Science.gov

Sample records for acute brain slice

  1. Extending the viability of acute brain slices

    PubMed Central

    Buskila, Yossi; Breen, Paul P.; Tapson, Jonathan; van Schaik, André; Barton, Matthew; Morley, John W.

    2014-01-01

    The lifespan of an acute brain slice is approximately 6–12 hours, limiting potential experimentation time. We have designed a new recovery incubation system capable of extending their lifespan to more than 36 hours. This system controls the temperature of the incubated artificial cerebral spinal fluid (aCSF) while continuously passing the fluid through a UVC filtration system and simultaneously monitoring temperature and pH. The combination of controlled temperature and UVC filtering maintains bacteria levels in the lag phase and leads to the dramatic extension of the brain slice lifespan. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays. This system benefits researchers by monitoring incubation conditions and standardizing this artificial environment. It further provides viable tissue for two experimental days, reducing the time spent preparing brain slices and the number of animals required for research. PMID:24930889

  2. Acute brain slice methods for adult and aging animals: application of targeted patch clampanalysis and optogenetics

    PubMed Central

    Daigle, Tanya L.; Chen, Qian; Feng, Guoping

    2014-01-01

    Summary The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically-defined neuronal subtypes. PMID:25023312

  3. Two-photon excitation STED microscopy in two colors in acute brain slices.

    PubMed

    Bethge, Philipp; Chéreau, Ronan; Avignone, Elena; Marsicano, Giovanni; Nägerl, U Valentin

    2013-02-19

    Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ~350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.

  4. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    NASA Astrophysics Data System (ADS)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  5. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    PubMed Central

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-01-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models. PMID:26971573

  6. Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials

    PubMed Central

    Lee, S. J.; Sun, J.; Flint, J. J.; Guo, S.; Xie, H. K.; King, M. A.; Sarntinoranont, M.

    2011-01-01

    Currently, micro-indentation testing of soft biological materials is limited in its capability to test over long time scales due to accumulated instrumental drift errors. As a result, there is a paucity of measures for mechanical properties such as the equilibrium modulus. In this study, indentation combined with optical coherence tomography (OCT) was used for mechanical testing of thin tissue slices. OCT was used to measure the surface deformation profiles by placing spherical beads onto submerged test samples. Agarose-based hydrogels at low-concentrations (w/v, 0.3–0.6 %) and acute rat brain tissue slices were tested using this technique over a 30 min time window. To establish that tissue slices maintained cell viability, allowable testing times were determined by measuring neuronal death or degeneration as a function of incubation time with Fluor-Jade C (FJC) staining. Since large deformations at equilibrium were measured, displacements of surface beads were compared with finite element elastic contact simulations to predict the equilibrium modulus, μ∞. Values of μ∞ for the low- concentration hydrogels ranged from 0.07–1.8 kPa, and μ∞ for acute rat brain tissue slices was 0.13 ± 0.04 kPa for the cortex and 0.09 ± 0.015 kPa for the hippocampus (for Poisson ratio=0.35). This indentation technique offers a localized, real-time, and high resolution method for long-time scale mechanical testing of very soft materials. This test method may also be adapted for viscoelasticity, for testing of different tissues and biomaterials, and for analyzing changes in internal structures with loading. PMID:21290586

  7. High-strain-rate brain injury model using submerged acute rat brain tissue slices.

    PubMed

    Sarntinoranont, Malisa; Lee, Sung J; Hong, Yu; King, Michael A; Subhash, Ghatu; Kwon, Jiwoon; Moore, David F

    2012-01-20

    Blast-induced traumatic brain injury (bTBI) has received increasing attention in recent years due to ongoing military operations in Iraq and Afghanistan. Sudden impacts or explosive blasts generate stress and pressure waves that propagate at high velocities and affect sensitive neurological tissues. The immediate soft tissue response to these stress waves is difficult to assess using current in vivo imaging technologies. However, these stress waves and resultant stretching and shearing of tissue within the nano- to microsecond time scale of blast and impact are likely to cause initial injury. To visualize the effects of stress wave loading, we have developed a new ex vivo model in which living tissue slices from rat brain, attached to a ballistic gelatin substrate, were subjected to high-strain-rate loads using a polymer split Hopkinson pressure bar (PSHPB) with real-time high-speed imaging. In this study, average peak fluid pressure within the test chamber reached a value of 1584±63.3 psi. Cavitation due to a trailing underpressure wave was also observed. Time-resolved images of tissue deformation were collected and large maximum eigenstrains (0.03-0.42), minimum eigenstrains (-0.33 to -0.03), maximum shear strains (0.09-0.45), and strain rates (8.4×10³/sec) were estimated using digital image correlation (DIC). Injury at 4 and 6 h was quantified using Fluoro-Jade C. Neuronal injury due to PSHPB testing was found to be significantly greater than injury associated with the tissue slice paradigm alone. While large pressures and strains were encountered for these tests, this system provides a controllable test environment to study injury to submerged brain slices over a range of strain rate, pressure, and strain loads. PMID:21970544

  8. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Beggs, J. M.; Dabrowski, W.; Hottowy, P.; Kenney, C. J.; Sher, A.; Litke, A. M.; Mathieson, K.

    2013-02-01

    Objective. This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. Approach. Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. Main results. This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ˜15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. Significance. The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.

  9. The relationship between decorrelation time and sample thickness in acute rat brain tissue slices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-03-01

    The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.

  10. Analyzing the relationship between decorrelation time and tissue thickness in acute rat brain slices using multispeckle diffusing wave spectroscopy.

    PubMed

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-02-01

    Novel techniques in the field of wavefront shaping have enabled light to be focused deep inside or through scattering media such as biological tissue. However, most of these demonstrations have been limited to thin, static samples since these techniques are very sensitive to changes in the arrangement of the scatterers within. As the samples of interest get thicker, the influence of the dynamic nature of the sample becomes even more pronounced and the window of time in which the wavefront solutions remain valid shrinks further. In this paper, we examine the time scales upon which this decorrelation happens in acute rat brain slices via multispeckle diffusing wave spectroscopy and investigate the relationship between this decorrelation time and the thickness of the sample using diffusing wave spectroscopy theory and Monte Carlo photon transport simulation.

  11. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  12. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    NASA Astrophysics Data System (ADS)

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-11-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation.

  13. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    PubMed

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  14. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    PubMed Central

    Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2014-01-01

    Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies. PMID:24917788

  15. Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method.

    PubMed

    Pan, Geng; Li, Yue; Geng, Hong-Yan; Yang, Jian-Ming; Li, Ke-Xin; Li, Xiao-Ming

    2015-04-01

    Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions. PMID:25648546

  16. Classification of CT-brain slices based on local histograms

    NASA Astrophysics Data System (ADS)

    Avrunin, Oleg G.; Tymkovych, Maksym Y.; Pavlov, Sergii V.; Timchik, Sergii V.; Kisała, Piotr; Orakbaev, Yerbol

    2015-12-01

    Neurosurgical intervention is a very complicated process. Modern operating procedures based on data such as CT, MRI, etc. Automated analysis of these data is an important task for researchers. Some modern methods of brain-slice segmentation use additional data to process these images. Classification can be used to obtain this information. To classify the CT images of the brain, we suggest using local histogram and features extracted from them. The paper shows the process of feature extraction and classification CT-slices of the brain. The process of feature extraction is specialized for axial cross-section of the brain. The work can be applied to medical neurosurgical systems.

  17. Developmental Decrease of Neuronal Chloride Concentration Is Independent of Trauma in Thalamocortical Brain Slices

    PubMed Central

    Glykys, Joseph; Staley, Kevin J.

    2016-01-01

    The intraneuronal chloride concentration ([Cl-]i) is paramount for determining the polarity of signaling at GABAA synapses in the central nervous system. Sectioning hippocampal brain slices increases [Cl-]i in the superficial layers. It is not known whether cutting trauma also increases [Cl-]i in the neocortex and thalamus, and whether the effects of trauma change during development. We used Cl- imaging to study the [Cl-]i vs. the distance from the cut surface in acute thalamocortical slices from mice at developmental ages ranging from post-natal day 5 (P5) to P20. We demonstrate: 1) [Cl-]i is higher in the most superficial areas in both neocortical and thalamic brain slices at all ages tested and, 2) there is a developmental decrease in [Cl-]i that is independent of acute trauma caused by brain slicing. We conclude that [Cl-]i has a developmental progression during P5-20 in both the neocortex and thalamus. However, in both brain regions and during development the neurons closest to the slicing trauma have an elevated [Cl-]i. PMID:27337272

  18. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics

    PubMed Central

    Cho, Seongeun; Wood, Andrew; Bowlby, Mark R

    2007-01-01

    Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context. In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro. PMID:18615151

  19. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices

    PubMed Central

    Israel, Jean-Marc; Oliet, Stéphane H.; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains. PMID:27065780

  20. Human brain slices for epilepsy research: Pitfalls, solutions and future challenges.

    PubMed

    Jones, Roland S G; da Silva, Anderson Brito; Whittaker, Roger G; Woodhall, Gavin L; Cunningham, Mark O

    2016-02-15

    Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.

  1. A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.

    PubMed

    Heyward, P M

    2010-12-01

    Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. PMID:21077881

  2. The metabolism of phospholipids in mouse brain slices

    PubMed Central

    Clayton, P. A.; Rowe, C. E.

    1966-01-01

    1. Slices of mouse brain grey matter were incubated with [32P]phosphate and [1-14C]acetate. Doubly labelled phospholipids were extracted from subcellular fractions prepared from the slices in a mixture of metabolic inhibitors, under conditions where there was negligible change in radioactive labelling during the preparation. Two tissue fractions were studied in detail; one contained a high proportion of mitochondria and the other was mainly microsomal. 2. In all tissue fractions the highest incorporations of both [32P]phosphate and [1-14C]acetate occurred into phosphatidylcholine. 3. After incubation for 1hr., the 32P/14C ratios for phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid in the mitochondrial fraction were similar to those in the microsomal fraction. 4. The 32P/14C ratios were similar in phosphatidylcholine and phosphatidylethanolamine and much lower than those in phosphatidic acid and phosphatidylinositol. PMID:16742443

  3. Whole-cell Patch-clamp Recordings in Brain Slices.

    PubMed

    Segev, Amir; Garcia-Oscos, Francisco; Kourrich, Saïd

    2016-01-01

    Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals. In summary, this technique has immensely contributed to the understanding of passive and active biophysical properties of excitable cells. A major advantage of this technique is that it provides information on how specific manipulations (e.g., pharmacological, experimenter-induced plasticity) may alter specific neuronal functions or channels in real-time. Additionally, significant opening of the plasma membrane allows the internal pipette solution to freely diffuse into the cytoplasm, providing means for introducing drugs, e.g., agonists or antagonists of specific intracellular proteins, and manipulating these targets without altering their functions in neighboring cells. This article will focus on whole-cell recording performed on neurons in brain slices, a preparation that has the advantage of recording neurons in relatively well preserved brain circuits, i.e., in a physiologically relevant context. In particular, when combined with appropriate pharmacology, this technique is a powerful tool allowing identification of specific neuroadaptations that occurred following any type of experiences, such as learning, exposure to drugs of abuse, and stress. In summary, whole-cell patch-clamp recordings in brain slices provide means to measure in ex vivo preparation long-lasting changes in neuronal functions that have developed in intact awake animals

  4. Acute brain trauma.

    PubMed

    Martin, G T

    2016-01-01

    In the 20th century, the complications of head injuries were controlled but not eliminated. The wars of the 21st century turned attention to blast, the instant of impact and the primary injury of concussion. Computer calculations have established that in the first 5 milliseconds after the impact, four independent injuries on the brain are inflicted: 1) impact and its shockwave, 2) deceleration, 3) rotation and 4) skull deformity with vibration (or resonance). The recovery, pathology and symptoms after acute brain trauma have always been something of a puzzle. The variability of these four modes of injury, along with a variable reserve of neurones, explains some of this problem.

