Science.gov

Sample records for acute brain dysfunction

  1. Blood-brain barrier dysfunction in acute lead encephalopathy: a reappraisal.

    PubMed

    Bouldin, T W; Mushak, P; O'Tuama, L A; Krigman, M R

    1975-12-01

    Acute lead encephalopathy was induced in adult guinea pigs by administering daily oral doses of lead carbonate. During the development of the encephalopathy, the structural and functional integrity of the blood-brain barrier was evaluated with electron microscopy and tracer probes. Blood, cerebral gray matter, liver, and kidney were analyzed for lead, calcium, and magnesium content. The animals regularly developed an encephalopathy after four doses of lead. There were no discernible pathomorphologic alterations in the cerebral capillaries or perivascular glial sheaths. Furthermore, no evidence of blood-brain barrier dysfunction was demonstrated with Evans blue-albumin complex or horseradish peroxidase. Blood-brain barrier permeability to radiolead was not increased in the intoxicated animals. During the development of the encephalopathy there was a progressive rise in the lead concentration in all tissues. Concurrently, there was a significant rise in brain calcium. These results suggest that the encephalopathic effects of lead may be mediated directly at the neuronal level.

  2. [Epilepsy with higher brain dysfunction].

    PubMed

    Sugimoto, Azusa; Midorikawa, Akira; Koyama, Shinichi; Futamura, Akinori; Kuroda, Takeshi; Fujita, Kazuhisa; Itaya, Kazuhiro; Ishigaki, Seiichiro; Kawamura, Mitsuru

    2013-02-01

    Acquired higher brain dysfunction is for the most part due to cerebral vascular disease, but epilepsy may also be a cause. In this study with five patients, we discuss the advantages of anti-epileptic drugs (AEDs) for persistent higher brain dysfunction. The patients showed chronic amnesia or acute aphasia, with associated symptoms like personality change. All five cases affected automatism or convulsive attack, though only after the emergence of higher brain dysfunction and administration of AEDs. There were underlying diseases like cerebral arteriovenous malformation in four cases, but the other patient had none. Electroencephalogram and single photon emission computed tomography revealed one case of aphasia epilepsy with higher brain dysfunction. These results suggest the potential therapeutic efficacy of AEDs for persistent higher brain dysfunction, and we must differentiate epilepsy with higher brain dysfunction from dementia or cerebral vascular disease. PMID:23399676

  3. Understanding brain dysfunction in sepsis

    PubMed Central

    2013-01-01

    Sepsis often is characterized by an acute brain dysfunction, which is associated with increased morbidity and mortality. Its pathophysiology is highly complex, resulting from both inflammatory and noninflammatory processes, which may induce significant alterations in vulnerable areas of the brain. Important mechanisms include excessive microglial activation, impaired cerebral perfusion, blood–brain-barrier dysfunction, and altered neurotransmission. Systemic insults, such as prolonged inflammation, severe hypoxemia, and persistent hyperglycemia also may contribute to aggravate sepsis-induced brain dysfunction or injury. The diagnosis of brain dysfunction in sepsis relies essentially on neurological examination and neurological tests, such as EEG and neuroimaging. A brain MRI should be considered in case of persistent brain dysfunction after control of sepsis and exclusion of major confounding factors. Recent MRI studies suggest that septic shock can be associated with acute cerebrovascular lesions and white matter abnormalities. Currently, the management of brain dysfunction mainly consists of control of sepsis and prevention of all aggravating factors, including metabolic disturbances, drug overdoses, anticholinergic medications, withdrawal syndromes, and Wernicke’s encephalopathy. Modulation of microglial activation, prevention of blood–brain-barrier alterations, and use of antioxidants represent relevant therapeutic targets that may impact significantly on neurologic outcomes. In the future, investigations in patients with sepsis should be undertaken to reduce the duration of brain dysfunction and to study the impact of this reduction on important health outcomes, including functional and cognitive status in survivors. PMID:23718252

  4. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis.

    PubMed

    Mazeraud, Aurelien; Pascal, Quentin; Verdonk, Franck; Heming, Nicholas; Chrétien, Fabrice; Sharshar, Tarek

    2016-06-01

    Sepsis-associated encephalopathy (SAE), a complication of sepsis, is often complicated by acute and long-term brain dysfunction. SAE is associated with electroencephalogram pattern changes and abnormal neuroimaging findings. The major processes involved are neuroinflammation, circulatory dysfunction, and excitotoxicity. Neuroinflammation and microcirculatory alterations are diffuse, whereas excitotoxicity might occur in more specific structures involved in the response to stress and the control of vital functions. A dysfunction of the brainstem, amygdala, and hippocampus might account for the increased mortality, psychological disorders, and cognitive impairment. This review summarizes clinical and paraclinical features of SAE and describes its mechanisms at cellular and structural levels. PMID:27229649

  5. Academic Achievement and Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Edwards, R. Philip; And Others

    1971-01-01

    The investigation provided no evidence that a diagnosis of minimal brain dysfunction based on a pediatric neurological evaluation and/or visual-motor impairment as measured by the Bender-Gestalt, is a useful predictor of academic achievement. (Author)

  6. Acute brain trauma.

    PubMed

    Martin, G T

    2016-01-01

    In the 20th century, the complications of head injuries were controlled but not eliminated. The wars of the 21st century turned attention to blast, the instant of impact and the primary injury of concussion. Computer calculations have established that in the first 5 milliseconds after the impact, four independent injuries on the brain are inflicted: 1) impact and its shockwave, 2) deceleration, 3) rotation and 4) skull deformity with vibration (or resonance). The recovery, pathology and symptoms after acute brain trauma have always been something of a puzzle. The variability of these four modes of injury, along with a variable reserve of neurones, explains some of this problem.

  7. Chronic cerebrovascular dysfunction after traumatic brain injury.

    PubMed

    Jullienne, Amandine; Obenaus, Andre; Ichkova, Aleksandra; Savona-Baron, Catherine; Pearce, William J; Badaut, Jerome

    2016-07-01

    Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc. PMID:27117494

  8. Brain Dysfunction in Sex Offenders.

    ERIC Educational Resources Information Center

    Galski, Thomas; And Others

    1990-01-01

    Attempted to establish the connection between disordered sexuality and brain impairment by using newly developed techniques of neuropsychological investigation with sex offenders (n=35). Results indicated a major portion of the sex offenders showed impaired brain functioning on Luria-Nebraska Neuropsychological Battery. (Author/ABL)

  9. Minimal Brain Dysfunction: Associations with Perinatal Complications.

    ERIC Educational Resources Information Center

    Nichols, Paul L.

    Examined with over 28,000 7-year-old children whose mothers registered for prenatal care was the relationship between perinatal complications and such characteristics as poor school achievement, hyperactivity, and neurological soft signs associated with the diagnosis of minimal brain dysfunction (MBD). Ten perinatal antecedents were studied:…

  10. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia.

    PubMed

    Natesan, Vijayakumar; Mani, Renuka; Arumugam, Ramakrishnan

    2016-07-01

    In living organisms, nitrogen arise primarily as ammonia (NH3) and ammonium (NH4(+)), which is a main component of the nucleic acid pool and proteins. Although nitrogen is essential for growth and maintenance in animals, but when the nitrogenous compounds exceeds the normal range which can quickly lead to toxicity and death. Urea cycle is the common pathway for the disposal of excess nitrogen through urea biosynthesis. Hyperammonemia is a consistent finding in many neurological disorders including congenital urea cycle disorders, reye's syndrome and acute liver failure leads to deleterious effects. Hyperammonemia and liver failure results in glutamatergic neurotransmission which contributes to the alteration in the function of the glutamate-nitric oxide-cGMP pathway, modulates the important cerebral process. Even though ammonia is essential for normal functioning of the central nervous system (CNS), in particular high concentrations of ammonia exposure to the brain leads to the alterations of glutamate transport by the transporters. Several glutamate transporters have been recognized in the central nervous system and each has a unique physiological property and distribution. The loss of glutamate transporter activity in brain during acute liver failure and hyperammonemia is allied with increased extracellular brain glutamate concentrations which may be conscientious for the cerebral edema and ultimately cell death. PMID:27261594

  11. Blood-brain barrier dysfunction in disorders of the developing brain

    PubMed Central

    Moretti, Raffaella; Pansiot, Julien; Bettati, Donatella; Strazielle, Nathalie; Ghersi-Egea, Jean-François; Damante, Giuseppe; Fleiss, Bobbi; Titomanlio, Luigi; Gressens, Pierre

    2015-01-01

    Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data. PMID:25741233

  12. Dysfunction of brain pericytes in chronic neuroinflammation.

    PubMed

    Persidsky, Yuri; Hill, Jeremy; Zhang, Ming; Dykstra, Holly; Winfield, Malika; Reichenbach, Nancy L; Potula, Raghava; Mukherjee, Abir; Ramirez, Servio H; Rom, Slava

    2016-04-01

    Brain pericytes are uniquely positioned within the neurovascular unit to provide support to blood brain barrier (BBB) maintenance. Neurologic conditions, such as HIV-1-associated neurocognitive disorder, are associated with BBB compromise due to chronic inflammation. Little is known about pericyte dysfunction during HIV-1 infection. We found decreased expression of pericyte markers in human brains from HIV-1-infected patients (even those on antiretroviral therapy). Using primary human brain pericytes, we assessed expression of pericyte markers (α1-integrin, α-smooth muscle actin, platelet-derived growth factor-B receptor β, CX-43) and found their downregulation after treatment with tumor necrosis factor-α (TNFα) or interleukin-1 β (IL-1β). Pericyte exposure to virus or cytokines resulted in decreased secretion of factors promoting BBB formation (angiopoietin-1, transforming growth factor-β1) and mRNA for basement membrane components. TNFα and IL-1β enhanced expression of adhesion molecules in pericytes paralleling increased monocyte adhesion to pericytes. Monocyte migration across BBB models composed of human brain endothelial cells and pericytes demonstrated a diminished rate in baseline migration compared to constructs composed only of brain endothelial cells. However, exposure to the relevant chemokine, CCL2, enhanced the magnitude of monocyte migration when compared to BBB models composed of brain endothelial cells only. These data suggest an important role of pericytes in BBB regulation in neuroinflammation.

  13. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. PMID:26377633

  14. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.

  15. Hypothalamic dysfunction following whole-brain irradiation

    SciTech Connect

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-10-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage.

  16. Autophagy in acute brain injury.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Blomgren, Klas; Kroemer, Guido

    2016-08-01

    Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection. PMID:27256553

  17. Immune dysfunction in acute alcoholic hepatitis

    PubMed Central

    Dhanda, Ashwin D; Collins, Peter L

    2015-01-01

    Acute alcoholic hepatitis (AAH) is a serious complication of alcohol misuse and has high short term mortality. It is a clinical syndrome characterised by jaundice and coagulopathy in a patient with a history of recent heavy alcohol use and is associated with profound immune dysfunction with a primed but ineffective immune response against pathogens. Here, we review the current knowledge of the pathogenesis and immune defects of AAH and identify areas requiring further study. Alcohol activates the immune system primarily through the disruption of gut tight junction integrity allowing the escape of pathogen-associated molecular particles (PAMPs) into the portal venous system. PAMPs stimulate cells expressing toll-like receptors (mainly myeloid derived cells) and initiate a network of intercellular signalling by secretion of many soluble mediators including cytokines and chemokines. The latter coordinates the infiltration of neutrophils, monocytes and T cells and results in hepatic stellate cell activation, cellular damage and hepatocyte death by necrosis or apoptosis. On the converse of this immune activation is the growing evidence of impaired microbial defence. Neutrophils have reduced phagocytic capacity and oxidative burst and there is recent evidence that T cell exhaustion plays a role in this. PMID:26576079

  18. Executive dysfunction, brain aging, and political leadership.

    PubMed

    Fisher, Mark; Franklin, David L; Post, Jerrold M

    2014-01-01

    Decision-making is an essential component of executive function, and a critical skill of political leadership. Neuroanatomic localization studies have established the prefrontal cortex as the critical brain site for executive function. In addition to the prefrontal cortex, white matter tracts as well as subcortical brain structures are crucial for optimal executive function. Executive function shows a significant decline beginning at age 60, and this is associated with age-related atrophy of prefrontal cortex, cerebral white matter disease, and cerebral microbleeds. Notably, age-related decline in executive function appears to be a relatively selective cognitive deterioration, generally sparing language and memory function. While an individual may appear to be functioning normally with regard to relatively obvious cognitive functions such as language and memory, that same individual may lack the capacity to integrate these cognitive functions to achieve normal decision-making. From a historical perspective, global decline in cognitive function of political leaders has been alternatively described as a catastrophic event, a slowly progressive deterioration, or a relatively episodic phenomenon. Selective loss of executive function in political leaders is less appreciated, but increased utilization of highly sensitive brain imaging techniques will likely bring greater appreciation to this phenomenon. Former Israeli Prime Minister Ariel Sharon was an example of a political leader with a well-described neurodegenerative condition (cerebral amyloid angiopathy) that creates a neuropathological substrate for executive dysfunction. Based on the known neuroanatomical and neuropathological changes that occur with aging, we should probably assume that a significant proportion of political leaders over the age of 65 have impairment of executive function.

  19. Executive dysfunction, brain aging, and political leadership.

    PubMed

    Fisher, Mark; Franklin, David L; Post, Jerrold M

    2014-01-01

    Decision-making is an essential component of executive function, and a critical skill of political leadership. Neuroanatomic localization studies have established the prefrontal cortex as the critical brain site for executive function. In addition to the prefrontal cortex, white matter tracts as well as subcortical brain structures are crucial for optimal executive function. Executive function shows a significant decline beginning at age 60, and this is associated with age-related atrophy of prefrontal cortex, cerebral white matter disease, and cerebral microbleeds. Notably, age-related decline in executive function appears to be a relatively selective cognitive deterioration, generally sparing language and memory function. While an individual may appear to be functioning normally with regard to relatively obvious cognitive functions such as language and memory, that same individual may lack the capacity to integrate these cognitive functions to achieve normal decision-making. From a historical perspective, global decline in cognitive function of political leaders has been alternatively described as a catastrophic event, a slowly progressive deterioration, or a relatively episodic phenomenon. Selective loss of executive function in political leaders is less appreciated, but increased utilization of highly sensitive brain imaging techniques will likely bring greater appreciation to this phenomenon. Former Israeli Prime Minister Ariel Sharon was an example of a political leader with a well-described neurodegenerative condition (cerebral amyloid angiopathy) that creates a neuropathological substrate for executive dysfunction. Based on the known neuroanatomical and neuropathological changes that occur with aging, we should probably assume that a significant proportion of political leaders over the age of 65 have impairment of executive function. PMID:25901887

  20. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  1. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury.

    PubMed

    Reifschneider, Kent; Auble, Bethany A; Rose, Susan R

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children's quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6-12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  2. Prison brain? Executive dysfunction in prisoners.

    PubMed

    Meijers, Jesse; Harte, Joke M; Jonker, Frank A; Meynen, Gerben

    2015-01-01

    A better understanding of the functioning of the brain, particularly executive functions, of the prison population could aid in reducing crime rates through the reduction of recidivism rates. Indeed, reoffending appears to be related to executive dysfunction and it is known that executive functions are crucial for self-regulation. In the current paper, studies to executive functions in regular adult prisoners compared to non-offender controls were reviewed. Seven studies were found. Specific executive functions were found to be impaired in the general prison population, i.e., attention and set-shifting, as well as in separate subgroups of violent (i.e., set-shifting and working memory) and non-violent offenders (i.e., inhibition, working memory and problem solving). We conclude that the limited number of studies is remarkable, considering the high impact of this population on society and elaborate on the implications of these specific impairments that were found. Further empirical research is suggested, measuring executive functioning within subjects over time for a group of detainees as well as a control group. PMID:25688221

  3. Prison brain? Executive dysfunction in prisoners

    PubMed Central

    Meijers, Jesse; Harte, Joke M.; Jonker, Frank A.; Meynen, Gerben

    2015-01-01

    A better understanding of the functioning of the brain, particularly executive functions, of the prison population could aid in reducing crime rates through the reduction of recidivism rates. Indeed, reoffending appears to be related to executive dysfunction and it is known that executive functions are crucial for self-regulation. In the current paper, studies to executive functions in regular adult prisoners compared to non-offender controls were reviewed. Seven studies were found. Specific executive functions were found to be impaired in the general prison population, i.e., attention and set-shifting, as well as in separate subgroups of violent (i.e., set-shifting and working memory) and non-violent offenders (i.e., inhibition, working memory and problem solving). We conclude that the limited number of studies is remarkable, considering the high impact of this population on society and elaborate on the implications of these specific impairments that were found. Further empirical research is suggested, measuring executive functioning within subjects over time for a group of detainees as well as a control group. PMID:25688221

  4. Acute dysfunction of Starr-Edwards mitral prostheses

    PubMed Central

    Gunstensen, John

    1971-01-01

    Four cases of acute dysfunction of Starr-Edwards mitral prostheses are recorded. The patients presented with sudden dysponea 4 to 18 months after apparently successful mitral valve replacement. The prosthetic valve dysfunction was caused by thrombus on the bare metal cage of the prosthesis. No warning thromboembolic phenomena had been recorded. Urgent replacement of the valve resulted in the survival of one patient. Images PMID:5576532

  5. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  6. Acute and Chronic Allograft Dysfunction in Kidney Transplant Recipients.

    PubMed

    Goldberg, Ryan J; Weng, Francis L; Kandula, Praveen

    2016-05-01

    Allograft dysfunction after a kidney transplant is often clinically asymptomatic and is usually detected as an increase in serum creatinine level with corresponding decrease in glomerular filtration rate. The diagnostic evaluation may include blood tests, urinalysis, transplant ultrasonography, radionuclide imaging, and allograft biopsy. Whether it occurs early or later after transplant, allograft dysfunction requires prompt evaluation to determine its cause and subsequent management. Acute rejection, medication toxicity from calcineurin inhibitors, and BK virus nephropathy can occur early or later. Other later causes include transplant glomerulopathy, recurrent glomerulonephritis, and renal artery stenosis.

  7. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  8. Dysfunctional cognitive appraisal and psychophysiological reactivity in acute stress disorder.

    PubMed

    Elsesser, Karin; Freyth, Claudia; Lohrmann, Thomas; Sartory, Gudrun

    2009-10-01

    The present study investigated the extent of dysfunctional appraisal as measured with the Posttraumatic Cognitions Inventory (PTCI) and physiological responses to trauma-related material in patients with acute stress disorder (ASD; N=44) in comparison to participants without trauma exposure (N=27). Heart-rate (HR), skin conductance responses (SCR), and viewing time were recorded in response to - for trauma victims - idiosyncratically trauma-relevant and control pictures. ASD patients evidenced greater dysfunctional appraisal than control participants with regard to the PTCI scales Self and World and also an accelerative HR reaction and greater SCRs to trauma-relevant pictures. Among patients, PTCI was highly correlated with ASD severity while PTCI World was positively correlated with resting HR and depression. Amplitude of the HR reaction to trauma-related pictures was negatively correlated with viewing time. Results suggest that dysfunctional appraisal and autonomic reactivity are only loosely related in ASD.

  9. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    PubMed

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools. PMID:27119030

  10. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    PubMed Central

    Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools. PMID:27119030

  11. Acute massive mitral regurgitation from prosthetic valve dysfunction.

    PubMed Central

    Cooper, D K; Sturridge, M F

    1976-01-01

    Two cases of prosthetic valve dysfunction resulting in acute massive mitral regurgitation are reported; emergency operation was successful in both cases. Survival following complete dislodgement of the occluder of a disc valve, as occurred in one case, does not appear to have been reported before. The diffculty in diagnosis of sudden cardiac decompensation in patients with prosthetic valves is stressed, as is the need for urgent operation. Images PMID:973894

  12. Lysosomal Acid Phosphatase Biosynthesis and Dysfunction: A Mini Review Focused on Lysosomal Enzyme Dysfunction in Brain.

    PubMed

    Ashtari, N; Jiao, X; Rahimi-Balaei, M; Amiri, S; Mehr, S E; Yeganeh, B; Marzban, H

    2016-01-01

    Lysosomes are membrane-bound organelles that are responsible for degrading and recycling macromolecules. Lysosomal dysfunction occurs in enzymatic and non-enzymatic deficiencies, which result in abnormal accumulation of materials. Although lysosomal storage disorders affect different organs, the central nervous system is the most vulnerable. Evidence shows the role of lysosomal dysfunction in different neurodegenerative diseases, such as Niemann-Pick Type C disease, juvenile neuronal ceroid lipofuscinosis, Alzheimer's disease and Parkinson's disease. Lysosomal enzymes such as lysosomal acid phosphatase 2 (Acp2) play a critical role in mannose-6-phosphate removal and Acp2 controls molecular and cellular functions in the brain during development and adulthood. Acp2 is essential in cerebellar development, and mutations in this gene cause severe cerebellar neurodevelopmental and neurodegenerative disorders. In this mini-review, we highlight lysosomal dysfunctions in the pathogenesis of neurodevelopmental and/or neurodegenerative diseases with special attention to Acp2 dysfunction. PMID:27132795

  13. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: Current perspectives

    PubMed Central

    Javed, Zeeshan; Qamar, Unaiza; Sathyapalan, Thozhukat

    2015-01-01

    There is an increasing deliberation regarding hypopituitarism following traumatic brain injury (TBI) and recent data have suggested that pituitary dysfunction is very common among survivors of patients having moderate-severe TBI which may evolve or resolve over time. Due to high prevalence of pituitary dysfunction after moderate-severe TBI and its association with increased morbidity and poor recovery and the fact that it can be easily treated with hormone replacement, it has been suggested that early detection and treatment is necessary to prevent long-term neurological consequences. The cause of pituitary dysfunction after TBI is still not well understood, but evidence suggests few possible primary and secondary causes. Results of recent studies focusing on the incidence of hypopituitarism in the acute and chronic phases after TBI are varied in terms of severity and time of occurrence. Although the literature available does not show consistent values and there is difference in study parameters and diagnostic tests used, it is clear that pituitary dysfunction is very common after moderate to severe TBI and patients should be carefully monitored. The exact timing of development cannot be predicted but has suggested regular assessment of pituitary function up to 1 year after TBI. In this narrative review, we aim to explore the current evidence available regarding the incidence of pituitary dysfunction in acute and chronic phase post-TBI and recommendations for screening and follow-up in these patients. We will also focus light over areas in this field worthy of further investigation. PMID:26693424

  14. Autophagy in acute brain injury: feast, famine, or folly?

    PubMed

    Smith, Craig M; Chen, Yaming; Sullivan, Mara L; Kochanek, Patrick M; Clark, Robert S B

    2011-07-01

    In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids, and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids, and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell's autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury and are the subject of this review. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."

  15. Hemihydranencephaly: living with half brain dysfunction.

    PubMed

    Pavone, Piero; Nigro, Francesco; Falsaperla, Raffaele; Greco, Filippo; Ruggieri, Martino; Rizzo, Renata; Praticò, Andrea D; Pavone, Lorenzo

    2013-01-01

    Hemi-hydranencephaly is a very rare condition characterized by complete or almost near-complete unilateral absence of the cortical cortex, which is filled by a sac of cerebrospinal fluid. Prenatal vascular disruption with occlusion of the carotid artery territories ipsilateral to the damaged brain is the presumed pathogenesis.We have selected nine cases that fit the clinical and pathologic characteristics of hemi-hydranencephaly, demonstrating that destruction of one hemisphere may be not always associated with severe neurologic impairment and may allow an almost normal life. This disorder is an example of a possible prenatal re-organization in which the right and left cerebral hemispheres present functional potentiality to make up the damaged brain.The cases reported in the literature are discussed, including a patient previously reported and followed-up for 10 years. A review of the cases is performed with an evaluation of the most important aspect of this rare and mysterious disorder. PMID:23324549

  16. Hemihydranencephaly: living with half brain dysfunction

    PubMed Central

    2013-01-01

    Hemi-hydranencephaly is a very rare condition characterized by complete or almost near-complete unilateral absence of the cortical cortex, which is filled by a sac of cerebrospinal fluid. Prenatal vascular disruption with occlusion of the carotid artery territories ipsilateral to the damaged brain is the presumed pathogenesis. We have selected nine cases that fit the clinical and pathologic characteristics of hemi-hydranencephaly, demonstrating that destruction of one hemisphere may be not always associated with severe neurologic impairment and may allow an almost normal life. This disorder is an example of a possible prenatal re-organization in which the right and left cerebral hemispheres present functional potentiality to make up the damaged brain. The cases reported in the literature are discussed, including a patient previously reported and followed-up for 10 years. A review of the cases is performed with an evaluation of the most important aspect of this rare and mysterious disorder. PMID:23324549

  17. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves

    PubMed Central

    Shetty, Ashok K.; Mishra, Vikas; Kodali, Maheedhar; Hattiangady, Bharathi

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB). Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa) initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction (TJ) proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145–323 kPa) causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy (CTE) and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred. PMID:25165433

  18. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves.

    PubMed

    Shetty, Ashok K; Mishra, Vikas; Kodali, Maheedhar; Hattiangady, Bharathi

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB). Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa) initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction (TJ) proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145-323 kPa) causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy (CTE) and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred. PMID:25165433

  19. Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury.

    PubMed

    Smith, D H; Okiyama, K; Gennarelli, T A; McIntosh, T K

    1993-07-23

    We evaluated the therapeutic effects of two noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) receptor, MgCl2 and ketamine, both individually and together, on cognitive dysfunction observed following parasagittal fluid-percussion (FP) brain injury in the rat. Using a modified Morris water maze technique, we found significant attenuation of post-traumatic memory dysfunction in animals treated with either MgCl2 (125 mumol) or ketamine (4 mg/kg) (P < 0.005). Combined MgCl2 and ketamine treatment also preserved memory function (P < 0.005), with no apparent additive effect.

  20. Social dysfunction after pediatric traumatic brain injury: A translational perspective.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J; Shultz, Sandy R; O'Brien, Terence J; Anderson, Vicki; Semple, Bridgette D

    2016-05-01

    Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood and adolescence. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224

  1. Exertional heat stroke and acute liver failure: a late dysfunction.

    PubMed

    Carvalho, Ana Sofia; Rodeia, Simão C; Silvestre, Joana; Póvoa, Pedro

    2016-01-01

    Heat stroke (HS) is defined as a severe elevation of core body temperature along with central nervous system dysfunction. Exertional heat stroke (EHS) with acute liver failure (ALF) is a rare condition. The authors report the case of a 25-year-old man with a history of cognitive enhancers' intake who developed hyperthermia and neurological impairment while running an outdoor marathon. The patient was cooled and returned to normal body temperature after 6 h. He subsequently developed ALF and was transferred to the intensive care unit. Over-the-counter drug intake may have been related to heat intolerance and contributed to the event. The patient was successfully treated with conservative measures. In the presence of EHS, it is crucial to act promptly with aggressive total body cooling, in order to prevent progression of the clinical syndrome. Liver function must also be monitored, since it can be a late organ dysfunction. PMID:26969359

  2. Lipasuria in acute pancreatitis: result of tubular dysfunction?

    PubMed

    Muench, R; Buehler, H; Kehl, O; Ammann, R

    1987-01-01

    Lipase, in contrast to amylase, is completely reabsorbed by the proximal tubules after glomerular filtration. Therefore, no lipase is detectable in the unconcentrated urine according to the current opinion. The handling of lipase (detected with an enzyme-immunoassay) by the kidney was investigated in comparison with creatinine, amylase, and beta-2-microglobulin by clearance studies in acute pancreatitis (n = 10), burn injury (n = 4), glomerular proteinuria (n = 8), and controls without evidence of pancreatic or renal diseases (n = 5). In initial stages of acute pancreatitis a measurable clearance of lipase (mean: 49.6 microliters/min, range: 0.5-234) was found in association with corresponding increased clearances of beta-2-microglobulin (mean: 10.5 ml/min, range: 0.02-58.9) and of amylase (mean: 8.9 ml/min, range: 2.4-22.6) in nine of ten patients. This finding is consistent with a defect of tubular function. However, regression analysis failed to show a significant correlation between lipase and beta-2-microglobulin clearance. Repeated measurements during the course of pancreatitis in seven patients showed reversibility of tubular dysfunction. In patients with burn injury a similar elevation of clearances of beta-2-microglobulin and of amylase was found, but tubular dysfunction in this condition was not associated with lipasuria. In glomerular proteinuria a lipase clearance was found in two of five cases with moderate, and in the other three cases with severe impairment of creatinine clearance. beta-2-microglobulin clearance was normal in the former and only slightly elevated in the latter group. In conclusion lipase is measurable in the urine of most patients with acute pancreatitis as a result of a reversible tubular dysfunction.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. How brain influences neuro-cardiovascular dysfunction.

    PubMed

    Neki, N S; Singh, R B; Rastogi, S S

    2004-03-01

    Mechanisms that may explain the association between brain-heart connection leading to abnormal heart rate variability (HRV) and blood pressure variability (BVP) resulting into increased morbidity and mortality due to cardiovascular diseases (CVD), are reviewed. Medline search till December, 2001 and articles published in various national and international journals were reviewed. Experts working in the field were also consulted. There is compelling evidence that saturated and total fat and sedentary behaviour can enhance sympathetic activity and increase the secretion of catecholamine, cortisol and serotonin, whereas omega-3 fatty acid supplementation may enhance parasympathetic activity and increase the secretion of acetylcholine in the hippocampus. While increased sympathetic activity has adverse effects on HRV and BPV, increased parasympathetic activity has beneficial effects and can directly inhibit sympathetic tone. A large body of evidence is available demonstrating that abnormal HRV measured over a 24-hour period, or for 7 days, provides information on the risk of subsequent death in subjects with and without heart disease. Meditation, beta blockers, ACE inhibitors, n-3 fatty acids, trimetazidine and oestrogen may have a beneficial influence on HRV. However, no definite and specific therapy is currently available to improve the prognosis for patients with abnormal HRV and blood pressure variability (BPV). Low HRV has been most commonly associated with a risk of arrhythmias and arrhythmic death, unstable angina, myocardial infarction, progression of heart failure and atherosclerosis. There is a need to develop a consensus on the measure of HRV for clinical purposes and whether 7-day record is necessary and practical. New analysis methods based on nonlinear dynamics may be more useful in risk stratification. More precise insight into the patho-physiological link between HRV and nutrition may be applied to clinical practice and used to direct therapy for

  4. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    PubMed

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  5. Transient sinus node dysfunction with acute hepatitis of unknown etiology.

    PubMed

    Al-Fagih, Ahmed R; Al-Ghamdi, Saleh A; Dagriri, Khaled G; Al-Malki, Ahmed S

    2010-05-01

    We reported a case of a 72-year-old male, known diabetic on insulin, referred because of complete atrioventricular block. He was found to have acute hepatitis during which he developed transient atrial arrhythmia, and sinus node dysfunction. His cardiac symptoms disappeared completely after hepatitis improvement. All of his cardiac investigations were normal including electrocardiogram, echocardiography and thalium stress test. At 3 and 6 months follow up, his Holter monitoring did not show any further arrhythmia, and he denied any further episodes of palpitation or pre-syncope. We reviewed the literature regarding the relationship between hepatitis and atrial arrhythmia. PMID:20464052

  6. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development

    PubMed Central

    Jullienne, Amandine; Badaut, Jérôme

    2014-01-01

    The revised ‘expanded’ neurovascular unit (eNVU) is a physiological and functional unit encompassing endothelial cells, pericytes, smooth muscle cells, astrocytes and neurons. Ischemic stroke and traumatic brain injury are acute brain injuries directly affecting the eNVU with secondary damage, such as blood–brain barrier (BBB) disruption, edema formation and hypoperfusion. BBB dysfunctions are observed at an early postinjury time point, and are associated with eNVU activation of proteases, such as tissue plasminogen activator and matrix metalloproteinases. BBB opening is accompanied by edema formation using astrocytic AQP4 as a key protein regulating water movement. Finally, nitric oxide dysfunction plays a dual role in association with BBB injury and dysregulation of cerebral blood flow. These mechanisms are discussed including all targets of eNVU encompassing endothelium, glial cells and neurons, as well as larger blood vessels with smooth muscle. In fact, the feeding blood vessels should also be considered to treat stroke and traumatic brain injury. This review underlines the importance of the eNVU in drug development aimed at improving clinical outcome after stroke and traumatic brain injury. PMID:24489483

  7. A porcine model for acute ischaemic right ventricular dysfunction

    PubMed Central

    Haraldsen, Pernille; Lindstedt, Sandra; Metzsch, Carsten; Algotsson, Lars; Ingemansson, Richard

    2014-01-01

    OBJECTIVES To establish an experimental model for acute ischaemic isolated right ventricular dysfunction and the subsequent haemodynamic changes. METHODS An open-chest porcine model with ischaemic dysfunction of the right ventricle induced by ligation of the three main branches supporting the right ventricular free wall. Invasive monitoring of mean arterial blood pressure (MAP), central venous pressure (CVP), left atrial pressure (LAP) and right ventricular pressure (RVP); ultrasonic measurement of cardiac output (CO) and calculation of haemodynamic parameters such as stroke volume (SV), systemic vascular resistance (SVR), pulmonary vascular resistance (PVR) and right ventricular stroke work (RVSW) using standard formulae. RESULTS The ischaemic challenge to the right ventricle resulted in a significant (≥30%) reduction in RVSW associated with an increase (6–25%) in CVP and reduction (8–18%) in pulmonary artery pressure (PAP) despite unchanged PVR, all reflecting the failing right ventricle. There was also a significant drop in CO (14–22%) despite unchanged LAP indicating lessened transpulmonary delivery of left ventricular preload due to the failing right ventricle causing the haemodynamic compromise rather than left ventricular failure. Supraventricular and ventricular arrhythmias occurred in three and two out of seven pigs, respectively—all of which except one were successfully resuscitated with cardioversion and/or defibrillation. CONCLUSIONS This novel open-chest porcine model of induced ischaemia of the right ventricular free wall resulted in significant haemodynamic compromise confirmed using standard haemodynamic measurements making it useful for further research on acute, ischaemic isolated right ventricular failure. PMID:24092465

  8. Modeling mitochondrial dysfunctions in the brain: from mice to men.

    PubMed

    Breuer, Megan E; Willems, Peter H G M; Russel, Frans G M; Koopman, Werner J H; Smeitink, Jan A M

    2012-03-01

    The biologist Lewis Thomas once wrote: "my mitochondria comprise a very large proportion of me. I cannot do the calculation, but I suppose there is almost as much of them in sheer dry bulk as there is the rest of me". As humans, or indeed as any mammal, bird, or insect, we contain a specific molecular makeup that is driven by vast numbers of these miniscule powerhouses residing in most of our cells (mature red blood cells notwithstanding), quietly replicating, living independent lives and containing their own DNA. Everything we do, from running a marathon to breathing, is driven by these small batteries, and yet there is evidence that these molecular energy sources were originally bacteria, possibly parasitic, incorporated into our cells through symbiosis. Dysfunctions in these organelles can lead to debilitating, and sometimes fatal, diseases of almost all the bodies' major organs. Mitochondrial dysfunction has been implicated in a wide variety of human disorders either as a primary cause or as a secondary consequence. To better understand the role of mitochondrial dysfunction in human disease, a multitude of pharmacologically induced and genetically manipulated animal models have been developed showing to a greater or lesser extent the clinical symptoms observed in patients with known and unknown causes of the disease. This review will focus on diseases of the brain and spinal cord in which mitochondrial dysfunction has been proven or is suspected and on animal models that are currently used to study the etiology, pathogenesis and treatment of these diseases. PMID:21755361

  9. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    PubMed Central

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  10. [The use of instenon in children with minimal brain dysfunction].

    PubMed

    Zavadenko, N N; Suvorinova, N Iu; Rumiantseva, M V; Ovchinnikova, A A

    2002-01-01

    Minimal brain dysfunction (MBD) represents the most common type of neuropsychic disorders in childhood. Resulting in focal damages, underdevelopment and dysfunction of one or another cortical regions of brain hemispheres, MBD manifested in children as movement and speech disorders, dysgraphy, dyslexia, dyscalculia and attention deficit hyperactivity disorder. In the open controlled study, an efficacy of the complex nootropic medication "Instenon" was evaluated in the treatment of 59 MBD patients, aged 4-12 years. Control group included 27 children with MBD assigned to low polyvitamin (Sana Sol) doses. The treatment duration was 1 month. Before and after treatment, children with MBD underwent complex examination, which included parent's interviewing using structured questionnaire, general examination, with detailed analysis of complaints, neurological status investigation and psychological study. In the children taken instenon, distinct positive effect has been achieved in 71% of the cases, in control group--in 15%. Positive effect emerged in improvement of behavior characteristics, better school marks, movement, attention and memory indices, functions of psychic activity, organization, programming and control. When strictly keeping a scheme prescribed (gradual dose increase, drug taking in morning and day time), a risk for unfavorable side effects is minimal. PMID:12087730

  11. Can brain dysfunction be a predisposing factor for metabolic syndrome?

    PubMed

    Singh, Ram B; Pella, Daniel; Mechirova, Viola; Otsuka, Kuniaki

    2004-10-01

    The various mechanisms that may explain the association between brain dysfunction and the pathogenesis of metabolic syndrome (MS) leading to cardiovascular disease and type 2 diabetes have been reviewed. A Medline search was conducted until September 2003, and articles published in various national and international journals were reviewed. Experts working in the field were also consulted. Compelling evidence was found that saturated and total fat and low dietary n-3 fatty acids and other long-chain polyunsaturated fatty acids (PUFAs) in conjunction with sedentary behavior and mental stress combined with various personality traits can enhance sympathetic activity and increase the secretion of catecholamine, cortisol and serotonin, all of which appear to be underlying mechanisms involved in MS. Excess secretion of these neurotransmitters in conjunction with underlying long-chain PUFA deficiency may damage the neurons in the ventromedial hypothalamus and insulin receptors in the brain, in particular during fetal life, infancy and childhood, and lead to their dysfunction. Since 30-50% of the fatty acids in the brain are long-chain PUFAs, especially omega-3 fatty acids which are incorporated in the cell membrane phospholipids, it is possible that their supplementation may have a protective effect. Omega-3 fatty acids are also known to enhance parasympathetic activity and to increase the secretion of anti-inflammatory cytokines as well as acetylecholine in the hippocampus. It is possible that a marginal deficiency of long-chain PUFAs, especially n-3 fatty acids, due to poor dietary intake during the critical period of brain growth and development in the fetus, and later in the infant and also possibly in the child, adolescent and adult may enhance the release of tumor necrosis factor-alpha (TNF-alpha) interleukin (IL)-1, 2 and 6 and cause neuronal dysfunction. Experimental studies indicate that ventromedial hypothalamic lesions in rats induce hyperphagia, resulting in

  12. Acute Gonadotroph and Somatotroph Hormonal Suppression after Traumatic Brain Injury

    PubMed Central

    Wagner, Justin; Dusick, Joshua R.; McArthur, David L.; Cohan, Pejman; Wang, Christina; Swerdloff, Ronald; Boscardin, W. John

    2010-01-01

    Abstract Hormonal dysfunction is a known consequence of moderate and severe traumatic brain injury (TBI). In this study we determined the incidence, time course, and clinical correlates of acute post-TBI gonadotroph and somatotroph dysfunction. Patients had daily measurement of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, estradiol, growth hormone, and insulin-like growth factor-1 (IGF-1) for up to 10 days post-injury. Values below the fifth percentile of a healthy cohort were considered abnormal, as were non-measurable growth hormone (GH) values. Outcome measures were frequency and time course of hormonal suppression, injury characteristics, and Glasgow Outcome Scale (GOS) score. The cohort consisted of 101 patients (82% males; mean age 35 years; Glasgow Coma Scale [GCS] score ≤8 in 87%). In men, 100% had at least one low testosterone value, and 93% of all values were low; in premenopausal women, 43% had at least one low estradiol value, and 39% of all values were low. Non-measurable GH levels occurred in 38% of patients, while low IGF-1 levels were observed in 77% of patients, but tended to normalize within 10 days. Multivariate analysis revealed associations of younger age with low FSH and low IGF-1, acute anemia with low IGF-1, and older age and higher body mass index (BMI) with low GH. Hormonal suppression was not predictive of GOS score. These results indicate that within 10 days of complicated mild, moderate, and severe TBI, testosterone suppression occurs in all men and estrogen suppression occurs in over 40% of women. Transient somatotroph suppression occurs in over 75% of patients. Although this acute neuroendocrine dysfunction may not be TBI-specific, low gonadal steroids, IGF-1, and GH may be important given their putative neuroprotective functions. PMID:20214417

  13. Extending the viability of acute brain slices

    PubMed Central

    Buskila, Yossi; Breen, Paul P.; Tapson, Jonathan; van Schaik, André; Barton, Matthew; Morley, John W.

    2014-01-01

    The lifespan of an acute brain slice is approximately 6–12 hours, limiting potential experimentation time. We have designed a new recovery incubation system capable of extending their lifespan to more than 36 hours. This system controls the temperature of the incubated artificial cerebral spinal fluid (aCSF) while continuously passing the fluid through a UVC filtration system and simultaneously monitoring temperature and pH. The combination of controlled temperature and UVC filtering maintains bacteria levels in the lag phase and leads to the dramatic extension of the brain slice lifespan. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays. This system benefits researchers by monitoring incubation conditions and standardizing this artificial environment. It further provides viable tissue for two experimental days, reducing the time spent preparing brain slices and the number of animals required for research. PMID:24930889

  14. The Role of Computed Axial Tomography in the Study of the Child with Minimal Brain Dysfunction.

    ERIC Educational Resources Information Center

    Thompson, J. S.; And Others

    1980-01-01

    It was concluded that computed axial tomography of the brain is not a necessary screening procedure in the evaluation of the child with minimal brain dysfunction or learning disabilities unless there is evidence of a focal neurologic deficit. (Author)

  15. [Neuroendocrine dysfunctions and their consequences following traumatic brain injury].

    PubMed

    Czirják, Sándor; Rácz, Károly; Góth, Miklós

    2012-06-17

    Posttraumatic hypopituitarism is of major public health importance because it is more prevalent than previously thought. The prevalence of hypopituitarism in children with traumatic brain injury is unknown. Most cases of posttraumatic hypopituitarism remain undiagnosed and untreated in the clinical practice, and it may contribute to the severe morbidity seen in patients with traumatic brain injury. In the acute phase of brain injury, the diagnosis of adrenal insufficiency should not be missed. Determination of morning serum cortisol concentration is mandatory, because adrenal insufficiency can be life threatening. Morning serum cortisol lower than 200 nmol/L strongly suggests adrenal insufficiency. A complete hormonal investigation should be performed after one year of the trauma. Isolated growth hormone deficiency is the most common deficiency after traumatic brain injury. Sports-related chronic repetitive head trauma (because of boxing, kickboxing, football and ice hockey) may also result in hypopituitarism. Close co-operation between neurosurgeons, endocrinologists, rehabilitation physicians and representatives of other disciplines is important to provide better care for these patients. PMID:22695628

  16. [Neuroendocrine dysfunctions and their consequences following traumatic brain injury].

    PubMed

    Czirják, Sándor; Rácz, Károly; Góth, Miklós

    2012-06-17

    Posttraumatic hypopituitarism is of major public health importance because it is more prevalent than previously thought. The prevalence of hypopituitarism in children with traumatic brain injury is unknown. Most cases of posttraumatic hypopituitarism remain undiagnosed and untreated in the clinical practice, and it may contribute to the severe morbidity seen in patients with traumatic brain injury. In the acute phase of brain injury, the diagnosis of adrenal insufficiency should not be missed. Determination of morning serum cortisol concentration is mandatory, because adrenal insufficiency can be life threatening. Morning serum cortisol lower than 200 nmol/L strongly suggests adrenal insufficiency. A complete hormonal investigation should be performed after one year of the trauma. Isolated growth hormone deficiency is the most common deficiency after traumatic brain injury. Sports-related chronic repetitive head trauma (because of boxing, kickboxing, football and ice hockey) may also result in hypopituitarism. Close co-operation between neurosurgeons, endocrinologists, rehabilitation physicians and representatives of other disciplines is important to provide better care for these patients.

  17. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis

    PubMed Central

    Bales, James W.; Wagner, Amy K.; Kline, Anthony E.; Dixon, C. Edward

    2010-01-01

    Traumatic brain injury (TBI) represents a significant cause of death and disability in industrialized countries. Of particular importance to patients the chronic effect that TBI has on cognitive function. Therapeutic strategies have been difficult to evaluate because of the complexity of injuries and variety of patient presentations within a TBI population. However, pharmacotherapies targeting dopamine (DA) have consistently shown benefits in attention, behavioral outcome, executive function, and memory. Still it remains unclear what aspect of TBI pathology is targeted by DA therapies and what time-course of treatment is most beneficial for patient outcomes. Fortunately, ongoing research in animal models has begun to elucidate the pathophysiology of DA alterations after TBI. The purpose of this review is to discuss clinical and experimental research examining DAergic therapies after TBI, which will in turn elucidate the importance of DA for cognitive function/dysfunction after TBI as well as highlight the areas that require further study. PMID:19580914

  18. Minimal brain dysfunction, stimulant drugs, and autonomic nervous system activity.

    PubMed

    Zahn, T P; Abate, F; Little, B C; Wender, P H

    1975-03-01

    Autonomic base levels and responsivity to stimuli were investigated in normal and minimally brain dysfunctioned (MBD) children. Continuous recordings of skin conductance, heart rate, skin temperature, and respiration rate were made during rest, at presentation of tones, and when performing a reaction time task. No significant differences in base levels were obtained between normal and MBD children when not taking drugs, but stimulant medication increased skin conductance and heart rate and decreased skin temperature and reaction time. The MBD children were less reactive, autonomically, to all types of stimuli. Stimulant drugs decreased electrodermal responsivity, which was predictable from concurrent changes in base line skin conductance and skintemperature. The MBD performance deficits are not related to lower autonomic responsivity or lower absolute base levels of arousal, but MBD children may perform better at relatively high autonomic base levels.

  19. Paneth cell-mediated multiorgan dysfunction after acute kidney injury

    PubMed Central

    Park, Sang Won; Kim, Mihwa; Kim, Joo Yun; Ham, Ahrom; Brown, Kevin M.; Mori-Akiyama, Yuko; Ouellette, André J.; D’Agati, Vivette D.; Lee, H. Thomas

    2012-01-01

    Acute kidney injury (AKI) is frequently complicated by extra-renal multi-organ injury including intestinal and hepatic dysfunction. In this study, we hypothesized that a discrete intestinal source of pro-inflammatory mediators drives multi-organ injury in response to AKI. After induction of AKI in mice by renal ischemia-reperfusion or bilateral nephrectomy, small intestinal Paneth cells increased the synthesis and release of IL-17A in conjunction with severe intestinal apoptosis and inflammation. We also detected significantly increased IL-17A in portal and systemic circulation after AKI. Intestinal macrophages appear to transport released Paneth cell granule constituents induced by AKI, away from the base of the crypts into the liver. Genetic or pharmacologic depletion of Paneth cells decreased small intestinal IL-17A secretion and plasma IL-17A levels significantly and attenuated intestinal, hepatic, and renal injury after AKI. Similarly, portal delivery of IL-17A in macrophage depleted mice decreased markedly, and intestinal, hepatic, and renal injury following AKI was attenuated without affecting intestinal IL-17A generation. In conclusion, AKI induces IL-17A synthesis and secretion by Paneth cells to initiate intestinal and hepatic injury by hepatic and systemic delivery of IL-17A by macrophages. Modulation of Paneth cell dysregulation may have therapeutic implications by reducing systemic complications arising from AKI. PMID:23109723

  20. Therapeutic hypothermia for acute brain injuries.

    PubMed

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-01-01

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia. PMID:26043908

  1. Therapeutic hypothermia for acute brain injuries.

    PubMed

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-06-05

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia.

  2. Male pituitary-gonadal dysfunction following severe traumatic brain injury.

    PubMed

    Lee, S C; Zasler, N D; Kreutzer, J S

    1994-01-01

    A prospective study was conducted to evaluate pituitary-gonadal function and correlated parameters in 21 adult males with severe traumatic brain injury during acute inpatient rehabilitation. Serum concentrations of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were measured within 1 week after the patient was transferred to the rehabilitation unit. Fourteen of 21 patients (67%) had abnormally low testosterone levels. One of 21 patients had a subnormal FSH level and one had a supranormal level. Three of 21 patients had subnormal LH levels and two had supranormal levels. There was no correlation between the severity of brain injury and the levels of testosterone, FSH or LH. The presence of increased intracranial pressure, hypoxia, skull fracture or abnormal CT findings had no significant influence on the levels of testosterone, FSH or LH. The high incidence of hypotestosteronaemia in survivors of severe traumatic brain injury is seemingly more related to accompanying physiological stressors rather than structural or neurochemical disruption of the hypothalamic-pituitary-gonadal axis. Early identification is important relative to the potential neuromedical and rehabilitative consequences of prolonged hypotestosteronaemia in this patient population.

  3. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  4. [Differentiated treatment of acute diffuse brain injuries].

    PubMed

    Pedachenko, E G; Dziak, L A; Sirko, A G

    2012-01-01

    Diagnosis and treatment results of 57 patients with acute diffuse brain injury have been analyzed. Patients were divided into two groups: first study period 2000-2005; second study period 2006-2010. The main differences between the first and the second study periods were in health condition and brain functions monitoring parameters, therapy approaches and goals. Increasing of axial and lateral dislocation symptoms during progression from the first type of diffuse injury to the fourth one is related to intracranial hypertension (ICH) occurrence rate and significance it's significance. During the second study period, ICH was found in 25% patients with the second type of injury, 57% patients with the third type of injury, and 80%, with the fourth type of injury. Mean ICP in the group of patients with the second type of diffuse injury comprised 14.4 +/- 6.6 mmHg; with the third type of injury, 30 +/- 20.6 mmHg; with the fourth type of injuty, 37.6 +/- 14.1 mmHg. Introduction of differentiated approach to conservative or surgical treatment method application to acute diffuse brain injuries patients based on ICP monitoring data led to 13.8% reduction in mortality in the second study period compared with the first study period.

  5. Cardiac dysfunction following brain death after severe pediatric traumatic brain injury: A preliminary study of 32 children

    PubMed Central

    Krishnamoorthy, Vijay; Prathep, Sumidtra; Sharma, Deepak; Fujita, Yasuki; Armstead, William; Vavilala, Monica S.

