and RAT, or replacement of the RAT actuator with a serviceable unit and re-identification of the RAT, if necessary. We are... number, and serial number of the installed RAT actuator, and re- identification of the actuator and RAT...
Design Optimization and Testing of an Active Core for Sandwich Panels
2009-07-01
decided to employ servo motors as the actuator in this prototype test rather than using Nitinol spring actuators in the previous report. The servo...motors – although heavier than the Nitinol actuators, have several attractive attributes. Firstly servo motors have excellent respond time given they...are completely electrically actuated, whereas in the case of Nitinol actuators the actuation suffers a lag period for the Joule’s heating to take
Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C
2009-12-01
Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.
NASA Technical Reports Server (NTRS)
Roskam, J.; Rice, M.; Eysink, H.
1979-01-01
Mathematical models for electromechanical (EM), pneumatic and hydraulic actuations are discussed. It is shown that EM and hydraulic actuators provide better and faster time responses than pneumatic actuators but EM actuators utilizing the recently developed samarium-cobalt technology have significant advantages in terms of size, weight and power requirements. In terms of ease and flexibility of installation EM actuators apparently have several advantages over hydraulic actuators, and cost is a primary reason for the popularity of EM actuation for secondary control function since no additional systems need to be added to the aircraft. While new rare earth magnets are currently in developmental stage, costs are relatively high; but continued research should bring prices down.
Actuator placement in prestressed adaptive trusses for vibration control
NASA Technical Reports Server (NTRS)
Jalihal, P.; Utku, Senol; Wada, Ben K.
1993-01-01
This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Hadaegh, F. Y.
1996-01-01
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.
Yan, Zhi; Zaman, Mostafa; Jiang, Liying
2011-12-12
In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2004-07-01
A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.
The Development for Polymer Actuator Active Catheter System
Sewa, S.; Onishi, K.; Oguro, K.; Asaka, K.; Taki, W.; Toma, N.
2001-01-01
Summary Electric stimuli polymer-metal composite actuator material has been developed for active catheter system and other widely new applications. The polymer actuator is made of ion exchange polymer and gold as electrode, and a pulse voltage of 3 volts on the actuator gave a quick bend 90 degree angle. This composite material is possible to make small size, light and soft actuator. So now we can actually develop an active catheter for the interventional radiology surgery. The prototype polymer actuator active catheter has been developed by using polymer actuator technology and Micro Electronics Mechanical System (MEMS) technologies. The active catheter is controllable from the outside of the body by electric signal. The tip part of the catheter is made of the polymer actuator tube and bends 90 degree angles. The animal tests (dog) showed good actuator performance to control right direction and bending angle at bifurcation of blood vessel and aneurysms. PMID:20663388
Dual-Mechanism and Multimotion Soft Actuators Based on Commercial Plastic Film.
Li, Linpeng; Meng, Junxing; Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Yu, Hao; Wang, Hongzhi
2018-05-02
Soft actuators have attracted a lot of attention owing to their biomimetic performance. However, the development of soft actuators that are easily prepared from readily available raw materials, conveniently utilized, and cost-efficient is still a challenge. Here, we present a simple method to fabricate a polyethylene-based soft actuator. It has controllable anisotropic structure and can realize multiple motions, including bidirectional bending and twisting based on dual mechanisms, which is a rare phenomenon. Especially, the soft actuators can response at a very small temperature difference (Δ T ≥ 2.3 °C); therefore, even skin touch can quickly drive the actuator, which greatly broadens its applications in daily life. The soft actuator could demonstrate a curvature up to 7.8 cm -1 accompanied by powerful actuation. We have shown that it can lift an object 27 times its own weight. We also demonstrate the application of this actuator as intelligent mechanical devices.
Modeling of mechanical properties of stack actuators based on electroactive polymers
NASA Astrophysics Data System (ADS)
Tepel, Dominik; Graf, Christian; Maas, Jürgen
2013-04-01
Dielectric elastomers are thin polymer films belonging to the class of electroactive polymers, which are coated with compliant and conductive electrodes on each side. Under the influence of an electrical field, dielectric elastomers perform a large amount of deformation. Depending on the mechanical setup, stack and roll actuators can be realized. In this contribution the mechanical properties of stack actuators are modeled by a holistic electromechanical approach of a single actuator film, by which the model of a stack actuator without constraints can be derived. Due to the mechanical connection between the stack actuator and the application, bulges occur at the free surfaces of the EAP material, which are calculated, experimentally validated and considered in the model of the stack actuator. Finally, the analytic actuator film model as well as the stack actuator model are validated by comparison to numerical FEM-models in ANSYS.
Plasma actuators for bluff body flow control
NASA Astrophysics Data System (ADS)
Kozlov, Alexey V.
The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding noise. A tandem cylinder configuration with the plasma actuation on the upstream cylinder is investigated using surface dynamic pressure sensors. As a result of the plasma actuation, the surface pressure fluctuations on the downstream cylinder are reduced by about two times at the free-stream velocity of 40 m/s (ReD = 164,000). In addition, this study presents the results of a parametric experimental investigation aimed at optimizing the body force produced by single dielectric barrier discharge (SDBD) plasma actuators used for aerodynamic flow control. A primary goal of the study is the improvement of actuator authority for flow control applications at higher Reynolds number than previously possible. The study examines the effects of dielectric material and thickness, applied voltage amplitude and frequency, voltage waveform, exposed electrode geometry, covered electrode width and multiple actuator arrays. The metric used to evaluate the performance of the actuator in each case is the measured actuator-induced thrust which is proportional to the total body force. It is demonstrated that actuators constructed with thick dielectric material of low dielectric constant and operated at low frequency AC voltage produce a body force that is an order of magnitude larger than that obtained by the Kapton-based actuators used in many previous plasma flow control studies. These actuators allow operation at much higher applied voltages without the formation of discrete streamers which lead to body force saturation.
NASA Astrophysics Data System (ADS)
Cho, Il-Joo; Yoon, Euisik
2009-08-01
In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.
Microprocessor controlled force actuator
NASA Technical Reports Server (NTRS)
Zimmerman, D. C.; Inman, D. J.; Horner, G. C.
1986-01-01
The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.
Another lesson from plants: the forward osmosis-based actuator.
Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara
2014-01-01
Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.
Another Lesson from Plants: The Forward Osmosis-Based Actuator
Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara
2014-01-01
Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2–5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems. PMID:25020043
Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang
2016-08-01
The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids
Rossiter, Jonathan
2018-01-01
Abstract Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance–strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles. PMID:29211627
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids.
Helps, Tim; Rossiter, Jonathan
2018-04-01
Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance-strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles.
75 FR 12710 - Airworthiness Directives; Bombardier, Inc., Model DHC-8-400 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... for the main landing gear lock actuator assembly, retraction actuator assembly rod end and piston, and... for the main landing gear lock actuator assembly, retraction actuator assembly rod end and piston, and..., retraction actuator assembly rod end and piston, and the upper bearing in the main landing gear shock strut...
46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Non-duplicated hydraulic rudder actuators. 58.25-60... actuators. Non-duplicated hydraulic rudder actuators may be installed in the steering-gear control systems on each vessel of less than 100,000 deadweight tons. These actuators must meet IMO A.467(XII...
NASA Astrophysics Data System (ADS)
Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon
2016-04-01
Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.
Automatic design of fiber-reinforced soft actuators for trajectory matching
NASA Astrophysics Data System (ADS)
Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia
2017-01-01
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.
New design for a rotatory joint actuator made with shape memory alloy contractile wire
NASA Astrophysics Data System (ADS)
Wang, Guoping; Shahinpoor, Mohsen
1996-05-01
A design approach for a rotatory joint actuator using a contractile shape memory alloy (SMA) wire is presented and an example design is followed. In this example, the output torque of the actuator is 18 Newton-meters, and its angular range is 30 degrees. Compared with a SMA spring type actuating component, a SMA wire type actuating component uses less SMA material and uses less electrical energy when it is electrically powered. On the other hand, a SMA wire type actuating component must have a large SMA wire length to produce a required amount of angular rotation of the joint. When pulleys are used to arrange a lengthy SMA wire in a small space, the friction between pulleys and pins is introduced and the performance of the joint actuator is degenerated to some degree. The investigated joint actuator provides a good chance for developing powered orthoses with SMA actuators for disabled individuals. It can relieve the weight concern with hydraulic and motor-powered orthoses and the safety concern with motor-powered orthoses. When electrically powered, a SMA actuator has the disadvantage of low energy efficiency.
NASA Astrophysics Data System (ADS)
Godfrey, Juleon Taylor
In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.
A two-degrees-of-freedom miniature manipulator actuated by antagonistic shape memory alloys
NASA Astrophysics Data System (ADS)
Lai, Chih-Ming; Chu, Cheng-Yu; Lan, Chao-Chieh
2013-08-01
This paper presents a miniature manipulator that can provide rotations around two perpendicularly intersecting axes. Each axis is actuated by a pair of shape memory alloy (SMA) wires. SMA wire actuators are known for their large energy density and ease of actuation. These advantages make them ideal for applications that have stringent size and weight constraints. SMA actuators can be temperature-controlled to contract and relax like muscles. When correctly designed, antagonistic SMA actuators have a faster response and larger range of motion than bias-type SMA actuators. This paper proposes an antagonistic actuation model to determine the manipulator parameters that are required to generate sufficient workspace. Effects of SMA prestrain and spring stiffness on the manipulator are investigated. Taking advantage of proper prestrain, the actuator size can be made much smaller while maintaining the same motion. The use of springs in series with SMA can effectively reduce actuator stress. A controller and an anti-slack algorithm are developed to ensure fast and accurate motion. Speed, stress, and loading experiments are conducted to demonstrate the performance of the manipulator.
A micropower miniature piezoelectric actuator for implantable middle ear hearing device.
Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred
2011-02-01
This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (<3 dB) when the actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.
Micro-mechanics of ionic electroactive polymer actuators
NASA Astrophysics Data System (ADS)
Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo
2015-04-01
Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.
The minimum control authority of a system of actuators with applications to Gravity Probe-B
NASA Technical Reports Server (NTRS)
Wiktor, Peter; Debra, Dan
1991-01-01
The forcing capabilities of systems composed of many actuators are analyzed in this paper. Multiactuator systems can generate higher forces in some directions than in others. Techniques are developed to find the force in the weakest direction. This corresponds to the worst-case output and is defined as the 'minimum control authority'. The minimum control authority is a function of three things: the actuator configuration, the actuator controller and the way in which the output of the system is limited. Three output limits are studied: (1) fuel-flow rate, (2) power, and (3) actuator output. The three corresponding actuator controllers are derived. These controllers generate the desired force while minimizing either fuel flow rate, power or actuator output. It is shown that using the optimal controller can substantially increase the minimum control authority. The techniques for calculating the minimum control authority are applied to the Gravity Probe-B spacecraft thruster system. This example shows that the minimum control authority can be used to design the individual actuators, choose actuator configuration, actuator controller, and study redundancy.
Design of synthetic jet actuator based on FSMA composite
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Kuga, Yasuo; Taya, Minoru
2005-05-01
An improved version of the membrane actuator has been designed and constructed based on our previous diaphragm actuator. It consists of ferromagnetic shape memory alloy composite (FSMA) diaphragm and an electromagnet system. The actuation mechanism of the membrane actuator is the hybrid mechanism that we proposed previously. The high momentum airflow will be produced by the oscillation of the circular FSMA composite diaphragm driven by electromagnets close to its resonance frequency. This membrane actuator is designed for the active flow control technology on airplane wings. The active flow control (AFC) technology has been studied and shown that it can help aircraft improve aerodynamic performance and jet noise reduction. AFC can be achieved by a synthetic jet actuator injecting high momentum air into the airflow at the appropriate locations on aircraft wings. Due to large force and martensitic transformation on the FSMA composite diaphragm, the membrane actuator can produce 190 m/s synthetic jets at 220 Hz. A series connection of several membrane actuators is proposed to construct a synthetic jet actuator package for distributing synthetic jet flow along the wing span.
Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon
2016-01-01
Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134
Evaluation of actuators for the SDOF and MDOF active microgravity isolation systems
NASA Technical Reports Server (NTRS)
1993-01-01
The University of Virginia examined the design of actuators for both single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) active microgravity isolation systems. For SDOF systems, two actuators were considered: a special large gap magnetic actuator and a large stroke Lorentz actuator. The magnetic actuator was viewed to be of greater difficulty than the Lorentz actuator with little compelling technical advantage and was dropped from consideration. A Lorentz actuator was designed and built for the SDOF test rig using magnetic circuit and finite element analysis. The design and some experimental results are discussed. The University also examined the design of actuators for MDOF isolation systems. This includes design of an integrated 1 cm gap 6-DOF noncontacting magnetic suspension system and of a 'coarse' follower which permits the practical extension of magnetic suspension to large strokes. The proposed 'coarse' actuator was a closed kinematic chain manipulator known as a Stewart Platform. The integration of the two isolation systems together, the isolation tasks assigned to each, and possible control architectures were also explored. The results of this research are examined.
Automatic design of fiber-reinforced soft actuators for trajectory matching
Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia
2017-01-01
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb. PMID:27994133
Automatic design of fiber-reinforced soft actuators for trajectory matching.
Connolly, Fionnuala; Walsh, Conor J; Bertoldi, Katia
2017-01-03
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.
Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon
2016-04-15
Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.
A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk
2014-06-01
A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.
Development of thermal actuators with multi-locking positions
NASA Astrophysics Data System (ADS)
Luo, J. K.; Zhu, Y.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Miao, J. M.; Milne, W. I.
2006-04-01
To reduce power consumption and operation temperature for micro-thermal actuators, metal-based micro-mechanical locks with multi-locking positions were analyzed and fabricated. The micro-locks consist of two or three U-shaped thermal actuators. The devices were made by a single mask process using electroplated Ni as the active material. Tests showed that the metal based thermal actuators deliver a maximum displacement of ~20µm at a much lower temperature than that of Si-based actuators. However Ni-actuators showed a severe back bending, which increases with increasing applied power. The temperature to initiate the back bending is as low as ~240°C. Back bending increases the distance between the two actuators, and leads to locking function failure. For practical application, Ni-based thermal actuators must be operated below 200°C.
Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant.
Shin, Dong Ho; Cho, Jin-Ho
2018-05-24
The design and implementation of a novel piezoelectric-based actuator for an implantable middle-ear hearing aid is described in this paper. The proposed actuator has excellent low-frequency output characteristics, and can generate high output in a specific frequency band by adjusting the mechanical resonance. The actuator consists of a piezoelectric element, a miniature bellows, a cantilever membrane, a metal ring support, a ceramic tip, and titanium housing. The optimal structure of the cantilever-membrane design, which determines the frequency characteristics of the piezoelectric actuator, was derived through finite element analysis. Based on the results, the piezoelectric actuator was implemented, and its performance was verified through a cadaveric experiment. It was confirmed that the proposed actuator provides better performance than currently used actuators, in terms of frequency characteristics.
Light-Driven Polymeric Bimorph Actuators
NASA Technical Reports Server (NTRS)
Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.
2009-01-01
Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of light energy causes heating, which, in turn, causes thermal expansion.
Three-axis lever actuator with flexure hinges for an optical disk system
NASA Astrophysics Data System (ADS)
Han, Chang-Soo; Kim, Soo-Hyun
2002-10-01
A three-axis lever actuator with a flexure hinge has been designed and fabricated. This actuator is driven by electromagnetic force based on a coil-magnet system and can be used as a high precision actuator and, especially as a pickup head actuator in optical disks. High precision and low sensitivity to external vibration are the major advantages of this lever actuator. An analysis model was found and compared to the finite element method. Dynamic characteristics of the three-axis lever actuator were measured. The results are in very close agreement to those predicted by the model and finite element analysis.
Rodgers, M. Steven; Miller, Samuel L.
2003-01-01
A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.
Design of elevator control surface actuated by LIPCA for small unmanned air vehicle
NASA Astrophysics Data System (ADS)
Yoon, K. J.; Setiawan, Hery; Goo, N. S.
2006-03-01
There have been persistent interests in high performance actuators suitable for the actuation of control surfaces of small aircraft and helicopter blades and for active vibration control of aerospace and submarine structures that need high specific force and displacement. What is really needed for active actuation is a large-displacement actuator with a compact source, i.e., much higher strain. A lot of effort has been made to develop compact actuators with large displacement at a high force. One of the representative actuator is LIPCA actuator that was introduced by Yoon et al. The LIPCA design offers the advantages to be applied as actuator for the small aerial vehicle comparing with any other actuators. The weight is one of the main concerns for aerospace field, and since LIPCA has lighter weight than any other piezo-actuator thus it is suitable as actuator for small aircraft control surface. In this paper, a conceptual design of LIPCA-actuated control surface is introduced. A finite element model was constructed and analyzed to predict the deflection angle of the control surface. The hinge moment that produced by the aerodynamic forces was calculated to determine the optimum position of the hinge point, which could produce the deflection as high as possible with reasonable hinge moment. To verify the prediction, a prototype of SUAV (small unmanned air vehicle) control surface was manufactured and tested both in static condition and in the wind tunnel. The prediction and test results showed a good agreement on the control surface deflection angle.
NASA Astrophysics Data System (ADS)
Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie
2018-01-01
Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.
Exact analysis of two kinds of piezoelectric actuator
NASA Astrophysics Data System (ADS)
Rong, Han; Zhifei, Shi
2008-02-01
Two kinds of piezoelectric hollow cylinder actuator are studied in this paper. One is the expansion actuator and the other is the contraction actuator. Using the Airy stress function method, the analytical solutions of these two kinds of actuators are obtained based on the theory of piezo-elasticity. The solutions are compared with numerical results and good agreement is found. Inherent properties of these two kinds of piezoelectric cylinder actuator are presented and discussed. Findings have applications in the field of micromechanics and microengineering.
Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali
2014-09-10
The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.
Linear actuation using milligram quantities of CL-20 and TAGDNAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snedigar, Shane; Salton, Jonathan Robert; Tappan, Alexander Smith
2009-07-01
There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeter-diameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and tomore » select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3{prime}dinitroazotriazolate) (TAGDNAT).« less
Ishihara, Koji; Morimoto, Jun
2018-03-01
Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Modeling and control of a dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian
2016-04-01
The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.
Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Chang, Huicong; Yang, Yang; Zhou, Ying
2016-01-01
Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish‐like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene‐PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene‐based materials at a macro scale. PMID:27818900
Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Huang, Yi; Chang, Huicong; Yang, Yang; Zhou, Ying; Chen, Yongsheng
2016-06-01
Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale.
Powerful Electromechanical Linear Actuator
NASA Technical Reports Server (NTRS)
Cowan, John R.; Myers, William N.
1994-01-01
Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.
Actuators of active tribotechnical systems of the rotor-bearing type
NASA Astrophysics Data System (ADS)
Savin, L.; Shutin, D.; Kuzavka, A.
2017-08-01
The article describes the perspectives of using active bearings in rotor-bearing systems. The principal scheme of a mechatronic tribotechnical system anв classification of actuators used in such system are shown. Piezo actuators are considered from the point of view of use as actuators in active bearings. The comparative characteristics of different types of actuators
Architecture for distributed actuation and sensing using smart piezoelectric elements
NASA Astrophysics Data System (ADS)
Etienne-Cummings, Ralph; Pourboghrat, Farzad; Maruboyina, Hari K.; Abrate, Serge; Dhali, Shirshak K.
1998-07-01
We discuss vibration control of a cantilevered plate with multiple sensors and actuators. An architecture is chosen to minimize the number of control and sensing wires required. A custom VLSI chip, integrated with the sensor/actuator elements, controls the local behavior of the plate. All the actuators are addressed in parallel; local decode logic selects which actuator is stimulated. Downloaded binary data controls the applied voltage and modulation frequency for each actuator, and High Voltage MOSFETs are used to activate them. The sensors, which are independent adjacent piezoelectric ceramic elements, can be accessed in a random or sequential manner. An A/D card and GPIB interconnected test equipment allow a PC to read the sensors' outputs and dictate the actuation procedure. A visual programming environment is used to integrate the sensors, controller and actuators. Based on the constitutive relations for the piezoelectric material, simple models for the sensors and actuators are derived. A two level hierarchical robust controller is derived for motion control and for damping of vibrations.
Yan, Zhi; Zaman, Mostafa; Jiang, Liying
2011-01-01
In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment. PMID:28824130
Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kaichen, E-mail: dkc12@mails.tsinghua.edu.cn, E-mail: wuj@berkeley.edu; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084
2016-07-11
Due to its thermally driven structural phase transition, vanadium dioxide (VO{sub 2}) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO{sub 2} actuators severely obstructs the actuation performance and application. Here, we introduce a “seesaw” method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO{sub 2} actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvaturemore » and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO{sub 2} actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This “seesaw” method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.« less
Virtual environment tactile system
Renzi, Ronald
1996-01-01
A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters.
Virtual environment tactile system
Renzi, R.
1996-12-10
A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters. 28 figs.
Effect of 1partial thickness actuation on stress concentration reduction near a hole
NASA Technical Reports Server (NTRS)
Sensharma, P. K.; Kadivar, M. H.; Haftka, R. T.
1994-01-01
Recently, there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Piezoelectric materials and shape memory alloys (SMA) are often used as partial thickness actuators to create such adaptivity by applied energy, usually electric curent. These actuators can be used to inducce strains in a structure and reduce stresses in regions of high stress concentration. Two of the present authors show that axisymmetric actuation strains applied troughout the thickness of a plate with a hole can reduce the stress concentration factor (SCF) in an isotropic plate from 3 to 2. However, in most cases actuators are expected to be bonded to or embedded in the plate, so that the actuation strains are applied in the actuators and not directly in the plate. The objective of this note is to show that such partial-thickness actuation cannot be used to reduce the stress concentration factor with axisymmetric actuations strain distribution.
Actuator assembly including a single axis of rotation locking member
Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.
2009-12-08
An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.
An Indirect Adaptive Control Scheme in the Presence of Actuator and Sensor Failures
NASA Technical Reports Server (NTRS)
Sun, Joy Z.; Josh, Suresh M.
2009-01-01
The problem of controlling a system in the presence of unknown actuator and sensor faults is addressed. The system is assumed to have groups of actuators, and groups of sensors, with each group consisting of multiple redundant similar actuators or sensors. The types of actuator faults considered consist of unknown actuators stuck in unknown positions, as well as reduced actuator effectiveness. The sensor faults considered include unknown biases and outages. The approach employed for fault detection and estimation consists of a bank of Kalman filters based on multiple models, and subsequent control reconfiguration to mitigate the effect of biases caused by failed components as well as to obtain stability and satisfactory performance using the remaining actuators and sensors. Conditions for fault identifiability are presented, and the adaptive scheme is applied to an aircraft flight control example in the presence of actuator failures. Simulation results demonstrate that the method can rapidly and accurately detect faults and estimate the fault values, thus enabling safe operation and acceptable performance in spite of failures.
An instant multi-responsive porous polymer actuator driven by solvent molecule sorption.
Zhao, Qiang; Dunlop, John W C; Qiu, Xunlin; Huang, Feihe; Zhang, Zibin; Heyda, Jan; Dzubiella, Joachim; Antonietti, Markus; Yuan, Jiayin
2014-07-01
Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 °C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 °C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials.
Thermal expansion as a precision actuator
NASA Astrophysics Data System (ADS)
Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine
2016-07-01
The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.
Design of a Minimum Surface-Effect Tendon-Based Microactuator for Micromanipulation
NASA Technical Reports Server (NTRS)
Goldfarb, Michael; Lipsey, James H.
1997-01-01
A piezoelectric (PZT) stack-based actuator was developed to provide a means of actuation with dynamic characteristics appropriate for small-scale manipulation. In particular, the design incorporates a highly nonlinear, large-ratio transmission that provides approximately two orders of magnitude motion amplification from the PZT stack. In addition to motion amplification, the nonlinear transmission was designed via optimization methods to distort the highly non-uniform properties of a piezoelectric actuator so that the achievable actuation force is nearly constant throughout the actuator workspace. The package also includes sensors that independently measure actuator output force and displacement, so that a manipulator structure need not incorporate sensors nor the associated wires. Specifically, the actuator was designed to output a maximum force of at least one Newton through a stroke of at least one millimeter. For purposes of small-scale precision position and/or force control, the actuator/sensor package was designed to eliminate stick-slip friction and backlash. The overall dimensions of the actuator/sensor package are approximately 40 x 65 x 25 mm.
Motion control in free-standing shape-memory actuators
NASA Astrophysics Data System (ADS)
Belmonte, Alberto; Lama, Giuseppe C.; Cerruti, Pierfrancesco; Ambrogi, Veronica; Fernández-Francos, Xavier; De la Flor, Silvia
2018-07-01
In this work, free-standing shape-memory thermally triggered actuators are developed by laminating ‘thiol-epoxy’-based glassy thermoset (GT) and stretched liquid-crystalline network (LCN) films. A sequential curing process was used to obtain GTs with tailored thermomechanical properties and network relaxation dynamics, and also to assemble the final actuator. The actuation extent, rate and time were studied by varying the GT and the heating rate in thermo-actuation with an experimental approach. The results demonstrate that it is possible to tailor the actuation rate and time by designing GT materials with a glass transition temperature close to that of the liquid-crystalline-to-isotropic phase transition of the LCN, thus making it possible to couple the two processes. Such coupling is also possible in rapid heating processes even when the glass transition temperature of the GT is clearly lower than the isotropization temperature of the LCN, depending on the network relaxation dynamics of the GT and the presence of thermal gradients within the actuators. Interestingly, varying the GT network relaxation dynamics does not affect the actuation extent. As predicted by the analytical model developed in our previous work, the modulus of the GT layer is mainly responsible for the actuation extent. Finally, to demonstrate the enhanced control of the actuation, specifically designed actuators were assembled in a three-dimensional actuating device able to make complex motions (including ‘S-type’ bending). This approach makes it possible to engineer advanced functional materials for application in self-adaptable structures and soft robotics.
Extensional ionomeric polymer conductor composite actuators with ionic liquids
NASA Astrophysics Data System (ADS)
Liu, Sheng; Lin, Minren; Zhang, Qiming
2008-03-01
Although the Ionic Polymer-Metal Composite (IPMC) actuators developed up to date are in the form of bending actuators, development of extensional actuators based on IMPC is highly desirable from practical applications and fundamental understanding points of view. This talk presents the design, fabrication and characterization of a recent work on an extensional Ionic Polymer-Metal Composite actuator. The extensional actuator consists of the Nafion ionomer as the matrix and the sub-micron size RuO II particles as the conductive filler for the conductor/ionomr composites. In this investigation, several ionic liquids (IL) were investigated. For a Nafion/RuO II composite with 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) IL, it was found that as the ions are driven into the ionomer/RuO II composite (the composite under negative voltage), an extensional strain of 0.9% was observed; while as the ions were expelled from the ionomer/RuO II composite (under positive voltage), a contraction of -1.2% was observed. The results indicate that multiple ions are participating in charge transport and actuation process. In this paper, we also discuss several design considerations for future extensional actuators with fast response, much improved strain and stress level. Especially an actuator based on multilayer configuration can significantly increase the electric field level in the actuator and consequently significantly improve the actuator speed. The extensional actuator investigated here provides a unique platform to investigate various phenomena related to ion transport and their interaction with the ionomer/conductor matrix to realize high electromechanical performance.
Dielectric elastomer actuators used for pneumatic valve technology
NASA Astrophysics Data System (ADS)
Giousouf, Metin; Kovacs, Gabor
2013-10-01
Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.