  5. Potential sources of intrinsic optical signals imaged in live brain slices.

    PubMed

    Andrew, R D; Jarvis, C R; Obeidat, A S

    1999-06-01

    Changes in how light is absorbed or scattered in biological tissue are termed intrinsic optical signals (IOSs). Imaging IOSs in the submerged brain slice preparation provides insight into brain activity if it involves significant water movement between intracellular and extracellular compartments. This includes responses to osmotic imbalance, excitotoxic glutamate agonists, and oxygen/glucose deprivation, the latter leading to spreading depression. There are several misconceptions regarding these signals. (1) IOSs are not generated by glial swelling alone. Although neuronal and glia sources cannot yet be directly imaged, several lines of evidence indicate that neurons contribute significantly to the changes in light transmittance. (2) Excitotoxic swelling and osmotic swelling are physiologically different, as are their associated IOSs. Hyposmotic swelling involves no detectable neuronal depolarization of cortical pyramidal neurons, only the passive drawing in of water from a dilute medium across the cell membrane. In contrast excitotoxic swelling involves sustained membrane depolarization associated with inordinate amounts of Na+ and Cl- entry followed by water. IOSs demonstrate substantial damage in the latter case. (3) Osmotic perturbations do not induce volume regulatory mechanisms as measured by IOSs. The osmotic responses measured by IOSs in brain slices are passive, without the compensatory mechanisms that are assumed to be active on a scale suggested by studies of cultured brain cells under excessive osmotic stress. (4) Spreading depression (SD) can cause neuronal damage. Innocuous during migraine aura, SD induces acute neuronal damage in brain slices that are metabolically compromised by oxygen/glucose deprivation, as demonstrated by IOSs. Neighboring tissue where SD does not spread remains relatively healthy as judged by a minimal reduction in light transmittance. IOSs show that the metabolic stress of SD combined with the compromise of energy resources

  6. Differential Conditioning of Associative Synaptic Enhancement in Hippocampal Brain Slices

    NASA Astrophysics Data System (ADS)

    Kelso, Stephen R.; Brown, Thomas H.

    1986-04-01

    An electrophysiological stimulation paradigm similar to one that produces Pavlovian conditioning was applied to synaptic inputs to pyramidal neurons of hippocampal brain slices. Persistent synaptic enhancement was induced in one of two weak synaptic inputs by pairing high-frequency electrical stimulation of the weak input with stimulation of a third, stronger input to the same region. Forward (temporally overlapping) but not backward (temporally separate) pairings caused this enhancement. Thus hippocampal synapses in vitro can undergo the conditional and selective type of associative modification that could provide the substrate for some of the mnemonic functions in which the hippocampus is thought to participate.

  7. Electrophysiological recordings of patterned rat brain stem slice neurons.

    PubMed

    Lauer, L; Vogt, A; Yeung, C K; Knoll, W; Offenhäusser, A

    2002-08-01

    Dissociated neuronal cultures on substrates patterned with extracellular matrix (ECM) proteins have yielded much information in the past. However, although the culture of brain slices has many advantages over dissociated neuronal cultures, its feasibility on patterned substrates has not been demonstrated to date. In the present study, neuronal outgrowth from brain stem slices onto homogeneous control substrates, and onto laminin structures of grid- and line-shape was achieved. Cultures were evaluated by means of phase contrast microscopy, antibody staining, and patch-clamp measurements. Only patterns with line sizes of more than 4 microm yielded satisfactory neuronal outgrowth. The size of the nodes in the pattern influenced the nodal compliance of the spreading cells and the amount of unstructured overgrowth. Best grid patterns were 4 microm lines and 10 microm nodes, best line patterns were 4 microm lines and 20 microm nodes. On patterned substrates, average sodium and potassium currents were reduced by approximately 50% compared to controls, whereas area-normalized ion-currents were in the same order of magnitude. This indicates that as a consequence of the pattern-enforced geometrical confinement, neurons tend to have a smaller surface. In addition, neurons on patterned substrates were rapidly covered with glial overgrowth. This was shown by antibody staining. PMID:12102183

  8. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  9. Label-free dopamine imaging in live rat brain slices.

    PubMed

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue.

  10. Label-Free Dopamine Imaging in Live Rat Brain Slices

    PubMed Central

    2014-01-01

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ∼ 270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue. PMID:24661118

  11. Local application of drugs to study nicotinic acetylcholine receptor function in mouse brain slices.

    PubMed

    Engle, Staci E; Broderick, Hilary J; Drenan, Ryan M

    2012-10-29

    Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9'A mice (1) and α6 L9'S mice (2), allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of

  12. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    PubMed Central

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, Birgitta K.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction. Materials and Methods From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF), and motion correction on the perfusion values was investigated. Results Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small. Conclusions This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are

  13. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  14. Development and characterization of an ex-vivo brain slice culture model of chronic wasting disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases have long incubation times in vivo, therefore, modeling the diseases ex-vivo will advance the development of rationale-based therapeutic strategies. An organotypic slice culture assay (POSCA) was recently developed for scrapie prions by inoculating mouse cerebellar brain slices with R...

  15. Astrocyte inositol triphosphate receptor type 2 and cytosolic phospholipase A2 alpha regulate arteriole responses in mouse neocortical brain slices.

    PubMed

    He, Lihua; Linden, David J; Sapirstein, Adam

    2012-01-01

    Functional hyperemia of the cerebral vascular system matches regional blood flow to the metabolic demands of the brain. One current model of neurovascular control holds that glutamate released by neurons activates group I metabotropic glutamate receptors (mGluRs) on astrocytes, resulting in the production of diffusible messengers that act to regulate smooth muscle cells surrounding cerebral arterioles. The acute mouse brain slice is an experimental system in which changes in arteriole diameter can precisely measured with light microscopy. Stimulation of the brain slice triggers specific cellular responses that can be correlated to changes in arteriole diameter. Here we used inositol trisphosphate receptor type 2 (IP(3)R2) and cytosolic phospholipase A(2) alpha (cPLA(2)α) deficient mice to determine if astrocyte mGluR activation coupled to IP(3)R2-mediated Ca(2+) release and subsequent cPLA(2)α activation is required for arteriole regulation. We measured changes in astrocyte cytosolic free Ca(2+) and arteriole diameters in response to mGluR agonist or electrical field stimulation in acute neocortical mouse brain slices maintained in 95% or 20% O(2). Astrocyte Ca(2+) and arteriole responses to mGluR activation were absent in IP(3)R2(-/-) slices. Astrocyte Ca(2+) responses to mGluR activation were unchanged by deletion of cPLA(2)α but arteriole responses to either mGluR agonist or electrical stimulation were ablated. The valence of changes in arteriole diameter (dilation/constriction) was dependent upon both stimulus and O(2) concentration. Neuron-derived NO and activation of the group I mGluRs are required for responses to electrical stimulation. These findings indicate that an mGluR/IP(3)R2/cPLA(2)α signaling cascade in astrocytes is required to transduce neuronal glutamate release into arteriole responses.

  16. Autophagy in acute brain injury.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Blomgren, Klas; Kroemer, Guido

    2016-08-01

    Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection. PMID:27256553

  17. Perfused drop microfluidic device for brain slice culture-based drug discovery.

    PubMed

    Liu, Jing; Pan, Liping; Cheng, Xuanhong; Berdichevsky, Yevgeny

    2016-06-01

    Living slices of brain tissue are widely used to model brain processes in vitro. In addition to basic neurophysiology studies, brain slices are also extensively used for pharmacology, toxicology, and drug discovery research. In these experiments, high parallelism and throughput are critical. Capability to conduct long-term electrical recording experiments may also be necessary to address disease processes that require protein synthesis and neural circuit rewiring. We developed a novel perfused drop microfluidic device for use with long term cultures of brain slices (organotypic cultures). Slices of hippocampus were placed into wells cut in polydimethylsiloxane (PDMS) film. Fluid level in the wells was hydrostatically controlled such that a drop was formed around each slice. The drops were continuously perfused with culture medium through microchannels. We found that viable organotypic hippocampal slice cultures could be maintained for at least 9 days in vitro. PDMS microfluidic network could be readily integrated with substrate-printed microelectrodes for parallel electrical recordings of multiple perfused organotypic cultures on a single MEA chip. We expect that this highly scalable perfused drop microfluidic device will facilitate high-throughput drug discovery and toxicology. PMID:27194028

  18. Binding of mescaline with subcellular fractions upon incubation of brain cortex slices with [14C] mescaline.

    PubMed

    Datta, R K; Antopol, W; Ghosh, J J

    1977-01-01

    Incubation of brain cortex slices in the presence of glucose resulted in the permeation of about 65% of [14C] mescaline into slices. Of this, about one-third radioactivity was bound with nuclei, mitochondria, microsomes, and ribosomes. Dialysis of subcellular fractions did not markedly reduce the amounts of radioactivity bound to the fractions. The permeation into slices and the binding of mescaline to subcellular fractions were fairly time-dependent, but were inhibited by the presence of potassium cyanide, or by the absence of glucose and by heating to 80 degrees C for 1 min.

  19. Imaging of molecular surface dynamics in brain slices using single-particle tracking.

    PubMed

    Biermann, B; Sokoll, S; Klueva, J; Missler, M; Wiegert, J S; Sibarita, J-B; Heine, M

    2014-01-01

    Organization of signalling molecules in biological membranes is crucial for cellular communication. Many receptors, ion channels and cell adhesion molecules are associated with proteins important for their trafficking, surface localization or function. These complexes are embedded in a lipid environment of varying composition. Binding affinities and stoichiometry of such complexes were so far experimentally accessible only in isolated systems or monolayers of cell culture. Visualization of molecular dynamics within signalling complexes and their correlation to specialized membrane compartments demand high temporal and spatial resolution and has been difficult to demonstrate in complex tissue like brain slices. Here we demonstrate the feasibility of single-particle tracking (SPT) in organotypic brain slices to measure molecular dynamics of lipids and transmembrane proteins in correlation to synaptic membrane compartments. This method will provide important information about the dynamics and organization of surface molecules in the complex environment of neuronal networks within brain slices. PMID:24429796

  20. Imaging of molecular surface dynamics in brain slices using single-particle tracking

    PubMed Central

    Biermann, B.; Sokoll, S.; Klueva, J.; Missler, M.; Wiegert, J. S.; Sibarita, J. -B.; Heine, M.

    2014-01-01

    Organization of signalling molecules in biological membranes is crucial for cellular communication. Many receptors, ion channels and cell adhesion molecules are associated with proteins important for their trafficking, surface localization or function. These complexes are embedded in a lipid environment of varying composition. Binding affinities and stoichiometry of such complexes were so far experimentally accessible only in isolated systems or monolayers of cell culture. Visualization of molecular dynamics within signalling complexes and their correlation to specialized membrane compartments demand high temporal and spatial resolution and has been difficult to demonstrate in complex tissue like brain slices. Here we demonstrate the feasibility of single-particle tracking (SPT) in organotypic brain slices to measure molecular dynamics of lipids and transmembrane proteins in correlation to synaptic membrane compartments. This method will provide important information about the dynamics and organization of surface molecules in the complex environment of neuronal networks within brain slices. PMID:24429796

  1. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging

    NASA Astrophysics Data System (ADS)

    Feinberg, David A.; Setsompop, Kawin

    2013-04-01

    The recent advancement of simultaneous multi-slice imaging using multiband excitation has dramatically reduced the scan time of the brain. The evolution of this parallel imaging technique began over a decade ago and through recent sequence improvements has reduced the acquisition time of multi-slice EPI by over ten fold. This technique has recently become extremely useful for (i) functional MRI studies improving the statistical definition of neuronal networks, and (ii) diffusion based fiber tractography to visualize structural connections in the human brain. Several applications and evaluations are underway which show promise for this family of fast imaging sequences.

  2. Modification of a Colliculo-thalamocortical Mouse Brain Slice, Incorporating 3-D printing of Chamber Components and Multi-scale Optical Imaging.

    PubMed

    Slater, Bernard J; Fan, Anthony Y; Stebbings, Kevin A; Saif, M Taher A; Llano, Daniel A

    2015-01-01

    The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice(1), we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation. PMID:26437382

  3. Dose-response testing of peptides by hippocampal brain slice recording.

    PubMed

    Phillips, M I; Palovcik, R A

    1989-01-01

    The brain slice chamber described offers a method of studying, with intracellular electrodes, the relationship of response to dose of peptides. By raising the level of the slices 1 mm above the level of flowing perfusion medium, we can test substances in known concentrations, free from artifacts, during long duration, stable intracellular recordings. Manipulation of Ca2+/Mg2+ ratios in the medium can help to define synaptic and second messenger mediation of the responses. The addition of substances to the perfusion medium in this system could be combined with iontophoresis and/or micropressure techniques. Pathways in the slices may also be stimulated electrically and analyzed for the involvement of various synaptic transmitters. The results with the method so far show distinct differences among the peptides studied. Thus, there are several advantages to this method in establishing the physiological role of peptides in the brain.