    2015-01-01

    Background: Cardiac dysfunction after brain death has been described in a variety of brain injury paradigms but is not well understood after severe pediatric traumatic brain injury (TBI). Cardiac dysfunction may have implications for organ donation in this patient population. Materials and Methods: We conducted a retrospective cohort study of pediatric patients with severe TBI, both with and without a diagnosis of brain death, who underwent echocardiography during the first 2 weeks after TBI, between the period of 2003–2011. We examined cardiac dysfunction in patients with and without a diagnosis of brain death. Results: In all, 32 (2.3%) of 1,413 severe pediatric TBI patients underwent echocardiogram evaluation. Most patients had head abbreviated injury score 5 (range 2–6) and subdural hematoma (34.4%). Ten patients with TBI had brain death compared with 22 severe TBI patients who did not have brain death. Four (40%) of 10 pediatric TBI patients with brain death had a low ejection fraction (EF) compared with 1 (4.5%) of 22 pediatric TBI patients without brain death who had low EF (OR = 14, P = 0.024). Conclusions: The incidence of cardiac dysfunction is higher among pediatric severe TBI patients with a diagnosis of brain death, as compared to patients without brain death. This finding may have implications for cardiac organ donation from this population and deserves further study. PMID:26157654

  6. Estimating the prevalence of organic brain dysfunction in maximum-security forensic psychiatric patients.

    PubMed

    Martell, D A

    1992-05-01

    This is a descriptive study of 50 randomly selected male patients retained in a maximum-security state hospital for mentally disordered offenders. Data regarding the prevalence of several indicators of potential organic brain dysfunction are presented, including: (1) a diagnosis of any organic brain disorder, (2) a history of severe head injury with loss of consciousness, (3) a history of seizure activity, (4) evidence of cognitive impairment, (5) abnormal neurological findings, and (6) other relevant neurodiagnostic or historical findings. Results show that multiple indicators of potential brain dysfunction were present in 64% of the cases. At least one indicator of potential brain dysfunction was present for 84% of the subjects. Subjects with a diagnosis or history suggesting brain dysfunction were significantly more likely to have been indicted for violent criminal charges (p = 0.01). Implications of these findings for clinical treatment and forensic science decision-making are discussed.

  7. Cognitive dysfunction in children with brain tumors at diagnosis

    PubMed Central

    Studer, Martina; Ritter, Barbara Catherine; Steinlin, Maja; Leibundgut, Kurt; Heinks, Theda

    2015-01-01

    Background Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo‐ and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1–16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient's age. Furthermore, the child and his/her parent(s) completed self‐report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy, or irradiation. Groups were comparable with regard to age, gender, and socioeconomic status. Results Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory, and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed, and verbal comprehension were preserved at the time of measurement. Conclusion Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school. Pediatr Blood Cancer 2015;62:1805–1812. © 2015 The Authors. Pediatric Blood & Cancer, published by Wiley Periodicals, Inc. PMID:26053691

  8. The role of the blood-brain barrier in the aetiology of permanent brain dysfunction in hyperphenylalaninaemia.

    PubMed

    Hommes, F A

    1989-01-01

    Calculations on the rate of entry of the neutral amino acids into the brain via the blood-brain barrier show that a considerable decrease in this rate, particularly for tryptophan and tyrosine, takes place in histidinaemia and tyrosinaemia, type II. These conditions are, however, not associated with mental retardation. It is therefore concluded that effects at the blood-brain barrier alone do not provide an adequate explanation for the aetiology of permanent brain dysfunction in hyperphenylalaninaemia.

  9. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    SciTech Connect

    Choi, Hong-Seok; Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min; Park, Jeong-Ho; Kim, Jae-Il; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-05-30

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  10. Differential Effect of Amphetamine Optical Isomers on Bender Gestalt Performance of the Minimally Brain Dysfunctioned

    ERIC Educational Resources Information Center

    Arnold, L. Eugene; And Others

    1978-01-01

    The differential effect of amphetamine optical isomers on Bender Gestalt performance was examined in 31 hyperkinetic minimally brain dysfunctioned children between the ages of 4 and 12 years, using a double-blind Latin-square crossover comparison. (Author)

  11. Acute parotitis and hyperamylasemia following whole-brain radiation therapy

    SciTech Connect

    Cairncross, J.G.; Salmon, J.; Kim, J.H.; Posner, J.B.

    1980-04-01

    Parotitis, an infrequent, previously unreported complication of whole-brain radiation therapy, was observed in 4 patients. The acute symptoms, which include fever, dry mouth, pain, swelling, and tenderness, are accompanied by hyperamylasemia. Among 10 patients receiving whole-brain irradiation, 8 had serum amylase elevations without symptoms. Both acute parotitis and asymptomatic hyperamylasemia result from irradiation of the parotid glands.

  12. Postpartum Acute Liver Dysfunction: A Case of Acute Fatty Liver of Pregnancy Developing Massive Intrahepatic Calcification

    PubMed Central

    Bhat, Khalid Javid; Shovkat, Rabia; Samoon, Hamad Jeelani

    2015-01-01

    The function of the liver is particularly affected by the unique physiologic milieu of the pregnancy. Pregnancy-related liver diseases encompass a spectrum of different etiologies that are related to gestation or one of its complications. Hepatic calcification, a rare entity, is usually associated with infectious, vascular, or neoplastic lesions in the liver. To the best of our knowledge, only one case of rapidly occurring pregnancy-related intrahepatic calcification has been documented in a patient with severe eclampsia or hemolysis, elevated liver enzymes and low platelet count (HELLP) syndrome. Here we present a case of immediate “postpartum” acute fatty liver of pregnancy (AFLP) in a 23-year-old hypertensive primigravida, complicated by acute renal dysfunction who developed dense intrahepatic calcification in less than a month after the initial diagnosis. A multidisciplinary approach for the management was used, to which the patient responded aptly. This case illustrates the first description of intrahepatic calcification in AFLP syndrome and highlights some of the challenges met in making the final diagnosis.

  13. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    PubMed

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  14. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  15. Repeated injection of contrast medium inducing dysfunction of the blood-brain barrier: case report.

    PubMed

    Iwata, Tomonori; Mori, Takahisa; Tajiri, Hiroyuki; Miyazaki, Yuichi; Nakazaki, Masahito

    2013-01-01

    An early 60s-year-old man suffered reversible dysfunction of the blood-brain barrier (BBB) induced by repeated injection of contrast medium during coil embolization of intracranial unruptured aneurysm. He presented with convulsion during coil embolization, and neurological symptoms of aphasia and right hemiparesis continued for 5 days, and then improved completely. All transient radiological abnormalities were limited to the territory of the left internal carotid artery, where contrast medium was injected repeatedly. Repeated computed tomography, magnetic resonance imaging, single-photon emission computed tomography, and cerebrospinal fluid test findings indicated that temporary dysfunction of the BBB might have occurred. Dysfunction of the BBB in the anterior circulation induced by contrast medium is rare. Tolerance to toxicity of contrast medium may depend on the individual patient, and repeated injection of contrast medium may cause dysfunction of the BBB, leading to toxic dysfunction directly in the brain.

  16. Pattern of Brain Injury in the Acute Setting of Human Septic Shock

    PubMed Central

    2013-01-01

    Background Sepsis-associated brain dysfunction has been linked to white matter lesions (leukoencephalopathy) and ischemic stroke. Our objective was to assess the prevalence of brain lesions in septic shock patients requiring magnetic resonance imaging (MRI) for an acute neurologic change. Method Seventy-one septic shock patients were included in a prospective observational study. Patients underwent daily neurological examination. Brain MRI was obtained in patients who developed focal neurological deficit, seizure, coma, or delirium. Electroencephalogy was performed in case of coma, delirium, or seizure. Leukoencephalopathy was graded and considered present when white matter lesions were either confluent or diffuse. Patient outcome was evaluated at 6 months with the Glasgow Outcome Scale (GOS). Results We included 71 patients with median age of 65 years (56 to 76) and SAPS II at admission of 49 (38 to 60). MRI was indicated on focal neurological sign in 13 (18%), seizure in 7 (10%), coma in 33 (46%), and delirium in 35 (49%). MRI was normal in 37 patients (52%) and showed cerebral infarcts in 21 (29%), leukoencephalopathy in 15 (21%), and mixed lesions in 6 (8%). EEG malignant pattern was more frequent in patients with ischemic stroke or leukoencephalopathy. Ischemic stroke was independently associated with disseminated intravascular coagulation (DIC), focal neurologic signs, increased mortality, and worse GOS at 6 months. Conclusions Brain MRI in septic shock patients who developed acute brain dysfunction can reveal leukoencephalopathy and ischemic stroke, which is associated with DIC and increased mortality. PMID:24047502

  17. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects.

    PubMed

    Glynos, Constantinos; Athanasiou, Chariclea; Kotanidou, Anastasia; Korovesi, Ioanna; Kaziani, Katerina; Livaditi, Olga; Dimopoulou, Ioanna; Maniatis, Nikolaos A; Tsangaris, Iraklis; Roussos, Charis; Armaganidis, Apostolos; Orfanos, Stylianos E

    2013-04-01

    Pulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors' lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of pulmonary endothelial function, in eight brain-dead patients and ten brain-injured mechanically ventilated controls. No subject suffered from acute lung injury or any other overt lung pathology. Applying indicator-dilution type techniques, we measured single-pass transpulmonary percent metabolism (%M) and hydrolysis (v) of the synthetic, biologically inactive, and highly specific for ACE substrate (3)H-benzoyl-Phe-Ala-Pro, under first order reaction conditions, and calculated lung functional capillary surface area (FCSA). Substrate %M (35 ± 6.8%) and v (0.49 ± 0.13) in BD patients were decreased as compared to controls (55.9 ± 4.9, P = 0.033 and 0.9 ± 0.15, P = 0.033, respectively), denoting decreased pulmonary endothelial enzyme activity at the capillary level; FCSA, a reflection of endothelial enzyme activity per vascular bed, was also decreased (BD patients: 1,563 ± 562 mL/min vs 4,235 ± 559 in controls; P = 0.003). We conclude that BD is associated with subtle pulmonary endothelial injury, expressed by decreased PCEB-ACE activity. The applied indicator-dilution type technique provides direct and quantifiable indices of pulmonary endothelial function at the bedside that may reveal the existence of preclinical lung pathology in potential lung donors. PMID:24015344

  18. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects

    PubMed Central

    Glynos, Constantinos; Athanasiou, Chariclea; Kotanidou, Anastasia; Korovesi, Ioanna; Kaziani, Katerina; Livaditi, Olga; Dimopoulou, Ioanna; Maniatis, Nikolaos A.; Tsangaris, Iraklis; Roussos, Charis; Armaganidis, Apostolos; Orfanos, Stylianos E.

    2013-01-01

    Pulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors’ lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of pulmonary endothelial function, in eight brain-dead patients and ten brain-injured mechanically ventilated controls. No subject suffered from acute lung injury or any other overt lung pathology. Applying indicator-dilution type techniques, we measured single-pass transpulmonary percent metabolism (%M) and hydrolysis (v) of the synthetic, biologically inactive, and highly specific for ACE substrate 3H-benzoyl-Phe-Ala-Pro, under first order reaction conditions, and calculated lung functional capillary surface area (FCSA). Substrate %M (35 ± 6.8%) and v (0.49 ± 0.13) in BD patients were decreased as compared to controls (55.9 ± 4.9, P = 0.033 and 0.9 ± 0.15, P = 0.033, respectively), denoting decreased pulmonary endothelial enzyme activity at the capillary level; FCSA, a reflection of endothelial enzyme activity per vascular bed, was also decreased (BD patients: 1,563 ± 562 mL/min vs 4,235 ± 559 in controls; P = 0.003). We conclude that BD is associated with subtle pulmonary endothelial injury, expressed by decreased PCEB-ACE activity. The applied indicator-dilution type technique provides direct and quantifiable indices of pulmonary endothelial function at the bedside that may reveal the existence of preclinical lung pathology in potential lung donors. PMID:24015344

  19. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer’s Disease

    PubMed Central

    Dulla, Chris G.; Coulter, Douglas A.; Ziburkus, Jokubas

    2015-01-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer’s disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. PMID:25948650

  20. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    PubMed Central

    2011-01-01

    Background Methamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM) increased the expression of glucose transporter protein-1 (GLUT1) in primary human brain endothelial cell (hBEC, main component of BBB) without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB) aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity. PMID:21426580

  1. Acute expanded perlite exposure with persistent reactive airway dysfunction syndrome.

    PubMed

    Du, Chung-Li; Wang, Jung-Der; Chu, Po-Chin; Guo, Yue-Liang Leon

    2010-01-01

    Expanded perlite has been assumed as simple nuisance, however during an accidental spill out in Taiwan, among 24 exposed workers followed for more than 6 months, three developed persisted respiratory symptoms and positive provocation tests were compatible with reactive airway dysfunction syndrome. During simulation experiment expanded perlite is shown to be very dusty and greatly exceed current exposure permission level. Review of literature and evidence, though exposure of expanded perlite below permission level may be generally safe, precautionary protection of short term heavy exposure is warranted.

  2. Brain perfusion in acute and chronic hyperglycemia in rats

    SciTech Connect

    Kikano, G.E.; LaManna, J.C.; Harik, S.I. )

    1989-08-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose.

  3. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.

    PubMed

    Cunha-Oliveira, Teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J; Oliveira, Catarina R; Santos, Maria S

    2013-06-01

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue. PMID:23542814

  4. Prospective investigation of pituitary functions in patients with acute infectious meningitis: is acute meningitis induced pituitary dysfunction associated with autoimmunity?

    PubMed

    Tanriverdi, F; De Bellis, A; Teksahin, H; Alp, E; Bizzarro, A; Sinisi, A A; Bellastella, G; Paglionico, V A; Bellastella, A; Unluhizarci, K; Doganay, M; Kelestimur, F

    2012-12-01

    Previous case reports and retrospective studies suggest that pituitary dysfunction may occur after acute bacterial or viral meningitis. In this prospective study we assessed the pituitary functions, lipid profile and anthropometric measures in adults with acute bacterial or viral meningitis. Moreover, in order to investigate whether autoimmune mechanisms could play a role in the pathogenesis of acute meningitis-induced hypopituitarism we also investigated the anti-pituitary antibodies (APA) and anti-hypothalamus antibodies (AHA) prospectively. Sixteen patients (10 males, 6 females; mean ± SD age 40.9 ± 15.9) with acute infectious meningitis were included and the patients were evaluated in the acute phase, and at 6 and 12 months after the acute meningitis. In the acute phase 18.7% of the patients had GH deficiency, 12.5% had ACTH and FSH/LH deficiencies. At 12 months after acute meningitis 6 of 14 patients (42.8%) had GH deficiency, 1 of 14 patients (7.1%) had ACTH and FSH/LH deficiencies. Two of 14 patients (14.3%) had combined hormone deficiencies and four patients (28.6%) had isolated hormone deficiencies at 12 months. Four of 9 (44.4%) hormone deficiencies at 6 months were recovered at 12 months, and 3 of 8 (37.5%) hormone deficiencies at 12 months were new-onset hormone deficiencies. At 12 months there were significant negative correlations between IGF-I level vs. LDL-C, and IGF-I level vs. total cholesterol. The frequency of AHA and APA positivity was substantially high, ranging from 35 to 50% of the patients throughout the 12 months period. However there were no significant correlations between AHA or APA positivity and hypopituitarism. The risk of hypopituitarism, GH deficiency in particular, is substantially high in the acute phase, after 6 and 12 months of the acute infectious meningitis. Moreover we found that 6th month after meningitis is too early to make a decision for pituitary dysfunction and these patients should be screened for at least 12 months

  5. Endocrine dysfunction following traumatic brain injury: a 5-year follow-up nationwide-based study.

    PubMed

    Yang, Wei-Hsun; Chen, Pau-Chung; Wang, Ting-Chung; Kuo, Ting-Yu; Cheng, Chun-Yu; Yang, Yao-Hsu

    2016-01-01

    Post-traumatic endocrine dysfunction is a complication of traumatic brain injury (TBI). However, there is lack of long-term follow-up and large sample size studies. This study included patients suffering from TBI registered in the Health Insurance Database. Endocrine disorders were identified using the ICD codes: 244 (acquired hypothyroidism), 253 (pituitary dysfunction), 255 (disorders of the adrenal glands), 258 (polyglandular dysfunction), and 259 (other endocrine disorders) with at least three outpatient visits within 1 year or one admission diagnosis. Overall, 156,945 insured subjects were included in the final analysis. The 1- and 5-year incidence rates of post-traumatic endocrinopathies were 0.4% and 2%, respectively. The risks of developing a common endocrinopathy (p < 0.001) or pituitary dysfunction (P < 0.001) were significantly higher in patients with a TBI history. Patients with a skull bone fracture had a higher risk of developing pituitary dysfunction at the 1-year follow up (p value < 0.001). At the 5-year follow up, the association between intracranial hemorrhage and pituitary dysfunction (p value: 0.002) was significant. The risk of developing endocrine dysfunction after TBI increased during the entire 5-year follow-up period. Skull bone fracture and intracranial hemorrhage may be associated with short and long-term post-traumatic pituitary dysfunction, respectively.

  6. Endocrine dysfunction following traumatic brain injury: a 5-year follow-up nationwide-based study.

    PubMed

    Yang, Wei-Hsun; Chen, Pau-Chung; Wang, Ting-Chung; Kuo, Ting-Yu; Cheng, Chun-Yu; Yang, Yao-Hsu

    2016-01-01

    Post-traumatic endocrine dysfunction is a complication of traumatic brain injury (TBI). However, there is lack of long-term follow-up and large sample size studies. This study included patients suffering from TBI registered in the Health Insurance Database. Endocrine disorders were identified using the ICD codes: 244 (acquired hypothyroidism), 253 (pituitary dysfunction), 255 (disorders of the adrenal glands), 258 (polyglandular dysfunction), and 259 (other endocrine disorders) with at least three outpatient visits within 1 year or one admission diagnosis. Overall, 156,945 insured subjects were included in the final analysis. The 1- and 5-year incidence rates of post-traumatic endocrinopathies were 0.4% and 2%, respectively. The risks of developing a common endocrinopathy (p < 0.001) or pituitary dysfunction (P < 0.001) were significantly higher in patients with a TBI history. Patients with a skull bone fracture had a higher risk of developing pituitary dysfunction at the 1-year follow up (p value < 0.001). At the 5-year follow up, the association between intracranial hemorrhage and pituitary dysfunction (p value: 0.002) was significant. The risk of developing endocrine dysfunction after TBI increased during the entire 5-year follow-up period. Skull bone fracture and intracranial hemorrhage may be associated with short and long-term post-traumatic pituitary dysfunction, respectively. PMID:27608606

  7. Endocrine dysfunction following traumatic brain injury: a 5-year follow-up nationwide-based study

    PubMed Central

    Yang, Wei-Hsun; Chen, Pau-Chung; Wang, Ting-Chung; Kuo, Ting-Yu; Cheng, Chun-Yu; Yang, Yao-Hsu

    2016-01-01

    Post-traumatic endocrine dysfunction is a complication of traumatic brain injury (TBI). However, there is lack of long-term follow-up and large sample size studies. This study included patients suffering from TBI registered in the Health Insurance Database. Endocrine disorders were identified using the ICD codes: 244 (acquired hypothyroidism), 253 (pituitary dysfunction), 255 (disorders of the adrenal glands), 258 (polyglandular dysfunction), and 259 (other endocrine disorders) with at least three outpatient visits within 1 year or one admission diagnosis. Overall, 156,945 insured subjects were included in the final analysis. The 1- and 5-year incidence rates of post-traumatic endocrinopathies were 0.4% and 2%, respectively. The risks of developing a common endocrinopathy (p < 0.001) or pituitary dysfunction (P < 0.001) were significantly higher in patients with a TBI history. Patients with a skull bone fracture had a higher risk of developing pituitary dysfunction at the 1-year follow up (p value < 0.001). At the 5-year follow up, the association between intracranial hemorrhage and pituitary dysfunction (p value: 0.002) was significant. The risk of developing endocrine dysfunction after TBI increased during the entire 5-year follow-up period. Skull bone fracture and intracranial hemorrhage may be associated with short and long-term post-traumatic pituitary dysfunction, respectively. PMID:27608606

  8. Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction.

    PubMed

    Hu, Huaizhong; Aizenstein, Brian D; Puchalski, Alice; Burmania, Jeanine A; Hamawy, Majed M; Knechtle, Stuart J

    2004-03-01

    A noninvasive urinary test that diagnoses acute renal allograft dysfunction would benefit renal transplant patients. We aimed to develop a rapid urinary diagnostic test by detecting chemokines. Seventy-three patients with renal allograft dysfunction prompting biopsy and 26 patients with stable graft function were recruited. Urinary levels of CXCR3-binding chemokines, monokine induced by IFN-gamma (Mig/CXCL9), IFN-gamma-induced protein of 10 kDa (IP-10/CXCL10), and IFN-inducible T-cell chemoattractant (I-TAC/CXCL11), were determined by a particle-based triplex assay. IP-10, Mig and I-TAC were significantly elevated in renal graft recipients with acute rejection, acute tubular injury and BK virus nephritis. Using 100 pg/mL as the threshold level, both IP-10 and Mig had diagnostic value (sensitivity 86.4%; specificity 91.3%) in differentiating acute graft dysfunction from other clinical conditions. In terms of monitoring the response to antirejection therapy, this urinary test is more sensitive and predictive than serum creatinine. These results indicate that this rapid test is clinically useful.

  9. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  10. Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury

    PubMed Central

    Wolf, John A.; Koch, Paul F.

    2016-01-01

    Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the “connectome”. Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed. PMID:27242454

  11. Social dysfunctioning and brain in borderline personality disorder.

    PubMed

    Herpertz, Sabine C; Jeung, Haang; Mancke, Falk; Bertsch, Katja

    2014-01-01

    Interpersonal dysfunction is the most prominent and best discriminating characteristic in individuals with borderline personality disorder (BPD). Data from experimental psychopathology point to emotional lability, (auto-)aggression, threat hypersensitivity, poor chance of interpersonal repair, frequent misunderstandings and self/other diffusion as the most significant factors which contribute to the interpersonal derailments typical of BPD. Neuroscientific methods are suitable to elucidate the mechanisms which mediate deficient social functioning in BPD, i.e. affective dysregulation, impulsivity/disinhibition and poor social cognition as well as their neurobiological correlates. Low prefrontoamygdalar coupling together with low activity in inhibiting prefrontal areas, high activity in the mirror neuron system, low activity in the mentalizing circuit, and low anterior insular activity in case of social norm violations are the most significant functional neuroimaging findings that have been reported from individuals with BPD, up to now. In addition, peculiarities of facial emotion processing have been detected by means of psychophysiological methodology in BPD patients. Data have led to preliminary models of social dysfunctioning in BPD that have to be experimentally tested in the future, evolving neuroscience into an important tool to better understand what distresses patients with BPD when communicating with others. PMID:25378381

  12. WAIS Digit Span-Based Indicators of Malingered Neurocognitive Dysfunction: Classification Accuracy in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heinly, Matthew T.; Greve, Kevin W.; Bianchini, Kevin J.; Love, Jeffrey M.; Brennan, Adrianne

    2005-01-01

    The present study determined specificity and sensitivity to malingered neurocognitive dysfunction (MND) in traumatic brain injury (TBI) for several Wechsler Adult Intelligence Scale (WAIS) Digit Span scores. TBI patients (n = 344) were categorized into one of five groups: no incentive, incentive only, suspect, probable MND, and definite MND.…

  13. Pupillary and Heart Rate Reactivity in Children with Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Zahn, Theodore P.; And Others

    1978-01-01

    In an attempt to replicate and extend previous findings on autonomic arousal and responsivity in children with minimal brain dysfunction (MBD), pupil size, heart rate, skin conductance, and skin temperature were recorded from 32 MBD and 45 control children (6-13 years old). (Author/CL)

  14. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    PubMed Central

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  15. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    PubMed Central

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  16. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury

    PubMed Central

    Tu, Yue; Miao, Xiao-mei; Yi, Tai-long; Chen, Xu-yi; Sun, Hong-tao; Cheng, Shi-xiang; Zhang, Sai

    2016-01-01

    Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury. PMID:27482221

  17. Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses.

    PubMed

    Hillary, Frank G

    2008-07-01

    There is a growing literature examining working memory deficits using functional imaging and there has been great convergence in the findings, to date, but interpretations have varied. Investigators consistently observed recruitment of neural resources in clinical samples, with some examiners attributing these findings to neural inefficiency and others attributing differences to neural compensation and/or brain reorganization. It is the goal of this paper to address the current interpretation of altered brain activation in clinical imaging studies of working memory dysfunction with specific emphasis on findings in prefrontal cortex (PFC). Throughout this review, the methods used to examine brain reorganization associated with working memory dysfunction are critiqued with the goal of understanding how study design has influenced data interpretation. It is proposed that much of what has been considered "aberrant" neural activity is not indicative of neural compensation, as it has been typically defined, and does not represent brain reorganization. Instead, recruitment of neural resources in PFC can be explained by a natural, and largely overlooked, role of cognitive control in accommodating neural dysfunction secondary to brain injury and disease. This paper provides predictions based on this proposition and a critique of the current methods available for testing these predictions.

  18. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma.

    PubMed

    Lötsch, Jörn; Ultsch, Alfred; Eckhardt, Maren; Huart, Caroline; Rombaux, Philippe; Hummel, Thomas

    2016-01-01

    The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81), or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50), or phantosmia, i.e., olfactory hallucinations (n = 22). A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time. PMID:26937377

  19. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma

    PubMed Central

    Lötsch, Jörn; Ultsch, Alfred; Eckhardt, Maren; Huart, Caroline; Rombaux, Philippe; Hummel, Thomas

    2016-01-01

    The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81), or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50), or phantosmia, i.e., olfactory hallucinations (n = 22). A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time. PMID:26937377

  20. Blood-brain barrier in acute liver failure

    PubMed Central

    Nguyen, Justin H.

    2011-01-01

    Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF. PMID:22100566

  1. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems.

    PubMed

    Kohyama, Jun

    2016-01-01

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life. PMID:26840337

  2. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems.

    PubMed

    Kohyama, Jun

    2016-01-29

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  3. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems

    PubMed Central

    Kohyama, Jun

    2016-01-01

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life. PMID:26840337

  4. Study of Aetiology and Outcome in Acute Febrile Illness Patients with Multiple Organ Dysfunction Syndrome

    PubMed Central

    Muthaiah, Bhanukumar; Kondareddy, Srinivas; Chikkegowda, Prathima

    2016-01-01

    Introduction Acute febrile illness with Multi Organ Dysfunction Syndrome (MODS) carries significant morbidity and mortality despite standard therapy in intensive care settings. Infections are the most common cause of MODS followed by polytrauma. Present study was undertaken in medical intensive care units of a tertiary hospital to study the aetiology and outcome among patients with acute febrile illness developing MODS. Aim 1) To study the aetiology of acute febrile illness in patients developing MODS. 2) To study the final outcome among these patients. Materials and Methods The present study was conducted at a tertiary care hospital in Mysuru, Karnataka, India, over a period of 6 months from July 2013 to December 2013. The Institutional Ethics Committee Approval (IEC) was obtained before the commencement of the study. A total of 213 cases admitted in intensive care unit with acute febrile illness with two or more organ dysfunction were screened for the inclusion and exclusion criterias. Results A total of 213 cases of acute febrile illness with one or more organ dysfunction were screened. Of the screened patients 75 patients were finally included in the study out of which 46 (61.3%) patients were males and 29 (38.7%) patients were females. Aetiology for acute febrile illness with MODS could be established in 49 (65.3%) patients and it was obscure in 26 (34.7%) patients despite repeated investigations. Dengue infection (29.3%) was the commonest cause of febrile illness with MODS followed by leptospirosis (22.7%). Majority of these patients had haematological derangements (78.7%) and liver function test abnormalities (68%). Out of these 75 cases, 54 (72%) patients recovered completely and 21 (28%) patients died. Among males (N=46), 35 (76.1%) patients recovered and 11 (23.9%) patients died where as among females (N=29), 19 (65.5%) patients recovered and 10 (34.5%) patients died. Mortality was proportionate with the number of organ dysfunction, especially Central

  5. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats.

    PubMed

    Xu, X-F; Zhang, J

    2013-01-01

    To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H(2)) groups. Treatment with saturated hydrogen saline prolonged the median survival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (P<0.05). Cell apoptosis was detected in liver tissues after LPS treatment, and attenuated by saturated hydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF-kappaB), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (P<0.05). Thus, saturated hydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen-activated protein kinase (MAPK), NF-kappaB, and Smac may contribute to saturated hydrogen saline-mediated liver protection.

  6. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    PubMed

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  7. Dose-Reduced Trastuzumab Emtansine: Active and Safe in Acute Hepatic Dysfunction

    PubMed Central

    Sharp, Adam; Johnston, Stephen R.D.

    2015-01-01

    Breast cancer is the most common cancer in women worldwide. The majority of deaths attributed to breast cancer are a result of metastatic disease, and 30% of early breast cancers (EBC) will develop distant disease. The 5-year survival of patients with metastatic disease is estimated at 23%. Breast cancer subtypes continue to be stratified histologically on oestrogen, progesterone and human epidermal growth factor-2 (HER2) receptor expression. HER2-positive breast cancers represent 25% of all breast cancer diagnoses. The therapies available for metastatic breast cancer (MBC) are expanding, in particular within the field of HER2-positive disease, with the approval of trastuzumab, pertuzumab, lapatinib and trastuzumab emtansine (TDM-1). Recently, TDM-1 has been shown to improve progression-free survival in HER2 MBC when compared to capecitabine and lapatinib in clinical studies. Its main toxicities are deranged liver function tests and thrombocytopenia. There have also been cases of acute liver failure. Therefore, its use in acute hepatic dysfunction, to our knowledge, has been neither studied nor reported. We report a patient with progressive HER2-positive MBC who had previously responded to multiple HER2-targeted therapies that presented with acute hepatic dysfunction. She was treated with dose-reduced TDM-1 safely, with clear evidence of rapid biochemical, clinical and radiological response. This allowed dose escalation of TDM-1, and the patient maintains an ongoing response. PMID:25873876

  8. Expanding the pool of kidney donors: use of kidneys with acute renal dysfunction

    PubMed Central

    de Matos, Ana Cristina Carvalho; Requião-Moura, Lúcio Roberto; Clarizia, Gabriela; Durão, Marcelino de Souza; Tonato, Eduardo José; Chinen, Rogério; de Arruda, Érika Ferraz; Filiponi, Thiago Corsi; Pires, Luciana Mello de Mello Barros; Bertocchi, Ana Paula Fernandes; Pacheco-Silva, Alvaro

    2015-01-01

    ABSTRACT Given the shortage of organs transplantation, some strategies have been adopted by the transplant community to increase the supply of organs. One strategy is the use of expanded criteria for donors, that is, donors aged >60 years or 50 and 59 years, and meeting two or more of the following criteria: history of hypertension, terminal serum creatinine >1.5mg/dL, and stroke as the donor´s cause of death. In this review, emphasis was placed on the use of donors with acute renal failure, a condition considered by many as a contraindication for organ acceptance and therefore one of the main causes for kidney discard. Since these are well-selected donors and with no chronic diseases, such as hypertension, renal disease, or diabetes, many studies showed that the use of donors with acute renal failure should be encouraged, because, in general, acute renal dysfunction is reversible. Although most studies demonstrated these grafts have more delayed function, the results of graft and patient survival after transplant are very similar to those with the use of standard donors. Clinical and morphological findings of donors, the use of machine perfusion, and analysis of its parameters, especially intrarenal resistance, are important tools to support decision-making when considering the supply of organs with renal dysfunction. PMID:26154553

  9. Pseudo-acute myocardial infarction due to transient apical ventricular dysfunction syndrome (Takotsubo syndrome)

    PubMed Central

    Maciel, Bruno Araújo; Cidrão, Alan Alves de Lima; Sousa, Ítalo Bruno dos Santos; Ferreira, José Adailson da Silva; Messias Neto, Valdevino Pedro

    2013-01-01

    Takotsubo syndrome is characterized by predominantly medial-apical transient left ventricular dysfunction, which is typically triggered by physical or emotional stress. The present article reports the case of a 61-year-old female patient presenting with dizziness, excessive sweating, and sudden state of ill feeling following an episode involving intense emotional stress. The physical examination and electrocardiogram were normal upon admission, but the troponin I and creatine kinase-MB concentrations were increased. Acute myocardial infarction without ST segment elevation was suspected, and coronary angiography was immediately performed, which showed severe diffuse left ventricular hypokinesia, medial-apical systolic ballooning, and a lack of significant coronary injury. The patient was referred to the intensive care unit and was successfully treated with supportive therapy. As this case shows, Takotsubo syndrome might simulate the clinical manifestations of acute myocardial infarction, and coronary angiography is necessary to distinguish between both myocardial infarction and myocardial infarction in the acute stage. The present patient progressed with spontaneous resolution of the ventricular dysfunction without any sequelae. PMID:23887762

  10. Expanding the pool of kidney donors: use of kidneys with acute renal dysfunction.

    PubMed

    Matos, Ana Cristina Carvalho de; Requião-Moura, Lúcio Roberto; Clarizia, Gabriela; Durão Junior, Marcelino de Souza; Tonato, Eduardo José; Chinen, Rogério; Arruda, Érika Ferraz de; Filiponi, Thiago Corsi; Pires, Luciana Mello de Mello Barros; Bertocchi, Ana Paula Fernandes; Pacheco-Silva, Alvaro

    2015-01-01

    Given the shortage of organs transplantation, some strategies have been adopted by the transplant community to increase the supply of organs. One strategy is the use of expanded criteria for donors, that is, donors aged >60 years or 50 and 59 years, and meeting two or more of the following criteria: history of hypertension, terminal serum creatinine >1.5mg/dL, and stroke as the donor´s cause of death. In this review, emphasis was placed on the use of donors with acute renal failure, a condition considered by many as a contraindication for organ acceptance and therefore one of the main causes for kidney discard. Since these are well-selected donors and with no chronic diseases, such as hypertension, renal disease, or diabetes, many studies showed that the use of donors with acute renal failure should be encouraged, because, in general, acute renal dysfunction is reversible. Although most studies demonstrated these grafts have more delayed function, the results of graft and patient survival after transplant are very similar to those with the use of standard donors. Clinical and morphological findings of donors, the use of machine perfusion, and analysis of its parameters, especially intrarenal resistance, are important tools to support decision-making when considering the supply of organs with renal dysfunction.

  11. Reactive airways dysfunction syndrome from acute inhalation of a dishwasher detergent powder.

    PubMed

    Hannu, Timo J; Riihimäki, Vesa E; Piirilä, Päivi L

    2012-01-01

    Reactive airway dysfunction syndrome, a type of occupational asthma without a latency period, is induced by irritating vapour, fumes or smoke. The present report is the first to describe a case of reactive airway dysfunction syndrome caused by acute exposure to dishwater detergent containing sodium metasilicate and sodium dichloroisocyanurate. The diagnosis was based on exposure data, clinical symptoms and signs, as well as respiratory function tests. A 43-year-old nonatopic male apprentice cook developed respiratory symptoms immediately after exposure to a cloud of detergent powder that was made airborne by vigorous shaking of the package. In spirometry, combined obstructive and restrictive ventilatory impairment developed, and the histamine challenge test revealed bronchial hyper-responsiveness. Even routine handling of a strongly caustic detergent, such as filling a dishwasher container, is not entirely risk free and should be performed with caution. PMID:22679618

  12. Reactive airways dysfunction syndrome from acute inhalation of dishwasher detergent powder

    PubMed Central

    Hannu, Timo J; Riihimäki, Vesa E; Piirilä, Päivi L

    2012-01-01

    Reactive airway dysfunction syndrome, a type of occupational asthma without a latency period, is induced by irritating vapour, fumes or smoke. The present report is the first to describe a case of reactive airway dysfunction syndrome caused by acute exposure to dishwater detergent containing sodium metasilicate and sodium dichloroisocyanurate. The diagnosis was based on exposure data, clinical symptoms and signs, as well as respiratory function tests. A 43-year-old nonatopic male apprentice cook developed respiratory symptoms immediately after exposure to a cloud of detergent powder that was made airborne by vigorous shaking of the package. In spirometry, combined obstructive and restrictive ventilatory impairment developed, and the histamine challenge test revealed bronchial hyper-responsiveness. Even routine handling of a strongly caustic detergent, such as filling a dishwasher container, is not entirely risk free and should be performed with caution. PMID:22679618

  13. Blood-Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy.

    PubMed

    Doherty, Colin P; O'Keefe, Eoin; Wallace, Eugene; Loftus, Teresa; Keaney, James; Kealy, John; Humphries, Marian M; Molloy, Michael G; Meaney, James F; Farrell, Michael; Campbell, Matthew

    2016-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition associated with repetitive mild traumatic brain injury. In recent years, attention has focused on emerging evidence linking the development of CTE to concussive injuries in athletes and military personnel; however, the underlying molecular pathobiology of CTE remains unclear. Here, we provide evidence that the blood-brain barrier (BBB) is disrupted in regions of dense perivascular p-Tau accumulation in a case of CTE. Immunoreactivity patterns of the BBB-associated tight junction components claudin-5 and zonula occludens-1 were markedly discontinuous or absent in regions of perivascular p-Tau deposition; there was also immunohistochemical evidence of a BBB in these foci. Because the patient was diagnosed premortem clinically as having progressive supranuclear palsy (PSP), we also compromised that the CTE alterations appear to be distinct from those in the brain of a patient with PSP. This report represents the first description of BBB dysfunction in a pathologically proven CTE case and suggests a vascular component in the postconcussion cascade of events that may ultimately lead to development of a progressive degenerative disorder. BBB dysfunction may represent a correlate of neural dysfunction in live subjects suspected of being at risk for development of CTE. PMID:27245243

  14. Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders.

    PubMed

    Bañuelos-Cabrera, Ivette; Valle-Dorado, María Guadalupe; Aldana, Blanca Irene; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2014-11-01

    Blood-brain barrier (BBB) disruption has been associated with several acute and chronic brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. This represents a critical situation because damaged integrity of the BBB is related to the influx of immune mediators, plasma proteins and other outside elements from blood to the central nervous system (CNS) that may trigger a cascade of events that leads to neuroinflammation. In this review, evidence that mast cells and the release of factors such as histamine play an important role in the neuroinflammatory process associated with brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy is presented.

  15. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    PubMed Central

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  16. Acute and Chronic Hyperglycemia Elicit JIP1/JNK-Mediated Endothelial Vasodilator Dysfunction of Retinal Arterioles

    PubMed Central

    Hein, Travis W.; Xu, Wenjuan; Xu, Xin; Kuo, Lih

    2016-01-01

    Purpose Hyperglycemia, a hallmark of diabetes mellitus, is associated with retinal inflammation and impairment of endothelium-dependent nitric oxide (NO)–mediated dilation of retinal arterioles. However, molecular mechanisms involved in this diminished endothelial vasodilator function remain unclear. We examined whether inflammatory stress-activated kinases, c-Jun N-terminal kinase (JNK) and p38, contribute to retinal arteriolar dysfunction during exposure to acute and chronic hyperglycemia. Methods Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2 weeks; chronic hyperglycemia, 471 ± 23 mg/dL) or age-matched control pigs (euglycemia, 79 ± 5 mg/dL), and then cannulated and pressurized for vasoreactivity study. For acute hyperglycemia study, vessels from nondiabetic pigs were exposed intraluminally to high glucose (25 mM ≈ 450 mg/dL) for 2 hours, and normal glucose (5 mM ≈ 90 mg/dL) served as the control. Results Endothelium-dependent vasodilation to bradykinin was reduced in a similar manner after exposure to acute or chronic hyperglycemia. Administration of NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) nearly abolished vasodilations either in control (euglycemia and normal glucose) or hyperglycemic (acute and chronic) vessels. Treatment of either acute or chronic hyperglycemic vessels with JNK inhibitor SP600125 or JNK-interacting protein-1 (JIP1) inhibitor BI-78D3, but not p38 inhibitor SB203580, preserved bradykinin-induced dilation in an L-NAME–sensitive manner. By contrast, endothelium-independent vasodilation to sodium nitroprusside was unaffected by acute or chronic hyperglycemia. Conclusions Activation of JIP1/JNK signaling in retinal arterioles during exposure to acute or chronic hyperglycemia leads to selective impairment of endothelium-dependent NO-mediated dilation. Therapeutic targeting of the vascular JNK pathway may improve retinal endothelial vasodilator function during early diabetes. PMID

  17. Alterations in blood-brain barrier function following acute hypertension: comparison of the blood-to-brain transfer of horseradish peroxidase with that of alpha-aminisobutyric acid

    SciTech Connect

    Ellison, M.D.B.

    1985-01-01

    The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study compares in rats, following acute hypertension, the cerebrovascular passage of /sup 14/C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction.

  18. BMIPP imaging to assess functional outcome in patients with acute and chronic left ventricular dysfunction.

    PubMed

    Franken, P R; Hambÿe, A S; De Geeter, F W

    1999-02-01

    Assessment of myocardial viability is an important clinical issue for patient management during the acute and chronic stages of myocardial infarction. BMIPP (15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid) is a free fatty acid analogue which is trapped in the myocardium, thus permitting for metabolic imaging with single photon emission computerized tomography (SPECT). Less BMIPP than flow tracers that may be observed in the areas of infarction, may reflect the metabolic shift from fatty acid to glucose utilization in ischaemic myocardium. In this sense, the combined imaging of BMIPP and a flow tracer with SPECT may provide similar and important information as fluoro-18 deoxyglucose (FDG) and positron emission tomography (PET) regarding the assessment of myocardial viability. The purpose of this article is to review the clinical impact of BMIPP in patients with acute and with chronic left ventricular dysfunction for the identification of jeopardized but viable myocardium and the prediction of the functional outcome.

  19. [Asystolias in the acute phase of brain stroke. Report of a case].

    PubMed

    Belvis, R; Marti-Fàbregas, J; Franquet, E; Cocho, D; Valencia, C; Martí-Vilalta, J L

    2003-04-01

    Brain areas involved in heart autonomic control are not well characterized. Insulae have been proposed as control centers. A lesion in these areas may induce a cardiac autonomic dysfunction (arrhythmias, atrioventricular conduction abnormalities). Asystolia has not been previously reported. A 65-year-old man suffered an acute ischemia of the right middle cerebral artery (MCA) territory. NIHSS score was 19 points. Brain CT scan was normal. Transcranial Doppler (TCD) showed occlusion of the right MCA. Fibrinolysis was initiated 135 minutes after stroke onset with TCD monitoring. Twenty minutes later he suffered cardiac arrest with asystolia trace in the ECG monitor. Fibrinolysis was stopped during resuscitation. Four minutes later, he recovered with the same NIHSS score. Aggressive resuscitation maneuvers were not necessary. A repeated brain CT scan showed infarct signs in the whole MCA territory and a new TCD did not show any change. Serial blood analyses including cardiac nzymes were normal. The patient experienced four brief cardiac arrests in the next nine hours, so a temporary cardiac pacemaker was placed for four days. He was treated with aspirin and was discharged 14 days after admission. He has not experienced recurrences during a 6-month follow-up. We could not diagnose the etiology of the cardiac arrests. All the episodes occurred in the acute stroke stage and arrhythmia, atrioventricular block, myocardial ischemia or structural lesions were not found in the cardiac study. We propose that ischemia in the right insula induced sudden and transitory interruptions of the sympathetic cardiac tone. PMID:12677486

  20. Renal dysfunction and thrombolytic therapy in patients with acute ischemic stroke: a systematic review and meta-analysis.

    PubMed

    Hao, Zilong; Yang, Chunsong; Liu, Ming; Wu, Bo

    2014-12-01

    Renal dysfunction is a prevalent comorbidity in acute ischemic stroke patients requiring thrombolytic therapy. However, the effect of renal dysfunction on the clinical outcome of this population remains controversial. This study aimed to evaluate the safety and effectiveness of thrombolytic therapy in acute stroke patients with renal dysfunction using a meta-analysis. We systematically searched PubMed and EMBASE for studies that evaluated the relationship between renal dysfunction and intravenous tissue plasminogen activator (tPA) in patients with acute ischemic stroke. Poor outcome (modified Rankin Scale≥2), mortality, and symptomatic intracranial hemorrhage (ICH) and any ICH were analyzed. Fourteen studies were included (N=53,553 patients). The mean age ranged from 66 to 75 years. The proportion of male participants was 49% to 74%. The proportion of renal dysfunction varied from 21.9% to 83% according to different definitions. Based on 9 studies with a total of 7796 patients, the meta-analysis did not identify a significant difference in the odds of poor outcome (odds ratio [OR]=1.06; 95% confidence interval [CI]: 0.96-1.16; I=44.5) between patients with renal dysfunction and those without renal dysfunction. Patients with renal dysfunction were more likely to die after intravenous thrombolysis (OR=1.13; 95% CI: 1.05-1.21; I=70.3). No association was observed between symptomatic ICH (OR=1.02; 95% CI: 0.94-1.10; I=0) and any ICH (OR=1.07; 95% CI: 0.96-1.18; I=25.8). Renal dysfunction does not increase the risk of poor outcome and ICH after stroke thrombolysis. Renal dysfunction should not be a contraindication for administration of intravenous thrombolysis to eligible patients. PMID:25526464

  1. Imaging Evaluation of Acute Traumatic Brain Injury.

    PubMed

    Mutch, Christopher A; Talbott, Jason F; Gean, Alisa

    2016-10-01

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it also helps predict patient outcomes. TBI consists of multiple pathoanatomic entities. This article reviews the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each of these pathoanatomic entities. Also briefly surveyed are advanced imaging techniques, which include several promising areas of TBI research. PMID:27637393

  2. Hepatic Dysfunction in Hospitalized Patients with Acute Thyrotoxicosis: A Decade of Experience

    PubMed Central

    Elias, Richard M.; Dean, Diana S.; Barsness, Gregory W.

    2012-01-01

    Thyroid disease is a common condition, and thyroid hormone excess or deficiency is known to have wide-ranging effects on a variety of organ systems. Our objective is to describe the magnitude, biochemical features, and clinical characteristics of hepatic abnormalities in patients with acute thyrotoxicosis. We performed a retrospective review of all patients admitted to our institution between January 1, 1998 and December 31, 2008 with a discharge diagnosis of acute thyrotoxicosis excluding iatrogenic causes. The records of these patients were reviewed and data extracted regarding demographic, biochemical, and clinical data particularly relevant to liver function. Fourteen patients were identified of which eleven had liver studies performed. The majority (90.9%) had Graves disease. Nine of eleven patients (81.8%) had some degree of hepatic abnormality. Seven patients (63.6%) had an elevation in one or both transaminases, and two (18.2%) had isolated synthetic dysfunction as manifested as an elevated INR and/or decreased albumin without transaminitis. The mean magnitude of deviation from the normal range was greater in the transaminases as compared to bilirubin, INR, or albumin. Definitive treatment was radioiodine ablation in six cases (54.5%) and surgical thyroidectomy in two cases (18.2%). Noniatrogenic acute thyrotoxicosis requiring hospitalization is a rare condition which is most frequently caused by Graves disease. The majority of patients have disordered liver tests of a highly variable nature, making the recognition of this association important in the care of patients presenting with acute thyrotoxicosis. PMID:23251814

  3. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury

    PubMed Central

    Sheth, Sunil A.; Iavarone, Anthony T.; Liebeskind, David S.; Won, Seok Joon; Swanson, Raymond A.

    2015-01-01

    Prior efforts to identify a blood biomarker of brain injury have relied almost exclusively on proteins; however their low levels at early time points and poor correlation with injury severity have been limiting. Lipids, on the other hand, are the most abundant molecules in the brain and readily cross the blood-brain barrier. We previously showed that certain sphingolipid (SL) species are highly specific to the brain. Here we examined the feasibility of using SLs as biomarkers for acute brain injury. A rat model of traumatic brain injury (TBI) and a mouse model of stroke were used to identify candidate SL species though our mass-spectrometry based lipid profiling approach. Plasma samples collected after TBI in the rat showed large increases in many circulating SLs following injury, and larger lesions produced proportionately larger increases. Plasma samples collected 24 hours after stroke in mice similarly revealed a large increase in many SLs. We constructed an SL score (sum of the two SL species showing the largest relative increases in the mouse stroke model) and then evaluated the diagnostic value of this score on a small sample of patients (n = 14) who presented with acute stroke symptoms. Patients with true stroke had significantly higher SL scores than patients found to have non-stroke causes of their symptoms. The SL score correlated with the volume of ischemic brain tissue. These results demonstrate the feasibility of using lipid biomarkers to diagnose brain injury. Future studies will be needed to further characterize the diagnostic utility of this approach and to transition to an assay method applicable to clinical settings. PMID:26076478

  4. TIMP-1 attenuates blood–brain barrier permeability in mice with acute liver failure

    PubMed Central

    Chen, Feng; Radisky, Evette S; Das, Pritam; Batra, Jyotica; Hata, Toshiyuki; Hori, Tomohide; Baine, Ann-Marie T; Gardner, Lindsay; Yue, Mei Y; Bu, Guojun; del Zoppo, Gregory; Patel, Tushar C; Nguyen, Justin H

    2013-01-01

    Blood–brain barrier (BBB) dysfunction in acute liver failure (ALF) results in increased BBB permeability that often precludes the patients from obtaining a life-saving liver transplantation. It remains controversial whether matrix metalloproteinase-9 (MMP-9) from the injured liver contributes to the deregulation of BBB function in ALF. We selectively upregulated a physiologic inhibitor of MMP-9 (TIMP-1) with a single intracerebroventricular injection of TIMP-1 cDNA plasmids at 48 and 72 hours, or with pegylated-TIMP-1 protein. Acute liver failure was induced with tumor necrosis factor-α and 𝒟-(+)-galactosamine in mice. Permeability of BBB was assessed with sodium fluorescein (NaF) extravasation. We found a significant increase in TIMP-1 within the central nervous system (CNS) after the administration of TIMP-1 cDNA plasmids and that increased TIMP-1 within the CNS resulted in an attenuation of BBB permeability, a reduction in activation of epidermal growth factor receptor and p38 mitogen-activated protein kinase signals, and a restoration of the tight junction protein occludin in mice with experimental ALF. Pegylated TIMP-1 provided similar protection against BBB permeability in mice with ALF. Our results provided a proof of principle that MMP-9 contributes to the BBB dysfunction in ALF and suggests a potential therapeutic role of TIMP-1 in ALF. PMID:23532086

  5. Acute effect of rheopheresis on peripheral endothelial dysfunction in patients suffering from sudden hearing loss.

    PubMed

    Balletshofer, Bernd M; Stock, Jan; Rittig, Kilian; Lehn-Stefan, Angela; Braun, Norbert; Burkart, Frank; Plontke, Stefan; Klingel, Reinhard; Häring, Hans-Ulrich

    2005-10-01

    Single low density lipoprotein (LDL) fibrinogen apheresis has shown beneficial effects in the treatment of patients with sudden sensorineural hearing loss (SSHL). Pathophysiologically, a microcirculatory disorder of the inner ear, probably caused by disturbed endothelial function, is discussed as a final common pathway of a variety of SSHL etiologies. Thus, we carried out a prospective pilot study on the efficacy of Rheopheresis on vascular function in these patients, embedded into an ongoing randomized controlled multicenter trial investigating the efficacy of Rheopheresis for the treatment of SSHL. Potential modulation of systemic endothelial dysfunction by Rheopheresis was examined by measuring flow-associated vasodilatation of the brachial artery (according to the criteria of the American College of Cardiology) in a small group of patients suffering from SSHL (N=6, 5m/1f, mean age 56+/-11 years) within the last 3 days. At baseline, five of the six patients with acute hearing loss showed endothelial dysfunction as evidenced by diminished flow-mediated vasodilatation (FMD<5%). After a single Rheopheresis treatment, flow-mediated vasodilatation improved significantly (from 3.9+/-3.6% to 7.2+/-2.4%, P=0.05, mean+/-SD, two-sided paired T-test). This was paralleled by a reduction in fibrinogen (364+/-216 mg/dL to 142+/-96 mg/dL, P=0.03), total cholesterol (228+/-23 to 98+/-10, P<0.0001) and LDL cholesterol levels (153+/-8 mg/dL to 83+/-23 mg/dL, P<0.01). Based on this case series we conclude that single Rheopheresis treatment might have an acute beneficial effect on endothelial dysfunction in patients suffering from SSHL.