Self-Latching Piezocomposite Actuator
NASA Technical Reports Server (NTRS)
Wilkie, William K. (Inventor); Lynch, Christopher S. (Inventor); Bryant, Robert G. (Inventor)
2017-01-01
A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.
Shape memory alloy actuated adaptive exhaust nozzle for jet engine
NASA Technical Reports Server (NTRS)
Ma, Ning (Inventor); Song, Gangbing (Inventor)
2009-01-01
The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.
Review of 72.5kV double-break vacuum circuit breaker based on rapid repulsion actuator
NASA Astrophysics Data System (ADS)
Zhuofan, Tang; Lijun, Qin
2017-07-01
72.5kV double-break vacuum circuit breakers based on rapid repulsion actuator remain blank in China. Based on the theoretical analysis and experimental results from researchers, the design of 72.5kV double-break vacuum circuit breakers based on rapid repulsion actuator was presented. It takes the form of double-break, using two standard 40.5kV vacuum interrupter in series at the bottom, which adopt a permanent magnetic repulsion actuator. The permanent magnetic repulsion actuator consists of rapid repulsion actuator and magnetic retentivity actuator. On the basis above, we produced the prototype, and the superiority of the design was verified through the experiments.
NASA Astrophysics Data System (ADS)
Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do
2017-03-01
As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.
NASA Astrophysics Data System (ADS)
Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.
2018-07-01
This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of ± out of a geometrically allowable range of ± at a current amplitude i = 3 mA and a magnetic field of B = 30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.
Zhao, Lei; Huang, Jiahe; Zhang, Yuancheng; Wang, Tao; Sun, Weixiang; Tong, Zhen
2017-04-05
Facile preparation, rapid actuating, and versatile actions are great challenges in exploring new kinds of hydrogel actuators. In this paper, we presented a facile sticking method to prepare Janus bilayer and multilayer hydrogel actuators that benefited from a special tough and adhesive PAA-clay hydrogel. Combining physical and chemical cross-linking reagents, we endowed the PAA gel with both toughness and adhesion. This PAA gel was reinforced by further cross-linking with Fe 3+ . These two hydrogels with different cross-linking densities exhibited different swelling capabilities and moduli in the media manipulated by pH and ionic strength, thus acting as promising candidates for soft actuators. On the basis of these gels, we designed hydrogel actuators of rapid response in several minutes and precisely controlled actuating direction by sticking two hydrogel layers together. Elaborate soft actuators such as bidirectional bending flytrap, gel hand with grasp, open, and gesturing actions as well as word-writing actuator were prepared. This method could be generalized by using other stimuli-responsive hydrogels combined with the adhesive PAA gel, which would open a new way to programmable and versatile soft actuators.
A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules.
Natividad, Rainier; Del Rosario, Manuel; Chen, Peter C Y; Yeow, Chen-Hua
2018-06-01
A fully reconfigurable, pneumatic bending actuator is fabricated by implementing the concept of modularity to soft robotics. The actuator features independent, removable, fabric inflation modules that are attached to a common flexible but non-inflating plastic spine. The fabric modules are individually fabricated by heat sealing a thermoplastic polyurethane-coated nylon fabric, whereas the spine is manufactured through fused deposition modeling 3D printing; the components can be assembled and dismantled without the aid of any external tools. The replacement of specific modules along the array facilitates the reconfiguration of the actuator's bending trajectory and torque output; likewise, the combination of inflation modules with dissimilar geometries translates to several different trajectories on a single spine and allows the actuator to bend into assorted, unique structures. A detailed description of the actuator's design is thoroughly presented. We explored how reconfiguration of the actuator's modular geometry affected both the steady state and the dynamic characteristics of the actuator. The torque output of the actuator is proportional to the magnitude of the pressure applied. The actuator was excited by sinusoidal and square pressure inputs, and a second-order linear fit was performed. There were no perceived changes in its performance even after 100,000 inflation and deflation cycles.
Bimorphic polymeric photomechanical actuator
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)
2006-01-01
A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.
The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control
NASA Technical Reports Server (NTRS)
Koklu, Mehti
2015-01-01
A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.
Robotic Arm Actuated by Electroactie Polymers
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Xue, T.; Shaninpoor, M.; Simpson, J. O.; Smith, J.
1998-01-01
Actuators are used for many planetary and space applications. To meet the NASA goal to reduce the actuators size, mass, cost and power consumption, electroactie polymers (EAP) are being developed to induce large bending and longitudinal actuation strains.
Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water
Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe
2017-01-01
Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water. PMID:28145412
Analysis of a Chevron Beam Thermal Actuator
NASA Astrophysics Data System (ADS)
Joshi, Amey Sanjay; Mohammed, Hussain; Kulkarni, S. M., Dr.
2018-02-01
Thermal MEMS (Micro-Electro-Mechanical Systems) actuators and sensors have a wide range of applications. The chevron type thermal actuators comparatively show superior performance over other existing electrostatic and thermal actuators. This paper describes the design and analysis of chevron type thermal actuator. Here standard design of Chevron type thermal actuator is considered which comprises of proof mass at center and array of six beams of a uniform cross section of 3 3 microns and an initial angle of 5°. The thermal actuator was designed and analyzed using analytical and finite element method and the results were compared. The model was also analyzed for initial angles of 2.5° and 7.5°, and the results were compared with FEA model. The cross section of the beam was varied and the finite element analysis of all three models was compared to suggest the best suitable thermal actuator structure.
Vibration suppression using a proofmass actuator operating in stroke/force saturation
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Celano, T. P.; Ide, E. N.
1991-01-01
The design of the control-loop structure for a feedback control system which contains a proofmass actuator for suppressing vibration is discussed. The loop structure is composed of inner control loops, which determine the frequency of the actuator and which are directly related to the actuator and the outer loops which add damping to the structure. When the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops, and, since the stroke/force saturation curve is characterized by the stroke length, the mass of the proofmass, and the maximum current delivered by the motor electronics, the size of the actuator can be easily determined. The results of the loop-structure model calculations are verified by examining linear DC motors as proofmass actuators for the Mast in NASA's Control of Flexible Structures program.
Dielectric elastomer actuators for facial expression
NASA Astrophysics Data System (ADS)
Wang, Yuzhe; Zhu, Jian
2016-04-01
Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
De Acutis, A.; Calabrese, L.; Bau, A.; Tincani, V.; Pugno, N. M.; Bicchi, A.; De Rossi, D. E.
2018-07-01
In this article we present an upgraded design of the existing push–pull hydrostatically coupled dielectric elastomer actuator (HC-DEA) for use in the field of soft manipulators. The new design has segmented electrodes, which stand as four independent elements on the active membrane of the actuator. When properly operated, the actuator can generate both out of plane and in-plane motions resulting in a multi-degrees of freedom soft actuator able to exert both normal pushes (like a traditional HC-DEA) and tangential thrusts. This novel design makes the actuator suitable for delicate flat object transportation. In order to use the actuator in soft systems, we experimentally characterized its electromechanical transduction and modeled its contact mechanics. Finally, we show that the proposed actuator can be employed as a modular unit to develop active surfaces for flat object roto-translation.
NASA Astrophysics Data System (ADS)
Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven
2007-04-01
Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.
A small-gap electrostatic micro-actuator for large deflections
Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam
2015-01-01
Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557
Chen, Luzhuo; Liu, Changhong; Liu, Ke; Meng, Chuizhou; Hu, Chunhua; Wang, Jiaping; Fan, Shoushan
2011-03-22
In this work, we show that embedding super-aligned carbon nanotube sheets into a polymer matrix (polydimethylsiloxane) can remarkably reduce the coefficient of thermal expansion of the polymer matrix by two orders of magnitude. Based on this unique phenomenon, we fabricated a new kind of bending actuator through a two-step method. The actuator is easily operable and can generate an exceptionally large bending actuation with controllable motion at very low driving DC voltages (<700 V/m). Furthermore, the actuator can be operated without electrolytes in the air, which is superior to conventional carbon nanotube actuators. Proposed electrothermal mechanism was discussed and confirmed by our experimental results. The exceptional bending actuation performance together with easy fabrication, low-voltage, and controllable motion demonstrates the potential ability of using this kind of actuator in various applicable areas, such as artificial muscles, microrobotics, microsensors, microtransducers, micromanipulation, microcantilever for medical applications, and so on.
Evaluation of piezoceramic actuators for control of aircraft interior noise
NASA Technical Reports Server (NTRS)
Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.
1992-01-01
Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.
Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water.
Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X; Zhao, Xuanhe
2017-02-01
Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.
Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers
NASA Astrophysics Data System (ADS)
Kaneto, K.
2016-04-01
Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.
Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water
NASA Astrophysics Data System (ADS)
Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe
2017-02-01
Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.
Vibration control in statically indeterminate adaptive truss structures
NASA Technical Reports Server (NTRS)
Baycan, C. M.; Utku, Senol; Wada, Ben K.
1993-01-01
In this work vibration control of statically indeterminate adaptive truss structures is investigated. Here, the actuators (i.e., length adjusting devices) that are used for vibration control, work against the axial forces caused by the inertial forces. In statically determinate adaptive trusses no axial force is induced by the actuation. The control problem in statically indeterminate trusses may be dominated by the actuation-induced axial element forces. The creation of actuation-induced axial forces puts the system to a higher energy state, thus aggravates the controls. It is shown that by the usage of sufficient number of slave actuators in addition to the actual control actuators, the actuation-induced axial element forces can be nullified, and the control problem of the statically indeterminate adaptive truss problem is reduced to that of a statically determinate one. It is also shown that the usage of slave actuators saves a great amount of control energy and provides robustness for the controls.
A planar comparison of actuators for vibration control of flexible structures
NASA Technical Reports Server (NTRS)
Clark, William W.; Robertshaw, Harry H.; Warrington, Thomas J.
1989-01-01
The methods and results of an analytical study comparing the effectiveness of four actuators in damping the vibrations of a planar clamped-free beam are presented. The actuators studied are two inertia-type actuators, the proof mass and reaction wheel, and two variable geometry trusses, the planar truss and the planar truss proof mass (a combination variable geometry truss/inertia-type actuator). Actuator parameters used in the models were chosen based on the results of a parametric study. A full-state, LQR optimal feedback control law was used for control in each system. Numerical simulations of each beam/actuator system were performed in response to initial condition inputs. These simulations provided information such as time response of the closed-loop system and damping provided to the beam. This information can be used to determine the 'best' actuator for a given purpose.
Piezoceramic Actuator Placement for Acoustic Control of Panels
NASA Technical Reports Server (NTRS)
Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)
2001-01-01
Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.
Piezoceramic Actuator Placement for Acoustic Control of Panels
NASA Technical Reports Server (NTRS)
Bevan, Jeffrey S.
2000-01-01
Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.
Optimizing an Actuator Array for the Control of Multi-Frequency Noise in Aircraft Interiors
NASA Technical Reports Server (NTRS)
Palumbo, D. L.; Padula, S. L.
1997-01-01
Techniques developed for selecting an optimized actuator array for interior noise reduction at a single frequency are extended to the multi-frequency case. Transfer functions for 64 actuators were obtained at 5 frequencies from ground testing the rear section of a fully trimmed DC-9 fuselage. A single loudspeaker facing the left side of the aircraft was the primary source. A combinatorial search procedure (tabu search) was employed to find optimum actuator subsets of from 2 to 16 actuators. Noise reduction predictions derived from the transfer functions were used as a basis for evaluating actuator subsets during optimization. Results indicate that it is necessary to constrain actuator forces during optimization. Unconstrained optimizations selected actuators which require unrealistically large forces. Two methods of constraint are evaluated. It is shown that a fast, but approximate, method yields results equivalent to an accurate, but computationally expensive, method.
Cryogenic Piezoelectric Actuator
NASA Technical Reports Server (NTRS)
Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.
2009-01-01
In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.
Low Mass Muscle Actuators (LoMMAs) Using Electroactive Polymers
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Xue, T.; Joffe, B.; Lih, S. S.; Willis, P.; Simpson, J.; Smith, J.; Clair, T.; Shahinpoor, M.
1997-01-01
NASA is using actuation devices for many space applications and there is an increasing need to cut their cost as well as reduce their size, mass, and power consumption. Existing transducing actuators, such as piezoceramics, are inducing limited displacement levels. Potentially, electroactive polymers (so called EAP) can be formed as inexpensive, low-mass, low-power, miniature muscle actuators that are superior to the widely used actuators.
NASA Astrophysics Data System (ADS)
Wang, Qiangzhong; Li, Faxin
2018-06-01
Lead titanate zirconate (PZT) ceramics based piezoelectric actuators always suffer from small output strains (typically 0.1%–0.15%) and have recently been criticized for the toxicity problem of the high-concentration lead. In our recent work (Li et al 2017 J. Appl. Phys. 122 074103), we realized large local actuation strain nearly 0.6% in a periodically orthogonal poled (POP) PZT ceramics via reversible domain switching. In this work, we applied the POP method to barium titanate (BT) ceramics and proposed a specially designed multilayer actuator which can output large uniform strain. The simple tetragonal structure of BT ceramics makes it easier to understand the mechanism of reversible domain switching in POP ceramics and its lead-free characteristic is more promising. Firstly, a POP BT ceramic piece was fabricated and the actuation testing results show that local large actuation strain of 0.36% can be obtained under a field of 2 kV mm‑1 at 0.1 Hz. However, the actuation strain is non-uniform along the period direction, varying from 0.22% to 0.36%. Then, to output uniform large strain, a four-layer actuator based on the POP BT ceramics was designed and fabricated in which only the in-plane poled regions of the adjacent layers were bonded. Results show that the output strain turns to be uniform in this way, which is 0.34% under 2 kV mm‑1, resulting in a very high large-signal (=S max/E max) of 1700 pm V‑1. The large actuation strain is very stable and keeps unchanged after 20k cycles of operation. It drops quickly with the increasing frequency and is stabilized at 0.18% above 1.0 Hz. Finally, bipolar field testing was conducted on the POP BT based actuator. Results show that the actuator shows electrostriction-like symmetric bipolar actuation behavior with the repeatable actuation strain of 0.3% under 2 kV mm‑1. This work may provide a feasible solution to low frequency, large-strain lead-free piezoelectric actuation.
NASA Astrophysics Data System (ADS)
Ahmed, Saad; Hong, Jonathan; Zhang, Wei; Kopatz, Jessica; Ounaies, Zoubeida; Frecker, Mary
2018-03-01
Electroactive polymer (EAPs) based technologies have shown promise in areas such as artificial muscles, aerospace, medical and soft robotics. In this work, we demonstrate ways to harness on-demand segmented folding actuation from pure bending of relaxor-ferroelectric P(VDF-TrFE-CTFE) based films, using various design approaches, such as `stiffener' and `notch' based approaches. The in-plane actuation of the P(VDF-TrFE-CTFE) is converted into bending actuation using unimorph configurations, where one passive substrate layer is attached to the active polymer. First, we experimentally show that placement of thin metal strips as stiffener in between active EAPs and passive substrates leads to segmented actuation as opposed to pure bending actuation; stiffeners made of different materials, such as nickel, copper and aluminum, are studied which reveals that a higher Young's modulus favors more pronounced segmented actuation. Second, notched samples are prepared by mounting passive substrate patches of various materials on top of the passive layers of the unimorph EAP actuators. Effect of notch materials, size of the notches and position of the notches on the folding actuation are studied. The motion of the human finger inspires a finger-like biomimetic actuator, which is realized by assigning multiple notches on the structure; finite element analysis (FEA) is also performed using COMSOL Multiphysics software for the notched finger actuator. Finally, a versatile soft-gripper is developed using the notched approach to demonstrate the capability of a properly designed EAP actuator to hold objects of various sizes and shapes.
Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM
2007-07-24
The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.
Active Vibration Isolation Devices with Inertial Servo Actuators
NASA Astrophysics Data System (ADS)
Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.
2018-03-01
The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.
Shape Memory Actuated Normally Open Permanent Isolation Valve
NASA Technical Reports Server (NTRS)
Ramspacher, Daniel J. (Inventor); Bacha, Caitlin E. (Inventor)
2017-01-01
A valve assembly for an in-space propulsion system includes an inlet tube, an outlet tube, a valve body coupling the inlet tube to the outlet tube and defining a propellant flow path, a valve stem assembly disposed within the valve body, an actuator body coupled to the valve body, the valve stem assembly extending from an interior of the valve body to an interior of the actuator body, and an actuator assembly disposed within the actuator body and coupled to the valve stem assembly, the actuator assembly including a shape memory actuator member that when heated to a transition temperature is configured to enable the valve stem assembly to engage the outlet tube and seal the propellant flow path.
Hydraulically amplified self-healing electrostatic actuators with muscle-like performance
NASA Astrophysics Data System (ADS)
Acome, E.; Mitchell, S. K.; Morrissey, T. G.; Emmett, M. B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C.
2018-01-01
Existing soft actuators have persistent challenges that restrain the potential of soft robotics, highlighting a need for soft transducers that are powerful, high-speed, efficient, and robust. We describe a class of soft actuators, termed hydraulically amplified self-healing electrostatic (HASEL) actuators, which harness a mechanism that couples electrostatic and hydraulic forces to achieve a variety of actuation modes. We introduce prototypical designs of HASEL actuators and demonstrate their robust, muscle-like performance as well as their ability to repeatedly self-heal after dielectric breakdown—all using widely available materials and common fabrication techniques. A soft gripper handling delicate objects and a self-sensing artificial muscle powering a robotic arm illustrate the wide potential of HASEL actuators for next-generation soft robotic devices.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
NASA Astrophysics Data System (ADS)
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-01-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-27
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator.
Luong, Tuan Anh; Cho, Kyeong Ho; Song, Min Geun; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil
2018-04-01
Artificial muscle actuators made from commercial nylon fishing lines have been recently introduced and shown as a new type of actuator with high performance. However, the actuators also exhibit significant nonlinearities, which make them difficult to control, especially in precise trajectory-tracking applications. In this article, we present a nonlinear mathematical model of a conductive supercoiled polymer (SCP) actuator driven by Joule heating for model-based feedback controls. Our efforts include modeling of the hysteresis behavior of the actuator. Based on nonlinear modeling, we design a sliding mode controller for SCP actuator-driven manipulators. The system with proposed control law is proven to be asymptotically stable using the Lyapunov theory. The control performance of the proposed method is evaluated experimentally and compared with that of a proportional-integral-derivative (PID) controller through one-degree-of-freedom SCP actuator-driven manipulators. Experimental results show that the proposed controller's performance is superior to that of a PID controller, such as the tracking errors are nearly 10 times smaller compared with those of a PID controller, and it is more robust to external disturbances such as sensor noise and actuator modeling error.
Service Test Plan for A-10 Hydraulic Actuators
2014-05-29
utilizes electroplated chrome as a wear coating on the actuator assembly. This actuator will be delta-qualified while two other actuators will be qualified...2730534-1 Similarity to (1) 3 Elevator Actuator Hydraulic Flight Control System 2730551-5 Similarity to (1) The current chrome electroplating ...process has been proven to be a significant health hazard, and it is anticipated that future Government regulation will make the use of electroplated
Buckling of Elastomeric Beams Enables Actuation of Soft Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dian; Mosadegh, Bobak; Ainla, Alar
2015-09-21
Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.
Borenstein, Johann; Granosik, Grzegorz
2005-03-22
An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.
Shape-Memory-Alloy Actuator For Flight Controls
NASA Technical Reports Server (NTRS)
Barret, Chris
1995-01-01
Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.
A piezoelectric bone-conduction bending hearing actuator.
Adamson, R B A; Bance, M; Brown, J A
2010-10-01
A prototype of a novel bone-conduction hearing actuator based on a piezoelectric bending actuator is presented. The device lies flat against the skull which would allow it to form the basis of a subcutaneous bone-anchored hearing aid. The actuator excites bending in bone through a local bending moment rather than the application of a point force as with conventional bone-anchored hearing aids. Through measurements of the cochlear velocity created by the actuator in embalmed human heads, the device is shown to exhibit high efficiency, making it a possible alternative to present-day electromagnetic bone-vibration actuators.
NASA Astrophysics Data System (ADS)
Chakrabarti, Suryarghya; Dapino, Marcelo J.
2009-03-01
A bidirectional magnetostrictive actuator with millimeter stroke and a blocked force of few tens of Newtons has been developed based on a Terfenol-D driver and a simple hydraulic magnification stage. The actuator is compared with an electrodynamic actuator used in active powertrain mounts in terms of electrical power consumption, frequency bandwidth, and spectral content of the response. The measurements show that the actuator has a flat free-displacement and blocked-force response up to 200 Hz, suggesting a significantly broader frequency bandwidth than commercial electromagnetic actuators while drawing comparable amounts of power.
Mesofluidic controlled robotic or prosthetic finger
Lind, Randall F; Jansen, John F; Love, Lonnie J
2013-11-19
A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.
Development of a Meso-Scale SMA-Based Torsion Actuator for Image-Guided Procedures.
Sheng, Jun; Gandhi, Dheeraj; Gullapalli, Rao; Simard, J Marc; Desai, Jaydev P
2017-02-01
This paper presents the design, modeling, and control of a meso-scale torsion actuator based on shape memory alloy (SMA) for image-guided surgical procedures. Developing a miniature torsion actuator is challenging, but it opens the possibility of significantly enhancing the robot agility and maneuverability. The proposed torsion actuator is bi-directionally actuated by a pair of antagonistic SMA torsion springs through alternate Joule heating and natural cooling. The torsion actuator is integrated into a surgical robot prototype to demonstrate its working performance in the humid environment under C-Arm CT image guidance.
High speed hydraulically-actuated operating system for an electric circuit breaker
Iman, I.
1983-06-07
This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.
High speed hydraulically-actuated operating system for an electric circuit breaker
Iman, Imdad
1983-06-07
This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.
1993-01-01
The development of the electric space actuator represents an unusual case of space technology transfer wherein the product was commercialized before it was used for the intended space purpose. MOOG, which supplies the thrust vector control hydraulic actuators for the Space Shuttle and brake actuators for the Space Orbiter, initiated development of electric actuators for aerospace and industrial use in the early 1980s. NASA used the technology to develop an electric replacement for the Space Shuttle main engine TVC actuator. An electric actuator is used to take passengers on a realistic flight to Jupiter at the US Space and Rocket Center, Huntsville, Alabama.
Microprocessor controlled proof-mass actuator
NASA Technical Reports Server (NTRS)
Horner, Garnett C.
1987-01-01
The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.
Reliable actuators for twin rotor MIMO system
NASA Astrophysics Data System (ADS)
Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.
2017-11-01
Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.
Development of a Meso-Scale SMA-Based Torsion Actuator for Image-Guided Procedures
Sheng, Jun; Gandhi, Dheeraj; Gullapalli, Rao; Simard, J. Marc; Desai, Jaydev P.
2016-01-01
This paper presents the design, modeling, and control of a meso-scale torsion actuator based on shape memory alloy (SMA) for image-guided surgical procedures. Developing a miniature torsion actuator is challenging, but it opens the possibility of significantly enhancing the robot agility and maneuverability. The proposed torsion actuator is bi-directionally actuated by a pair of antagonistic SMA torsion springs through alternate Joule heating and natural cooling. The torsion actuator is integrated into a surgical robot prototype to demonstrate its working performance in the humid environment under C-Arm CT image guidance. PMID:28210189
NASA Technical Reports Server (NTRS)
Peeples, Steven
2015-01-01
A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.
Torsional actuator motor using solid freeform fabricated PZT ceramics
NASA Astrophysics Data System (ADS)
Kim, Chulho; Wu, Carl C. M.; Bender, Barry
2004-07-01
A torsional actuator has been developed at NRL utilizing the high piezoelectric shear coefficient, d15. This torsional actuator uses an even number of alternately poled segments of electroactive PZT. Under an applied electric field, the torsional actuator produces large angular displacement and a high torque. The solid freeform fabrication technique of the laminated object manufacturing (LOM) is used for rapid prototyping of torsional actuator with potential cost and time saving. First step to demonstrate the feasibility of the LOM technique for the torsional actuator device fabrication is to make near net shape segments. We report a prototype PZT torsional actuator using LOM prepared PZT-5A segments. Fabrication processes and test results are described. The torsional actuator PZT-5A tube has dimensions of 13 cm long, 2.54 cm OD and 1.9 cm ID. Although the piezoelectric strain is small, it may be converted into large displacement via accumulation of the small single cycle displacements over many cycles using AC driving voltage such as with a rotary 'inchworm' actuator or an ultrasonic rotary motor. A working prototype of a full-cycle motor driven by the piezoelectric torsional actuator has been achieved. The rotational speed is 1,200 rpm under 200 V/cm field at the resonant frequency of 4.5 kHz.
Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan
2015-12-22
In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.
Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror
Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong
2015-01-01
In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432
Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF
NASA Astrophysics Data System (ADS)
Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon
2008-08-01
In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.
NASA Astrophysics Data System (ADS)
Lee, Jang-Woo; Hong, Soon Man; Koo, Chong Min
2014-08-01
High-bendable, air-operable ionic polymer-metal composite (IPMC) actuators composed of electroactive nanostructured middle-block sulfonated styrenic pentablock copolymer (SSPB)/sulfonated montmorillonite (s-MMT) nanocomposite electrolyte membranes with bulky imidazolium ionic liquids (ILs) incorporated were fabricated and their bending actuation performances were evaluated. The SSPB-based IPMC actuators showed larger air-operable bending displacements, higher displacement rates, and higher energy efficiency of actuations without conventional IPMC bottlenecks, including back relaxation and actuation instability during actuation in air, than the Nafion counterpart. Incorporation of s-MMT into the SSPB matrix further enhanced the actuation performance of the IPMC actuators in terms of displacement, displacement rate, and energy efficiency. The remarkably high performance of the SSPB/s-MMT/IL IPMCs was considered to be due to the microphase-separated large ionic domains of the SSPB (the average diameter of the ionic domain: ca. 20 nm) and the role of s-MMT as an ionic bridge between the ionic domains, and the ion pumping effect of the bulky imidazolium cations of the ILs as well. The microphase-separated nanostructure of the composite membranes caused a high dimensional stability upon swelling in the presence of ILs, which effectively preserved the original electrode resistance against swelling, leading to a high actuation performance of IPMC.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
3D printed soft parallel actuator
NASA Astrophysics Data System (ADS)
Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif
2018-04-01
This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.
Actuators Using Piezoelectric Stacks and Displacement Enhancers
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Lee, Hyeong Jae; Walkenmeyer, Phillip; Lih, Shyh-Shiuh
2015-01-01
Actuators are used to drive all active mechanisms including machines, robots, and manipulators to name a few. The actuators are responsible for moving, manipulating, displacing, pushing and executing any action that is needed by the mechanism. There are many types and principles of actuation that are responsible for these movements ranging from electromagnetic, electroactive, thermo-mechanic, piezoelectric, electrostrictive etc. Actuators are readily available from commercial producers but there is a great need for reducing their size, increasing their efficiency and reducing their weight. Studies at JPL’s Non Destructive Evaluation and Advanced Actuators (NDEAA) Laboratory have been focused on the use of piezoelectric stacks and novel designs taking advantage of piezoelectric’s potential to provide high torque/force density actuation and high electromechanical conversion efficiency. The actuators/motors that have been developed and reviewed in this paper are operated by various horn configurations as well as the use of pre-stress flexures that make them thermally stable and increases their coupling efficiency. The use of monolithic designs that pre-stress the piezoelectric stack eliminates the use of compression stress bolt. These designs enable the embedding of developed solid-state motors/actuators in any structure with the only macroscopically moving parts are the rotor or the linear translator. Finite element modeling and design tools were used to determine the requirements and operation parameters and the results were used to simulate, design and fabricate novel actuators/motors. The developed actuators and performance will be described and discussed in this paper.
Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications
NASA Astrophysics Data System (ADS)
Liu, Jiayu; Wang, Yanjie; Zhao, Dongxu; Zhang, Chi; Chen, Hualing; Li, Dichen
2014-03-01
Minimally Invasive Surgery (MIS) is receiving much attention for a number of reasons, including less trauma, faster recovery and enhanced precision. The traditional robotic actuators do not have the capabilities required to fulfill the demand for new applications in MIS. Ionic Polymer-Metal Composite (IPMC), one of the most promising smart materials, has extensive desirable characteristics such as low actuation voltage, large bending deformation and high functionality. Compared with traditional actuators, IPMCs can mimic biological muscle and are highly promising for actuation in robotic surgery. In this paper, a new approach which involves molding and integrating IPMC actuators into a soft silicone tube to create an active actuating tube capable of multi-degree-of-freedom motion is presented. First, according to the structure and performance requirements of the actuating tube, the biaxial bending IPMC actuators fabricated by using solution casting method have been implemented. The silicone was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D Printing technology. Then an assembly based fabrication process was used to mold or integrate biaxial bending IPMC actuators into the soft silicone material to create an active control tube. The IPMC-embedded tube can generate multi-degree-of-freedom motions by controlling each IPMC actuator. Furthermore, the basic performance of the actuators was analyzed, including the displacement and the response speed. Experimental results indicate that IPMC-embedded tubes are promising for applications in MIS.
An artificial muscle actuator for biomimetic underwater propulsors.
Yim, Woosoon; Lee, Joonsoo; Kim, Kwang J
2007-06-01
In this paper, we introduce the analytical framework of the modeling dynamic characteristics of a soft artificial muscle actuator for aquatic propulsor applications. The artificial muscle used for this underwater application is an ionic polymer-metal composite (IPMC) which can generate bending motion in aquatic environments. The inputs of the model are the voltages applied to multiple IPMCs, and the output can be either the shape of the actuators or the thrust force generated from the interaction between dynamic actuator motions and surrounding water. In order to determine the relationship between the input voltages and the bending moments, the simplified RC model is used, and the mechanical beam theory is used for the bending motion of IPMC actuators. Also, the hydrodynamic forces exerted on an actuator as it moves relative to the surrounding medium or water are added to the equations of motion to study the effect of actuator bending on the thrust force generation. The proposed method can be used for modeling the general bending type artificial muscle actuator in a single or segmented form operating in the water. The segmented design has more flexibility in controlling the shape of the actuator when compared with the single form, especially in generating undulatory waves. Considering an inherent nature of large deformations in the IPMC actuator, a large deflection beam model has been developed and integrated with the electrical RC model and hydrodynamic forces to develop the state space model of the actuator system. The model was validated against existing experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dian; Whitesides, George M.
A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predeterminedmore » direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.« less
Effects of ionic liquids on the performance of IPMC
NASA Astrophysics Data System (ADS)
Kim, Min Jung; Park, Sang Woo; Won, Joohye; Nah, Changwoon
2017-04-01
One of the issues in operating the IPMC actuators in air condition is the limited lifetime due to the evaporation of aqueous electrolytes like water. Several attempts were already made for solving the problem using an ionic liquid (IL) with higher boiling point. In this study, three different ILs having similar boiling point but different molecular weight were employed in the IPMC actuators. The actuation performance, notably speed and lifetime, were measured and they are compared with that of water-based IPMC actuator. The lower molecular weight IL showed a comparable actuation speed of water due to faster movement of the ion cluster. The lifetime of the water-based IPMC actuator was found to be only 3 hr. However, the IL-based IPMC actuators showed much improved service life.
The Load Capability of Piezoelectric Single Crystal Actuators
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.
2006-01-01
Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.
The Load Capability of Piezoelectric Single Crystal Actuators
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.
2007-01-01
Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.
NASA Astrophysics Data System (ADS)
Sait, Usha; Muthuswamy, Sreekumar
2016-05-01
Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.
Van So, Pham; Jun, Hyun Woo; Lee, Jaichan
2013-12-01
We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.
NASA Astrophysics Data System (ADS)
Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi
2018-05-01
Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.
Silkworm protein: its possibility as an actuator
NASA Astrophysics Data System (ADS)
Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan
2006-03-01
The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.
Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels
NASA Technical Reports Server (NTRS)
Siochi, Emilie J. (Inventor); Sauti, Godfrey (Inventor); Wilkinson, Stephen P. (Inventor); Guo, Haiquan N. (Inventor); Xu, Tian-Bing (Inventor); Meador, Mary Ann B. (Inventor)
2015-01-01
Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.
A novel multi-actuation CMOS RF MEMS switch
NASA Astrophysics Data System (ADS)
Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che
2008-12-01
This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.
Tunable Optical Assembly with Vibration Dampening
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Allison, Sidney G.; Fox, Robert L.
2008-01-01
Since their market introduction in 1995, fiber Bragg gratings (FBGs) have emerged as excellent means of measuring such parameters as strain and temperature. Distributed-grating sensing is particularly beneficial for such structural-health monitoring applications such as those of 'smart' structures or integrated vehicle health management in aerospace vehicles. Because of the variability of their output wavelengths, tunable lasers have become widely used as means of measuring FBGs. Several versions of a lightweight assembly for strain-tuning an FBG and dampening its vibrations have been constructed. The main components of such an assembly are one or more piezoelectric actuators, an optical fiber containing one or more Bragg grating(s), a Bragg-grating strain-measurement system, and a voltage source for actuation. The piezoelectric actuators are, more specifically, piezoceramic fiber composite actuators and, can be, still more specifically, of a type known in the art as macro-fiber composite (MFC) actuators. In fabrication of one version of the assembly, the optical fiber containing the Bragg grating(s) is sandwiched between the piezoelectric actuators along with an epoxy that is used to bond the optical fiber to both actuators, then the assembly is placed in a vacuum bag and kept there until the epoxy is cured. Bonding an FBG directly into an MFC actuator greatly reduces the complexity, relative to assemblies, that include piezoceramic fiber composite actuators, hinges, ferrules, and clamp blocks with setscrews. Unlike curved actuators, MFC actuators are used in a flat configuration and are less bulky. In addition, the MFC offers some vibration dampening and support for the optical fiber whereas, in a curved piezoelectric actuator assembly, the optical fiber is exposed, and there is nothing to keep the exposed portion from vibrating.
Choi, Seung Hong; Yoon, Bye-Ri; Oh, Jin Sun; Han, Moon Hee; Lee, Jang Yeol; Cho, Hye Rim; Kim, Moon June; Rhee, Kyehan; Jho, Jae Young
2011-01-01
In this study, we propose a new method for enhancement of intraarterial thrombolysis using an ionic polymer-metal composite (IPMC) actuator. The purpose of this study was to test the mechanical thrombolysis efficiency of IPMC actuators and evaluate the endovascular vibrating polymer actuator probe for mechanical thrombolysis in a phantom model; 2 × 1 × 15 mm (2 mm in width, 1 mm in thickness, and 15 mm in length) and 0.8 × 0.8 × 10 mm (0.8 mm in width, 0.8 mm in thickness, and 10 mm in length) IPMC actuators were fabricated by stacking five and four Nafion-117 films, respectively. We manufactured the endovascular vibrating polymer actuator probe, for which thrombolysis efficiency was tested in a vascular phantom. The phantom study using 2 × 1 × 15 mm IPMC actuators showed that 5 Hz actuation is the optimal frequency for thrombolysis under both 2 and 3 V, when blood clot was not treated with rtPA, and when exposed to rtPA, IPMC actuators under the optimized condition (3 V, 5 Hz, and 5 min) significantly increased the thrombolysis degree compared with control and other experimental groups (p < 0.05). In addition, 0.8 × 0.8 × 10 mm IPMC actuators also revealed a significantly higher thrombolysis degree under the optimized condition than the control and rtPA only groups (p < 0.05). Finally, the fabricated probe using 0.8 × 0.8 × 10 mm IPMC actuators also incurred higher thrombolysis degree under the optimized condition than the control and rtPA only groups (p < 0.05). A vibrating polymer actuator probe is a feasible device for intravascular thrombolysis, and further study in an animal model is warranted.
Large Stroke High Fidelity PZN-PT Single-Crystal "Stake" Actuator.
Huang, Yu; Xia, Yuexue; Lin, Dian Hua; Yao, Kui; Lim, Leong Chew
2017-10-01
A new piezoelectric actuator design, called "Stake" actuator, is proposed and demonstrated in this paper. As an example, the stake actuator is made of four d 32 -mode PZN-5.5%PT single crystals (SCs), each of 25 mm ( L ) ×8 mm ( W ) ×0.4 mm (T) in dimensions, bonded with the aid of polycarbonate edge guide-cum-stiffeners into a square-pipe configuration for improved bending and twisting strengths and capped with top and bottom pedestals made of 1.5-mm-thick anodized aluminum. The resultant stake actuator measured 9 mm ×9 mm ×28 mm. The hollow structure is a key design feature, which optimizes SC usage efficiency and lowers the overall cost of the actuator. The displacement-voltage responses, blocking forces, resonance characteristics of the fabricated stake actuator, as well as the load and temperature effects, are measured and discussed. Since d 32 is negative for [011]-poled SC, the "Stake" actuator contracts in the axial direction when a positive-polarity field is applied to the crystals. Biased drive is thus recommended when extensional displacement is desired. The SC stake actuator has negligible (<1%) hysteresis and a large linear strain range of >0.13% when driven up to +300 V (i.e., 0.75 kV/mm), which is close to the rhombohedral-to-orthorhombic transformation field ( E RO ) of 0.85 kV/mm of the SC used. The stake actuator displays a stroke of [Formula: see text] (at +300 V) despite its small overall dimensions, and has a blocking force of 114 N. The SC d 32 stake actuator fabricated displays more than 30% larger axial strain than the state-of-the-art PZT stack actuators of comparable length as well as moderate blocking forces. Said actuators are thus ideal for applications when large displacements with simple open-loop control are preferred.
Pulsed-DC DBD Plasma Actuators
NASA Astrophysics Data System (ADS)
Duong, Alan; Corke, Thomas; Thomas, Flint
2017-11-01
A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.
Analysis of out-of-plane thermal microactuators
NASA Astrophysics Data System (ADS)
Atre, Amarendra
2006-02-01
Out-of-plane thermal microactuators find applications in optical switches to motivate micromirrors. Accurate analysis of such actuators is beneficial for improving existing designs and constructing more energy efficient actuators. However, the analysis is complicated by the nonlinear deformation of the thermal actuators along with temperature-dependent properties of polysilicon. This paper describes the development, modeling issues and results of a three-dimensional multiphysics nonlinear finite element model of surface micromachined out-of-plane thermal actuators. The model includes conductive and convective cooling effects and takes into account the effect of variable air gap on the response of the actuator. The model is implemented to investigate the characteristics of two diverse MUMPs fabricated out-of-plane thermal actuators. Reasonable agreement is observed between simulated and measured results for the model that considers the influence of air gap on actuator response. The usefulness of the model is demonstrated by implementing it to observe the effect of actuator geometry variation on steady-state deflection response.
A multilayered-cylindrical piezoelectric shear actuator operating in shear (d15) mode
NASA Astrophysics Data System (ADS)
Gao, Xiangyu; Xin, Xudong; Wu, Jingen; Chu, Zhaoqiang; Dong, Shuxiang
2018-04-01
In this work, a multilayered-cylindrical piezoelectric shear actuator (MCPSA) operating in the d15 shear mode was presented for precision actuation under a large mechanical load. The actuator was made of Pb(Zr,Ti)O3 (PZT-51) piezoelectric ceramic rings, which were concentrically assembled together in electrically parallel connection with alternately positive and negative polarizations along the axial direction. Experimental results show that the acquired displacement amplitude at the center of the actuator along the axial direction is around 6.5 μm under the 1 Hz applied voltage of 400 Vpp/mm, and it stayed stably under a mechanical load up to 18 N, which is 7 times larger than that of the previously reported d15 shear actuator. The proposed actuator also shows good displacement linearity with a high resolution of 0.1 μm in responding to a step voltage, indicating its great potential for precision actuation under a large mechanical load.
Test Cases for Modeling and Validation of Structures with Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.
2001-01-01
A set of benchmark test articles were developed to validate techniques for modeling structures containing piezoelectric actuators using commercially available finite element analysis packages. The paper presents the development, modeling, and testing of two structures: an aluminum plate with surface mounted patch actuators and a composite box beam with surface mounted actuators. Three approaches for modeling structures containing piezoelectric actuators using the commercially available packages: MSC/NASTRAN and ANSYS are presented. The approaches, applications, and limitations are discussed. Data for both test articles are compared in terms of frequency response functions from deflection and strain data to input voltage to the actuator. Frequency response function results using the three different analysis approaches provided comparable test/analysis results. It is shown that global versus local behavior of the analytical model and test article must be considered when comparing different approaches. Also, improper bonding of actuators greatly reduces the electrical to mechanical effectiveness of the actuators producing anti-resonance errors.
Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations.
Shams, Qamar A; Soto, Hector L; Zuckerwar, Allan J
2009-09-01
Crosstalk in electrostatic actuator calibrations is defined as the ratio of the microphone response to the actuator excitation voltage at a given frequency with the actuator polarization voltage turned off to the response, at the excitation frequency, with the polarization voltage turned on. It consequently contributes to the uncertainty of electrostatic actuator calibrations. Two sources of crosstalk are analyzed: the first attributed to the stray capacitance between the actuator electrode and the microphone backplate, and the second to the ground resistance appearing as a common element in the actuator excitation and microphone input loops. Measurements conducted on 1/4, 1/2, and 1 in. air condenser microphones reveal that the crosstalk has no frequency dependence up to the membrane resonance frequency and that the level of crosstalk lies at about -60 dB for all three microphones-conclusions that are consistent with theory. The measurements support the stray capacitance model. The contribution of crosstalk to the measurement standard uncertainty of an electrostatic actuator calibration is therewith 0.01 dB.
a New ER Fluid Based Haptic Actuator System for Virtual Reality
NASA Astrophysics Data System (ADS)
Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.
The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.
Inertia-Controlled Twinning in Ni-Mn-Ga Actuators: A Discrete Twin-Boundary Dynamics Study
NASA Astrophysics Data System (ADS)
Faran, Eilon; Riccardi, Leonardo; Shilo, Doron
2017-09-01
A discrete twin-boundary modeling approach is applied for simulating the dynamic magnetomechanical response of a Ni-Mn-Ga actuator over a wide frequency range. The model is based on experimentally measured kinetic relation of individual twin boundaries and takes into account inertial forces due to acceleration of the actuator's mass. The calculated results show good agreement with experimental measurements performed on a specially designed Ni-Mn-Ga linear spring-mass actuator. In addition, the simulation reveals several new effects that have not been considered before and can be applied to the design of improved actuators. It is identified that the demagnetization effect plays a role of an "effective spring" and results in a resonance-type response. The effects of the actuator's mass and the twin-boundary density on the resonance response and the actuator performance are explored numerically. In particular, it is shown that mass-inertia poses an inherent upper limit over the actuator's bandwidth, which is approximately constant and equals to about 200 Hz.
Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin
2018-04-30
Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6 mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.
Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.
Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan
2012-05-01
In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.
Spooled packaging of shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Redmond, John A.
A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators with mitigated material, power, and packaging costs and compact, customizable form factors. By examining the multi-faceted connections between performance, packaging, and cost, this dissertation builds a knowledge base that goes beyond implementing SMA actuators for particular applications. Rather, it provides a well-developed strategy for realizing the advantages of SMA actuation for a broadened range of applications, thereby enabling opportunities for new functionality and capabilities in industry.
Investigation of microscale dielectric barrier discharge plasma devices
NASA Astrophysics Data System (ADS)
Zito, Justin C.
This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power consumption with the mass and volume of the actuator design. The small size and of microscale DBD actuators reduces its weight and power requirements, making them attractive for portable or battery-powered applications (e.g., on UAVs).
Anisotropic D-EAP Electrodes and their Application in Spring Roll Actuators
NASA Astrophysics Data System (ADS)
Fang, Xiaomeng
Electroactive polymers (EAPs) exhibit shape change when subjected to an electric field. They are lightweight, soft, and inexpensive, while they are easy to process, shape, and tune to offer a broad range of mechanical and electrical properties. Dielectric electroactive polymers (DEAP) constitute a class of EAPs with great potential. D-EAPs consist of physically or chemically cross-linked macromolecular networks and are mechanically isotopic. Therefore, in most actuator applications that require directional electromechanical response, it is necessary to use other complex means to direct the stress/strain in the preferred direction. In this work, a simple carbon nanotube (CNT) based electrode for D-EAP actuators is demonstrated that vastly improves directional strain response originating from the mechanical anisotropy of the electrode material. Using this novel approach, the mechanical anisotropy, defined as the ratio of initial modulus in fiber direction and that in cross-fiber direction, of the CNT electroded VHB actuators, ranges from 7.9 to 11.2. Hence, the CNT-VHB flat film actuators show high directed linear actuation strain in cross-fiber direction of greater than 25% meanwhile almost no strain in fiber direction at a relatively low electric field (120 V mum-1). The morphology of the CNT sheets has critical influence on their mechanical properties and resultant actuator performance. The results demonstrate the efficacy of microcombing and selective laser etching processes to improve the CNT fiber alignment to produce pure unidirectional strain of 33% at a relatively moderate electric field. Unidirectional D-EAP composite laminates using polyurethane and polyamide monofilaments are also employed in spring roll actuators to investigate their directional mechanical and electromechanical properties. While CNT electroded D-EAP spring roll actuators were found to have about the same performance as actuators with carbon grease electrodes (6.5% strain in CNT electroded spring roll actuators and 8.2% for carbon grease electroded actuators at 5kV), spring roll actuator made of fiber reinforced VHB composites with carbon grease electrodes showed marginal improvement in actuation strain (9.9%-11% strain in longitudinal direction at 5kV).
Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PIN-PMN-PT
NASA Astrophysics Data System (ADS)
Ozaki, Takashi; Hamaguchi, Kanae
2018-02-01
We present a prototype flapping-wing actuator with a direct-driven mechanism to generate lift in micro- and nano-aerial vehicles. This mechanism has an advantage of simplicity because it has no transmission system between the actuator and wing. We fabricated the piezoelectric unimorph actuator from single-crystal PIN-PMN-PT, which achieved a lift force up to 1.45 mN, a value about 1.9 times larger than the mass of the actuator itself. This is the first reported demonstration of an insect-scale actuator with a direct-driven mechanism that can generate a lift force greater than its own weight.
Actuator development for the Instrument Pointing System (IPS)
NASA Technical Reports Server (NTRS)
Suttner, K.
1984-01-01
The mechanisms of the instrument pointing system (IPS) are described. Particular emphasis is placed on the actuators which are necessary for operating the IPS. The actuators are described as follows: (1) two linear actuators that clamp the gimbals down during ascent and descent; (2) two linear actuators that attach the payload to the IPS during the mission, and release it into the payload clamps; (3) one rotational actuator that opens and closes the payload clamps; and (4) three identical drive units that represent the three orthogonal gimbal axes and are the prime movers for pointing. Design features, manufacturing problems, test performance, and results are presented.
NASA Astrophysics Data System (ADS)
Hanson, David F.
2017-04-01
Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.
Ferroelectric Fluid Flow Control Valve
NASA Technical Reports Server (NTRS)
Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)
1999-01-01
An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.
Integrated piezoelectric actuators in deep drawing tools
NASA Astrophysics Data System (ADS)
Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.
2011-04-01
The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.
NASA Astrophysics Data System (ADS)
Wheeler, Robert W.; Lagoudas, Dimitris C.
2017-04-01
Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.
Composite Polymeric Membranes with Directionally Embedded Fibers for Controlled Dual Actuation.
Liu, Li; Bakhshi, Hadi; Jiang, Shaohua; Schmalz, Holger; Agarwal, Seema
2018-04-20
In this paper, preparation method and actuation properties of an innovative composite membrane composed of thermo- and pH-responsive poly(N-isopropylacrylamide-co-acrylic acid) fibers (average diameter ≈ 905 nm) embedded within a passive thermoplastic polyurethane (TPU) matrix at different angles with degree of alignment as high as 98% are presented. The composite membrane has a gradient of TPU along the thickness. It has the capability of temperature- and pH-dependent direction-, and size-controlled actuation in few minutes. The stresses generated at the responsive fiber and nonresponsive matrix provide actuation, whereas the angle at which fibers are embedded in the matrix controls the actuation direction and size. The temperature has no effect on actuation and actuated forms at pH 7 and above, whereas the size of the actuated forms can be controlled by the temperature at lower pH. The membranes are strong enough to reversibly lift and release ≈426 times weight of their own mass (2.47 g metal ring is lifted by a 5.8 mg membrane). Soft actuators are of interest as smart scaffolds, robotics, catalysis, drug release, energy storage, electrodes, and metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Reduced-Order Model For Zero-Mass Synthetic Jet Actuators
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.; Vatsa, Veer S.
2007-01-01
Accurate details of the general performance of fluid actuators is desirable over a range of flow conditions, within some predetermined error tolerance. Designers typically model actuators with different levels of fidelity depending on the acceptable level of error in each circumstance. Crude properties of the actuator (e.g., peak mass rate and frequency) may be sufficient for some designs, while detailed information is needed for other applications (e.g., multiple actuator interactions). This work attempts to address two primary objectives. The first objective is to develop a systematic methodology for approximating realistic 3-D fluid actuators, using quasi-1-D reduced-order models. Near full fidelity can be achieved with this approach at a fraction of the cost of full simulation and only a modest increase in cost relative to most actuator models used today. The second objective, which is a direct consequence of the first, is to determine the approximate magnitude of errors committed by actuator model approximations of various fidelities. This objective attempts to identify which model (ranging from simple orifice exit boundary conditions to full numerical simulations of the actuator) is appropriate for a given error tolerance.
Optimization of actuator arrays for aircraft interior noise control
NASA Technical Reports Server (NTRS)
Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.
1993-01-01
A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.
CNT/conductive polymer composites for low-voltage driven EAP actuators
NASA Astrophysics Data System (ADS)
Sugino, Takushi; Shibata, Yoshiyuki; Kiyohara, Kenji; Asaka, Kinji
2012-04-01
We investigated the effects of additives incorporated into the electrode layer in order to improve the actuation performance of dry-type carbon nanotube (CNT) actuators. Especially, the addition of conductive nano-particles such as polyaniline (PANI) and polypyrrole (PPy) improves actuation performance very much rather than the addition of nonconductive nano-particles such as mesoprous silica (MCM-41 type). In this paper, we studied on the influences of applied voltage, species of ionic liquid (IL), amounts of IL, thickness of actuator to optimize actuation performance. Imidazolium type ionic liquids with three different anions, that is, 1-ethyl-3-methylimidazolium (EMI) as a cation and tetrafluoroborate (BF4), trifluoromethanesulfonate (OTf), and bis(trifluoromethanesulfonyl)imide (TFSI) as anions were chosen in this study. EMIBF4 is the most suitable IL for our CNT actuator including PANI in the electrode layer. We tuned the amount of IL and the thickness of actuator. As a result, the strain was improved to be 2.2% at 0.1 Hz by applying the voltage of 2.5 V. This improved value is almost 2 times larger than our previous results. We also show the potential of improved CNT actuators for a thin and light Braille display.
NASA Astrophysics Data System (ADS)
Kim, Onnuri; Park, Moon Jeong
2015-03-01
Electroactive polymer (EAP) actuators that show reversible deformation under external electric stimulus have attracted great attention toward a range of biomimetic applications such as microsensors and artificial muscles. Key challenges to advance the technologies can be placed on the achievement of fast response time, low driving voltage, and durable operation in air. In present study, we are motivated to solve these issues by employing self-assembled block copolymers containing ionic liquids (ILs) as polymer layers in the actuator based on knowledge of factors affecting electromechanical properties of actuators. By controlling the block architecture and molecular weight of block copolymers, bending strain and durability were controlled in a straightforward manner. It has also been revealed that the type of IL makes impact on the EAP actuator performance by determining ion migration dynamics. Our actuators demonstrated large bending strains (up to 4%) under low voltages of 1-3V, which far exceeds the best performance of other EAP actuators reported in the literature. To underpin the molecular-level understanding of actuation mechanisms underlying the improved performance, we carried out in situ spectroscopy and in situ scattering experiments under actuation.
Finite element analysis of multilayer DEAP stack-actuators
NASA Astrophysics Data System (ADS)
Kuhring, Stefan; Uhlenbusch, Dominik; Hoffstadt, Thorben; Maas, Jürgen
2015-04-01
Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP). They are coated with compliant and conductive electrodes on each side, which make them performing a relative high amount of deformation with considerable force generation under the influence of an electric field. Because the realization of high electric fields with a limited voltage level requests single layer polymer films to be very thin, novel multilayer actuators are utilized to increase the absolute displacement and force. In case of a multilayer stack-actuator, many actuator films are mechanically stacked in series and electrically connected in parallel. Because there are different ways to design such a stack-actuator, this contribution considers an optimization of some design parameters using the finite element analysis (FEA), whereby the behavior and the actuation of a multilayer dielectric electroactive polymer (DEAP) stack-actuator can be improved. To describe the material behavior, first different material models are compared and necessary material parameters are identified by experiments. Furthermore, a FEA model of a DEAP film is presented, which is expanded to a multilayer DEAP stack-actuator model. Finally, the results of the FEA are discussed and conclusions for design rules of optimized stack-actuators are outlined.
Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
1993-01-01
Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed in this paper using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated in this paper by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-18 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.
Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
1993-01-01
Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-l8 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.
Numerical Simulation of Fluidic Actuators for Flow Control Applications
NASA Technical Reports Server (NTRS)
Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab
2012-01-01
Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.
Kim, Seung-Won; Koh, Je-Sung; Lee, Jong-Gu; Ryu, Junghyun; Cho, Maenghyo; Cho, Kyu-Jin
2014-09-01
The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus on the concept of exploiting structural characteristics for actuation. Using shape memory alloy (SMA), the robot actuates artificial leaves made from asymmetrically laminated carbon fiber reinforced prepregs. We exploit two distinct structural characteristics of the leaves. First, the bistability acts as an implicit actuator enabling rapid morphing motion. Second, the developable surface has a kinematic constraint that constrains the curvature of the artificial leaf. Due to this constraint, the curved artificial leaf can be unbent by bending the straight edge orthogonal to the curve. The bending propagates from one edge to the entire surface and eventually generates an overall shape change. The curvature change of the artificial leaf is 18 m(-1) within 100 ms when closing. Experiments show that these actuation mechanisms facilitate the generation of a rapid and large morphing motion of the flytrap robot by one-way actuation of the SMA actuators at a local position.
Power systems and requirements for the integration of smart structures into aircraft
NASA Astrophysics Data System (ADS)
Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.
2002-07-01
Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.
Sanada, Akira; Tanaka, Nobuo
2012-08-01
This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.
Polybenzoxazole Nanofiber-Reinforced Moisture-Responsive Soft Actuators.