  4. Ruminant organotypic brain-slice cultures as a model for the investigation of CNS listeriosis.

    PubMed

    Guldimann, Claudia; Lejeune, Beatrice; Hofer, Sandra; Leib, Stephen L; Frey, Joachim; Zurbriggen, Andreas; Seuberlich, Torsten; Oevermann, Anna

    2012-08-01

    Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host-pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host-pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases. PMID:22804762

  5. Ruminant organotypic brain-slice cultures as a model for the investigation of CNS listeriosis

    PubMed Central

    Guldimann, Claudia; Lejeune, Beatrice; Hofer, Sandra; Leib, Stephen L; Frey, Joachim; Zurbriggen, Andreas; Seuberlich, Torsten; Oevermann, Anna

    2012-01-01

    Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host–pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host–pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases. PMID:22804762

  6. Selective gray matter staining of human brain slices: optimized use of cadaver materials.

    PubMed

    Loftspring, M C; Smanik, J; Gardner, C; Pixley, S K

    2008-06-01

    We report a novel staining technique for human brain slices that distinguishes clearly gray from white matter. Previously described techniques using either Prussian blue (Berlin blue) or phthalocyanine dyes usually have included a hot phenol pretreatment to prevent white matter staining. The technique we describe here does not require hot phenol pretreatment and allows the use of brains stored for postmortem periods of one to two years prior to staining. Our technique involves staining with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt 1% in water for 2 h followed by acetic acid treatment; this produces excellent blue staining of gray matter with little white matter staining. The stained brain slices are excellent for teaching human brain anatomy and/or pathology, or for research purposes.

  7. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates.

  8. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. PMID:26488641

  9. Oxygen measurements in brain stem slices exposed to normobaric hyperoxia and hyperbaric oxygen.

    PubMed

    Mulkey, D K; Henderson, R A; Olson, J E; Putnam, R W; Dean, J B

    2001-05-01

    We previously reported (J Appl Physiol 89: 807-822, 2000) that < or =10 min of hyperbaric oxygen (HBO(2); < or = 2,468 Torr) stimulates solitary complex neurons. To better define the hyperoxic stimulus, we measured PO(2) in the solitary complex of 300-microm-thick rat medullary slices, using polarographic carbon fiber microelectrodes, during perfusion with media having PO(2) values ranging from 156 to 2,468 Torr. Under control conditions, slices equilibrated with 95% O(2) at barometric pressure of 1 atmospheres absolute had minimum PO(2) values at their centers (291 +/- 20 Torr) that were approximately 10-fold greater than PO(2) values measured in the intact central nervous system (10-34 Torr). During HBO(2), PO(2) increased at the center of the slice from 616 +/- 16 to 1,517 +/- 15 Torr. Tissue oxygen consumption tended to decrease at medium PO(2) or = 1,675 Torr to levels not different from values measured at PO(2) found in all media in metabolically poisoned slices (2-deoxy-D-glucose and antimycin A). We conclude that control medium used in most brain slice studies is hyperoxic at normobaric pressure. During HBO(2), slice PO(2) increases to levels that appear to reduce metabolism. PMID:11299283

  10. Evaluation of registration strategies for multi-modality images of rat brain slices

    NASA Astrophysics Data System (ADS)

    Palm, Christoph; Vieten, Andrea; Salber, Dagmar; Pietrzyk, Uwe

    2009-05-01

    In neuroscience, small-animal studies frequently involve dealing with series of images from multiple modalities such as histology and autoradiography. The consistent and bias-free restacking of multi-modality image series is obligatory as a starting point for subsequent non-rigid registration procedures and for quantitative comparisons with positron emission tomography (PET) and other in vivo data. Up to now, consistency between 2D slices without cross validation using an inherent 3D modality is frequently presumed to be close to the true morphology due to the smooth appearance of the contours of anatomical structures. However, in multi-modality stacks consistency is difficult to assess. In this work, consistency is defined in terms of smoothness of neighboring slices within a single modality and between different modalities. Registration bias denotes the distortion of the registered stack in comparison to the true 3D morphology and shape. Based on these metrics, different restacking strategies of multi-modality rat brain slices are experimentally evaluated. Experiments based on MRI-simulated and real dual-tracer autoradiograms reveal a clear bias of the restacked volume despite quantitatively high consistency and qualitatively smooth brain structures. However, different registration strategies yield different inter-consistency metrics. If no genuine 3D modality is available, the use of the so-called SOP (slice-order preferred) or MOSOP (modality-and-slice-order preferred) strategy is recommended.

  11. Automated fetal brain segmentation from 2D MRI slices for motion correction.

    PubMed

    Keraudren, K; Kuklisova-Murgasova, M; Kyriakopoulou, V; Malamateniou, C; Rutherford, M A; Kainz, B; Hajnal, J V; Rueckert, D

    2014-11-01

    Motion correction is a key element for imaging the fetal brain in-utero using Magnetic Resonance Imaging (MRI). Maternal breathing can introduce motion, but a larger effect is frequently due to fetal movement within the womb. Consequently, imaging is frequently performed slice-by-slice using single shot techniques, which are then combined into volumetric images using slice-to-volume reconstruction methods (SVR). For successful SVR, a key preprocessing step is to isolate fetal brain tissues from maternal anatomy before correcting for the motion of the fetal head. This has hitherto been a manual or semi-automatic procedure. We propose an automatic method to localize and segment the brain of the fetus when the image data is acquired as stacks of 2D slices with anatomy misaligned due to fetal motion. We combine this segmentation process with a robust motion correction method, enabling the segmentation to be refined as the reconstruction proceeds. The fetal brain localization process uses Maximally Stable Extremal Regions (MSER), which are classified using a Bag-of-Words model with Scale-Invariant Feature Transform (SIFT) features. The segmentation process is a patch-based propagation of the MSER regions selected during detection, combined with a Conditional Random Field (CRF). The gestational age (GA) is used to incorporate prior knowledge about the size and volume of the fetal brain into the detection and segmentation process. The method was tested in a ten-fold cross-validation experiment on 66 datasets of healthy fetuses whose GA ranged from 22 to 39 weeks. In 85% of the tested cases, our proposed method produced a motion corrected volume of a relevant quality for clinical diagnosis, thus removing the need for manually delineating the contours of the brain before motion correction. Our method automatically generated as a side-product a segmentation of the reconstructed fetal brain with a mean Dice score of 93%, which can be used for further processing.

  12. Visualizing septin and cell dynamics in mammalian brain slices.

    PubMed

    Ito, H; Morishita, R; Tabata, H; Nagata, K

    2016-01-01

    Correct neuronal migration is crucial for the brain architecture and function. During brain development, excitatory and inhibitory neurons generated in the ventricular zone (VZ) of the dorsal telencephalon and ganglionic medial eminence, respectively, move to their final destinations in tightly regulated spatiotemporal manners. While a variety of morphological methods have been applied to neurobiology, in utero electroporation (IUE) technique is one of the most powerful tools for rapid gain- and loss-of-function studies of brain development. This method enables us to introduce genes of interest into VZ progenitor and stem cells of rodent embryos, and to observe resulting phenotypes such as proliferation, migration, and cell morphology at later stages. In this chapter, we first summarize basic immunohistochemistry methods that are foundations for any advanced methods and showed data on the distribution of Sept6, Sept9, and Sept14 as examples. Then, IUE method is described where functional analyses of Sept14 during brain development are used as examples. We subsequently refer to the in vivo electroporation (IVE)-mediated gene transfer, which is conceptually the same method as IUE, into granule cells of hippocampal dentate gyrus in neonatal mice. Finally, an IUE-based time-lapse imaging method is explained as an advanced technique for the analyses of cortical neuron migration. IUE and IVE methods and the application would contribute greatly to the morphological analyses of septins as well as other molecules to elucidate their neuronal functions and pathophysiological roles in various neurological and psychiatric disorders. PMID:27473916

  13. Functional imaging of single synapses in brain slices.

    PubMed

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  14. Neuropeptide processing in regional brain slices: Effect of conformation and sequence

    SciTech Connect

    Li, Z.W.; Bijl, W.A.; van Nispen, J.W.; Brendel, K.; Davis, T.P. )

    1990-05-01

    The central enzymatic stability of des-enkephalin-gamma-endorphin and its synthetic analogs (cycloN alpha 6, C delta 11)beta-endorphin-(6-17) and (Pro7, Lys(Ac)9)-beta-endorphin(6-17) was studied in vitro using a newly developed, regionally dissected rat brain slice, time course incubation procedure. Tissue slice viability was estimated as the ability of the brain slice to take up or release gamma-(3H)aminobutyric acid after high K+ stimulation. Results demonstrated stability of uptake/release up to 5 hr of incubation, suggesting tissue viability over this period. The estimated half-life of peptides based on the results obtained in our incubation protocol suggest that the peptides studied are metabolized at different rates in the individual brain regions tested. A good correlation exists between the high enzyme activity of neutral endopeptidase and the rapid degradation of des-enkephalin-gamma-endorphin and (cycloN alpha 6, C delata 11)beta-endorphin-(6-17) in caudate putamen. Proline substitution combined with lysine acetylation appears to improve resistance to enzymatic metabolism in caudate putamen and hypothalamus. However, cyclization of des-enkephalin-gamma-endorphin forming an amide bond between the alpha-NH2 of the N-terminal threonine and the gamma-COOH of glutamic acid did not improve peptide stability in any brain region tested. The present study has shown that the brain slice technique is a valid and unique approach to study neuropeptide metabolism in small, discrete regions of rat brain where peptides, peptidases and receptors are colocalized and that specific structural modifications can improve peptide stability.

  15. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation.

    PubMed

    Lu, Hsiang-Chin; Chang, Wei-Jen; Chang, Wei-Pang; Shyu, Bai-Chuang

    2016-01-01

    Cathodal transcranial direct-current stimulation (tDCS) induces suppressive effects on drug-resistant seizures. To perform effective actions, the stimulation parameters (e.g., orientation, field strength, and stimulation duration) need to be examined in mice brain slice preparations. Testing and arranging the orientation of the electrode relative to the position of the mice brain slice are feasible. The present method preserves the thalamocingulate pathway to evaluate the effect of DCS on anterior cingulate cortex seizure-like activities. The results of the multichannel array recordings indicated that cathodal DCS significantly decreased the amplitude of the stimulation-evoked responses and duration of 4-aminopyridine and bicuculline-induced seizure-like activity. This study also found that cathodal DCS applications at 15 min caused long-term depression in the thalamocingulate pathway. The present study investigates the effects of DCS on thalamocingulate synaptic plasticity and acute seizure-like activities. The current procedure can test the optimal stimulation parameters including orientation, field strength, and stimulation duration in an in vitro mouse model. Also, the method can evaluate the effects of DCS on cortical seizure-like activities at both the cellular and network levels. PMID:27341682

  16. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  17. Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun

    PubMed Central

    2013-01-01

    Background Organotypic brain slices (OTBS) are an excellent experimental compromise between the facility of working with cell cultures and the biological relevance of using animal models where anatomical, morphological, and cellular function of specific brain regions can be maintained. The biological characteristics of OTBS can subsequently be examined under well-defined conditions. They do, however, have a number of limitations; most brain slices are derived from neonatal animals, as it is difficult to properly prepare and maintain adult OTBS. There are ample problems with tissue integrity as OTBS are delicate and frequently become damaged during the preparative stages. Notwithstanding these obstacles, the introduced exogenous proteins into both neuronal cells, and cells imbedded within tissues, have been consistently difficult to achieve. Results Following the ex vivo extraction of adult mouse brains, mounted inside a medium-agarose matrix, we have exploited a precise slicing procedure using a custom built vibroslicer. To transfect these slices we used an improved biolistic transfection method using a custom made low-pressure barrel and novel DNA-coated nanoparticles (40 nm), which are drastically smaller than traditional microparticles. These nanoparticles also minimize tissue damage as seen by a significant reduction in lactate dehydrogenase activity as well as propidium iodide (PI) and dUTP labelling compared to larger traditional gold particles used on these OTBS. Furthermore, following EYFP exogene delivery by gene gun, the 40 nm treated OTBS displayed a significantly larger number of viable NeuN and EYFP positive cells. These OTBS expressed the exogenous proteins for many weeks. Conclusions Our described methodology of producing OTBS, which results in better reproducibility with less tissue damage, permits the exploitation of mature fully formed adult brains for advanced neurobiological studies. The novel 40 nm particles are ideal for the viable

  18. Sample collection and amino acids analysis of extracellular fluid of mouse brain slices with low flow push-pull perfusion.