  6. Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease

    PubMed Central

    Erickson, Michelle A; Banks, William A

    2013-01-01

    The blood–brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology. PMID:23921899

  7. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    PubMed

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  8. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation.

    PubMed

    Akiyama, K; Tanaka, R; Sato, M; Takeda, N

    2001-12-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis.

  9. Influence of renal dysfunction on clinical outcomes in patients with congestive heart failure complicating acute myocardial infarction.

    PubMed

    Kim, Chang Seong; Kim, Min Jee; Kang, Yong Un; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon; Ahn, Young-Keun; Jeong, Myung Ho; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Kim, Soo Wan

    2013-01-01

    The clinical course and medical treatment of patients with congestive heart failure (CHF) complicating acute myocardial infarction (AMI) are not well established, especially in patients with concomitant renal dysfunction. We performed a retrospective analysis of the prospective Korean Acute Myocardial Infarction Registry to assess the medical treatments and clinical outcomes of patients with CHF (Killip classes II or III) complicated by AMI, in the presence or absence of renal dysfunction. Of 13,498 patients with AMI, 2769 (20.5%) had CHF on admission. Compared to CHF patients with preserved renal function, in-hospital mortality and major adverse cardiac events were increased both at 1 month and at 1 year after discharge in patients with renal dysfunction (1154; 41.7%). Postdischarge use of aspirin, betablockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, or angiotensin II receptor blockers and statins significantly reduced the 1-year mortality rate for CHF patients with renal dysfunction; such reduction was not observed for those without renal dysfunction, except in the case of aspirin. Patients with CHF complicating AMI, which is accompanied by renal dysfunction, are at higher risk for adverse cardiovascular outcomes than patients without renal dysfunction. However, they receive fewer medications proven to reduce mortality rates.

  10. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  11. [Arterial and venous brain reactivity in the acute period of brain concussion].

    PubMed

    Dicheskul, M L; Kulikov, V P

    2009-01-01

    Arterial and venous brain reactivity has been studied in 38 patients in the acute period of brain concussion (BC) and 32 healthy volunteers using transcranial color duplex scanning of brain vessels. The assessment of arterial inflow was conducted for the medial brain artery (MBA) and that of venous outflow - for the basal vein (BV) of Rosenthal. Hyperkinetic and orthostatic probes were used for assessment of cerebrovascular reactivity. BC was not accompanied by marked changes of cerebral resting hemodynamic parameters. The increase of peak blood flow velocity in MBA in the acute period which is characteristic of the brain hyperinfusion was found in 20% of patients and that in BA compensating the disturbed outflow along the surface brain system - in 25% of patients. In normalcy, the brain venous reactivity to hypercapnia was higher than arterial one and that to orthostasis corresponded to the intensity of arterial changes. The lack of quantitative differences in the reaction of arterial and venous blood flow to hypercapnia and the predominance of venous reactivity value in orthostasis in patients with BC suggest the disturbance of venous tone regulation in these patients.

  12. Postoperative Structural Brain Changes and Cognitive Dysfunction in Patients with Breast Cancer

    PubMed Central

    Kawai, Masaaki; Kotozaki, Yuka; Nouchi, Rui; Tada, Hiroshi; Takeuchi, Hikaru; Ishida, Takanori; Taki, Yasuyuki; Kawashima, Ryuta; Ohuchi, Noriaki

    2015-01-01

    Objective The primary purpose of this study was to clarify the influence of the early response to surgery on brain structure and cognitive function in patients with breast cancer. It was hypothesized that the structure of the thalamus would change during the early response after surgery due to the effects of anesthesia and would represent one aspect of an intermediate phenotype of postoperative cognitive dysfunction (POCD). Methods We examined 32 postmenopausal females with breast cancer and 20 age-matched controls. We assessed their cognitive function (attention, memory, and executive function), and performed brain structural MRI 1.5 ± 0.5 days before and 5.6 ± 1.2 days after surgery. Results We found a significant interaction between regional grey matter volume (rGMV) in the thalamus (P < 0.05, familywise error (FWE), small volume correction (SVC)) and one attention domain subtest (P = 0.001, Bonferroni correction) after surgery in the patient group compared with the control group. Furthermore, the changes in attention were significantly associated with sevoflurane anesthetic dose (r2 = 0.247, β = ‒0.471, P = 0.032) and marginally associated with rGMV changes in the thalamus (P = 0.07, FWE, SVC) in the Pt group. Conclusion Our findings suggest that alterations in brain structure, particularly in the thalamus, may occur shortly after surgery and may be associated with attentional dysfunction. This early postoperative response to anesthesia may represent an intermediate phenotype of POCD. It was assumed that patients experiencing other risk factors of POCD, such as the severity of surgery, the occurrence of complications, and pre-existing cognitive impairments, would develop clinical POCD with broad and multiple types of cognitive dysfunction. PMID:26536672

  13. Biomarkers and acute brain injuries: interest and limits.

    PubMed

    Mrozek, Ségolène; Dumurgier, Julien; Citerio, Giuseppe; Mebazaa, Alexandre; Geeraerts, Thomas

    2014-04-24

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied.

  14. Biomarkers and acute brain injuries: interest and limits

    PubMed Central

    2014-01-01

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied. PMID:25029344

  15. ERCC6 dysfunction presenting as progressive neurological decline with brain hypomyelination

    PubMed Central

    Shehata, Laila; Simeonov, Dimitre R.; Raams, Anja; Wolfe, Lynne; Vanderver, Adeline; Li, Xueli; Huang, Yan; Garner, Shannon; Boerkoel, Cornelius F.; Thurm, Audrey; Herman, Gail E.; Tifft, Cynthia J.; He, Miao; Jaspers, Nicolaas G.J.; Gahl, William A.

    2014-01-01

    Mutations in ERCC6 are associated with growth failure, intellectual disability, neurological dysfunction and deterioration, premature aging and photosensitivity. We describe siblings with biallelic ERCC6 mutations (NM_000124.2:c. [543+4delA];[2008C>T]) and brain hypomyelination, microcephaly, cognitive decline, and skill regression but without photosensitivity or progeria. DNA repair assays on cultured skin fibroblasts confirmed a defect of transcription-coupled nucleotide excision repair and increased ultraviolet light sensitivity. This report expands the disease spectrum associated with ERCC6 mutations. PMID:25251875

  16. Cognitive dysfunction syndrome: a disease of canine and feline brain aging.

    PubMed

    Landsberg, Gary M; Nichol, Jeff; Araujo, Joseph A

    2012-07-01

    Brain aging is a degenerative process manifest by impairment of cognitive function; although not all pets are affected at the same level, once cognitive decline begins it is generally a progressive disorder. Diagnosis of cognitive dysfunction syndrome (CDS) is based on recognition of behavioral signs and exclusion of other medical causes that might mimic CDS or complicate its diagnosis. Drugs, diets, and supplements are now available that might slow CDS progression by various mechanisms including reducing oxidative stress and inflammation or improving mitochondrial and neuronal function. Moreover, available therapeutics may provide some level of improvement in cognitive and clinical signs of CDS. PMID:22720812

  17. Effective factors on linguistic disorder during acute phase following traumatic brain injury in adults.

    PubMed

    Chabok, Shahrokh Yousefzadeh; Kapourchali, Sara Ramezani; Leili, Ehsan Kazemnezhad; Saberi, Alia; Mohtasham-Amiri, Zahra

    2012-06-01

    Traumatic brain injury (TBI) has been known to be the leading cause of breakdown and long-term disability in people under 45 years of age. This study highlights the effective factors on post-traumatic (PT) linguistic disorder and relations between linguistic and cognitive function after trauma in adults with acute TBI. A cross-sectional design was employed to study 60 post-TBI hospitalized adults aged 18-65 years. Post-traumatic (PT) linguistic disorder and cognitive deficit after TBI were respectively diagnosed using the Persian Aphasia Test (PAT) and Persian version of Mini-Mental State Examination (MMSE) at discharge. Primary post-resuscitation consciousness level was determined using the Glasgow Coma Scale (GCS). Paracilinical data was obtained by CT scan technique. Multiple logistic regression analysis illustrated that brain injury severity was the first powerful significant predictor of PT linguistic disorder after TBI and frontotemporal lesion was the second. It was also revealed that cognitive function score was significantly correlated with score of each language skill except repetition. Subsequences of TBI are more commonly language dysfunctions that demand cognitive flexibility. Moderate, severe and fronto-temporal lesion can increase the risk of processing deficit in linguistic macrostructure production and comprehension. The dissociation risk of cortical and subcortical pathways related to cognitive-linguistic processing due to intracranial lesions can augment possibility of lexical-semantic processing deficit in acute phase which probably contributes to later cognitive-communication disorder.

  18. Cough-related neural processing in the brain: a roadmap for cough dysfunction?

    PubMed

    Ando, Ayaka; Farrell, Michael J; Mazzone, Stuart B

    2014-11-01

    Cough is a complex respiratory behavior essential for airway protection, consisting of sensory, motor, affective and cognitive attributes. Accordingly, the cough neural circuitry extends beyond a simple pontomedullary reflex arc to incorporate a network of neurons that are also widely distributed throughout the subcortical and cortical brain. Studies have described discrete regional responses in the brain that likely give rise to sensory discriminative processes, voluntary and urge-related cough control mechanisms and aspects of the emotive responses following airways irritation and coughing. Data from these studies highlight the central nervous system as a plausible target for therapeutic intervention and, consistent with this, a careful appraisal of the many and varied clinical disorders of coughing control would argue that more diversified therapies are needed to treat patients with cough dysfunction. In this paper we explore these concepts in detail to highlight unanswered questions and stimulate discussion for potential research of cough in the future.

  19. New therapeutic approach: diphenyl diselenide reduces mitochondrial dysfunction in acetaminophen-induced acute liver failure.

    PubMed

    Carvalho, Nélson R; da Rosa, Edovando F; da Silva, Michele H; Tassi, Cintia C; Dalla Corte, Cristiane L; Carbajo-Pescador, Sara; Mauriz, Jose L; González-Gallego, Javier; Soares, Félix A

    2013-01-01

    The acute liver failure (ALF) induced by acetaminophen (APAP) is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe)2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe)2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe)2 to the N-acetylcysteine (NAC) during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg), (PhSe)2 (15.6 mg/kg), NAC (1200 mg/kg), APAP+(PhSe)2 or APAP+NAC, where the (PhSe)2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation) and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe)2. The effectiveness of (PhSe)2 was similar at a lower dose than NAC. In summary, (PhSe)2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced. PMID:24349162

  20. Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: implication for glial dysfunction

    PubMed Central

    Chang, Linda; Friedman, Joseph; Ernst, Thomas; Zhong, Kai; Tsopelas, Nicholas D.; Davis, Kenneth

    2008-01-01

    Background Abnormalities in the white matter of the brain may occur in individuals with schizophrenia as well as with normal aging. Therefore, elderly schizophrenic patients may suffer further cognitive decline as they age. This study determined whether elderly schizophrenia participants, especially those with declined cognitive function (CDR>1), show white matter metabolite abnormalities on proton magnetic resonance spectroscopy (1H MRS), and whether there are group differences in age-dependent changes in these brain metabolites. Method 23 elderly schizophrenic and 22 comparison participants fulfilling study criteria were enrolled. Localized, short echo-time 1H MRS at 4 Tesla was used to assess neurometabolite concentrations in several white matter regions. Results Compared to healthy subjects, schizophrenic participants had lower N-acetyl compounds (NA, −12.6%, p=0.0008), lower myoinositol (MI, −16.4%, p=0.026) and higher glutamate+glutamine (GLX, +28.7%, p=0.0016) concentrations across brain regions. Schizophrenic participants with CDR≥1 showed the lowest NA in the frontal and temporal regions compared to controls. Interactions between age and schizophrenia status on total creatine (CR) and choline-containing compounds (CHO) were observed; only schizophrenic participants showed age-related decreases of these two metabolites in the right frontal region. Conclusion Decreased NA in these white matter brain regions likely reflects reduced neuronal content associated with decreased synapses and neuronal cell volumes. The elevated GLX, if reflecting elevated glutamate, could result from excess neuronal glutamate release or glial dysfunction in glutamate re-uptake. The decreased MI in participants with schizophrenia suggests decreased glial content or dysfunctional glia, which might result from glutamate-mediated toxicity. PMID:17693392

  1. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    PubMed

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes suggested a

  2. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    PubMed

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes suggested a

  3. Brain Networks during Free Viewing of Complex Erotic Movie: New Insights on Psychogenic Erectile Dysfunction

    PubMed Central

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other’s actions. Moreover, the between group differences in the SN nodes suggested a

  4. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  5. Niacinamide abrogates the organ dysfunction and acute lung injury caused by endotoxin.

    PubMed

    Kao, Shang-Jyh; Liu, Demeral David; Su, Chain-Fa; Chen, Hsing I

    2007-09-01

    Poly (ADP-ribose) synthabse (PARS) or polymerase (PARP) is a cytotoxic enzyme causing cellular damage. Niacinamide inhibits PARS or PARP. The present experiment tests the effects of niacinamide (NCA) on organ dysfunction and acute lung injury (ALI) following lipopolysaccharide (LPS). LPS was administered to anesthetized rats and to isolated rat lungs. In anesthetized rats, LPS caused systemic hypotension and increased biochemical factors, nitrate/nitrite (NOx), methyl guanidine (MG), tumor necrosis factoralpha (TNFalpha), and interleukin-1beta (IL-1beta). In isolated lungs, LPS increased lung weight (LW) to body weight ratio, LW gain, protein and dye tracer leakage, and capillary permeability. The insult also increased NOx, MG, TNFalpha, and IL-1beta in lung perfusate, while decreased adenosine triphosphate (ATP) content with an increase in PARP activity in lung tissue. Pathological examination revealed pulmonary edema with inflammatory cell infiltration. These changes were abrogated by posttreatment (30 min after LPS) with NCA. Following LPS, the inducible NO synthase (iNOS) mRNA expression was increased. NCA reduced the iNOS expression. Niacinamide exerts protective effects on the organ dysfunction and ALI caused by endotoxin. The mechanisms may be mediated through the inhibition on the PARP activity, iNOS expression and the subsequent suppression of NO, free radicals, and proinflammatory cytokines with restoration of ATP.

  6. [Assessment of renal function, iatrogenic hyperkalemia and acute renal dysfunction in cardiology. Contrast-induced nephropathy].

    PubMed

    Górriz Teruel, José Luis; Beltrán Catalán, Sandra

    2011-12-01

    Renal impairment influences the prognosis of patients with cardiovascular disease and increases cardiovascular risk. Renal dysfunction is a marker of lesions in other parts of the vascular tree and detection facilitates early identification of individuals at high risk of cardiovascular events. In patients with cardiovascular disease, renal function is assessed by measuring albuminuria in a spot urine sample and by estimating the glomerular filtration rate using creatinine-derived predictive formulas or equations. We recommend the Chronic Kidney Disease Epidemiology Collaboration or the Modification of Diet in Renal Disease formulas. The Cockcroft-Gault formula is a possible alternative. The administration of drugs that block the angiotensin-renin system can, on occasion, be associated with acute renal dysfunction or hyperkalemia. We need to know when risk of these complications exists so as to provide the best possible treatment: prevention. Given the growing number of diagnostic and therapeutic procedures in the field of cardiology that use intravenous contrast media, contrast-induced nephrotoxicity represents a significant problem. We should identify the risk factors and patients at greatest risk, and prevent it from appearing.

  7. Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice.

    PubMed

    Silva, Josiane F; Capettini, Luciano S A; da Silva, José F P; Sales-Junior, Policarpo; Cruz, Jader Santos; Cortes, Steyner F; Lemos, Virginia S

    2016-07-01

    Vascular disorders have a direct link to mortality in the acute phase of Trypanosoma cruzi infection. However, the underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection of T. cruzi antigen TcRBP28 was observed in endothelial cells. There was a decreased endothelial nitric oxide synthase (eNOS)-derived NO-dependent vascular relaxation, and increased vascular contractility accompanied by augmented superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thromboxane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22(phox) of NAD(P)H oxidase (NOX) subunit expressions were increased in vessels of chagasic animals. Serum TNF-α was augmented. Basal NO production, and nitrotyrosine residue expression were increased. It is concluded that T. cruzi invades mice aorta endothelial cells and increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α increase, which stimulates iNOS expression in vessels and nitrosative stress. In light of the heart failure that develops in the chronic phase of the disease, to understand the mechanism involved in the increased contractility of the aorta is crucial.

  8. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    PubMed

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  9. Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury.

    PubMed

    Capó-Aponte, José E; Urosevich, Thomas G; Temme, Leonard A; Tarbett, Aaron K; Sanghera, Navjit K

    2012-07-01

    The purpose of the present study was to assess the occurrence of visual dysfunctions and associated symptoms in active duty warfighters during the subacute stage of blast-induced mild traumatic brain injury (mTBI). A comprehensive visual and oculomotor function evaluation was performed on 40 U.S. military personnel, 20 with blast-induced mTBI and 20 without. In addition, a comprehensive symptom questionnaire was used to assess the frequency of visual, vestibular, and neuropsychiatric-associated symptoms. The most common mTBI-induced visual dysfunctions were associated with near oculomotor deficits, particularly large exophoria, decreased fusion ranges, receded near point of convergence, defective pursuit and saccadic eye movements, decreased amplitude of accommodation, and monocular accommodative facility. These were associated with reduced reading speed and comprehension and an increased Convergence Insufficiency Symptom Survey score. Photosensitivity was a common visual dysfunction along with hearing, balance, and neuropsychiatric symptoms. The oculomotor testing for warfighters suspected of blast-induced mTBI should include, at a minimum, the assessment of near lateral and vertical phorias, positive fusional vergence, stereoacuity, near point of convergence, amplitude of accommodation, monocular accommodative facility, saccades, and pursuit eye movements. A reading test should be included in all routine exams as a functional assessment of the integration of oculomotor functions.

  10. Central diabetes insipidus in children with acute brain insult.

    PubMed

    Yang, Yun-Hsuan; Lin, Jainn-Jim; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong; Hung, Po-Cheng; Chou, Min-Liang; Hsieh, Meng-Ying; Lin, Kuang-Lin

    2011-12-01

    Central diabetes insipidus occurs in patients with overwhelming central nervous system injuries, and may be associated with brain death. The clinical picture of children with acquired central diabetes insipidus after acute brain insult is seldom reported. We retrospectively reviewed cases dating from January 2000-February 2008 at a tertiary pediatric intensive care unit. Fifty-four patients (28 girls, 26 boys), aged 3 months to 18 years, were enrolled. Etiologies included severe central nervous system infection (35.2%), hypoxic-ischemic events (31.5%), head injury (18.5%), and vascular lesions (14.8%). In 39 (72.2%) patients, diabetes insipidus was diagnosed during the first 2 days after acute central nervous system injury, and 40 (74.0%) developed maximum serum sodium concentrations of >160 mEq/L. In 16, sequential cerebral salt wasting syndrome developed after their initial diabetes insipidus presentation. Overall mortality at 2 months after admission was 77.8%. Our results demonstrate that patients who develop central diabetes insipidus after acute central nervous system injury manifest high mortality. Development of central diabetes insipidus within the first 2 days and a maximum plasma sodium >160 mEq/L were significant predictors of outcomes.

  11. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1

    PubMed Central

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Summary Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tract-based spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1 mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1. PMID:26214024

  12. [Higher Brain Dysfunction in Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS)].

    PubMed

    Ichikawa, Hiroo

    2016-02-01

    Stroke-like episodes are one of the cardinal features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and occur in 84-99% of the patients. The affected areas detected on neuroimaging do not have classical vascular distribution, and involve predominantly the temporal, parietal and occipital lobes. Thus, the neurological symptoms including higher brain dysfunction correlate with this topographical distribution. In association with the occipital lobe involvement, the most frequent symptom is cortical blindness. Other symptoms have been occasionally reported in case reports: visual agnosia, prosopagnosia, cortical deafness, auditory agnosia, topographical disorientation, various types of aphasia, hemispatial neglect, and so on. On the other hand, cognitive decline associated with more diffuse brain impairment rather than with focal stroke-like lesions has been postulated. This condition is also known as mitochondrial dementia. Domains of cognitive dysfunction include abstract reasoning, verbal memory, visual memory, language (naming and fluency), executive or constructive functions, attention, and visuospatial function. Cognitive functions and intellectual abilities may decline from initially minimal cognitive impairment to dementia. To date, the neuropsychological and neurologic impairment has been reported to be associated with cerebral lactic acidosis as estimated by ventricular spectroscopic lactate levels. PMID:26873235

  13. [Higher Brain Dysfunction in Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS)].

    PubMed

    Ichikawa, Hiroo

    2016-02-01

    Stroke-like episodes are one of the cardinal features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and occur in 84-99% of the patients. The affected areas detected on neuroimaging do not have classical vascular distribution, and involve predominantly the temporal, parietal and occipital lobes. Thus, the neurological symptoms including higher brain dysfunction correlate with this topographical distribution. In association with the occipital lobe involvement, the most frequent symptom is cortical blindness. Other symptoms have been occasionally reported in case reports: visual agnosia, prosopagnosia, cortical deafness, auditory agnosia, topographical disorientation, various types of aphasia, hemispatial neglect, and so on. On the other hand, cognitive decline associated with more diffuse brain impairment rather than with focal stroke-like lesions has been postulated. This condition is also known as mitochondrial dementia. Domains of cognitive dysfunction include abstract reasoning, verbal memory, visual memory, language (naming and fluency), executive or constructive functions, attention, and visuospatial function. Cognitive functions and intellectual abilities may decline from initially minimal cognitive impairment to dementia. To date, the neuropsychological and neurologic impairment has been reported to be associated with cerebral lactic acidosis as estimated by ventricular spectroscopic lactate levels.

  14. Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke.

    PubMed

    Silva, Bruno; Sousa, Larissa; Miranda, Aline; Vasconcelos, Anilton; Reis, Helton; Barcelos, Lucíola; Arantes, Rosa; Teixeira, Antonio; Rachid, Milene Alvarenga

    2015-08-01

    The present study aimed to investigate behavioral changes and neuroinflammatory process following left unilateral common carotid artery occlusion (UCCAO), a model of cerebral ischemia. Post-ischemic behavioral changes following 15 min UCCAO were recorded 24 hours after reperfusion. The novel object recognition task was used to assess learning and memory. After behavioral test, brains from sham and ischemic mice were removed and processed to evaluate central nervous system pathology by TTC and H&E techniques as well as inflammatory mediators by ELISA. UCCAO promoted long-term memory impairment after reperfusion. Infarct areas were observed in the cerebrum by TTC stain. Moreover, the histopathological analysis revealed cerebral necrotic cavities surrounded by ischemic neurons and hippocampal neurodegeneration. In parallel with memory dysfunction, brain levels of TNF-a, IL-1b and CXCL1 were increased post ischemia compared with sham-operated group. These findings suggest an involvement of central nervous system inflammatory mediators and brain damage in cognitive impairment following unilateral acute ischemia.

  15. Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction

    PubMed Central

    Sajja, Venkata S. S. S.; Hlavac, Nora; VandeVord, Pamela J.

    2016-01-01

    Historically, glial cells have been recognized as a structural component of the brain. However, it has become clear that glial cells are intimately involved in the complexities of neural networks and memory formations. Astrocytes, microglia, and oligodendrocytes have dynamic responsibilities which substantially impact neuronal function and activities. Moreover, the importance of glia following brain injury has come to the forefront in discussions to improve axonal regeneration and functional recovery. The numerous activities of glia following injury can either promote recovery or underlie the pathobiology of memory deficits. This review outlines the pathological states of glial cells which evolve from their positive supporting roles to those which disrupt synaptic function and neuroplasticity following injury. Evidence suggests that glial cells interact extensively with neurons both chemically and physically, reinforcing their role as pivotal for higher brain functions such as learning and memory. Collectively, this mini review surveys investigations of how glial dysfunction following brain injury can alter mechanisms of synaptic plasticity and how this may be related to an increased risk for persistent memory deficits. We also include recent findings, that demonstrate new molecular avenues for clinical biomarker discovery. PMID:26973475

  16. Stress Mediators and Immune Dysfunction in Patients with Acute Cerebrovascular Diseases

    PubMed Central

    Liesz, Arthur; Rüger, Holger; Purrucker, Jan; Zorn, Markus; Dalpke, Alexander; Möhlenbruch, Markus; Englert, Stefan; Nawroth, Peter P.; Veltkamp, Roland

    2013-01-01

    Background Post-stroke immune depression contributes to the development of infections which are major complications after stroke. Previous experimental and clinical studies suggested that humoral stress mediators induce immune dysfunction. However, prospective clinical studies testing this concept are missing and no data exists for other cerebrovascular diseases including intracerebral hemorrhage (ICH) and TIA. Methods We performed a prospective clinical study investigating 166 patients with TIA, ischemic and hemorrhagic stroke. We measured a broad panel of stress mediators, leukocyte subpopulations, cytokines and infection markers from hospital admission to day 7 and on follow-up after 2–3 months. Multivariate regression analyses detected independent predictors of immune dysfunction and bacterial infections. ROC curves were used to test the diagnostic value of these parameters. Results Only severe ischemic strokes and ICH increased some catecholamine metabolites, ACTH and cortisol levels. Immunodysfunction was eminent already on hospital admission after large brain lesions with lymphocytopenia as a key feature. None of the stress mediators was an independent predictor of lymphocytopenia or infections. However, lymphocytopenia on hospital admission was detected as an independent explanatory variable of later infections. NIHSSS and lymphocytopenia on admission were excellent predictors of infection. Conclusions Our results question the present pathophysiological concept of stress-hormone mediated immunodysfunction after stroke. Early lymphocytopenia was identified as an early independent predictor of post-stroke infections. Absence of lymphocytopenia may serve as a negative predictive marker for stratification for early antibiotic treatment. PMID:24069356

  17. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  18. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  19. From superior adaptation and function to brain dysfunction--the neglect of epigenetic factors.

    PubMed

    Saugstad, Letten F

    2004-01-01

    With optimal pregnancy conditions (natural, enriched diet which includes fish) African (Digo) infants are 3-4 weeks ahead of European/American infants in sensorimotor terms at birth, and during the first year. Infants of semi-aquatic sea-gypsies swim before they walk, and have superior visual acuity compared with us. With adverse pregnancy behaviour (fear of fat, a trend to dieting), neglecting the need for brain fat to secure normal brain development and function, we run a risk of dysfunction--death. Sudden Infant Death Syndrome victims have depressed birth weight, lower levels of marine fat in brainstem than controls, and >80 suffer multiple hypoxic episodes prior to death. Depressed birth weight (more than 10% below mean) is seen in learning and behaviour disorders, and a trend towards weights of less than 3kg is increasing, which supports a rise in antenatal sub optimality. Given marine fat deficiency in pregnancy and infancy, neurons starved for fuel could delay myelination and maturation in the latest developed Frontal Lobes. The phylogenetic oldest Lateral Frontal Lobe System (feed-back mechanism etc.) derived from olfactory bulb-amygdala, which crosses in Anterior Commisure is probably spared, while the Medial Frontal Lobe System derived from Hippocampus-Cingulum and crosses in Corpus Callosum (delayed response task) is most likely affected. The rise in infantile autism (intact vision and hearing) with deficit in delayed response task only, could suggest a deficit in the Medial Frontal Lobe System. The human species is unique; 70% of total energy to the foetus goes to development of the brain, which mainly consists of marine fat. It undergoes pervasive regressive events, before birth, in infancy and at puberty. Minimal retraction of neuronal arborisation is advantageous. Attributable to adverse pregnancy childrearing practice, excessive retraction is likely prenatally and in infancy. Pubertal age affects the fundamental property of nervous tissue

  20. From superior adaptation and function to brain dysfunction--the neglect of epigenetic factors.

    PubMed

    Saugstad, Letten F

    2004-01-01

    With optimal pregnancy conditions (natural, enriched diet which includes fish) African (Digo) infants are 3-4 weeks ahead of European/American infants in sensorimotor terms at birth, and during the first year. Infants of semi-aquatic sea-gypsies swim before they walk, and have superior visual acuity compared with us. With adverse pregnancy behaviour (fear of fat, a trend to dieting), neglecting the need for brain fat to secure normal brain development and function, we run a risk of dysfunction--death. Sudden Infant Death Syndrome victims have depressed birth weight, lower levels of marine fat in brainstem than controls, and >80 suffer multiple hypoxic episodes prior to death. Depressed birth weight (more than 10% below mean) is seen in learning and behaviour disorders, and a trend towards weights of less than 3kg is increasing, which supports a rise in antenatal sub optimality. Given marine fat deficiency in pregnancy and infancy, neurons starved for fuel could delay myelination and maturation in the latest developed Frontal Lobes. The phylogenetic oldest Lateral Frontal Lobe System (feed-back mechanism etc.) derived from olfactory bulb-amygdala, which crosses in Anterior Commisure is probably spared, while the Medial Frontal Lobe System derived from Hippocampus-Cingulum and crosses in Corpus Callosum (delayed response task) is most likely affected. The rise in infantile autism (intact vision and hearing) with deficit in delayed response task only, could suggest a deficit in the Medial Frontal Lobe System. The human species is unique; 70% of total energy to the foetus goes to development of the brain, which mainly consists of marine fat. It undergoes pervasive regressive events, before birth, in infancy and at puberty. Minimal retraction of neuronal arborisation is advantageous. Attributable to adverse pregnancy childrearing practice, excessive retraction is likely prenatally and in infancy. Pubertal age affects the fundamental property of nervous tissue

  1. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome.

    PubMed

    Betjes, Michiel G.H.

    2002-02-01

    Hyponatremia in acute brain disease is a common occurrence, especially after an aneurysmal subarachnoid hemorrhage. Originally, excessive natriuresis, called cerebral salt wasting, and later the syndrome of inappropriate antidiuretic hormone secretion (SIADH), were considered to be the causes of hyponatremia. In recent years, it has become clear that most of these patients are volume-depleted and have a negative sodium balance, consistent with the original description of cerebral salt wasting. Elevated plasma concentrations of atrial or brain natriuretic peptide have been identified as the putative natriuretic factor. Hyponatremia and volume depletion may aggravate neurological symptoms, and timely treatment with adequate replacement of water and NaCl is essential. The use of fludrocortisone to increase sodium reabsorption by the renal tubules may be an alternative approach.

  2. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    PubMed

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  3. Attention deficit/hyperactivity disorder--from brain dysfunctions to behaviour.

    PubMed

    Sagvolden, T; Sergeant, J A

    1998-07-01

    This special issue represents an attempt to answer fundamental brain and behaviour issues in attention-deficit hyperactivity disorder (ADHD). The European network on hyperkinetic disorders (Eunethydis) is trying to develop a novel, testable theory of ADHD, giving an account of its causes, its development from brain dysfunctions to behavioural symptoms and co-morbidity and explaining why no current therapy produces long-lasting improvements. The combined insights of the articles presented here suggest that there is no brain damage in ADHD, but hypo-efficient dopamine systems which give rise to neurochemical imbalances. These cause behavioural problems: deficits in sustained attention, overactivity and impulsiveness. Impulsiveness is increasingly being seen as a key characteristic of the disorder. None of these symptoms are necessarily primary, but may be secondary to an underlying deficit in reinforcement processes seen particularly in a greater than normal sensitivity to variations in the timing of stimulus presentation. Other symptoms can also be seen: altered effects of reinforcers, increased behavioural variance and motor co-ordination problems. Medication produces temporary, plastic changes in cellular components like receptors and transduction mechanisms normalising dopamine functions and behaviour. reserved.

  4. Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase

    PubMed Central

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W.; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B.; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H.; Jaenisch, Rudolf

    2008-01-01

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung−/−) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung−/− embryonic fibroblasts, and conferred death of cultured Ung−/− hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung−/− but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung−/− mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency. PMID:18614692

  5. Matrix metalloproteinase inhibition attenuates right ventricular dysfunction and improves responses to dobutamine during acute pulmonary thromboembolism.

    PubMed

    Neto-Neves, Evandro M; Sousa-Santos, Ozelia; Ferraz, Karina C; Rizzi, Elen; Ceron, Carla S; Romano, Minna M D; Gali, Luis G; Maciel, Benedito C; Schulz, Richard; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-12-01

    Activated matrix metalloproteinases (MMPs) cause cardiomyocyte injury during acute pulmonary thromboembolism (APT). However, the functional consequences of this alteration are not known. We examined whether doxycycline (a MMP inhibitor) improves right ventricle function and the cardiac responses to dobutamine during APT. APT was induced with autologous blood clots (350 mg/kg) in anaesthetized male lambs pre-treated with doxycycline (Doxy, 10 mg/kg/day, intravenously) or saline. Non-embolized control lambs received doxycycline pre-treatment or saline. The responses to intravenous dobutamine (Dob, 1, 5, 10 μg/kg/min.) or saline infusions at 30 and 120 min. after APT induction were evaluated by echocardiography. APT increased mean pulmonary artery pressure and pulmonary vascular resistance index by ~185%. Doxycycline partially prevented APT-induced pulmonary hypertension (P < 0.05). RV diameter increased in the APT group (from 10.7 ± 0.8 to 18.3 ± 1.6 mm, P < 0.05), but not in the Doxy+APT group (from 13.3 ± 0.9 to 14.4 ± 1.0 mm, P > 0.05). RV dysfunction on stress echocardiography was observed in embolized lambs (APT+Dob group) but not in embolized animals pre-treated with doxycycline (Doxy+APT+Dob). APT increased MMP-9 activity, oxidative stress and gelatinolytic activity in the RV. Although doxycycline had no effects on RV MMP-9 activity, it prevented the increases in RV oxidative stress and gelatinolytic activity (P < 0.05). APT increased serum cardiac troponin I concentrations (P < 0.05), doxycycline partially prevented this alteration (P < 0.05). We found evidence to support that doxycycline prevents RV dysfunction and improves the cardiac responses to dobutamine during APT. PMID:24199964

  6. Correlation between brain natriuretic peptide levels and the prognosis of patients with left ventricular diastolic dysfunction

    PubMed Central

    GONG, HUI; WANG, XIN; SHI, YI-JUN; SHANG, WEN-JING; LING, YI; PAN, LI-JIAN; SHI, HAI-MING

    2016-01-01

    The present study aimed to investigate the association between brain natriuretic peptide (BNP) levels and the prognosis of patients with left ventricular (LV) diastolic dysfunction. A total of 708 inpatients with cardiovascular disease (mean age, 66 years; 395 males and 313 females) were grouped according to initial BNP and were followed-up for 20–51 months (average, 30.86 months) until endpoint events occurred. Endpoints were defined as mortality or readmission due to cardiovascular disease, or mortality due to any other reason. A total of 67 and 77 events were reported in the BNP ≤80 pg/ml and BNP >80 pg/ml groups, respectively. The occurrence rate of the endpoint was significantly higher in the BNP >80 pg/ml group, as compared with the BNP ≤80 pg/ml group (26.28 vs. 16.14%; relative risk=1.63). Furthermore, the durations of patient survival were significantly shorter in the BNP >80 pg/ml group, as compared with the BNP ≤80 pg/ml group (P=0.0006), and patient survival decreased as BNP levels rose (P=0.0074). Among the 708 patients, 677 underwent echocardiographic detection at the same time. No significant correlation was detected between BNP levels and survival time in 178 patients with normal LV diastolic function [mitral Doppler flow, early diastolic (E)/late diastolic (A)>1] (P=0.2165); whereas a negative correlation was determined in 499 patients with LVD dysfunction (E/A≤1) (Spearman's rho=−0.0899; P=0.0447). The prognoses of patients with elevated BNP levels were correspondingly worse in the present study and these correlations were demonstrated to be significant in patients with LV diastolic dysfunction. Therefore, BNP levels may be used to predict the prognosis of patients with cardiovascular disease. PMID:27313677

  7. Individual responses to methylphenidate and caffeine in children with minimal brain dysfunction.

    PubMed Central

    Garfinkel, B. D.; Webster, C. D.; Sloman, L.

    1975-01-01

    Eight children with minimal brain dysfunction were studied for their individual responses to two stimulant medications--methylphenidate hydrochloride and caffeine citrate. Four types of behavioural responses were observed in the double-blind crossover experiment: four children responded favourably to both psychostimulants, one responded to methylphenidate alone and two responded to the placebo. The behaviour of one child deteriorated while he was taking methylphenidate and caffeine. In general, methylphenidate was superior to caffeine in diminishing hyperactive and aggressive behaviour. It is apparent that such stimulant medication exerts its therapeutic effects in these two areas primarily and would therefore be useful as one aspect of a complete treatment program for children with this syndrome. PMID:803184

  8. Chronic visual dysfunction after blast-induced mild traumatic brain injury.

    PubMed

    Magone, M Teresa; Kwon, Ellen; Shin, Soo Y

    2014-01-01

    The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI) using a retrospective case series of 31 patients with mbTBI (>12 mo prior) without eye injuries. Time since mbTBI was 50.5 +/- 19.8 mo. Age at the time of injury was 30.0 +/- 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22) experienced loss of consciousness; 68% (n = 15) of patients in this subgroup were dismounted during the blast injury. Overall, 68% (n = 21) of patients had visual complaints. The most common complaints were photophobia (55%) and difficulty with reading (32%). Of all patients, 25% were diagnosed with convergence insufficiency and 23% had accommodative insufficiency. Patients with more than one mbTBI had a higher rate of visual complaints (87.5%). Asymptomatic patients had a significantly longer time (62.5 +/- 6.2 mo) since the mbTBI than symptomatic patients (42.0 +/- 16.4 mo, p < 0.004). Long-term visual dysfunction after mbTBI is common even years after injury despite excellent distance visual acuity and is more frequent if more than one incidence of mbTBI occurred. We recommend obtaining a careful medical history, evaluation of symptoms, and binocular vision assessment during routine eye examinations in this prepresbyopic patient population.

  9. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia.

    PubMed

    Daulatzai, Mak Adam

    2014-04-01

    The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia. PMID:24590859

  10. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats.

    PubMed

    Anbarasi, Kothandapani; Vani, Ganapathy; Devi, Chennam Srinivasulu Shyamala

    2005-01-01

    Chronic exposure to cigarette smoke affects the structure and function of mitochondria, which may account for the pathogenesis of smoking-related diseases. Bacopa monniera Linn., used in traditional Indian medicine for various neurological disorders, was shown to possess mitrochondrial membrane-stabilizing properties in the rat brain during exposure to morphine. We investigated the protective effect of bacoside A, the active principle of Bacopa monniera, against mitochondrial dysfunction in rat brain induced by cigarette smoke. Male Wistar albino rats were exposed to cigarette smoke and administered bacoside A for a period of 12 weeks. The mitochondrial damage in the brain was assessed by examining the levels of lipid peroxides, cholesterol, phospholipid, cholesterol/phospholipid (C/P) ratio, and the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, and cytochrome C oxidase. The oxidative phosphorylation (rate of succinate oxidation, respiratory control ratio and ADP/O ratio, and the levels of ATP) was evaluated for the assessment of mitochondrial functional capacity. We found significantly elevated levels of lipid peroxides, cholesterol, and C/P ratio, and decreased levels of phospholipids and mitochondrial enzymes in the rats exposed to cigarette smoke. Measurement of oxidative phosphorylation revealed a marked depletion in all the variables studied. Administration of bacoside A prevented the structural and functional impairment of mitochondria upon exposure to cigarette smoke. From the results, we suggest that chronic cigarette smoke exposure induces damage to the mitochondria and that bacoside A protects the brain from this damage by maintaining the structural and functional integrity of the mitochondrial membrane.

  11. Dysfunctional involvement of emotion and reward brain regions on social decision making in excess weight adolescents.

    PubMed

    Verdejo-García, Antonio; Verdejo-Román, Juan; Rio-Valle, Jacqueline S; Lacomba, Juan A; Lagos, Francisco M; Soriano-Mas, Carles

    2015-01-01

    Obese adolescents suffer negative social experiences, but no studies have examined whether obesity is associated with dysfunction of the social brain or whether social brain abnormalities relate to disadvantageous traits and social decisions. We aimed at mapping functional activation differences in the brain circuitry of social decision making in adolescents with excess versus normal weight, and at examining whether these separate patterns correlate with reward/punishment sensitivity, disordered eating features, and behavioral decisions. In this fMRI study, 80 adolescents aged 12 to 18 years old were classified in two groups based on age adjusted body mass index (BMI) percentiles: normal weight (n = 44, BMI percentiles 5th-84th) and excess weight (n = 36, BMI percentile ≥ 85th). Participants were scanned while performing a social decision-making task (ultimatum game) in which they chose to "accept" or "reject" offers to split monetary stakes made by another peer. Offers varied in fairness (Fair vs. Unfair) but in all cases "accepting" meant both players win the money, whereas "rejecting" meant both lose it. We showed that adolescents with excess weight compared to controls display significantly decreased activation of anterior insula, anterior cingulate, and midbrain during decisions about Unfair versus Fair offers. Moreover, excess weight subjects show lower sensitivity to reward and more maturity fears, which correlate with insula activation. Indeed, blunted insula activation accounted for the relationship between maturity fears and acceptance of unfair offers. Excess weight adolescents have diminished activation of brain regions essential for affective tracking of social decision making, which accounts for the association between maturity fears and social decisions. PMID:25168709

  12. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection

    PubMed Central

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  13. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.

  14. Arginase 1: An Unexpected Mediator of Pulmonary Capillary Barrier Dysfunction in Models of Acute Lung Injury

    PubMed Central

    Lucas, Rudolf; Czikora, Istvàn; Sridhar, Supriya; Zemskov, Evgeny A.; Oseghale, Aluya; Circo, Sebastian; Cederbaum, Stephen D.; Chakraborty, Trinad; Fulton, David J.; Caldwell, Robert W.; Romero, Maritza J.

    2013-01-01

    The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction. PMID:23966993

  15. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  16. Minimal Brain Dysfunction in Children: Educational, Medical, and Health Related Services (Phase Two of a Three-Phase Project).

    ERIC Educational Resources Information Center

    Easter Seal Research Foundation, Chicago, IL.

    Task Force 2, created by concerned voluntary and government agencies, outlines a program and resources to be developed to provide for the needs of children with minimal brain dysfunction (MBD), or learning disabilities. Task Force 1 reported on terminology and identification and Task Force 3 will deal with research in MBD, in other phases of the…

  17. Improvement of vestibular compensation by Levo-sulpiride in acute unilateral labyrinthine dysfunction.

    PubMed

    Zanetti, D; Civiero, N; Balzanelli, C; Tonini, M; Antonelli, A R

    2004-04-01

    L-sulpiride is the levorotatory enantiomer of sulpiride, a neuroleptic of the family of benzamide derivatives; it has a characteristic antagonist effect on central DA2 dopaminergic receptors and dopamine DA1 "autoreceptors". Its efficacy in the symptomatic control of acute vertigo spells has been recognized, apart from its well-known antiemetic, antidyspeptic and anti-depressant properties, at high dosages. To establish objective parameters of the results of its clinical application, a randomized prospective study was started comparing the effects of the drug in a group of 87 patients with vertigo of peripheral origin, with those in a control group treated with other vestibular suppressants. The drug was administered via the intravenous route, 25 mg t.i.d., for the first 3 days, then by oral administration, with the same schedule and dosage, for a further 7 days. After clinical evaluation of vestibular signs and symptoms, electronystagmographic recordings of rotatory tests were obtained, at admission and were then controlled after 6 months. A subjective Visual Analogue Scale was also delivered daily to the patients in order to monitor symptomatic improvements. When compared to conventional treatments, L-sulpiride appeared to induce a statistically significant faster recovery in unilateral vestibular lesions. An unexpected favourable outcome of treatment was the facilitation of spontaneous vestibular compensation, in terms of lesser residual labyrinthine dysfunction and reduction of recurrent vertigo attacks during the 6 months follow-up. The mechanisms of action of the drug and its interaction with the vestibular system are discussed.

  18. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

    PubMed

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S; Huguenard, John R; Friedman, Alon; Kaufer, Daniela

    2015-06-01

    Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE.

  19. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

    PubMed

    Weissberg, Itai; Wood, Lydia; Kamintsky, Lyn; Vazquez, Oscar; Milikovsky, Dan Z; Alexander, Allyson; Oppenheim, Hannah; Ardizzone, Carolyn; Becker, Albert; Frigerio, Federica; Vezzani, Annamaria; Buckwalter, Marion S; Huguenard, John R; Friedman, Alon; Kaufer, Daniela

    2015-06-01

    Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE. PMID:25836421

  20. Two-dimensional speckle strain imaging: in the management of paraganglioma, acute junctional tachycardia, and myocardial dysfunction in a child.

    PubMed

    Pignatelli, Ricardo; Law, Mark A; Martinez, Hugo; Altman, Carolyn; Ayres, Nancy; Jefferies, John L; Ganame, Javier

    2012-01-01

    Two-dimensional speckle-tracking strain imaging (speckle strain imaging) is useful for evaluating left ventricular myocardial function in patients with ischemic heart disease and cardiomyopathy, including hypertrophic and dilated phenotypes. The usefulness of speckle strain imaging in patients with pheochromocytoma who are undergoing adrenal surgery has been described, but we found no reports of the use of this method to evaluate ventricular dysfunction longitudinally in children. Herein, we describe the case of a 10-year-old girl with a paraganglioma, acute junctional tachycardia, and myocardial dysfunction. After control of the tachycardia and partial resection of the tumor, speckle strain imaging enabled clinical management that led to substantial improvement in the patient's initially diffuse myocardial dysfunction. Because conventional echocardiographic methods alone may be inadequate to guide the management of pediatric patients with partially resected neuroendocrine tumors, we recommend speckle strain imaging as an additional noninvasive option for treatment guidance and monitoring of cardiac tissue response.

  1. Induction of acute phase gene expression by brain irradiation

    SciTech Connect

    Hong, Ji-Hong |; Sun, Ji-Rong; Withers, H.R.

    1995-10-15

    To investigate the in vivo acute phase molecular response of the brain to ionizing radiation, C3Hf/Sed/Kam mice were given midbrain or whole-body irradiation. Cerebral expression of interleukins (IL-1{alpha}, IL-1{beta}, IL-2, IL-3, IL-4, IL-5, IL-6), interferon (IFN-{gamma}), tumor necrosis factors (TNF-{alpha} and TNF-{beta}), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthetase (iNOS), von Willebrand factor (vWF), {alpha}1-antichymotrypsin (EB22/5.3), and glial fibrillary acidic protein (GFAP) was measured at various times after various radiation doses by ribonuclease (RNase) protection assay. The effects of dexamethasone or pentoxifylline treatment of mice on radiation-induced gene expression were also examined. Levels of TNF-{alpha}, IL-1{beta}, ICAM-1, EB22/5.3, and to a lesser extent IL-1{alpha} and GFAP, messenger RNA were increased in the brain after irradiation, whether the dose was delivered to the whole body or only to the midbrain. Responses were radiation dose dependent, but were not found below 7 Gy; the exception being ICAM-1, which was increased by doses as low as 2 Gy. Most responses were rapid, peaking within 4-8 h, but antichymotrypsin and GFAP responses were delayed and still elevated at 24 h, by which time the others had subsided. Pretreatment of mice with dexamethasone or pentoxifylline suppressed radiation-induced gene expression, either partially or completely. Dexamethasone was more inhibitory than pentoxifylline at the doses chosen. The initial response of the brain to irradiation involves expression of inflammatory gene products, which are probably responsible for clinically observed early symptoms of brain radiotherapy. This mechanism explains the beneficial effects of the clinical use of steroids in such circumstances. 64 refs., 4 figs.

  2. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction

    PubMed Central

    Petrov, A. M.; Kasimov, M. R.; Zefirov, A. L.

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body’s total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington’s, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer’s disease, Parkinson’s disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  3. Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure.

    PubMed

    Kamboj, Sukhdev Singh; Kumar, Vikas; Kamboj, Amit; Sandhir, Rajat

    2008-11-01

    Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.

  4. Cerebral Visual Impairment: which perceptive visual dysfunctions can be expected in children with brain damage? A systematic review.

    PubMed

    Boot, F H; Pel, J J M; van der Steen, J; Evenhuis, H M

    2010-01-01

    The current definition of Cerebral Visual Impairment (CVI) includes all visual dysfunctions caused by damage to, or malfunctioning of, the retrochiasmatic visual pathways in the absence of damage to the anterior visual pathways or any major ocular disease. CVI is diagnosed by exclusion and the existence of many different causes and symptoms make it an overall non-categorized group. To date, no discrimination is made within CVI based on types of perceptive visual dysfunctions. The aim of this review was to outline which perceptive visual dysfunctions are to be expected based on a number of etiologies of brain damage and brain development disorders with their onset in the pre-, peri- or postnatal period. For each period two etiologies were chosen as the main characteristic brain damage. For each etiology a main search was performed. The selection of the articles was based on the following criteria: age, etiology, imaging, central pathology and perceptive visual function test. The perceptive visual functions included for this review were object recognition, face recognition, visual memory, orientation, visual spatial perception, motion perception and simultaneous perception. Our search resulted in 11 key articles. A diversity of research history is performed for the selected etiologies and their relation to perceptive visual dysfunctions. Periventricular Leukomalacia (PVL) was most studied, whereas the main tested perceptive visual function was visual spatial perception. As a conclusion, the present status of research in the field of CVI does not allow to correlate between etiology, location and perceptive visual dysfunctions in children with brain damage or a brain development disorder. A limiting factor could be the small number of objective tests performed in children experiencing problems in visual processing. Based on recent insights in central visual information processing, we recommend an alternative approach for the definition of CVI that is based on

  5. SOD1 overexpression prevents acute hyperglycemia-induced cerebral myogenic dysfunction: relevance to contralateral hemisphere and stroke outcomes

    PubMed Central

    Coucha, Maha; Li, Weiguo; Hafez, Sherif; Abdelsaid, Mohammed; Johnson, Maribeth H.; Fagan, Susan C.