Chen, Meiling; Frueh, Johannes; Wang, Daolin; Lin, Xiankun; Xie, Hui; He, Qiang
2017-04-10
Hydromorphic biological systems, such as morning glory flowers, pinecones, and awns, have inspired researchers to design moisture-sensitive soft actuators capable of directly converting the change of moisture into motion or mechanical work. Here, we report a moisture-sensitive poly(p-phenylene benzobisoxazole) nanofiber (PBONF)-reinforced carbon nanotube/poly(vinyl alcohol) (CNT/PVA) bilayer soft actuator with fine performance on conductivity and mechanical properties. The embedded PBONFs not only assist CNTs to form a continuous, conductive film, but also enhance the mechanical performance of the actuators. The PBONF-reinforced CNT/PVA bilayer actuators can unsymmetrically adsorb and desorb water, resulting in a reversible deformation. More importantly, the actuators show a pronounced increase of conductivity due to the deformation induced by the moisture change, which allows the integration of a moisture-sensitive actuator and a humidity sensor. Upon changing the environmental humidity, the actuators can respond by the deformation for shielding and report the humidity change in a visual manner, which has been demonstrated by a tweezer and a curtain. Such nanofiber-reinforced bilayer actuators with the sensing capability should hold considerable promise for the applications such as soft robots, sensors, intelligent switches, integrated devices, and material storage.
A Multi-Finger Interface with MR Actuators for Haptic Applications.
Qin, Huanhuan; Song, Aiguo; Gao, Zhan; Liu, Yuqing; Jiang, Guohua
2018-01-01
Haptic devices with multi-finger input are highly desirable in providing realistic and natural feelings when interacting with the remote or virtual environment. Compared with the conventional actuators, MR (Magneto-rheological) actuators are preferable options in haptics because of larger passive torque and torque-volume ratios. Among the existing haptic MR actuators, most of them are still bulky and heavy. If they were smaller and lighter, they would become more suitable for haptics. In this paper, a small-scale yet powerful MR actuator was designed to build a multi-finger interface for the 6 DOF haptic device. The compact structure was achieved by adopting the multi-disc configuration. Based on this configuration, the MR actuator can generate the maximum torque of 480 N.mm with dimensions of only 36 mm diameter and 18 mm height. Performance evaluation showed that it can exhibit a relatively high dynamic range and good response characteristics when compared with some other haptic MR actuators. The multi-finger interface is equipped with three MR actuators and can provide up to 8 N passive force to the thumb, index and middle fingers, respectively. An application example was used to demonstrate the effectiveness and potential of this new MR actuator based interface.
Misregistration in Adaptive Optics Systems
2009-06-01
which is constructcd on one thin reflectivc sheet that is attached to the actuators. This coupling of actuators introduces an influence function between...neighboring actuators. The actuator influence function Akl, is the phase caused hy poking an individual actuator. It is assumed that Akl = I at...the location (k, l). The influence function is given by { 0, A(x,y) = I-lxi, 1 -1111 , if Ixl > 1 or Iyl > 1, if Iyl :5 lxi, if Ixl :5 Iyl. (4) Using
Evaluation of New Actuators in a Buffet Loads Environment
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Wieseman, Carol D.; Bent, Aaron A.; Pizzochero, Alessandro E.
2001-01-01
Ongoing research in buffet loads alleviation has provided an application for recently developed piezoelectric actuators capable of higher force output than previously existing actuators could provide and that can be embedded within the vehicle s structure. These new actuators, having interdigitated electrodes, promise increased performance over previous piezoelectric actuators that were tested on the fin of an F/A-18 aircraft. Two new actuators being considered by the United States Air Force to reduce buffet loads on high performance aircraft were embedded into the fins of an F/A-18 wind-tunnel model and tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center. The purpose of this test program, called ENABLE (Evaluation of New Actuators in a Buffet Loads Environment), was to examine the performance of the new actuators in alleviating fin buffeting, leading to a systems -level study of a fin buffet loads alleviation system architecture being considered by the USAF, Boeing, and NASA for implementation on high performance aircraft. During this windtunnel test, the two actuators performed superbly in alleviating fin buffeting. Peak values of the power spectral density functions for tip acceleration were reduced by as much as 85%. RMS values of tip acceleration were reduced by as much as 40% while using less than 50% of the actuators capacity. Details of the wind-tunnel model and results of the wind-tunnel test are provided herein.
NASA Astrophysics Data System (ADS)
Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2005-08-01
A new concept of using an electrically insulating beam as a constraint is proposed to construct planar spring-like electro-thermal actuators with large displacements. On the basis of this concept, three types of microspring actuators with multi-chevron structures and constraint beams are introduced. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In the other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inner side of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Finite-element analysis was used to model the performances. The simulation shows that the displacements of these microspring actuators are all proportional to the number of the chevron sections in series, thus achieving superior displacements to alternative actuators. The displacement of a spring actuator strongly depends on the beam angle, and decreases with increasing the beam angle, the deflector is insensitive to the beam angle, while the displacement of a contractor actuator increases with the beam angle.
Evaluation of a silicon 5 MHz p–n diode actuator with a laterally vibrating extensional mode
NASA Astrophysics Data System (ADS)
Miyazaki, Fumito; Baba, Kazuki; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro
2018-05-01
In this paper, we describe p–n diode actuators that are laterally driven by the force induced in a depletion layer. The previously reported p–n diode actuators have been vertically driven. Because the resonant frequency depends on the thickness of the vibrating plate, the integration of resonators with different frequencies on a chip has been difficult. The resonators in this work are driven laterally by using length-extensional vibration. We have developed a compact model based on an analytical expression, in which p–n diode actuators are driven by the forces induced by the spread of the depletion layer. The deflection generated by the p–n diode actuators was proportional to the ratio of the depletion layer width to the resonator thickness as well as the position of the p–n junction. Good agreement of experimental results with the theory was confirmed by comparing the measured values for silicon p–n diode rectangular-plate actuators fabricated using a silicon-on-insulator (SOI) substrate. The displacement amplitude of the actuators was proportional to the DC bias, while the resonant frequency was independent of the DC bias. The latter characteristic is very different from that of widely used electrostatic actuators. Although the amplitude of the actuator measured in this work was very small, it is expected that the amplitude will increase greatly by increasing the doping of the p–n diode actuators.
Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems
NASA Astrophysics Data System (ADS)
Chan, Kwong Wah; Liao, Wei-Hsin
2006-03-01
Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.
Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators
NASA Astrophysics Data System (ADS)
Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.
2015-04-01
The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.
Assessing the degradation of compliant electrodes for soft actuators.
Rosset, Samuel; de Saint-Aubin, Christine; Poulin, Alexandre; Shea, Herbert R
2017-10-01
We present an automated system to measure the degradation of compliant electrodes used in dielectric elastomer actuators (DEAs) over millions of cycles. Electrodes for DEAs generally experience biaxial linear strains of more than 10%. The decrease in electrode conductivity induced by this repeated fast mechanical deformation impacts the bandwidth of the actuator and its strain homogeneity. Changes in the electrode mechanical properties lead to reduced actuation strain. Rather than using an external actuator to periodically deform the electrodes, our measurement method consists of measuring the properties of an electrode in an expanding circle DEA. A programmable high voltage power supply drives the actuator with a square signal up to 1 kHz, periodically actuating the DEA, and thus stretching the electrodes. The DEA strain is monitored with a universal serial bus camera, while the resistance of the ground electrode is measured with a multimeter. The system can be used for any type of electrode. We validated the test setup by characterising a carbon black/silicone composite that we commonly use as compliant electrode. Although the composite is well-suited for tens of millions of cycles of actuation below 5%, we observe important degradation for higher deformations. When activated at a 20% radial strain, the electrodes suffer from important damage after a few thousand cycles, and an inhomogeneous actuation is observed, with the strain localised in a sub-region of the actuator only.
Assessing the degradation of compliant electrodes for soft actuators
NASA Astrophysics Data System (ADS)
Rosset, Samuel; de Saint-Aubin, Christine; Poulin, Alexandre; Shea, Herbert R.
2017-10-01
We present an automated system to measure the degradation of compliant electrodes used in dielectric elastomer actuators (DEAs) over millions of cycles. Electrodes for DEAs generally experience biaxial linear strains of more than 10%. The decrease in electrode conductivity induced by this repeated fast mechanical deformation impacts the bandwidth of the actuator and its strain homogeneity. Changes in the electrode mechanical properties lead to reduced actuation strain. Rather than using an external actuator to periodically deform the electrodes, our measurement method consists of measuring the properties of an electrode in an expanding circle DEA. A programmable high voltage power supply drives the actuator with a square signal up to 1 kHz, periodically actuating the DEA, and thus stretching the electrodes. The DEA strain is monitored with a universal serial bus camera, while the resistance of the ground electrode is measured with a multimeter. The system can be used for any type of electrode. We validated the test setup by characterising a carbon black/silicone composite that we commonly use as compliant electrode. Although the composite is well-suited for tens of millions of cycles of actuation below 5%, we observe important degradation for higher deformations. When activated at a 20% radial strain, the electrodes suffer from important damage after a few thousand cycles, and an inhomogeneous actuation is observed, with the strain localised in a sub-region of the actuator only.
Damage evolution during actuation fatigue in shape memory alloys (SPIE Best Student Paper Award)
NASA Astrophysics Data System (ADS)
Phillips, Francis R.; Wheeler, Robert; Lagoudas, Dimitris C.
2018-03-01
Shape Memory Alloys (SMAs) are unique materials able to undergo a thermomechanically induced, reversible phase transformation. Additionally, SMA are subject to two types of fatigue, that is structural fatigue due to cyclic loading as experienced by most materials, as well as actuation fatigue due to repeated thermally induced phase transformation. The evolution of multiple material characteristics is presented over the actuation fatigue lifetime of NiTiHf actuators, including the accumulation of irrecoverable strain, the evolution of internal voids, and the evolution of the effective modulus of the actuator. The results indicate that all three of these material characteristics are clearly interconnected and careful analysis of each of these characteristics can help to understand the evolution of the others, as well as help to understand how actuation fatigue leads to ultimate failure of the actuator.
Compact Active Vibration Control System for a Flexible Panel
NASA Technical Reports Server (NTRS)
Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)
2014-01-01
A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.
A multi-purpose electromagnetic actuator for magnetic resonance elastography.
Feng, Yuan; Zhu, Mo; Qiu, Suhao; Shen, Ping; Ma, Shengyuan; Zhao, Xuefeng; Hu, Chun-Hong; Guo, Liang
2018-04-19
An electromagnetic actuator was designed for magnetic resonance elastography (MRE). The actuator is unique in that it is simple, portable, and capable of brain, abdomen, and phantom imagings. A custom-built control unit was used for controlling the vibration frequency and synchronizing the trigger signals. An actuation unit was built and mounted on the specifically designed clamp and holders for different imaging applications. MRE experiments with respect to gel phantoms, brain, and liver showed that the actuator could produce stable and consistent mechanical waves. Estimated shear modulus using local frequency estimate method demonstrated that the measurement results were in line with that from MRE studies using different actuation systems. The relatively easy setup procedure and simple design indicated that the actuator system had the potential to be applied in many different clinical studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Powered glove with electro-pneumatic actuation unit for the disabled
NASA Astrophysics Data System (ADS)
Kawakami, Kosuke; Kumano, Shinichi; Moromugi, Shunji; Ishimatsu, Takakazu
2007-12-01
Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be used in our daily life. Huge air compressor is needed and solenoid valves emit loud sound for example. These problems are hurdles to commercialize the powered glove. To solve these problems authors have developed a new actuation unit by integrating an electric cylinder and an air cylinder. This actuation unit has advantages of both the electric actuation and the pneumatic actuation. Its advanced grip control ability has demonstrated through several experiments. The experimental results are reported in this paper.
Shape memory alloy TiNi actuators for twist control of smart wing designs
NASA Astrophysics Data System (ADS)
Jardine, A. Peter; Kudva, Jayanth N.; Martin, Christopher A.; Appa, Kari
1996-05-01
On high performance military aircraft, small changes in both wing twist and wing camber have the potential to provide substantial payoffs in terms of additional lift and enhanced maneuverability. To achieve the required wing shape, actuators made of smart materials are currently being studied under an ARPA/WL contract for a subscale model of a fighter aircraft. The use of the shape memory alloy TiNi for wing twist actuation was investigated using shape memory effect (SME) torque tube actuator configurations. The actuator configurations were sized to fit inside a 16% scale model of an aircraft wing and the torque's supplied to the wing were similarly calculated from full-scale requirements. The actuator systems were tested in a conventional laboratory setting. Design and calibration of the actuators for wing twist are discussed.
Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid
Barbero, R J; Deutschinger, A; Todorov, V; Gray, D S; Belcher, A M; Rangelow, I W; Youcef-Toumi, K
2014-01-01
In this paper, we present a detailed investigation into the suitability of atomic force microscopy (AFM) cantilevers with integrated deflection sensor and micro-actuator for imaging of soft biological samples in fluid. The Si cantilevers are actuated using a micro-heater at the bottom end of the cantilever. Sensing is achieved through p-doped resistors connected in a Wheatstone bridge. We investigated the influence of the water on the cantilever dynamics, the actuation and the sensing mechanisms, as well as the crosstalk between sensing and actuation. Successful imaging of yeast cells in water using the integrated sensor and actuator shows the potential of the combination of this actuation and sensing method. This constitutes a major step towards the automation and miniaturization required to establish AFM in routine biomedical diagnostics and in vivo applications. PMID:19801750
NASA Astrophysics Data System (ADS)
Lai, William
Inspired by nature, the development of soft actuators has drawn large attention to provide higher flexibility and allow adaptation to more complex environment. This thesis is focused on utilizing electroactive polymers as active materials to develop soft planar dielectric elastomer actuators capable of complex 3D deformation. The potential applications of such soft actuators are in flexible robotic arms and grippers, morphing structures and flapping wings for micro aerial vehicles. The embraces design for a freestanding actuator utilizes the constrained deformation imposed by surface stiffeners on an electroactive membrane to avert the requirement of membrane pre-stretch and the supporting frames. The proposed design increases the overall actuator flexibility and degrees-of-freedom. Actuator design, fabrication, and performance are presented for different arrangement of stiffeners. Digital images correlation technique were utilized to evaluate the in-plane finite strain components, in order to elucidate the role of the stiffeners in controlling the three dimensional deformation. It was found that a key controlling factor was the localized deformation near the stiffeners, while the rest of the membrane would follow through. A detailed finite element modeling framework was developed with a user-material subroutine, built into the ABAQUS commercial finite element package. An experimentally calibrated Neo-Hookean based material model that coupled the applied electrical field to the actuator mechanical deformation was employed. The numerical model was used to optimize different geometrical features, electrode layup and stacking sequence of actuators. It was found that by splitting the stiffeners into finer segments, the force-stroke characteristics of actuator were able to be adjusted with stiffener configuration, while keeping the overall bending stiffness. The efficacy of actuators could also be greatly improved by increasing the stiffener periodicity. The developed framework would aid in designing and optimizing the dielectric elastomer actuator configurations for 3D prescribed deformation configuration. Finally, inspired by the membrane textures of bat wings, a study of utilizing fiber reinforcement on dielectric elastomer actuators were conducted for the mechanical and the coupled electromechanical characteristics. Woven fibers were employed on the surface of actuator membrane with different pre-deformed configurations. Experimentally, actuator stiffness changes were measured for up to four orders of magnitude. The orientation of embedded fibers controlled the level and the triggered phase of stiffness changes. A trade-off between the actuator stiffness and stroke could be controlled during the fabrication stage by the fiber orientation and the prestretch level of the base elastomer membrane. A simplified model using small-strain composite laminate theory was developed and accurately predicted the composite actuator stiffness. Additionally, compliant edge stiffeners were found had to present a marked overall effect on actuator electromechanical response. The developed simplified analytical solutions using Timoshenko-bimaterial laminate solution and composite laminate theory, as well as the developed finite element framework can be utilized in addressing more complex 3D deformation patterns and their electromechanical response.
Compact, Low-Force, Low-Noise Linear Actuator
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph
2012-01-01
Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4 2 1 cm3. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds for resetting. Thus, this design allows the actuator to work at a frequency of up to 0.1 Hz. The actuator does not make use of the whole range of motion of the SMA material, allowing for large margins on the mechanical parameters of the design. The efficiency of the actuator is of the order of 10%, including the margins. The average dissipated power while driving at full speed is of the order of 1 W, and can be scaled down linearly if the rate of cycling is reduced. This design produces an extremely quiet actuator; it can generate a force greater than 2 N and a stroke greater than 1 cm. The operational duration of SMA materials is of the order of millions of cycles with some reduced stroke over a wide temperature range up to 150 C.
Compact, Low-Force, Low-Noise Linear Actuator
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph
2012-01-01
Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4x2x1 cu cm. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds for resetting. Thus, this design allows the actuator to work at a frequency of up to 0.1 Hz. The actuator does not make use of the whole range of motion of the SMA material, allowing for large margins on the mechanical parameters of the design. The efficiency of the actuator is of the order of 10%, including the margins. The average dissipated power while driving at full speed is of the order of 1 W, and can be scaled down linearly if the rate of cycling is reduced. This design produces an extremely quiet actuator; it can generate a force greater than 2 N and a stroke greater than 1 cm. The operational duration of SMA materials is of the order of millions of cycles with some reduced stroke over a wide temperature range up to 150 C.
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.
2015-01-01
The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
... slat actuator structural failure (rupture) and its adjacent actuator torque limiter failing high... outboard slat actuator structural failure (rupture) and its adjacent actuator torque limiter failing high... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in...
Dynamic actuation of single-crystal diamond nanobeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko, E-mail: loncar@seas.harvard.edu
2015-12-14
We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.
46 CFR 153.296 - Emergency shutdown stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shutdown station must contain a single remote actuator for all quick closing shutoff valves required by... on the tankship. (f) Any remote emergency actuator, such as that for a quick closing shut-off valve... remote emergency actuators. The emergency action must occur whether one or several actuators are operated...
78 FR 17290 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... the motor-operated valve (MOV) actuators of the main and center fuel tanks; replacing certain MOV actuators with new MOV actuators; and measuring the electrical resistance of the bond from the adapter plate... prevent electrical current from flowing through an MOV actuator into a fuel tank, which could create a...
Electromechanical Actuator Performance of Carbon Nanotube Fibers
NASA Astrophysics Data System (ADS)
Munoz, Edgar; Kozlov, Mikhail; Collins, Steve; Dalton, Alan B.; Razal, Joselito; Zakhidov, Anvar A.; Baughman, Ray H.
2003-03-01
Single-walled carbon nanotube (SWNT) assemblies (sheets and fibers) have been investigated as electromechanical actuators. SWNT fibers provide maximum isometric actuator stress values of 20-26 MPa, which is about 5-10 times larger that those corresponding to SWNT sheets. This actuation performance is about 100 timer larger than the stress generation capability of natural muscle. The effect of employing different electrolytes as well as SWNTs produced by different routes, and the potential applications of these actuators will be also discussed.
Electrostatically Driven Nanoballoon Actuator.
Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex
2016-11-09
We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.
High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles
2012-08-26
we designed and fabricated the LionFly, a flapping wing prototype actuated by a PZT -5H bimorph actuator. Several LionFly prototypes were fabricated...in the literature, using PZT thin film actuators directly coupled to a 2.5 mm SiO2/Si3N4/T i-Au wing that produces large flapping angle at resonance...for larger scale mechanisms [17, 9]. For PAVs, linear electromagnetic ac- tuation [21] and bulk PZT bimorph actuators [8], and thin film PZT unimorph
Bi-stable optical element actuator device
Holdener, Fred R.; Boyd, Robert D.
2002-01-01
The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.
Distributed structural control using multilayered piezoelectric actuators
NASA Technical Reports Server (NTRS)
Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov
1990-01-01
A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.
Development of a precision, wide-dynamic-range actuator for use in active optical systems
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.
1989-01-01
The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.
Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit
1995-04-01
An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.
Piezoelectric Actuator/Sensor Technology at Rockwell
NASA Technical Reports Server (NTRS)
Neurgaonkar, Ratnakar R.
1996-01-01
We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.
Electrostatic micromembrane actuator arrays as motion generator
NASA Astrophysics Data System (ADS)
Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.
2004-05-01
A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.
Optimum shape control of flexible beams by piezo-electric actuators
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.
1987-01-01
The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions.
Static deflection control of flexible beams by piezo-electric actuators
NASA Technical Reports Server (NTRS)
Baz, A. M.
1986-01-01
This study deals with the utilization of piezo-electric actuators in controlling the static deformation of flexible beams. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezo-electric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing the structural deformation of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezo-electric actuators. The results obtained emphasize the importance of the devised rational procedure in designing beam-actuator systems with minimal elastic distortions.
Advanced high performance vertical hybrid synthetic jet actuator
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2011-01-01
The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.
PVDF core-free actuator for Braille displays: design, fabrication process, and testing
NASA Astrophysics Data System (ADS)
Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Gorny, Lee J.; Rahn, Christopher D.; Zhang, Q. M.
2011-04-01
Refreshable Braille displays require many, small diameter actuators to move the pins. The electrostrictive P(VDF-TrFECFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required of this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%). A novel Braille cell is designed and fabricated using six of these actuators.
Microwave Power for Smart Membrane Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.
2002-01-01
The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.
Chiang, Mao-Hsiung
2010-01-01
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.
Investigation of electrically conducting yarns for use in textile actuators
NASA Astrophysics Data System (ADS)
Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.
2018-07-01
Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.
Musclelike joint mechanism driven by dielectric elastomer actuator for robotic applications
NASA Astrophysics Data System (ADS)
Jung, Ho Sang; Cho, Kyeong Ho; Park, Jae Hyeong; Yang, Sang Yul; Kim, Youngeun; Kim, Kihyeon; Nguyen, Canh Toan; Phung, Hoa; Tien Hoang, Phi; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk
2018-07-01
The purpose of this study is to develop an artificial muscle actuator suitable for robotic applications, and to demonstrate the feasibility of applying this actuator to an arm mechanism, and controlling it delicately and smoothly like a human being. To accomplish this, we perform the procedures that integrate the soft actuator, called the single body dielectric elastomer actuator, which is very flexible and capable of high speed operation, and the displacement amplification mechanism called the sliding filament joint mechanism, which mimics the sliding filament model of human muscles. In this paper, we describe the characteristics and control method of the actuation system that consists of actuator, mechanism, and embedded controller, and show the experimental results of the closed-loop position and static stiffness control of the robotic arm application. Finally, based on the results, we evaluate the performance of this application.
Paper Actuators Made with Cellulose and Hybrid Materials
Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K.; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad
2010-01-01
Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated. PMID:22294882
TOPICAL REVIEW: Pneumatic and hydraulic microactuators: a review
NASA Astrophysics Data System (ADS)
De Volder, Michaël; Reynaerts, Dominiek
2010-04-01
The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices.
Chiang, Mao-Hsiung
2010-01-01
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally. PMID:22319266
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comtois, J.H.; Michalicek, A.; Barron, C.C.
1997-11-01
This paper presents the results of tests performed on a variety of electrochemical microactuators and arrays of these actuators fabricated in the SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and they apply to similar actuators made in other polysilicon MEMS processes such as the MUMPS process. Measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different applications` force requirements. Also, different methods of arraying these actuators together are compared. It ismore » found that a method using rotary joints, enabled by the advanced features of the SUMMiT fabrication process, is the most efficient array design. The design and operation of a thermally actuated stepper motor is explained to illustrate a useful application of these arrays.« less
Control of a flexible planar truss using proof mass actuators
NASA Technical Reports Server (NTRS)
Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.
1989-01-01
A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.
Dynamic actuation of a novel laser-processed NiTi linear actuator
NASA Astrophysics Data System (ADS)
Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I.
2012-09-01
A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys.
Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong
2011-01-01
Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822
NASA Technical Reports Server (NTRS)
Koklu, Mehti
2017-01-01
Flow separation control over a wall-mounted hump model was studied experimentally to assess the performance of sweeping jet actuators. Results were compared to that of the 2004 CFD validation experiment (CFDVAL2004), which examined flow separation control with steady suction and unsteady zero-net-mass-flow actuators. Comparisons were carried out at low and high amplitude excitations. In addition to the active flow control methods, a passive flow control method (i.e., vortex generator) was used to complement the dataset. Steady/unsteady surface pressure measurements and surface oilflow visualization were used in the performance assessment of the actuators. The results indicated that the sweeping jet actuators are more effective than the steady suction and unsteady zero-net-mass-flow actuators. For the same momentum coefficient, the sweeping jet actuators produced more flow acceleration upstream of separation, more pressure recovery downstream, and consistently a smaller separation bubble.
Multistable wireless micro-actuator based on antagonistic pre-shaped double beams
NASA Astrophysics Data System (ADS)
Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.
2015-07-01
This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.
Proof of concept of a novel SMA cage actuator
NASA Astrophysics Data System (ADS)
Deyer, Christopher W.; Brei, Diann E.
2001-06-01
Numerous industrial applications that currently utilize expensive solenoids or slow wax motors are good candidates for smart material actuation. Many of these applications require millimeter-scale displacement and low cost; thereby, eliminating piezoelectric technologies. Fortunately, there is a subset of these applications that can tolerate the slower response of shape memory alloys. This paper details a proof-of-concept study of a novel SMA cage actuator intended for proportional braking in commercial appliances. The chosen actuator architecture consists of a SMA wire cage enclosing a return spring. To develop an understanding of the influences of key design parameters on the actuator response time and displacement amplitude, a half-factorial 25 Design of Experiment (DOE) study was conducted utilizing eight differently configured prototypes. The DOE results guided the selection of the design parameters for the final proof-of-concept actuator. This actuator was built and experimentally characterized for stroke, proportional control and response time.
Paper actuators made with cellulose and hybrid materials.
Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad
2010-01-01
Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated.
Hierarchically arranged helical fibre actuators driven by solvents and vapours.
Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng
2015-12-01
Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.
Series Elastic Actuators for legged robots
NASA Astrophysics Data System (ADS)
Pratt, Jerry E.; Krupp, Benjamin T.
2004-09-01
Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.
Kirigami artificial muscles with complex biologically inspired morphologies
NASA Astrophysics Data System (ADS)
Sareh, Sina; Rossiter, Jonathan
2013-01-01
In this paper we present bio-inspired smart structures which exploit the actuation of flexible ionic polymer composites and the kirigami design principle. Kirigami design is used to convert planar actuators into active 3D structures capable of large out-of-plane displacement and that replicate biological mechanisms. Here we present the burstbot, a fluid control and propulsion mechanism based on the atrioventricular cuspid valve, and the vortibot, a spiral actuator based on Vorticella campanula, a ciliate protozoa. Models derived from biological counterparts are used as a platform for design optimization and actuator performance measurement. The symmetric and asymmetric fluid interactions of the burstbot are investigated and the effectiveness in fluid transport applications is demonstrated. The vortibot actuator is geometrically optimized as a camera positioner capable of 360° scanning. Experimental results for a one-turn spiral actuator show complex actuation derived from a single degree of freedom control signal.
Low-Stroke Actuation for a Serial Robot
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Gao, Dalong (Inventor)
2014-01-01
A serial robot includes a base, first and second segments, a proximal joint joining the base to the first segment, and a distal joint. The distal joint that joins the segments is serially arranged and distal with respect to the proximal joint. The robot includes first and second actuators. A first tendon extends from the first actuator to the proximal joint and is selectively moveable via the first actuator. A second tendon extends from the second actuator to the distal joint and is selectively moveable via the second actuator. The robot includes a transmission having at least one gear element which assists rotation of the distal joint when an input force is applied to the proximal and/or distal joints by the first and/or second actuators. A robotic hand having the above robot is also disclosed, as is a robotic system having a torso, arm, and the above-described hand.
Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary
2016-07-12
Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.
Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators
NASA Astrophysics Data System (ADS)
Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung
2009-03-01
The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.
Design and demonstration of a fish robot actuated by a SMA-driven actuation system
NASA Astrophysics Data System (ADS)
Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.