    PubMed

    Ojeda-Torres, G; Williams, L; Featherstone, D E; Shippy, S A

    2015-10-01

    Brain tissue slices are a common neuroscience model that allows relatively sophisticated analysis of neuronal networks in a simplified preparation. Most experimental methodology utilizes electrophysiological tools to probe these model systems. The work here demonstrates the adaptation of low-flow push-pull perfusion sampling (LFPS) to a brain slice system. LFPS is used to sample from the hippocampus of mouse brain slices. Perfusate amino acid levels are quantified following sampling with capillary electrophoresis. Glutamate was measured from the CA1 region of the hippocampus in slices taken from a cystine-glutamate transporter deletion mutant, xCT(-/-), and the background strain C57BL/6J. Sampling is performed over up to 6.5 h with standard tissue slice preparation and experimentation methods. Four amino acids were quantified to demonstrate the ability to perform LFPS and show good agreement with published literature. Perfusate glutamate levels are found to be significantly lower with xCT(-/-) slices (1.9(±0.5) μM) relative to controls (4.90(±1.1) μM). But, experiments with control slices show a significant decrease in glutamate over the 6 h sampling period that are not seen with xCT(-/-) slices. Increasing the LFPS sample collection rate during the first 90 min of sampling did not show a sampling artifact in perfusate glutamate content. Sampling immediately following slicing did not show an early increasing glutamate level that would be indicative of a significant contribution from blood or tissue damage. The data presented here show a complementarity to electrophysiological studies of tissue slices. The ability to characterize extracellular fluid chemical content with LFPS in these slices provides an alternative data stream for probing neurochemical signaling networks in brain tissue slices. PMID:26299259

  19. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  20. STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices

    PubMed Central

    Urban, Nicolai T.; Willig, Katrin I.; Hell, Stefan W.; Nägerl, U. Valentin

    2011-01-01

    It is difficult to investigate the mechanisms that mediate long-term changes in synapse function because synapses are small and deeply embedded inside brain tissue. Although recent fluorescence nanoscopy techniques afford improved resolution, they have so far been restricted to dissociated cells or tissue surfaces. However, to study synapses under realistic conditions, one must image several cell layers deep inside more-intact, three-dimensional preparations that exhibit strong light scattering, such as brain slices or brains in vivo. Using aberration-reducing optics, we demonstrate that it is possible to achieve stimulated emission depletion superresolution imaging deep inside scattering biological tissue. To illustrate the power of this novel (to our knowledge) approach, we resolved distinct distributions of actin inside dendrites and spines with a resolution of 60–80 nm in living organotypic brain slices at depths up to 120 μm. In addition, time-lapse stimulated emission depletion imaging revealed changes in actin-based structures inside spines and spine necks, and showed that these dynamics can be modulated by neuronal activity. Our approach greatly facilitates investigations of actin dynamics at the nanoscale within functionally intact brain tissue. PMID:21889466

  1. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    PubMed Central

    Komolafe, Kayode; Olaleye, Tolulope M.; Seeger, Rodrigo L.; Carvalho, Fabiano B.; Boligon, Aline A.; Athayde, Margareth L.; Klimaczewski, Claudia V.; Akindahunsi, Akintunde A.; Rocha, Joao B. T.

    2014-01-01

    Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL) or catechin (1, 5, or 10 µg/mL) for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm) were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity. PMID:25177688

  2. A Microfluidic Microelectrode Array for Simultaneous Electrophysiology, Chemical Stimulation, and Imaging of Brain Slices

    PubMed Central

    Scott, Adina; Weir, Keiko; Easton, Curtis; Huynh, Wilson; Moody, William J.; Folch, Albert

    2013-01-01

    In order to understand information processing in neural circuits, it is necessary to detect both electrical and chemical signaling with high spatial and temporal resolution. Although the primary currency of neural information processing is electrical, many of the downstream effects of the electrical signals on the circuits that generate them are dependent on activity-dependent increases in intracellular calcium concentration. It is therefore of great utility to be able to record electrical signals in neural circuits at multiple sites while at the same time detecting optical signals from reporters of intracellular calcium levels. We describe here a microfluidic multi-electrode array (MMEA) capable of high-resolution extracellular recording from brain slices that is optically compatible with calcium imaging at single cell resolution. We show the application of the MMEA device to record waves of spontaneous activity in developing cortical slices and to perform multi-site extracellular recordings during simultaneous calcium imaging of activity. The MMEA has the unique capability to simultaneously allow focal electrical and chemical stimuli at different locations of the surface of a brain slice. PMID:23042571

  3. Minimum conditions for the induction of cortical spreading depression in brain slices

    PubMed Central

    Tang, Yujie T.; Mendez, Jorge M.; Theriot, Jeremy J.; Sawant, Punam M.; López-Valdés, Héctor E.; Ju, Y. Sungtaek

    2014-01-01

    Cortical spreading depression (CSD) occurs during various forms of brain injury such as stroke, subarachnoid hemorrhage, and brain trauma, but it is also thought to be the mechanism of the migraine aura. It is therefore expected to occur over a range of conditions including the awake behaving state. Yet it is unclear how such a massive depolarization could occur under relatively benign conditions. Using a microfluidic device with focal stimulation capability in a mouse brain slice model, we varied extracellular potassium concentration as well as the area exposed to increased extracellular potassium to determine the minimum conditions necessary to elicit CSD. Importantly, we focused on potassium levels that are physiologically plausible (≤145 mM; the intracellular potassium concentration). We found a strong correlation between the threshold concentration and the slice area exposed to increased extracellular potassium: minimum area of exposure was needed with the highest potassium concentration, while larger areas were needed at lower concentrations. We also found that moderate elevations of extracellular potassium were able to elicit CSD in relatively small estimated tissue volumes that might be activated under noninjury conditions. Our results thus show that CSD may be inducible under the conditions that expected in migraine aura as well as those related to brain trauma. PMID:25122714

  4. Coculture system with an organotypic brain slice and 3D spheroid of carcinoma cells.

    PubMed

    Chuang, Han-Ning; Lohaus, Raphaela; Hanisch, Uwe-Karsten; Binder, Claudia; Dehghani, Faramarz; Pukrop, Tobias

    2013-01-01

    Patients with cerebral metastasis of carcinomas have a poor prognosis. However, the process at the metastatic site has barely been investigated, in particular the role of the resident (stromal) cells. Studies in primary carcinomas demonstrate the influence of the microenvironment on metastasis, even on prognosis(1,2). Especially the tumor associated macrophages (TAM) support migration, invasion and proliferation(3). Interestingly, the major target sites of metastasis possess tissue-specific macrophages, such as Kupffer cells in the liver or microglia in the CNS. Moreover, the metastatic sites also possess other tissue-specific cells, like astrocytes. Recently, astrocytes were demonstrated to foster proliferation and persistence of cancer cells(4,5). Therefore, functions of these tissue-specific cell types seem to be very important in the process of brain metastasis(6,7). Despite these observations, however, up to now there is no suitable in vivo/in vitro model available to directly visualize glial reactions during cerebral metastasis formation, in particular by bright field microscopy. Recent in vivo live imaging of carcinoma cells demonstrated their cerebral colonization behavior(8). However, this method is very laborious, costly and technically complex. In addition, these kinds of animal experiments are restricted to small series and come with a substantial stress for the animals (by implantation of the glass plate, injection of tumor cells, repetitive anaesthesia and long-term fixation). Furthermore, in vivo imaging is thus far limited to the visualization of the carcinoma cells, whereas interactions with resident cells have not yet been illustrated. Finally, investigations of human carcinoma cells within immunocompetent animals are impossible(8). For these reasons, we established a coculture system consisting of an organotypic mouse brain slice and epithelial cells embedded in matrigel (3D cell sphere). The 3D carcinoma cell spheres were placed directly next to

  5. Human cerebrospinal fluid increases the excitability of pyramidal neurons in the in vitro brain slice

    PubMed Central

    Bjorefeldt, Andreas; Andreasson, Ulf; Daborg, Jonny; Riebe, Ilse; Wasling, Pontus; Zetterberg, Henrik; Hanse, Eric

    2015-01-01

    The composition of brain extracellular fluid is shaped by a continuous exchange of substances between the cerebrospinal fluid (CSF) and interstitial fluid. The CSF is known to contain a wide range of endogenous neuromodulatory substances, but their collective influence on neuronal activity has been poorly investigated. We show here that replacing artificial CSF (aCSF), routinely used for perfusion of brain slices in vitro, with human CSF (hCSF) powerfully boosts spontaneous firing of CA1, CA3 and layer 5 pyramidal neurons in the rat brain slice. CA1 pyramidal neurons in hCSF display lowered firing thresholds, more depolarized resting membrane potentials and reduced input resistance, mimicking properties of pyramidal neurons recorded in vivo. The increased excitability of CA1 pyramidal neurons was completely occluded by intracellular application of GTPγS, suggesting that endogenous neuromodulators in hCSF act on G-protein coupled receptors to enhance excitability. We found no increase in spontaneous inhibitory synaptic transmission by hCSF, indicating a differential effect on glutamatergic and GABAergic neurons. Our findings highlight a previously unknown function of the CSF in promoting spontaneous excitatory activity, and may help to explain differences observed in the activity of pyramidal neurons recorded in vivo and in vitro. PMID:25556798

  6. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    PubMed

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion. PMID:25390472

  7. Expression of voltage-activated chloride currents in acute slices of human gliomas.

    PubMed

    Ullrich, N; Bordey, A; Gillespie, G Y; Sontheimer, H

    1998-04-01

    Using whole-cell patch-clamp recordings, we identified a novel voltage-activated chloride current that was selectively expressed in glioma cells from 23 patient biopsies. Chloride currents were identified in 64% of glioma cells studied in acute slices of nine patient biopsies. These derived from gliomas of various pathological grades. In addition, 98% of cells acutely isolated or in short-term culture from 23 patients diagnosed with gliomas showed chloride current expression. These currents, which we termed glioma chloride currents activated at potentials >45 mV, showed pronounced outward rectification, and were sensitive to bath application of the presumed Cl- channel specific peptide chlorotoxin (approximately 600 nM) derived from Leiurus scorpion venom. Interestingly, low grade tumours (e.g., pilocytic astrocytomas), containing more differentiated, astrocyte-like cells showed expression of glioma chloride currents in concert with voltage-activated sodium and potassium currents also seen in normal astrocytes. By contrast, high grade tumours (e.g., glioblastoma multiforme) expressed almost exclusively chloride currents, suggesting a gradual loss of Na+ currents and gain of Cl- currents with increasing pathological tumour grade. To expand on the observation that these chloride currents are glioma-specific, we introduced experimental tumours in scid mice by intracranial injection of D54MG glioma cells and subsequently recorded from tumour cells and adjacent normal glial cells in acute slices. We consistently observed expression of chlorotoxin-sensitive chloride channels in implanted glioma cells, but without evidence for expression of chloride channels in surrounding "normal" host glial cells, suggesting that these chloride channels are probably a glioma-specific feature. Finding of this novel glioma specific Cl- channel in gliomas in situ and it's selective binding of chlorotoxin may provide a way to identify or target glioma cells in the future.

  8. Patch-clamp recording in brain slices with improved slicer technology.

    PubMed

    Geiger, J R P; Bischofberger, J; Vida, I; Fröbe, U; Pfitzinger, S; Weber, H J; Haverkampf, K; Jonas, P

    2002-01-01

    The use of advanced patch-clamp recording techniques in brain slices, such as simultaneous recording from multiple neurons and recording from dendrites or presynaptic terminals, demands slices of the highest quality. In this context the mechanics of the tissue slicer are an important factor. Ideally, a tissue slicer should generate large-amplitude and high-frequency movements of the cutting blade in a horizontal axis, with minimal vibrations in the vertical axis. We developed a vibroslicer that fulfils these in part conflicting requirements. The oscillator is a permanent-magnet-coil-leaf-spring system. Using an auto-resonant mechano-electrical feedback circuit, large horizontal oscillations (up to 3 mm peak-to-peak) with high frequency ( approximately 90 Hz) are generated. To minimize vertical vibrations, an adjustment mechanism was employed that allowed alignment of the cutting edge of the blade with the major axis of the oscillation. A vibroprobe device was used to monitor vertical vibrations during adjustment. The system is based on the shading of the light path between a light-emitting diode (LED) and a photodiode. Vibroprobe monitoring revealed that the vibroslicer, after appropriate adjustment, generated vertical vibrations of <1 microm, significantly less than many commercial tissue slicers. Light- and electron-microscopic analysis of surface layers of slices cut with the vibroslicer showed that cellular elements, dendritic processes and presynaptic terminals are well preserved under these conditions, as required for patch-clamp recording from these structures. PMID:11810221

  9. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents

    PubMed Central

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  10. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents.