    2014-01-01

    Admission hyperglycemia (HG) amplifies vascular injury and neurological deficits in acute ischemic stroke, but the mechanisms remain controversial. We recently reported that ischemia-reperfusion (I/R) injury impairs the myogenic response in both hemispheres via increased nitration. However, whether HG amplifies contralateral myogenic dysfunction and whether loss of tone in the contralateral hemisphere contributes to stroke outcomes remain to be determined. Our hypothesis was that contralateral myogenic dysfunction worsens stroke outcomes after acute hyperglycemic stroke in an oxidative stress-dependent manner. Male wild-type or SOD1 transgenic rats were injected with saline or 40% glucose solution 10 min before surgery and then subjected to 30 min of ischemia/45 min or 24 h of reperfusion. In another set of animals (n = 5), SOD1 was overexpressed only in the contralateral hemisphere by stereotaxic adenovirus injection 2–3 wk before I/R. Myogenic tone and neurovascular outcomes were determined. HG exacerbated myogenic dysfunction in contralateral side only, which was associated with infarct size expansion, increased edema, and more pronounced neurological deficit. Global and selective SOD1 overexpression restored myogenic reactivity in ipsilateral and contralateral sides, respectively, and enhanced neurovascular outcomes. In conclusion, our results show that SOD1 overexpression nullified the detrimental effects of HG on myogenic tone and stroke outcomes and that the contralateral hemisphere may be a novel target for the management of acute hyperglycemic stroke. PMID:25552308

  6. Combined venoarterial extracorporeal membrane oxygenation and transcatheter aortic valve implantation for the treatment of acute aortic prosthesis dysfunction in a high-risk patient.

    PubMed

    Pergolini, Amedeo; Zampi, Giordano; Tinti, Maria Denitza; Polizzi, Vincenzo; Pino, Paolo Giuseppe; Pontillo, Daniele; Musumeci, Francesco; Luzi, Giampaolo

    2016-01-01

    We describe the case of a patient with acute bioprosthesis dysfunction in cardiogenic shock, in whom hemodynamic support was provided by venoarterial extracorporeal membrane oxygenation, and successfully treated by transcatheter aortic valve implantation.

  7. Combined venoarterial extracorporeal membrane oxygenation and transcatheter aortic valve implantation for the treatment of acute aortic prosthesis dysfunction in a high-risk patient.

    PubMed

    Pergolini, Amedeo; Zampi, Giordano; Tinti, Maria Denitza; Polizzi, Vincenzo; Pino, Paolo Giuseppe; Pontillo, Daniele; Musumeci, Francesco; Luzi, Giampaolo

    2016-01-01

    We describe the case of a patient with acute bioprosthesis dysfunction in cardiogenic shock, in whom hemodynamic support was provided by venoarterial extracorporeal membrane oxygenation, and successfully treated by transcatheter aortic valve implantation. PMID:27402446

  8. Brain metabolic dysfunction at the core of Alzheimer’s disease

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming

    2015-01-01

    Growing evidence supports the concept that Alzheimer’s disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics. PMID:24380887

  9. Waiver of consent in studies of acute brain injury.

    PubMed

    Clifton, Guy L; Knudson, Paula; McDonald, Marilyn

    2002-10-01

    A multicenter trial of hypothermia in patients with acute brain injury, designed to accrue 140 patients per year and randomizing in less than 6 h from injury, enrolled 392 patients. The design was to achieve 33 degrees C within 8 h after injury. For the first 9 months of the trial, the only consent mechanism permitted by federal regulations was prospective, informed consent. In the subsequent 33 months, after a change in federal regulations, waiver of consent could be used when family could not be located. Waiver of consent was used in 62% of patients enrolled. In the first 9 months of the trial, accrual was 65 patients. In the subsequent 3 years, an average yearly accrual was 127 patients. In the first 9 months, time from injury to randomization was 4.5 +/- 1.2 h; time to achievement of target temperature was 11.7 +/- 2.6 h. In years when waiver of consent was permitted, randomization time was 4.1 +/- 1.1 h, and time to target temperature was 7.9 +/- 2.7 h. For all years of the study, waiver of consent was used for 53% of minorities, 47% of unskilled workers, 33% of nonminorities, and 29% of skilled or professional workers. Minorities were underrepresented by 30% in the first 9 months of the study. We conclude that it is impracticable and unjust to perform studies of acute brain injury without use of waiver of consent when the treatment window is less than 6 h. PMID:12427322

  10. Alcohol-induced One-carbon Metabolism Impairment Promotes Dysfunction of DNA Base Excision Repair in Adult Brain*

    PubMed Central

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G.; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J.; Bergeson, Susan E.; Henderson, George I.; Kruman, Inna I.

    2012-01-01

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr+/− mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain. PMID:23118224

  11. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    NASA Astrophysics Data System (ADS)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  12. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    PubMed Central

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries. PMID:27351915

  13. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries.

    PubMed

    Mann, Aman P; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J; Ruoslahti, Erkki

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries. PMID:27351915

  14. Mitochondrial dysfunction in aging rat brain regions upon chlorpyrifos toxicity and cold stress: an interactive study.

    PubMed

    Basha, P Mahaboob; Poojary, Annappa

    2014-07-01

    Mitochondrial dysfunction and consequent energy depletion are the major causes of oxidative stress resulting to bring alterations in the ionic homeostasis causing loss of cellular integrity. Our previous studies have shown the age-associated interactive effects in rat central nervous system (CNS) upon co-exposure to chlorpyrifos (CPF) and cold stress leading to macromolecular oxidative damage. The present study elucidates a possible mechanism by which CPF and cold stress interaction cause(s) mitochondrial dysfunction in an age-related manner. In this study, the activity levels of Krebs cycle enzymes and electron transport chain (ETC) protein complexes were assessed in the isolated fraction of mitochondria. CPF and cold stress (15 and 20 °C) exposure either individually or in combination decreased the activity level of Krebs cycle enzymes and ETC protein complexes in discrete regions of rat CNS. The findings confirm that cold stress produces significant synergistic effect in CPF intoxicated aging rats. The synergism between CPF and cold stress at 15 °C caused a higher depletion of respiratory enzymes in comparison with CPF and cold stress alone and together at 20 °C indicating the extent of deleterious functional alterations in discrete regions of brain and spinal cord (SC) which may result in neurodegeneration and loss in neuronal metabolic control. Hence, co-exposure of CPF and cold stress is more dangerous than exposure of either alone. Among the discrete regions studied, the cerebellum and medulla oblongata appears to be the most susceptible regions when compared to cortex and SC. Furthermore, the study reveals a gradual decrease in sensitivity to CPF toxicity as the rat matures.

  15. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation

    PubMed Central

    Kinghorn, Kerri J.; Castillo-Quan, Jorge Iván

    2016-01-01

    ABSTRACT The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H. PMID:27141409

  16. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation.

    PubMed

    Kinghorn, Kerri J; Castillo-Quan, Jorge Iván

    2016-01-01

    The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H. PMID:27141409

  17. Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: Possible link to blood–brain barrier dysfunction

    PubMed Central

    Winkler, Maren K. L.; Chassidim, Yoash; Lublinsky, Svetlana; Revankar, Gajanan S.; Major, Sebastian; Kang, Eun-Jeung; Oliveira-Ferreira, Ana I.; Woitzik, Johannes; Sandow, Nora; Scheel, Michael; Friedman, Alon; Dreier, Jens P.

    2013-01-01

    SUMMARY Spreading depolarization describes a sustained neuronal and astroglial depolarization with abrupt ion translocation between intraneuronal and extracellular space leading to a cytotoxic edema and silencing of spontaneous activity. Spreading depolarizations occur abundantly in acutely injured human brain and are assumed to facilitate neuronal death through toxic effects, increased metabolic demand, and inverse neurovascular coupling. Inverse coupling describes severe hypoperfusion in response to spreading depolarization. Ictal epileptic events are less frequent than spreading depolarizations in acutely injured human brain but may also contribute to lesion progression through increased metabolic demand. Whether abnormal neurovascular coupling can occur with ictal epileptic events is unknown. Herein we describe a patient with aneurysmal subarachnoid hemorrhage in whom spreading depolarizations and ictal epileptic events were measured using subdural opto-electrodes for direct current electrocorticography and regional cerebral blood flow recordings with laser-Doppler flowmetry. Simultaneously, changes in tissue partial pressure of oxygen were recorded with an intraparenchymal oxygen sensor. Isolated spreading depolarizations and clusters of recurrent spreading depolarizations with persistent depression of spontaneous activity were recorded over several days followed by a status epilepticus. Both spreading depolarizations and ictal epileptic events where accompanied by hyperemic blood flow responses at one optode but mildly hypoemic blood flow responses at another. Of note, quantitative analysis of Gadolinium-diethylene-triamine-pentaacetic acid (DTPA)–enhanced magnetic resonance imaging detected impaired blood–brain barrier integrity in the region where the optode had recorded the mildly hypoemic flow responses. The data suggest that abnormal flow responses to spreading depolarizations and ictal epileptic events, respectively, may be associated with blood–brain

  18. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury

    PubMed Central

    Szczupak, Mikhaylo; Kiderman, Alexander; Crawford, James; Murphy, Sara; Marshall, Kathryn; Pelusso, Constanza

    2016-01-01

    Mild Traumatic Brain Injury (mTBI) is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications. PMID:26727256

  19. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia.

    PubMed

    Diaz, Ramiro; Miguel, Patrícia Maidana; Deniz, Bruna Ferrary; Confortim, Heloísa Deola; Barbosa, Sílvia; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice; Pereira, Lenir Orlandi

    2016-10-01

    Environmental enrichment (EE) is considered an efficient neuroprotector against neonatal hypoxia-ischemia (HI). Nevertheless, the mechanisms involved are not yet clear. In this context, the aim of this study was to investigate the effects of neonatal HI and environmental stimulation in the hippocampus of rats at 3 different time points (PND 8, 22 and 60), evaluating some aspects of BBB structure and function. Seven-day-old Wistar rats were divided into four groups: a control group maintained in a standard environment (CTSE), a control group maintained in an enrichment environment (CTEE), an HI group maintained in a standard environment (HISE) and an HI group maintained in an enrichment environment (HIEE). At the 7th postnatal day (PND), rats were submitted to the Levine-Rice model of neonatal HI. This method consists of permanent occlusion of the right common carotid artery with subsequent exposure to hypoxia. Rats from CTEE and HIEE were stimulated with environmental enrichment. The EE protocol started 24h after HI, in which pup rats with their dams were stimulated in a maintained EE (PND 8-22). Subsequently, animals were submitted to daily EE (1h/day, PND 23-60). The expression of some proteins involved in BBB structure (β-catenin, occludin, connexin-43, aquaporin-4, glut-1 and GFAP) were quantified by western blotting in the hippocampi of rats in three periods, at PND 8, 22 and 60. The BBB permeability and integrity was assessed by Evans blue staining and the immunohistochemistry for GFAP in the CA1 region of the hippocampus were also performed. The results showed an HI-induced decreased occludin expression at PND 22 and low levels of occludin, β-catenin and GFAP at PND 60 in the hippocampus of the hypoxic-ischemic rats. Interestingly, in young and adult rats, EE reversed these effects. Evans blue extravasation into the brain parenchyma confirmed the BBB dysfunction brought on by HI. No differences were observed at PND 8, probably due to the immaturity of the

  20. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia.

    PubMed

    Diaz, Ramiro; Miguel, Patrícia Maidana; Deniz, Bruna Ferrary; Confortim, Heloísa Deola; Barbosa, Sílvia; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice; Pereira, Lenir Orlandi

    2016-10-01

    Environmental enrichment (EE) is considered an efficient neuroprotector against neonatal hypoxia-ischemia (HI). Nevertheless, the mechanisms involved are not yet clear. In this context, the aim of this study was to investigate the effects of neonatal HI and environmental stimulation in the hippocampus of rats at 3 different time points (PND 8, 22 and 60), evaluating some aspects of BBB structure and function. Seven-day-old Wistar rats were divided into four groups: a control group maintained in a standard environment (CTSE), a control group maintained in an enrichment environment (CTEE), an HI group maintained in a standard environment (HISE) and an HI group maintained in an enrichment environment (HIEE). At the 7th postnatal day (PND), rats were submitted to the Levine-Rice model of neonatal HI. This method consists of permanent occlusion of the right common carotid artery with subsequent exposure to hypoxia. Rats from CTEE and HIEE were stimulated with environmental enrichment. The EE protocol started 24h after HI, in which pup rats with their dams were stimulated in a maintained EE (PND 8-22). Subsequently, animals were submitted to daily EE (1h/day, PND 23-60). The expression of some proteins involved in BBB structure (β-catenin, occludin, connexin-43, aquaporin-4, glut-1 and GFAP) were quantified by western blotting in the hippocampi of rats in three periods, at PND 8, 22 and 60. The BBB permeability and integrity was assessed by Evans blue staining and the immunohistochemistry for GFAP in the CA1 region of the hippocampus were also performed. The results showed an HI-induced decreased occludin expression at PND 22 and low levels of occludin, β-catenin and GFAP at PND 60 in the hippocampus of the hypoxic-ischemic rats. Interestingly, in young and adult rats, EE reversed these effects. Evans blue extravasation into the brain parenchyma confirmed the BBB dysfunction brought on by HI. No differences were observed at PND 8, probably due to the immaturity of the

  1. Acute Administration of Branched-Chain Amino Acids Increases the Pro-BDNF/Total-BDNF Ratio in the Rat Brain.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Furlanetto, Camila B; Kist, Luiza W; Pereira, Talita C B; Schuck, Patrícia F; Ferreira, Gustavo C; Pasquali, Matheus A B; Gelain, Daniel P; Moreira, José Cláudio F; Bogo, Maurício R; Streck, Emilio L

    2015-05-01

    Maple syrup urine disease (MSUD) is caused by an inborn error in metabolism resulting from a deficiency in the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. High levels of BCAAs are associated with neurological dysfunction and the role of pro- and mature brain-derived neurotrophic factor (BDNF) in the neurological dysfunction of MSUD is still unclear. Thus, in the present study we investigated the effect of an acute BCAA pool administration on BDNF levels and on the pro-BDNF cleavage-related proteins S100A10 and tissue plasminogen activator (tPA) in rat brains. Our results demonstrated that acute Hyper-BCAA (H-BCAA) exposure during the early postnatal period increases pro-BDNF and total-BDNF levels in the hippocampus and striatum. Moreover, tPA levels were significantly decreased, without modifications in the tPA transcript levels in the hippocampus and striatum. On the other hand, the S100A10 mRNA and S100A10 protein levels were not changed in the hippocampus and striatum. In the 30-day-old rats, we observed increased pro-BDNF, total-BDNF and tPA levels only in the striatum, whereas the tPA and S100A10 mRNA expression and the immunocontent of S100A10 were not altered. In conclusion, we demonstrated that acute H-BCAA administration increases the pro-BDNF/total-BDNF ratio and decreases the tPA levels in animals, suggesting that the BCAA effect may depend, at least in part, on changes in BDNF post-translational processing. PMID:25681161

  2. Brain ultrasonographic findings of late-onset circulatory dysfunction due to adrenal insufficiency in preterm infants

    PubMed Central

    2016-01-01

    Purpose: The aim of this study was to characterize the brain ultrasonographic findings of late-onset circulatory dysfunction (LCD) due to adrenal insufficiency (AI) in preterm infants. Methods: Among the 257 preterm infants born at <33 weeks of gestation between December 2009 and February 2014 at our institution, 35 preterm infants were diagnosed with AI. Brain ultrasonographic findings were retrospectively analyzed before and after LCD in 14 preterm infants, after exclusion of the other 21 infants with AI due to the following causes: death (n=2), early AI (n=5), sepsis (n=1), and patent ductus arteriosus (n=13). Results: Fourteen of 257 infants (5.4%) were diagnosed with LCD due to AI. The age at LCD was a median of 18.5 days (range, 9 to 32 days). The last ultrasonographic findings before LCD occurred showed grade 1 periventricular echogenicity (PVE) in all 14 patients and germinal matrix hemorrhage (GMH) with focal cystic change in one patient. Ultrasonographic findings after LCD demonstrated no significant change in grade 1 PVE and no new lesions in eight (57%), grade 1 PVE with newly appearing GMH in three (21%), and increased PVE in three (21%) infants. Five infants (36%) showed new development (n=4) or increased size (n=1) of GMH. Two of three infants (14%) with increased PVE developed cystic periventricular leukomalacia (PVL) and rapid progression to macrocystic encephalomalacia. Conclusion: LCD due to AI may be associated with the late development of GMH, increased PVE after LCD, and cystic PVL with rapid progression to macrocystic encephalomalacia. PMID:27156563

  3. Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: two case reports

    NASA Astrophysics Data System (ADS)

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2010-02-01

    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

  4. Exploring the brain's structural connectome: a quantitative stroke lesion-dysfunction mapping study

    PubMed Central

    Kuceyeski, Amy; Navi, Babak B.; Kamel, Hooman; Relkin, Norman; Villanueva, Mark; Raj, Ashish; Toglia, Joan; O'Dell, Michael; Iadecola, Costantino

    2015-01-01

    The aim of this work was to quantitatively model cross-sectional relationships between structural connectome disruptions caused by cerebral infarction and measures of clinical performance. Imaging biomarkers of 41 ischemic stroke patients (72.0±12.0 years, 20 female) were related to their baseline performance in 18 cognitive, physical and daily life activity assessments. Individual estimates of structural connectivity disruption in gray matter regions were computed using the Change in Connectivity (ChaCo) score. ChaCo scores were utilized because they can be calculated using routinely collected clinical MRIs. Partial Least Squares Regression (PLSR) was used to predict various acute impairment and activity measures from ChaCo scores and patient demographics. Statistical methods of cross-validation, bootstrapping and multiple comparisons correction were implemented to minimize over-fitting and Type I errors. Multiple linear regression models based on lesion volume and lateralization information were constructed for comparison. All models based on connectivity disruption had lower Akaike Information Criterion and almost all had better goodness-of-fit values (R2:0.26-0.92) than models based on lesion characteristics (R2:0.06-0.50). Confidence intervals of PLSR coefficients identified brain regions important in predicting each clinical assessment. Appropriate mapping of eloquent functions, i.e. language and motor, and replication of results across pathologies provided validation of this method. Models of complex functions provided new insights into brain-behavior relationships. In addition to the potential applications in prognostication and rehabilitation development, this quantitative approach provides insight into the structural networks underlying complex functions like activities of daily living and cognition. Quantitative analysis of big data will be invaluable in understanding complex brain-behavior relationships. PMID:25655204

  5. Serum glucose level at hospital admission correlates with left ventricular systolic dysfunction in nondiabetic, acute coronary patients: the Hellenic Heart Failure Study.

    PubMed

    Chrysohoou, Christina; Pitsavos, Christos; Aggelopoulos, Panagiotis; Skoumas, John; Tsiamis, Eleftherios; Panagiotakos, Demosthenes B; Stefanadis, Christodoulos

    2010-05-01

    The purpose of this work was to evaluate the relation between serum glucose levels at hospital admission and left ventricular systolic function in nondiabetic patients with an acute coronary syndrome (ACS). Of the 1000 ACS patients who were consecutively enrolled during 2007-2008, 583 (63 +/- 13 years, 20% females) nondiabetic patients were studied in this work. Of these, 254 presented left ventricular systolic dysfunction (ejection fraction <40%). Biochemical measurements and detailed medical information were recorded in all participants. Patients having glucose levels at hospital admission in the highest tertile (>155 mg/dl) had lower left ventricular ejection fraction (40% vs 45%, P = 0.003), were older (66 +/- 11 vs 61 +/- 13, P = 0.004) and less physically active (49% vs 63%, P = 0.02), had higher troponin (14.7 +/- 39.7 vs 5.6 +/- 13.5, P = 0.03), higher brain natriuretic peptide (510.39 +/- 932.33 vs 213.4 +/- 301.14, P = 0.008), higher C-RP (42.26 +/- 55.26 vs 26.46 +/- 38.18, P = 0.04), lower creatinine clearance levels (68 +/- 33 vs.81 +/- 31, P = 0.009), higher white blood cell count (13 416 +/- 16 420 vs 9310 +/- 3020, P = 0.001), and lower body mass index (26.8 +/- 4 vs 27.2 +/- 4.4, P = 0.07), compared to those in the lowest tertile (<114 mg/dl). The multiadjusted logistic regression analysis revealed that a 10 mg/dl difference in glucose levels was independently associated with 8% (95% confidence interval 2%-14%) higher likelihood of left ventricular systolic dysfunction. Low glucose concentrations at hospital admission in nondiabetic post-ACS patients is a predictor for the appearance of left ventricular dysfunction, and could be a target marker for risk stratification.

  6. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction?

    PubMed

    McCann, Joyce C; Ames, Bruce N

    2008-04-01

    Vitamin D insufficiency is common in the United States; the elderly and African-Americans are at particularly high risk of deficiency. This review, written for a broad scientific readership, presents a critical overview of scientific evidence relevant to a possible causal relationship between vitamin D deficiency and adverse cognitive or behavioral effects. Topics discussed are 1) biological functions of vitamin D relevant to cognition and behavior; 2) studies in humans and rodents that directly examine effects of vitamin D inadequacy on cognition or behavior; and 3) immunomodulatory activity of vitamin D relative to the proinflammatory cytokine theory of cognitive/behavioral dysfunction. We conclude there is ample biological evidence to suggest an important role for vitamin D in brain development and function. However, direct effects of vitamin D inadequacy on cognition/behavior in human or rodent systems appear to be subtle, and in our opinion, the current experimental evidence base does not yet fully satisfy causal criteria. Possible explanations for the apparent inconsistency between results of biological and cognitive/behavioral experiments, as well as suggested areas for further research are discussed. Despite residual uncertainty, recommendations for vitamin D supplementation of at-risk groups, including nursing infants, the elderly, and African-Americans appear warranted to ensure adequacy. PMID:18056830

  7. Electroencephalographic Data Analysis With Visibility Graph Technique for Quantitative Assessment of Brain Dysfunction.

    PubMed

    Bhaduri, Susmita; Ghosh, Dipak

    2015-07-01

    Usual techniques for electroencephalographic (EEG) data analysis lack some of the important properties essential for quantitative assessment of the progress of the dysfunction of the human brain. EEG data are essentially nonlinear and this nonlinear time series has been identified as multi-fractal in nature. We need rigorous techniques for such analysis. In this article, we present the visibility graph as the latest, rigorous technique that can assess the degree of multifractality accurately and reliably. Moreover, it has also been found that this technique can give reliable results with test data of comparatively short length. In this work, the visibility graph algorithm has been used for mapping a time series-EEG signals-to a graph to study complexity and fractality of the time series through investigation of its complexity. The power of scale-freeness of visibility graph has been used as an effective method for measuring fractality in the EEG signal. The scale-freeness of the visibility graph has also been observed after averaging the statistically independent samples of the signal. Scale-freeness of the visibility graph has been calculated for 5 sets of EEG data patterns varying from normal eye closed to epileptic. The change in the values is analyzed further, and it has been observed that it reduces uniformly from normal eye closed to epileptic.

  8. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction?

    PubMed

    McCann, Joyce C; Ames, Bruce N

    2008-04-01

    Vitamin D insufficiency is common in the United States; the elderly and African-Americans are at particularly high risk of deficiency. This review, written for a broad scientific readership, presents a critical overview of scientific evidence relevant to a possible causal relationship between vitamin D deficiency and adverse cognitive or behavioral effects. Topics discussed are 1) biological functions of vitamin D relevant to cognition and behavior; 2) studies in humans and rodents that directly examine effects of vitamin D inadequacy on cognition or behavior; and 3) immunomodulatory activity of vitamin D relative to the proinflammatory cytokine theory of cognitive/behavioral dysfunction. We conclude there is ample biological evidence to suggest an important role for vitamin D in brain development and function. However, direct effects of vitamin D inadequacy on cognition/behavior in human or rodent systems appear to be subtle, and in our opinion, the current experimental evidence base does not yet fully satisfy causal criteria. Possible explanations for the apparent inconsistency between results of biological and cognitive/behavioral experiments, as well as suggested areas for further research are discussed. Despite residual uncertainty, recommendations for vitamin D supplementation of at-risk groups, including nursing infants, the elderly, and African-Americans appear warranted to ensure adequacy.

  9. Exercise prevents Western diet-associated erectile dysfunction and coronary artery endothelial dysfunction: response to acute apocynin and sepiapterin treatment.

    PubMed

    La Favor, Justin D; Anderson, Ethan J; Dawkins, Jillian T; Hickner, Robert C; Wingard, Christopher J

    2013-08-15

    The aim of this study was to investigate aerobic exercise training as a means to prevent erectile dysfunction (ED) and coronary artery disease (CAD) development associated with inactivity and diet-induced obesity. Male Sprague-Dawley rats were fed a Western diet (WD) or a control diet (CD) for 12 wk. Subgroups within each diet remained sedentary (Sed) or participated in aerobic interval treadmill running throughout the dietary intervention. Erectile function was evaluated under anesthesia by measuring the mean arterial pressure and intracavernosal pressure in response to electrical field stimulation of the cavernosal nerve, in the absence or presence of either apocynin, an NADPH oxidase inhibitor, or sepiapterin, a tetrahydrobiopterin precursor. Coronary artery endothelial function (CAEF) was evaluated ex vivo with cumulative doses of ACh applied to preconstricted segments of the left anterior descending coronary artery. CAEF was assessed in the absence or presence of apocynin or sepiapterin. Erectile function (P < 0.0001) and CAEF (P < 0.001) were attenuated in WD-Sed. Exercise preserved erectile function (P < 0.0001) and CAEF (P < 0.05) within the WD. Erectile function (P < 0.01) and CAEF (P < 0.05) were augmented by apocynin only in WD-Sed, while sepiapterin (P < 0.05) only augmented erectile function in WD-Sed. These data demonstrate that a chronic WD induces impairment in erectile function and CAEF that are commonly partially reversible by apocynin, whereas sepiapterin treatment exerted differential functional effects between the two vascular beds. Furthermore, exercise training may be a practical means of preventing diet-induced ED and CAD development.

  10. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.

    PubMed

    Daulatzai, Mak Adam

    2015-01-01

    The non-celiac gluten sensitivity (NCGS) is a chronic functional gastrointestinal disorder which is very common world wide. The human gut harbors microbiota which has a wide variety of microbial organisms; they are mainly symbiotic and important for well being. However, "dysbiosis" - i.e. an alteration in normal commensal gut microbiome with an increase in pathogenic microbes, impacts homeostasis/health. Dysbiosis in NCGS causes gut inflammation, diarrhea, constipation, visceral hypersensitivity, abdominal pain, dysfunctional metabolic state, and peripheral immune and neuro-immune communication. Thus, immune-mediated gut and extra-gut dysfunctions, due to gluten sensitivity with comorbid diarrhea, may last for decades. A significant proportion of NCGS patients may chronically consume alcohol, non-steroidal anti-inflammatory drugs, and fatty diet, as well as suffer from various comorbid disorders. The above pathophysiological substrate and dysbiosis are underpinned by dysfunctional bidirectional "Gut-Brain Axis" pathway. Pathogenic gut microbiota is known to upregulate gut- and systemic inflammation (due to lipopolysaccharide from pathogenic bacteria and synthesis of pro-inflammatory cytokines); they enhance energy harvest, cause obesity, insulin resistance, and dysfunctional vago-vagal gut-brain axis. Conceivably, the above cascade of pathology may promote various pathophysiological mechanisms, neuroinflammation, and cognitive dysfunction. Hence, dysbiosis, gut inflammation, and chronic dyshomeostasis are of great clinical relevance. It is argued here that we need to be aware of NCGS and its chronic pathophysiological impact. Therapeutic measures including probiotics, vagus nerve stimulation, antioxidants, alpha 7 nicotinic receptor agonists, and corticotropin-releasing factor receptor 1 antagonist may ameliorate neuroinflammation and oxidative stress in NCGS; they may therefore, prevent cognitive dysfunction and vulnerability to Alzheimer's disease. PMID:25642988

  11. Altered Nrf2 Signaling Mediates Hypoglycemia-Induced Blood–Brain Barrier Endothelial Dysfunction In Vitro

    PubMed Central

    Sajja, Ravi K.; Green, Kayla N.; Cucullo, Luca

    2015-01-01

    Hypoglycemia impairs blood-brain barrier (BBB) endothelial function; a major hallmark in the pathogenesis of various CNS disorders. Previously, we have demonstrated that prolonged hypoglycemic exposure down-regulated BBB endothelial NF-E2 related factor-2 (Nrf2) expression; a redox-sensitive transcriptional factor that regulates endothelial function. Here, we sought to determine the functional role of Nrf2 in preserving BBB integrity and molecular mechanisms underlying hypoglycemia-induced Nrf2 down-regulation in vitro using human cerebral microvascular endothelial cell line (hCMEC/D3). Cell monolayers were exposed to normal or hypoglycemic (5.5 or 2.2mM D-glucose) media for 3-24h. Pharmacological or gene manipulation (by silencing RNA) approaches were used to investigate specific molecular pathways implicated in hypoglycemia-induced Nrf2 degradation. BBB integrity was assessed by paracellular permeability to labeled dextrans of increasing molecular sizes (4-70kDa). Silencing Nrf2 expression in hCMEC/D3 cells abrogated the expression of claudin-5 and VE-cadherin, while ZO-1 was up-regulated. These effects were paralleled by a decrease in electrical resistance of hCMEC/D3 monolayers and potential increase in permeability to all labeled dextrans. Hypoglycemic exposure (3-24h) led to progressive and sustained down-regulation of Nrf2 (without affecting mRNA) and its target, NQO-1, with a concomitant increase in the cytosolic pool of E3 ubiquitin ligase, Siah2 (but not Keap1). Pretreatment with protease inhibitor MG132, or selective knock-down of Siah2 (but not Keap1) significantly attenuated hypoglycemia-induced Nrf2 destabilization. While hypoglycemic exposure triggered a significant increase in BBB permeability to dextrans, silencing Siah2 gene abrogated the effects of hypoglycemia and restored BBB integrity. In summary, our data indicate a potential role for Nrf2 signaling in regulating tight junction integrity and maintaining BBB function. Nrf2 suppression by

  12. Variable Neuroendocrine-Immune Dysfunction in Individuals with Unfavorable Outcome after Severe Traumatic Brain Injury

    PubMed Central

    Santarsieri, Martina; Kumar, Raj G.; Kochanek, Patrick M.; Berga, Sarah L.; Wagner, Amy K.

    2014-01-01

    Bidirectional communication between the immune and neuroendocrine systems is not well understood in the context of traumatic brain injury (TBI). The purpose of this study was to characterize relationships between cerebrospinal fluid (CSF) cortisol and inflammation after TBI, and to determine how these relationships differ by outcome. CSF samples were collected from 91 subjects with severe TBI during days 0–6 post-injury, analyzed for cortisol and inflammatory markers, and compared to healthy controls (n=13 cortisol, n=11 inflammatory markers). Group-based trajectory analysis (TRAJ) delineated subpopulations with similar longitudinal CSF cortisol profiles (high vs. low cortisol). Glasgow Outcome Scale (GOS) scores at 6 months served as the primary outcome measure reflecting global outcome. Inflammatory markers that displayed significant bivariate associations with both GOS and cortisol TRAJ (interleukin [IL]-6, IL-10, soluble Fas [sFas], soluble intracellular adhesion molecule [sICAM]-1, and tumor necrosis factor alpha [TNF]-α) were used to generate a cumulative inflammatory load score (ILS). Subsequent analysis revealed that cortisol TRAJ group membership mediated ILS effects on outcome (indirect effect estimate= −0.253, 95% CI (−0.481, −0.025), p=0.03). Correlational analysis between mean cortisol levels and ILS were examined separately within each cortisol TRAJ group and by outcome. Within the low cortisol TRAJ group, subjects with unfavorable 6-month outcome displayed a negative correlation between ILS and mean cortisol (r=−0.562, p=0.045). Conversely, subjects with unfavorable outcome in the high cortisol TRAJ group displayed a positive correlation between ILS and mean cortisol (r=0.391, p=0.006). Our results suggest that unfavorable outcome after TBI may result from dysfunctional neuroendocrine-immune communication wherein an adequate immune response is not mounted or, alternatively, neuroinflammation is prolonged. Importantly, the nature of

  13. Stimulation of brain muscarinic acetylcholine receptors acutely reverses radiogenic hypodipsia

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.

    1986-03-01

    A sufficiently large dose of ionizing radiation produces changes in water consumption. However, the direction, durations, and physiological substrates of these alterations remain in question. Here we report a 5-d hypodipsia in rats exposed to 600 rads /sup 60/Co but a more transient, albeit larger, reduction in drinking after 1000 /sup 60/Co. Brain cholinergic neurons have been implicated as mediators of thirst. Therefore, we explored the role of hypothalamic muscarinic receptors in the production of radiation-induced hypodipsia. This was accomplished through the intrahypothalamic injection of carbachol (a muscarinic agonist) or atropine (a muscarinic antagonist) in irradiated rats. Intracranial carbachol produced acute reversal of radiogenic hypodipsia while atropine potentiated the hypodipsia. These post-irradiation drug-induced behaviors were similar to those observed after the same drug treatments before irradiation. Since cholinergic neuronal functions persist and are labile (can be pharmacologically stimulated and blocked) after irradiation, this suggests that other neuronal systems and/or neurochemicals may be more prominently involved in radiogenic hypodipsia.

  14. Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain and kidney.

    PubMed

    Lohr, J W; McReynolds, J; Grimaldi, T; Acara, M

    1988-01-01

    In animal models of hypernatremia, increases in brain electrolyte content account for the entire increase in osmolality in acute but not chronic hypernatremia, suggesting that there is generation of additional intracellular solutes ("idiogenic osmoles") in chronic hypernatremic states. In the present study, the concentration of the polyols myoinositol and sorbitol and water content were determined in the brain and kidneys of rats made acutely (2 hours) and chronically (72 hours) hypernatremic by intraperitoneal injection of NaCl and water restriction. Both the brain and the kidney responded to chronic hypernatremia with increased levels of myoinositol. Sorbitol levels increased in the kidney in response to both acute and chronic hypernatremia. Water content dropped in acute hypernatremia, but remained unchanged during chronic hyperosmolar challenge. We conclude that the polyols, myoinositol and sorbitol, may play a significant role in cellular osmoregulation in brain and kidney during chronic hypernatremia in the rat.

  15. Berberine ameliorates severe acute pancreatitis‑induced intestinal barrier dysfunction via a myosin light chain phosphorylation‑dependent pathway.

    PubMed

    Liang, Hong-Yin; Chen, Tao; Yan, Hong-Tao; Huang, Zhu; Tang, Li-Jun

    2014-05-01

    Berberine is a traditional drug used to treat gastrointestinal disorders in China and has been demonstrated to attenuate intestinal barrier dysfunction in certain animal models. However, the effects of berberine on pancreatitis-induced intestinal barrier dysfunction are yet to be fully elucidated. This study aimed to investigate the effect of berberine pretreatment on the attenuation of intestinal barrier dysfunction induced by severe acute pancreatitis (SAP). A total of 36 rats were randomly divided into Sham, SAP and SAP plus berberine groups. Pancreatitis was induced using retrograde injection of 3% Na-taurocholate into the pancreatic duct. Histological examinations of the pancreas were performed and intestinal barrier dysfunction was characterized by histological measurements and the assessment of serum diamine oxidase activity and endotoxin levels. Zonula occludens-1 and occludin mRNA and protein expression, as well as myosin light chain (MLC) phosphorylation, were assessed. SAP rat models were successfully established. Berberine treatment was found to have no significant effect on the histological changes in the pancreas, but was observed to ameliorate the intestinal mucosal barrier damage and membrane permeability associated with SAP. Although berberine exerted minimal effects on tight junction proteins in the ilea of SAP rats, it was observed to significantly inhibit SAP-induced MLC phosphorylation. To the best of our knowledge, this is the first study to demonstrate that berberine attenuates SAP‑induced intestinal barrier dysfunction in vivo. In addition, this study shows that the effect of berberine on intestinal barrier function may be associated with the inhibition of SAP‑induced upregulation of MLC phosphorylation.

  16. Silent left ventricular dysfunction during routine activity after thrombolytic therapy for acute myocardial infarction

    SciTech Connect

    Kayden, D.S.; Wackers, F.J.; Zaret, B.L. )

    1990-06-01

    To investigate prospectively the occurrence and significance of postinfarction transient left ventricular dysfunction, 33 ambulatory patients who underwent thrombolytic therapy after myocardial infarction were monitored continuously for 187 +/- 56 min during normal activity with a radionuclide left ventricular function detector at the time of hospital discharge. Twelve patients demonstrated 19 episodes of transient left ventricular dysfunction (greater than 0.05 decrease in ejection fraction, lasting greater than or equal to 1 min), with no change in heart rate. Only two episodes in one patient were associated with chest pain and electrocardiographic changes. The baseline ejection fraction was 0.52 +/- 0.12 in patients with transient left ventricular dysfunction and 0.51 +/- 0.13 in patients without dysfunction (p = NS). At follow-up study (19.2 +/- 5.4 months), cardiac events (unstable angina, myocardial infarction or death) occurred in 8 of 12 patients with but in only 3 of 21 patients without transient left ventricular dysfunction (p less than 0.01). During submaximal supine bicycle exercise, only two patients demonstrated a decrease in ejection fraction greater than or equal to 0.05 at peak exercise; neither had a subsequent cardiac event. These data suggest that transient episodes of silent left ventricular dysfunction at hospital discharge in patients treated with thrombolysis after myocardial infarction are common and associated with a poor outcome. Continuous left ventricular function monitoring during normal activity may provide prognostic information not available from submaximal exercise test results.

  17. The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid

    PubMed Central

    2011-01-01

    Aims This study aimed to examine the effect of high fat diet (HFD) to modulate brain dysfunction, and understand the linkages between obesity, metabolic disturbances and the brain oxidative stress (BOS) dysfunction and modulation with hydroxyl citric acid of G. Cambogia. Methods Rats were divided into 3 groups; 1st control, maintained on standard normal rat chow diet, 2nd HFD, maintained on high fat diet along 12 week and 3rd HFD+G, administered G. Cambogia for 4 weeks and each group include 8 rats. Blood, brain and abdominal fat were collected for biochemical measurements. Results HFD group showed significant increase in energy intake, final BW and BW gain. Also significant increase in weight of abdominal fat in HFD group. HFD induce metabolic disturbance through increasing the lipid profile (LDL, TG, TC), γGT and α-amylase activity, uric acid level and hyperglycemia, while decreasing creatine kinase (CK) activity. These changes associated with lowering in brain nitric oxide (NO) level and rising in serum butyrylcholinesterase (BChE), brain catalase activity and MDA levels as oxidative stress markers. These alterations improved by G. Cambogia that decrease BOS and increased NO level. Conclusions Rats fed HFD showed, metabolic disturbances produce hyperglycemia, hypertriglyceridemia, hypercholesterolemia and increased LDL associated with increased BOS. Involvement of BuChE, NO and oxidative stress associated with metabolic disturbances in the pathophysiological progression in brain, suggesting association between obesity, metabolic disorders and brain alteration while, using G. Cambogia, ameliorate the damaging effects of the HFD via lowering feed intake and BOS. PMID:21569551

  18. Influenza Virus Pathophysiology and Brain Invasion in Mice with Functional and Dysfunctional Mx1 Genes

    PubMed Central

    Hodgson, Nicole R.; Bohnet, Stewart G.; Majde, Jeannine A.; Krueger, James M.

    2011-01-01

    Mice with a dysfunctional myxovirus resistance-1 (dMx1) gene transport intranasally-instilled PR8 influenza virus to the olfactory bulb (OB) within 4 h post-infection. To determine if the presence of a functional Mx1 (fMx1) gene would influence this brain viral localization and/or disease, we infected mature C57BL/6 dMx1 and fMx1 mice under the same conditions and observed sickness behaviors, viral nucleoprotein (NP) RNA expression and innate immune mediator (IIM) mRNA expression in selected tissues at 15 and 96 h post-infection. Virus invaded the OB and lungs comparably in both sub-strains at 15 and 96 h as determined by nested PCR. In contrast, virus was present in blood and somatosensory cortex of dMx1, but not fMx1 mice at 96 h. At 15 h, sickness behaviors were comparable in both sub-strains; by 96 h dMx1, but not fMx1, were moribund. In both 15 h and 96 h lungs, viral NP was significantly elevated in the dMx1 mice compared to the fMx1 mice, as determined by quantitative PCR. OB expression of most IIM mRNAs was similar at both time periods in both sub-strains. In contrast, lung IIM mRNAs were elevated in fMx1 at 15 h, but by 96 h were consistently reduced compared to dMx1 mice. In conclusion, functional Mx1 did not alter OB invasion by virus but attenuated illness compared to dMx1 mice. Inflammation was similar in OBs and lungs of both strains at 15 h but by 96 h it was suppressed in lungs, but not in OBs, of fMx1 mice. PMID:21821116

  19. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study.

    PubMed

    Lelic, Dina; Niazi, Imran Khan; Holt, Kelly; Jochumsen, Mads; Dremstrup, Kim; Yielder, Paul; Murphy, Bernadette; Drewes, Asbjørn Mohr; Haavik, Heidi

    2016-01-01

    Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP) peak amplitudes following spinal manipulation (SM) of dysfunctional segments in subclinical pain (SCP) populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz) before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9 ± 31.3% (P = 0.02), while no differences were seen following the control intervention (P = 0.4). Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2 ± 12.2% (P = 0.03) following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex.

  20. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study.

    PubMed

    Lelic, Dina; Niazi, Imran Khan; Holt, Kelly; Jochumsen, Mads; Dremstrup, Kim; Yielder, Paul; Murphy, Bernadette; Drewes, Asbjørn Mohr; Haavik, Heidi

    2016-01-01

    Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP) peak amplitudes following spinal manipulation (SM) of dysfunctional segments in subclinical pain (SCP) populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz) before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9 ± 31.3% (P = 0.02), while no differences were seen following the control intervention (P = 0.4). Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2 ± 12.2% (P = 0.03) following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex. PMID:27047694

  1. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study

    PubMed Central

    Lelic, Dina; Niazi, Imran Khan; Holt, Kelly; Jochumsen, Mads; Dremstrup, Kim; Yielder, Paul; Murphy, Bernadette; Drewes, Asbjørn Mohr; Haavik, Heidi

    2016-01-01

    Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP) peak amplitudes following spinal manipulation (SM) of dysfunctional segments in subclinical pain (SCP) populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz) before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9 ± 31.3% (P = 0.02), while no differences were seen following the control intervention (P = 0.4). Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2 ± 12.2% (P = 0.03) following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex. PMID:27047694

  2. Very Early Administration of Progesterone for Acute Traumatic Brain Injury

    PubMed Central

    Wright, David W.; Yeatts, Sharon D.; Silbergleit, Robert; Palesch, Yuko Y.; Hertzberg, Vicki S.; Frankel, Michael; Goldstein, Felicia C.; Caveney, Angela F.; Howlett-Smith, Harriet; Bengelink, Erin M.; Manley, Geoffrey T.; Merck, Lisa H.; Janis, L. Scott; Barsan, William G.

    2015-01-01

    BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Progesterone has been shown to improve neurologic outcome in multiple experimental models and two early-phase trials involving patients with TBI. METHODS We conducted a double-blind, multicenter clinical trial in which patients with severe, moderate-to-severe, or moderate acute TBI (Glasgow Coma Scale score of 4 to 12, on a scale from 3 to 15, with lower scores indicating a lower level of consciousness) were randomly assigned to intravenous progesterone or placebo, with the study treatment initiated within 4 hours after injury and administered for a total of 96 hours. Efficacy was defined as an increase of 10 percentage points in the proportion of patients with a favorable outcome, as determined with the use of the stratified dichotomy of the Extended Glasgow Outcome Scale score at 6 months after injury. Secondary outcomes included mortality and the Disability Rating Scale score. RESULTS A total of 882 of the planned sample of 1140 patients underwent randomization before the trial was stopped for futility with respect to the primary outcome. The study groups were similar with regard to baseline characteristics; the median age of the patients was 35 years, 73.7% were men, 15.2% were black, and the mean Injury Severity Score was 24.4 (on a scale from 0 to 75, with higher scores indicating greater severity). The most frequent mechanism of injury was a motor vehicle accident. There was no significant difference between the progesterone group and the placebo group in the proportion of patients with a favorable outcome (relative benefit of progesterone, 0.95; 95% confidence interval [CI], 0.85 to 1.06; P = 0.35). Phlebitis or thrombophlebitis was more frequent in the progesterone group than in the placebo group (relative risk, 3.03; CI, 1.96 to 4.66). There were no significant differences in the other prespecified safety outcomes. CONCLUSIONS This clinical trial did not show a

  3. Alleviation of kainic acid-induced brain barrier dysfunction by 4-o-methylhonokiol in in vitro and in vivo models.

    PubMed

    Han, Jin-Yi; Ahn, Sun-Young; Yoo, Jae Hyeon; Nam, Sang-Yoon; Hong, Jin Tae; Oh, Ki-Wan

    2015-01-01

    This experiment was designed to investigate whether 4-O-methylhonokiol (MH), a principal ingredient of Magnolia (M.) officinalis bark, alleviated acute intraperitoneal (i.p.) kainic acid- (KA-) induced brain blood barrier dysfunction (BBBD) via pathological examination and cytological analyses of the brain tissues of mice. KA (10-30 mg/kg) time- and dose-dependently increased the water content of brain tissues and induced edema and encephalopathy. However, pretreatment with MH (5 and 20 mg/kg, i.p.) significantly reduced the water content of the brain compared to that observed in the KA control group. Furthermore, MH significantly and dose-dependently reversed the remarkable variations in evan's blue dye (EBD) staining and malondialdehyde (MDA) levels that were induced by KA (10 mg/kg, i.p.). MH also decreased the elevated seizure scores that were induced by KA (10 mg/kg, i.p.) in mice in a manner similar to scavengers such as DMTU and trolox. Additionally, MH significantly scavenged intracellular ROS and Ca2+ within hippocampal cells. The tight junction seals mediated by claudin (Cld-5) were also found to be modulated by MH. MH efficiently reduced 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50, 52.4 mM) and •OH with an electron spin resonance (ESR) signal rate constant of 4×10(9) M(-1)·S(-1), which is close to the reactivity of the vitamin E analog trolox. Taken together, these results suggest that MH may enhance radical scavenging in lipid and hydrophobic environments, which may be important for the physiological activity of the barrier.

  4. Alleviation of Kainic Acid-Induced Brain Barrier Dysfunction by 4-O-Methylhonokiol in In Vitro and In Vivo Models

    PubMed Central

    Han, Jin-Yi; Ahn, Sun-Young; Yoo, Jae Hyeon; Nam, Sang-Yoon; Hong, Jin Tae; Oh, Ki-Wan

    2015-01-01

    This experiment was designed to investigate whether 4-O-methylhonokiol (MH), a principal ingredient of Magnolia (M.) officinalis bark, alleviated acute intraperitoneal (i.p.) kainic acid- (KA-) induced brain blood barrier dysfunction (BBBD) via pathological examination and cytological analyses of the brain tissues of mice. KA (10–30 mg/kg) time- and dose-dependently increased the water content of brain tissues and induced edema and encephalopathy. However, pretreatment with MH (5 and 20 mg/kg, i.p.) significantly reduced the water content of the brain compared to that observed in the KA control group. Furthermore, MH significantly and dose-dependently reversed the remarkable variations in evan's blue dye (EBD) staining and malondialdehyde (MDA) levels that were induced by KA (10 mg/kg, i.p.). MH also decreased the elevated seizure scores that were induced by KA (10 mg/kg, i.p.) in mice in a manner similar to scavengers such as DMTU and trolox. Additionally, MH significantly scavenged intracellular ROS and Ca2+ within hippocampal cells. The tight junction seals mediated by claudin (Cld-5) were also found to be modulated by MH. MH efficiently reduced 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50, 52.4 mM) and •OH with an electron spin resonance (ESR) signal rate constant of 4 × 109 M−1 · S−1, which is close to the reactivity of the vitamin E analog trolox. Taken together, these results suggest that MH may enhance radical scavenging in lipid and hydrophobic environments, which may be important for the physiological activity of the barrier. PMID:25688368

  5. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus. PMID:26259694

  6. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus.

  7. Protection of the blood-brain barrier by hypercapnia during acute hypertension

    SciTech Connect

    Baumbach, G.L.; Mayhan, W.G.; Heistad, D.D.

    1986-08-01

    The purpose of this study was to examine effects of hypercapnia on susceptibility of the blood-brain barrier to disruption during acute hypertension. Two methods were used to test the hypothesis that cerebral vasodilation during hypercapnia increases disruption of the blood-brain barrier. First, permeability of the blood-brain barrier was measured in anesthetized cats with SVI-labeled serum albumin. Severe hypertension markedly increased permeability of the blood-brain barrier during normocapnia, but not during hypercapnia. The protective effect of hypercapnia was not dependent on sympathetic nerves. Second, in anesthetized rats, permeability of the barrier was quantitated by clearance of fluorescent dextran. Disruption of the blood-brain barrier during hypertension was decreased by hypercapnia. Because disruption of the blood-brain barrier occurred primarily in pial venules, the authors also measured pial venular diameter and pressure. Acute hypertension increased pial venular pressure and diameter in normocapnic rats. Hypercapnia alone increased pial venular pressure and pial venular diameter, and acute hypertension during hypercapnia further increased venular pressure. The magnitude of increase in pial venular pressure during acute hypertension was significantly less in hypercapnic than in normocapnic rats. They conclude that hypercapnia protects the blood-brain barrier. Possible mechanisms of this effect include attenuation of the incremental increase in pial venular pressure by hypercapnia or a direct effect on the blood-brain barrier not related to venous pressure.