2010-04-01
This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.
Hierarchically arranged helical fibre actuators driven by solvents and vapours
NASA Astrophysics Data System (ADS)
Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng
2015-12-01
Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.
NASA Astrophysics Data System (ADS)
Kumar, Ajeet; Ahmad, Dilshad; Patra, Karali
2018-02-01
A dielectric elastomer is capable of large deformation under three basic modes of deformation: equi-biaxial, pure shear and uniaxial. Pre-stretching of dielectric elastomer improves the actuation strain appreciably. Experimental results shows that pre-stretching using equal biaxial mode can result to higher actuation strain compared to other two modes of stretching, i.e., uniaxial and pure shear. However, analysis of the experimental results shows that the actuation strain is independent of the modes of pre-stretching rather it is dependent upon the thickness stretch. For same thickness stretch at a particular voltage, the actuation strain is almost similar for all pre-stretching modes. Power trend lines are obtained to predict the actuation strain at any thickness stretch for a particular voltage. The present analysis opens the door to easily design the actuators, sensors and energy harvesting devices.
Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.
Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen
2015-10-28
Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.
Comparison of different soft grippers for lunch box packaging.
Wang, Zhongkui; Zhu, Mingzhu; Kawamura, Sadao; Hirai, Shinichi
2017-01-01
Automating the lunch box packaging is a challenging task due to the high deformability and large individual differences in shape and physical property of food materials. Soft robotic grippers showed potentials to perform such tasks. In this paper, we presented four pneumatic soft actuators made of different materials and different fabrication methods and compared their performances through a series of tests. We found that the actuators fabricated by 3D printing showed better linearity and less individual differences, but showed low durability compared to actuators fabricated by traditional casting process. Robotic grippers were assembled using the soft actuators, and grasping tests were performed on soft paper containers filled with food materials. Results suggested that grippers with softer actuators required lower air pressure to lift up the same weight and generated less deformation on the soft container. The actuator made of casting process with Dragon Skin 10 material lifted the most weight among different actuators.
Carbon nanotube-polymer composite actuators
Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO
2008-04-22
The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.
Fabrication of silicon-based shape memory alloy micro-actuators
NASA Technical Reports Server (NTRS)
Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.
1992-01-01
Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.
NASA Technical Reports Server (NTRS)
Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)
2002-01-01
The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.
30 CFR 250.434 - What are the recordkeeping requirements for diverter actuations and tests?
Code of Federal Regulations, 2010 CFR
2010-07-01
... diverter actuations and tests? 250.434 Section 250.434 Mineral Resources MINERALS MANAGEMENT SERVICE... for diverter actuations and tests? You must record the time, date, and results of all diverter actuations and tests in the driller's report. In addition, you must: (a) Record the diverter pressure test on...
Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.
Wickramatunge, Kanchana Crishan; Leephakpreeda, Thananchai
2013-11-01
Pneumatic Artificial Muscle (PAM) actuators yield muscle-like mechanical actuation with high force to weight ratio, soft and flexible structure, and adaptable compliance for rehabilitation and prosthetic appliances to the disabled as well as humanoid robots or machines. The present study is to develop empirical models of the PAM actuators, that is, a PAM coupled with pneumatic control valves, in order to describe their dynamic behaviors for practical control design and usage. Empirical modeling is an efficient approach to computer-based modeling with observations of real behaviors. Different characteristics of dynamic behaviors of each PAM actuator are due not only to the structures of the PAM actuators themselves, but also to the variations of their material properties in manufacturing processes. To overcome the difficulties, the proposed empirical models are experimentally derived from real physical behaviors of the PAM actuators, which are being implemented. In case studies, the simulated results with good agreement to experimental results, show that the proposed methodology can be applied to describe the dynamic behaviors of the real PAM actuators. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Behavior of ionic conducting IPN actuators in simulated space conditions
NASA Astrophysics Data System (ADS)
Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Laurent, Elisabeth; Cadiergues, Laurent; Vidal, Frédéric
2016-04-01
The presentation focuses on the performances of flexible all-polymer electroactive actuators under space-hazardous environmental factors in laboratory conditions. These bending actuators are based on high molecular weight nitrile butadiene rubber (NBR), poly(ethylene oxide) (PEO) derivative and poly(3,4-ethylenedioxithiophene) (PEDOT). The electroactive PEDOT is embedded within the PEO/NBR membrane which is subsequently swollen with an ionic liquid as electrolyte. Actuators have been submitted to thermal cycling test between -25 to 60°C under vacuum (2.4 10-8 mbar) and to ionizing Gamma radiations at a level of 210 rad/h during 100 h. Actuators have been characterized before and after space environmental condition ageing. In particular, the viscoelasticity properties and mechanical resistance of the materials have been determined by dynamic mechanical analysis and tensile tests. The evolution of the actuation properties as the strain and the output force have been characterized as well. The long-term vacuuming, the freezing temperature and the Gamma radiations do not affect significantly the thermomechanical properties of conducting IPNs actuators. Only a slight decrease on actuation performances has been observed.
Dielectric elastomer actuators for octopus inspired suction cups.
Follador, M; Tramacere, F; Mazzolai, B
2014-09-25
Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.
NASA Astrophysics Data System (ADS)
Kim, Younghoon; Cai, Ling; Usher, Timothy; Jiang, Qing
2009-09-01
This paper documents an experimental and theoretical investigation into characterizing the mechanical configurations and performances of THUNDER actuators, a type of piezoelectric actuator known for their large actuation displacements, through fabrication, measurements and finite element analysis. Five groups of such actuators with different dimensions were fabricated using identical fabrication parameters. The as-fabricated arched configurations, resulting from the thermo-mechanical mismatch among the constituent layers, and their actuation performances were characterized using an experimental set-up based on a laser displacement sensor and through numerical simulations with ANSYS, a widely used commercial software program for finite element analysis. This investigation shows that the presence of large residual stresses within the piezoelectric ceramic layer, built up during the fabrication process, leads to significant nonlinear electromechanical coupling in the actuator response to the driving electric voltage, and it is this nonlinear coupling that is responsible for the large actuation displacements. Furthermore, the severity of the residual stresses, and thus the nonlinearity, increases with increasing substrate/piezoelectric thickness ratio and, to a lesser extent, with decreasing in-plane dimensions of the piezoelectric layer.
NASA Astrophysics Data System (ADS)
Goo, Nam Seo; Phuoc Phan, Van; Park, Hoon Cheol
2009-03-01
Pre-stressed piezoelectric actuators such as RAINBOW, THUNDER™, and LIPCA have a curvature due to a mismatch of the coefficient of thermal expansion, which inevitably exists during the manufacturing process. This technical note provides an answer to the question of how their actuation displacement performance changes when the curved pre-stressed piezoelectric actuators are attached to a flat surface. Finite element analysis with the ANSYS™ program was used to calculate the stress distribution inside a LIPCA, one of the pre-stressed piezoelectric actuators, after the LIPCA was cured and attached to the flat surface. The change of actuation displacement performance can be explained in terms of the relation between the piezoelectric strain constants and internal stress. As a result of the curing and attachment to a flat surface, the two-dimensional stress state inside the piezoceramic layer leads to an expected increase of around 51% for the longitudinal piezoelectric strain constant. To confirm this result, we reconsider the experimental results of the actuation moment measurement of the LIPCA and bare lead zirconium titanate.
Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance
NASA Astrophysics Data System (ADS)
Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang
2014-10-01
Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and -10°C) but also realize the goal of grabbing an object by adjusting the applied voltage.
Bio-inspired wooden actuators for large scale applications.
Rüggeberg, Markus; Burgert, Ingo
2015-01-01
Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.
Bio-Inspired Wooden Actuators for Large Scale Applications
Rüggeberg, Markus; Burgert, Ingo
2015-01-01
Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386
Zhou, Miaolei; Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-03-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.
Separated Flow Control with Actuated Membrane Wings
NASA Astrophysics Data System (ADS)
Bohnker, Jillian; Breuer, Kenneth
2017-11-01
By perturbing shear layer instabilities, some level of control over highly separated flows can be established, as has been demonstrated on rigid wings using synthetic jet actuators or acoustic excitation. Here, we demonstrate similar phenomena using sinusoidal actuation of a dielectric membrane wing. The effect of actuation on lift is examined as a function of freestream velocity (5-25 m/s), angle of attack (10°-40°), and actuation frequency (0.1
Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model
Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator. PMID:23737730
Tough nanocomposite ionogel-based actuator exhibits robust performance.
Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang
2014-10-20
Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and -10°C) but also realize the goal of grabbing an object by adjusting the applied voltage.
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin
2017-08-01
Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.
Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance
Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang
2014-01-01
Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and −10°C) but also realize the goal of grabbing an object by adjusting the applied voltage. PMID:25327414
LES-based characterization of a suction and oscillatory blowing fluidic actuator
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Moin, Parviz
2015-11-01
Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.
Apparatus for retaining and releasing a payload
NASA Technical Reports Server (NTRS)
Carrier, Alain (Inventor); Cobb, Bruce (Inventor)
2000-01-01
An apparatus for latching an object, such as a payload for a space vehicle, includes an expandible latch which is shifted between a relaxed open condition and a flexed closed condition by actuation of a pair of temperature-responsive members, such as shaped memory alloy (SMA) coil springs. One of the two temperature-responsive members biases an actuator into a first position that allows the expandible latch to open. The other SMA member biases the actuator in the opposite position to close the expandible latch. Heating the appropriate SMA member causes the actuator to move from one position to the other position. In the preferred embodiment, no power is required to maintain the actuator in either position once the position has been established. For example, the actuator may have a rest position that allows the expandible latch to remain open when the two SMA members are cooled and allowed to reach an equilibrium condition with respect to applied force to the actuator. A detent-and-ball arrangement may be used to maintain the position of the actuator after the expandible latch has been closed.
Development of a shape memory alloy actuated biomimetic vehicle
NASA Astrophysics Data System (ADS)
Garner, L. J.; Wilson, L. N.; Lagoudas, D. C.; Rediniotis, O. K.
2000-10-01
The development of a biomimetic active hydrofoil that utilizes shape memory alloy (SMA) actuator technology is presented. This work is the first stage prototype of a vehicle that will consist of many actuated body segments. The current work describes the design, modeling and testing of a single-segment demonstration SMA actuated hydrofoil. The SMA actuation elements are two sets of thin wires on either side of an elastomeric component that joins together the leading and trailing edges of the hydrofoil. Controlled heating and cooling of the two wire sets generates bi-directional bending of the elastomer, which in turn deflects the trailing edge of the hydrofoil. In this paper the design of the hydrofoil and the experimental tests preformed thereon are explained. A detailed account of SMA actuator preparation (training) and material characterization is given. Finite-element method (FEM) modeling of hydrofoil response to electrical heating of the SMA actuators is carried out using a thermomechanical constitutive model for the SMA with input from the material characterization. The modeling predictions are finally compared with experimental measurements of the trailing edge deflection and the SMA actuator temperature.
Xu, Guochuang; Zhang, Miao; Zhou, Qinqin; Chen, Hongwu; Gao, Tiantian; Li, Chun; Shi, Gaoquan
2017-11-16
A high-performance actuator should be able to deliver large-shape deformations, fast actuations and sensitive responses to multiple stimuli. Here, we report such an actuator constructed from one layer of polyvinylidene fluoride (PVDF) with a high coefficient of thermal expansion (CTE), and another layer of small sheets of graphene oxide (SGO) with a negative CTE. The opposite deformations of both actuation layers make the SGO/PVDF bilayer actuator highly sensitive to the temperature stimulus with a large bending sensitivity of 1.5 cm -1 °C -1 . Upon irradiation with 60 mW cm -2 infrared light, this SGO/PVDF bilayer actuator displayed an extremely rapid tip displacement rate of 140 mm s -1 . Furthermore, this actuator can also sensitively respond to moisture because of its SGO layer, showing a curvature change from -22 to 13 cm -1 upon changing the relative humidity (RH) from 11% to 86%. This actuator can generate a contractile or relaxed stress 18 times that of mammalian skeletal muscle, under light irradiation or moisture with a response time as short as 1 s, being capable of lifting an object with a weight 80 times that of itself. Furthermore, it also showed excellent stability and repeatability.
Natural fibres actuators for smart bio-inspired hygromorph biocomposites
NASA Astrophysics Data System (ADS)
Le Duigou, Antoine; Requile, Samuel; Beaugrand, Johnny; Scarpa, Fabrizio; Castro, Mickael
2017-12-01
Hygromorph biocomposite (HBC) actuators make use of the transport properties of plant fibres to generate an out-of-plane displacement when a moisture gradient is present. HBC actuators possess a design based on the bilayer configuration of natural hygromorph actuators (like pine cone, wheat awn, Selaginella lepidophyll). In this work we present a series of design guidelines for HBCs with improved performance, low environmental footprints and high durability in severe environments. We develop a theoretical actuating response (curvature) formulation of maleic anhydride polypropylene (MAPP)/plant fibres based on bimetallic actuators theory. The actuation response is evaluated as a function of the fibre type (flax, jute, kenaf and coir). We demonstrate that the actuation is directly related to the fibre microstructure and its biochemical composition. The jute and flax fibres appear to be the best candidates for use in HBCs. Flax/MAPP and jute/MAPP HBCs exhibit similar actuating behaviours during the sorption phase (amplitude and speed), but different desorption characteristics due to the combined effect of the lumen size, fibre division and biochemical composition on the desorption mechanism. During hygromechanical fatigue tests the jute/MAPP HBCs exhibit a drastic improvement in durability compared to their flax counterparts. We also provide a demonstration on how HBCs can be used to trigger deployment of more complex structures based on Origami and Kirigami designs.
NASA Astrophysics Data System (ADS)
Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.
1996-05-01
The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.
A high resolution pneumatic stepping actuator for harsh reactor environments
NASA Astrophysics Data System (ADS)
Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.
1993-01-01
A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).
Bucky gel actuators optimization towards haptic applications
NASA Astrophysics Data System (ADS)
Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide
2014-03-01
An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).
Simple triple-state polymer actuators with controllable folding characteristics
NASA Astrophysics Data System (ADS)
Chen, Shuyang; Li, Jing; Fang, Lichen; Zhu, Zeyu; Kang, Sung Hoon
2017-03-01
Driven by the interests in self-folding, there have been studies developing artificial self-folding structures at different length scales based on various polymer actuators that can realize dual-state actuation. However, their unidirectional nature limits the applicability of the actuators for a wide range of multi-state self-folding behaviors. In addition, complex fabrication and programming procedures hinder broad applications of existing polymer actuators. Moreover, few of the existing polymer actuators are able to show the self-folding behaviors with the precise control of curvature and force. To address these issues, we report an easy-to-fabricate triple-state actuator with controllable folding behaviors based on bilayer polymer composites with different glass transition temperatures. Initially, the fabricated actuator is in the flat state, and it can sequentially self-fold to angled folding states of opposite directions as it is heated up. Based on an analytical model and measured partial recovery behaviors of polymers, we can accurately control the folding characteristics (curvature and force) for the rational design. To demonstrate an application of our triple-state actuator, we have developed a self-folding transformer robot which self-folds from a two-dimensional sheet into a three-dimensional boat-like configuration and transforms from the boat shape to a car shape with the increase in the temperature applied to the actuator. Our findings offer a simple approach to generate multiple configurations from a single system by harnessing behaviors of polymers with the rational design.
NASA Astrophysics Data System (ADS)
Gorny, Lee J.; Zellers, Brian C.; Lin, Minren; Liu, Sheng; Zhang, Qiming M.
2010-04-01
Piezoceramic actuators, presently used in commercial Braille displays, are limited by the material's relatively small strain and brittle nature. For this reason, it is a challenge to develop full page, compact, graphic Braille displays that are affordable. A newly developed material composed of P(VDF-TrFE-CFE) terpolymer blended with 5% P(VDF-CTFE) electrostrictive actuators exhibits large strains (~5% at 150V/μm), fast actuation (>5 mm/s), and has a relatively high elastic modulus (1.2 GPa). This material exhibits more than double the elastic energy density and a 50% higher modulus of the original electrostrictive terpolymer. Hence, the potential for viable actuators in compact, full page Braille displays is greater than ever, provided actuators can be manufactured reliably in quantity. This talk presents recent work in scaling production of such rolled actuators. Actuators extend .5 mm, are confined to the 2.5 mm grid spacing of conventional Braille text, generate >0.5 N force and operate at less than 200V, thus meeting the primary requirements for a commercialized Braille display. To manufacture these actuators, cast films are stretched using a roll-to-roll zone drawing machine that is capable of producing quantities of 2 μm thick film with high quality. What follows is a discussion of this machine, the roll-to-roll film stretching process and an assessment of the resulting stretched film for use as linear strain actuators, like those used in our Braille cell.
A new class of actuator surface models for wind turbines
NASA Astrophysics Data System (ADS)
Yang, Xiaolei; Sotiropoulos, Fotis
2018-05-01
Actuator line model has been widely employed in wind turbine simulations. However, the standard actuator line model does not include a model for the turbine nacelle which can significantly impact turbine wake characteristics as shown in the literature. Another disadvantage of the standard actuator line model is that more geometrical features of turbine blades cannot be resolved on a finer mesh. To alleviate these disadvantages of the standard model, we develop a new class of actuator surface models for turbine blades and nacelle to take into account more geometrical details of turbine blades and include the effect of turbine nacelle. In the actuator surface model for blade, the aerodynamic forces calculated using the blade element method are distributed from the surface formed by the foil chords at different radial locations. In the actuator surface model for nacelle, the forces are distributed from the actual nacelle surface with the normal force component computed in the same way as in the direct forcing immersed boundary method and the tangential force component computed using a friction coefficient and a reference velocity of the incoming flow. The actuator surface model for nacelle is evaluated by simulating the flow over periodically placed nacelles. Both the actuator surface simulation and the wall-resolved large-eddy simulation are carried out. The comparison shows that the actuator surface model is able to give acceptable results especially at far wake locations on a very coarse mesh. It is noted that although this model is employed for the turbine nacelle in this work, it is also applicable to other bluff bodies. The capability of the actuator surface model in predicting turbine wakes is assessed by simulating the flow over the MEXICO (Model experiments in Controlled Conditions) turbine and a hydrokinetic turbine.
NASA Astrophysics Data System (ADS)
Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.
2018-07-01
There are two major categories of dielectric elastomer actuators (DEAs), which differ from the way in which the actuation is exploited: stack DEAs, using the thickness compression, and membrane DEAs, which exploit the expansion in area. In this work we focus on a specific type of membrane DEAs, i.e., silicone-based strip-in-plane (SIP) DEAs with screen printed electrodes. The performance of such actuators strongly depends on their geometry and on the adopted mechanical biasing system. Typically, the biasing is based on elastomer pre-stretch or on dead loads, which results in relatively low actuation strain. Biasing systems characterized by a negative rate spring have proven to significantly increase the performance of circular out-of-plane DEAs. However, this kind of biasing has never been systematically applied to silicone SIP DEAs. In this work, the biasing design based on negative rate springs is extended to strip DEAs as well, allowing to improve speed, strain, and force of the resulting actuator. At first, the DEAs are characterized under electrical and mechanical loading. Afterwards, two actuator systems are studied and compared in terms of actuation strain, force output, and actuation speed. In a first design stage, the DEA is coupled with a linear spring. Subsequently, the membrane is loaded with a combination of linear and nonlinear spring (working in a negative stiffness region). The resulting stroke output of the second systems is more than 9 times higher in comparison to the first one. An actuation strain of up to 45% (11.2 millimeter) and a force output of 0.38 Newton are measured. A maximum speed of 0.29 m s‑1 is achieved, which is about 60 times faster than the one typically measured for similar systems based on VHB.
Flexure-based nanomagnetic actuators
NASA Astrophysics Data System (ADS)
Vasquez, Daniel James
Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.
Mirrors Containing Biomimetic Shape-Control Actuators
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart
2003-01-01
Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call for segmentation of the electrodes on the actuators so that voltages could be applied locally to effect local bending for fine adjustment of the surface figure.
Development of multilayer conducting polymer actuator for power application
NASA Astrophysics Data System (ADS)
Ikushima, Kimiya; Kudoh, Yuji; Hiraoka, Maki; Yokoyama, Kazuo; Nagamitsu, Sachio
2009-03-01
In late years many kinds of home-use robot have been developed to assist elderly care and housework. Most of these robots are designed with conventional electromagnetic motors. For safety it is desirable to replace these electromagnetic motors with artificial muscle. However, an actuator for such a robot is required to have simple structure, low driving voltage, high stress generation, high durability, and operability in the air. No polymer actuator satisfying all these requirements has been realized yet. To meet these we took following two approaches focusing on conducting polymer actuators which can output high power in the air. (Approach 1) We have newly developed an actuator by multiply laminating ionic liquid infiltrated separators and polypyrrole films. Compared with conventional actuator that is driven in a bath of ionic liquid, the new actuator can greatly increase generated stress since the total sectional area is tremendously small. In our experiment, the new actuator consists of minimum unit with thickness of 128um and has work/weight ratio of 0.92J/kg by laminating 9 units in 0.5Hz driving condition. In addition, the driving experiment has shown a stable driving characteristic even for 10,000 cycles durability test. Furthermore, from our design consideration, it has been found that the work/weight ratio can be improved up to 8J/kg (1/8 of mammalian muscle of 64J/kg) in 0.1Hz by reducing the thickness of each unit to 30um. (Approach 2) In order to realize a simplified actuator structure in the air without sealing, we propose the use of ionic liquid gel. The actuation characteristic of suggested multilayered actuator using ionic liquid gel is simulated by computer. The result shows that performance degradation due to the use of ionic liquid gel is negligible small when ionic liquid gel with the elasticity of 3kPa or less is used. From above two results it is concluded that the proposed multilayerd actuator is promising for the future robotic applications because it has advantages of high work/weight ratio and in-the-air operation, in addition to advantages of conventional polymer actuators.
A Model of the THUNDER Actuator
NASA Technical Reports Server (NTRS)
Curtis, Alan R. D.
1997-01-01
A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will develop in each layer and these stresses will induce a bending moment. When the actuator is released from its flat configuration, the differential stresses are relieved as the actuator bends.
Modeling and design of a high-performance hybrid actuator
NASA Astrophysics Data System (ADS)
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-12-01
This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic responses, passive isolation characteristics and the locations of their peaks and dips. Furthermore, the output actuating force can be improved by increasing the hinge hardness, which is controlled by its dimensions, although increasing the hinge hardness may cause a decrease in the free displacement and passive insulation performance, particularly at low frequencies.
Low Speed, 2-D Rotor/Stator Active Noise Control at the Source Demonstration
NASA Technical Reports Server (NTRS)
Simonich, John C.; Kousen, Ken A.; Zander, Anthony C.; Bak, Michael; Topol, David A.
1997-01-01
Wake/blade-row interaction noise produced by the Annular Cascade Facility at Purdue University has been modeled using the LINFLO analysis. Actuator displacements needed for complete cancellation of the propagating acoustic response modes have been determined, along with the associated actuator power requirements. As an alternative, weighted least squares minimization of the total far-field sound power using individual actuators has also been examined. Attempts were made to translate the two-dimensional aerodynamic results into three-dimensional actuator requirements. The results lie near the limit of present actuator technology. In order to investigate the concept of noise control at the source for active rotor/stator noise control at the source, various techniques for embedding miniature actuators into vanes were examined. Numerous miniature speaker arrangements were tested and analyzed to determine their suitability as actuators for a demonstration test in the Annular Cascade Facility at Purdue. The best candidates demonstrated marginal performance. An alternative concept to using vane mounted speakers as control actuators was developed and tested. The concept uses compression drivers which are mounted externally to the stator vanes. Each compression driver is connected via a tube to an air cavity in the stator vane, from which the driver signal radiates into the working section of the experimental rig. The actual locations and dimensions of the actuators were used as input parameters for a LINFLO computational analysis of the actuator displacements required for complete cancellation of tones in the Purdue experimental rig. The actuators were designed and an arrangement determined which is compatible with the Purdue experimental rig and instrumentation. Experimental tests indicate that the actuators are capable of producing equivalent displacements greater than the requirements predicted by the LINFLO analysis. The acoustic output of the actuators was also found to be unaffected by the presence of air flow representative of the Purdue experimental rig. A test of the active noise control at the source concept for rotor/stator active noise control was demonstrated. This 2-D test demonstrated conclusively the simultaneous reduction of two acoustic modes. Reductions of over 10 dB were obtained over a wide operating range.
NASA Technical Reports Server (NTRS)
Vranish, John
2009-01-01
T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off-the-shelf, electric servomotor, a motor angle resolution sensor (typically an encoder or resolver), and microprocessor-based intelligent software. In applications requiring precision positioning, it may be necessary to add strain gauges to the T-slide housing. Existing sensory- interactive motion control art will work for T slides. For open-loop positioning, a stepping motor emulation technique can be used.
High-frequency, resonance-enhanced microactuators with active structures for high-speed flow control
NASA Astrophysics Data System (ADS)
Kreth, Phillip Andrew
The need for actuators that are adaptable for use in a wide array of applications has been the motivation behind actuator development research over the past few years. Recent developments at the Advanced Aero-Propulsion Laboratory (AAPL) at Florida State University have produced a microactuator that uses the unsteadiness of a small-scale impinging jet to produce pulsed, supersonic microjets -- this is referred to as the Resonance-Enhanced Microjet (REM) actuator. Prior studies on these actuators at AAPL have been somewhat limited in that the actuator response has only been characterized through pressure/acoustic measurements and qualitative flow visualizations. Highly-magnified particle image velocimetry (PIV) measurements were performed to measure the velocity fields of both a 1 mm underexpanded jet and an REM actuator. The results demonstrate that this type of microactuator is capable of producing pulsed, supersonic microjets that have velocities of approximately 400 m/s that are sustained for significant portions of their cycles (> 60 %). These are the first direct velocity measurements of these flowfields, and they allow for a greater understanding of the flow physics associated with this microactuator. The previous studies on the REM actuators have shown that the microactuator volume is among the principal parameters in determining the actuator's maximum-amplitude frequency component. In order to use this actuator in a closed-loop, feedback control system, a modified design that incorporates smart materials is studied. The smart materials (specifically piezoelectric ceramic stack actuators) have been implemented into the microactuator to actively change its geometry, thus permitting controllable changes in the microactuator's resonant frequency. The distinct feature of this design is that the smart materials are not used to produce the primary perturbation or flow from the actuator (which has in the past limited the control authority of other designs) but to change its dynamic properties. Various static and dynamic control inputs to the piezo-stacks illustrate that the actuator's resonant frequency can be modulated by a few hundred Hertz at very fast rates (up to 1 kHz or more). These frequency modulation capabilities allow for off-design frequencies to be present in the actuator's output, thereby increasing its range of potential flow control applications. A series of closed-loop control demonstrations clearly show the ability of this actuator to track and produce outputs at specified frequencies. The robustness of this control technique was also demonstrated. By combining the REM actuator concept with the precision and control authority of smart materials, the new actuator system (known as the SmartREM actuator) is shown to produce supersonic, pulsing microjets whose frequency can be controlled actively in a closed-loop manner. Three different design possibilities are developed and characterized in this study. An optimal configuration was identified for cavity flow control experiments in both sub- and supersonic freestream conditions (M = 0.4 - 0.7 and M = 1.5). The actuator was designed such that its frequency would lie within the range of the predicted cavity oscillations. The actuator's performance was evaluated in its three modes of operations: pulsed (REM mode), active pulsed (SmartREM mode), and steady. It was found that when the actuator operates in its pulsed modes, the amplitude of the dominant peak is reduced by as much as 6 dB. The high-frequency broadband levels and overall sound pressure levels (OASPLs) are reduced with control as well (by about 3 dB). Operating the actuator in its steady mode at very high pressures provides the most effective results. The dominant peaks were completely eliminated (amplitudes reduced by over 25 dB), and the reductions in the OASPLs exceeded 10 dB.