    PubMed

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  11. Use of bipolar parallel electrodes for well-controlled microstimulation in a mouse hippocampal brain slice.

    PubMed

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2005-06-15

    In a hippocampal brain slice two types of stimulating electrodes [single (SE) or monopolar and parallel bipolar (PE)] were used to determine the optimal protocol for single pulse microstimulation. We show that even for a constant-current power source the amplitude of stimulating current (SC) is not constant, especially for short pulse widths (PW) (<200 micros). Recording the stimulating current and computing the amount of electric charge that is passed through the microelectrode gives the best estimate of the strength of electrical stimulation. For SE the evoked response is obstructed for a time interval larger than three times the PW. The stimulus artifact (SA) substantially decreases when a PE is used. The orientation of the stimulating current relative to the position of the targeted fibers (Schaffer collaterals) was controlled when using a PE. The use of PEs allowed the accurate recording of the physiological response that contains three clearly defined peaks. Stimulation can be elicited at PW as short as 30 micros when the main current is capacitive. The charge needed to elicit physiological responses was in the range of 1-40 nC (the lower values for the PE) suggesting that use of PEs is most advantageous for well-controlled microstimulation studies in brain slices.

  12. Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors.

    PubMed

    Jung, Kwang-Mook; Mangieri, Regina; Stapleton, Christopher; Kim, Janet; Fegley, Darren; Wallace, Matthew; Mackie, Ken; Piomelli, Daniele

    2005-11-01

    Activation of group I metabotropic glutamate (mGlu) receptors drives the endocannabinoid system to cause both short- and long-term changes of synaptic strength in the striatum, hippocampus, and other brain areas. Although there is strong electrophysiological evidence for a role of endocannabinoid release in mGlu receptor-dependent plasticity, the identity of the endocannabinoid transmitter mediating this phenomenon remains undefined. In this study, we show that activation of group I mGlu receptors triggers the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), but not anandamide, in primary cultures of corticostriatal and hippocampal slices prepared from early postnatal rat brain. Pharmacological studies suggest that 2-AG biosynthesis is initiated by activation of mGlu5 receptors, is catalyzed by phospholipase C (PLC) and 1,2-diacylglycerol lipase (DGL) activities, and is dependent on intracellular Ca2+ ions. Realtime polymerase chain reaction and immunostaining analyses indicate that DGL-beta is the predominant DGL isoform expressed in corticostriatal and hippocampal slices and that this enzyme is highly expressed in striatal neurons, where it is colocalized with PLC-beta1. The results suggest that 2-AG is a primary endocannabinoid mediator of mGlu receptor-dependent neuronal plasticity.

  13. Glucose-Stimulated Calcium Dynamics in Islets of Langerhans in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Dolenšek, Jurij; Rupnik, Marjan Slak

    2013-01-01

    In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future. PMID:23358454

  14. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  15. A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies.

    PubMed

    Chadwick, Emily J; Yang, David P; Filbin, Mariella G; Mazzola, Emanuele; Sun, Yu; Behar, Oded; Pazyra-Murphy, Maria F; Goumnerova, Liliana; Ligon, Keith L; Stiles, Charles D; Segal, Rosalind A

    2015-11-07

    Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment.

  16. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat.

    PubMed

    Kay, A R; Alfonso, A; Alford, S; Cline, H T; Holgado, A M; Sakmann, B; Snitsarev, V A; Stricker, T P; Takahashi, M; Wu, L G

    1999-12-01

    The fluorescent probe FM1-43 has been used extensively for imaging vesicle recycling; however, high nonspecific adsorption resulting in elevated background levels has precluded its use in certain tissues, notably brain slices. We have found that a sulfobutylated derivative of beta-cyclodextrin (ADVASEP-7) has a higher affinity for FM1-43 than the plasma membrane. ADVASEP-7 was used as a carrier to remove FM1-43 nonspecifically bound to the outer leaflet of the plasma membrane or extracellular molecules, significantly reducing background staining. This has enabled us to visualize synaptic vesicle recycling in the nematode C. elegans, intact lamprey spinal cord, and rat brain slices.

  17. Multi-slice computed tomography in the evaluation of patients with acute chest pain.

    PubMed

    Schuijf, J D; Jukema, J W; van der Wall, E E; Bax, J J

    2007-01-01

    Every year, a considerable number of patients present at the Emergency Department (ED) with acute chest pain complaints. In these patients, determining accurate diagnosis of acute coronary syndrome (ACS) remains clinically challenging. In general, triage is based on the initial clinical assessment including (stress) ECG and serial serum markers measurements. While management is relatively straightforward in case of ECG changes and elevated serum markers, a considerable number of patients presents with both serum markers and ECG that are either within normal limits or inconclusive. In these patients, non-invasive cardiac imaging has become an important tool in decision-making. Recently, non-invasive visualization of the coronary arteries has become possible with computed tomography (CT) techniques. Both electron beam CT (EBCT) and multi-slice CT (MSCT) allow assessment of coronary calcium burden as a marker of coronary artery disease (CAD). More recently, non-invasive coronary angiography can also be performed, for which MSCT in particular is increasingly used. Potentially these techniques could become useful in the clinical work-up of patients presenting with suspected ACS. The purpose of the present review is to discuss the potential roles of calcium scoring and non-invasive coronary angiography in patients presenting with suspected ACS. PMID:18030626

  18. Regioselective Biolistic Targeting in Organotypic Brain Slices Using a Modified Gene Gun

    PubMed Central

    Arsenault, Jason; Nagy, Andras; Henderson, Jeffrey T.; O'Brien, John A.

    2014-01-01

    Transfection of DNA has been invaluable for biological sciences and with recent advances to organotypic brain slice preparations, the effect of various heterologous genes could thus be investigated easily while maintaining many aspects of in vivo biology. There has been increasing interest to transfect terminally differentiated neurons for which conventional transfection methods have been fraught with difficulties such as low yields and significant losses in viability. Biolistic transfection can circumvent many of these difficulties yet only recently has this technique been modified so that it is amenable for use in mammalian tissues. New modifications to the accelerator chamber have enhanced the gene gun's firing accuracy and increased its depths of penetration while also allowing the use of lower gas pressure (50 psi) without loss of transfection efficiency as well as permitting a focused regioselective spread of the particles to within 3 mm. In addition, this technique is straight forward and faster to perform than tedious microinjections. Both transient and stable expression are possible with nanoparticle bombardment where episomal expression can be detected within 24 hr and the cell survival was shown to be better than, or at least equal to, conventional methods. This technique has however one crucial advantage: it permits the transfection to be localized within a single restrained radius thus enabling the user to anatomically isolate the heterologous gene's effects. Here we present an in-depth protocol to prepare viable adult organotypic slices and submit them to regioselective transfection using an improved gene gun. PMID:25407047

  19. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes

    SciTech Connect

    Amaral, J.; Cardoso, S.; Freitas, P. P.; Sebastiao, A. M.

    2011-04-01

    This work combines an electrophysiological system with a magnetoresistive chip to measure the magnetic field created by the synaptic/action potential currents. The chip, with 15 spin valve sensors, was designed to be integrated in a recording chamber for submerged mice brain slices used for synaptic potential measurements. Under stimulation (rectangular pulses of 0.1 ms every 10 s) through a concentric electrode placed near the CA3/CA1 border of the hippocampus, the spin valve sensor readout signals with 20 {mu}V amplitude and a pulse length of 20 to 30 ms were recorded only in the pyramidal cell bodies region and can be interpreted as being derived from action potentials/currents.

  20. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes

    NASA Astrophysics Data System (ADS)

    Amaral, J.; Cardoso, S.; Freitas, P. P.; Sebastião, A. M.

    2011-04-01

    This work combines an electrophysiological system with a magnetoresistive chip to measure the magnetic field created by the synaptic/action potential currents. The chip, with 15 spin valve sensors, was designed to be integrated in a recording chamber for submerged mice brain slices used for synaptic potential measurements. Under stimulation (rectangular pulses of 0.1 ms every 10 s) through a concentric electrode placed near the CA3/CA1 border of the hippocampus, the spin valve sensor readout signals with 20 μV amplitude and a pulse length of 20 to 30 ms were recorded only in the pyramidal cell bodies region and can be interpreted as being derived from action potentials/currents.

  1. Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures.

    PubMed

    Sygnecka, Katja; Heine, Claudia; Scherf, Nico; Fasold, Mario; Binder, Hans; Scheller, Christian; Franke, Heike

    2015-02-01

    Calcium ions (Ca(2+)) play important roles in neuroplasticity and the regeneration of nerves. Intracellular Ca(2+) concentrations are regulated by Ca(2+) channels, among them L-type voltage-gated Ca(2+) channels, which are inhibited by dihydropyridines like nimodipine. The purpose of this study was to investigate the effect of nimodipine on neurite growth during development and regeneration. As an appropriate model to study neurite growth, we chose organotypic brain slice co-cultures of the mesocortical dopaminergic projection system, consisting of the ventral tegmental area/substantia nigra and the prefrontal cortex from neonatal rat brains. Quantification of the density of the newly built neurites in the border region (region between the two cultivated slices) of the co-cultures revealed a growth promoting effect of nimodipine at concentrations of 0.1μM and 1μM that was even more pronounced than the effect of the growth factor NGF. This beneficial effect was absent when 10μM nimodipine were applied. Toxicological tests revealed that the application of nimodipine at this higher concentration slightly induced caspase 3 activation in the cortical part of the co-cultures, but did neither affect the amount of lactate dehydrogenase release or propidium iodide uptake nor the ratio of bax/bcl-2. Furthermore, the expression levels of different genes were quantified after nimodipine treatment. The expression of Ca(2+) binding proteins, immediate early genes, glial fibrillary acidic protein, and myelin components did not change significantly after treatment, indicating that the regulation of their expression is not primarily involved in the observed nimodipine mediated neurite growth. In summary, this study revealed for the first time a neurite growth promoting effect of nimodipine in the mesocortical dopaminergic projection system that is highly dependent on the applied concentrations.

  2. Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures.

    PubMed

    Sygnecka, Katja; Heine, Claudia; Scherf, Nico; Fasold, Mario; Binder, Hans; Scheller, Christian; Franke, Heike

    2015-02-01

    Calcium ions (Ca(2+)) play important roles in neuroplasticity and the regeneration of nerves. Intracellular Ca(2+) concentrations are regulated by Ca(2+) channels, among them L-type voltage-gated Ca(2+) channels, which are inhibited by dihydropyridines like nimodipine. The purpose of this study was to investigate the effect of nimodipine on neurite growth during development and regeneration. As an appropriate model to study neurite growth, we chose organotypic brain slice co-cultures of the mesocortical dopaminergic projection system, consisting of the ventral tegmental area/substantia nigra and the prefrontal cortex from neonatal rat brains. Quantification of the density of the newly built neurites in the border region (region between the two cultivated slices) of the co-cultures revealed a growth promoting effect of nimodipine at concentrations of 0.1μM and 1μM that was even more pronounced than the effect of the growth factor NGF. This beneficial effect was absent when 10μM nimodipine were applied. Toxicological tests revealed that the application of nimodipine at this higher concentration slightly induced caspase 3 activation in the cortical part of the co-cultures, but did neither affect the amount of lactate dehydrogenase release or propidium iodide uptake nor the ratio of bax/bcl-2. Furthermore, the expression levels of different genes were quantified after nimodipine treatment. The expression of Ca(2+) binding proteins, immediate early genes, glial fibrillary acidic protein, and myelin components did not change significantly after treatment, indicating that the regulation of their expression is not primarily involved in the observed nimodipine mediated neurite growth. In summary, this study revealed for the first time a neurite growth promoting effect of nimodipine in the mesocortical dopaminergic projection system that is highly dependent on the applied concentrations. PMID:25447789

  3. Taurine release in mouse brain stem slices under cell-damaging conditions.

    PubMed

    Saransaari, P; Oja, S S

    2007-01-01

    Taurine has been thought to be essential for the development and survival of neural cells and to protect them under cell-damaging conditions. In the brain stem taurine regulates many vital functions, including cardiovascular control and arterial blood pressure. We have recently characterized the release of taurine in the adult and developing brain stem under normal conditions. Now we studied the properties of preloaded [3H]taurine release under various cell-damaging conditions (hypoxia, hypoglycemia, ischemia, the presence of metabolic poisons and free radicals) in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. Taurine release was greatly enhanced under these cell-damaging conditions, the only exception being the presence of free radicals in both age groups. The ischemia-induced release was characterized to consist of both Ca2+-dependent and -independent components. Moreover, the release was mediated by Na+-, Cl--dependent transporters operating outwards, particularly in the immature brain stem. Cl- channel antagonists reduced the release at both ages, indicating that a part of the release occurs through ion channels, and protein kinase C appeared to be involved. The release was also modulated by cyclic GMP second messenger systems, since inhibitors of soluble guanylyl cyclase and phosphodiesterases suppressed ischemic taurine release. The inhibition of phospholipases also reduced taurine release at both ages. This ischemia-induced taurine release could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.