  8. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  9. Percutaneous coronary intervention for acute myocardial infarction in elderly patients with renal dysfunction: results from the Korea Acute Myocardial Infarction Registry.

    PubMed

    Lim, Sang Yup; Bae, Eun Hui; Choi, Joon Seok; Kim, Chang Seong; Ma, Seong Kwon; Ahn, Youngkeun; Jeong, Myung Ho; Kim, Weon; Woo, Jong Shin; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Kim, Soo Wan

    2013-07-01

    This study aimed to evaluate the effects of percutaneous coronary intervention (PCI) on short- and long-term major adverse cardiac events (MACE) in elderly (>75 yr old) acute myocardial infarction (AMI) patients with renal dysfunction. As part of Korea AMI Registry (KAMIR), elderly patients with AMI and renal dysfunction (GFR<60 mL/min) received either medical (n=439) or PCI (n=1,019) therapy. Primary end point was in-hospital death. Secondary end point was MACE during a 1 month and 1 yr follow-up. PCI group showed a significantly lower incidence of in-hospital death (20.0% vs 14.3%, P=0.006). Short-term and long-term MACE rates were higher in medical therapy group (31.9% vs 19.0%; 57.7% vs 31.3%, P<0.001), and this difference was mainly attributed to cardiac death (29.3% vs 17.6%; 51.9% vs 25.0%, P<0.001). MACE-free survival time after adjustment was also higher in PCI group on short-term (hazard ratio, 0.67; confidence interval, 0.45-0.98; P=0.037) and long-term follow-up (hazard ratio, 0.61, confidence interval, 0.45-0.83; P=0.002). In elderly AMI patients with renal dysfunction, PCI therapy yields favorable in-hospital and short-term and long-term MACE-free survival.

  10. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

    PubMed

    De Filippis, Bianca; Valenti, Daniela; Chiodi, Valentina; Ferrante, Antonella; de Bari, Lidia; Fiorentini, Carla; Domenici, Maria Rosaria; Ricceri, Laura; Vacca, Rosa Anna; Fabbri, Alessia; Laviola, Giovanni

    2015-06-01

    Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.

  11. Heparin-binding epidermal growth factor–like growth factor attenuates acute lung injury and multiorgan dysfunction after scald burn

    PubMed Central

    Lutmer, Jeffrey; Watkins, Daniel; Chen, Chun-Liang; Velten, Markus; Besner, Gail

    2013-01-01

    Background Impaired gut barrier function and acute lung injury (ALI) are significant components of the multiorgan dysfunction syndrome that accompanies severe burns. Heparin-binding epidermal growth factor–like growth factor (HB-EGF) has been shown to reduce inflammation, preserve gut barrier function, and protect the lungs from acute injury in several models of intestinal injury; however, comparable effects of HB-EGF after burn injury have never been investigated. The present studies were based on the hypothesis that HB-EGF would reduce the severity of ALI and multiorgan dysfunction after scald burns in mice. Materials and methods Mice were randomized to sham, burn (25% of total body surface area with full thickness dorsal scald), and burn + HB-EGF groups. The HB-EGF group was pre-treated with two enteral doses of HB-EGF (1200 μg/kg/dose). Mice were resuscitated after injury and sacrificed at 8 h later. Their lungs were harvested for determination of pulmonary myeloperoxidase activity, wet:dry ratios, and terminal deoxynucleotidyl transferase dUTP nick end label and cleaved caspase 3 immunohistochemistry. Lung function was assessed using the SCIREQ Flexivent. Splenic apoptosis was quantified by Western blot for cleaved caspase 3, and intestinal permeability was measured using the everted gut sac method. Results Mice subjected to scald burn injury had increased lung myeloperoxidase levels, increased pulmonary and splenic apoptosis, elevated airway resistance and bronchial reactivity, and increased intestinal permeability compared with sham mice. These abnormalities were significantly attenuated in mice that were subjected to scald burn injury but treated with enteral HB-EGF. Conclusions These data suggest that HB-EGF protects mice from ALI after scald burn and attenuates the severity of postburn multiorgan dysfunction. PMID:23777985

  12. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    PubMed

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage.

  13. Acute stress differentially affects aromatase activity in specific brain nuclei of adult male and female quail.

    PubMed

    Dickens, Molly J; Cornil, Charlotte A; Balthazart, Jacques

    2011-11-01

    The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress-induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15 min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction.

  14. The effects of acute alcohol administration on the human brain: insights from neuroimaging.

    PubMed

    Bjork, James M; Gilman, Jodi M

    2014-09-01

    Over the last quarter century, researchers have peered into the living human brain to develop and refine mechanistic accounts of alcohol-induced behavior, as well as neurobiological mechanisms for development and maintenance of addiction. These in vivo neuroimaging studies generally show that acute alcohol administration affects brain structures implicated in motivation and behavior control, and that chronic intoxication is correlated with structural and functional abnormalities in these same structures, where some elements of these decrements normalize with extended sobriety. In this review, we will summarize recent findings about acute human brain responses to alcohol using neuroimaging techniques, and how they might explain behavioral effects of alcohol intoxication. We then briefly address how chronic alcohol intoxication (as inferred from cross-sectional differences between various drinking populations and controls) may yield individual brain differences between drinking subjects that may confound interpretation of acute alcohol administration effects. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.

  15. Chronic drug exposures during development in nonhuman primates: models of brain dysfunction in humans.

    PubMed

    Paule, Merle G

    2005-01-01

    This review of our work presents three specific examples of how nonhuman primates (rhesus monkeys, Macaca mulatta) have been used to study the effects of chronic drug exposures on brain function during different stages of development. In all cases, exposure levels similar to those experienced by humans were employed and the focus was on long-term--not acute--effects. In the case of the marijuana studies, exposures occurred during the adolescent period; for the cocaine studies, exposures occurred in binge-like fashion entirely before birth (in utero); and for the remacemide studies, exposures occurred daily in juveniles, prior to adolescence. An automated battery of behavioral tasks, the National Center for Toxicological Research Operant Test Battery (NCTR OTB), designed to assess aspects of motivation, visual discrimination, time perception, short-term memory, and learning, was used to monitor treatment effects. Chronic marijuana smoke exposure resulted in an 'amotivational' syndrome--even in weekend-only smokers--that resolved within three months of exposure cessation. In utero cocaine exposure was shown to cause behavioral rigidity or lack of plasticity as evidenced by the difficulty of subjects to adjust to rules changes for some OTB tasks. These effects were seen in adult subjects suggesting that the effects of gestational cocaine exposure are long-term or permanent. In addition, animals exposed to cocaine in utero were less sensitive to the behaviorally-disrupting effects of cocaine as adults. Remacemide caused profound and long-lasting, perhaps permanent, changes in learning task performance and because performance of this same task by children is significantly correlated with traditional measures of intelligence (IQ), these data suggest that such treatment may provide a valuable model of chemically-induced mental retardation. PMID:15970490

  16. Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.

    PubMed

    Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M

    2016-10-01

    This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. PMID:27637395

  17. A Brain Signature to Differentiate Acute and Chronic Pain in Rats

    PubMed Central

    Guo, Yifei; Wang, Yuzheng; Sun, Yabin; Wang, Jin-Yan

    2016-01-01

    The transition from acute pain to chronic pain entails considerable changes of patients at multiple levels of the nervous system and in psychological states. An accurate differentiation between acute and chronic pain is essential in pain management as it may help optimize analgesic treatments according to the pain state of patients. Given that acute and chronic pain could modulate brain states in different ways and that brain states could greatly shape the neural processing of external inputs, we hypothesized that acute and chronic pain would show differential effects on cortical responses to non-nociceptive sensory information. Here by analyzing auditory-evoked potentials (AEPs) to pure tones in rats with acute or chronic pain, we found opposite influences of acute and chronic pain on cortical responses to auditory inputs. In particular, compared to no-pain controls, the N100 wave of rat AEPs was significantly enhanced in rats with acute pain but significantly reduced in rats with chronic pain, indicating that acute pain facilitated cortical processing of auditory information while chronic pain exerted an inhibitory effect. These findings could be justified by the fact that individuals suffering from acute or chronic pain would have different vigilance states, i.e., the vigilance level to external sensory stimuli would be increased with acute pain, but decreased with chronic pain. Therefore, this auditory response holds promise of being a brain signature to differentiate acute and chronic pain. Instead of investigating the pain system per se, the study of pain-induced influences on cortical processing of non-nocicpetive sensory information might represent a potential strategy to monitor the progress of pain chronification in clinical applications. PMID:27199727

  18. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    SciTech Connect

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J.

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  19. Effect of acute and chronic cholinesterase inhibition on biogenic amines in rat brain.

    PubMed

    Soininen, H; Unni, L; Shillcutt, S

    1990-12-01

    The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied and increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindoleacetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems. PMID:1711162

  20. Altered Cerebellar White Matter Integrity in Patients with Mild Traumatic Brain Injury in the Acute Stage

    PubMed Central

    Wang, Zhongqiu; Wu, Wenzhong; Liu, Yongkang; Wang, Tianyao; Chen, Xiao; Zhang, Jianhua; Zhou, Guoxing; Chen, Rong

    2016-01-01

    Background and Purpose Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts. Materials and Methods This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients. Results Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037). Conclusion Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing. PMID:26967320

  1. Brain dysfunction in psychiatric patients during music perception measured by EEG mapping: relation to motor dysfunction and influence of neuroleptic drugs.

    PubMed

    Günther, W; Steinberg, R; Streck, P; Banquet, J P; Bscheid, I; Raith, L; Riedel, R; Klages, U; Stiltz, I

    1991-05-01

    We report here our findings on music perception obtained as a companion study to the investigation with 16-channel EEG mapping in psychiatric patients during motor activation, published recently elsewhere. We decided to add on a study of this functional circuit, since there is evidence that it is disturbed in various psychiatric patient groups (another "functio laesa"). Involved in the study were 23 male and 25 female schizophrenics, 11 male and 18 female non-endogenously depressed patients (not presently under medication, i.e. drug-naive or wash-out period from 1 week to 17 years), 26 male and 37 female endogenously depressed patients (medicated with tri- or tetracyclic antidepressants and/or benzodiazepines; no lithium), and 22 male and 17 female control subjects (i.e. n = 179). We compared resting conditions after a special relaxation procedure with three music perception tasks: (1) a standardised rumba rhythm generated by a keyboard and delivered binaurally by earphones, (2) the same as an arpeggio in D major, and (3) the same as an arpeggio with a tonic-subdominant-dominant cadence. Major results were obtained in the delta and alpha frequency bands, yielding signs of "diffuse hyperactivation", most prominent in schizophrenic males, and not observed to a similar extent in any other patient group or in normal controls. Interestingly, there were major sex differences, yielding a more diffuse EEG activation pattern in normal females than in males and thus possibly obscuring signs of brain function diffusion in female patients. Viewing our broader evidence of similar brain dysfunction when examining motor functional circuits, especially in schizophrenics, these findings provide further evidence of a brain disorganization with lack of laterality/diffusion which may be found in subgroups of these patients and not in other psychiatric disorders. In schizophrenic patients, these EEG signs of "diffuse hyperactivation" on simple motor and/or music stimulation were

  2. Altered spontaneous brain activity patterns in patients with unilateral acute open globe injury using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study

    PubMed Central

    Tan, Gang; Huang, Xin; Ye, Lei; Wu, An-Hua; He, Li-Xian; Zhong, Yu-Lin; Jiang, Nan; Zhou, Fu-Qing; Shao, Yi

    2016-01-01

    Objective The aim of this study was to evaluate altered spontaneous brain activities in patients with unilateral acute open globe injury (OGI) using amplitude of low-frequency fluctuation (ALFF) method and its relationship with their clinical manifestations. Patients and methods A total of 18 patients with acute OGI (16 males and two females) and 18 healthy controls (HCs, 16 males and two females) closely matched in age, sex, and education were recruited in this study. The ALFF method was used to evaluate the altered spontaneous brain activities. The relationships between the mean ALFF signal values of different brain regions and the clinical features were evaluated by correlation analysis. Acute OGI patients were distinguished from HCs by receiver operating characteristic curve. Results Compared with HCs, acute OGI patients had significantly higher ALFF values in the left cuneus, left middle cingulum cortex, and bilateral precuneus. Furthermore, the age of OGI patients showed a negative correlation with the ALFF signal value of the left middle cingulum cortex (r=−0.557, P=0.016) and a negative correlation with the mean ALFF signal value of the bilateral precuneus (r=−0.746, P<0.001). The ALFF signal value of the bilateral precuneus was negatively correlated with the duration of OGI (r=−0.493, P=0.038) and positively correlated with the vision acuity of the injured eye (r=0.583, P=0.011). Conclusion Acute OGI mainly induces dysfunction in the left cuneus, left middle cingulum cortex, and bilateral precuneus, which may reflect the underlying pathologic mechanisms of abnormal brain activities in OGI patients. PMID:27570455

  3. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant?

    PubMed

    Weise, Gesa; Stoll, Guido

    2012-01-01

    Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain barrier (BBB) or blood nerve barrier (BNB) preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI) as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf) allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd)-DTPA enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO) and perfluorocarbons enable assessment of leukocyte (mainly macrophage) infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis, cerebral ischemia, and traumatic nerve injury and review corresponding findings in patients.

  4. Magnetic Resonance Imaging of Blood Brain/Nerve Barrier Dysfunction and Leukocyte Infiltration: Closely Related or Discordant?

    PubMed Central

    Weise, Gesa; Stoll, Guido

    2012-01-01

    Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain barrier (BBB) or blood nerve barrier (BNB) preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI) as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf) allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd)-DTPA enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO) and perfluorocarbons enable assessment of leukocyte (mainly macrophage) infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis, cerebral ischemia, and traumatic nerve injury and review corresponding findings in patients. PMID:23267343

  5. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment

    PubMed Central

    Irimia, Andrei; Goh, S.-Y. Matthew; Torgerson, Carinna M.; Stein, Nathan R.; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.

    2013-01-01

    Objective To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Methods Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. Results We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Conclusion Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. PMID:24011495

  6. YiQiFuMai powder injection ameliorates blood–brain barrier dysfunction and brain edema after focal cerebral ischemia–reperfusion injury in mice

    PubMed Central

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB) dysfunction induced by cerebral ischemia–reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins. PMID:26834461

  7. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  8. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro. PMID:26722472

  9. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

    PubMed Central

    2016-01-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  10. Restoration of dietary-fat induced blood–brain barrier dysfunction by anti-inflammatory lipid-modulating agents

    PubMed Central

    2012-01-01

    Background Several studies have identified use of non-steroidal-anti-inflammatory drugs and statins for prevention of dementia, but their efficacy in slowing progression is not well understood. Cerebrovascular disturbances are common pathological feature of Alzheimer’s disease. We previously reported chronic ingestion of saturated fatty acids (SFA) compromises blood–brain barrier (BBB) integrity resulting in cerebral extravasation of plasma proteins and inflammation. However, the SFA-induced parenchymal accumulation of plasma proteins could be prevented by co-administration of some cholesterol lowering agents. Restoration of BBB dysfunction is clinically relevant, so the purpose of this study was to explore lipid-lowering agents could reverse BBB disturbances induced by chronic ingestion of SFA’s. Methods Wild-type mice were fed an SFA diet for 12 weeks to induce BBB dysfunction, and then randomised to receive atorvastatin, pravastatin or ibuprofen in combination with the SFA-rich diet for 2 or 8 weeks. Abundance of plasma-derived immunoglobulin-G (IgG) and amyloid-β enriched apolipoprotein (apo)-B lipoproteins within brain parenchyme were quantified utilising immunofluorescence microscopy. Results Atorvastatin treatment for 2 and 8 weeks restored BBB integrity, indicated by a substantial reduction of IgG and apo B, particularly within the hippocampus. Pravastatin, a water-soluble statin was less effective than atorvastatin (lipid-soluble). Statin effects were independent of changes in plasma lipid homeostasis. Ibuprofen, a lipid-soluble cyclooxygenase inhibitor attenuated cerebral accumulation of IgG and apo B as effectively as atorvastatin. Our findings are consistent with the drug effects being independent of plasma lipid homeostasis. Conclusion Our findings suggest that BBB dysfunction induced by chronic ingestion of SFA is reversible with timely introduction and sustained treatment with agents that suppress inflammation. PMID:22978403

  11. Chronic Neuropsychological Sequelae of Cholinesterase Inhibitors in the Absence of Structural Brain Damage: Two Cases of Acute Poisoning

    PubMed Central

    Roldán-Tapia, Lola; Leyva, Antonia; Laynez, Francisco; Santed, Fernando Sánchez

    2005-01-01

    Here we describe two cases of carbamate poisoning. Patients AMF and PVM were accidentally poisoned by cholinesterase inhibitors. The medical diagnosis in both cases was overcholinergic syndrome, as demonstrated by exposure to cholinesterase inhibitors. The widespread use of cholinesterase inhibitors, especially as pesticides, produces a great number of human poisoning events annually. The main known neurotoxic effect of these substances is cholinesterase inhibition, which causes cholinergic overstimulation. Once AMF and PVM had recovered from acute intoxication, they were subjected to extensive neuropsychological evaluation 3 and 12 months after the poisoning event. These assessments point to a cognitive deficit in attention, memory, perceptual, and motor domains 3 months after intoxication. One year later these sequelae remained, even though the brain magnetic resonance imaging (MRI) and computed tomography (CT) scans were interpreted as being within normal limits. We present these cases as examples of neuropsychological profiles of long-term sequelae related to acute poisoning by cholinesterase inhibitor pesticides and show the usefulness of neuropsychological assessment in detecting central nervous system dysfunction in the absence of biochemical or structural markers. PMID:15929901

  12. Amelioration of central cardiovascular regulatory dysfunction by tropomyocin receptor kinase B in a mevinphos intoxication model of brain stem death

    PubMed Central

    Chan, SHH; Chan, JYH; Hsu, KS; Li, FCH; Sun, EYH; Chen, WL; Chang, AYW

    2011-01-01

    BACKGROUND AND PURPOSE Little information exists on the mechanisms that precipitate brain stem death, the legal definition of death in many developed countries. We investigated the role of tropomyocin receptor kinase B (TrkB) and its downstream signalling pathways in the rostral ventrolateral medulla (RVLM) during experimental brain stem death. EXPERIMENTAL APPROACH An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos bilaterally into the RVLM of Sprague–Dawley rats was used, in conjunction with cardiovascular, pharmacological and biochemical evaluations. KEY RESULTS A significant increase in TrkB protein, phosphorylation of TrkB at Tyr516 (pTrkBY516), Shc at Tyr317 (pShcY317) or ERK at Thr202/Tyr204, or Ras activity in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Microinjection bilaterally into RVLM of a specific TrkB inhibitor, K252a, antagonized those increases. Pretreatment with anti-pShcY317 antiserum, Src homology 3 binding peptide (Grb2/SOS inhibitor), farnesylthioacetic acid (Ras inhibitor), manumycin A (Ras inhibitor) or GW5074 (Raf-1 inhibitor) blunted the preferential augmentation of Ras activity or ERK phosphorylation in RVLM and blocked the up-regulated NOS I/protein kinase G (PKG) signalling, the pro-life cascade that sustains central cardiovascular regulation during experimental brain stem death. CONCLUSIONS AND IMPLICATIONS Activation of TrkB, followed by recruitment of Shc/Grb2/SOS adaptor proteins, leading to activation of Ras/Raf-1/ERK signalling pathway plays a crucial role in ameliorating central cardiovascular regulatory dysfunction via up-regulation of NOS I/PKG signalling cascade in the RVLM in brain stem death. These findings provide novel information for developing therapeutic strategies against this fatal eventuality. PMID:21615729

  13. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  14. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors.

  15. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  16. Glucose modulates respiratory complex I activity in response to acute mitochondrial dysfunction.

    PubMed

    Cannino, Giuseppe; El-Khoury, Riyad; Pirinen, Marja; Hutz, Bettina; Rustin, Pierre; Jacobs, Howard T; Dufour, Eric

    2012-11-01

    Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an "emergency shutdown" system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.

  17. Glucose modulates respiratory complex I activity in response to acute mitochondrial dysfunction.

    PubMed

    Cannino, Giuseppe; El-Khoury, Riyad; Pirinen, Marja; Hutz, Bettina; Rustin, Pierre; Jacobs, Howard T; Dufour, Eric

    2012-11-01

    Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an "emergency shutdown" system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases. PMID:23007390

  18. Acute cerebellar dysfunction with neuromuscular manifestations after scorpionism presumably caused by Tityus obscurus in Santarém, Pará / Brazil.

    PubMed

    Torrez, Pasesa P Q; Quiroga, Mariana M M; Abati, Paulo A M; Mascheretti, Melissa; Costa, Walter Silva; Campos, Luciana P; França, Francisco O S

    2015-03-01

    Scorpionism is a public health problem in many tropical countries, especially in North Africa, South India, Latin America and the Middle East. In Brazil, patients with severe scorpion envenoming have mainly cardiovascular events, including acute heart failure, acute respiratory distress syndrome and shock, death is rare. We described 58 accidents presumably caused by Tityus obscurus in Brazilian Amazonia. Patients reported a sensation of "electric shocks" which could last hours. The vast majority of patients presented a clinical picture compatible with acute cerebellar dysfunction, beginning minutes and lasting up to 2 days after the accident. They presented cerebellar ataxia, dysdiadochokinesia, dysmetry, dysarthria, dyslalia, nausea and vomiting. Besides, some patients presented myoclonus and fasciculation which can also be attributed to cerebellar dysfunction or maybe the result of direct action on skeletal muscle. Two patients had evidence of intense rhabdomyolysis and acute kidney injury. The clinical picture in this scorpion envenoming is mainly characterized by an acute dysfunction of cerebellar activities and abnormal neuromuscular manifestations and in some cases muscle injury which are not described in any other region of the world. This work presents clinical, epidemiologic, laboratory and treatment aspects of this unmatched scorpion envenoming in the state of Pará, northern Brazil. PMID:25549940

  19. Acute functional reactivation of the language network during awake intraoperative brain mapping.

    PubMed

    Spena, Giannantonio; Costi, Emanuele; Panciani, Pier Paolo; Roca, Elena; Migliorati, Karol; Fontanella, Marco Maria

    2015-01-01

    Acute brain plasticity during resection of central lesions has been recently described. In the cases reported, perilesional latent networks, useful to preserve the neurological functions, were detected in asymptomatic patients. In this paper, we presented a case of acute functional reactivation (AFR) of the language network in a symptomatic patient. Tumor resection allowed to acutely restore the neurological deficit. Intraoperative direct cortical stimulation (DCS) and functional neuroimaging showed new epicentres of activation of the language network after tumor excision. DCS in awake surgery is mandatory to reveal AFR needful to improve the extent of resection preserving the quality of life.

  20. [Clinical-diagnostic features of the acute period of brain concussion in military personnel].

    PubMed

    Tkachov, A V

    2008-01-01

    The comparative analysis of a complex examination of 78 patients aged 16-45 years in acute period of closed craniocereberal trauma (CCRCT) has been carried out. Physical examination was done on the first 10th and 30th day of the treatment. The author used specially developed multiple-aspect scales and questionnaires for objectification of patient complaints, magnetic resonance tomography, brain electroencephalography. A complex clinical and neuropsychological examination revealed that all cases of brain concussion were accompanied by various signs of asthenic disorders and in 81% of cases--by cognitive disorders. Patients in the acute period of brain concussion had significantly low indicators of cerebral neurodynamics in comparison with healthy individuals. It was shown by increase in signs of irritation, changes of bioelectric activity of the brain that was expressed by considerable blurriness of regional disjunctions and fading of an alpha rhythm. Specific changes of brain tissue in acute period of brain concussion were not registered when CT or MRT were used.

  1. [Mitochondrial dysfunction and compensatory mechanisms in liver cells during acute carbon tetrachloride-induced rat intoxication].

    PubMed

    Zavodnik, I B

    2015-01-01

    Electron-transport chain and redox-balance of mitochondria are important targets that are damaged during intoxication. The aim of the present work was to estimate the role of impairments in cellular bioenergetic function in the development of liver damage during acute carbon tetrachloride intoxication in rats and to elucidate possible compensatory mechanisms. Acute CCl4-induced rat intoxication (0.8 g/kg or 4 g/kg) resulted in considerable impairments of respiratory and synthetic mitochondrial functions; their manifestations depended on the dose of the toxic agent and the duration of the intoxication increased and accompanied by complete uncoupling of oxidation and phosphorylation processes in liver mitochondria. The intoxication induced considerable liver damage and accumulation of NO in blood plasma and liver tissue. The changes of some parameters of liver mitochondrial functional activity demonstrate an oscillative pattern, reflecting compensatory mechanisms during intoxication that involved increased reduced glutathione level and enhanced succinate dehydrogenase activity. PMID:26716745

  2. [Mitochondrial dysfunction and compensatory mechanisms in liver cells during acute carbon tetrachloride-induced rat intoxication].

    PubMed

    Zavodnik, I B

    2015-01-01

    Electron-transport chain and redox-balance of mitochondria are important targets that are damaged during intoxication. The aim of the present work was to estimate the role of impairments in cellular bioenergetic function in the development of liver damage during acute carbon tetrachloride intoxication in rats and to elucidate possible compensatory mechanisms. Acute CCl4-induced rat intoxication (0.8 g/kg or 4 g/kg) resulted in considerable impairments of respiratory and synthetic mitochondrial functions; their manifestations depended on the dose of the toxic agent and the duration of the intoxication increased and accompanied by complete uncoupling of oxidation and phosphorylation processes in liver mitochondria. The intoxication induced considerable liver damage and accumulation of NO in blood plasma and liver tissue. The changes of some parameters of liver mitochondrial functional activity demonstrate an oscillative pattern, reflecting compensatory mechanisms during intoxication that involved increased reduced glutathione level and enhanced succinate dehydrogenase activity.

  3. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed Central

    Xu, Feng; Liu, Peiying; Pekar, James J.; Lu, Hanzhang

    2015-01-01

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain’s response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine’s effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  4. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    PubMed

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  5. Behavioral stress causes mitochondrial dysfunction via ABAD up-regulation and aggravates plaque pathology in the brain of a mouse model of Alzheimer disease.

    PubMed

    Seo, Ji-Seon; Lee, Kang-Woo; Kim, Tae-Kyung; Baek, In-Sun; Im, Joo-Young; Han, Pyung-Lim

    2011-06-01

    Basic and clinical studies have reported that behavioral stress worsens the pathology of Alzheimer disease (AD), but the underlying mechanism has not been clearly understood. In this study, we determined the mechanism by which behavioral stress affects the pathogenesis of AD using Tg-APPswe/PS1dE9 mice, a murine model of AD. Tg-APPswe/PS1dE9 mice that were restrained for 2h daily for 16 consecutive days (2-h/16-day stress) from 6.5months of age had significantly increased Aβ(1-42) levels and plaque deposition in the brain. The 2-h/16-day stress increased oxidative stress and induced mitochondrial dysfunction in the brain. Treatment with glucocorticoid (corticosterone) and Aβ in SH-SY5Y cells increased the expression of 17β-hydroxysteroid dehydrogenase (ABAD), mitochondrial dysfunction, and levels of ROS, whereas blockade of ABAD expression by siRNA-ABAD in SH-SY5Y cells suppressed glucocorticoid-enhanced mitochondrial dysfunction and ROS accumulation. The 2-h/16-day stress up-regulated ABAD expression in mitochondria in the brain of Tg-APPswe/PS1dE9 mice. Moreover, all visible Aβ plaques were costained with anti-ABAD in the brains of Tg-APPswe/PS1dE9 mice. Together, these results suggest that behavioral stress aggravates plaque pathology and mitochondrial dysfunction via up-regulation of ABAD in the brain of a mouse model of AD.

  6. Psychological Effects of Stimulant Drugs in Children with Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Conners, C. Keith

    1972-01-01

    Two technical studies involving the drugs dextroamphetamine, methylphenidate, and magnesium pemoline were reported in regard to the psychological characteristics and effects of stimulant drugs in children with minimal brain injuries. (CB)

  7. Drugs of abuse and blood-brain barrier endothelial dysfunction: A focus on the role of oxidative stress.

    PubMed

    Sajja, Ravi K; Rahman, Shafiqur; Cucullo, Luca

    2016-03-01

    Psychostimulants and nicotine are the most widely abused drugs with a detrimental impact on public health globally. While the long-term neurobehavioral deficits and synaptic perturbations are well documented with chronic use of methamphetamine, cocaine, and nicotine, emerging human and experimental studies also suggest an increasing incidence of neurovascular complications associated with drug abuse. Short- or long-term administration of psychostimulants or nicotine is known to disrupt blood-brain barrier (BBB) integrity/function, thus leading to an increased risk of brain edema and neuroinflammation. Various pathophysiological mechanisms have been proposed to underlie drug abuse-induced BBB dysfunction suggesting a central and unifying role for oxidative stress in BBB endothelium and perivascular cells. This review discusses drug-specific effects of methamphetamine, cocaine, and tobacco smoking on brain microvascular crisis and provides critical assessment of oxidative stress-dependent molecular pathways focal to the global compromise of BBB. Additionally, given the increased risk of human immunodeficiency virus (HIV) encephalitis in drug abusers, we have summarized the synergistic pathological impact of psychostimulants and HIV infection on BBB integrity with an emphasis on unifying role of endothelial oxidative stress. This mechanistic framework would guide further investigations on specific molecular pathways to accelerate therapeutic approaches for the prevention of neurovascular deficits by drugs of abuse. PMID:26661236

  8. Altered Brain Structure-Function Relationships Underlie Executive Dysfunction in 22q11.2 Deletion Syndrome.

    PubMed

    Jonas, Rachel K; Jalbrzikowski, Maria; Montojo, Caroline A; Patel, Arati; Kushan, Leila; Chow, Carolyn C; Vesagas, Therese; Bearden, Carrie E

    2015-12-01

    22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder associated with elevated rates of developmental neuropsychiatric disorders and impaired executive function (EF). Disrupted brain structure-function relationships may underlie EF deficits in 22q11DS. We administered the Behavior Rating Inventory of Executive Function (BRIEF) to assess real-world EF in patients with 22q11DS and matched controls (n = 86; age 6-17 years), along with cognitive measures that tap behavioral regulation and metacognition aspects of EF. Using FreeSurfer's whole-brain vertex cortical thickness pipeline, we investigated brain structure-EF relationships in patients with 22q11DS and controls. Behaviorally, patients with 22q11DS were impaired on multiple EF measures. Right orbitofrontal cortical thickness showed a differential relationship between real-world EF in patients with 22q11DS and controls. We also observed a group difference in the relationship between behavioral regulation and metacognition measures with thickness of ventral and dorsolateral prefrontal regions, respectively. Our findings suggest that executive dysfunction characteristic of 22q11DS is underscored by altered prefrontal cortical structure.

  9. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria

    PubMed Central

    Freeman, Brandi D.; Martins, Yuri C.; Akide-Ndunge, Oscar B.; Bruno, Fernando P.; Wang, Hua; Tanowitz, Herbert B.; Spray, David C.; Desruisseaux, Mahalia S.

    2016-01-01

    Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. PMID:27031954

  10. Altered Brain Structure-Function Relationships Underlie Executive Dysfunction in 22q11.2 Deletion Syndrome.

    PubMed

    Jonas, Rachel K; Jalbrzikowski, Maria; Montojo, Caroline A; Patel, Arati; Kushan, Leila; Chow, Carolyn C; Vesagas, Therese; Bearden, Carrie E

    2015-12-01

    22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder associated with elevated rates of developmental neuropsychiatric disorders and impaired executive function (EF). Disrupted brain structure-function relationships may underlie EF deficits in 22q11DS. We administered the Behavior Rating Inventory of Executive Function (BRIEF) to assess real-world EF in patients with 22q11DS and matched controls (n = 86; age 6-17 years), along with cognitive measures that tap behavioral regulation and metacognition aspects of EF. Using FreeSurfer's whole-brain vertex cortical thickness pipeline, we investigated brain structure-EF relationships in patients with 22q11DS and controls. Behaviorally, patients with 22q11DS were impaired on multiple EF measures. Right orbitofrontal cortical thickness showed a differential relationship between real-world EF in patients with 22q11DS and controls. We also observed a group difference in the relationship between behavioral regulation and metacognition measures with thickness of ventral and dorsolateral prefrontal regions, respectively. Our findings suggest that executive dysfunction characteristic of 22q11DS is underscored by altered prefrontal cortical structure. PMID:27606315

  11. Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

    PubMed

    Rangel-López, E; Colín-González, A L; Paz-Loyola, A L; Pinzón, E; Torres, I; Serratos, I N; Castellanos, P; Wajner, M; Souza, D O; Santamaría, A

    2015-01-29

    The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System. Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders. Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes. WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes. These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes.

  12. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia

    PubMed Central

    Holliday, Malcolm A.; Kalayci, M. N.; Harrah, Jean

    1968-01-01

    Rats were made acutely hyper- or hyponatremic by infusion of hypertonic saline or water, respectively. Other rats were maintained in these states from 1 to 7 days to observe the effects of time. Brain tissue water, Na, Cl, and K were compared with serum Na and Cl concentration (NaE and ClE). The following observations are noted: Brain Cl content varies directly with ClE and brain Na content in the Cl space (Nae) varies directly with NaE, indicating little or no restraint on the inward or outward movement of Na or Cl from the Cl space of brain. The intracellular volume of brain fluid (Vi) derived as the difference between total water and Cl space, decreases with hypernatremia and increases with hyponatremia. The changes in Vi in the acute studies are not accompanied by any change in brain K content, or calculated intracellular Na content, and are approximately 0.6 the changes predicted from osmotic behavior of cells, which apply four assumptions: (a) NaE is proportional to osmolality; (b) brain osmolality remains equal to plasma osmolality; (c) Vi is osmotically active; and (d) there is no net gain or loss of solute from Vi. The validity of these assumptions is considered. When changes in osmolality are sustained, Vi is much closer to control values than when in the acute phase. K content increases in hypernatremia and decreases in hyponatremia. The changes in K content can account for some of the adjustment in Vi observed over the extended period of hyper- or hyponatremia. The regression of (Na + K)/v upon NaE describes a slope less than 1.0 and an intercept of (Na + K)/v equal to 40% of the control (Na + K)/v. These characteristics are interpreted to mean that significant quantities of Na and K in brain are osmotically inactive. The brain protects itself from acute volume changes in response to change in NaE by the freedom for Na and Cl to move from the Cl space, by Vi not changing acutely to the degree predicted from osmotic properties of cells in general, and by

  13. Cognitive Impairment and Whole Brain Diffusion in Patients with Neuromyelitis Optica after Acute Relapse

    ERIC Educational Resources Information Center

    He, Diane; Wu, Qizhu; Chen, Xiuying; Zhao, Daidi; Gong, Qiyong; Zhou, Hongyu

    2011-01-01

    The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive…

  14. Reversible acute bilateral blindness resulting from a frontal brain tumor: a case report.

    PubMed

    Hayashi, Koji; Nakada, Mitsutoshi; Miyashita, Katsuyoshi; Hayashi, Yutaka; Hamada, Jun-ichiro

    2014-12-01

    We experienced an unusual case of a 15-year-old girl who suffered acute bilateral blindness caused by a frontal lobe tumour. She underwent emergent operation, after which her vision recovered. This case emphasizes that a brain mass can cause sudden onset blindness and an emergency intervention might save the patient's sight.

  15. Infection related renal impairment: a major cause of acute allograft dysfunction.

    PubMed

    Nampoory, Mangalathillam R N; Johny, Kaivilayil V; Costandy, Jamal N; Nair, Madhavan P; Said, Tarek; Homoud, Hani; Al-Muzairai, Ibrahim; Samhan, Mohmoud; Al-Moussawi, Mustafa

    2003-06-01

    We prospectively analyzed the impact of post-transplant infections on the renal function in 532 stable renal transplant recipients (M=340; F=192) over a period of 5 years. Their age ranged from 3-75 years (40+14 years). During the follow-up period, 52 patients expired and 64 lost on followup. We defined renal impairment (RI) as a persistent rise in serum creatinine above 20% from baseline value. 495 episodes of RI occurred in 269 recipients. This included 180-36% episodes of acute rejection, 53-10.7% Cyclosporine toxicity, 236-47.7% infection related renal impairment [IRRI] and 26-5.3% others. The severity of renal failure is less in IRRI (100+90.2) than that of acute rejection (166+127.1), but was more than that in cyclosporine toxicity (50+42.2). Sites of infection in IRRI were urinary (33%), respiratory (26.3%), septicemia (15.7%) and others (25.4%). Episode of IRRI occurred more frequently in LURD (159-67.4%) compared to LRD-RTR (50-21.2%). Occurrence of IRRI is more significantly higher in patients on triple drug immunosuppression (IS) (34.3%) than those on two drug IS (13.2%) (P=or<0.01). Ecoli (23.1%), Pseudomonas (11.1%), Salmonella (8.8%), Klebsiella (8.8%) and Staphylococai (8.3%) were the major organisms producing IRRI. IRRI is frequent (27.8%) during the first six months. Present study denotes that IRRI is a major cause of acute failure in RTR. PMID:15859909

  16. Corticosteroids prevent acute lung dysfunction caused by thoracic irradiation in unanesthetized sheep

    SciTech Connect

    Loyd, J.E.; Bolds, J.M.; Wickersham, N.; Malcolm, A.W.; Brigham, K.L.

    1988-11-01

    We sought to determine the effect of corticosteroid therapy in a new acute model of oxidant lung injury, thoracic irradiation in awake sheep. Sheep were irradiated with 1,500 rads to the whole chest except for blocking the heart and adjacent ventral lung. Seven experimental sheep were given methylprednisolone (1 g intravenously every 6 h for four doses) and thoracic irradiation; control sheep received only irradiation. In irradiated control sheep, lung lymph flow increased from baseline (7.6 ml/h) to peak at 3 h (13.2), and lung lymph protein clearance increased from 5.1 to 9.7 ml/h. Mean pulmonary artery pressure increased in the irradiated control sheep from 19 to 32.4 cm H/sub 2/O, whereas the lung lymph thromboxane concentration increased from 0.09 to 6.51 ng/ml at 3 h. Arterial oxygen tension in irradiated control sheep fell gradually from 86 mm Hg at baseline to 65 mm Hg at 8 h. Methylprednisolone administration significantly prevented the increase in lung lymph protein clearance, mean pulmonary artery pressure, and lung lymph thromboxane concentration. Methylprednisolone also prevented the fall in arterial oxygen tension after thoracic irradiation, but did not prevent a further decrease in lymphocytes in blood or lung lymph after radiation. We conclude that corticosteroid therapy prevents most of the acute physiologic changes caused by thoracic irradiation in awake sheep.

  17. Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction

    PubMed Central

    De Jesús Andino, Francisco; Jones, Letitia; Maggirwar, Sanjay B.; Robert, Jacques

    2016-01-01

    While increasing evidence points to a key role of monocytes in amphibian host defenses, monocytes are also thought to be important in the dissemination and persistent infection caused by ranavirus. However, little is known about the fate of infected macrophages or if ranavirus exploits immune privileged organs, such as the brain, in order to establish a reservoir. The amphibian Xenopus laevis and Frog Virus 3 (FV3) were established as an experimental platform for investigating in vivo whether ranavirus could disseminate to the brain. Our data show that the FV3 infection alters the BBB integrity, possibly mediated by an inflammatory response, which leads to viral dissemination into the central nervous system in X. laevis tadpole but not adult. Furthermore, our data suggest that the macrophages play a major role in viral dissemination by carrying the virus into the neural tissues. PMID:26931458

  18. Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis

    PubMed Central

    Flierl, Michael A; Stahel, Philip F; Rittirsch, Daniel; Huber-Lang, Markus; Niederbichler, Andreas D; Hoesel, L Marco; Touban, Basel M; Morgan, Steven J; Smith, Wade R; Ward, Peter A; Ipaktchi, Kyros

    2009-01-01

    Introduction Septic encephalopathy secondary to a breakdown of the blood-brain barrier (BBB) is a known complication of sepsis. However, its pathophysiology remains unclear. The present study investigated the effect of complement C5a blockade in preventing BBB damage and pituitary dysfunction during experimental sepsis. Methods Using the standardised caecal ligation and puncture (CLP) model, Sprague-Dawley rats were treated with either neutralising anti-C5a antibody or pre-immune immunoglobulin (Ig) G as a placebo. Sham-operated animals served as internal controls. Results Placebo-treated septic rats showed severe BBB dysfunction within 24 hours, accompanied by a significant upregulation of pituitary C5a receptor and pro-inflammatory cytokine expression, although gene levels of growth hormone were significantly attenuated. The pathophysiological changes in placebo-treated septic rats were restored by administration of neutralising anti-C5a antibody to the normal levels of BBB and pituitary function seen in the sham-operated group. Conclusions Collectively, the neutralisation of C5a greatly ameliorated pathophysiological changes associated with septic encephalopathy, implying a further rationale for the concept of pharmacological C5a inhibition in sepsis. PMID:19196477

  19. Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie

    2012-03-01

    Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.

  20. Probiotics Prevent Intestinal Barrier Dysfunction in Acute Pancreatitis in Rats via Induction of Ileal Mucosal Glutathione Biosynthesis

    PubMed Central

    Lutgendorff, Femke; Nijmeijer, Rian M.; Sandström, Per A.; Trulsson, Lena M.; Magnusson, Karl-Eric; Timmerman, Harro M.; van Minnen, L. Paul; Rijkers, Ger T.; Gooszen, Hein G.; Akkermans, Louis M. A.; Söderholm, Johan D.

    2009-01-01

    Background During acute pancreatitis (AP), oxidative stress contributes to intestinal barrier failure. We studied actions of multispecies probiotics on barrier dysfunction and oxidative stress in experimental AP. Methodology/Principal Findings Fifty-three male Spraque-Dawley rats were randomly allocated into five groups: 1) controls, non-operated, 2) sham-operated, 3) AP, 4) AP and probiotics and 5) AP and placebo. AP was induced by intraductal glycodeoxycholate infusion and intravenous cerulein (6 h). Daily probiotics or placebo were administered intragastrically, starting five days prior to AP. After cerulein infusion, ileal mucosa was collected for measurements of E. coli K12 and 51Cr-EDTA passage in Ussing chambers. Tight junction proteins were investigated by confocal immunofluorescence imaging. Ileal mucosal apoptosis, lipid peroxidation, and glutathione levels were determined and glutamate-cysteine-ligase activity and expression were quantified. AP-induced barrier dysfunction was characterized by epithelial cell apoptosis and alterations of tight junction proteins (i.e. disruption of occludin and claudin-1 and up-regulation of claudin-2) and correlated with lipid peroxidation (r>0.8). Probiotic pre-treatment diminished the AP-induced increase in E. coli passage (probiotics 57.4±33.5 vs. placebo 223.7±93.7 a.u.; P<0.001), 51Cr-EDTA flux (16.7±10.1 vs. 32.1±10.0 cm/s10−6; P<0.005), apoptosis, lipid peroxidation (0.42±0.13 vs. 1.62±0.53 pmol MDA/mg protein; P<0.001), and prevented tight junction protein disruption. AP-induced decline in glutathione was not only prevented (14.33±1.47 vs. 8.82±1.30 nmol/mg protein, P<0.001), but probiotics even increased mucosal glutathione compared with sham rats (14.33±1.47 vs. 10.70±1.74 nmol/mg protein, P<0.001). Glutamate-cysteine-ligase activity, which is rate-limiting in glutathione biosynthesis, was enhanced in probiotic pre-treated animals (probiotics 2.88±1.21 vs. placebo 1.94±0.55 nmol/min/mg protein; P<0

  1. B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity

    PubMed Central

    Klotz, Luisa; Kuzmanov, Ivan; Hucke, Stephanie; Gross, Catharina C.; Posevitz, Vilmos; Dreykluft, Angela; Schulte-Mecklenbeck, Andreas; Janoschka, Claudia; Lindner, Maren; Herold, Martin; Schwab, Nicholas; Ludwig-Portugall, Isis; Kurts, Christian; Meuth, Sven G.; Kuhlmann, Tanja; Wiendl, Heinz

    2016-01-01

    Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood–brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity. PMID:27671636

  2. Source localization of intermittent rhythmic delta activity in a patient with acute confusional migraine: cross-spectral analysis using standardized low-resolution brain electromagnetic tomography (sLORETA).

    PubMed

    Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min

    2016-01-01

    Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.

  3. Amisulpride-induced acute akathisia in OCD: an example of dysfunctional dopamine–serotonin interactions?

    PubMed Central

    Ersche, Karen D; Cumming, Paul; Craig, Kevin J; Müller, Ulrich; Fineberg, Naomi A; Bullmore, Edward T; Robbins, Trevor W

    2013-01-01

    We report about a clinical observation in a well-characterized group of patients with obsessive–compulsive disorder (OCD) during an experimental medicine study in which a single dose of amisulpride (a selective D2/3 antagonist) was administered. Almost half of the OCD patients, in particular those with less severe obsessive–compulsive symptoms, experienced acute akathisia in response to the amisulpride challenge. This unexpectedly high incidence of akathisia in the selective serotonin reuptake inhibitor (SSRI)-treated patients with OCD suggests that individual differences in dopamine–serotonin interactions underlie the clinical heterogeneity of OCD, and may thus explain the insufficiency of SSRI monotherapy in those patients not experiencing a satisfactory outcome in symptom reduction. We further speculate about the neuropathology possibly underlying this clinical observation and outline a testable hypothesis for future molecular imaging studies. PMID:21746752

  4. Amisulpride-induced acute akathisia in OCD: an example of dysfunctional dopamine-serotonin interactions?

    PubMed

    Ersche, Karen D; Cumming, Paul; Craig, Kevin J; Müller, Ulrich; Fineberg, Naomi A; Bullmore, Edward T; Robbins, Trevor W

    2012-06-01

    We report about a clinical observation in a well-characterized group of patients with obsessive-compulsive disorder (OCD) during an experimental medicine study in which a single dose of amisulpride (a selective D₂/₃ antagonist) was administered. Almost half of the OCD patients, in particular those with less severe obsessive-compulsive symptoms, experienced acute akathisia in response to the amisulpride challenge. This unexpectedly high incidence of akathisia in the selective serotonin reuptake inhibitor (SSRI)-treated patients with OCD suggests that individual differences in dopamine-serotonin interactions underlie the clinical heterogeneity of OCD, and may thus explain the insufficiency of SSRI monotherapy in those patients not experiencing a satisfactory outcome in symptom reduction. We further speculate about the neuropathology possibly underlying this clinical observation and outline a testable hypothesis for future molecular imaging studies.

  5. Minimal Brain Dysfunction in Childhood: II. Late Outcome in Relation to Initial Presentation. III. Predictive Factors in Relation to Late Outcome.

    ERIC Educational Resources Information Center

    Milman, Doris H.

    Two studies explore the late outcome of minimal brain dysfunction in 73 patients in relation to their initial presentation and predictive factors. Both studies followed the patients for a period of 10 to 20 years. Findings from the first study of initial presentation in relation to adult outcome showed that there was a strong positive correlation…

  6. Oral glutamine supplementation improves intestinal permeability dysfunction in a murine acute graft-vs.-host disease model.

    PubMed

    Noth, Rainer; Häsler, Robert; Stüber, Eckhard; Ellrichmann, Mark; Schäfer, Heiner; Geismann, Claudia; Hampe, Jochen; Bewig, Burkhard; Wedel, Thilo; Böttner, Martina; Schreiber, Stefan; Rosenstiel, Philip; Arlt, Alexander

    2013-04-01

    Although a profound barrier dysfunction has been reported, little is known about the pathophysiological mechanism evoking gastrointestinal graft-vs.-host disease (GI-GvHD) and apparent therapeutic options. The aim of this study was to evaluate the influence of oral glutamine on the course of GI-GvHD in an acute semiallogenic graft-vs.-host disease (GvHD) in irradiated B6D2F1 mice. An acute semiallogenic GvHD was induced by intraperitoneal injection of lymphocytes from C57BL/6 mice to irradiated B6D2F1 mice. Half of the GvHD animals received oral glutamine supplementation for 6 days started at the time of lymphocyte transfer. Six days after induction of the semiallogenic GvHD, jejunum specimens were prepared. The expression of the proinflammatory cytokine TNF-α and the tight junction protein occludin was investigated by PCR. Histological changes along with the apoptotic response were evaluated and intestinal permeability was assessed. Animals with GvHD showed a strong increase in paracellular permeability as a sign of the disturbed barrier function. TNF-α expression was significantly increased and the expression of the tight junction protein occludin decreased. GvHD led to mucosal atrophy, crypt hyperplasia, crypt apoptosis, and a disintegration of the tight junctions. Glutamine-treated mice showed reduced expression of TNF-α, increased occludin expression, fewer histological changes in the jejunum, smaller number of apoptotic cells in the crypt, and reduced gastrointestinal permeability. In conclusion, oral glutamine seems to have beneficial effects on the severity of inflammatory changes in the course of GvHD and might be a therapeutic option.

  7. [A young patient of acute encephalitis complicated with acyclovir encephalopathy without renal dysfunction].

    PubMed

    Tomori, Koji; Isozumi, Kazuo; Motohashi, Sachiko; Komatsumoto, Satoru; Fukuuchi, Yasuo

    2003-08-01

    A previously healthy 30-year-old woman was admitted to our hospital because of impaired consciousness after convulsion. A temporary diagnosis of herpes simplex encephalitis was made, and intravenous acyclovir (ACV) therapy (250 mg four times daily in normal saline over 2 hours) was started. Three days later, she became confused, and was having hallucinations, dysarthria and generalized painful seizures occurred without focal neurologic deficit. Whether the neuropsychiatric symptoms were related to herpes simplex encephalitis or acyclovir neurotoxity was initially unclear. The brain MRI and lumbar puncture findings were initially normal, but abnormal FLAIR lesions appeared later. ACV-associated encephalopathy was considered. ACV was discontinued, and she recovered from the neurological disorder within 24 hours. Although blood levels of acyclovir were not determined, it is unlikely that they were in a toxic range, in view of her normal renal function.

  8. Minimal Brain Dysfunction in Childhood: 1. Outcome in Late Adolescence and Early Adult Years. Final Version.

    ERIC Educational Resources Information Center

    Milman, Doris H.

    Seventy-three patients, diagnosed in childhood as having either maturational lag or organic brain syndrome, were followed for an average of 12 years into late adolescence and early adult life for the purpose of discovering the outcome with respect to ultimate psychiatric status, educational attainment, social adjustment, and global adjustment. At…

  9. Neural Correlates of Motor Dysfunction in Children with Traumatic Brain Injury: Exploration of Compensatory Recruitment Patterns

    ERIC Educational Resources Information Center

    Caeyenberghs, K.; Wenderoth, N.; Smits-Engelsman, B. C. M.; Sunaert, S.; Swinnen, S. P.