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
Surface Control of Actuated Hybrid Space Mirrors
2010-10-01
precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal
78 FR 26393 - Certain Linear Actuators; Institution of Investigation Pursuant to 19 U.S.C. 1337
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-880] Certain Linear Actuators... importation, and the sale within the United States after importation of certain linear actuators by reason of... linear actuators by reason of infringement of one or more of claims 1-29 of the '144 patent, and whether...
46 CFR 153.297 - Emergency actuators at the point of cargo control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Emergency actuators at the point of cargo control. 153... and Equipment Piping Systems and Cargo Handling Equipment § 153.297 Emergency actuators at the point of cargo control. (a) The point from which cargo transfer is controlled must have the same actuators...
Onboard Stability Control System for a Flapping Wing Nano Air Vehicle
2009-04-24
15 Figure 14. Vehicle response to hover command with nitinol actuators and sensors...with nitinol actuators and sensors modeled. An extended Kalman filter has been implemented to estimate the functional roll rate from sensor...Actuators The wing control actuators subcomponent consists of nitinol wires connected to mechanisms that dictate the wing kinematics. These mechanisms
Thermocouple for heating and cooling of memory metal actuators
NASA Technical Reports Server (NTRS)
Wood, Charles (Inventor)
1988-01-01
A semiconductor thermocouple unit is provided for heating and cooling memory metal actuators. The semiconductor thermocouple unit is mounted adjacent to a memory metal actuator and has a heat sink attached to it. A flexible thermally conductive element extends between the semiconductor thermocouple and the actuator and serves as a heat transfer medium during heating and cooling operations.
Redundant actuator development study. [flight control systems for supersonic transport aircraft
NASA Technical Reports Server (NTRS)
Ryder, D. R.
1973-01-01
Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.
Fast electrochemical membrane actuator: Design, fabrication and preliminary testing
NASA Astrophysics Data System (ADS)
Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.
2017-11-01
An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.
Micro-unmanned aerodynamic vehicle
Reuel, Nigel [Rio Rancho, NM; Lionberger, Troy A [Ann Arbor, MI; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM; Baker, Michael S [Albuquerque, NM
2008-03-11
A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.
Modeling of two-hot-arm horizontal thermal actuator
NASA Astrophysics Data System (ADS)
Yan, Dong; Khajepour, Amir; Mansour, Raafat
2003-03-01
Electrothermal actuators have a very promising future in MEMS applications since they can generate large deflection and force with low actuating voltages and small device areas. In this study, a lumped model of a two-hot-arm horizontal thermal actuator is presented. In order to prove the accuracy of the lumped model, finite element analysis (FEA) and experimental results are provided. The two-hot-arm thermal actuator has been fabricated using the MUMPs process. Both the experimental and FEA results are in good agreement with the results of lumped modeling.
Oscillation-based methods for actuation and manipulation of nano-objects
NASA Astrophysics Data System (ADS)
Popov, V. L.
2017-09-01
We discuss how oscillations can be used for fixation or manipulation of nano-objects or producing nano-drives. The underlying principles are scale-invariant and principally can be scaled down up to the molecular scale. The main underlying principle of fixation and actuation occurs to be symmetry breaking of an oscillating system. From this unifying standpoint, a series of actuation principles are discussed as dragging, ratchets, micro walking, friction-inertia actuators, oscillation tweezers, flagella motors for propulsion in liquids as well as some recently proposed actuation principles.
Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)
2014-01-01
The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.
Two position optical element actuator device
Holdener, Fred R.; Boyd, Robert D.
2002-01-01
The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.
Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.
Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che
2015-06-22
Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.
Design and position control of AF lens actuator for mobile phone using IPMC-EMIM
NASA Astrophysics Data System (ADS)
Kim, Sung-Joo; Kim, Chul-Jin; Park, No-Cheol; Yang, Hyun-Seok; Park, Young-Pil; Park, Kang-Ho; Lee, Hyung-Kun; Choi, Nak-Jin
2008-03-01
IPMC-EMIM (Ionic Polyer Metal Composites + 1-ethyl-3- methyl imidazolium trifluromethane sulfonate, EMIM-Tfo) is fabricated by substituting ionic liquid for water in Nafion film, which improves water sensitiveness of IPMC and guarantees uniform performance regardless of the surrounding environment. In this paper, we will briefly introduce the procedure of fabrication of IPMC-EMIM and proceed to introduce the Hook-type actuator using IPMC-EMIM and application to AF Lens actuator. Parameters of Hook-type actuator are estimated from experimental data. In the simulation, The proposed AF Lens Actuator is assumed to be a linear system and based on estimated parameters, PID controller will be designed and controlled motion of AF Lens actuator will be shown through simulation.
Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability
Keplinger, Christoph; Kaltenbrunner, Martin; Arnold, Nikita; Bauer, Siegfried
2010-01-01
Electrical actuators made from films of dielectric elastomers coated on both sides with stretchable electrodes may potentially be applied in microrobotics, tactile and haptic interfaces, as well as in adaptive optical elements. Such actuators with compliant electrodes are sensitive to the pull-in electromechanical instability, limiting operational voltages and attainable deformations. Electrode-free actuators driven by sprayed-on electrical charges were first studied by Röntgen in 1880. They withstand much higher voltages and deformations and allow for electrically clamped (charge-controlled) thermodynamic states preventing electromechanical instabilities. The absence of electrodes allows for direct optical monitoring of the actuated elastomer, as well as for designing new 3D actuator configurations and adaptive optical elements. PMID:20173097
Defect inspection of actuator lenses using swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun
2017-12-01
Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.
A generalized analytical approach to the coupled effect of SMA actuation and elastica deflection
NASA Astrophysics Data System (ADS)
Sreekumar, M.; Singaperumal, M.
2009-11-01
A compliant miniature parallel manipulator made of superelastic nitinol pipe as its central pillar and actuated by three symmetrically attached shape memory alloy (SMA) wires is under development. The mobility for the platform is obtained by the selective actuation of one or two wires at a time. If one wire is actuated, the other two unactuated wires provide the counter effect. Similarly, if two wires are actuated simultaneously or in a differential manner, the third unactuated wire resists the movement of the platform. In an earlier work of the authors, the static displacement analysis was presented without considering the effect of unactuated wires. In this contribution, the force-displacement analysis is presented considering the effect of both actuated and unactuated wires. Subsequently, an attempt has been made to obtain a generalized approach from which six types of actuation methods are identified using a group of conditional parameters. Each method leads to a set of large deflection expressions suitable for a particular actuation method. As the large deflection expressions derived for the mechanism are nonlinear and involve interdependent parameters, their simplified form using a parametric approximation have also been obtained using Howell's algorithm. The generalized approach and the solution algorithm developed can be applied to any kind of compliant mechanism having large deflection capabilities, including planar and spatial MEMS devices and stability analysis of long slender columns supported by wires or cables. The procedure developed is also suitable for the static analysis of spatial compliant mechanisms actuated by multiple SMA actuators.
Electrostatic polymer-based microdeformable mirror for adaptive optics
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Conedera, Veronique; Granier, Hugues; Liotard, Arnaud; Lanzoni, Patrick; Salvagnac, Ludovic; Fabre, Norbert; Camon, Henri
2007-02-01
Future adaptive optics (AO) systems require deformable mirrors with very challenging parameters, up to 250 000 actuators and inter-actuator spacing around 500 μm. MOEMS-based devices are promising for the development of a complete generation of new deformable mirrors. Our micro-deformable mirror (MDM) is based on an array of electrostatic actuators with attachments to a continuous mirror on top. The originality of our approach lies in the elaboration of layers made of polymer materials. Mirror layers and active actuators have been demonstrated. Based on the design of this actuator and our polymer process, realization of a complete polymer-MDM has been done using two process flows: the first involves exclusively polymer materials while the second uses SU8 polymer for structural layers and SiO II and sol-gel for sacrificial layers. The latest shows a better capability in order to produce completely released structures. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. Then, we have developed a dedicated 14-bit electronics in order to "linearize" the actuation, using a calibration and a sixth-order polynomial fitting strategy. The response is nearly perfect over our 3×3 MDM prototype with a standard deviation of 3.5 nm; the influence function of the central actuator has been measured. First evaluation on the cross non-linarities has also been studied on OKO mirror and a simple look-up table is sufficient for determining the location of each actuator whatever the locations of the neighbor actuators. Electrostatic MDM are particularly well suited for open-loop AO applications.
NASA Astrophysics Data System (ADS)
Cho, Wan-Ho; Ih, Jeong-Guon; Toi, Takeshi
2015-12-01
For rendering a desired characteristics of a sound field, a proper conditioning of acoustic actuators in an array are required, but the source condition depends strongly on its position. Actuators located at inefficient positions for control would consume the input power too much or become too much sensitive to disturbing noise. These actuators can be considered redundant, which should be sorted out as far as such elimination does not damage the whole control performance significantly. It is known that the inverse approach based on the acoustical holography concept, employing the transfer matrix between sources and field points as core element, is useful for rendering the desired sound field. By investigating the information indwelling in the transfer matrix between actuators and field points, the linear independency of an actuator from the others in the array can be evaluated. To this end, the square of the right singular vector, which means the radiation contribution from the source, can be used as an indicator. Inefficient position for fulfilling the desired sound field can be determined as one having smallest indicator value among all possible actuator positions. The elimination process continues one by one, or group by group, until the remaining number of actuators meets the preset number. Control examples of exterior and interior spaces are taken for the validation. The results reveal that the present method for choosing least dependent actuators, for a given number of actuators and field condition, is quite effective in realizing the desired sound field with a noisy input condition, and in minimizing the required input power.
Biomimetic photo-actuation: progress and challenges
NASA Astrophysics Data System (ADS)
Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.
2016-04-01
Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.
Four-Point-Latching Microactuator
NASA Technical Reports Server (NTRS)
Toda, Risaku; Yang, Eui-Hyeok
2008-01-01
An experimental inchworm-type linear microactuator is depicted. This microactuator is a successor to one described in "MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator" (NPO-30672), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 68. Both actuators are based on the principle of using a piezoelectric transducer operated in alternation with electrostatically actuated clutches to cause a slider to move in small increments. However, the design of the present actuator incorporates several improvements over that of the previous one. The most readily apparent improvement is in geometry and, consequently, in fabrication: In the previous actuator, the inchworm motion was perpendicular to the broad faces of a flat silicon wafer on which the actuator was fabricated, and fabrication involved complex processes to form complex three-dimensional shapes in and on the wafer. In the present actuator, the inchworm motion is parallel to the broad faces of a wafer on which it is fabricated. The components needed to produce the in-plane motion are nearly planar in character and, consequently, easier to fabricate. Other advantages of the present design are described, including that the previous actuator contained two clutches (denoted 'holders' in the cited prior article), the present actuator contains four clutches. The operational sequence of the previous two-clutch actuator is similar. However, the two-clutch configuration is susceptible to tilt of the slider and a consequent large increase in drag. Hence, the primary operational advantages of the present four-point-latching design over the prior two-point-latching design are less drag and greater control robustness arising from greater stability of the orientation of the slider.
Active Control of Fan Noise by Vane Actuators
NASA Technical Reports Server (NTRS)
Curtis, Alan R. D.
1999-01-01
An active noise control system for ducted fan noise was built that uses actuators located in stator vanes. The actuators were piezoelectric benders manufactured using the THUNDER technology and were custom designed for the application. The active noise control system was installed in the NASA ANCF rig. Four actuator array with a total of 168 actuators in 28 stator vanes were used. Simultaneous reductions of acoustic power in both the inlet and exhaust duct were demonstrated for a fan disturbance that contained two radial mode orders in both inlet and exhaust. Total power levels in the target modes were reduced by up to 9 dB in the inlet and total tone levels by over 6 dB while exhaust power levels were reduced by up to 3 dB. Far field sound pressure level reductions of up to 17 dB were observed. A simpler control system, matched to the location of the disturbance with two radial actuator arrays, was demonstrated to control total acoustic power in four disturbance modes simultaneously in inlet and exhaust. The vane actuator met the requirements given for the ANCF, although in practice the performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. The vane actuators were robust. None of the 168 vane actuators failed during the tests.
High-Force Dielectric Electroactive Polymer (DEAP) membrane actuator
NASA Astrophysics Data System (ADS)
Hau, Steffen; York, Alexander; Seelecke, Stefan
2016-04-01
Energy efficiency, lightweight and scalability are key features for actuators in applications such as valves, pumps or any portable system. Dielectric electroactive Polymer (DEAP) technology is able to fulfill these requirements1 better than commonly used technology e.g. solenoids, but has limitations concerning force and stroke. However, the circular DEAP membrane actuator shows a potential increase in stroke in the mm range, when combined with an appropriate biasing mechanism2. Although, thus far, their force range is limited to the single-digit Newton range, or less3,4. This work describes how this force limit of DEAP membrane actuators can be pushed to the high double-digit Newton range and beyond. The concept for such an actuator consists of a stack of double-layered DEAPs membrane actuator combined with a biasing mechanism. These two components are combined in a novel way, which allows a compact design by integrating the biasing mechanism into the DEAP membrane actuator stack. Subsequently, the single components are manufactured, tested, and their force-displacement characteristic is documented. Utilizing this data allows assembling them into actuator systems for different applications. Two different actuators are assembled and tested (dimensions: 85x85x30mm3 (LxWxH)). The first one is able to lift 7.5kg. The second one can generate a force of 66N while acting against a spring load.
EMC design for actuators in the FAST reflector
NASA Astrophysics Data System (ADS)
Zhang, Hai-Yan; Wu, Ming-Chang; Yue, You-Ling; Gan, Heng-Qian; Hu, Hao; Huang, Shi-Jie
2018-04-01
An active reflector is one of the three main innovations incorporated in the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The deformation of such a huge spherically shaped reflector into different transient parabolic shapes is achieved by using 2225 hydraulic actuators which change the position of the 2225 nodes through the connected down tied cables. For each different tracking process of the telescope, more than 1/3 of these 2225 actuators must be in operation to tune the parabolic aperture accurately and meet the surface error restriction. This means that some of these actuators are inevitably located within the main beam of the receiver, and Electromagnetic Interference (EMI) from the actuators must be mitigated to ensure the scientific output of the telescope. Based on the threshold level of interference detrimental to radio astronomy described in ITU-R Recommendation RA.769 and EMI measurements, the shielding efficiency (SE) requirement for each actuator is set to be 80 dB in the frequency range from 70 MHz to 3 GHz. Therefore, Electromagnetic Compatibility (EMC) was taken into account in the actuator design by measures such as power line filters, optical fibers, shielding enclosures and other structural measures. In 2015, all the actuators had been installed at the FAST site. Till now, no apparent EMI from the actuators has been detected by the receiver, which demonstrates the effectiveness of these EMC measures.
NASA Technical Reports Server (NTRS)
Tao, Gang; Joshi, Suresh M.
2008-01-01
In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.
Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2007-04-01
The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.
Parylene-coated ionic liquid-carbon nanotube actuators for user-safe haptic devices.
Bubak, Grzegorz; Gendron, David; Ceseracciu, Luca; Ansaldo, Alberto; Ricci, Davide
2015-07-22
Simple fabrication, high power-to-weight and power-to-volume ratios, and the ability to operate in open air at low voltage make the ionic electroactive polymer actuators highly attractive for haptic applications. Whenever a direct tactile stimulation of the skin is involved, electrical and chemical insulation as well as a long-term stability of the actuator are required. Because of its inherent physicochemical properties such as high dielectric strength, resistance to solvents, and biological inactivity, Parylene C meets the requirements for making biocompatible actuators. We have studied the displacement and the generated force of Parylene-coated carbon nanotube actuators as well as the encapsulation quality. A 2 μm coating creates an effective electrical insulation of the actuators without altering the blocking force at frequencies from 50 mHz to 1 Hz. Moreover, the generated strain is preserved at higher frequencies (from 0.5 to 5 Hz). We employed a simple mechanical model to explain the relation between the key parameters-flexural stiffness, displacement, and force-for uncoated and coated actuators. In addition, we demonstrated that our Parylene-coated actuators are not damaged by rinsing in liquid media such as 2-propanol or water. In conclusion, our results indicate that Parylene C encapsulated actuators are safe to touch and can be used in contact with human skin and in biomedical applications in direct contact with tissues and physiological fluids.
Improvement of McKibben Artificial Muscle with Long Stroke Motion and Its Application
NASA Astrophysics Data System (ADS)
Akagi, Tetsuya; Dohta, Shujiro; Kuno, Hiroaki; Ihara, Michinori
The actuators required for a wearable system need to be flexible so as not to injure the body. The purpose of this study is to develop a flexible and lightweight actuator which can be safe enough to be attached to the human body. In the previous study, a new type of McKibben artificial muscle that had a long stroke of more than 80 % of its original length was proposed and tested. However, the damages on the tube of the actuator were found. They are caused by a large friction between the slide stage and the tube. Therefore, the life time of the actuator becomes shorter. In this paper, the improved McKibben actuator which consists of a McKibben artificial muscle on the market (FESTO Co. Ltd.), steel balls as a cylinder head and two pairs of slide stages is proposed and tested. The slide stage has steel balls set on the inner bore of the stage to decrease the friction. The steel ball in the McKibben actuator is held by two pairs of slide stages from both sides of the ball. As a result, the minimum driving pressure of the improved actuator decreases about 68 % compared with that of the previous one. The actuator can realize both pushing and pulling motion even if it has flexibility. By using these properties of the actuator, the various rehabilitation devices were proposed and tested.
Electroactive Polymer (EAP) Actuation of Mechanisms and Robotic Devices
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Leary, S.; Harrison, J.; Smith, J.
1999-01-01
Actuators are responsible to the operative capability of manipulation systems and robots. In recent years, electroactive polymers (EAP) have emerged as potential alternative to conventional actuators.
Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan
2013-01-29
The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.
Design, Fabrication and Testing of Tunable RF Meta-atoms
2012-06-14
Simple cantilever beam with actuation pad covered with a thin dielectric layer for short circuit protection...Cantilever actuation simulated with CoventorWare ® to determine the biasing voltage necessary to draw the cantilevers to the actuation pads ...Capacitive tunable meta-atom fabricated on quartz substrate. The meta-atom had to be cut at the metal trace leading to the cantilever actuation pads
Fault-tolerant rotary actuator
Tesar, Delbert
2006-10-17
A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.
Active Flow Separation Control on a NACA 0015 Wing Using Fluidic Actuators
NASA Technical Reports Server (NTRS)
Melton, Latunia P.
2014-01-01
Results are presented from a recent set of wind tunnel experiments using sweeping jet actuators to control ow separation on the 30% chord trailing edge ap of a 30 deg. swept wing model with an aspect ratio (AR) of 4.35. Two sweeping jet actuator locations were examined, one on the flap shoulder and one on the trailing edge flap. The parameters that were varied included actuator momentum, freestream velocity, and trailing edge flap deflection (Delta f ) angle. The primary focus of this set of experiments was to determine the mass flow and momentum requirements for controlling separation on the flap, especially at large flap deflection angles which would be characteristic of a high lift system. Surface pressure data, force and moment data, and stereoscopic particle image velocimetry (PIV) data were acquired to evaluate the performance benefits due to applying active flow control. Improvements in lift over the majority of the wing span were obtained using sweeping jet actuator control. High momentum coefficient, Cu, levels were needed when using the actuators on the ap because they were located downstream of separation. Actuators on the flap shoulder performed slightly better but actuator size, orientation, and spacing still need to be optimized.
NASA Astrophysics Data System (ADS)
Wicks, M.; Thomas, F. O.; Corke, T. C.; Patel, M.
2012-11-01
Dielectric barrier discharge (DBD) plasma actuators possess numerous advantages for flow control applications and have been the focus of several previous studies. Most work has been performed in relatively pristine laboratory settings. In actual flow control applications, however, it is essential to assess the impact of various environmental influences on actuator performance. As a first effort toward assessing a broad range of environmental effects on DBD actuator performance, the influence of relative humidity (RH) is considered. Actuator performance is quantified by force balance measurements of reactive thrust while RH is systematically varied via an ultrasonic humidifier. The DBD plasma actuator assembly, force balance, and ultrasonic humidifier are all contained inside a large, closed test chamber instrumented with RH and temperature sensors in order to accurately estimate the average RH at the actuator. Measurements of DBD actuator thrust as a function of RH for several different applied voltage regimes and dielectric materials and thicknesses are presented. Based on these results, several important design recommendations are made. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.
NASA Astrophysics Data System (ADS)
Shen, I. Y.
1997-02-01
This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.
Synthesis and Development of Gold Polypyrrole Actuator for Underwater Application
NASA Astrophysics Data System (ADS)
Panda, S. K.; Bandopadhya, D.
2018-02-01
Electro-active polymer (EAP) such as Polypyrrole has gained much attention in the category of functional materials for fabrication of both active actuator and sensor. Particularly, PPy actuator has shown potential in fluid medium application because of high strain, large bending displacement and work density. This paper focuses on developing a low cost active actuator promising in delivering high performance in underwater environment. The proposed Au-pyrrole actuator is synthesized by adopting the layer-by-layer electrochemical polymerization technique and is fabricated as strip actuator from aqueous solution of Pyrrole and NaDBS in room temperature. In the follow-up, topographical analysis has been carried out using SEM and FESEM instruments showing surface morphology and surface integrity of chemical components of the structure. Several experiments have been conducted under DC input voltage evaluating performance effectiveness such as underwater bending displacement and tip force etc. This is observed that the actuator exhibits quite similar stress profile as of natural muscle, endowed with high modulus makes them effective in working nearly 10,000 cycles underwater environment. In addition, the bending displacement up to 5.4 mm with a low input voltage 1.3 V makes the actuator suitable for underwater micro-robotics applications.
Shape memory alloy resistance behaviour at high altitude for feedback control
NASA Astrophysics Data System (ADS)
Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.
2017-12-01
Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.
Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A
2013-07-01
A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.
Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang
2015-12-01
This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.
Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han
2013-01-01
In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77,488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.
Performance Comparison of Sweeping/Steady Jet Actuators
NASA Astrophysics Data System (ADS)
Hirsch, Damian; Mercier, Justin; Noca, Flavio; Gharib, Morteza
2015-11-01
Flow control through the use of steady jet actuators has been used on various aircraft models since the late 1950's. However, the focus of recent studies has shifted towards the use of sweeping jets (fluidic oscillators) rather than steady jet actuators. In this work, experiments using various jet actuator designs were conducted at GALCIT's Lucas Wind Tunnel on a NACA 0012 vertical tail model similar to that of the Boeing 767 vertical stabilizer at Reynolds numbers ranging from 0.5 to 1.2 million. The rudder angle was fixed at 20 degrees. A total of 32 jet actuators were installed along the wingspan perpendicular to the trailing edge and the rudder shoulder of the vertical stabilizer. It is known that these types of flow control prevent separation. However, the goal of this work is to compare different jet designs and evaluate their performance. Parameters such as the number of actuators, their volumetric flow, and the wind tunnel speed were varied. The lift generation capabilities of steady and sweeping jet actuators were then compared. Another set of experiments was conducted to compare a new sweeping jet actuator design with one of the standard versions. Supported by Boeing.
Halbach array type focusing actuator for small and thin optical data storage device
NASA Astrophysics Data System (ADS)
Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul
2004-09-01
The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.
Programmable optical microshutter arrays for large aspect ratio microslits
NASA Astrophysics Data System (ADS)
Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.; Le Noc, L.; Topart, P.
2008-06-01
Design, fabrication and characterization of a 16x1 programmable microshutter array are described. Each shutter controls the light transmitted through a microslit defined on the transparent substrate supporting the array. Two approaches were considered for the shutter array implementation: sweeping blades and zipping actuators. Simulation results and fabrication constraints led to the selection of the zipping actuators. The device was fabricated using a surface micromachining process. Each microshutter is basically an electrostatic zipping actuator having a curved shape induced by a stress gradient throughout the actuator thickness. When a sufficient voltage is applied between the microshutter and an actuation electrode surrounding the microslit area, the generated electrostatic force pulls the actuator down to the substrate which closes the microslit. Opening the slit relies on the restoring force due to the actuator deformation. Microshutter arrays were fabricated successfully. High light transmission through the slit area is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. Static and dynamic responses of the device were determined. A pull-in voltage of about 110 V closes the microslit and the response times to close and open the microslit are about 2 and 7 ms, respectively.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-01-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736
Thermostatic Valves Containing Silicone-Oil Actuators
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard
2009-01-01
Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.
NASA Astrophysics Data System (ADS)
Almubarak, Yara; Tadesse, Yonas
2017-04-01
The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.
Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators
NASA Astrophysics Data System (ADS)
Li, Min; Ranzani, Tommaso; Sareh, Sina; Seneviratne, Lakmal D.; Dasgupta, Prokar; Wurdemann, Helge A.; Althoefer, Kaspar
2014-09-01
This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.
Electromagnetic DM technology meets future AO demands
NASA Astrophysics Data System (ADS)
Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten; Doelman, Niek
New deformable mirror technology is developed by the Technische Universiteit Eindhoven, Delft University of Technology and TNO Science and Industry. Several prototype adaptive deformable mirrors are realized mirrors, up to 427 actuators and ∅150mm diameter, with characteristics suitable for future AO systems. The prototypes consist of a 100µm thick, continuous facesheet on which low voltage, electromagnetic, push-pull actuators impose out-of-plane displacements. The variable reluctance actuators with ±10µm stroke and nanometer resolution are located in a standard actuator module. Each module with 61 actuators connects to a single PCB with dedicated, 16 bit, PWM based, drivers. A LVDS multi-drop cable connects up to 32 actuator modules. With the actuator module, accompanying PCB and multi-drop system the deformable mirror technology is made modular in its mechanics and electronics. An Ethernet-LVDS bridge enables any commercial PC to control the mirror using the UDP standard. Latest results of the deformable mirror technology development are presented.
A MEMS Electrochemical Bellows Actuator for Fluid Metering Applications
Sheybani, Roya; Gensler, Heidi; Meng, Ellis
2013-01-01
We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2% variation in flow rate values. PMID:22833156
Zhao, Qian; Liang, Yunhong; Ren, Lei; Qiu, Feng; Zhang, Zhihui; Ren, Luquan
2018-02-01
A hydrogel material system which was fit for molding and 3D printing was developed to fabricate bilayer hydrogel actuators with controllable temperature and near infrared laser responses. Polymerization on interface boundary of layered structure enhanced the bonding strength of hydrogel actuators. By utilizing anisotropic of microstructure along with thickness direction, bilayer hydrogel actuators fabricated via molding realized intelligent bending/shrinking responses, which guided the preparation of hydrogel ink for 3D printing. In-situ free radical polymerization under vacuum realized the solidification of printed hydrogel actuators with graphene oxide. Based on anisotropic swelling/deswelling behaviors of precise structure fabricated via 3D printing, the printed bilayer hydrogel actuators achieved temperature and near infrared laser responsive deformation. Changes of programmable printing path effectively resulted in corresponding deformation patterns. Combination of advantages of molding and 3D printing can promote the design and fabrication of hydrogel actuators with high mechanical strength, response speed and deformation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Lake, Melinda A.; Hoelzle, David J.