  4. Imaging Calcium Responses in GFP-tagged Neurons of Hypothalamic Mouse Brain Slices

    PubMed Central

    Schauer, Christian; Leinders-Zufall, Trese

    2012-01-01

    Despite an enormous increase in our knowledge about the mechanisms underlying the encoding of information in the brain, a central question concerning the precise molecular steps as well as the activity of specific neurons in multi-functional nuclei of brain areas such as the hypothalamus remain. This problem includes identification of the molecular components involved in the regulation of various neurohormone signal transduction cascades. Elevations of intracellular Ca2+ play an important role in regulating the sensitivity of neurons, both at the level of signal transduction and at synaptic sites. New tools have emerged to help identify neurons in the myriad of brain neurons by expressing green fluorescent protein (GFP) under the control of a particular promoter. To monitor both spatially and temporally stimulus-induced Ca2+ responses in GFP-tagged neurons, a non-green fluorescent Ca2+ indicator dye needs to be used. In addition, confocal microscopy is a favorite method of imaging individual neurons in tissue slices due to its ability to visualize neurons in distinct planes of depth within the tissue and to limit out-of-focus fluorescence. The ratiometric Ca2+ indicator fura-2 has been used in combination with GFP-tagged neurons1. However, the dye is excited by ultraviolet (UV) light. The cost of the laser and the limited optical penetration depth of UV light hindered its use in many laboratories. Moreover, GFP fluorescence may interfere with the fura-2 signals2. Therefore, we decided to use a red fluorescent Ca2+ indicator dye. The huge Stokes shift of fura-red permits multicolor analysis of the red fluorescence in combination with GFP using a single excitation wavelength. We had previously good results using fura-red in combination with GFP-tagged olfactory neurons3. The protocols for olfactory tissue slices seemed to work equally well in hypothalamic neurons4. Fura-red based Ca2+ imaging was also successfully combined with GFP-tagged pancreatic β-cells and GFP

  5. Synthesis and phosphorylation of the glial fibrillary acidic protein during brain development: A tissue slice study

    SciTech Connect

    Noetzel, M.J. )

    1990-01-01

    Brain slices were incubated with either (3H) amino acids or (32P) orthophosphate in order to characterize the synthesis and phosphorylation of the glial fibrillary acidic protein (GFAP) in the rat nervous system. The incorporation of (3H) amino acids into GFAP was found to increase significantly during early postnatal development, reaching a peak of activity on day 5 of life and then declining over the next 2 weeks. Concomitant with this peak of synthetic activity the content of GFAP in rat brain was also observed to increase dramatically. GFAP continued to accumulate in brain through postnatal day 30 despite a decrease in the synthesis of the protein. These results indicate that the increase in GFAP during the first month of life cannot be ascribed solely to the rate of GFAP synthesis. The findings are consistent with the hypothesis that during later stages of astrocytic development the accumulation of GFAP may be primarily dependent upon a low rate of protein degradation. The pattern of GFAP phosphorylation in the developing rat brain differed from that observed for the incorporation of (3H) amino acids. The peak incorporation of 32P into GFAP occurred on postnatal day 10 at a time when synthesis of the protein had declined by 43%. These findings suggest that during development phosphorylation of GFAP is mediated by factors different from those directing its synthesis. In addition, phosphorylation of GFAP did not alter its solubility in cytoskeletal preparations indicating that GFAP phosphorylation is probably not a major regulatory mechanism in disassembly of the astroglial filaments.

  6. Preparation of human formalin-fixed brain slices for electron microscopic investigations.

    PubMed

    Krause, Martin; Brüne, Martin; Theiss, Carsten

    2016-07-01

    Ultra-structural analysis of human post-mortem brain tissue is important for investigations into the pathomechanism of neuropsychiatric disorders, especially those lacking alternative models of studying human-specific morphological features. For example, Von Economo Neurons (VENs) mainly located in the anterior cingulate cortex and in the anterior part of the insula, which seem to play a role in a variety of neuropsychiatric conditions, including frontotemporal dementia, autism and schizophrenia, can hardly be studied in nonhuman animals. Accordingly, little is known about the ultra-structural alterations of these neurons, though important research using qualitative stereological methods has revealed that protein expression of the VENs assigns them a role in immune function. Formaldehyde, which is the most common fixative in human pathology, interferes with the immunoreactivity of the tissue, possibly leading to unreliable results. Therefore, a method for ultra-structural investigations independent of antigenic properties of the fixated tissue is needed. Here, we propose an approach using electron microscopy to examine cytoskeletal structures, synapses and mitochondria in these cells. We also show that our methodology is able to keep tissue consumption to a minimum, while still allowing for the specimens to be handled with ease by using agar embedded slices in contrast to blocks for the embedding procedure. Accordingly, a stepwise protocol utilising 60μm thick human post mortem brain sections for electron microscopic ultra-structural investigations is presented. PMID:27136748

  7. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia.

    PubMed

    Estevez, A Y; Pritchard, S; Harper, K; Aston, J W; Lynch, A; Lucky, J J; Ludington, J S; Chatani, P; Mosenthal, W P; Leiter, J C; Andreescu, S; Erlichman, J S

    2011-09-15

    Cerium oxide nanoparticles (nanoceria) are widely used as catalysts in industrial applications because of their potent free radical-scavenging properties. Given that free radicals play a prominent role in the pathology of many neurological diseases, we explored the use of nanoceria as a potential therapeutic agent for stroke. Using a mouse hippocampal brain slice model of cerebral ischemia, we show here that ceria nanoparticles reduce ischemic cell death by approximately 50%. The neuroprotective effects of nanoceria were due to a modest reduction in reactive oxygen species, in general, and ~15% reductions in the concentrations of superoxide (O(2)(•-)) and nitric oxide, specifically. Moreover, treatment with nanoceria markedly decreased (~70% reduction) the levels of ischemia-induced 3-nitrotyrosine, a modification to tyrosine residues in proteins induced by the peroxynitrite radical. These findings suggest that scavenging of peroxynitrite may be an important mechanism by which cerium oxide nanoparticles mitigate ischemic brain injury. Peroxynitrite plays a pivotal role in the dissemination of oxidative injury in biological tissues. Therefore, nanoceria may be useful as a therapeutic intervention to reduce oxidative and nitrosative damage after a stroke. PMID:21704154

  8. Therapeutic hypothermia for acute brain injuries.

    PubMed

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-01-01

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia. PMID:26043908

  9. Therapeutic hypothermia for acute brain injuries.

    PubMed

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-06-05

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia.

  10. Inhibition of Calpain Prevents Manganese-Induced Cell Injury and Alpha-Synuclein Oligomerization in Organotypic Brain Slice Cultures

    PubMed Central

    Xu, Bin; Liu, Wei; Deng, Yu; Yang, Tian-Yao; Feng, Shu; Xu, Zhao-Fa

    2015-01-01

    Overexposure to manganese has been known to promote alpha-synuclein oligomerization and enhance cellular toxicity. However, the exact mechanism of Mn-induced alpha-synuclein oligomerization is unclear. To explore whether alpha-synuclein oligomerization was associated with the cleavage of alpha-synuclein by calpain, we made a rat brain slice model of manganism and pretreated slices with calpain inhibitor II, a cell-permeable peptide that restricts the activity of calpain. After slices were treated with 400 μM Mn for 24 h, there were significant increases in the percentage of apoptotic cells, lactate dehydrogenase release, intracellular [Ca2+]i, calpain activity, and the mRNA and protein expression of calpain 1 and alpha-synuclein. Moreover, the number of C- and N-terminal fragments of alpha-synuclein and the amount of alpha-synuclein oligomerization also increased. These results also showed that calpain inhibitor II pretreatment could reduce Mn-induced nerve cell injury and alpha-synuclein oligomerization. Additionally, there was a significant decrease in the number of C- and N-terminal fragments of alpha-synuclein in calpain inhibitor II-pretreated slices. These findings revealed that Mn induced the cleavage of alpha-synuclein protein via overactivation of calpain and subsequent alpha-synuclein oligomerization in cultured slices. Moreover, the cleavage of alpha-synuclein by calpain 1 is an important signaling event in Mn-induced alpha-synuclein oligomerization. PMID:25756858

  11. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    PubMed

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM. PMID:16336733

  12. The amiloride-sensitive Na+/H+ exchange antiporter and control of intracellular pH in hippocampal brain slices.

    PubMed

    Lin, C W; Kalaria, R N; Kroon, S N; Bae, J Y; Sayre, L M; LaManna, J C

    1996-08-26

    The intracellular pH, 7.54 +/- 0.03 (mean +/- S.D., n = 15), determined with the Neutral red method, of the hippocampal brain slice preparation under baseline incubation conditions is considerably more alkaline than the bath buffer pH. Neutralization by amiloride suggests that the alkalinity was due to Na+/H+ exchange antiporter activation. To characterize the brain Na+/H+ exchange antiporter we compared the inhibitory effects of MIA, amiloride and other 5-N substituted analogues on proton extrusion after acid loading by transient exposure to ammonium chloride in the isolated hippocampal brain slice preparation. The potencies of amiloride compounds on the initial recovery rate of intracellular pH after acid-loading were DMA > MIA > HMA = MHA > or = IPA-HCI > IPA > MNPA = Amil > Benzamil. The greater potency of the 5-N substituted analogs of amiloride over amiloride and benzamil strongly suggest that Na+/H+ exchange antiporter is the mechanism responsible for alkalinization in the isolated hippocampal brain slice in vitro. PMID:8883860

  13. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    PubMed

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.

  14. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor.

    PubMed

    Ganesana, Mallikarjunarao; Erlichman, Joseph S; Andreescu, Silvana

    2012-12-15

    The overproduction of reactive oxygen species and the resulting damage are central to the pathology of many diseases. The study of the temporal and spatial accumulation of reactive oxygen species has been limited because of the lack of specific probes and techniques capable of continuous measurement. We demonstrate the use of a miniaturized electrochemical cytochrome c (Cyt c) biosensor for real-time measurements and quantitative assessment of superoxide production and inactivation by natural and engineered antioxidants in acutely prepared brain slices from mice. Under control conditions, superoxide radicals produced from the hippocampal region of the brain in 400-μm-thick sections were well within the range of detection of the electrode. Exposure of the slices to ischemic conditions increased the superoxide production twofold and measurements from the slices were stable over a 3- to 4-h period. The stilbene derivative and anion channel inhibitor 4,4'-diisothiocyano-2,2'-disulfonic stilbene markedly reduced the extracellular superoxide signal under control conditions, suggesting that a transmembrane flux of superoxide into the extracellular space may occur as part of normal redox signaling. The specificity of the electrode for superoxide released by cells in the hippocampus was verified by the exogenous addition of superoxide dismutase (SOD), which decreased the superoxide signal in a dose-dependent manner. Similar results were seen with the addition of the SOD mimetic cerium oxide nanoparticles (nanoceria), in that the superoxide anion radical scavenging activity of nanoceria with an average diameter of 15 nm was equivalent to 527 U of SOD for each 1 μg/ml of nanoceria added. This study demonstrates the potential of electrochemical biosensors for studying real-time dynamics of reactive oxygen species in a biological model and the utility of these measurements in defining the relative contribution of superoxide to oxidative injury. PMID:23085519