    2009-01-01

    Traumatic brain injury (TBI) is a common form of disability in children. Persistent deficits in motor control have been documented following TBI but there has been less emphasis on changes in functional cerebral activity. In the present study, children with moderate to severe TBI (n = 9) and controls (n = 17) were scanned while performing cyclical…

  10. The Nuclear Receptor PPARγ as a Therapeutic Target for Cerebrovascular and Brain Dysfunction in Alzheimer's Disease

    PubMed Central

    Nicolakakis, Nektaria; Hamel, Edith

    2010-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ), and synthetic ligands for PPARα (fibrates) and PPARγ (Thiazolidinediones, TZDs) are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer's disease (AD), leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials. PMID:20725514

  11. Factor Structure of the Comprehensive Trail Making Test in Children and Adolescents with Brain Dysfunction

    ERIC Educational Resources Information Center

    Allen, Daniel N.; Thaler, Nicholas S.; Barchard, Kimberly A.; Vertinski, Mary; Mayfield, Joan

    2012-01-01

    The Comprehensive Trail Making Test (CTMT) is a relatively new version of the Trail Making Test that has a number of appealing features, including a large normative sample that allows raw scores to be converted to standard "T" scores adjusted for age. Preliminary validity information suggests that CTMT scores are sensitive to brain injury and…

  12. Bowel Dysfunction and Colon Transit Time in Brain-Injured Patients

    PubMed Central

    Lim, Yu Hyun; Kim, Dong Hyun; Lee, Moon Young

    2012-01-01

    Objective To report the defecation patterns of brain-injured patients and evaluate the relationship between functional ability and colon transit time (CTT) in stroke patients. Method A total of 55 brain-injured patients were recruited. Patient interviews and medical records review of pattern of brain injury, anatomical site of lesion, bowel habits, constipation score, and Bristol scale were conducted. We divided the patients into constipation (n=29) and non-constipation (n=26) groups according to Rome II criteria for constipation. The CTTs of total and segmental colon were assessed using radio-opaque markers Kolomark® and functional ability was evaluated using the functional independence measure (FIM). Results Constipation scores in constipation and non-constipation groups were 7.32±3.63 and 5.04±2.46, respectively, and the difference was statistically significant. The CTTs of the total colon in both groups were 46.6±18.7 and 32.3±23.5 h, respectively. The CTTs of total, right, and left colon were significantly delayed in the constipation group (p<0.05). No significant correlation was found between anatomical location of brain injury and constipation score or total CTT. Only the CTT of the left colon was delayed in the patient group with pontine lesions (p<0.05). Conclusion The constipation group had significantly elevated constipation scores and lower Bristol stool form scale, with prolonged CTTs of total, right, and left colon. In classification by site of brain injury, we did not find significantly different constipation scores, Bristol stool form scale, or CTTs between the groups with pontine and suprapontine injury. PMID:22837973

  13. Adrenoceptor hyporeactivity is responsible for Escherichia coli endotoxin-induced acute vascular dysfunction in humans.

    PubMed

    Pleiner, Johannes; Heere-Ress, Elisabeth; Langenberger, Herbert; Sieder, Anna E; Bayerle-Eder, Michaela; Mittermayer, Fritz; Fuchsjäger-Mayrl, Gabriele; Böhm, Johannes; Jansen, Burkhard; Wolzt, Michael

    2002-01-01

    Impaired response to catecholamines contributes to the altered hemodynamics in sepsis, which has been attributed to excessive NO formation. We have studied the systemic hemodynamic and local forearm responses and inducible NO synthase (iNOS) expression during experimental endotoxemia in humans. Escherichia coli endotoxin (lipopolysaccharide [LPS]) was administered at doses of 1 or 2 ng/kg to healthy volunteers. In 10 subjects, the systemic pressor effect of phenylephrine was assessed before and after the administration of LPS. In 9 further subjects, forearm blood flow responses to intra-arterial noradrenaline, acetylcholine, glyceryl trinitrate, and N(G)-monomethyl-L-arginine (L-NMMA) were studied at baseline and after LPS administration. Peripheral blood was collected and analyzed for iNOS mRNA and protein. Four hours after LPS, the response of systolic blood pressure (P<0.0005) and heart rate (P<0.05) to phenylephrine was significantly reduced. In the forearm, noradrenaline-induced vasoconstriction was also reduced by approximately 50% (P<0.01), but L-NMMA responsiveness was unchanged. iNOS mRNA or protein was not increased. Marked vascular adrenoceptor hyporeactivity is detectable in the absence of increased NO activity or iNOS expression in endotoxemia, arguing against major involvement of vascular iNOS activity in the acute systemic vasodilation to LPS.

  14. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    PubMed Central

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities), Vsucc (complexes II, III, and IV activities), Vtmpd (complex IV activity), together with mitochondrial coupling (Vmax/V0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P < 0.0001), Vsucc (−65%; P < 0.0001), and Vtmpd (−3.5%; P < 0.001). Mitochondrial coupling (Vmax/V0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke. PMID:25654095

  15. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD. PMID:27442922

  16. Dysfunctions in brain networks supporting empathy: An fMRI study in adults with autism spectrum disorders

    PubMed Central

    Schulte-Rüther, Martin; Greimel, Ellen; Markowitsch, Hans J.; Kamp-Becker, Inge; Remschmidt, Helmut; Fink, Gereon R.; Piefke, Martina

    2010-01-01

    The present study aimed at identifying dysfunctions in brain networks that may underlie disturbed empathic behavior in autism spectrum disorders (ASD). During functional magnetic resonance imaging, subjects were asked to identify the emotional state observed in a facial stimulus (other-task) or to evaluate their own emotional response (self-task). Behaviorally, ASD subjects performed equally to the control group during the other-task, but showed less emotionally congruent responses in the self-task. Activations in brain regions related to theory of mind were observed in both groups. Activations of the medial prefrontal cortex (MPFC) were located in dorsal subregions in ASD subjects and in ventral areas in control subjects. During the self-task, ASD subjects activated an additional network of frontal and inferior temporal areas. Frontal areas previously associated with the human mirror system were activated in both tasks in control subjects, while ASD subjects recruited these areas during the self-task only. Activations in the ventral MPFC may provide the basis for one's “emotional bond” with other persons’ emotions. Such atypical patterns of activation may underlie disturbed empathy in individuals with ASD. Subjects with ASD may use an atypical cognitive strategy to gain access to their own emotional state in response to other people's emotions. PMID:20945256

  17. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD.

  18. Association between Peripheral Oxidative Stress and White Matter Damage in Acute Traumatic Brain Injury

    PubMed Central

    Lin, Wei-Ming; Chen, Meng-Hsiang; Wang, Hung-Chen; Lu, Cheng-Hsien; Chen, Pei-Chin; Chen, Hsiu-Ling; Tsai, Nai-Wen; Su, Yu-Jih; Li, Shau-Hsuan; Kung, Chia-Te; Chiu, Tsui-Min; Weng, Hsu-Huei; Lin, Wei-Che

    2014-01-01

    The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI). However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS) concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA) and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM) damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI. PMID:24804213

  19. Two-photon excitation STED microscopy in two colors in acute brain slices.

    PubMed

    Bethge, Philipp; Chéreau, Ronan; Avignone, Elena; Marsicano, Giovanni; Nägerl, U Valentin

    2013-02-19

    Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ~350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.

  20. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    PubMed

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  1. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    NASA Astrophysics Data System (ADS)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  2. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    PubMed Central

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-01-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models. PMID:26971573

  3. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.

    PubMed

    Okazawa, H; Ikawa, M; Tsujikawa, T; Kiyono, Y; Yoneda, M

    2014-12-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases.

  4. Indian research on acute organic brain syndrome: Delirium

    PubMed Central

    Pinto, Charles

    2010-01-01

    Delirium, though quite often referred to psychiatrists for management, does not find many takers for analysis, research and publications. Acute in onset, multiplicity of etiology and manifestations, high risk of mortality delirium is very rewarding in proper management and outcome. Delirium has a limited agenda on teaching programs, research protocols and therapeutic strategies. There is a dearth of Indian studies both in international and national scientific literature. This annotation is based on a Medline search for “delirium India” on Pubmed, which resulted in 54 articles. A search in Indian Journal of Psychiatry for “delirium” resulted in 38 published articles, “delirium tremens” showed up only five articles. The articles are primarily from the Indian Journal of Psychiatry with cross reference to articles on Pubmed or Google search on Indian studies and a few international studies PMID:21836671

  5. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed.

    PubMed

    Burk, Raymond F; Hill, Kristina E; Olson, Gary E; Weeber, Edwin J; Motley, Amy K; Winfrey, Virginia P; Austin, Lori M

    2007-06-01

    Selenoprotein P (Sepp1) is a plasma and extracellular protein that is rich in selenium. Deletion of Sepp1 results in sharp decreases of selenium levels in the brain and testis with dysfunction of those organs. Deletion of Sepp1 also causes increased urinary selenium excretion, leading to moderate depletion of whole-body selenium. The lipoprotein receptor apolipoprotein E receptor-2 (apoER2) binds Sepp1 and facilitates its uptake by Sertoli cells, thus providing selenium for spermatogenesis. Experiments were performed to assess the effect of apoER2 on the concentration and function of selenium in the brain and on whole-body selenium. ApoER2-/- and apoER2+/+ male mice were fed a semipurified diet with selenite added as the source of selenium. ApoER2-/- mice had depressed brain and testis selenium, but normal levels in liver, kidney, muscle, and the whole body. Feeding a selenium-deficient diet to apoER2-/- mice led to neurological dysfunction and death, with some of the characteristics exhibited by Sepp1-/- mice fed the same diet. Thus, although it does not affect whole-body selenium, apoER2 is necessary for maintenance of brain selenium and for prevention of neurological dysfunction and death under conditions of selenium deficiency, suggesting an interaction of apoER2 with Sepp1 in the brain.

  6. Dysfunctional Activation and Brain Network Profiles in Youth with Obsessive-Compulsive Disorder: A Focus on the Dorsal Anterior Cingulate during Working Memory.

    PubMed

    Diwadkar, Vaibhav A; Burgess, Ashley; Hong, Ella; Rix, Carrie; Arnold, Paul D; Hanna, Gregory L; Rosenberg, David R

    2015-01-01

    Brain network dysfunction is emerging as a central biomarker of interest in psychiatry, in large part, because psychiatric conditions are increasingly seen as disconnection syndromes. Understanding dysfunctional brain network profiles in task-active states provides important information on network engagement in an experimental context. This in turn may be predictive of many of the cognitive and behavioral deficits associated with complex behavioral phenotypes. Here we investigated brain network profiles in youth with obsessive-compulsive disorder (OCD), contrasting them with a group of age-comparable controls. Network interactions were assessed during simple working memory: in particular, we focused on the modulation by the dorsal anterior cingulate cortex (dACC) of cortical, striatal, and thalamic regions. The focus on the dACC was motivated by its hypothesized role in the pathophysiology of OCD. However, its task-active network signatures have not been investigated before. Network interactions were modeled using psychophysiological interaction, a simple directional model of seed to target brain interactions. Our results indicate that OCD is characterized by significantly increased dACC modulation of cortical, striatal, and thalamic targets during working memory, and that this aberrant increase in OCD patients is maintained regardless of working memory demand. The results constitute compelling evidence of dysfunctional brain network interactions in OCD and suggest that these interactions may be related to a combination of network inefficiencies and dACC hyper-activity that has been associated with the phenotype. PMID:25852529

  7. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  8. Parameters of diffusional kurtosis imaging for the diagnosis of acute cerebral infarction in different brain regions

    PubMed Central

    Guo, Yue-Lin; Li, Su-Juan; Zhang, Zhong-Ping; Shen, Zhi-Wei; Zhang, Gui-Shan; Yan, Gen; Wang, Yan-Ting; Rao, Hai-Bing; Zheng, Wen-Bin; Wu, Ren-Hua

    2016-01-01

    Diffusional kurtosis imaging (DKI) is a new type diffusion-weighted sequence which measures the non-Gaussianity of water diffusion. The present study aimed to investigate whether the parameters of DKI could distinguish between differences in water molecule diffusion in various brain regions under the conditions of acute infarction and to identify the optimal DKI parameter for locating ischemic lesions in each brain region. A total of 28 patients with acute ischemic stroke in different brain regions were recruited for the present study. The relative values of DKI parameters were selected as major assessment indices, and the homogeneity of background image and contrast of adjacent structures were used as minor assessment indices. According to the brain region involved in three DKI parametric maps, including mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr), 112 groups of regions of interest were outlined in the following regions: Corpus callosum (n=17); corona radiata (n=26); thalamus (n=21); subcortical white matter (n=24); and cerebral cortex (n=24). For ischemic lesions in the corpus callosum and corona radiata, significant increases in relative Ka were detected, as compared with the other parameters (P<0.05). For ischemic lesions in the thalamus, subcortical white matter and cerebral cortices, an increase in the three parameters was detected, however this difference was not significant. Minor assessment indices demonstrated that Ka lacked tissue contrast and the background of Kr was heterogeneous; thus, MK was the superior assessment parameter for ischemic lesions in these regions. In conclusion, Ka is better suited for the diagnosis of acute ischemic lesions in highly anisotropic brain regions, such as the corpus callosum and corona radiate. MK may be appropriate for the lesions in low anisotropic or isotropic brain regions, such as the thalamus, subcortical white matter and cerebral cortices. PMID:27446298

  9. Induction of acute brain injury in mice by irradiation with high-LET charged particles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Hong

    The present study was performed to evaluate the induction of acute brain injury in mice after 235 Mev/u carbon ion irradiation. In our study, young outbred Kunming mice were divided into four treatment groups according to the penetration depth of carbon ions. Animals were irradiated with a sublethal dose of carbon ion beams prior to the Bragg curve. An experiment was performed to evaluate the acute alterations in histology, DNA double-strand breaks (DNA DSBs) as well as p53and Bax expression in the brain 96 h post-irradiation. The results demonstrated that various histopathological changes, a significant number of DNA DSBs and elevated p53 and Bax protein expression were induced in the brain following exposure to carbon ions. This was particularly true for mice irradiated with ions having a 9.1 cm-pentration depth, indicating that carbon ions can led to deleterious lesions in the brain of young animals within 96 h. Moreover, there was a remarkable increase in DNA DSBs and in the severity of histopathological changes as the penetration depths of ions increased, which may be associated with the complex track structure of heavy ions. These data reveal that carbon ions can promote serious neuropathological degeneration in the cerebral cortex of young mice. Given that damaged neurons cannot regenerate, these findings warrant further investigation of the adverse effects of the space radiation and the passage of a therapeutic heavy ion beam in the plateau region of the Bragg curve through healthy brain tissue.

  10. Catalase-independent early-gene expression in rat brain following acute ethanol exposure.

    PubMed

    Canales, Juan J

    2004-07-30

    Early-gene expression evoked by acute ethanol treatment was studied in rat brain by quantitative immunocytochemistry, with reference to ethanol metabolism by the enzyme catalase. Colocalization with mu-opioid receptor (MOR) sites was also examined. Ethanol challenges [1, 2.5, and 4 g/kg intraperitoneally (i.p.)] evoked dose-dependent increases in c-Fos expression in several brain regions, but overlap with MOR-rich sites was only partial. Strong inhibition of brain catalase activity (ca. 60%) with 3-amino-1,2,4-triazole (AT, 1 g/kg i.p.) did not alter ethanol-induced c-Fos nor Krox-24 expression in any of the brain regions analyzed. This evidence demonstrates that catalase-mediated metabolism is not a requisite for c-Fos nor Krox-24 induction in rat brain following acute ethanol treatment, and suggests that ethanol is by itself capable of eliciting strong neuronal and circuit-level adaptations in the nervous system.

  11. Beneficial Effect of Erythropoietin Short Peptide on Acute Traumatic Brain Injury.

    PubMed

    Wang, Bo; Kang, Mitchell; Marchese, Michelle; Rodriguez, Esther; Lu, Wei; Li, Xintong; Maeda, Yasuhiro; Dowling, Peter

    2016-04-01

    There is currently no effective medical treatment for traumatic brain injury (TBI). Beyond the immediate physical damage caused by the initial impact, additional damage evolves due to the inflammatory response that follows brain injury. Here we show that therapy with JM4, a low molecular weight 19-amino acid nonhematopoietic erythropoietin (EPO) peptidyl fragment, containing amino acids 28-46 derived from the first loop of EPO, markedly reduces acute brain injury. Mice underwent controlled cortical injury and received either whole molecule EPO, JM4, or sham-treatment with phosphate-buffered saline. Animals treated with JM4 peptide exhibited a large decrease in number of dead neural cells and a marked reduction in lesion size at both 3 and 8 days postinjury. Therapy with JM4 also led to improved functional recovery and we observed a treatment window for JM4 peptide that remained open for at least 9 h postinjury. The full-length EPO molecule was divided into a series of 6 contiguous peptide segments; the JM4-containing segment and the adjoining downstream region contained the bulk of the death attenuating effects seen with intact EPO molecule following TBI. These findings indicate that the JM4 molecule substantially blocks cell death and brain injury following acute brain trauma and, as such, presents an excellent opportunity to explore the therapeutic potential of a small-peptide EPO derivative in the medical treatment of TBI. PMID:26715414

  12. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia

    SciTech Connect

    Melton, J.E.; Patlak, C.S.; Pettigrew, K.D.; Cserr, H.F.

    1987-04-01

    This study quantitatively evaluates the contribution of tissue Na, Cl, and K loss to brain volume regulation during acute dilutional hyponatremia (DH) and examines the mechanism of Na loss. DH was produced in pentobarbital sodium-anesthetized rats by intraperitoneal infusion of distilled water and brain water and electrolytes analyzed 30 min, 1 h, 3 h, 4 h, or 6 h later. The rate of Na and Cl loss was greatest during the first 30 min of DH. Net loss of Na and Cl was maximal after 3 h of DH. K loss was slower, achieving significance after 3 h. Electrolyte loss was sufficient to account for observed brain volume regulation after three or more hours of DH. Measurements of /sup 22/Na influx and efflux across the blood brain barrier showed that barrier permeability to Na is unchanged during DH. Analysis of results using a two-compartment model of plasma-brain exchange suggests that loss of brain Na during DH does not result solely from a shift of electrolyte across the blood-brain barrier to plasma, and thus provides indirect evidence for an additional pathway for Na loss, presumably via cerebrospinal fluid.

  13. Tissue-Specific B-Cell Dysfunction and Generalized Memory B-Cell Loss during Acute SIV Infection

    PubMed Central

    Peruchon, Sandrine; Chaoul, Nada; Burelout, Chantal; Delache, Benoit; Brochard, Patricia; Laurent, Pascale; Cognasse, Fabrice; Prévot, Sophie; Garraud, Olivier; Le Grand, Roger; Richard, Yolande

    2009-01-01

    Background Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART). Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV) mac251-infected Cynomolgus macaques. Methods and Findings Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.). We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD−CD27+) B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus–B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. Conclusions These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid organs

  14. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions

    PubMed Central

    Hu, Xiu-Ti

    2016-01-01

    Despite the success of combined antiretroviral therapy, more than half of HIV-1-infected patients in the USA show HIV-associated neurological and neuropsychiatric deficits. This is accompanied by anatomical and functional alterations in vulnerable brain regions of the mesocorticolimbic and nigrostriatal systems that regulate cognition, mood and motivation-driven behaviors, and could occur at early stages of infection. Neurons are not infected by HIV, but HIV-1 proteins (including but not limited to the HIV-1 trans-activator of transcription, Tat) induce Ca2+ dysregulation, indicated by abnormal and excessive Ca2+ influx and increased intracellular Ca2+ release that consequentially elevate cytosolic free Ca2+ levels ([Ca2+]in). Such alterations in intracellular Ca2+ homeostasis significantly disturb normal functioning of neurons, and induce dysregulation, injury, and death of neurons or non-neuronal cells, and associated tissue loss in HIV-vulnerable brain regions. This review discusses certain unique mechanisms, particularly the over-activation and/or upregulation of the ligand-gated ionotropic glutamatergic NMDA receptor (NMDAR), the voltage-gated L-type Ca2+ channel (L-channel) and the transient receptor potential canonical (TRPC) channel (a non-selective cation channel that is also permeable for Ca2+), which may underlie the deleterious effects of Tat on intracellular Ca2+ homeostasis and neuronal hyper-excitation that could ultimately result in excitotoxicity. This review also seeks to provide summarized information for future studies focusing on comprehensive elucidation of molecular mechanisms underlying the pathophysiological effects of Tat (as well as some other HIV-1 proteins and immunoinflammatory molecules) on neuronal function, particularly in HIV-vulnerable brain regions. PMID:26028040

  15. Altered Spontaneous Brain Activity in Patients with Acute Spinal Cord Injury Revealed by Resting-State Functional MRI

    PubMed Central

    Zhu, Ling; Wu, Guangyao; Zhou, Xin; Li, Jielan; Wen, Zhi; Lin, Fuchun

    2015-01-01

    Background Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging. Methods A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity. Results Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores. Conclusion Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as

  16. Predictive Role of Intraoperative Serum Brain Natriuretic Peptide for Early Allograft Dysfunction in Living Donor Liver Transplantation.

    PubMed

    Chae, Min Suk; Koo, Jung Min; Park, Chul Soo

    2016-01-01

    BACKGROUND Early allograft dysfunction (EAD) is considered an important complication in liver transplantation. Serum brain natriuretic peptide (BNP) is a marker of cardiac dysfunction related to end-stage liver disease. We investigated the intraoperative change in the serum BNP level and its contribution to EAD after living donor liver transplantation (LDLT). MATERIAL AND METHODS The perioperative data of 104 patients who underwent LDLT were retrospectively reviewed and compared between patients with and without EAD. Serum BNPs were obtained at each phase, and potentially significant factors (P<0.1) were measured by univariate analysis. The intraoperative mean serum BNP level was compared with other predictors using the AUC, and was analyzed for its relationship with EAD by multivariate logistic regression. RESULTS A total of 31 patients (29.8%) developed EAD after LDLT. In all phases, the EAD group showed higher serum BNP levels than the non-EAD group. The serum BNP level at each phase was less accurate than the mean serum BNP level for EAD. The intraoperative mean serum BNP level showed higher predictive accuracy than the Child-Pugh-Turcotte, model for end-stage liver disease (MELD), and D-MELD (donor age × recipient MELD) scores (p<0.05 for all). After multivariate adjustment, intraoperative mean serum BNP level ≥100 pg/mL was identified as an independent risk factor for EAD, along with kidney disease and graft ischemic time. CONCLUSIONS During LDLT, the EAD group showed higher serum BNP levels than the non-EAD group. An intraoperative mean serum BNP level ≥100 pg/mL is independently associated with EAD after LDLT. PMID:27572618

  17. Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction.

    PubMed

    Huber, B R; Meabon, J S; Hoffer, Z S; Zhang, J; Hoekstra, J G; Pagulayan, K F; McMillan, P J; Mayer, C L; Banks, W A; Kraemer, B C; Raskind, M A; McGavern, D B; Peskind, E R; Cook, D G

    2016-04-01

    Exposure to blast overpressure (BOP) is associated with behavioral, cognitive, and neuroimaging abnormalities. We investigated the dynamic responses of cortical vasculature and its relation to microglia/macrophage activation in mice using intravital two-photon microscopy following mild blast exposure. We found that blast caused vascular dysfunction evidenced by microdomains of aberrant vascular permeability. Microglial/macrophage activation was specifically associated with these restricted microdomains, as evidenced by rapid microglial process retraction, increased ameboid morphology, and escape of blood-borne Q-dot tracers that were internalized in microglial/macrophage cell bodies and phagosome-like compartments. Microdomains of cortical vascular disruption and microglial/macrophage activation were also associated with aberrant tight junction morphology that was more prominent after repetitive (3×) blast exposure. Repetitive, but not single, BOPs also caused TNFα elevation two weeks post-blast. In addition, following a single BOP we found that aberrantly phosphorylated tau rapidly accumulated in perivascular domains, but cleared within four hours, suggesting it was removed from the perivascular area, degraded, and/or dephosphorylated. Taken together these findings argue that mild blast exposure causes an evolving CNS insult that is initiated by discrete disturbances of vascular function, thereby setting the stage for more protracted and more widespread neuroinflammatory responses.

  18. [Event related brain potentials as indicators of neurochemical dysfunctions in psychiatric patients].

    PubMed

    Hegerl, U; Juckel, G; Möller, H J

    1996-05-01

    The increasing knowledge concerning anatomical structures and cellular processes underlying event-related potentials (ERP) and methodological advances in ERP data analysis are beginning to bridge the gap between ERP and neurochemical aspects. ERP reflect directly postsynaptic effects of cortical neurotransmitters (e.g. GABA, glutamate) and indirectly modulating effects of neuromodulators (e.g. serotonin, acetylcholine) on cortical neuronal functioning and are therefore promising as noninvasive indicators of the functioning of neurochemical systems. Several recent reports are summarised suggesting that quite specific relationships may exist between certain ERP parameters and central cholinergic, noradrenergic and especially serotonergic function. Converging arguments from preclinical and clinical studies are presented supporting the hypothesis that the dependence of the response of primary auditory cortices on stimulus intensity (loudness) is regulated by the level of central serotonergic neurotransmission. This intensity dependence is shown to be of clinical value because, within different diagnostic categories, subgroups of patients with a serotonergic dysfunction can be identified and can be treated more specifically with serotonergic drugs. PMID:9005344

  19. Acute evaluation of conversational discourse skills in traumatic brain injury.

    PubMed

    LeBlanc, Joanne; de Guise, Elaine; Champoux, Marie-Claude; Couturier, Céline; Lamoureux, Julie; Marcoux, Judith; Maleki, Mohammed; Feyz, Mitra

    2014-12-01

    This study looked at performance on the conversational discourse checklist of the Protocole Montréal d'évaluation de la communication (D-MEC) in 195 adults with TBI of all severity hospitalized in a Level 1 Trauma Centre. To explore validity, results were compared to findings on tests of memory, mental flexibility, confrontation naming, semantic and letter category naming, verbal reasoning, and to scores on the Montreal Cognitive Assessment. The relationship to outcome as measured with the Disability Rating Scale (DRS), the Extended Glasgow Outcome Scale (GOS-E), length of stay, and discharge destinations was also determined. Patients with severe TBI performed significantly worse than mild and moderate groups (χ(2)(KW2df) = 24.435, p = .0001). The total D-MEC score correlated significantly with all cognitive and language measures (p < .05). It also had a significant moderate correlation with the DRS total score (r = -.6090, p < .0001) and the GOS-E score (r = .539, p < .0001), indicating that better performance on conversational discourse was associated with a lower disability rating and better global outcome. Finally, the total D-MEC score was significantly different between the discharge destination groups (F(3,90) = 20.19, p < .0001). Thus, early identification of conversational discourse impairment in acute care post-TBI was possible with the D-MEC and could allow for early intervention in speech-language pathology.

  20. Influence of microvascular dysfunction on regional myocardial deformation post-acute myocardial infarction: insights from a novel angiographic index for assessing myocardial tissue-level reperfusion.

    PubMed

    He, Ben; Ding, Song; Qiao, Zhiqing; Gao, Lincheng; Wang, Wei; Ge, Heng; Shen, Xuedong; Pu, Jun

    2016-05-01

    To investigate the impact of microvascular dysfunction assessed by angiography on myocardial deformation assessed by two-dimensional speckle-tracking echocardiography in ST-segment elevation myocardial infarction (STEMI). A total of 121 STEMI patients who received primary percutaneous coronary intervention were included. Thrombolysis in myocardial infarction, Myocardial Perfusion Frame Count (TMPFC), a novel angiographic method to assess myocardial perfusion, was used to evaluate microvascular dysfunction. Two-dimensional speckle-tracking echocardiography was performed at 3-7 days after reperfusion. The infarction related regional longitudinal (RLS) strains as well as circumferential (RCS) and radial (RRS) ones, along with global longitudinal, circumferential (GCS), and radial (GRS) strains were measured. Patients with microvascular dysfunction had decreased peak amplitude of RLS (p = 0.012), RCS (p < 0.001), RRS (p = 0.012) at the regional level and decreased peak amplitude of GCS (p = 0.005), GRS (p = 0.012) at the global level. The RCS to RLS and RCS to RRS ratios were significantly different between patients without than with microvascular dysfunction (1.28 ± 0.31 vs. 1.07 ± 0.47, p = 0.027 and 0.69 ± 0.33 vs. 0.56 ± 0.28, p = 0.047). Receiver operator characteristics curves identified a cutoff value of 94 frames for TMPFC to differentiate between normal and abnormal wall motion score index in the sub-acute phase of STEMI (AUC = 0.72; p < 0.001). In the sub-acute phase of STEMI, the presence of microvascular dysfunction in infarcted tissue relates to reduced global and regional myocardial deformation. RCS alterations were more significant than RLS and RRS between patients with than without microvascular dysfunction. TMPFC was useful to predict left ventricular systolic dysfunction in the sub-acute phase of STEMI.

  1. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    PubMed

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  2. Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2015-09-01

    Metabolic phenotyping corresponds to the large-scale quantitative and qualitative analysis of the metabolome i.e., the low-molecular weight <1 KDa fraction in biological samples, and provides a key opportunity to advance neurosciences. Proton nuclear magnetic resonance and mass spectrometry are the main analytical platforms used for metabolic profiling, enabling detection and quantitation of a wide range of compounds of particular neuro-pharmacological and physiological relevance, including neurotransmitters, secondary messengers, structural lipids, as well as their precursors, intermediates and degradation products. Metabolic profiling is therefore particularly indicated for the study of central nervous system by probing metabolic and neurochemical profiles of the healthy or diseased brain, in preclinical models or in human samples. In this review, we introduce the analytical and statistical requirements for metabolic profiling. Then, we focus on key studies in the field of metabolic profiling applied to the characterization of animal models and human samples of central nervous system disorders. We highlight the potential of metabolic profiling for pharmacological and physiological evaluation, diagnosis and drug therapy monitoring of patients affected by brain disorders. Finally, we discuss the current challenges in the field, including the development of systems biology and pharmacology strategies improving our understanding of metabolic signatures and mechanisms of central nervous system diseases. PMID:25616565

  3. Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders.

    PubMed

    Caria, Andrea; Venuti, Paola; de Falco, Simona

    2011-12-01

    Despite intersubject variability, dramatic impairments of socio-communicative skills are core features of autistic spectrum disorder (ASD). A deficit in the ability to express and understand emotions has often been hypothesized to be an important correlate of such impairments. Little is known about individuals with ASD's ability to sense emotions conveyed by nonsocial stimuli such as music. Music has been found to be capable of evoking and conveying strong and consistent positive and negative emotions in healthy subjects. The ability to process perceptual and emotional aspects of music seems to be maintained in ASD. Individuals with ASD and neurotypical (NT) controls underwent a single functional magnetic resonance imaging (fMRI) session while processing happy and sad music excerpts. Overall, fMRI results indicated that while listening to both happy and sad music, individuals with ASD activated cortical and subcortical brain regions known to be involved in emotion processing and reward. A comparison of ASD participants with NT individuals demonstrated decreased brain activity in the premotor area and in the left anterior insula, especially in response to happy music excerpts. Our findings shed new light on the neurobiological correlates of preserved and altered emotional processing in ASD.

  4. Eyeball Pressure Stimulation Unveils Subtle Autonomic Cardiovascular Dysfunction in Persons with a History of Mild Traumatic Brain Injury.

    PubMed

    Hilz, Max J; Aurnhammer, Felix; Flanagan, Steven R; Intravooth, Tassanai; Wang, Ruihao; Hösl, Katharina M; Pauli, Elisabeth; Koehn, Julia

    2015-11-15

    After mild traumatic brain injury (mTBI), patients have increased long-term mortality rates, persisting even beyond 13 years. Pathophysiology is unclear. Yet, central autonomic network dysfunction may contribute to cardiovascular dysregulation and increased mortality. Purely parasympathetic cardiovascular challenge by eyeball pressure stimulation (EP), might unveil subtle autonomic dysfunction in post-mTBI patients. We investigated whether mild EP shows autonomic cardiovascular dysregulation in post-mTBI patients. In 24 patients (34 ± 12 years; 5-86 months post-injury) and 27 controls (30 ± 11 years), we monitored respiration, electrocardiographic RR intervals (RRI), systolic and diastolic blood pressure (BPsys, BPdia) before and during 2 min of 30 mm Hg EP, applied by an ophthalmologic ocular pressure device (Okulopressor(®)). We calculated spectral powers of RRI in the mainly sympathetic low frequency (LF; 0.04-0.15 Hz) and parasympathetic high frequency (HF; 0.15-0.5 Hz) ranges, and of BP in the sympathetic LF range, the RRI-LF/HF ratio as index of the sympathetic-parasympathetic balance, normalized (nu) RRI-LF- and HF-powers, and LF- and HF-powers after natural logarithmic transformation (ln). Parameters before and during EP in post-mTBI patients and controls were compared by repeated measurement analysis of variance with post hoc analysis (p < 0.05). During EP, BPsys and BPdia increased in post-mTBI patients. Only in controls but not in post-mTBI patients, EP increased RRI-HFnu-powers and decreased RRI-LF-powers, RRI-LFnu-powers, BPsys-LF-powers, BPsys-lnLF-powers and BPdia-lnLF-powers. RRI-LF/HF ratios slightly increased in post-mTBI patients but slightly decreased in controls upon EP. Even with only mild EP, our controls showed normal EP responses and shifted sympathetic-parasympathetic balance towards parasympathetic predominance. In contrast, our post-mTBI patients could not increase parasympathetic heart rate modulation but

  5. Change in Brain Magnetic Resonance Spectroscopy after Treatment during Acute HIV Infection

    PubMed Central

    Sailasuta, Napapon; Ross, William; Ananworanich, Jintanat; Chalermchai, Thep; DeGruttola, Victor; Lerdlum, Sukalaya; Pothisri, Mantana; Busovaca, Edgar; Ratto-Kim, Silvia; Jagodzinski, Linda; Spudich, Serena; Michael, Nelson; Kim, Jerome H.; Valcour, Victor

    2012-01-01

    Objective Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). Methods Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. Results After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. Interpretation We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury. PMID:23229129

  6. Acute sports-related traumatic brain injury and repetitive concussion.

    PubMed

    Guskiewicz, Kevin M; Broglio, Steven P

    2015-01-01

    Concussions are described as functional, not structural injuries, and therefore cannot be easily detected through standard diagnostic imaging. The vast differences between individual athletes makes identifying and evaluating sport-related concussion one of the most complex and perplexing injuries faced by medical personnel. The literature, as well as most consensus statements, supports the use of a multifaceted approach to concussion evaluation on the sideline of the athletic field. Using a standardized clinical examination that is supported by objective measures of concussion-related symptoms, cognitive function, and balance provides clinicians with the ability to track recovery in an objective manner. When used in combination, these tests allow for more informed diagnosis and treatment plan, which should involve a graduated return to play progression. Establishing a comprehensive emergency action plan that can guide the on-field management of a more serious and potentially catastrophic brain injury is also essential. This review will address these management issues, as well as the recent concerns about the risk of long-term neurologic conditions believed to be associated with repetitive concussion.

  7. Brain and muscle redox imbalance elicited by acute ethylmalonic acid administration.

    PubMed

    Schuck, Patrícia Fernanda; Milanez, Ana Paula; Felisberto, Francine; Galant, Leticia Selinger; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2015-01-01

    Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2',7'-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy.

  8. Brain and muscle redox imbalance elicited by acute ethylmalonic acid administration.

    PubMed

    Schuck, Patrícia Fernanda; Milanez, Ana Paula; Felisberto, Francine; Galant, Leticia Selinger; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2015-01-01

    Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2',7'-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy. PMID:26010931

  9. Brain and Muscle Redox Imbalance Elicited by Acute Ethylmalonic Acid Administration

    PubMed Central

    Schuck, Patrícia Fernanda; Milanez, Ana Paula; Felisberto, Francine; Galant, Leticia Selinger; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2015-01-01

    Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2’,7’-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy. PMID:26010931

  10. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    PubMed Central

    Levy, Stewart; Carrick, Matthew; Mains, Charles W.; Slone, Denetta S.

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome.

  11. Chronic and acute alcohol administration induced neurochemical changes in the brain: comparison of distinct zebrafish populations.

    PubMed

    Chatterjee, Diptendu; Shams, Soaleha; Gerlai, Robert

    2014-04-01

    The zebrafish is increasingly utilized in the analysis of the effects of ethanol (alcohol) on brain function and behavior. We have shown significant population-dependent alcohol-induced changes in zebrafish behavior and have started to analyze alterations in dopaminergic and serotoninergic responses. Here, we analyze the effects of alcohol on levels of selected neurochemicals using a 2 × 3 (chronic × acute) between-subject alcohol exposure paradigm randomized for two zebrafish populations, AB and SF. Each fish first received the particular chronic treatment (0 or 0.5 vol/vol% alcohol) and subsequently the acute exposure (0, 0.5 or 1.0% alcohol). We report changes in levels of dopamine, DOPAC, serotonin, 5HIAA, glutamate, GABA, aspartate, glycine and taurine as quantified from whole brain extracts using HPLC. We also analyze monoamine oxidase and tyrosine hydroxylase enzymatic activity. The results demonstrate that compared to SF, AB is more responsive to both acute alcohol exposure and acute alcohol withdrawal at the level of neurochemistry, a finding that correlates well with prior behavioral observations and one which suggests the involvement of genes in the observed alcohol effects. We discuss correlations between the current results and prior behavioral findings, and stress the importance of characterization of zebrafish strains for future behavior genetic and psychopharmacology studies.

  12. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury.

    PubMed

    Bjugstad, Kimberly B; Rael, Leonard T; Levy, Stewart; Carrick, Matthew; Mains, Charles W; Slone, Denetta S; Bar-Or, David

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome. PMID:27642494

  13. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    PubMed Central

    Levy, Stewart; Carrick, Matthew; Mains, Charles W.; Slone, Denetta S.

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome. PMID:27642494

  14. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury.

    PubMed

    Bjugstad, Kimberly B; Rael, Leonard T; Levy, Stewart; Carrick, Matthew; Mains, Charles W; Slone, Denetta S; Bar-Or, David

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome.

  15. Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study

    PubMed Central

    2009-01-01

    Introduction There is limited clinical experience with the single-indicator transpulmonary thermodilution (pulse contour cardiac output, or PiCCO) technique in critically ill medical patients, particularly in those with acute heart failure (AHF). Therefore, we compared the cardiac function of patients with AHF or sepsis using the pulmonary artery catheter (PAC) and the PiCCO technology. Methods This retrospective observational study was conducted in the medical intensive care unit of a university hospital. Twelve patients with AHF and nine patients with severe sepsis or septic shock had four simultaneous hemodynamic measurements by PAC and PiCCO during a 24-hour observation period. Comparisons between groups were made with the use of the Mann-Whitney U test. Including all measurements, correlations between data pairs were established using linear regression analysis and are expressed as the square of Pearson's correlation coefficients (r2). Results Compared to septic patients, AHF patients had a significantly lower cardiac index, cardiac function index (CFI), global ejection fraction, mixed venous oxygen saturation (SmvO2) and pulmonary vascular permeability index, but higher pulmonary artery occlusion pressure. All patients with a CFI less than 4.5 per minute had an SmvO2 not greater than 70%. In both groups, the CFI correlated with the left ventricular stroke work index (sepsis: r2 = 0.30, P < 0.05; AHF: r2 = 0.23, P < 0.05) and cardiac power (sepsis: r2 = 0.39, P < 0.05; AHF: r2 = 0.45, P < 0.05). Conclusions In critically ill medical patients, assessment of cardiac function using transpulmonary thermodilution technique is an alternative to the PAC. A low CFI identifies cardiac dysfunction in both AHF and septic patients. PMID:19671146

  16. A 44-Year-Old Man with Eye, Kidney, and Brain Dysfunction

    PubMed Central

    Vodopivec, Ivana; Oakley, Derek H.; Perugino, Cory A.; Venna, Nagagopal; Hedley-Whyte, E. Tessa; Stone, John H.

    2016-01-01

    Retinal vasculopathy with cerebral leukodystrophy (RVCL) is a rare, autosomal dominant condition caused by mutations of the three-prime repair exonuclease-1 (TREX1). The phenotypic expressions range from isolated retinal involvement to varying degrees of retinopathy, cerebral infarction with calcium depositions, nephropathy, and hepatopathy. We report a case of RVCL caused by a novel TREX1 mutation. This patient’s multisystem presentation, retinal involvement interpreted as “retinal vasculitis”, and improvement of neuroimaging abnormalities with dexamethasone led to the accepted diagnosis of a rheumatologic disorder resembling Behçet’s disease. Clinicians should consider RVCL in any patient with retinal capillary obliterations associated with tumefactive brain lesions or nephropathy. PMID:26691497

  17. Proton relaxation in acute and subacute ischemic brain edema

    SciTech Connect

    Boisvert, D.P.; Handa, Y.; Allen, P.S. )

    1990-01-01

    The relation between regional ischemic brain edema and tissue proton relaxation rates (R1 = 1/T1; R2 = 1/T2) were studied in 16 macaque monkeys subjected to MCA occlusion. In vivo R2 measurements were obtained from multiple spin-echo (eight echoes) images taken at 2-, 3-, 4-, and 72-hr postischemia. In vitro R1 and R2 values were determined for corresponding regions after sacrifice at 4 hr (n = 8) or at 72-hr postischemia in seven surviving animals. The water content of the white and gray matter tissue samples was measured by the wet/dry method. Four animals (25%) showed ipsilateral regions of increased signal intensity as early as 2 hr after MCA occlusion. All seven animals imaged at 72 hr displayed such regions. Despite the absence of measured changes in tissue water content, significant decreases in R2, but not in R1, occurred at 4 hr. At this stage, R2 values correlated more closely than R1 with individual variations in water content. At 72 hr, marked decreases in both R1 and R2 were measured in ischemic deep gray matter and white matter. Cortical gray matter was unchanged. In edematous gray and white matter, both R1 and R2 correlated closely with tissue water content, but R2 was consistently 10 to 20 times more sensitive than R1. Biexponential R2 decay was observed at 4 and 72 hr, but only in the white matter region that became severely edematous at 72 hr.

  18. Increased blood-brain transfer in a rabbit model of acute liver failure

    SciTech Connect

    Horowitz, M.E.; Schafer, D.F.; Molnar, P.; Jones, E.A.; Blasberg, R.G.; Patlak, C.S.; Waggoner, J.; Fenstermacher, J.D.

    1983-05-01

    The blood-to-brain transfer of (/sup 14/C)alpha-aminoisobutyric acid was investigated by quantitative autoradiography in normal rabbits and rabbits with acute liver failure induced by the selective hepatotoxin galactosamine. The blood-to-brain transfer of alpha-aminoisobutyric acid was similar in control animals and animals 2 and 7 h after galactosamine injections, but was increased five- to tenfold in certain gray-matter areas of the brain in animals 11 and 18 h after galactosamine treatment. No detectable differences in white-matter uptake of (/sup 14/C)alpha-aminoisobutyric acid were found between the control and treated groups. The increase in alpha-aminoisobutyric acid transfer within the gray-matter areas suggested that a general or nonspecific increase in brain capillary permeability occurred in these areas. No clinical signs of early hepatic encephalopathy were observed in the treated rabbits, except for 1 animal from the 18-h postgalactosamine group. Thus, enhanced blood-brain transfer of alpha-aminoisobutyric acid preceded the development of overt hepatic encephalopathy. The distribution of radioactivity after the intravenous administration of (/sup 14/C)galactosamine showed that virtually none of the hepatotoxin localized in the brain, suggesting that the drug itself does not have a direct effect upon the blood-brain barrier or the brain. The increased uptake of alpha-aminoisobutyric acid at 11 and 18 h implies that the transfer of other solutes would also be enhanced, that central nervous system homeostasis would be compromised, and that the resulting changes in brain fluid composition could contribute to or cause hepatic encephalopathy.

  19. The effects of acute ethanol exposure and ageing on rat brain glutathione metabolism.

    PubMed

    Sommavilla, Michela; Sánchez-Villarejo, M Victoria; Almansa, Inmaculada; Sánchez-Vallejo, Violeta; Barcia, Jorge M; Romero, Francisco Javier; Miranda, María

    2012-09-01

    Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.

  20. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia.

    PubMed

    Johann, Sonja; Beyer, Cordian

    2013-09-01

    The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'. PMID:23196064

  1. Simvastatin reduces VEGF and NO levels in acute stages of experimental traumatic brain injury.

    PubMed

    Yüksel, Hatice; Yavuz, Özlem; Iş, Merih; Çomunoğlu, Nil; Üzüm, Gülay; Akyüz, Feyzullah; Yıldırım, Hayriye Ak

    2013-11-01

    This study was undertaken to evaluate the effect of simvastatin, a cholesterol-lowering agent, on vascular endothelial growth factors (VEGFs), nitric oxide (NO) levels and neuroprotection, in rats with experimentally induced traumatic brain injury (TBI). Forty Wistar albino rats were categorized into four groups: sham operated (S), trauma (T), trauma + vehicle (T + V) and trauma + simvastatin (T + S). The T, T + V and T + S groups were subjected to TBI. The T + V group was administered vehicle [ethanol:saline (1/2)] and the T + S group was administered 1 mg/kg of simvastatin 3 h after the injury insult. Blood and brain tissue specimens were obtained 24 h after the trauma to measure VEGFs and NO levels and perform histopathological examinations. The histopathological injury scores of brain tissues were significantly higher in the T group, and simvastatin significantly prevented brain injury in the T + S group. In the T group, significant increases of VEGF levels in serum and brain tissues were noted, which were prevented with simvastatin treatment in the T + S group. The markedly high levels of NO in brain tissues of the T group were decreased by simvastatin treatment in the T + S group. It can be concluded that, as evidenced by histopathological findings, simvastatin treatment improves neuropathology in acute stages of TBI.

  2. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction.

  3. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction. PMID:20680706

  4. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice.

    PubMed

    Jia, Tingting; Sun, Zhiguo; Lu, Ying; Gao, Jie; Zou, Hao; Xie, Fangyuan; Zhang, Guoqing; Xu, Hao; Sun, Duxin; Yu, Yuan; Zhong, Yanqiang

    2016-01-01

    Due to the impermeability of the blood-brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood-brain barrier permeability-surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics.

  5. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1–42-injected mice

    PubMed Central

    Jia, Tingting; Sun, Zhiguo; Lu, Ying; Gao, Jie; Zou, Hao; Xie, Fangyuan; Zhang, Guoqing; Xu, Hao; Sun, Duxin; Yu, Yuan; Zhong, Yanqiang

    2016-01-01

    Due to the impermeability of the blood–brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood–brain barrier permeability–surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-β1–42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics. PMID:27540290

  6. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice.

    PubMed

    Jia, Tingting; Sun, Zhiguo; Lu, Ying; Gao, Jie; Zou, Hao; Xie, Fangyuan; Zhang, Guoqing; Xu, Hao; Sun, Duxin; Yu, Yuan; Zhong, Yanqiang

    2016-01-01

    Due to the impermeability of the blood-brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood-brain barrier permeability-surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics. PMID:27540290

  7. Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice

    PubMed Central

    Smeland, Olav B; Hadera, Mussie G; McDonald, Tanya S; Sonnewald, Ursula; Borges, Karin

    2013-01-01

    Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model. PMID:23611869

  8. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion.

    PubMed

    Edrissi, Hamidreza; Schock, Sarah C; Cadonic, Robert; Hakim, Antoine M; Thompson, Charlie S

    2016-09-01

    Cerebral small vessel disease (CSVD) is a pathological process leading to lacunar infarcts, leukoaraiosis and cerebral microbleeds. Dysfunction of the blood brain barrier (BBB) has been proposed as a mechanism in the progression cerebral small vessel disease. A rodent model commonly used to study some aspects of CSVD is bilateral common carotid artery occlusion (BCCAO) in the rat. In the present study it was determined that gait impairment, as determined by a tapered beam test, and BBB permeability increased following BCCAO. Cilostazol, a type III phosphodiesterase inhibitor, has been shown to have anti-apoptotic effects and prevent white matter vacuolation and rarefaction induced by BCCAO in rats. In this study the protective effect of cilostazol administration on the increase BBB permeability following BCCAO was determined as well as the effect on plasma levels of circulating microparticles (MPs), cerebral white matter rarefaction, glial activation and gait disturbance. The effect of cilostazol on in vitro endothelial barriers was also evaluated. Cilostazol treatment improved BBB permeability and reduced gait disturbance, visual impairment and microglial activation in optic tract following BCCAO in vivo. It also reduced the degree of cell death and the reduction in trans-endothelial electrical resistance (TEER) in artificial endothelial barriers in vitro induced by MP treatment of in vitro barriers. PMID:27350079

  9. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    PubMed

    Jones, Letitia D; Jackson, Joseph W; Maggirwar, Sanjay B

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  10. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction

    PubMed Central

    Bishop, Paul; Rocca, Dan; Henley, Jeremy M.

    2016-01-01

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology. PMID:27515257

  11. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction

    PubMed Central

    Jones, Letitia D.; Jackson, Joseph W.; Maggirwar, Sanjay B.