2017-09-01
There is a need for the development of large displacement (O (10-6) m) and force (O (10-6) N) electrostatic actuators with low actuation voltages (< ±8 V) for underwater bio-MEMS applications. In this paper, we present the design, fabrication, and characterization of a curved electrode electrostatic actuator in a clamped-clamped beam configuration meant to operate in an underwater environment. Our curved electrode actuator is unique in that it operates in a stable manner past the pull-in instability. Models based on the Rayleigh-Ritz method accurately predict the onset of static instability and the displacement versus voltage function, as validated by quasistatic experiments. We demonstrate that the actuator is capable of achieving a large peak-to-peak displacement of 19.5 µm and force of 43 µN for a low actuation voltage of less than ±8 V and is thus appropriate for underwater bio-MEMS applications.
Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.
Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María
2018-06-01
The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
NASA Astrophysics Data System (ADS)
Farag, Mohannad; Zainul Azlan, Norsinnira; Hayyan Alsibai, Mohammed
2018-04-01
This paper presents the design and fabrication of a three-fingered anthropomorphic robotic hand. The fingers are driven by tendons and actuated by human muscle-like actuators known as Pneumatic Artificial Muscle (PAM). The proposed design allows the actuators to be mounted outside the hand where each finger can be driven by one PAM actuator and six indirectly interlinked tendons. With this design, the three-fingered hand has a compact size and a lightweight with a mass of 150.25 grams imitating the human being hand in terms of size and weight. The hand also successfully grasped objects with different shapes and weights up to 500 g. Even though the number of PAM actuators equals the number of Degrees of Freedom (DOF), the design guarantees driving of three joints by only one actuator reducing the number of required actuators from 3 to 1. Therefore, this hand is suitable for researches of robotic applications in terms of design, cost and ability to be equipped with several types of sensors.
NASA Technical Reports Server (NTRS)
Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning
2013-01-01
A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.
NASA Astrophysics Data System (ADS)
Liu, Yanju; Shi, Liang; Liu, Liwu; Zhang, Zhen; Leng, Jinsong
2008-03-01
Bio-mimetic actuators are inspired to the human or animal organ and they are aimed at replicating actions exerted by the main organic muscles. We present here an inflated dielectric Electroactive Polymer actuator based on acrylic elastomer aiming at mimicing the ocular muscular of the human eye. Two sheets of polyacrylic elastomer coated with conductive carbon grease are sticked to a rotatable backbone, which function like an agonist-antagonist configuration. When stimulating the two elastomer sheets separately, the rotatable mid-arc of the actuator is capable of rotating from -50° to 50°. Experiments shows that the inflated actuator, compared with uninflated one, performs much bigger rotating angle and more strengthened. Connected with the actuator via an elastic tensive line, the eyeball rotates around the symmetrical axes. The realization of more accurate movements and emotional expressions of our native eye system is the next step of our research and still under studied. This inflated dielectric elastomer actuator shows as well great potential application in robofish and adaptive stucture.
MOSFET Switching Circuit Protects Shape Memory Alloy Actuators
NASA Technical Reports Server (NTRS)
Gummin, Mark A.
2011-01-01
A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.
Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator
Wu, Guan; Hu, Ying; Liu, Yang; Zhao, Jingjing; Chen, Xueli; Whoehling, Vincent; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Chen, Wei
2015-01-01
Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g−1) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size <2 nm, optimal pyridinic nitrogen active sites (6.78%) and effective conductivity (382 S m−1) of the electrode. Our study represents an important step towards artificial muscle technology in which heteroatom modulation in electrodes plays an important role in promoting electrochemical actuation performance. PMID:26028354
Yang, Huiliao; Jiang, Bin; Yang, Hao; Liu, Hugh H T
2018-04-01
The distributed cooperative control strategy is proposed to make the networked nonlinear 3-DOF helicopters achieve the attitude synchronization in the presence of actuator faults and saturations. Based on robust adaptive control, the proposed control method can both compensate the uncertain partial loss of control effectiveness and deal with the system uncertainties. To address actuator saturation problem, the control scheme is designed to ensure that the saturation constraint on the actuation will not be violated during the operation in spite of the actuator faults. It is shown that with the proposed control strategy, both the tracking errors of the leading helicopter and the attitude synchronization errors of each following helicopter are bounded in the existence of faulty actuators and actuator saturations. Moreover, the state responses of the entire group would not exceed the predesigned performance functions which are totally independent from the underlaying interaction topology. Simulation results illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
De Marchi, Luca; Marzani, Alessandro; Moll, Jochen; Kudela, Paweł; Radzieński, Maciej; Ostachowicz, Wiesław
2017-07-01
The performance of Lamb wave based monitoring systems, both in terms of diagnosis time and data complexity, can be enhanced by increasing the number of transducers used to actuate simultaneously the guided waves in the inspected medium. However, in case of multiple simultaneously-operated actuators the interference among the excited wave modes within the acquired signals has to be considered for the further processing. To this aim, in this work a code division strategy based on the Warped Frequency Transform is presented. At first, the proposed procedure encodes actuation pulses using Gold sequences. Next, for each considered actuator the acquired signals are compensated from dispersion by cross correlating the warped version of the actuated and received signals. Compensated signals form the base for a final wavenumber imaging meant at emphasizing defects and or anomalies by removing incident wavefield and edge reflections. The proposed strategy is tested numerically, and validated through an experiment in which guided waves are actuated in a plate by four piezoelectric transducers operating simultaneously.
Compliant displacement-multiplying apparatus for microelectromechanical systems
Kota, Sridhar; Rodgers, M. Steven; Hetrick, Joel A.
2001-01-01
A pivotless compliant structure is disclosed that can be used to increase the geometric advantage or mechanical advantage of a microelectromechanical (MEM) actuator such as an electrostatic comb actuator, a capacitive-plate electrostatic actuator, or a thermal actuator. The compliant structure, based on a combination of interconnected flexible beams and cross-beams formed of one or more layers of polysilicon or silicon nitride, can provide a geometric advantage of from about 5:1 to about 60:1 to multiply a 0.25-3 .mu.m displacement provided by a short-stroke actuator so that such an actuator can be used to generate a displacement stroke of about 10-34 .mu.m to operate a ratchet-driven MEM device or a microengine. The compliant structure has less play than conventional displacement-multiplying devices based on lever arms and pivoting joints, and is expected to be more reliable than such devices. The compliant structure and an associated electrostatic or thermal actuator can be formed on a common substrate (e.g. silicon) using surface micromachining.
Screening actuator locations for static shape control
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1990-01-01
Correction of shape distortion due to zero-mean normally distributed errors in structural sizes which are random variables is examined. A bound on the maximum improvement in the expected value of the root-mean-square shape error is obtained. The shape correction associated with the optimal actuators is also characterized. An actuator effectiveness index is developed and shown to be helpful in screening actuator locations in the structure. The results are specialized to a simple form for truss structures composed of nominally identical members. The bound and effectiveness index are tested on a 55-m radiometer antenna truss structure. It is found that previously obtained results for optimum actuators had a performance close to the bound obtained here. Furthermore, the actuators associated with the optimum design are shown to have high effectiveness indices. Since only a small fraction of truss elements tend to have high effectiveness indices, the proposed screening procedure can greatly reduce the number of truss members that need to be considered as actuator sites.
A latchable thermally activated phase change actuator for microfluidic systems
NASA Astrophysics Data System (ADS)
Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.
2016-03-01
Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.
OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles
NASA Technical Reports Server (NTRS)
Wichmann, H.
1974-01-01
Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.
Piezoelectric actuators for active optics
NASA Astrophysics Data System (ADS)
Le Letty, R.; Barillot, F.; Fabbro, H.; Guay, Ph.; Cadiergues, L.
2017-11-01
Piezoelectric actuators find their first applications in active space optics. The purpose of this paper is to describe the state of the art and some applications. Piezo actuators display attractive features for space applications, such as precise positioning, unlubricated, non magnetic and compact features, and low power consumption. However, piezo mechanisms cannot be considered separately from their driving and control electronic. Piezo actuators, such as Amplified Piezo Actuators or Parallel Pre-stressed Actuators, initially designed under CNES contracts, shall find their first space flight applications in optics on the PHARAO Laser bench: • fine pointing of the laser beams, • laser cavity tuning. Breadboard mechanisms based on piezo actuators have also been tested for refocusing purposes. Other applications includes the improvement of the CCD resolution through an oversampling technique, such as in the SOHO/LASCO instrument, fast optical shutter operation, optical filter in combination with a Fabry - Perot interferometer, such as in future LIDAR for earth observation. The first applications shall be described and an overview of the future potential applications shall be given.
Networked Rectenna Array for Smart Material Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.
2000-01-01
The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.
Chou, Po-Chien; Lin, Yu-Cheng; Cheng, Stone
2011-01-01
Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF) disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs) is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA) unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system. PMID:22163877
Computational analysis of blood clot dissolution using a vibrating catheter tip.
Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee
2012-04-01
We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.
A wearable robotic orthosis with a spring-assist actuator.
Seungmin Jung; Chankyu Kim; Jisu Park; Dongyoub Yu; Jaehwan Park; Junho Choi
2016-08-01
This paper introduces a wearable robotic orthosis with spring-assist actuators, which is designed to assist people who have difficulty in walking. The spring-assist actuator consists of an electrical motor and a spring, which are attached to a rotational axis in parallel to each other. The spring-assist actuator is developed based on the analysis on the stiffness of the knee and hip joints during walking. "COWALK-Mobile," which is a wearable robotic orthosis, is developed using the spring-assist actuators to reduce the required motor torque during walking. The COWALK-Mobile has active hip and knee joints and passive ankle joints to provide assistive torque to the wearer. The required joint torque is generated by the spring as well as the electrical motor, which results in a decrease of maximum required torque for the motor. In order to evaluate the performance of the spring-assist actuator, experiments are carried out. The experiments show that the spring-assist actuators reduced the required motor torque during walking.
Nanothorn electrodes for ionic polymer-metal composite artificial muscles
Palmre, Viljar; Pugal, David; Kim, Kwang J.; Leang, Kam K.; Asaka, Kinji; Aabloo, Alvo
2014-01-01
Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1–3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process. PMID:25146561
Hysteresis compensation for piezoelectric actuators in single-point diamond turning
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Hu, Dejin; Wan, Daping; Liu, Hongbin
2006-02-01
In recent years, interests have been growing for fast tool servo (FTS) systems to increase the capability of existing single-point diamond turning machines. Although piezoelectric actuator is the most universal base of FTS system due to its high stiffness, accuracy and bandwidth, nonlinearity in piezoceramics limits both the static and dynamic performance of piezoelectric-actuated control systems evidently. To compensate the nonlinear hysteresis behavior of piezoelectric actuators, a hybrid model coupled with Preisach model and feedforward neural network (FNN) has been described. Since the training of FNN does not require a special calibration sequence, it is possible for on-line identification and real-time implementation with general operating data of a specific piezoelectric actuator. To describe the rate dependent behavior of piezoelectric actuators, a hybrid dynamic model was developed to predict the response of piezoelectric actuators in a wider range of input frequency. Experimental results show that a maximal error of less than 3% was accomplished by this dynamic model.
Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon
2016-01-07
Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.
Tunable actuation of dielectric elastomer by electromechanical loading rates
NASA Astrophysics Data System (ADS)
Li, Guorui; Zhang, Mingqi; Chen, Xiangping; Yang, Xuxu; Wong, Tuck-Whye; Li, Tiefeng; Huang, Zhilong
2017-10-01
Dielectric elastomer (DE) membranes are able to self-deform with the application of an electric field through the thickness direction. In comparison to conventional rigid counterparts, soft actuators using DE provide a variety of advantages such as high compliance, low noise, and light weight. As one of the challenges in the development of DE actuating devices, tuning the electromechanical actuating behavior is crucial in order to achieve demanded loading paths and to avoid electromechanical failures. In this paper, our experimental results show that the electromechanical loading conditions affect the actuating behaviors of the DE. The electrical actuating force can be tuned by 29.4% with the control of the electrical charging rate. In addition, controllable actuations have been investigated by the mechanical model in manipulating the electromechanical loading rate. The calculated results agree well with the experimental data. Lastly, it is believed that the mechanisms of controlling the electromechanical loading rate may serve as a guide for the design of DE devices and high performance soft robots in the near future.
One-volt-driven superfast polymer actuators based on single-ion conductors
Kim, Onnuri; Kim, Hoon; Choi, U. Hyeok; Park, Moon Jeong
2016-01-01
The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future. PMID:27857067
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Design and experimental study of a novel giant magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Dongwei; Huang, Yingjie; Xie, Wenqiang
2016-12-01
Giant magnetostrictive actuator has been widely used in precise driving occasions for its excellent performance. However, in driving a switching valve, especially the ball-valve in an electronic controlled injector, the actuator can't exhibit its good performance for limits in output displacement and responding speed. A novel giant magnetostrictive actuator, which can reach its maximum displacement for being exerted with no bias magnetic field, is designed in this paper. Simultaneously, elongating of the giant magetostrictive material is converted to shortening of the actuator's axial dimension with the help of an output rod in "T" type. Furthermore, to save responding time, the driving voltage with high opening voltage while low holding voltage is designed. Responding time and output displacement are studied experimentally with the help of a measuring system. From measured results, designed driving voltage can improve the responding speed of actuator displacement quite effectively. And, giant magnetostrictive actuator can output various steady-state displacements to reach more driving effects.
System and Method for Tensioning a Robotically Actuated Tendon
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor)
2013-01-01
A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current.
Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-05-27
Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.
A fully dynamic model of a multi-layer piezoelectric actuator incorporating the power amplifier
NASA Astrophysics Data System (ADS)
Zhu, Wei; Yang, Fufeng; Rui, Xiaoting
2017-12-01
The dynamic input-output characteristics of the multi-layer piezoelectric actuator (PA) are intrinsically rate-dependent and hysteresis. Meanwhile, aiming at the strong capacitive impedance of multi-layer PA, the power amplifier of the actuator can greatly affect the dynamic performances of the actuator. In this paper, a novel dynamic model that includes a model of the electric circuit providing voltage to the actuator, an inverse piezoelectric effect model describing the hysteresis and creep behavior of the actuator, and a mechanical model, in which the vibration characteristics of the multi-layer PA is described, is put forward. Validation experimental tests are conducted. Experimental results show that the proposed dynamic model can accurately predict the fully dynamic behavior of the multi-layer PA with different driving power.
Lead magnesium niobate actuator for micropositioning
Swift, Charles D.; Bergum, John W.
1994-01-01
An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.
Design of a power-asymmetric actuator for a transtibial prosthesis.
Bartlett, Harrison L; Lawson, Brian E; Goldfarb, Michael
2017-07-01
This paper presents the design and characterization of a power-asymmetric actuator for a transtibial prosthesis. The device is designed to provide the combination of: 1) joint locking, 2) high power dissipation, and 3) low power generation. This actuator functionality allows for a prosthesis to be designed with minimal mass and power consumption relative to a fully-powered robotic prosthesis while maintaining much of the functionality necessary for activities of daily living. The actuator achieves these design characteristics while maintaining a small form factor by leveraging a combination of electromechanical and hydraulic components. The design of the actuator is described herein, and results of an experimental characterization are provided that indicate that the actuator is capable of providing the functional capabilities required of an ankle prosthesis in a compact and lightweight package.
A flexible metallic actuator using reduced graphene oxide as a multifunctional component.
Meng, Junxing; Mu, Jiuke; Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi
2017-09-14
Flexible actuators are widely in demand for many real-life applications. Considering that existing actuators based on polymers, low-dimensional materials and pore-rich materials are mostly limited by slow response rate, high driving voltage and poor stability, we report here a novel metal based flexible actuator which is fabricated simply through partial oxidation and nano-function of copper foil with the assistance of reduced graphene oxide. The obtained asymmetric metallic actuator is (electric-)thermally driven and exhibits fast response rate (∼2 s) and large curvature (2.4 cm -1 ) under a low voltage (∼1 V) with a sustainable operation of up to ∼50 000 cycles. The actuator can also be triggered by infrared irradiation and direct-heating under various conditions including air, water, and vacuum.
Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators
Martinez, Ramses V.; Whitesides, George M.
2017-10-25
Soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible are described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into three-dimensional structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while keeping them light in weight.
Core-free rolled actuators for Braille displays using P(VDF-TrFE-CFE)
NASA Astrophysics Data System (ADS)
Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Rahn, Christopher D.; Zhang, Q. M.
2012-01-01
Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF-TrFE-CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m-1). A novel Braille cell is designed and fabricated using six of these actuators.
Genetic Algorithm Approaches for Actuator Placement
NASA Technical Reports Server (NTRS)
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
Larger-Stroke Piezoelectrically Actuated Microvalve
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok
2003-01-01
A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be sufficient to enable the valve to handle a fluid pressurized up to about 50 psi (approximately equal to 0.35 MPa). The overall dimensions of the unimorph version would be 2 by 2 by 0.5 mm. In this version, an electric field across the piezoelectric film on a diaphragm would cause the film to pull on, and thereby bend, the diaphragm. At an applied potential of 20 V, the actuator in this version would generate a stroke of 10 micrometers and a force of 0.01 N. This force level would be too low to enable handling of fluids at pressures comparable to those of the bimorph version. This version would be useful primarily in microfluidic and nanofluidic applications that involve extremely low differential pressures and in which there are requirements for extreme miniaturization of valves. Examples of such applications include liquid chromatography and sequencing of deoxyribonucleic acid.
Characterization of Multilayer Piezoelectric Actuators for Use in Active Isolation Mounts
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1997-01-01
Active mounts are desirable for isolating spacecraft science instruments from on-board vibrational sources such as motors and release mechanisms. Such active isolation mounts typically employ multilayer piezoelectric actuators to cancel these vibrational disturbances. The actuators selected for spacecraft systems must consume minimal power while exhibiting displacements of 5 to 10 micron under load. This report describes a study that compares the power consumption, displacement, and load characteristics of four commercially available multilayer piezoelectric actuators. The results of this study indicate that commercially available actuators exist that meet or exceed the design requirements used in spacecraft isolation mounts.
Integrated modeling for parametric evaluation of smart x-ray optics
NASA Astrophysics Data System (ADS)
Dell'Agostino, S.; Riva, M.; Spiga, D.; Basso, S.; Civitani, Marta
2014-08-01
This work is developed in the framework of AXYOM project, which proposes to study the application of a system of piezoelectric actuators to grazing-incidence X-ray telescope optic prototypes: thin glass or plastic foils, in order to increase their angular resolution. An integrated optomechanical model has been set up to evaluate the performances of X-ray optics under deformation induced by Piezo Actuators. Parametric evaluation has been done looking at different number and position of actuators to optimize the outcome. Different evaluations have also been done over the actuator types, considering Flexible Piezoceramic, Multi Fiber Composites piezo actuators, and PVDF.
NASA Technical Reports Server (NTRS)
Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)
2005-01-01
We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.
NASA Technical Reports Server (NTRS)
Slater, G. L.; Shelley, Stuart; Jacobson, Mark
1993-01-01
In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.
Nanoporous carbon actuator and methods of use thereof
Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE
2012-07-31
An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.
Stimuli-Responsive Polymers for Actuation.
Zhang, Qiang Matthew; Serpe, Michael J
2017-06-02
A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chaudhuri, Anirban
Hybrid electro-hydraulic actuators using smart materials along with flow rectification have been widely reported in recent years. The basic operation of these actuators involves high frequency bidirectional operation of an active material that is converted into unidirectional fluid motion by a set of valves. While theoretically attractive, practical constraints limit the efficacy of the solid-fluid hybrid actuation approach. In particular, inertial loads, fluid viscosity and compressibility combine with loss mechanisms inherent in the active material to limit the effective bandwidth of the driving actuator and the total output power. A hybrid actuator was developed by using magnetostrictive TerFeNOL-D as the active driving element and hydraulic oil as the working fluid. Tests, both with and without an external load, were carried out to measure the unidirectional performance of the actuator at different pumping frequencies and operating conditions. The maximum no-load output velocity was 84 mm/s with a 51 mm long rod and 88 mm/s with a 102 mm long rod, both noted around 325 Hz pumping frequency, while the blocked force was close to 89 N. Dynamic tests were performed to analyze the axial vibration characteristics of the Terfenol-D rods and frequency responses of the magnetic circuits. A second prototype actuator employing the same actuation principle was then designed by using the electrostrictive material PMN-32%PT as the driving element. Tests were conducted to measure the actuator performance for varying electrical input conditions and fluid bias pressures. The peak output velocity obtained was 330 mm/s while the blocked force was 63 N. The maximum volume flow rate obtained with the PMN-based actuator was more than double that obtained from the Terfenol-D--based actuator. Theoretical modeling of the dynamics of the coupled structural-hydraulic system is extremely complex and several models have been proposed earlier. At high pumping frequencies, the fluid inertia dominates the viscous effects and the problem becomes unsteady in nature. Due to high pressures inside the actuator and the presence of entrained air, compressibility of the hydraulic fluid is important. A new mathematical model of the hydraulic hybrid actuator was formulated in time-domain to show the basic operational principle under varying operating conditions and to capture the phenomena affecting system performance. Linear induced strain behavior was assumed to model the active material. Governing equations for the moving parts were obtained from force equilibrium considerations, while the coupled inertiacompliance of the fluid passages was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. Compressibility of the working fluid was incorporated by using the bulk modulus. The model was then validated using the measured performance of both the magnetostrictive and electrostrictive-based hybrid actuators.
Fast bender actuators for fish-like aquatic robots
NASA Astrophysics Data System (ADS)
McGovern, S. T.; Spinks, G. M.; Xi, B.; Alici, G.; Truong, V.; Wallace, G. G.
2008-03-01
Small, highly-mobile "swimming" robots are desired for underwater monitoring operations, including pollution detection, video mapping and other tasks. Actuator materials of all types are of interest for any application where space is limited. This constraint certainly applies to the small-scale swimming robot, where multiple small actuators are needed for forward/backward propulsion, steering and diving/surfacing. A number of previous studies have demonstrated propulsion of floating objects using IPMC type polymer actuators [1-3] or piezoceramic actuators [4, 5]. Here, we show how propulsion is also possible using a multi-layer polypyrrole bimorph actuator. The actuator is based on our previously published work showing very fast resonance actuation in polypyrrole bending-type actuators [6]. The bending actuator is a tri-layer structure, in which the gold-PVDF (porous poly(vinylidene fluoride) membrane) substrate was coated on both sides with polypyrrole layers to form an electrochemical cell. Polypyrrole films on gold coated PVDF were grown galvanostatically at a current density of 0.10 mA/cm2 for 12 hours from propylene carbonate (PC) solution containing 0.1 M Li+TFSI-, 0.1 M pyrrole and 1% (w/w) water. The polypyrrole deposited PVDF was thoroughly rinsed with acetone and stored in 0.1 M Li+TFSI- / PC solution. The edges of the bulk film were trimmed off and the bending actuators were prepared as rectangular strips typically 2mm wide and 25 mm long. These actuators gave fast operation in air (to 90 Hz), and were utilised as active flexural joints on the tail fin of a fishshaped floating "boat". The actuators were attached to a simple truncated shaped fin and the deflection angle was analysed in both air and liquid for excitation with +/- 1V square wave at a range of frequencies. The mechanical resonance of the fin was seen to be 4.5 Hz in air and 0.45 Hz in PC, which gave deflection angles of approximately 60° and 55° respectively. The boat contained a battery, receiver unit and electronic circuit attached to the actuator fin assembly. Thus, the boat could be operated by remote control, and by varying the frequency and duty cycle applied to the actuator, the speed and direction of the boat could be controlled. The boat had a turning circle as small as 15 cm in radius and a maximum speed of 2m/min when operating with a tail frequency of approximately 0.7 Hz. The efficiency of the flapping tail fin was analysed and it was seen that operation at this frequency corresponded with a Strouhal number in the optimal range.
Design and reliability of a MEMS thermal rotary actuator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Michael Sean; Corwin, Alex David
2007-09-01
A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around themore » gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation direction to increase the available output force. This new design was tested and shown to operate in one case out to greater than 360 million cycles without any skipping, after which the test was stopped without failure. The output force was also measured as a function of input voltage (Figure 4), and shown to be higher than the previous design. The maximum force shown in the figure is a limit of the gauge used, not the actuator itself. Continued work for this design will focus on understanding the actuator performance while driving a load, as all current tests were performed with no load on the output gear.« less
Contractive tension force stack actuator based on soft dielectric EAP
NASA Astrophysics Data System (ADS)
Kovacs, Gabor; Düring, Lukas
2009-03-01
Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission capability between each layer of the actuator. Due to the stack configuration of the actuator the commonly used and pre-strained acrylic film was replaced by the stress-free IPN modified acrylic film in order to eliminate the need for external pre-strain-supporting structures. Introductorily, the specific problems on conventional expanding actuators are discussed and the aims for contractive tension force actuators are specified. Then some structural design parameters are addressed in order to achieve a high rate of yield and reliable working principle. In the main part of the study the manufacturing process of the actuators and some measurement results and experiences are discussed in detail.
Terasawa, Naohiro; Asaka, Kinji
2014-12-02
The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable not only to EDLC-based actuator systems but also to the fabricated EDLC/FC system.
Quantitative fault tolerant control design for a hydraulic actuator with a leaking piston seal
NASA Astrophysics Data System (ADS)
Karpenko, Mark
Hydraulic actuators are complex fluid power devices whose performance can be degraded in the presence of system faults. In this thesis a linear, fixed-gain, fault tolerant controller is designed that can maintain the positioning performance of an electrohydraulic actuator operating under load with a leaking piston seal and in the presence of parametric uncertainties. Developing a control system tolerant to this class of internal leakage fault is important since a leaking piston seal can be difficult to detect, unless the actuator is disassembled. The designed fault tolerant control law is of low-order, uses only the actuator position as feedback, and can: (i) accommodate nonlinearities in the hydraulic functions, (ii) maintain robustness against typical uncertainties in the hydraulic system parameters, and (iii) keep the positioning performance of the actuator within prescribed tolerances despite an internal leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. Experimental tests verify the functionality of the fault tolerant control under normal and faulty operating conditions. The fault tolerant controller is synthesized based on linear time-invariant equivalent (LTIE) models of the hydraulic actuator using the quantitative feedback theory (QFT) design technique. A numerical approach for identifying LTIE frequency response functions of hydraulic actuators from acceptable input-output responses is developed so that linearizing the hydraulic functions can be avoided. The proposed approach can properly identify the features of the hydraulic actuator frequency response that are important for control system design and requires no prior knowledge about the asymptotic behavior or structure of the LTIE transfer functions. A distributed hardware-in-the-loop (HIL) simulation architecture is constructed that enables the performance of the proposed fault tolerant control law to be further substantiated, under realistic operating conditions. Using the HIL framework, the fault tolerant hydraulic actuator is operated as a flight control actuator against the real-time numerical simulation of a high-performance jet aircraft. A robust electrohydraulic loading system is also designed using QFT so that the in-flight aerodynamic load can be experimentally replicated. The results of the HIL experiments show that using the fault tolerant controller to compensate the internal leakage fault at the actuator level can benefit the flight performance of the airplane.
Demonstrating Optothermal Actuators for an Autonomous Mems Microrobot
2004-03-01
of Toggled Microthermal Actuators,” Journal of Micromechanics and Microengineering, Vol. 14, pp 49-56, 2004. [10] S. Baglio, S. Castorina, L...127-132, 2000. [8] Y. Lai, J. McDonald, M. Kujath and T. Hubbard, “Force, Deflection and Power Measurements of Toggled Microthermal Actuators...Hubbard, "Force, Deflection and Power Measurements of Toggled Microthermal Actuators", Journal of Micromechanics and Microengineering, Vol. 14, pp 49
Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
High, James W.; Wilkie, W. Keats
2003-01-01
The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.