  15. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor

    PubMed Central

    Ganesana, Mallikarjunarao; Erlichman, Joseph S.; Andreescu, Silvana

    2012-01-01

    The overproduction of reactive oxygen species and resulting damage are central to the pathology of many diseases. The study of the temporal and spatial accumulation of reactive oxygen species has been limited due to the lack of specific probes and techniques capable of continuous measurement. We demonstrate the use of a miniaturized electrochemical cytochrome C (Cyt C) biosensor for real-time measurements and quantitative assessment of superoxide production and inactivation by natural and engineered antioxidants in acutely prepared brain slices from mice. During control conditions, superoxide radicals produced from the hippocampal region of the brain in 400 μm thick sections were well within the range of detection of the electrode. Exposure of the slices to ischemic conditions increased the superoxide production two fold and measurements from the slices were stable over a 3–4 hour period. The stilbene derivative and anion channel inhibitor, 4,4′-diisothiocyano-2,2′-disulfonic stilbene (DIDS), markedly reduced the extracellular superoxide signal under control conditions suggesting that a transmembrane flux of superoxide into the extracellular space may occur as part of normal redox signaling. The specificity of the electrode for superoxide released by cells in the hippocampus was verified by the exogenous addition of superoxide dismutase (SOD) which decreased the superoxide signal in a dose-dependent manner. Similar results were seen with the addition of the SOD-mimetic, cerium oxide nanoparticles (nanoceria) where the superoxide anion radical scavenging activity of nanoceria with an average diameter of 15 nm was equivalent to 527 U of SOD for each 1 μg/ml of nanoceria added. This study demonstrates the potential of electrochemical biosensors for studying real-time dynamics of reactive oxygen species in a biological model and the utility of these measurements in defining the relative contribution of superoxide to oxidative injury. PMID:23085519

  16. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices

    PubMed Central

    Mlinar, Boris; Montalbano, Alberto; Piszczek, Lukasz; Gross, Cornelius; Corradetti, Renato

    2016-01-01

    Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since the first observations, slow regular spiking has been considered as a defining feature of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of serotonergic neurons at multiple levels, comprising their electrophysiological properties, suggesting the existence of functionally distinct cellular subpopulations. In order to examine in an unbiased manner whether serotonergic neurons of the dorsal raphe nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached method to record α1 adrenergic receptor-stimulated spiking of a large sample of neurons in brain slices obtained from transgenic mice lines that express fluorescent marker proteins under the control of serotonergic system-specific Tph2 and Pet-1 promoters. We found wide homogeneous distribution of firing rates, well fitted by a single Gaussian function (r2 = 0.93) and independent of anatomical location (P = 0.45), suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN represent a single cellular population. Characterization of the population in terms of spiking regularity was hindered by its dependence on the firing rate. For instance, the coefficient of variation of the interspike intervals (ISI), a common measure of spiking irregularity, is of limited usefulness since it correlates negatively with the firing rate (r = −0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5 in ~97% of cases. Unexpectedly, a small percentage of neurons (~1%) exhibited a particular spiking pattern, characterized by low frequency (~0.02–0.1 Hz) oscillations in the firing rate. Transitions between regular and oscillatory firing were observed, suggesting that the oscillatory firing is an alternative firing pattern of serotonergic neurons. PMID:27536220

  17. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices.

    PubMed

    Mlinar, Boris; Montalbano, Alberto; Piszczek, Lukasz; Gross, Cornelius; Corradetti, Renato

    2016-01-01

    Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since the first observations, slow regular spiking has been considered as a defining feature of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of serotonergic neurons at multiple levels, comprising their electrophysiological properties, suggesting the existence of functionally distinct cellular subpopulations. In order to examine in an unbiased manner whether serotonergic neurons of the dorsal raphe nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached method to record α1 adrenergic receptor-stimulated spiking of a large sample of neurons in brain slices obtained from transgenic mice lines that express fluorescent marker proteins under the control of serotonergic system-specific Tph2 and Pet-1 promoters. We found wide homogeneous distribution of firing rates, well fitted by a single Gaussian function (r (2) = 0.93) and independent of anatomical location (P = 0.45), suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN represent a single cellular population. Characterization of the population in terms of spiking regularity was hindered by its dependence on the firing rate. For instance, the coefficient of variation of the interspike intervals (ISI), a common measure of spiking irregularity, is of limited usefulness since it correlates negatively with the firing rate (r = -0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5 in ~97% of cases. Unexpectedly, a small percentage of neurons (~1%) exhibited a particular spiking pattern, characterized by low frequency (~0.02-0.1 Hz) oscillations in the firing rate. Transitions between regular and oscillatory firing were observed, suggesting that the oscillatory firing is an alternative firing pattern of serotonergic neurons. PMID:27536220

  18. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  19. [Differentiated treatment of acute diffuse brain injuries].

    PubMed

    Pedachenko, E G; Dziak, L A; Sirko, A G

    2012-01-01

    Diagnosis and treatment results of 57 patients with acute diffuse brain injury have been analyzed. Patients were divided into two groups: first study period 2000-2005; second study period 2006-2010. The main differences between the first and the second study periods were in health condition and brain functions monitoring parameters, therapy approaches and goals. Increasing of axial and lateral dislocation symptoms during progression from the first type of diffuse injury to the fourth one is related to intracranial hypertension (ICH) occurrence rate and significance it's significance. During the second study period, ICH was found in 25% patients with the second type of injury, 57% patients with the third type of injury, and 80%, with the fourth type of injury. Mean ICP in the group of patients with the second type of diffuse injury comprised 14.4 +/- 6.6 mmHg; with the third type of injury, 30 +/- 20.6 mmHg; with the fourth type of injuty, 37.6 +/- 14.1 mmHg. Introduction of differentiated approach to conservative or surgical treatment method application to acute diffuse brain injuries patients based on ICP monitoring data led to 13.8% reduction in mortality in the second study period compared with the first study period.

  20. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  1. Characterization of Inhibitory GABA-A Receptor Activation during Spreading Depolarization in Brain Slice

    PubMed Central

    Aiba, Isamu; Shuttleworth, C. William

    2014-01-01

    Spreading depolarization (SD) is a slowly propagating wave of near complete depolarizations of neurons and glia. Previous studies have reported large GABA releases during SD, but there is limited understanding of how GABA release and receptor activation are regulated and influence the propagating SD wavefront, as well as an excitatory phase immediately following the passage of SD. The present study characterized GABA-A type receptor (GABAAR) currents during SD generated by KCl microinjection in acute hippocampal slices from adult mice. Spontaneous GABAAR-mediated currents (sIPSCs) were initially enhanced, and were followed by a large outward current at the wavefront. sIPSC were then transiently supressed during the late SD phase, resulting in a significant reduction of the sIPSC/sEPSC ratio. The large outward current generated during SD was eliminated by the GABAAR antagonist gabazine, but the channel potentiator/agonist propofol failed to potentiate the current, likely because of a ceiling effect. Extracellular Cl− decreases recorded during SD were reduced by the antagonist but were not increased by the potentiator. Together with effects of GABAAR modulators on SD propagation rate, these results demonstrate a significant inhibitory role of the initial GABAAR activation and suggest that intracellular Cl− loading is insufficient to generate excitatory GABAAR responses during SD propagation. These results provide a mechanistic explanation for facilitating effects of GABAAR antagonists, and the lack of inhibitory effect of GABAAR potentiators on SD propagation. In addition, selective suppression of GABA transmission in the late SD period and the lack of effect of GABAA modulators on the duration of SD suggests that GABA modulation may not be effective approach to protect neurons during the vulnerable phase of SD. PMID:25338191

  2. Imaging pheromone sensing in a mouse vomeronasal acute tissue slice preparation.

    PubMed

    Brechbühl, Julien; Luyet, Gaëlle; Moine, Fabian; Rodriguez, Ivan; Broillet, Marie-Christine

    2011-01-01

    . Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.

  3. [Application of alpha-tocopherol acetate prevents swelling of brain slices during the autoblood clot action].

    PubMed

    Khama-Murad, A Kh; Mokrushin, A A; Pavlinova, L I

    2011-01-01

    The swelling of olfactory cortex slices of the hypertensive SHR rats under the long autoblood action have been studied. The influence of a preincubation of slices with vitamins E, C and D on a degree of swelling have been detected by their weighing before and after exposure to autoblood. The water-soluble form of vitamin E have exerted a substantial antiswelling action exceeding the same of vitamin D, whereas vitamin C had no any effect.

  4. Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices.

    PubMed

    Pedata, F; Pazzagli, M; Tilli, S; Pepeu, G

    1990-10-01

    The release of both radioactive and endogenous purines was investigated in rat brain cortical, hippocampal and striatal slices at rest and following stimulation with electrical fields. Purines were labelled by incubating the slices with 3H-adenine. The purine efflux at rest and that evoked by electrical stimulation (10 Hz. 5 min) was analyzed by HPLC with ultraviolet absorbance detection. Both radioactive and endogenous purines in the effluent consisted mainly of hypoxanthine, xanthine, inosine and adenosine. No qualitative differences in the composition of the released purines were found in the three areas investigated. Electrical stimulation evoked a net increase in both radioactive and endogenous purine release. However the increase in 3H-adenosine following electrical stimulation was twice as large as that of endogenous adenosine. The electrically evoked release of both radioactive and endogenous purines was greatest in hippocampal slices and progressively smaller in cortical and striatal slices. In the three areas the addition of 0.5 microM tetrodotoxin to the superfusing Krebs solution brought about a similar (83-100%) reduction in evoked 3H-purine and endogenous purine release. Superfusion of the slices with calcium-free Krebs solution containing 0.5 mM EGTA reduced evoked release of 3H-purines by 58-60% and that of endogenous purine components by 54-89%. The results demonstrate similar characteristics for both radioactive and endogenous purine release but indicate that the most recently synthetized adenosine is the most readily available for release. The features of the electrically evoked purine release support a neuronal origin of adenosine and derivatives and are consistent with the hypothesis of discrete regional differences in adenosine neuromodulation. PMID:2255336

  5. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    PubMed Central

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons. PMID:22065958

  6. Acute parotitis and hyperamylasemia following whole-brain radiation therapy

    SciTech Connect

    Cairncross, J.G.; Salmon, J.; Kim, J.H.; Posner, J.B.

    1980-04-01

    Parotitis, an infrequent, previously unreported complication of whole-brain radiation therapy, was observed in 4 patients. The acute symptoms, which include fever, dry mouth, pain, swelling, and tenderness, are accompanied by hyperamylasemia. Among 10 patients receiving whole-brain irradiation, 8 had serum amylase elevations without symptoms. Both acute parotitis and asymptomatic hyperamylasemia result from irradiation of the parotid glands.

  7. Acute slices of mice testis seminiferous tubules unveil spontaneous and synchronous Ca2+ oscillations in germ cell clusters.

    PubMed

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-10-01

    Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca(2+) ([Ca(2+)]i); however, very few studies exist on [Ca(2+)]i dynamics in these cells. Other tissues display Ca(2+) oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca(2+) imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca(2+)]i changes of living germ cells in situ within the SST preparation. Ca(2+) imaging revealed that a subpopulation of male germ cells display spontaneous [Ca(2+)]i fluctuations resulting from Ca(2+) entry possibly throughout Ca(V)3 channels. These [Ca(2+)]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca(2+) fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca(2+) oscillations for at least 10 min. Synchronous Ca(2+) oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca(2+)]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca(2+) signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  8. Long-term GnRH-induced gonadotropin secretion in a novel hypothalamo-pituitary slice culture from tilapia brain.

    PubMed

    Bloch, Corinne L; Kedar, Noa; Golan, Matan; Gutnick, Michael J; Fleidervish, Ilya A; Levavi-Sivan, Berta

    2014-10-01

    Organotypic cultures, prepared from hypothalamo-pituitary slices of tilapia, were developed to enable long-term study of secretory cells in the pituitary of a teleost. Values of membrane potential at rest were similar to those recorded from acute slices, and cells presented similar spontaneous spikes and spikelets. Some cells also exhibited slow spontaneous oscillations in membrane potential, which may be network-driven. Long-term (6days) continuous exposure to GnRH induced increases in LH and FSH secretion. FSH levels reached the highest levels after 24h of exposure to GnRH, and the highest secretion of LH was observed in days 4 and 5 of the experiment. Since slices were viable for several weeks in culture, maintaining the original cytoarchitecture, electrical membrane properties and the ability to secrete hormones in response to exogenous GnRH, this technique is ideal for studying the mechanisms regulating cell-to-cell communication under conditions resembling the in vivo tissue organization.