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND. PMID:26986758

  12. Parenting Style Is Related to Executive Dysfunction After Brain Injury in Children

    PubMed Central

    Potter, Jennifer L.; Wade, Shari L.; Walz, Nicolay C.; Cassedy, Amy; Yeates, Keith O.; Stevens, M. Hank; Taylor, H. Gerry

    2013-01-01

    Objective The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Method Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3–7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Results Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. Conclusion These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI. PMID:21928918

  13. Fronto-Limbic Brain Dysfunction during the Regulation of Emotion in Schizophrenia.

    PubMed

    Eack, Shaun M; Wojtalik, Jessica A; Barb, Scott M; Newhill, Christina E; Keshavan, Matcheri S; Phillips, Mary L

    2016-01-01

    Schizophrenia is characterized by significant and widespread impairments in the regulation of emotion. Evidence is only recently emerging regarding the neural basis of these emotion regulation impairments, and few studies have focused on the regulation of emotion during effortful cognitive processing. To examine the neural correlates of deficits in effortful emotion regulation, schizophrenia outpatients (N = 20) and age- and gender-matched healthy volunteers (N = 20) completed an emotional faces n-back task to assess the voluntary attentional control subprocess of emotion regulation during functional magnetic resonance imaging. Behavioral measures of emotional intelligence and emotion perception were administered to examine brain-behavior relationships with emotion processing outcomes. Results indicated that patients with schizophrenia demonstrated significantly greater activation in the bilateral striatum, ventromedial prefrontal, and right orbitofrontal cortices during the effortful regulation of positive emotional stimuli, and reduced activity in these same regions when regulating negative emotional information. The opposite pattern of results was observed in healthy individuals. Greater fronto-striatal response to positive emotional distractors was significantly associated with deficits in facial emotion recognition. These findings indicate that abnormalities in striatal and prefrontal cortical systems may be related to deficits in the effortful emotion regulatory process of attentional control in schizophrenia, and may significantly contribute to emotion processing deficits in the disorder. PMID:26930284

  14. Brain Reward Pathway Dysfunction in Maternal Depression and Addiction: A Present and Future Transgenerational Risk

    PubMed Central

    Nephew, Benjamin C.; Murgatroyd, Christopher; Pittet, Florent; Febo, Marcelo

    2016-01-01

    Two research areas that could benefit from a greater focus on the role of the reward pathway are maternal depression and maternal addiction. Both depression and addiction in mothers are mediated by deficiencies in the reward pathway and represent substantial risks to the health of offspring and future generations. This targeted review discusses maternal reward deficits in depressed and addicted mothers, neural, genetic, and epigenetic mechanisms, and the transgenerational transmission of these deficits from mother to offspring. Postpartum depression and drug use disorders may entail alterations in the reward pathway, particularly in striatal and prefrontal areas, which may affect maternal attachment to offspring and heighten the risk of transgenerational effects on the oxytocin and dopamine systems. Alterations may involve neural circuitry changes, genetic factors that impact monoaminergic neurotransmission, as well as growth factors such as BDNF and stress-associated signaling in the brain. Improved maternal reward-based preventative measures and treatments may be specifically effective for mothers and their offspring suffering from depression and/or addiction. PMID:27617302

  15. Computationally Prediction of Candidate Agents for Preventing Organ Dysfunction After Brain Death.

    PubMed

    Liu, Qianwen; Ye, Qifa

    2016-01-01

    BACKGROUND Our aim was to explore the mechanism of post-transplant organ function decrease induced by brain death (BD) and discover a potential candidate drug for improving the survival and organ function after BD. MATERIAL AND METHODS The microarray data developed from the liver tissues after BD were further analyzed by bioinformatics methods. The differentially expressed genes (DEGs) were computationally predicted and the DEGs that involved biological functions were explored by gene ontology (GO) analysis. The candidate agents that could induce the reverse gene signature were predicted based on the Connectivity Map (CMap) database. RESULTS There were total 1374 DEGs, including 589 up-regulated genes and 785 down-regulated genes. Function analysis showed that DEGs were mainly enriched in biological process-related GO terms, such as regulation of transcription, DNA-dependent, inflammatory response, and regulation of phosphorus metabolic process. The down-regulated genes were significantly enriched in transcription factor activity and transcription regulator activity-related molecular function. The down-regulated GO terms exhibited close interaction with each other. CONCLUSIONS The organ function decrease may be attributed by transcription alteration, inflammation response, and metabolic alteration in liver after BD. Spaglumic acid and halcinonide may be potential drugs for preventing organ damage during the BD process. PMID:27170053

  16. Brain Reward Pathway Dysfunction in Maternal Depression and Addiction: A Present and Future Transgenerational Risk

    PubMed Central

    Nephew, Benjamin C.; Murgatroyd, Christopher; Pittet, Florent; Febo, Marcelo

    2016-01-01

    Two research areas that could benefit from a greater focus on the role of the reward pathway are maternal depression and maternal addiction. Both depression and addiction in mothers are mediated by deficiencies in the reward pathway and represent substantial risks to the health of offspring and future generations. This targeted review discusses maternal reward deficits in depressed and addicted mothers, neural, genetic, and epigenetic mechanisms, and the transgenerational transmission of these deficits from mother to offspring. Postpartum depression and drug use disorders may entail alterations in the reward pathway, particularly in striatal and prefrontal areas, which may affect maternal attachment to offspring and heighten the risk of transgenerational effects on the oxytocin and dopamine systems. Alterations may involve neural circuitry changes, genetic factors that impact monoaminergic neurotransmission, as well as growth factors such as BDNF and stress-associated signaling in the brain. Improved maternal reward-based preventative measures and treatments may be specifically effective for mothers and their offspring suffering from depression and/or addiction.

  17. Effect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats

    PubMed Central

    Dabaghian, Fataneh Hashem; Hashemi, Mehrdad; Entezari, Maliheh; Movassaghi, Shabnam; Goushegir, Seyed Ashrafadin; Kalantari, Samaneh; Movafagh, Abolfazl; Sharifi, Zahra Nadia

    2015-01-01

    Objective(s): Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment group (EECR, 100 mg/kg/day) was gavaged from 4 days before, to 3 days after ischemia. Morris water maze test was performed 1 week after ischemia for 4 days. Brain tissue was prepared for Nissl staining. Results: Our data showed no statistical difference between the treatment and ischemia groups in water maze task. So, treatment of ischemia with EECR cannot improve spatial learning and memory. On the contrary EECR ameliorated the CA1 pyramidal cell loss due to transient global ischemia/reperfusion injury. Conclusion: These results suggest that EECR cannot reduce the ischemia-induced, cognitive impairments seen after transient, global cerebral ischemia but can prevent pyramidal cell loss in CA1 region of hippocampus. PMID:25825638

  18. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    PubMed

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  19. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  20. Sulfonylurea Receptor 1 Contributes to the Astrocyte Swelling and Brain Edema in Acute Liver Failure

    PubMed Central

    Jayakumar, A.R.; Valdes, V.; Tong, X.Y.; Shamaladevi, N.; Gonzalez, W.; Norenberg, M.D.

    2014-01-01

    Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, non-selective cation channel (NCCa-ATP channel). We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a 3-fold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by co-treatment of cells with BAY 11-7082, an inhibitor of NF-κB, indicating the involvement of an NF-κB-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF, and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF. PMID:24443056

  1. Methylprednisolone exacerbates acute critical illness-related corticosteroid insufficiency associated with traumatic brain injury in rats.

    PubMed

    Chen, Xin; Zhang, Bin; Chai, Yan; Dong, Bo; Lei, Ping; Jiang, Rongcai; Zhang, Jianning

    2011-03-25

    Emerging evidence demonstrates that severe illness could induce critical illness-related corticosteroid insufficiency (CIRCI) and cause poor prognosis. The purpose of this study was to test the hypothesis that methylprednisolone (MP), a synthetic glucocorticoid, promotes post-traumatic apoptosis in both the hypothalamus and pituitary, resulting in acute CIRCI and increased mortality in the acute phase of traumatic brain injury (TBI). We tested this hypothesis by measuring acute CIRCI in rats subjected to fluid percussion injury (FPI) and treated with MP (5-30mg/kg). The corticosteroid response to TBI was evaluated using the corticosterone increase index (CII), where values less than 2.5 were considered indicative of acute CIRCI. The CII of MP treated rats was comparable to that of saline treated control rats before injury but was significantly decreased in injured rats receiving high-dose MP on post-injury day 7. Similarly, the incidence of acute CIRCI was significantly higher in the high-dose MP group on post-injury day 7. Furthermore, the CII of rats that did not survive post-injury was significantly lower compared to that of survival and was indicative of acute CIRCI. We also examined apoptosis in the paraventricular nucleus (PVN) of the hypothalamus and the adenohypophysis of the pituitary, using a TUNEL assay and transmission electron microscopy (TEM). The number of TUNEL-positive cells was significantly higher in injured rats treated with high-dose MP. No TUNEL-positive cells were detected in the adenohypophysis across experimental groups at either 7 or 14days after TBI. However, autopsies performed on rats that did not survive post-injury revealed obvious apoptotic cells in the adenohypophysis. Moreover, TEM revealed morphological changes characteristic of apoptosis in both the PVN and adenohypophysis of high-dose MP treated rats. These data suggest that MP therapy for TBI could increase neuronal apoptosis in both the hypothalamus and pituitary and

  2. [The importance of the cortex and subcortical structures of the brain in the perception of acute and chronic pain].

    PubMed

    Reschetniak, V K; Kukushkin, M L; Gurko, N S

    2014-01-01

    This review presents the current data in the literature about the importance of the cortex and subcortical structures of the brain in the perception of acute and chronic pain. Discussed the importance of various areas of the brain in perception discriminative and affective components of pain. Discusses also gender differences in pain perception depending on the functional activity of brain cortex and antinociceptive subcortical structures. Analyzed the morphological changes of cortical and subcortical structures of the brain in chronic pain syndromes. It is proved that the decrease in the volume of gray and white matter of cerebral cortex and subcortical structures is a consequence and not the cause of chronic pain syndrome. Discusses the features activate and deactivate certain areas of the cortex of the brain in acute and chronic pain. Analyzed same features the activation of several brain structures in migraine and cluster headache.

  3. Comparing the effect of clopidogrel versus ticagrelor on coronary microvascular dysfunction in acute coronary syndrome patients (TIME trial): study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Although prompt reperfusion treatment restores normal epicardial flow, microvascular dysfunction may persist in some patients with acute coronary syndrome (ACS). Impaired myocardial perfusion is caused by intraluminal platelets, fibrin thrombi and neutrophil plugging; antiplatelet agents play a significant role in terms of protecting against thrombus microembolization. A novel antiplatelet agent, ticagrelor, is a non-thienopyridine, direct P2Y12 blocker that has shown greater, more rapid and more consistent platelet inhibition than clopidogrel. However, the effects of ticagrelor on the prevention of microvascular dysfunction are uncertain. The present study is a comparison between clopidogrel and ticagrelor use for preventing microvascular dysfunction in patients with ST elevation or non-ST elevation myocardial infarction (STEMI or NSTEMI, respectively). Methods/design The TIME trial is a single-center, randomized, open-label, parallel-arm study designed to demonstrate the superiority of ticagrelor over clopidogrel. A total of 152 patients with a spectrum of STEMI or NSTEMI will undergo prospective random assignment to clopidogrel or ticagrelor (1:1 ratio). The primary endpoint is an index of microcirculatory resistance (IMR) measured after percutaneous coronary intervention (PCI); the secondary endpoint is wall motion score index assessed at 3 months by using echocardiography. Discussion The TIME trial is the first study designed to compare the protective effect of clopidogrel and ticagrelor on coronary microvascular dysfunction in patients with STEMI and NSTEMI. Trial registration ClinicalTrials.gov: NCT02026219. Registration date: 24 December 2013. PMID:24885437

  4. Acute brain slice methods for adult and aging animals: application of targeted patch clampanalysis and optogenetics

    PubMed Central

    Daigle, Tanya L.; Chen, Qian; Feng, Guoping

    2014-01-01

    Summary The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically-defined neuronal subtypes. PMID:25023312

  5. Whole-Brain Computed Tomographic Perfusion Imaging in Acute Cerebral Venous Sinus Thrombosis

    PubMed Central

    Mokin, Maxim; Ciambella, Chelsey C.; Masud, Muhammad W.; Levy, Elad I.; Snyder, Kenneth V.; Siddiqui, Adnan H.

    2016-01-01

    Background Acute cerebral venous sinus thrombosis (VST) can be difficult to diagnose because of its diverse clinical presentation. The utility of perfusion imaging for diagnosing VST is not well understood. Summary We retrospectively reviewed cases of acute VST in patients who underwent whole-brain (320-detector-row) computed tomographic (CT) perfusion imaging in combination with craniocervical CT venography. Perfusion maps that were analyzed included cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time, and time to peak. Among the 10 patients with acute VST included in this study, 9 had perfusion abnormalities. All perfusion abnormalities were localized in areas adjacent to the occluded sinus and did not match typical anterior or posterior circulation arterial territories. Bilateral perfusion deficits were seen in 4 cases. In 2 cases, parenchymal hemorrhage was diagnosed on noncontrast CT imaging; in those cases, focal CBV and CBF were reduced. Key Messages Whole-brain CT perfusion imaging with 320-detector-row scanners can further assist in establishing the diagnosis of VST by detecting perfusion abnormalities corresponding to venous and not arterial territories. CT perfusion could assist in the differentiation between focal reversible changes, such as those caused by vasogenic edema, and irreversible changes due to infarction. PMID:27051406

  6. Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke

    PubMed Central

    Lakhan, Shaheen E.; Kirchgessner, Annette; Tepper, Deborah; Leonard, Aidan

    2013-01-01

    Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA) remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs) in blood-brain barrier (BBB) disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPA-associated hemorrhagic complications. Reactive oxygen species can enhance the effects of tPA on MMP activation through the loss of caveolin-1 (cav-1), a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs’ role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined. PMID:23565108

  7. High-strain-rate brain injury model using submerged acute rat brain tissue slices.

    PubMed

    Sarntinoranont, Malisa; Lee, Sung J; Hong, Yu; King, Michael A; Subhash, Ghatu; Kwon, Jiwoon; Moore, David F

    2012-01-20

    Blast-induced traumatic brain injury (bTBI) has received increasing attention in recent years due to ongoing military operations in Iraq and Afghanistan. Sudden impacts or explosive blasts generate stress and pressure waves that propagate at high velocities and affect sensitive neurological tissues. The immediate soft tissue response to these stress waves is difficult to assess using current in vivo imaging technologies. However, these stress waves and resultant stretching and shearing of tissue within the nano- to microsecond time scale of blast and impact are likely to cause initial injury. To visualize the effects of stress wave loading, we have developed a new ex vivo model in which living tissue slices from rat brain, attached to a ballistic gelatin substrate, were subjected to high-strain-rate loads using a polymer split Hopkinson pressure bar (PSHPB) with real-time high-speed imaging. In this study, average peak fluid pressure within the test chamber reached a value of 1584±63.3 psi. Cavitation due to a trailing underpressure wave was also observed. Time-resolved images of tissue deformation were collected and large maximum eigenstrains (0.03-0.42), minimum eigenstrains (-0.33 to -0.03), maximum shear strains (0.09-0.45), and strain rates (8.4×10³/sec) were estimated using digital image correlation (DIC). Injury at 4 and 6 h was quantified using Fluoro-Jade C. Neuronal injury due to PSHPB testing was found to be significantly greater than injury associated with the tissue slice paradigm alone. While large pressures and strains were encountered for these tests, this system provides a controllable test environment to study injury to submerged brain slices over a range of strain rate, pressure, and strain loads. PMID:21970544

  8. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury.

    PubMed

    Kim, Eunhee; Yang, Jiwon; Beltran, Cesar D; Cho, Sunghee

    2014-08-01

    Monocytes/macrophages (MMs), mononuclear phagocytes, have been implicated in stroke-induced inflammation and injury. However, the presence of pro-inflammatory Ly-6C(high) and antiinflammatory Ly-6C(low) monocyte subsets raises uncertainty regarding their role in stroke pathologic assessment. With recent identification of the spleen as an immediate reservoir of MMs, this current study addresses whether the spleen-derived MMs are required for stroke pathologic assessment. We observed that the spleen was contracted in poststroke animals and the contraction was accompanied by decreased number of Ly-6C(high) and Ly-6C(low) subsets in the spleen. The deployment of these subsets from the spleen temporally coincided with respective increases in the ischemic brain. Compared to mice with the spleen, mice receiving a splenectomy just before the stroke displayed less accumulation of Ly-6C(high) and Ly-6C(low) MMs in the brain. Despite the reduced accumulation of both subsets, infarct size and swelling were not reduced in the asplenic mice. The dissociative findings of infarct size and extent of MM infiltration in the postischemic brain indicate minimal involvement of spleen-derived total MMs in acute infarct development. Selective Ly-6C(high) or Ly-6C(low) MM targeting is suggested to address the contribution of the individual subset to acute stroke pathologic assessment.

  9. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress. PMID:26445572

  10. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress.

  11. Intraoperative Targeted Temperature Management in Acute Brain and Spinal Cord Injury.

    PubMed

    Kraft, Jacqueline; Karpenko, Anna; Rincon, Fred

    2016-02-01

    Acute brain and spinal cord injuries affect hundreds of thousands of people worldwide. Though advances in pre-hospital and emergency and neurocritical care have improved the survival of some to these devastating diseases, very few clinical trials of potential neuro-protective strategies have produced promising results. Medical therapies such as targeted temperature management (TTM) have been trialed in traumatic brain injury (TBI), spinal cord injury (SCI), acute ischemic stroke (AIS), subarachnoid hemorrhage (SAH), and intracranial hemorrhage (ICH), but in no study has a meaningful effect on outcome been demonstrated. To this end, patient selection for potential neuro-protective therapies such as TTM may be the most important factor to effectively demonstrate efficacy in clinical trials. The use of TTM as a strategy to treat and prevent secondary neuronal damage in the intraoperative setting is an area of ongoing investigation. In this review we will discuss recent and ongoing studies that address the role of TTM in combination with surgical approaches for different types of brain injury. PMID:26759319

  12. Acute decrease in alkaline phosphatase after brain injury: A potential mechanism for tauopathy.

    PubMed

    Arun, Peethambaran; Oguntayo, Samuel; Albert, Stephen Van; Gist, Irene; Wang, Ying; Nambiar, Madhusoodana P; Long, Joseph B

    2015-11-16

    Dephosphorylation of phosphorylated Tau (pTau) protein, which is essential for the preservation of neuronal microtubule assemblies and for protection against trauma-induced tauopathy and chronic traumatic encephalopathy (CTE), is primarily achieved in brain by tissue non-specific alkaline phosphatase (TNAP). Paired helical filaments (PHFs) and Tau isolated from Alzheimer's disease (AD) patients' brains have been shown to form microtubule assemblies with tubulin only after treatment with TNAP or protein phosphatase-2A, 2B and -1, suggesting that Tau protein in the PHFs of neurons in AD brain is hyperphosphorylated, which prevents microtubule assembly. Using blast or weight drop models of traumatic brain injury (TBI) in rats, we observed pTau accumulation in the brain as early as 6h post-injury and further accumulation which varied regionally by 24h post-injury. The pTau accumulation was accompanied by reduced TNAP expression and activity in these brain regions and a significantly decreased plasma total alkaline phosphatase activity after the weight drop. These results reveal that both blast- and impact acceleration-induced head injuries cause an acute decrease in the level/activity of TNAP in the brain, which potentially contributes to trauma-induced accumulation of pTau and the resultant tauopathy. The regional changes in the level/activity of TNAP or accumulation of pTau after these injuries did not correlate with the accumulation of amyloid precursor protein, suggesting that the basic mechanism underlying tauopathy in TBI might be distinct from that associated with AD.

  13. Initial Sequential Organ Failure Assessment score versus Simplified Acute Physiology score to analyze multiple organ dysfunction in infectious diseases in Intensive Care Unit

    PubMed Central

    Nair, Remyasri; Bhandary, Nithish M.; D’Souza, Ashton D.

    2016-01-01

    Aims: To investigate initial Sequential Organ Failure Assessment (SOFA) score of patients in Intensive Care Unit (ICU), who were diagnosed with infectious disease, as an indicator of multiple organ dysfunction and to examine if initial SOFA score is a better mortality predictor compared to Simplified Acute Physiology Score (SAPS). Materials and Methods: Hospital-based study done in medical ICU, from June to September 2014 with a sample size of 48. Patients aged 18 years and above, diagnosed with infectious disease were included. Patients with history of chronic illness (renal/hepatic/pulmonary/  cardiovascular), diabetes, hypertension, chronic obstructive pulmonary disease, heart disease, those on immunosuppressive therapy/chemoradiotherapy for malignancy and patients in immunocompromised state were excluded. Blood investigations were obtained. Six organ dysfunctions were assessed using initial SOFA score and graded from 0 to 4. SAPS was calculated as the sum of points assigned to each of the 17 variables (12 physiological, age, type of admission, and three underlying diseases). The outcome measure was survival status at ICU discharge. Results: We categorized infectious diseases into dengue fever, leptospirosis, malaria, respiratory tract infections, and others which included undiagnosed febrile illness, meningitis, urinary tract infection and gastroenteritis. Initial SOFA score was both sensitive and specific; SAPS lacked sensitivity. We found no significant association between age and survival status. Both SAPS and initial SOFA score were found to be statistically significant as mortality predictors. There is significant association of initial SOFA score in analyzing organ dysfunction in infectious diseases (P < 0.001). SAPS showed no statistical significance. There was statistically significant (P = 0.015) percentage of nonsurvivors with moderate and severe dysfunction, based on SOFA score. Nonsurvivors had higher SAPS but was not statistically significant (P

  14. Corticosteroids in acute traumatic brain injury: systematic review of randomised controlled trials.

    PubMed Central

    Alderson, P.; Roberts, I.

    1997-01-01

    OBJECTIVE: To quantify the effectiveness and safety of corticosteroids in the treatment of acute traumatic brain injury. DESIGN: Systematic review of randomised controlled trials of corticosteroids in acute traumatic brain injury. Summary odds ratios were estimated as an inverse variance weighted average of the odds ratios for each study. SETTING: Randomised trials available by March 1996. SUBJECTS: The included trials with outcome data comprised 2073 randomised participants. RESULTS: The effect of corticosteroids on the risk of death was reported in 13 included trials. The pooled odds ratio for the 13 trials was 0.91 (95% confidence interval 0.74 to 1.12). Pooled absolute risk reduction was 1.8% (-2.5% to 5.7%). For the 10 trials that reported death or disability the pooled odds ratio was 0.90 (0.72 to 1.11). For infections of any type the pooled odds ratio was 0.92 (0.69 to 1.23) and for the seven trials reporting gastrointestinal bleeding it was 1.05 (0.44 to 2.52). With only those trials with the best quality of concealment of allocation, the pooled odds ratio estimates for death and death or disability became closer to unity. CONCLUSIONS: This systematic review of randomised controlled trials of corticosteroids in acute traumatic brain injury shows that there remains considerable uncertainty over their effects. Neither moderate benefits nor moderate harmful effects can be excluded. The widely practicable nature of the drugs and the importance of the health problem suggest that large simple trials are feasible and worth while to establish whether there are any benefits from use of corticosteroids in this setting. PMID:9224126

  15. Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain

    PubMed Central

    Suyatin, Dmitry B.; Wallman, Lars; Thelin, Jonas; Prinz, Christelle N.; Jörntell, Henrik; Samuelson, Lars; Montelius, Lars; Schouenborg, Jens

    2013-01-01

    We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo. PMID:23431387

  16. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    PubMed

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs.

  17. Acute brain ischemia as a complication of the Ehlers-Danlos syndrome, the case series.

    PubMed

    Pajak, Michal; Majos, Marcin A; Szubert, Wojciech; Stefanczyk, Ludomir; Majos, Agata

    2014-10-01

    Vascular type of Ehlers-Danlos syndrome involves many severe complications leading not only to organ-specific symptoms but often ends in a sudden death. The aim of this paper was to present a diagnostic possibilities and its efficiency rate in patients with vascular complications of Ehlers-Danlos syndrome who suffered from artery dissection resulting in acute brain or limb ischemia. We analysed three patients with diagnosed Ehlers-Danlos syndrome who were referred to radiology department for diagnostic imaging of affected vascular beds, each experienced brain ischemia. The paper also aims at offering some general recommendations for patients suffering from possible complications of type IV Ehlers-Danlos syndrome basing on our own experience and available literature data.

  18. Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition.

    PubMed

    Ogasawara, Daisuke; Deng, Hui; Viader, Andreu; Baggelaar, Marc P; Breman, Arjen; den Dulk, Hans; van den Nieuwendijk, Adrianus M C H; van den Nieuwendijk, Adriann M C H; Soethoudt, Marjolein; van der Wel, Tom; Zhou, Juan; Overkleeft, Herman S; Sanchez-Alavez, Manuel; Mori, Simone; Mo, Simone; Nguyen, William; Conti, Bruno; Liu, Xiaojie; Chen, Yao; Liu, Qing-Song; Cravatt, Benjamin F; van der Stelt, Mario

    2016-01-01

    Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.

  19. Features of Neurotoxicity on Brain CT of Acutely Intoxicated Unconscious Patients

    PubMed Central

    Sanei Taheri, Morteza; Noori, Maryam; Nahvi, Vahideh; Moharamzad, Yashar

    2010-01-01

    Diagnostic imaging is a valuable device in clinical management of poisoned patients presenting to emergency units in a comatose state. Some toxic agents have adverse effects on the central nervous system (CNS). Non-contrast computed tomography (CT) of the brain, as an available diagnostic method with a high resolution, can provide useful information about structural disturbances of unconscious patients with suspected drug or chemical intoxication. The authors would describe various presentations of toxic substances detected on the brain CT scans of ten patients with acute intoxication. While non-specific, CT findings of low-attenuation lesions in the basal ganglia, infarctions in young patients, or diffuse edema should raise suspicion for poisoning or overdose. PMID:21270943

  20. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    USGS Publications Warehouse

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pbrain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  1. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury.

    PubMed

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Bai, Lijun; Kuang, Hongmei; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2016-01-01

    Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; and typical: 0.01-0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients. PMID:26869907

  2. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals.

    PubMed

    Slusher, A L; Whitehurst, M; Zoeller, R F; Mock, J T; Maharaj, A; Huang, C-J

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) serves as a vital regulator of neuronal proliferation and survival, and has been shown to regulate energy homeostasis, glucose metabolism and body weight maintenance. Elevated concentrations of plasma BDNF have been associated with obesity and type 2 diabetes mellitus. Acute aerobic exercise transiently increases circulating BDNF, potentially correcting obesity-related metabolic impairment. The present study aimed to compare acute aerobic exercise elicited BDNF responses in obese and normal-weight subjects. Furthermore, we aimed to investigate whether acute exercise-induced plasma BDNF elevations would be associated with improved indices of insulin resistance, as well as substrate utilization [carbohydrate oxidation (CHOoxi) and fat oxidation (FAToxi)]. Twenty-two healthy, untrained subjects [11 obese (four men and seven women; age = 22.91 ± 4.44 years; body mass index = 35.72 ± 4.17 kg/m(2)) and 11 normal-weight (five men and six women; age = 23.27 ± 2.24 years; body mass index = 21.89 ± 1.63 kg/m(2))] performed 30 min of continuous submaximal aerobic exercise at 75% maximal oxygen consumption. Our analyses showed that the BDNF response to acute aerobic exercise was similar in obese and normal-weight subjects across time (time: P = 0.015; group: P = not significant) and was not associated with indices of IR. Although no differences in the rates of CHOoxi and FAToxi were found between both groups, total relative energy expenditure was significantly lower in obese subjects compared to normal-weight subjects (3.53 ± 0.25 versus 5.59 ± 0.85; P < 0.001). These findings suggest that acute exercise-elicited BDNF elevation may not be sufficient to modulate indices of IR or the utilization of either carbohydrates or fats in obese individuals.

  3. Loss and Gain of MeCP2 Cause Similar Hippocampal Circuit Dysfunction that Is Rescued by Deep Brain Stimulation in a Rett Syndrome Mouse Model.

    PubMed

    Lu, Hui; Ash, Ryan T; He, Lingjie; Kee, Sara E; Wang, Wei; Yu, Dinghui; Hao, Shuang; Meng, Xiangling; Ure, Kerstin; Ito-Ishida, Aya; Tang, Bin; Sun, Yaling; Ji, Daoyun; Tang, Jianrong; Arenkiel, Benjamin R; Smirnakis, Stelios M; Zoghbi, Huda Y

    2016-08-17

    Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice. PMID:27499081

  4. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease.

    PubMed

    Canals, Josep M; Pineda, José R; Torres-Peraza, Jesús F; Bosch, Miquel; Martín-Ibañez, Raquel; Muñoz, M Teresa; Mengod, Guadalupe; Ernfors, Patrik; Alberch, Jordi

    2004-09-01

    The mechanism that controls the selective vulnerability of striatal neurons in Huntington's disease is unclear. Brain-derived neurotrophic factor (BDNF) protects striatal neurons and is regulated by Huntingtin through the interaction with the neuron-restrictive silencer factor. Here, we demonstrate that the downregulation of BDNF by mutant Huntingtin depends on the length and levels of expression of the CAG repeats in cell cultures. To analyze the functional effects of these changes in BDNF in Huntington's disease, we disrupted the expression of bdnf in a transgenic mouse model by cross-mating bdnf(+/ -) mice with R6/1 mice. Thus, we compared transgenic mice for mutant Huntingtin with different levels of BDNF. Using this double mutant mouse line, we show that the deficit of endogenous BDNF modulates the pathology of Huntington's disease. The decreased levels of this neurotrophin advance the onset of motor dysfunctions and produce more severe uncoordinated movements. This behavioral pathology correlates with the loss of striatal dopamine and cAMP-regulated phosphoprotein-32-positive projection neurons. In particular, the insufficient levels of BDNF cause specific degeneration of the enkephalinergic striatal projection neurons, which are the most affected cells in Huntington's disease. This neuronal dysfunction can specifically be restored by administration of exogenous BDNF. Therefore, the decrease in BDNF levels plays a key role in the specific pathology observed in Huntington's disease by inducing dysfunction of striatal enkephalinergic neurons that produce severe motor dysfunctions. Hence, administration of exogenous BDNF may delay or stop illness progression.

  5. Impact of predischarge nocturnal pulse oximetry (sleep-disordered breathing) on postdischarge clinical outcomes in hospitalized patients with left ventricular systolic dysfunction after acute decompensated heart failure.

    PubMed

    Ohmura, Takayasu; Iwama, Yoshitaka; Kasai, Takatoshi; Kato, Takao; Suda, Shoko; Takagi, Atsutoshi; Daida, Hiroyuki

    2014-02-15

    Stratifying patients at a high risk for readmission and mortality before their discharge after acute decompensated heart failure (ADHF) is important. Although sleep-disordered breathing (SDB) is prevalent in patients with chronic heart failure, only few studies have investigated the impact of SDB on hospitalized patients with left ventricular (LV) systolic dysfunction after ADHF. Thus, we assessed the prevalence of SDB using nocturnal pulse oximetry and the relation between SDB and clinical events in this patient group. One hundred consecutive patients with LV systolic dysfunction who were hospitalized for ADHF were enrolled in the study. Predischarge nocturnal oximetry was performed to determine if they had SDB (defined as an oxygen desaturation index of ≥5 events/hour with ≥4% decrease in saturation level). Data on death and readmission for ADHF were collected. Forty-one patients had SDB. Complete outcome data were collected in the mean follow-up period of 14.2 months during which 33 events occurred. On multivariate Cox proportional hazards regression analysis, the presence of SDB was a significant independent predictor of postdischarge readmission and mortality (hazard ratio 2.93, p = 0.006). In conclusion, SDB, as determined by predischarge nocturnal oximetry, is prevalent and is an independent predictor of the combined end point of readmission and mortality in hospitalized patients with LV systolic dysfunction after ADHF.

  6. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    PubMed Central

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  7. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury.

    PubMed

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  8. An efficacy and mechanism evaluation study of Levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS): protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Organ dysfunction consequent to infection (‘severe sepsis’) is the leading cause of admission to an intensive care unit (ICU). In both animal models and early clinical studies the calcium channel sensitizer levosimendan has been demonstrated to have potentially beneficial effects on organ function. The aims of the Levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS) trial are to identify whether a 24-hour infusion of levosimendan will improve organ dysfunction in adults who have septic shock and to establish the safety profile of levosimendan in this group of patients. Methods/Design This is a multicenter, randomized, double-blind, parallel group, placebo-controlled trial. Adults fulfilling the criteria for systemic inflammatory response syndrome due to infection, and requiring vasopressor therapy, will be eligible for inclusion in the trial. Within 24 hours of meeting these inclusion criteria, patients will be randomized in a 1:1 ratio stratified by the ICU to receive either levosimendan (0.05 to 0.2 μg.kg-1.min-1 or placebo for 24 hours in addition to standard care. The primary outcome measure is the mean Sequential Organ Failure Assessment (SOFA) score while in the ICU. Secondary outcomes include: central venous oxygen saturations and cardiac output; incidence and severity of renal failure using the Acute Kidney Injury Network criteria; duration of renal replacement therapy; serum bilirubin; time to liberation from mechanical ventilation; 28-day, hospital, 3 and 6 month survival; ICU and hospital length-of-stay; and days free from catecholamine therapy. Blood and urine samples will be collected on the day of inclusion, at 24 hours, and on days 4 and 6 post-inclusion for investigation of the mechanisms by which levosimendan might improve organ function. Eighty patients will have additional blood samples taken to measure levels of levosimendan and its active metabolites OR-1896 and OR-1855. A total of 516 patients

  9. Increased Epicardial Fat Thickness Correlates with Aortic Stiffness and N-Terminal Pro-Brain Natriuretic Peptide Levels in Acute Ischemic Stroke Patients.

    PubMed

    Altun, Ibrahim; Unal, Yasemin; Basaran, Ozcan; Akin, Fatih; Emir, Gulser Karadaban; Kutlu, Gulnihal; Biteker, Murat

    2016-06-01

    Epicardial fat, a metabolically active tissue, has emerged as a risk factor and active player in metabolic and cardiovascular diseases. We investigated epicardial fat thickness in patients who had sustained an acute ischemic stroke, and we evaluated the relationship of epicardial fat thickness with other prognostic factors. We enrolled 61 consecutive patients (age, ≥18 yr) who had sustained a first acute ischemic stroke and had been admitted to our hospital within 24 hours of the onset of stroke symptoms. The control group comprised 82 consecutive sex- and age-matched patients free of past or current stroke who had been admitted to our cardiology clinics. Blood samples were taken for measurement of N-terminal pro-brain natriuretic peptide (NT-proBNP) levels at admission. Aortic stiffness indices and epicardial fat thickness were measured by means of transthoracic echocardiography within the first 48 hours. In comparison with the control group, the patients with acute ischemic stroke had significantly higher epicardial fat thickness (4.8 ± 0.9 vs 3.8 ± 0.7 mm; P <0.001), lower aortic distensibility (2.5 ± 0.8 vs 3.4 ± 0.9 cm(2) ·dyn(-1); P <0.001) and lower aortic strain (5.5% ± 1.9% vs 6.4% ± 1.8%; P=0.003). We found a significant association between epicardial fat thickness, NT-proBNP levels, and arterial dysfunction in patients who had sustained acute ischemic stroke. Increased epicardial fat thickness might be a novel risk factor and might enable evaluation of subclinical target-organ damage in these patients.

  10. Increased Epicardial Fat Thickness Correlates with Aortic Stiffness and N-Terminal Pro-Brain Natriuretic Peptide Levels in Acute Ischemic Stroke Patients

    PubMed Central

    Unal, Yasemin; Basaran, Ozcan; Akin, Fatih; Emir, Gulser Karadaban; Kutlu, Gulnihal; Biteker, Murat

    2016-01-01

    Epicardial fat, a metabolically active tissue, has emerged as a risk factor and active player in metabolic and cardiovascular diseases. We investigated epicardial fat thickness in patients who had sustained an acute ischemic stroke, and we evaluated the relationship of epicardial fat thickness with other prognostic factors. We enrolled 61 consecutive patients (age, ≥18 yr) who had sustained a first acute ischemic stroke and had been admitted to our hospital within 24 hours of the onset of stroke symptoms. The control group comprised 82 consecutive sex- and age-matched patients free of past or current stroke who had been admitted to our cardiology clinics. Blood samples were taken for measurement of N-terminal pro-brain natriuretic peptide (NT-proBNP) levels at admission. Aortic stiffness indices and epicardial fat thickness were measured by means of transthoracic echocardiography within the first 48 hours. In comparison with the control group, the patients with acute ischemic stroke had significantly higher epicardial fat thickness (4.8 ± 0.9 vs 3.8 ± 0.7 mm; P <0.001), lower aortic distensibility (2.5 ± 0.8 vs 3.4 ± 0.9 cm2·dyn−1; P <0.001) and lower aortic strain (5.5% ± 1.9% vs 6.4% ± 1.8%; P=0.003). We found a significant association between epicardial fat thickness, NT-proBNP levels, and arterial dysfunction in patients who had sustained acute ischemic stroke. Increased epicardial fat thickness might be a novel risk factor and might enable evaluation of subclinical target-organ damage in these patients. PMID:27303237

  11. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia.

    PubMed

    Adibzadeh, F; Verhaart, R F; Verduijn, G M; Fortunati, V; Rijnen, Z; Franckena, M; van Rhoon, G C; Paulides, M M

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR₁₀g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR₁₀g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  12. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    NASA Astrophysics Data System (ADS)

    Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  13. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study.

    PubMed

    Gregoire, Simone M; Charidimou, Andreas; Gadapa, Naveen; Dolan, Eamon; Antoun, Nagui; Peeters, Andre; Vandermeeren, Yves; Laloux, Patrice; Baron, Jean-Claude; Jäger, Hans R; Werring, David J

    2011-08-01

    Subclinical acute ischaemic lesions on brain magnetic resonance imaging have recently been described in spontaneous intracerebral haemorrhage, and may be important to understand pathophysiology and guide treatment. The underlying mechanisms are uncertain. We tested the hypothesis that ischaemic lesions are related to magnetic resonance imaging markers of the severity and type of small-vessel disease (hypertensive arteriopathy or cerebral amyloid angiopathy) in a multicentre, cross-sectional study. We studied consecutive patients with intracerebral haemorrhage from four specialist stroke centres, and age-matched stroke service referrals without intracerebral haemorrhage. Acute ischaemic lesions were assessed on magnetic resonance imaging (<3 months after intracerebral haemorrhage) using diffusion-weighted imaging. White matter changes and cerebral microbleeds were rated with validated scales. We investigated associations between diffusion-weighted imaging lesions, clinical and radiological characteristics. We included 114 patients with intracerebral haemorrhage (39 with clinically probable cerebral amyloid angiopathy) and 47 age-matched controls. The prevalence of diffusion-weighted imaging lesions was 9/39 (23%) in probable cerebral amyloid angiopathy-related intracerebral haemorrhage versus 6/75 (8%) in the remaining patients with intracerebral haemorrhage (P = 0.024); no diffusion-weighted imaging lesions were found in controls. Diffusion-weighted imaging lesions were mainly cortical and were associated with mean white matter change score (odds ratio 1.14 per unit increase, 95% confidence interval 1.02-1.28, P = 0.024) and the presence of strictly lobar cerebral microbleeds (odds ratio 3.85, 95% confidence interval 1.15-12.93, P = 0.029). Acute, subclinical ischaemic brain lesions are frequent but previously underestimated after intracerebral haemorrhage, and are three times more common in cerebral amyloid angiopathy-related intracerebral haemorrhage than in

  14. Experimental carbon dioxide laser brain lesions and intracranial dynamics. Part 2. Effect on brain water content and its response to acute therapy

    SciTech Connect

    Tiznado, E.G.; James, H.E.; Moore, S.

    1985-04-01

    Experimental brain lesions were created over the left parietooccipital cortex of the albino rabbit through the intact dura mater with high radiating carbon dioxide laser energy. The brain water content was studied 2, 6, and 24 hours after the insult. Another two groups of animals received acute therapy with either dexamethasone (1 mg/kg) or furosemide (1 mg/kg). In all groups, Evans blue extravasation uniformly extended from the impact crater into the surrounding white matter. The brain water content in the gray matter was elevated from the control value by 2 hours after impact and remained elevated at 6 and 24 hours. The white matter brain water content did not increase until 6 hours after impact and remained elevated in the 24-hour group. After dexamethasone treatment, there was a significant decrease of water in the gray matter, but not in the white matter. With furosemide therapy, there was no reduction of gray or white matter brain water.

  15. Fiberoptic endoscopic evaluation of swallowing in patients with acute traumatic brain injury.

    PubMed

    Leder, S B

    1999-10-01

    Dysphagia and aspiration in intensive care unit patients with acute traumatic brain injury (TBI) is a frequent and potentially life-threatening problem. Any diagnostic technique used with this population, therefore, must be able to be performed in a timely and efficient manner while providing objective information on the nature of the swallowing problem. The purpose of the present study was to investigate the utility of using the fiberoptic endoscopic evaluation of swallowing (FEES) technique to diagnosis pharyngeal stage dysphagia and determine aspiration status in patients who presented with acute TBI. A total of 47 subjects were assessed with FEES. Thirty of 47 (64%) subjects swallowed successfully and were able to take an oral diet: 2 of 30 (7%) thickened liquids and purée consistencies, 8 of 30 (27%) a soft diet, and 20 of 30 (67%) a regular diet. Seventeen of 47 (36%) subjects exhibited pharyngeal stage dysphagia with aspiration and were not permitted an oral diet based on objective results provided by FEES. Of the 17 subjects who aspirated, 9 of 17 (53%) exhibited silent aspiration. Younger subjects (mean age 34 years, 3 months) aspirated significantly less often than older subjects (mean age 51 years, 8 months). No significant age difference was observed for gender or between overt and silent aspirators. It was concluded that FEES is an objective and sensitive tool that can be used successfully to diagnose pharyngeal stage dysphagia, determine aspiration status, and make recommendations for oral or nonoral feeding in patients with acute TBI.

  16. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  17. Urinary Dysfunction

    MedlinePlus

    ... PCF Spotlight Glossary African American Men Living with Prostate Cancer Urinary Dysfunction Side Effects Urinary Dysfunction Bowel Dysfunction ... dysfunction is normal following initial therapy for localized prostate cancer. But it’s important to realize that not all ...

  18. Effects of Acute Lithium Treatment on Brain Levels of Inflammatory Mediators in Poststroke Rats.

    PubMed

    Boyko, Matthew; Nassar, Ahmad; Kaplanski, Jacob; Zlotnik, Alexander; Sharon-Granit, Yael; Azab, Abed N

    2015-01-01

    Stroke is a leading cause of mortality and morbidity worldwide. Few therapeutic options with proven efficacy are available for the treatment of this disabling disease. Lithium is the gold standard treatment for bipolar disorder. Moreover, lithium has been shown to exhibit neuroprotective effects and therapeutic efficacy as a treatment of other neurological disorders. This study was undertaken to examine the effects of lithium on brain inflammatory mediators levels, fever, and mortality in postischemic stroke rats. Ischemic stroke was induced by occlusion of the mid cerebral artery (MCAO). Pretreatment with a single dose of lithium at 2 hours before MCAO induction significantly reduced the elevation in interleukin- (IL-) 6 and prostaglandin E2 levels in brain of post-MCAO rats, as compared to vehicle-treated animals. On the other hand, lithium did not affect the elevation in IL-1α, IL-10, IL-12, and tumor necrosis factor-α levels in brain of post-MCAO rats. Moreover, pretreatment with lithium did not alter post-MCAO fever and mortality. These results suggest that acute pretreatment with a single dose of lithium did not markedly affect post-MCAO morbidity and mortality in rats.

  19. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    PubMed Central

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  20. Pravastatin acute neuroprotective effects depend on blood brain barrier integrity in experimental cerebral ischemia.

    PubMed

    Carone, D; Librizzi, L; Cattalini, A; Sala, G; Conti, E; Cuccione, E; Versace, A; Cai, R; Monza, L; de Curtis, M; Ferrarese, C; Beretta, S

    2015-07-30

    Statins have since long been reported to exert acute neuroprotection in experimental stroke models. However, crucial questions still need to be addressed as far as the timing of their cerebral effects after intravascular administration and the role played by the blood brain barrier (BBB) crossing properties. We tested the effects of an hydrophilic statin (pravastatin, 100 nM), which poorly crosses BBB under physiological conditions. Pravastatin was administered either 90 min before or immediately after transient middle cerebral artery occlusion in the in vitro isolated guinea pig brain preparation. A multi-modal outcome assessment was performed, through electrophysiological and cerebral vascular tone recordings, MAP-2 immunohistochemistry, BBB evaluation via ZO-1/FITC-albumin analysis, AKT and ERK activation and whole-cell antioxidant capacity. Pravastatin pre-ischemic administration did not produce any significant effect. Pravastatin post-ischemic administration significantly prevented MAP-2 immunoreactivity loss in ischemic areas, increased ERK phosphorylation in the ischemic hemisphere and enhanced whole-cell antioxidant capacity. Electrophysiological parameters, vascular tone and AKT signaling were unchanged. In all tested ischemic brains, ZO-1 fragmentation and FITC albumin extravasation was observed, starting 30 min from ischemia onset, indicating loss of BBB integrity. Our findings indicate that the rapid anti-ischemic effects of intravascular pravastatin are highly dependent on BBB increased permeability after stroke.

  1. Behavioural training during acute brain trauma rehabilitation: an empirical case study.

    PubMed

    Slifer, K J; Cataldo, M D; Kurtz, P F

    1995-01-01

    Operant conditioning-based behavioural interventions are commonly used for the behavioural problems of individuals with mental retardation. There is also growing evidence of the benefits of these interventions for treating some of the behavioural problems of individuals with acquired cognitive deficits resulting from brain trauma. However, the effects of behavioural interventions on behavioural problems occurring during acute neurorehabilitation, when orientation and memory are most impaired, have not been studied. In this empirical case study, operant conditioning-based procedures were applied with an 8-year-old girl recovering from brain trauma and related neurosurgery. Screaming, non-compliance and aggression, which were disrupting rehabilitation therapies and follow-up neuroimaging, were treated using differential positive reinforcement techniques. Beneficial behavioural intervention effects were demonstrated using single-subject experimental methods. Aberrant behaviour during physical and occupational therapies was reduced, and cooperation with a computerized tomography (CT) scan without sedation was accomplished using operant behavioural intervention. Results support the use of operant interventions early in recovery from brain trauma, and highlight the importance of interdisciplinary collaboration for the implementation and further study of early behavioural interventions.

  2. G-CSF pretreatment aggravates LPS-associated microcirculatory dysfunction and acute liver injury after partial hepatectomy in rats.

    PubMed

    Liu, Anding; Fang, Haoshu; Wei, Weiwei; Kan, Chunyi; Xie, Chichi; Dahmen, Uta; Dirsch, Olaf

    2014-12-01

    Liver dysfunction is a serious complication in the early phase following major liver resection or liver transplantation and might be aggravated by the translocation of bacteria and lipopolysaccharide (LPS). As a preventive strategy, granulocyte colony-stimulating factor (G-CSF) is prophylactically applied in patients who are subjected to major surgery. However, we previously demonstrated that G-CSF can induce LPS sensitization. In this study, we aimed to evaluate the effects of G-CSF pretreatment on hepatic microcirculatory disturbances and postoperative liver dysfunction after 70 % partial hepatectomy (PH) in rats. PH alone was well tolerated by all animals (100 % survival rate, slight liver damage and inflammation). LPS application after 70 % PH caused moderate inflammation, microcirculatory disturbances and hepatic damage and led to a 24-h survival rate of 30 % after the operations. In the G-CSF-LPS-PH group, all of the rats died within 4 h with severe inflammatory responses and liver damage (i.e., pronounced erythrocyte congestion and neutrophil infiltration). Portal hypertension and microcirculatory disorders (i.e., inhomogeneous perfusion, sinusoidal dilatation and reductions on functional capillary density) were more pronounced in the G-CSF-LPS-PH group. In conclusion, increased circulating LPS levels were associated with an imbalanced inflammatory response and microcirculatory dysfunction that preceded liver damage and subsequent dysfunction following surgery. G-CSF-pretreatment aggravated microcirculatory disturbances and liver damage, which might have been related to G-CSF-induced LPS sensitization.

  3. Apolipoprotein E3/E3 genotype decreases the risk of pituitary dysfunction after traumatic brain injury due to various causes: preliminary data.

    PubMed

    Tanriverdi, Fatih; Taheri, Serpil; Ulutabanca, Halil; Caglayan, Ahmet Okay; Ozkul, Yusuf; Dundar, Munis; Selcuklu, Ahmet; Unluhizarci, Kursad; Casanueva, Felipe F; Kelestimur, Fahrettin

    2008-09-01

    Traumatic brain injury (TBI) is a devastating public health problem which may result in hypopituitarism. However, the mechanisms and the risk factors responsible for hypothalamo-pituitary dysfunction due to TBI are still unclear. Although APO E is one of the most abundant protein in hypothalamo-pituitary region, there is no study investigating the relation between APO E polymorphism and TBI-induced hypopituitarism. This study was undertaken to determine whether APO E genotypes modulate the pituitary dysfunction risk after TBI due to various causes, including traffic accident, boxing, and kickboxing. Ninety-three patients with TBI (mean age, 30.61 +/- 1.25 years) and 27 healthy controls (mean age, 29.03 +/- 1.70 years) were included in the study. Pituitary functions were evaluated, and APO E genotypes (E2/E2; E3/E3; E4/E4; E2/E3; E2/E4; E3/E4) were screened. Twenty-four of 93 subjects (25.8%) had pituitary dysfunction after TBI. The ratio of pituitary dysfunction was significantly lower in subjects with APO E3/E3 (17.7%) than the subjects without APO E3/E3 genotype (41.9%; p = 0.01), and the corresponding odds ratio was 0.29 (95% confidence interval [CI], 0.11-0.78). In conclusion, this study provides strong evidence for the first time that APO E polymorphism is associated with the development of TBI-induced pituitary dysfunction. Present data demonstrated that APO E3/E3 genotype decreases the risk of hypopituitarism after TBI. The demonstration of the association between the APO E polymorphism and TBI may provide a new point of view in this field and promote further studies.

  4. Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice.