Direct drive field actuator motors
Grahn, Allen R.
1998-01-01
A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.
Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation
2006-02-01
exoskeleton design has not considered the passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this...passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this thesis, an under-actuated exoskeleton...40 Figure 3.22 Braking torque of the magnetorheological damper vs. current .................... 41 Figure
NASA Astrophysics Data System (ADS)
Niezrecki, Christopher; Cudney, Harley H.
2000-06-01
Future launch vehicle payload fairings will be manufactured form advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. To help determine the acoustic control authority of piezoelectric actuators mounted on a rocket fairing, the internal acoustic response created by the actuators needs to be determined. In this work, the internal acoustic response of a closed simply-supported (SS) cylinder actuated by piezoelectric (PZT) actuators is determined using a n impedance model for the actuator and boundary element analysis. The experimentally validated model is used to extrapolate results for a SS cylinder that emulates a Minotaur payload fairing. The internal cylinder acoustic levels are investigated for PZT actuation between 35 and 400 Hz. Significant reductions in the structural response due to increased damping do not equate to similar reductions in the acoustic SPLs for the cylinder. The sound levels at the acoustic resonant frequencies are essentially unaffected by the significant increase in structural damping while the acoustic level sat the structural resonant frequencies are mildly reduced. The interior acoustic response of the cylinder is dominated by the acoustic modes and therefore significant reductions in the overall interior acoustic levels will not be achieved if only the structural resonances are controlled. As the actuation frequency is reduced, the number of actuators required to generate acoustic levels commensurate to that found in the fairing increases to impractical values. Below approximately 100 Hz, the current demands reach levels that are extremely difficult to achieve with a practical system. The results of this work imply that PZT actuators do not have the authority to control the payload fairing internal acoustics below approximately 100 Hz.
Modeling and test of a kinaesthetic actuator based on MR fluid for haptic applications.
Yang, Tae-Heon; Koo, Jeong-Hoi; Kim, Sang-Youn; Kwon, Dong-Soo
2017-03-01
Haptic display units have been widely used for conveying button sensations to users, primarily employing vibrotactile actuators. However, the human feeling for pressing buttons mainly relies on kinaesthetic sensations (rather than vibrotactile sensations), and little studies exist on small-scale kinaesthetic haptic units. Thus, the primary goals of this paper are to design a miniature kinaesthetic actuator based on Magneto-Rheological (MR) fluid that can convey various button-clicking sensations and to experimentally evaluate its haptic performance. The design focuses of the proposed actuator were to produce sufficiently large actuation forces (resistive forces) for human users in a given size constraint and to offer a wide range of actuation forces for conveying vivid haptic sensations to users. To this end, this study first performed a series of parametric studies using mathematical force models for multiple operating modes of MR fluid in conjunction with finite element electromagnetism analysis. After selecting design parameters based on parametric studies, a prototype actuator was constructed, and its performance was evaluated using a dynamic mechanical analyzer. It measured the actuator's resistive force with a varying stroke (pressed depth) up to 1 mm and a varying input current from 0 A to 200 mA. The results show that the proposed actuator creates a wide range of resistive forces from around 2 N (off-state) to over 9.5 N at 200 mA. In order to assess the prototype's performance in the terms of the haptic application prospective, a maximum force rate was calculated to determine just noticeable difference in force changes for the 1 mm stoke of the actuator. The results show that the force rate is sufficient to mimic various levels of button sensations, indicating that the proposed kinaesthetic actuator can offer a wide range of resistive force changes that can be conveyed to human operators.
NASA Technical Reports Server (NTRS)
Morales, Wilfredo; Street, Kenneth W., Jr.; Zaretsky, Erwin V.
2013-01-01
Actuators used on the United States space shuttle fleet are lubricated with unspecified amounts of Braycote 601 (Castrol Braycote) grease consisting of a perfluoropolyalkyl ether (PFPAE) base oil thickened with a polytetrafluoroethylene (PTFE) filler. Each shuttle has four body flap actuators (BFAs) (two on each wing) on a common segmented shaft and four rudder speed brake (RSB) actuators. The actuators were designed to operate for 10 years and 100 flights without periodic relubrication. Visible inspection of two partially disassembled RSB actuators in continuous use for 19 years raised concerns over possible grease degradation due to discoloration of the grease on several places on the surfaces of the gears. Inspection revealed fretting, micropitting, wear and corrosion of the bearings and gears. A small amount of oil dripped from the disassembled actuators. Whereas new grease is beige in appearance, the discolored grease consisted of both grey and reddish colors. Grease samples taken from the actuators together with representative off-the-shelf new and unused grease samples were analyzed by gravimetry for oil content; by inductively coupled plasma spectroscopy (ICP) for metals content; Fourier transform infrared (FTIR) spectroscopy for base oil decomposition; and by size exclusion chromatography (SEC) for determination of the molecular weight distributions of the grease oil. The Braycote 601 grease was stable after 19 years of continuous use in the sealed RSB actuators and was fit for its intended purpose. There were no significant chemical differences between the used grease samples and new and unused samples. Base oil separation was not significant within the sealed actuators. No corrosive effect in the form of iron fluoride was detected. The grey color of grease samples was due to metallic iron. The red color was due to oxidation of the metallic wear particles from the gears and the bearings comprising the actuators.
Powerful Electromechanical Linear Actuator
NASA Technical Reports Server (NTRS)
Cowan, John R.; Myers, William N.
1994-01-01
Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.
A novel 3D-printed mechanical actuator using centrifugal force for magnetic resonance elastography.
Neumann, Wiebke; Schad, Lothar R; Zollner, Frank G
2017-07-01
Magnetic resonance elastography (MRE) is a technique for the quantification of tissue stiffness during MR examinations. It requires consistent methods for mechanical shear wave induction to the region of interest in the human body to reliably quantify elastic properties of soft tissues. This work proposes a novel 3D-printed mechanical actuator using the principle of centrifugal force for wave induction. The driver consists of a 3D-printed turbine vibrator powered by compressed air (located inside the scanner room) and an active driver controlling the pressure of inflowing air (placed outside the scanner room). The generated force of the proposed actuator increases for higher actuation frequencies as opposed to conventionally used air cushions. There, the displacement amplitude decreases with increasing actuation frequency resulting in a smaller signal-to-noise ratio. An initial phantom study is presented which demonstrates the feasibility of the actuator for MRE. The wave-actuation frequency was regulated in a range between 15 Hz and 60 Hz for force measurements and proved sufficiently stable (± 0.3 Hz) for any given nominal frequency. The generated forces depend on the weight of the eccentric unbalance within the turbine and ranged between 0.67 N to 2.70 N (for 15 Hz) and 3.09 N to 7.77 N (for 60 Hz). Therefore, the generated force of the presented actuator increases with rotational speed of the turbine and offers an elegant solution for sufficiently large wave actuation at higher frequencies. In future work, we will investigate an optimal ratio of the weight of unbalance to the size of turbine for appropriately large but tolerable wave actuation for a given nominal frequency.
NASA Astrophysics Data System (ADS)
Deshmukh, Prasanna Gajanan; Mandal, Amaresh; Parihar, Padmakar S.; Nayak, Dayananda; Mishra, Deepta Sundar
2018-01-01
Segmented mirror telescopes (SMT) are built using several small hexagonal mirrors positioned and aligned by the three actuators and six edge sensors per segment to maintain the shape of the primary mirror. The actuators are responsible for maintaining and tracking the mirror segments to the desired position, in the presence of external disturbances introduced by wind, vibration, gravity, and temperature. The present paper describes our effort to develop a soft actuator and the actuator controller for prototype SMT at Indian Institute of Astrophysics, Bangalore. The actuator designed, developed, and validated is a soft actuator based on the voice coil motor and flexural elements. It is designed for the range of travel of ±1.5 mm and the force range of 25 N along with an offloading mechanism to reduce the power consumption. A precision controller using a programmable system on chip (PSoC 5Lp) and a customized drive board has also been developed for this actuator. The close loop proportional-integral-derivative (PID) controller implemented in the PSoC gets position feedback from a high-resolution linear optical encoder. The optimum PID gains are derived using relay tuning method. In the laboratory, we have conducted several experiments to test the performance of the prototype soft actuator as well as the controller. We could achieve 5.73- and 10.15-nm RMS position errors in the steady state as well as tracking with a constant speed of 350 nm/s, respectively. We also present the outcome of various performance tests carried out when off-loader is in action as well as the actuator is subjected to dynamic wind loading.
Electrodynamic actuators for rocket engine valves
NASA Technical Reports Server (NTRS)
Fiet, O.; Doshi, D.
1972-01-01
Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.
NASA Astrophysics Data System (ADS)
Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.
2016-03-01
Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Actuators based on polyurethanes with different types of polyol
NASA Astrophysics Data System (ADS)
Lim, Hyun-Ok; Bark, Geong-Mi; Jo, Nam-Ju
2007-07-01
This study dealt with the electrostrictive responses of polyurethane (PU) actuators with different microphase separation structure, which was a promising candidate for a material used in polymer actuators. In order to construct PUs with different higher-order structure, we synthesized PUs with different diols; poly(neopentyl glycol adipate) (PNAD), poly(tetramethylene glycol) (PTMG), and poly(dimethyl siloxnae) (PDMS). Synthesized PU was characterized by FT-IR spectroscopy and GPC. Thermal analysis and mechanical properties of PU films were carried out with DSC and UTM, respectively. And PU actuator was formed in a monomorph type which made by carbon black electrodes on the both surfaces of PU film by spin coating method. Actuation behavior was mainly influenced on microphase separation structure and mechanical property of PU. In result, PU actuator with PNAD, polyester urethane, had the largest field-induced displacement.
An Improved Wavefront Control Algorithm for Large Space Telescopes
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Basinger, Scott A.; Redding, David C.
2008-01-01
Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.
Liquid rocket actuators and operators. [in spacecraft control systems
NASA Technical Reports Server (NTRS)
1973-01-01
All the types of actuators and associated operators used in booster, upper stage, and spacecraft propulsion and reaction-control systems except for chemical-explosive actuators and turbine actuators are discussed. Discussion of static and dynamic seals, mechanical transmission of motion, and instrumentation is included to the extent that actuator or operator design is affected. Selection of the optimum actuator configuration is discussed for specific application which require a tradeoff study that considers all the relevant factors: available energy sources, load capacity, stroke, speed of response, leakage limitations, environmental conditions, chemical compatibility, storage life and conditions, size, weight, and cost. These factors are interrelated with overall control-system design evaluations that are beyond the scope of this monograph; however, literature references are cited for a detailed review of the general considerations. Perinent advanced-state-of-the-art design concepts are surveyed briefly.
Lead magnesium niobate actuator for micropositioning
Swift, C.D.; Bergum, J.W.
1994-10-25
An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.
Advanced high performance horizontal piezoelectric hybrid synthetic jet actuator
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2012-01-01
The present invention comprises a high performance, horizontal, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a horizontal piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The present invention is capable of installation in the wing surface as well as embedding in the wetted surfaces of a supersonic inlet. The jet velocity and mass flow rate for the SJA-H will be several times higher than conventional piezoelectric actuators.
Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.
Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe
2015-08-28
We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.
NASA Astrophysics Data System (ADS)
Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration
2016-11-01
A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.
Control approach development for variable recruitment artificial muscles
NASA Astrophysics Data System (ADS)
Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew
2016-04-01
This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.
Force-deflection behavior of piezoelectric actuators
NASA Astrophysics Data System (ADS)
Singh, Ashok K.; Nagpal, Pawan
2001-11-01
In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.
An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.
Park, Won-Hyeong; Shin, Eun-Jae; Yun, Sungryul; Kim, Sang-Youn
2018-01-01
In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.
Development of a shape memory alloy actuator for a robotic eye prosthesis
NASA Astrophysics Data System (ADS)
Bunton, T. B. Wolfe; Faulkner, M. G.; Wolfaardt, J.
2005-08-01
The quality of life of patients who wear an orbital prosthesis would be vastly improved if their prostheses were also able to execute vertical and horizontal motion. This requires appropriate actuation and control systems to create an intelligent prosthesis. A method of actuation that meets the demanding design criteria is currently not available. The present work considers an activation system that follows a design philosophy of biomimicry, simplicity and space optimization. While several methods of actuation were considered, shape memory alloys were chosen for their high power density, high actuation forces and high displacements. The behaviour of specific shape memory alloys as an actuator was investigated to determine the force obtained, the transformation temperatures and details of the material processing. In addition, a large-scale prototype was constructed to validate the response of the proposed system.
Development of a soft untethered robot using artificial muscle actuators
NASA Astrophysics Data System (ADS)
Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian
2017-04-01
Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.
Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.
Imaizumi, Satoru; Ohtsuki, Yuto; Yasuda, Tomohiro; Kokubo, Hisashi; Watanabe, Masayoshi
2013-07-10
We present here printable high-performance polymer actuators comprising ionic liquid (IL), soluble polyimide, and ubiquitous carbon materials. Polymer electrolytes with high ionic conductivity and reliable mechanical strength are required for high-performance polymer actuators. The developed polymer electrolytes comprised a soluble sulfonated polyimide (SPI) and IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][NTf2]), and they exhibited acceptable ionic conductivity up to 1 × 10(-3) S cm(-1) and favorable mechanical properties (elastic modulus >1 × 10(7) Pa). Polymer actuators based on SPI/[C2mim][NTf2] electrolytes were prepared using inexpensive activated carbon (AC) together with highly electron-conducting carbon such as acetylene black (AB), vapor grown carbon fiber (VGCF), and Ketjen black (KB). The resulting polymer actuators have a trilaminar electric double-layer capacitor structure, consisting of a polymer electrolyte layer sandwiched between carbon electrode layers. Displacement, response speed, and durability of the actuators depended on the combination of carbons. Especially the actuators with mixed AC/KB carbon electrodes exhibited relatively large displacement and high-speed response, and they kept 80% of the initial displacement even after more than 5000 cycles. The generated force of the actuators correlated with the elastic modulus of SPI/[C2mim][NTf2] electrolytes. The displacement of the actuators was proportional to the accumulated electric charge in the electrodes, regardless of carbon materials, and agreed well with the previously proposed displacement model.
Artificial muscles with adjustable stiffness
NASA Astrophysics Data System (ADS)
Mutlu, Rahim; Alici, Gursel
2010-04-01
This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20-40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators.
Sensor-actuator system for dynamic chloride ion determination.
de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert
2015-08-12
Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.
Numerical study on 3D composite morphing actuators
NASA Astrophysics Data System (ADS)
Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru
2015-04-01
There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.
NASA Astrophysics Data System (ADS)
Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen
2018-03-01
Paraboloidal membrane shells of revolution are commonly used as key components for advanced aerospace structures and aviation mechanical systems. Due to their high flexibility and low damping property, active vibration control is of significant importance for these in-orbit membrane structures. To explore the dynamic control behavior of space flexible paraboloidal membrane shells, precision distributed actuation and control effectiveness of free-floating paraboloidal membrane shells with piezoelectric actuators are investigated. Governing equations of the shell structronic system are presented first. Then, distributed control forces and control actions are formulated. A transverse mode shape function of the paraboloidal shell based on the membrane approximation theory and specified boundary condition is assumed in the modal control force analysis. The actuator induced modal control forces on the paraboloidal shell are derived. The expressions of microscopic local modal control forces are obtained by shrinking the actuator area into infinitesimal and the four control components are investigated respectively to predict the spatial microscopic actuation behavior. Geometric parameter (height-radius ratio and shell thickness) effects on the modal actuation behavior are explored when evaluating the micro-control efficiency. Four different cases are discussed and the results reveal the fact that shallow (e.g., antennas/reflectors) and deep (e.g., rocket/missile fairing) paraboloidal shells exhibit totally different modal actuation behaviors due to their curvature differences. Analytical results in this paper can serve as guidelines for optimal actuator placement for vibration control of different paraboloidal structures.
Hydraulically-actuated operating system for an electric circuit breaker
Barkan, Philip; Imam, Imdad
1978-01-01
This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.
A power-autonomous self-rolling wheel using ionic and capacitive actuators
NASA Astrophysics Data System (ADS)
Must, Indrek; Kaasik, Toomas; Baranova, Inna; Johanson, Urmas; Punning, Andres; Aabloo, Alvo
2015-04-01
Ionic electroactive polymer (IEAP) laminates are often considered as perspective actuator technology for mobile robotic appliances; however, only a few real proof-of-concept-stage robots have been built previously, a majority of which are dependent on an off-board power supply. In this work, a power-autonomous robot, propelled by four IEAP actuators having carbonaceous electrodes, is constructed. The robot consists of a light outer section in the form of a hollow cylinder, and a heavy inner section, referred to as the rim and the hub, respectively. The hub is connected to the rim using IEAP actuators, which form `spokes' of variable length. The effective length of the spokes is changed via charging and discharging of the capacitive IEAP actuators and a change in the effective lengths of the spokes eventuate in a rolling motion of the robot. The constructed IEAP robot takes advantage of the distinctive properties of the IEAP actuators. The IEAP actuators transform the geometry of the whole robot, while being soft and compliant. The low-voltage IEAP actuators in the robot are powered directly from an embedded single-cell lithium-ion battery, with no voltage regulation required; instead, only the input current is regulated. The charging of the actuators is commuted correspondingly to the robot's transitory position using an on-board control electronics. The constructed robot is able to roll for an extended period on a smooth surface. The locomotion of the IEAP robot is analyzed using video recognition.
Turtle mimetic soft robot with two swimming gaits.
Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon
2016-05-04
This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).
Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.
Nemitz, Markus P; Mihaylov, Pavel; Barraclough, Thomas W; Ross, Dylan; Stokes, Adam A
2016-12-01
In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules-or from an external power source-is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems.
Direct-drive field actuator motors
Grahn, Allen R.
1995-01-01
A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.
NASA Astrophysics Data System (ADS)
Xu, Rui; Zhou, Miaolei
2018-04-01
Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.
Alici, Gursel; Canty, Taylor; Mutlu, Rahim; Hu, Weiping; Sencadas, Vitor
2018-02-01
In this article, we have established an analytical model to estimate the quasi-static bending displacement (i.e., angle) of the pneumatic actuators made of two different elastomeric silicones (Elastosil M4601 with a bulk modulus of elasticity of 262 kPa and Translucent Soft silicone with a bulk modulus of elasticity of 48 kPa-both experimentally determined) and of discrete chambers, partially separated from each other with a gap in between the chambers to increase the magnitude of their bending angle. The numerical bending angle results from the proposed gray-box model, and the corresponding experimental results match well that the model is accurate enough to predict the bending behavior of this class of pneumatic soft actuators. Further, by using the experimental bending angle results and blocking force results, the effective modulus of elasticity of the actuators is estimated from a blocking force model. The numerical and experimental results presented show that the bending angle and blocking force models are valid for this class of pneumatic actuators. Another contribution of this study is to incorporate a bistable flexible thin metal typified by a tape measure into the topology of the actuators to prevent the deflection of the actuators under their own weight when operating in the vertical plane.
Distributed microscopic actuation analysis of deformable plate membrane mirrors
NASA Astrophysics Data System (ADS)
Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen
2018-02-01
To further reduce the areal density of optical mirrors used in space telescopes and other space-borne optical structures, the concept of flexible membrane deformable mirror has been proposed. Because of their high flexibility, poor stiffness and low damping properties, environmental excitations such as orbital maneuver, path changing, and non-uniform heating may induce unexpected vibrations and thus reduce working performance. Therefore, active vibration control is essential for these membrane mirrors. In this paper, two different mirror models, i.e., the plate membrane model and pure membrane model, are studied respectively. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as actuators. Dynamic equations of the mirror laminated with piezoelectric actuators are presented first. Then, the actuator induced modal control force is defined. When the actuator area shrinks to infinitesimal, the expressions of microscopic local modal control force and its two components are obtained to predict the spatial microscopic actuation behavior of the mirror. Different membrane pretension forces are also applied to reveal the tension effects on the actuation of the mirror. Analyses indicate that the spatial distribution of modal micro-control forces is exactly the same with the sensing signals distribution of the mirror, which provides crucial guidelines for optimal actuator placement of membrane deformable mirrors.
Fast force actuators for LSST primary/tertiary mirror
NASA Astrophysics Data System (ADS)
Hileman, Edward; Warner, Michael; Wiecha, Oliver
2010-07-01
The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.
NASA Astrophysics Data System (ADS)
Meng, Xuanshi; Long, Yuexiao; Wang, Jianlei; Liu, Feng; Luo, Shijun
2018-02-01
Detailed particle-image-velocimetry (PIV) and surface pressure measurements are presented to study the vortex flow behind a slender conical forebody at high angles of attack. The results confirm the existence of two randomly appearing mirror imaged asymmetric bi-stable states of the separation vortices, giving rise to large side force and moment. A pair of carefully designed dielectric barrier discharge plasma actuators mounted near the apex and on both sides of the conical body are used to manipulate the vortex flow and thus provide control of the side forces on the body without using flaps. By making use of a duty-cycle actuation scheme that alternately actuates the port and starboard plasma actuators and optimizing the duty-cycle frequency, the present work demonstrates the feasibility of achieving a nearly perfect linear proportional control of the side force and moment in response to the duty-cycle ratio. Phase-locked PIV and surface pressure measurements are used to study the unsteady dynamic evolution of the flow within one duty-cycle actuation to reveal the flow control mechanism. It is found that under the duty-cycle actuation with the optimized frequency, the vortex flow essentially follows the plasma actuation by alternating between the two bi-stable states controlled directly by the duty-cycle ratio.
Precision Pointing in Space Using Arrays of Shape Memory Based Linear Actuators
NASA Astrophysics Data System (ADS)
Sonawane, Nikhil
Space systems such as communication satellites, earth observation satellites and telescope require accurate pointing to observe fixed targets over prolonged time. These systems typically use reaction wheels to slew the spacecraft and gimballing systems containing motors to achieve precise pointing. Motor based actuators have limited life as they contain moving parts that require lubrication in space. Alternate methods have utilized piezoelectric actuators. This paper presents Shape memory alloys (SMA) actuators for control of a deployable antenna placed on a satellite. The SMAs are operated as a series of distributed linear actuators. These distributed linear actuators are not prone to single point failures and although each individual actuator is imprecise due to hysteresis and temperature variation, the system as a whole achieves reliable results. The SMAs can be programmed to perform a series of periodic motion and operate as a mechanical guidance system that is not prone to damage from radiation or space weather. Efforts are focused on developing a system that can achieve 1 degree pointing accuracy at first, with an ultimate goal of achieving a few arc seconds accuracy. Bench top model of the actuator system has been developed and working towards testing the system under vacuum. A demonstration flight of the technology is planned aboard a CubeSat.
Feng, Guo-Hua; Liu, Kim-Min
2014-05-12
This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.
Development of a non-explosive release actuator using shape memory alloy wire.
Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju
2013-01-01
We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.
Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan
2016-03-28
Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.
A Study on a Microwave-Driven Smart Material Actuator
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.
2001-01-01
NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.
Sequential growth for lifetime extension in biomimetic polypyrrole actuator systems
NASA Astrophysics Data System (ADS)
Sarrazin, J. C.; Mascaro, Stephen A.
2015-04-01
Electroactive polymers (EAPs) present prospective use in actuation and manipulation devices due to their low electrical activation requirements, biocompatibility, and mechanical performance. One of the main drawbacks with EAP actuators is a decrease in performance over extended periods of operation caused by over-oxidation of the polymer and general polymer degradation. Synthesis of the EAP material, polypyrrole with an embedded metal helix allows for sequential growth of the polymer during operation. The helical metal electrode acts as a scaffolding to support the polymer, and direct the 3-dimensional change in volume of the polymer along the axis of the helix during oxidative and reductive cycling. The metal helix also provides a working metal electrode through the entire length of the polymer actuator to distribute charge for actuation, as well as for sequential growth steps during the lifetime of operation of the polymer. This work demonstrates the method of sequential growth can be utilized after extended periods of use to partially restore electrical and mechanical performance of polypyrrole actuators. Since the actuation must be temporarily stopped to allow for a sequential growth cycle to be performed and reverse some of the polymer degradation, these actuator systems more closely mimic natural muscle in their analogous maintenance and repair.
Tough Hydrogel Robots: High-Speed, High-Force and Opto-sonically Invisible in Water
NASA Astrophysics Data System (ADS)
Zhao, Xuanhe
Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of tough hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. We invent a simple method capable of assembling physically-crosslinked hydrogel parts followed by covalent crosslinking to fabricate large-scale hydraulic hydrogel actuators and robots with robust bodies and interfaces. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owning to the anti-fatigue property of the hydrogel under moderate stresses. A multiscale theoretical framework has been developed to guide the design and optimization of the hydrogel robots. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and catching a live fish in water. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).
A multi-segment soft actuator for biomedical applications based on IPMCs
NASA Astrophysics Data System (ADS)
Zhao, Dongxu; Wang, Yanjie; Liu, Jiayu; Luo, Meng; Li, Dichen; Chen, Hualing
2015-04-01
With rapid progress of biomedical devices towards miniaturization, flexibility, multifunction and low cost, the restrictions of traditional mechanical structures become particularly apparent, while soft materials become research focus in broad fields. As one of the most attractive soft materials, Ionic Polymer-Metal Composite (IPMC) is widely used as artificial muscles and actuators, with the advantages of low driving-voltage, high efficiency of electromechanical transduction and functional stabilization. In this paper, a new intuitive control method was presented to achieve the omnidirectional bending movements and was applied on a representative actuation structure of a multi-degree-offreedom soft actuator composed of two segments bar-shaped IPMC with a square cross section. Firstly, the bar-shaped IPMCs were fabricated by the solution casting method, reducing plating, autocatalytic plating method and cut into shapes successively. The connectors of the multi-segment IPMC actuator were fabricated by 3D printing. Then, a new control method was introduced to realize the intuitive mapping relationship between the actuator and the joystick manipulator. The control circuit was designed and tested. Finally, the multi-degree-of-freedom actuator of 2 segments bar-shaped IPMCs was implemented and omnidirectional bending movements were achieved, which could be a promising actuator for biomedical applications, such as endoscope, catheterism, laparoscopy and the surgical resection of tumors.
NASA Astrophysics Data System (ADS)
Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.
2004-06-01
This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.
NASA Astrophysics Data System (ADS)
Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.
2017-12-01
Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.
Feng, Guo-Hua; Liu, Kim-Min
2014-01-01
This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370
Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses
NASA Astrophysics Data System (ADS)
Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.
2008-03-01
The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.
NASA Astrophysics Data System (ADS)
Liu, Yang; Gao, Meng; Mei, Shengfu; Han, Yanting; Liu, Jing
2013-08-01
The method of directly printing liquid metal films as highly conductive and super compliant electrodes for dielectric elastomer actuator (DEA) was proposed and experimentally demonstrated with working mechanisms interpreted. Such soft electrodes enable DE film to approach its maximum strain and stress at relatively low voltages. Further, its unique capability of achieving two-dimensional in-plane self-healing by merely actuating the DEA was disclosed, which would allow actuators more tolerant to fault and resilient to abusive environments. This high performance actuator has important value in a wide spectrum of situations ranging from artificial muscle, flexible electronics to smart clothing etc.
A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8
NASA Technical Reports Server (NTRS)
Eijsink, H.; Rice, M.
1978-01-01
An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft.
Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Nayani, Kishore Nath; Bajaj, Dinesh Kumar
2017-10-01
A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.