    PubMed

    Shinomol, George K; Muralidhara

    2008-11-01

    Despite the increasing popularity of Centella asiatica (a well known plant in ayurvedic medicine) globally, evidence demonstrating its protective efficacy against neurotoxicants in animal models is limited. 3-Nitropropionic acid (3-NPA), a fungal toxin is a well known neurotoxicant which induces selective striatal pathology similar to that seen in Huntington's disease. The present study aimed to understand the neuroprotective efficacy of a standardized aqueous extract of C. asiatica (CA) against 3-NPA-induced early oxidative stress and mitochondrial dysfunctions in striatum and other brain regions. We determined the extent of oxidative stress in cytosol and mitochondria of brain regions of male mice (4wk old) given CA prophylaxis (5mg/kgbw) for 10 days followed by 3-NPA administration (i.p., 75mg/kgbw/d) on the last 2 days. The neurotoxicant elicited marked oxidative stress in the untreated mice as evidenced by elevated levels of malondialdehyde, ROS levels and hydroperoxides in the striatum (cytosol and mitochondria), while CA prophylaxis completely attenuated the 3-NPA-induced oxidative stress. 3-NPA also caused significant oxidative stress and protein oxidation in cytosol/mitochondria of other brain regions as well which were predominantly abolished by CA prophylaxis. Significant depletion of GSH levels, total thiols and perturbations in antioxidant enzymic defences in striatum and other brain regions discernible among 3-NPA administered mice were also protected with CA prophylaxis. Interestingly, CA prophylaxis offered varying degree of protection against 3-NPA-induced mitochondrial dysfunctions viz., reduction in the activity of succinic dehydrogenase, ETC enzymes and decreased mitochondrial viability. Collectively these findings clearly suggest that short-term oral intake of a standardized aqueous extract of CA confers marked resistance against the 3-NPA-induced oxidative stress and mitochondrial dysfunctions in brain. Although the precise mechanism

  5. Readmission to Acute Care Hospital during Inpatient Rehabilitation for Traumatic Brain Injury

    PubMed Central

    Hammond, Flora M.; Horn, Susan D.; Smout, Randall J.; Beaulieu, Cynthia L.; Barrett, Ryan S.; Ryser, David K.; Sommerfeld, Teri

    2015-01-01

    Objective To investigate frequency, reasons, and factors associated with readmission to acute care (RTAC) during inpatient rehabilitation for traumatic brain injury (TBI). Design Prospective observational cohort. Setting Inpatient rehabilitation. Participants 2,130 consecutive admissions for TBI rehabilitation. Interventions Not applicable. Main Outcome Measure(s) RTAC incidence, RTAC causes, rehabilitation length of stay (RLOS), and rehabilitation discharge location. Results 183 participants (9%) experienced RTAC for a total 210 episodes. 161 patients experienced 1 RTAC episode, 17 had 2, and 5 had 3. Mean days from rehabilitation admission to first RTAC was 22 days (SD 22). Mean duration in acute care during RTAC was 7 days (SD 8). 84 participants (46%) had >1 RTAC episode for medical reasons, 102 (56%) had >1 RTAC for surgical reasons, and RTAC reason was unknown for 6 (3%) participants. Most common surgical RTAC reasons were: neurosurgical (65%), pulmonary (9%), infection (5%), and orthopedic (5%); most common medical reasons were infection (26%), neurologic (23%), and cardiac (12%). Older age, history of coronary artery disease, history of congestive heart failure, acute care diagnosis of depression, craniotomy or craniectomy during acute care, and presence of dysphagia at rehabilitation admission predicted patients with RTAC. RTAC was less likely for patients with higher admission Functional Independence Measure Motor scores and education less than high school diploma. RTAC occurrence during rehabilitation was significantly associated with longer RLOS and smaller likelihood of discharge home. Conclusion(s) Approximately 9% of patients with TBI experience RTAC during inpatient rehabilitation for various medical and surgical reasons. This information may help inform interventions aimed at reducing interruptions in rehabilitation due to RTAC. RTACs were associated with longer RLOS and discharge to an institutional setting. PMID:26212405

  6. Acute exposure of uranyl nitrate causes lipid peroxidation and histopathological damage in brain and bone of Wistar rat.

    PubMed

    Ghosh, Somnath; Kumar, Amit; Pandey, Badri Narain; Mishra, Kaushala Prasad

    2007-01-01

    Although the kidneys are the main target organs for uranium (U) toxicity, recent studies have shown that U can cross the blood-brain barrier to accumulate in the brain. Uranyl nitrate (U-238)induced oxidative damage was investigated in brain and bone of Wistar rats after intraperitoneal injection of uranyl nitrate at acute doses either nephrotoxic (576 microg of U/kg body weight) or subnephrotoxic (144 microg U/kg body weight). The health effects of U administration at 576 microg of U/kg body weight were seen in terms of decrease in food intake and no gain in body weight compared to respective controls. These alterations were correlated with increased lipid peroxidation as measured by thiobarbituric acid reactive substances in rat brain and bone. However, at lower dosage of U (144 microg U/kg body weight), no significant lipid peroxidation was observed in brain and bone. Histological examination of U-treated (576 microg of U/kg body weight) rat brain tissues showed marked and diffuse cystic degeneration and a similar pattern in histological alterations was observed in kidneys in treated animals; whereas no significant histological change was observed in rat brains and kidney treated with a lower dose of U (144 microg U/kg body weight). It is concluded that administration of U at an acute nephrotoxic dose caused oxidative stress in brain and bone manifested as lipid peroxidation and histopathological damage.

  7. Physiological abnormalities in experimental allergic encephalomyelitis (EAE): II. Correlation between clinical signs and vestibular hyperreactivity and other signs of brain-stem dysfunction in rats with EAE.

    PubMed

    Brinkman, C J; Huygen, P L

    1984-09-01

    12 Lewis rats were inoculated with a guinea pig spinal cord tissue preparation. They developed experimental allergic encephalomyelitis (EAE) after 12-14 days manifested by weight loss, tail flaccidity, ataxia, hind limb paresis or paralysis and urinary incontinence. Concomitantly with EAE, all animals developed vestibular hyperreactivity (VH) of canal and otolith reflexes. Other signs of brain-stem dysfunction were also observed: abducens paralysis, facial weakness, tachypnoe and mydriasis with defective pupillary light reflex. The vestibular and other abnormalities subsided with some delay after recovery from clinical EAE, whilst histological abnormalities were still present in the CNS.

  8. [Brain abscess caused by Streptococcus pyogenes as a complication of acute otitis media in 7-year-old girl - a case report].

    PubMed

    Załęska-Ponganis, Joanna; Jackowska, Teresa

    2013-01-01

    Acute otitis media (AOM) is the most commonly diagnosed childhood disease, especially in infants and preschool children. Onset of AOM encourage frequent upper respiratory infections and debilitating conditions that cause nasal patency and trumpets auditory dysfunction. Complications of AOM currently are rare. We present a case of complications of acute otitis media in form of acute cerebral abscess in a 7-year-old previously healthy girl.

  9. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a "healthy" tobacco-free alternative.

    PubMed

    Cobb, Caroline O; Sahmarani, Kamar; Eissenberg, Thomas; Shihadeh, Alan

    2012-11-23

    Tobacco smoking using a waterpipe (narghile, hookah, shisha) has become a global epidemic. Unlike cigarette smoking, little is known about the health effects of waterpipe use. One acute effect of cigarette smoke inhalation is dysfunction in autonomic regulation of the cardiac cycle, as indicated by reduction in heart rate variability (HRV). Reduced HRV is implicated in adverse cardiovascular health outcomes, and is associated with inhalation exposure-induced oxidative stress. Using a 32 participant cross-over study design, we investigated toxicant exposure and effects of waterpipe smoking on heart rate variability when, under controlled conditions, participants smoked a tobacco-based and a tobacco-free waterpipe product promoted as an alternative for "health-conscious" users. Outcome measures included HRV, exhaled breath carbon monoxide (CO), plasma nicotine, and puff topography, which were measured at times prior to, during, and after smoking. We found that waterpipe use acutely decreased HRV (p<0.01 for all measures), independent of product smoked. Plasma nicotine, blood pressure, and heart rate increased only with the tobacco-based product (p<0.01), while CO increased with both products (p<0.01). More smoke was inhaled during tobacco-free product use, potentially reflecting attempted regulation of nicotine intake. The data thus indicate that waterpipe smoking acutely compromises cardiac autonomic function, and does so through exposure to smoke constituents other than nicotine. PMID:23059956

  10. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a “healthy” tobacco-free alternative

    PubMed Central

    Cobb, Caroline O.; Sahmarani, Kamar; Eissenberg, Thomas; Shihadeh, Alan

    2012-01-01

    Tobacco smoking using a waterpipe (narghile, hookah, shisha) has become a global epidemic. Unlike cigarette smoking, little is known about the health effects of waterpipe use. One acute effect of cigarette smoke inhalation is dysfunction in autonomic regulation of the cardiac cycle, as indicated by reduction in heart rate variability (HRV). Reduced HRV is implicated in adverse cardiovascular health outcomes, and is associated with inhalation exposure-induced oxidative stress. Using a 32 participant cross-over study design, we investigated toxicant exposure and effects of waterpipe smoking on heart rate variability when, under controlled conditions, participants smoked a tobacco-based and a tobacco-free waterpipe product promoted as an alternative for “health-conscious” users. Outcome measures included HRV, exhaled breath carbon monoxide (CO), plasma nicotine, and puff topography, which were measured at times prior to, during, and after smoking. We found that waterpipe use acutely decreased HRV (p<0.01 for all measures), independent of product smoked. Plasma nicotine, blood pressure, and heart rate increased only with the tobacco-based product (p<0.01), while CO increased with both products (p<0.01). More smoke was inhaled during tobacco-free product use, potentially reflecting attempted regulation of nicotine intake. The data thus indicate that waterpipe smoking acutely compromises cardiac autonomic function, and does so through exposure to smoke constituents other than nicotine. PMID:23059956

  11. Effects of chronic and acute stimulants on brain functional connectivity hubs.

    PubMed

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Goldstein, Rita Z

    2015-12-01

    The spatial distribution and strength of information processing 'hubs' are essential features of the brain׳s network topology, and may thus be particularly susceptible to neuropsychiatric disease. Despite growing evidence that drug addiction alters functioning and connectivity of discrete brain regions, little is known about whether chronic drug use is associated with abnormalities in this network-level organization, and if such abnormalities could be targeted for intervention. We used functional connectivity density (FCD) mapping to evaluate how chronic and acute stimulants affect brain hubs (i.e., regions with many short-range or long-range functional connections). Nineteen individuals with cocaine use disorders (CUD) and 15 healthy controls completed resting-state fMRI scans following a randomly assigned dose of methylphenidate (MPH; 20mg) or placebo. Short-range and long-range FCD maps were computed for each participant and medication condition. CUD participants had increased short-range and long-range FCD in the ventromedial prefrontal cortex, posterior cingulate/precuneus, and putamen/amygdala, which in areas of the default mode network correlated with years of use. Across participants, MPH decreased short-range FCD in the thalamus/putamen, and decreased long-range FCD in the supplementary motor area and postcentral gyrus. Increased density of short-range and long-range functional connections to default mode hubs in CUD suggests an overrepresentation of these resource-expensive hubs. While the effects of MPH on FCD were only partly overlapping with those of CUD, MPH-induced reduction in the density of short-range connections to the putamen/thalamus, a network of core relevance to habit formation and addiction, suggests that some FCD abnormalities could be targeted for intervention.

  12. Changes in brain oxidative metabolism induced by inhibitory avoidance learning and acute administration of amitriptyline.

    PubMed

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L; Monleón, Santiago; Vinader-Caerols, Concepción; Parra, Andrés

    2008-05-01

    The effects of antidepressant drugs on memory have been somewhat ignored, having been considered a mere side effect of these compounds. However, the memory impairment caused by several antidepressants could be considered to form part of their therapeutic effects. Amitriptyline is currently one of the most prescribed tricyclic antidepressants, and exerts marked anticholinergic and antihistaminergic effects. In this study, we evaluated the effects of inhibitory avoidance (IA) learning and acute administration of amitriptyline on brain oxidative metabolism. Brain oxidative metabolism was measured in several limbic regions using cytochrome oxidase (CO) quantitative histochemistry. Amitriptyline produced a clear impairment in the IA task. In animals exposed only to the apparatus, amitriptyline decreased CO activity in nine brain regions, without affecting the remaining regions. In animals that underwent the IA training phase, amitriptyline reduced CO activity in only three of these nine regions. In animals treated with saline, IA acquisition increased CO activity in the medial prefrontal cortex, the prelimbic cortex, and the medial mammillary body, and diminished it in the medial septum and the nucleus basalis of Meynert with respect to animals exposed only to the IA apparatus. In animals treated with amitriptyline, IA acquisition did not modify CO activity in any of these regions, but increased it in the anteromedial nucleus of the thalamus, the diagonal band of Broca, and the dentate gyrus. The results reveal a pattern of changes in brain oxidative metabolism induced by IA training in saline-treated animals that was clearly absent in animals submitted to the same behavioural training but treated with amitriptyline. PMID:18313125

  13. The acute effects of NMDA antagonism: from the rodent to the human brain.

    PubMed

    Gunduz-Bruce, Handan

    2009-05-01

    In the past decade, the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has received support from several lines of clinical evidence, including genetic, postmortem and human psychosis modeling. Recently, superiority of a mGluR2/3 receptor agonist over placebo was demonstrated in a randomized double-blind clinical trial in patients with schizophrenia. Considering the fact that currently available antipsychotics are all dopamine blockers to varying degrees without direct effects on glutamate transmission, this clinical trial highlights the potential utility of glutamatergic agents. In healthy volunteers, the NMDA channel antagonist ketamine induces transient cognitive dysfunction, perceptual aberrations and changes reminiscent of the negative symptoms of schizophrenia. However, how ketamine produces these effects is unclear. Preclinical data on NMDAR hypofunction offer further insights into the pathogenesis of the disorder as it relates to disorganized behavior, stereotypic movements and cognitive dysfunction in the rodent. This review evaluates the existing clinical and preclinical literature in an effort to shed light on the mechanism of action of ketamine as a probe to model NMDAR hypofunction in healthy volunteers. Included in this perspective are direct and indirect effects of ketamine at the neuronal level and in the intact brain. In addition to ketamine's effects on presynaptic and postsynaptic function, effects on glia and other neurotransmitter systems are discussed. While increased extracellular glutamate levels following NMDA antagonist administration stand out as a well replicated finding, evidence suggests that ketamine's effects are not restricted to pyramidal cells, but extend to GABAergic interneurons and the glia. In the glia, ketamine has significant downstream effects on the glutathione metabolism. Further studies are needed to identify the mechanistic connections between ketamine's effects at the cellular and

  14. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload

    PubMed Central

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  15. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

    PubMed

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  16. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia. PMID:24091827

  17. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  18. Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period.

    PubMed

    Wylie, Glenn R; Freeman, Kalev; Thomas, Alex; Shpaner, Marina; OKeefe, Michael; Watts, Richard; Naylor, Magdalena R

    2015-01-01

    Functional neuroimaging studies in mild traumatic brain injury (mTBI) have been largely limited to patients with persistent post-concussive symptoms, utilizing images obtained months to years after the actual head trauma. We sought to distinguish acute and delayed effects of mild traumatic brain injury on working memory functional brain activation patterns < 72 hours after mild traumatic brain injury (mTBI) and again one-week later. We hypothesized that clinical and fMRI measures of working memory would be abnormal in symptomatic mTBI patients assessed < 72 hours after injury, with most patients showing clinical recovery (i.e., improvement in these measures) within 1 week after the initial assessment. We also hypothesized that increased memory workload at 1 week following injury would expose different cortical activation patterns in mTBI patients with persistent post-concussive symptoms, compared to those with full clinical recovery. We performed a prospective, cohort study of working memory in emergency department patients with isolated head injury and clinical diagnosis of concussion, compared to control subjects (both uninjured volunteers and emergency department patients with extremity injuries and no head trauma). The primary outcome of cognitive recovery was defined as resolution of reported cognitive impairment and quantified by scoring the subject's reported cognitive post-concussive symptoms at 1 week. Secondary outcomes included additional post-concussive symptoms and neurocognitive testing results. We enrolled 46 subjects: 27 with mild TBI and 19 controls. The time of initial neuroimaging was 48 (+22 S.D.) hours after injury (time 1). At follow up (8.7, + 1.2 S.D., days after injury, time 2), 18 of mTBI subjects (64%) reported moderate to complete cognitive recovery, 8 of whom fully recovered between initial and follow-up imaging. fMRI changes from time 1 to time 2 showed an increase in posterior cingulate activation in the mTBI subjects compared to

  19. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    PubMed

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs. PMID:23712090

  20. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice.

    PubMed

    Edut, S; Rubovitch, V; Rehavi, M; Schreiber, S; Pick, C G

    2014-12-01

    Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.

  1. Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway.

    PubMed

    Cao, Guosheng; Jiang, Nan; Hu, Yang; Zhang, Yuanyuan; Wang, Guangyun; Yin, Mingzhu; Ma, Xiaonan; Zhou, Kecheng; Qi, Jin; Yu, Boyang; Kou, Junping

    2016-01-01

    Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, has been shown to inhibit cerebral ischemic injury. However, its potential molecular action on blood-brain barrier (BBB) dysfunction after stroke remains unclear. This study aimed to investigate the effects of ruscogenin on BBB dysfunction and the underlying mechanisms in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-injured mouse brain microvascular endothelial cells (bEnd.3). The results demonstrated that administration of ruscogenin (10 mg/kg) decreased the brain infarction and edema, improved neurological deficits, increased cerebral brain flow (CBF), ameliorated histopathological damage, reduced evans blue (EB) leakage and upregulated the expression of tight junctions (TJs) in MCAO/R-injured mice. Meanwhile, ruscogenin (0.1-10 µM) treatment increased cell viability and trans-endothelial electrical resistance (TEER) value, decreased sodium fluorescein leakage, and modulated the TJs expression in OGD/R-induced bEnd.3 cells. Moreover, ruscogenin also inhibited the expression of interleukin-1β (IL-1β) and caspase-1, and markedly suppressed the expression of Nucleotide-binding domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) and thiredoxin-interactive protein (TXNIP) in vivo and in vitro. Furthermore, ruscogenin decreased reactive oxygen species (ROS) generation and inhibited the mitogen-activated protein kinase (MAPK) pathway in OGD/R-induced bEnd.3 cells. Our findings provide some new insights into its potential application for the prevention and treatment of ischemic stroke. PMID:27589720

  2. Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway

    PubMed Central

    Cao, Guosheng; Jiang, Nan; Hu, Yang; Zhang, Yuanyuan; Wang, Guangyun; Yin, Mingzhu; Ma, Xiaonan; Zhou, Kecheng; Qi, Jin; Yu, Boyang; Kou, Junping

    2016-01-01

    Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, has been shown to inhibit cerebral ischemic injury. However, its potential molecular action on blood-brain barrier (BBB) dysfunction after stroke remains unclear. This study aimed to investigate the effects of ruscogenin on BBB dysfunction and the underlying mechanisms in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen–glucose deprivation/reoxygenation (OGD/R)-injured mouse brain microvascular endothelial cells (bEnd.3). The results demonstrated that administration of ruscogenin (10 mg/kg) decreased the brain infarction and edema, improved neurological deficits, increased cerebral brain flow (CBF), ameliorated histopathological damage, reduced evans blue (EB) leakage and upregulated the expression of tight junctions (TJs) in MCAO/R-injured mice. Meanwhile, ruscogenin (0.1–10 µM) treatment increased cell viability and trans-endothelial electrical resistance (TEER) value, decreased sodium fluorescein leakage, and modulated the TJs expression in OGD/R-induced bEnd.3 cells. Moreover, ruscogenin also inhibited the expression of interleukin-1β (IL-1β) and caspase-1, and markedly suppressed the expression of Nucleotide-binding domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) and thiredoxin-interactive protein (TXNIP) in vivo and in vitro. Furthermore, ruscogenin decreased reactive oxygen species (ROS) generation and inhibited the mitogen-activated protein kinase (MAPK) pathway in OGD/R-induced bEnd.3 cells. Our findings provide some new insights into its potential application for the prevention and treatment of ischemic stroke. PMID:27589720

  3. [CHARACTERIZATION OF VESTIBULAR DISORDERS IN THE INJURED PERSONS WITH THE BRAIN CONCUSSION IN ACUTE PERIOD].

    PubMed

    Skobska, O E; Kadzhaya, N V; Andreyev, O A; Potapov, E V

    2015-04-01

    There were examined 32 injured persons, ageing (34.1 ± 1.3) yrs at average, for the brain commotion (BC). The adopted protocol SCAT-3 (Standardized Concussion Assessment Tool, 3rd ed.), DHI (Dizziness Handicap Inventory questionnaire), computer stabilography (KS) were applied for the vestibular disorders diagnosis. There was established, that in acute period of BC a dyssociation between regression of objective neurological symptoms and permanence of the BC indices occurs, what confirms a latent disorder of the balance function. Changes of basic indices of statokinesiography, including increase of the vibration amplitude enhancement in general centre of pressure in a saggital square and the BC square (235.3 ± 13.7) mm2 in a modified functional test of Romberg with the closed eyes is possible to apply as objective criteria for the BC diagnosis.

  4. Brain sarcoma of meningeal origin after cranial irradiation in childhood acute lymphocytic leukemia. Case report

    SciTech Connect

    Tiberin, P.; Maor, E.; Zaizov, R.; Cohen, I.J.; Hirsch, M.; Yosefovich, T.; Ronen, J.; Goldstein, J.

    1984-10-01

    The authors report their experience with an unusual case of intracerebral sarcoma of meningeal cell origin in an 8 1/2-year-old girl. This tumor occurred 6 1/2 years after cranial irradiation at relatively low dosage (2200 rads) had been delivered to the head in the course of a multimodality treatment for acute lymphocytic leukemia. The tumor recurred approximately 10 months after the first surgical intervention. Macroscopic total excision of the recurrent growth followed by whole-brain irradiation (4500 rads) failed to eradicate it completely and local recurrence prompted reoperation 18 months later. This complication of treatment in long-term childhood leukemia survivors is briefly discussed, as well as the pathology of meningeal sarcomas.

  5. Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials

    PubMed Central

    Lee, S. J.; Sun, J.; Flint, J. J.; Guo, S.; Xie, H. K.; King, M. A.; Sarntinoranont, M.

    2011-01-01

    Currently, micro-indentation testing of soft biological materials is limited in its capability to test over long time scales due to accumulated instrumental drift errors. As a result, there is a paucity of measures for mechanical properties such as the equilibrium modulus. In this study, indentation combined with optical coherence tomography (OCT) was used for mechanical testing of thin tissue slices. OCT was used to measure the surface deformation profiles by placing spherical beads onto submerged test samples. Agarose-based hydrogels at low-concentrations (w/v, 0.3–0.6 %) and acute rat brain tissue slices were tested using this technique over a 30 min time window. To establish that tissue slices maintained cell viability, allowable testing times were determined by measuring neuronal death or degeneration as a function of incubation time with Fluor-Jade C (FJC) staining. Since large deformations at equilibrium were measured, displacements of surface beads were compared with finite element elastic contact simulations to predict the equilibrium modulus, μ∞. Values of μ∞ for the low- concentration hydrogels ranged from 0.07–1.8 kPa, and μ∞ for acute rat brain tissue slices was 0.13 ± 0.04 kPa for the cortex and 0.09 ± 0.015 kPa for the hippocampus (for Poisson ratio=0.35). This indentation technique offers a localized, real-time, and high resolution method for long-time scale mechanical testing of very soft materials. This test method may also be adapted for viscoelasticity, for testing of different tissues and biomaterials, and for analyzing changes in internal structures with loading. PMID:21290586

  6. [Possibilities of magnetic-laser therapy in comprehensive treatment of patients with brain concussion in acute period].

    PubMed

    Zubkova, O V; Samosiuk, I Z; Polishchuk, O V; Shul'ga, N M; Samosiuk, N I

    2012-01-01

    The efficacy of magnetic-laser therapy used according to the method developed by us was studied in patients having the brain concussion (BC) in an acute period. The study was based on the dynamics of values of the evoked vestibular potentials and the disease clinical course. It was shown that following the magnetic-laser therapy in combination with traditional pharmacotherapy in BC acute period, the statistically significant positive changes were registered in the quantitative characteristics of the evoked vestibular brain potentials that correlated with the dynamics of the disease clinical course. The data obtained substantiate the possibility of using the magnetic-laser therapy in patients with a mild craniocereblal injury in an acute period.

  7. Protective effects of compound FLZ, a novel synthetic analogue of squamosamide, on β-amyloid-induced rat brain mitochondrial dysfunction in vitro

    PubMed Central

    Fang, Fang; Liu, Geng-tao

    2009-01-01

    Aim: The aim of the present study was to assess the effects of N-[2-(4-hydroxyphenyl)ethyl]-2-(2,5-dimethoxyphenyl)-3-(3-methoxy-4-hydroxyphenyl) acrylamide (compound FLZ), a novel synthetic analogue of squamosamide, on the dysfunction of rat brain mitochondria induced by Aβ25–35 in vitro. Methods: Isolated rat brain mitochondria were incubated with aged Aβ25–35 for 30 min in the presence and absence of FLZ (1–100 μmol/L). The activities of key mitochondrial enzymes, the production of hydrogen peroxide (H2O2) and superoxide anion (O2·-), and the levels of glutathione (GSH) in mitochondria were examined. Mitochondrial swelling and the release of cytochrome c from mitochondria were assessed by biochemical and Western blot methods, respectively. Results: Incubation of mitochondria with aged Aβ25–35 inhibited the activities of α-ketoglutarate dehydrogenase (α-KGDH), pyruvate dehydrogenase (PDH) and respiratory chain complex IV. It also resulted in increased H2O2 and O2·- production, and decreased the GSH level in mitochondria. Furthermore, it induced mitochondrial swelling and cytochrome c release from the mitochondria. The addition of FLZ (100 μmol/L) prior to treatment with Aβ25–35 significantly prevented these toxic effects of Aβ25–35 on the mitochondria. Conclusion: FLZ has a protective effect against Aβ25–35-induced mitochondrial dysfunction in vitro. PMID:19417731

  8. Cerebral amyloid angiopathy-related inflammation presenting with steroid-responsive higher brain dysfunction: case report and review of the literature

    PubMed Central

    2011-01-01

    A 56-year-old man noticed discomfort in his left lower limb, followed by convulsion and numbness in the same area. Magnetic resonance imaging (MRI) showed white matter lesions in the right parietal lobe accompanied by leptomeningeal or leptomeningeal and cortical post-contrast enhancement along the parietal sulci. The patient also exhibited higher brain dysfunction corresponding with the lesions on MRI. Histological pathology disclosed β-amyloid in the blood vessels and perivascular inflammation, which highlights the diagnosis of cerebral amyloid angiopathy (CAA)-related inflammation. Pulse steroid therapy was so effective that clinical and radiological findings immediately improved. CAA-related inflammation is a rare disease, defined by the deposition of amyloid proteins within the leptomeningeal and cortical arteries associated with vasculitis or perivasculitis. Here we report a patient with CAA-related inflammation who showed higher brain dysfunction that improved with steroid therapy. In cases with atypical radiological lesions like our case, cerebral biopsy with histological confirmation remains necessary for an accurate diagnosis. PMID:21914214

  9. Leptin acts in the brain to influence hypoglycemic counterregulation: disparate effects of acute and recurrent hypoglycemia on glucagon release.

    PubMed

    Reno, Candace M; Ding, Yuyan; Sherwin, Robert

    2015-12-15

    Leptin has been shown to diminish hyperglycemia via reduced glucagon secretion, although it can also enhance sympathoadrenal responses. However, whether leptin can also inhibit glucagon secretion during insulin-induced hypoglycemia or increase epinephrine during acute or recurrent hypoglycemia has not been examined. To test whether leptin acts in the brain to influence counterregulation, hyperinsulinemic hypoglycemic (∼45 mg/dl) clamps were performed on rats exposed to or not exposed to recurrent hypoglycemia (3 days, ∼40 mg/dl). Intracerebroventricular artificial cerebral spinal fluid or leptin was infused during the clamp. During acute hypoglycemia, leptin decreased glucagon responses by 51% but increased epinephrine and norepinephrine by 24 and 48%, respectively. After recurrent hypoglycemia, basal plasma leptin levels were undetectable. Subsequent brain leptin infusion during hypoglycemia paradoxically increased glucagon by 45% as well as epinephrine by 19%. In conclusion, leptin acts within the brain to diminish glucagon secretion during acute hypoglycemia but increases epinephrine, potentially limiting its detrimental effects during hypoglycemia. Exposure to recurrent hypoglycemia markedly suppresses plasma leptin, whereas exogenous brain leptin delivery enhances both glucagon and epinephrine release to subsequent hypoglycemia. These data suggest that recurrent hypoglycemia may diminish counterregulatory responses in part by reducing brain leptin action.

  10. Forward and inverse electroencephalographic modeling in health and in acute traumatic brain injury

    PubMed Central

    Irimia, Andrei; Goh, S.Y. Matthew; Torgerson, Carinna M.; Chambers, Micah C.; Kikinis, Ron; Van Horn, John D.

    2013-01-01

    Objective EEG source localization is demonstrated in three cases of acute traumatic brain injury (TBI) with progressive lesion loads using anatomically faithful models of the head which account for pathology. Methods Multimodal magnetic resonance imaging (MRI) volumes were used to generate head models via the finite element method (FEM). A total of 25 tissue types—including 6 types accounting for pathology— were included. To determine the effects of TBI upon source localization accuracy, a minimum-norm operator was used to perform inverse localization and to determine the accuracy of the latter. Results The importance of using a more comprehensive number of tissue types is confirmed in both health and in TBI. Pathology omission is found to cause substantial inaccuracies in EEG forward matrix calculations, with lead field sensitivity being underestimated by as much as ~200% in (peri-) contusional regions when TBI-related changes are ignored. Failing to account for such conductivity changes is found to misestimate substantial localization error by up to 35 mm. Conclusions Changes in head conductivity profiles should be accounted for when performing EEG modeling in acute TBI. Significance Given the challenges of inverse localization in TBI, this framework can benefit neurotrauma patients by providing useful insights on pathophysiology. PMID:23746499

  11. Early stage assessment and course of acute stress disorder after mild traumatic brain injury.

    PubMed

    Broomhall, Luke G J; Clark, C Richard; McFarlane, Alexander C; O'Donnell, Meagan; Bryant, Richard; Creamer, Mark; Silove, Derek

    2009-03-01

    Although it has been established that acute stress disorder (ASD) and posttraumatic stress disorder occur after mild traumatic brain injury (MTBI) the qualitative differences in symptom presentation between injury survivors with and without a MTBI have not been explored in depth. This study aimed to compare the ASD and posttraumatic stress disorder symptom presentation of injury survivors with and without MTBI. One thousand one hundred sixteen participants between the ages of 17 to 65 years (mean age: 38.97 years, SD: 14.23) were assessed in the acute hospital after a traumatic injury. Four hundred seventy-five individuals met the criteria for MTBI. Results showed a trend toward higher levels of ASD in the MTBI group compared with the non-MTBI group. Those with a MTBI and ASD had longer hospital admissions and higher levels of distress associated with their symptoms. Although many of the ASD symptoms that the MTBI group scored significantly higher were also part of a postconcussive syndrome, higher levels of avoidance symptoms may suggest that this group is at risk for longer term poor psychological adjustment. Mild TBI patients may represent a injury group at risk for poor psychological adjustment after traumatic injury. PMID:19282684

  12. Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure.

    PubMed

    Ju, Hee Young; Hong, Che Ry; Shin, Hee Young

    2014-10-01

    Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered. PMID:25379043

  13. Nongenomic effects of estrogen mediate the dose-related myocardial oxidative stress and dysfunction caused by acute ethanol in female rats

    PubMed Central

    El-Mas, Mahmoud M.

    2013-01-01

    Acute ethanol lowers blood pressure (BP) and cardiac output in proestrus and after chronic estrogen (E2) replacement in ovariectomized (OVX) female rats. However, whether rapid nongenomic effects of estrogen mediate these hemodynamic effects of ethanol remains unanswered. To test this hypothesis, we investigated the effect of ethanol (0.5 or 1.5 g/kg iv) on left ventricular (LV) function and oxidative markers in OVX rats pretreated 30 min earlier with 1 μg/kg E2 (OVXE2) or vehicle (OVX) and in proestrus sham-operated (SO) rats. In SO rats, ethanol caused significant and dose-related reductions in BP, rate of rise in LV pressure (LV dP/dtmax), and LV developed pressure (LVDP). These effects of ethanol disappeared in OVX rats and were restored in OVXE2 rats, suggesting rapid estrogen receptor signaling mediates the detrimental effects of ethanol on LV function. Ex vivo studies revealed that the estrogen-dependent myocardial dysfunction caused by ethanol was coupled with higher LV 1) generation of reactive oxygen species (ROS), 2) expression of malondialdehyde and 4-hydroxynonenal protein adducts, 3) phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinases (ERK1/2), and 4) catalase activity. ERK1/2 inhibition by PD-98059 (1 mg/kg iv) abrogated the myocardial dysfunction, hypotension, and the elevation in myocardial ROS generation caused by ethanol. We conclude that rapid estrogen receptor signaling is implicated in cellular events that lead to the generation of aldehyde protein adducts and Akt/ERK1/2 phosphorylation, which ultimately mediate the estrogen-dependent LV oxidative stress and dysfunction caused by ethanol in female rats. PMID:24368668

  14. Acute Serum Hormone Levels: Characterization and Prognosis after Severe Traumatic Brain Injury

    PubMed Central

    McCullough, Emily H.; Niyonkuru, Christian; Ozawa, Haishin; Loucks, Tammy L.; Dobos, Julie A.; Brett, Christopher A.; Santarsieri, Martina; Dixon, C. Edward; Berga, Sarah L.; Fabio, Anthony

    2011-01-01

    Abstract Experimental traumatic brain injury (TBI) studies report the neuroprotective effects of female sex steroids on multiple mechanisms of injury, with the clinical assumption that women have hormonally mediated neuroprotection because of the endogenous presence of these hormones. Other literature indicates that testosterone may exacerbate injury. Further, stress hormone abnormalities that accompany critical illness may both amplify or blunt sex steroid levels. To better understand the role of sex steroid exposure in mediating TBI, we 1) characterized temporal profiles of serum gonadal and stress hormones in a population with severe TBI during the acute phases of their injury; and 2) used a biological systems approach to evaluate these hormones as biomarkers predicting global outcome. The study population was 117 adults (28 women; 89 men) with severe TBI. Serum samples (n=536) were collected for 7 days post-TBI for cortisol, progesterone, testosterone, estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Hormone data were linked with clinical data, including acute care mortality and Glasgow Outcome Scale (GOS) scores at 6 months. Hormone levels after TBI were compared to those in healthy controls (n=14). Group based trajectory analysis (TRAJ) was used to develop temporal hormone profiles that delineate distinct subpopulations in the cohort. Structural equations models were used to determine inter-relationships between hormones and outcomes within a multivariate model. Compared to controls, acute serum hormone levels were significantly altered after severe TBI. Changes in the post-TBI adrenal response and peripheral aromatization influenced hormone TRAJ profiles and contributed to the abnormalities, including increased estradiol in men and increased testosterone in women. In addition to older age and greater injury severity, increased estradiol and testosterone levels over time were associated with increased mortality and worse global

  15. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  16. Outcome Uncertainty and Brain Activity Aberrance in the Insula and Anterior Cingulate Cortex Are Associated with Dysfunctional Impulsivity in Borderline Personality Disorder

    PubMed Central

    Mortensen, Jørgen Assar; Evensmoen, Hallvard Røe; Klensmeden, Gunilla; Håberg, Asta Kristine

    2016-01-01

    Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD. PMID:27199724

  17. Caregiver Ratings of Long-term Executive Dysfunction and Attention Problems After Early Childhood Traumatic Brain Injury: Family Functioning Is Important

    PubMed Central

    Kurowski, Brad G.; Taylor, H. Gerry; Yeates, Keith Owen; Walz, Nicolay C.; Stancin, Terry; Wade, Shari L.

    2013-01-01

    Objective To evaluate the relationship of family and parenting factors to long-term executive dysfunction and attention problems after early childhood traumatic brain injury (TBI). We hypothesized that the magnitude of executive dysfunction and attention problems would be moderated by family and parenting factors. Design A multicenter, prospective cohort study that included an orthopedic injury (OI) reference group. Setting Three tertiary academic children’s hospital medical centers and one general medical center. Participants Children, ages 3–7 years, hospitalized for OI, moderate TBI, or severe TBI. Methods and Outcome Measurements Parental ratings of family functioning and parenting styles were obtained 18 months after the injury occurred. The main outcome measurements, which were parental ratings of children’s executive function and attention, were performed at least 24 months after the injury occurred (mean, 39 months; range, 25–63 months). Analysis Group comparisons were conducted with use of t-tests, χ2 analysis, analysis of variance, and Pearson and Spearman correlations. Regression analysis was used to examine associations of the outcomes with family functioning and parenting styles and to test moderating effects of these factors on group differences. Results Participants with severe TBI demonstrated increased executive dysfunction and attention problems compared with those who sustained moderate TBI or OI. Lower levels of family dysfunction were associated with better executive function and attention across groups but did not moderate group differences. However, attention deficits after severe TBI were exacerbated under conditions of more permissive parenting relative to attention deficits after OIs. Conclusions Executive function and attention problems persisted on a long-term basis (>24 months) after early childhood TBI, and positive global family functioning and nonpermissive parenting were associated with better outcomes. Better

  18. End-of-life and brain death in acute coma and disorders of consciousness.

    PubMed

    Greer, David M; Curiale, Gioacchino G

    2013-04-01

    Consulting neurologists are often asked to evaluate patients in acute nontraumatic coma. The authors review prognostication of functional outcomes, determining brain death, and managing end-of-life care. Prognostication of outcome after cardiac arrest in comatose patients is a frequently encountered scenario with high-stakes implications. However, current guidelines are limited by a failure to address the use of therapeutic hypothermia and thus may lead to overly pessimistic outcome prediction. Pupillary light responses and corneal reflexes remain highly predictive clinical signs of a poor prognosis. Motor responses have a high false-positive rate for predicting a poor outcome, especially in patients treated with therapeutic hypothermia. Ancillary testing with electroencephalography, somatosensory evoked potentials, serum neuron-specific enolase, and neuroimaging is often useful in predicting outcomes. Brain death is a clinical condition of irreversible coma of known cause with absent brainstem reflexes and apnea. An understanding of the value of confirmatory testing and the potential for confounding factors is essential in making a correct diagnosis. As coma carries a high mortality rate, neurologists must be capable of guiding goals of care, discussing end-of-life issues, and understanding organ-procurement procedures. PMID:23888399

  19. Effects of different kinds of acute stress on nerve growth factor content in rat brain.

    PubMed

    von Richthofen, Sita; Lang, Undine E; Hellweg, Rainer

    2003-10-17

    Nerve growth factor (NGF) has several effects on the central nervous system; on the one hand NGF fosters survival and function of cholinergic neurons of the basal forebrain, on the other hand this protein is implicated in the stress response of the hypothalamic-pituitary-adrenocortical axis (HPAA). In this study we tested the influence of threatening and painful stress treatments in three different intensities as well as forced motoric activity on NGF content in different brain areas in adult rats. We found that threatening treatment with or without painful stimuli was followed by a significant decrease of NGF concentration in the amygdala (44.5%; P=0.03) and the frontal cortex (-45.5%; P=0.02). We also observed that after stress of forced motoric activity NGF content in the frontal cortex (-32%; P=0.01) and the hippocampus (-32%; P=0.006) was significantly reduced. Thus, NGF content in distinct brain regions is decreased, following different forms of acute stress. This might be relevant for the pathophysiological understanding of psychiatric diseases, such as depression, which are associated with stress.

  20. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. PMID:27511839

  1. A compact and autoclavable system for acute extracellular neural recording and brain pressure monitoring for humans.

    PubMed

    Angotzi, Gian Nicola; Baranauskas, Gytis; Vato, Alessandro; Bonfanti, Andrea; Zambra, Guido; Maggiolini, Emma; Semprini, Marianna; Ricci, Davide; Ansaldo, Alberto; Castagnola, Elisa; Ius, Tamara; Skrap, Miran; Fadiga, Luciano

    2015-02-01

    One of the most difficult tasks for the surgeon during the removal of low-grade gliomas is to identify as precisely as possible the borders between functional and non-functional brain tissue with the aim of obtaining the maximal possible resection which allows to the patient the longer survival. For this purpose, systems for acute extracellular recordings of single neuron and multi-unit activity are considered promising. Here we describe a system to be used with 16 microelectrodes arrays that consists of an autoclavable headstage, a built-in inserter for precise electrode positioning and a system that measures and controls the pressure exerted by the headstage on the brain with a twofold purpose: to increase recording stability and to avoid disturbance of local perfusion which would cause a degradation of the quality of the recording and, eventually, local ischemia. With respect to devices where only electrodes are autoclavable, our design permits the reduction of noise arising from long cable connections preserving at the same time the flexibility and avoiding long-lasting gas sterilization procedures. Finally, size is much smaller and set up time much shorter compared to commercial systems currently in use in surgery rooms, making it easy to consider our system very useful for intra-operatory mapping operations. PMID:25486648

  2. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. PMID:27190065

  3. [Successful induction therapy for acute myeloid leukemia complicated with brain hemorrhage and hyperleukocytosis].

    PubMed

    Miyazaki, Takuya; Abe, Nana; Yamazaki, Etsuko; Koyama, Satoshi; Miyashita, Kazuho; Takahashi, Hiroyuki; Nakajima, Yuki; Tachibana, Takayoshi; Kamijo, Aki; Tomita, Naoto; Ishigastubo, Yoshiaki

    2016-02-01

    Adequate management of hyperleukocytosis in patients with acute myeloid leukemia (AML) is essential for the prevention of life-threatening complications related to leukostasis and tumor lysis syndrome, but the optimal therapeutic strategy remains unclear. We report a 15-year-old girl with newly diagnosed AML who had extreme hyperleukocytosis (leukocyte count at diagnosis, 733,000/μl) leading to a brain hemorrhage. She was initially treated with hydroxyurea, but presented with brain hemorrhage due to leukostasis and underwent leukapheresis emergently with intensive care and mechanical ventilation. Full-dose standard induction chemotherapy was initiated after achieving gradual cytoreduction (leukocyte count, 465,000/μl) within five days after the initiation of therapy with hydroxyurea and leukapheresis. These treatments were successful and she experienced no complications. The patient ultimately recovered fully and was discharged with complete remission of AML. Although the effects of hydroxyurea and leukapheresis in the setting of hyperleukocytosis are still controversial, these initial treatments may contribute to successful bridging therapy followed by subsequent induction chemotherapy, especially in AML cases with extreme hyperleukocytosis or life-threatening leukostasis. PMID:26935637

  4. Acute Ethanol Effects on Brain Activation in Low- and High-Level Responders to Alcohol

    PubMed Central

    Trim, Ryan S.; Simmons, Alan N.; Tolentino, Neil J.; Hall, Shana A.; Matthews, Scott C.; Robinson, Shannon K.; Smith, Tom L.; Padula, Claudia B.; Paulus, Martin P.; Tapert, Susan F.; Schuckit, Marc A.

    2013-01-01

    Background A low level of response (LR) to alcohol is an important endophenotype associated with an increased risk for alcoholism. However, little is known about how neural functioning may differ between individuals with low and high LRs to alcohol. This study examined whether LR group effects on neural activity varied as a function of acute alcohol consumption. Methods 30 matched high- and low-LR pairs (N=60 healthy young adults) were recruited from the University of California, San Diego and administered a structured diagnostic interview and laboratory alcohol challenge followed by two fMRI sessions under placebo and alcohol conditions, in randomized order. Task performance and BOLD response contrast to high relative to low working memory load in an event-related visual working memory (VWM) task was examined across 120 fMRI sessions. Results Both LR groups performed similarly on the VWM task across conditions. A significant LR group by condition interaction effect was observed in inferior frontal and cingulate regions, such that alcohol attenuated the LR group differences found under placebo (p<.05). The LR group by condition effect remained even after controlling for cerebral blood flow, age, and typical drinking quantity. Conclusions Alcohol had differential effects on brain activation for low and high LR individuals within frontal and cingulate regions. These findings represent an additional step in the search for physiological correlates of a low LR, and identify brain regions that may be associated with the low LR response. PMID:20477775

  5. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    PubMed

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    underestimated when brain coverage was 40 mm or less (P < .0001). Conclusion Correct threshold setting and whole-brain coverage CT perfusion allowed differentiation of the penumbra from the ischemic core in patients with acute ischemic stroke. (©) RSNA, 2016 Online supplemental material is available for this article.

  6. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    PubMed

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.

  7. Cerebral Visual Impairment: Which Perceptive Visual Dysfunctions Can Be Expected in Children with Brain Damage? A Systematic Review

    ERIC Educational Resources Information Center

    Boot, F. H.; Pel, J. J. M.; van der Steen, J.; Evenhuis, H. M.

    2010-01-01

    The current definition of Cerebral Visual Impairment (CVI) includes all visual dysfunctions caused by damage to, or malfunctioning of, the retrochiasmatic visual pathways in the absence of damage to the anterior visual pathways or any major ocular disease. CVI is diagnosed by exclusion and the existence of many different causes and symptoms make…

  8. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  9. How mild traumatic brain injury may affect declarative memory performance in the post-acute stage.

    PubMed

    Stulemeijer, Maja; Vos, Pieter E; van der Werf, Sieberen; van Dijk, Gert; Rijpkema, Mark; Fernández, Guillén

    2010-09-01

    Memory deficits are among the most frequently reported sequelae of mild traumatic brain injury (MTBI), especially early after injury. To date, these cognitive deficits remain poorly understood, as in most patients the brain is macroscopically intact. To identify the mechanism by which MTBI causes declarative memory impairments, we probed the functionality of the medial temporal lobe (MTL) and the prefrontal cortex (PFC), within 6 weeks after injury in 43 patients from a consecutive cohort, and matched healthy controls. In addition to neuropsychological measures of declarative memory and other cognitive domains, all subjects underwent functional magnetic resonance imaging (fMRI). Behavioral results showed poorer declarative memory performance in patients than controls, and decreasing performance with increasing duration of post-traumatic amnesia (a measure of injury severity). Task performance in the scanner was, as intended by the task and design, similar in patients and controls, and did not relate to injury severity. The task used reliably activated the MTL and PFC. Although we did not find significant differences in brain activity when comparing patients and controls, we revealed, in agreement with our neuropsychological findings, an inverse correlation between MTL activity and injury severity. In contrast, no difference in prefrontal activation was found between patients and controls, nor was there a relation with injury severity. On a behavioral level, injury severity was inversely related to declarative memory performance. In all, these findings suggest that reduced medial temporal functionality may contribute to poorer declarative memory performance in the post-acute stage of MTBI, especially in patients with longer post-traumatic amnesia.

  10. Structural integrity of medial temporal lobes of patients with acute mild traumatic brain injury.

    PubMed

    Holli-Helenius, Kirsi; Luoto, Teemu M; Brander, Antti; Wäljas, Minna; Iverson, Grant L; Ohman, Juha

    2014-07-01

    Post-traumatic amnesia (PTA) is an acute characteristic of traumatic brain injury (TBI) and the duration of PTA is commonly used to estimate the severity of brain injury. In the context of mild traumatic brain injury (MTBI), PTA is an essential part of the routine clinical assessment. Macroscopic lesions in temporal lobes, especially hippocampal regions, are thought to be connected to memory loss. However, conventional neuroimaging has failed to reveal neuropathological correlates of PTA in MTBI. Texture analysis (TA) is an image analysis technique that quantifies the minor MRI signal changes among image pixels and, therefore, the variations in intensity patterns within the image. The objective of this work was to apply the TA technique to MR images of MTBI patients and control subjects, and to assess the microstructural damage in medial temporal lobes of patients with MTBI with definite PTA. TA was performed for fluid-attenuated inversion recovery (FLAIR) images of 50 MTBI patients and 50 age- and gender-matched controls in the regions of the amygdala, hippocampus, and thalamus. It was hypothesized that 1) there would be statistically significant differences in TA parameters between patients with MTBIs and controls, and 2) the duration of PTA would be related to TA parameters in patients with MTBI. No significant textural differences were observed between patients and controls in the regions of interest (p>0.01). No textural features were observed to correlate with the duration of PTA. Subgroup analyses were conducted on patients with PTA of>1 h, (n=33) and compared the four TA parameters to the age- and gender-matched controls (n=33). The findings were similar. This study did not reveal significant textural changes in medial temporal structures that could be related to the duration of PTA.

  11. Dysfunctional Attitudes Scale Perfectionism: A Predictor and Partial Mediator of Acute Treatment Outcome among Clinically Depressed Adolescents

    ERIC Educational Resources Information Center

    Jacobs, Rachel H.; Silva, Susan G.; Reinecke, Mark A.; Curry, John F.; Ginsburg, Golda S.; Kratochvil, Christopher J.; March, John S.

    2009-01-01

    The effect of perfectionism on acute treatment outcomes was explored in a randomized controlled trial of 439 clinically depressed adolescents (12-17 years of age) enrolled in the Treatment for Adolescents with Depression Study (TADS) who received cognitive behavior therapy (CBT), fluoxetine, a combination of CBT and FLX, or pill placebo. Measures…

  12. The activity of the Ang/Tie-2 system in the brain that suffered acute carbon monoxide poisoning.

    PubMed

    Wang, Suping; Liu, Zanhua; Qu, Jing; Wang, Xiaoting

    2013-10-01

    Acute carbon monoxide poisoning (ACMP) leads to significant toxicity of the central nervous system and heart, and even death, following it, some patients suffered delayed encephalopathy. Until now, no theory had explained it exactly. It was reported that neovascularization was found in acute ischemic brains and also that angiopoietins (Ang) play important roles in the process of angiogenesis, for example, the members of Ang family, Ang-1 and Ang-2 may promote angiogenesis by combining with endothelial-specific cell surface tyrosine kinase receptor Tie-2. Interestingly, some studies suggested that small vascular injury may play an important role in the pathogenesis of delayed encephalopathy after carbon monoxide poisoning. Does neovascularization also occur in the brains after ACMP? Do Ang also take part in the pathologic processes in the brains that suffered ACMP? People know little about it. In the present study, we showed that neovascularization also occurred in the brains that suffered ACMP, and there are two expression peaks of Ang-1, Ang-2 and Tie-2, respectively, in the mice brains on the 3rd day and the 7th day following ACMP, and draw a conclusion that the Ang/Tie-2 system takes part in the pathologic processes in the brains that suffered ACMP by participating in neovascularization.

  13. Memory Dysfunction

    PubMed Central

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  14. Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats.

    PubMed

    Macêdo, Livia G R P; Carvalho-Silva, Milena; Ferreira, Gabriela K; Vieira, Júlia S; Olegário, Natália; Gonçalves, Renata C; Vuolo, Francieli S; Ferreira, Gustavo C; Schuck, Patrícia F; Dal-Pizzol, Felipe; Streck, Emilio L

    2013-12-01

    Tyrosinemia type II, also known as Richner-Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of L-tyrosine. Our results demonstrated that the acute administration of L-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of L-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II. PMID:24135880

  15. Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats.

    PubMed

    Macêdo, Livia G R P; Carvalho-Silva, Milena; Ferreira, Gabriela K; Vieira, Júlia S; Olegário, Natália; Gonçalves, Renata C; Vuolo, Francieli S; Ferreira, Gustavo C; Schuck, Patrícia F; Dal-Pizzol, Felipe; Streck, Emilio L

    2013-12-01

    Tyrosinemia type II, also known as Richner-Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of L-tyrosine. Our results demonstrated that the acute administration of L-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of L-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II.

  16. Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release.

    PubMed

    Haorah, James; Knipe, Bryan; Gorantla, Santhi; Zheng, Jialin; Persidsky, Yuri

    2007-01-01

    The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, pep