  9. Acute Slices of Mice Testis Seminiferous Tubules Unveil Spontaneous and Synchronous Ca2+ Oscillations in Germ Cell Clusters1

    PubMed Central

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-01-01

    ABSTRACT Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca2+ ([Ca2+]i); however, very few studies exist on [Ca2+]i dynamics in these cells. Other tissues display Ca2+ oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca2+ imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca2+]i changes of living germ cells in situ within the SST preparation. Ca2+ imaging revealed that a subpopulation of male germ cells display spontaneous [Ca2+]i fluctuations resulting from Ca2+ entry possibly throughout CaV3 channels. These [Ca2+]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca2+ fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca2+ oscillations for at least 10 min. Synchronous Ca2+ oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca2+]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca2+ signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  10. Brain perfusion in acute and chronic hyperglycemia in rats

    SciTech Connect

    Kikano, G.E.; LaManna, J.C.; Harik, S.I. )

    1989-08-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose.

  11. Influence of location of a fluorescent zinc probe in brain slices on its response to synaptic activation.

    PubMed

    Kay, Alan R; Tóth, Katalin

    2006-03-01

    The precise role of the high concentration of ionic zinc found in the synaptic vesicles of certain glutamatergic terminals is unknown. Fluorescent probes with their ability to detect ions at low concentrations provide a powerful approach to monitoring cellular Zn2+ levels. In the last few years, a number of fluorescent probes (indicators) have been synthesized that can be used to visualize Zn2+ in live cells. The interpretation of data gathered using such probes depends crucially on the location of the probe. Using acutely prepared hippocampal slices, we provide evidence that the Zn2+ probes, ZnAF-2 and ZP4, are membrane permeant and are able to pass into synaptic vesicles. In addition, we show that changes in fluorescence of the Zn2+ probes can be used to monitor presynaptic activity; however, these changes are inconsistent with Zn2+ release.

  12. Organotypic slice culture of the hypothalamic paraventricular nucleus of rat

    PubMed Central

    Cho, Eun Seong; Lee, So Yeong; Park, Jae-Yong; Hong, Seong-Geun

    2007-01-01

    Organotypic slice cultures have been developed as an alternative to acute brain slices because the neuronal viability and synaptic connectivity in these cultures can be preserved well for a prolonged period of time. This study evaluated a stationary organotypic slice culture developed for the hypothalamic paraventricular nucleus (PVN) of rat. The results showed that the slice cultures maintain the typical shape of the nucleus, the immunocytochemical signals for oxytocin, vasopressin, and corticotropin-releasing hormone, and the electrophysiological properties of PVN neurons for up to 3 weeks in vitro. The PVN neurons in the culture expressed the green fluorescent protein gene that had been delivered by the adenoviral vectors. The results indicate that the cultured slices preserve the properties of the PVN neurons, and can be used in longterm studies on these neurons in vitro. PMID:17322769

  13. Modelling ischaemia in vitro: effects of temperature and glucose concentration on dopamine release evoked by oxygen and glucose depletion in a mouse brain slice.

    PubMed

    Davidson, C; Chauhan, N K; Knight, S; Gibson, C L; Young, A M J

    2011-11-15

    Current pharmacological interventions for acute stroke are largely ineffective or confounded by adverse effects, emphasising the need to develop new pharmacological treatments for neuroprotection. We have developed a robust in vitro model previously used in rats to assess dopamine release in mouse caudate nucleus brain slices, measured by fast cyclic voltammetry, during oxygen and glucose deprivation (OGD) as a model for cerebral ischaemia: this model will allow the study of transgenic mouse strains. During the pre-OGD equilibration period we found that a temperature of 33°C, with solution containing 10 mM glucose provided the optimum baseline conditions from which reliable OGD-induced changes in dopamine efflux could be measured, without being susceptible to spontaneous release events. During OGD we found no significant difference in any of the parameters measured between perfusion with glucose-free solution, and perfusion with solution containing 2 mM glucose. We therefore suggest, in agreement with previous work, that using 2 mM glucose during OGD is appropriate, and using these conditions we were able to reliably produce OGD-evoked dopamine release. PMID:21669225

  14. Modelling ischaemia in vitro: effects of temperature and glucose concentration on dopamine release evoked by oxygen and glucose depletion in a mouse brain slice.

    PubMed

    Davidson, C; Chauhan, N K; Knight, S; Gibson, C L; Young, A M J

    2011-11-15

    Current pharmacological interventions for acute stroke are largely ineffective or confounded by adverse effects, emphasising the need to develop new pharmacological treatments for neuroprotection. We have developed a robust in vitro model previously used in rats to assess dopamine release in mouse caudate nucleus brain slices, measured by fast cyclic voltammetry, during oxygen and glucose deprivation (OGD) as a model for cerebral ischaemia: this model will allow the study of transgenic mouse strains. During the pre-OGD equilibration period we found that a temperature of 33°C, with solution containing 10 mM glucose provided the optimum baseline conditions from which reliable OGD-induced changes in dopamine efflux could be measured, without being susceptible to spontaneous release events. During OGD we found no significant difference in any of the parameters measured between perfusion with glucose-free solution, and perfusion with solution containing 2 mM glucose. We therefore suggest, in agreement with previous work, that using 2 mM glucose during OGD is appropriate, and using these conditions we were able to reliably produce OGD-evoked dopamine release.

  15. Erratum to "Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices".

    PubMed

    Basta, Dietmar; Ernst, Arne

    2005-02-01

    The inferior colliculus (IC) in vivo is reportedly subject to a noise-induced decrease of GABA-related inhibitory synaptic transmission accompanied by an amplitude increase of auditory evoked responses, a widening of tuning curves and a higher neuronal discharge rate at suprathreshold levels. However, other in vivo experiments which demonstrated constant neuronal auditory thresholds or unchanged spontaneous activity in the IC after noise exposure did not confirm those findings. Perhaps this can be the result of complex noise-induced interactions between different central auditory structures. It was, therefore, the aim of the present study to investigate the effects of noise exposure on the spontaneous electrical activity of single neurons in a slice preparation of the isolated mouse IC. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun 10:1). After one week, auditory brainstem response (ABR) recordings and extracellular single-unit recordings from spontaneously active neurons within the IC slice were performed in noise-exposed and in normal hearing control mice. Noise-exposed animals showed a significant ABR threshold shift in the whole tested frequency range and a significant lower neuronal spontaneous activity in all investigated isofrequency laminae compared to controls. In both groups, the firing rate of 80% of IC neurons (approximately) increased significantly during the application of the GABA(A) receptor antagonist Bicucullin (10 microM). The present findings demonstrate a noise-related modulation of spontaneous activity in the IC, which possibly contribute to the generation of noise-induced tinnitus and hearing loss.

  16. Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices.

    PubMed

    Basta, Dietmar; Ernest, Arne

    2004-09-30

    The inferior colliculus (IC) in vivo is reportedly subject to a noise-induced decrease of GABA-related inhibitory synaptic transmission accompanied by an amplitude increase of auditory evoked responses, a widening of tuning curves and a higher neuronal discharge rate at suprathreshold levels. However, other in vivo experiments which demonstrated constant neuronal auditory thresholds or unchanged spontaneous activity in the IC after noise exposure did not confirm those findings. Perhaps this can be the result of complex noise-induced interactions between different central auditory structures. It was, therefore, the aim of the present study to investigate the effects of noise exposure on the spontaneous electrical activity of single neurons in a slice preparation of the isolated mouse IC. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun 10:1). After one week, auditory brainstem response (ABR) recordings and extracellular single-unit recordings from spontaneously active neurons within the IC slice were performed in noise-exposed and in normal hearing control mice. Noise-exposed animals showed a significant ABR threshold shift in the whole tested frequency range and a significant lower neuronal spontaneous activity in all investigated isofrequency laminae compared to controls. In both groups, the firing rate of 80% of IC neurons (approximately) increased significantly during the application of the GABA(A) receptor antagonist Bicucullin (10 microM). The present findings demonstrate a noise-related modulation of spontaneous activity in the IC, which possibly contribute to the generation of noise-induced tinnitus and hearing loss.

  17. The effect of castanospermine on the synthesis of synaptic glycoproteins by rat brain slices.

    PubMed

    Howes, S; Bissoon, N; Ito, M; Beesley, P W; Gurd, J W

    1990-03-01

    Slices were prepared from rat forebrains and the incorporation of [3H]mannose and [35S]methionine into proteins and glycoproteins determined. The incorporation of methionine continued to increase for up to 8 hours whereas mannose incorporation was maximal between 2 and 4 hours and declined thereafter. Glycopeptides prepared by pronase digestion of [3H]mannose-labeled glycoproteins were digested with endoglucosaminidase H (endo H) and analysed by gel filtration. The major endo H-sensitive oligosaccharide eluted in a position similar to standard Man8GlcNAc. In the presence of castanospermine, which inhibits glucosidase I, the first enzymatic step in the processing of N-linked oligosaccharides, a new endo H-sensitive glycan similar in size to standard Glc3Man9GlcNAc2 accumulated. Synaptic membranes (SMs) were isolated from slices which had been incubated with either [3H]mannose or [35S]methionine in the presence and absence of castanospermine. In the presence of inhibitor the relative incorporation of [3H]mannose into high-mannose glycans of synaptic glycoproteins was increased. The incorporation of newly synthesized, [35S] methionine-labeled, Con A-binding glycoproteins into SMs was not affected by the addition of inhibitor. Many of the glycoproteins synthesized in the presence of castanospermine exhibited a decreased electrophoretic mobility indicative of the presence of altered oligosaccharide chains. The results indicate that changes in oligosaccharide composition produced by castanospermine had little effect on the subsequent transport and incorporation of glycoproteins into synaptic membranes. PMID:2195374

  18. Critical State of Energy Metabolism in Brain Slices: The Principal Role of Oxygen Delivery and Energy Substrates in Shaping Neuronal Activity

    PubMed Central

    Ivanov, Anton; Zilberter, Yuri

    2011-01-01

    The interactive vasculo-neuro-glial system controlling energy supply in the brain is absent in vitro where energy provision is determined by experimental conditions. Despite the fact that neuronal activity is extremely energy demanding, little has been reported on the state of energy metabolism in submerged brain slices. Without this information, the arbitrarily chosen oxygenation and metabolic provisions make questionable the efficient oxidative metabolism in slices. We show that in mouse hippocampal slices (postnatal day 19–44), evoked neuronal discharges, spontaneous network activity (initiated by 4-aminopyridine), and synaptic stimulation-induced NAD(P)H autofluorescence depend strongly on the oxygen availability. Only the rate of perfusion as high as ~15 ml/min (95% O2) provided appropriate oxygenation of a slice. Lower oxygenation resulted in the decrease of both local field potentials and spontaneous network activity as well as in significant modulation of short-term synaptic plasticity. The reduced oxygen supply considerably inhibited the oxidation phase of NAD(P)H signaling indicating that the changes in neuronal activity were paralleled by the decrease in aerobic energy metabolism. Interestingly, the dependence of neuronal activity on oxygen tension was clearly shifted toward considerably larger pO2 values in slices when compared to in vivo conditions. With sufficient pO2 provided by a high perfusion rate, partial substitution of glucose in ACSF for β-hydroxybutyrate, pyruvate, or lactate enhanced both oxidative metabolism and synaptic function. This suggests that the high pO2 in brain slices is compulsory for maintaining oxidative metabolism, and glucose alone is not sufficient in fulfilling energy requirements during neuronal activity. Altogether, our results demonstrate that energy metabolism determines the functional state of neuronal network, highlighting the need for the adequate metabolic support to be insured in the in vitro experiments. PMID

  19. Cytosolic NADH-NAD+ Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging

    PubMed Central

    Mongeon, Rebecca; Venkatachalam, Veena

    2016-01-01

    Abstract Aim: Cytosolic NADH-NAD+ redox state is central to cellular metabolism and a valuable indicator of glucose and lactate metabolism in living cells. Here we sought to quantitatively determine NADH-NAD+ redox in live cells and brain tissue using a fluorescence lifetime imaging of the genetically-encoded single-fluorophore biosensor Peredox. Results: We show that Peredox exhibits a substantial change in its fluorescence lifetime over its sensing range of NADH-NAD+ ratio. This allows changes in cytosolic NADH redox to be visualized in living cells using a two-photon scanning microscope with fluorescence lifetime imaging capabilities (2p-FLIM), using time-correlated single photon counting. Innovation: Because the lifetime readout is absolutely calibrated (in nanoseconds) and is independent of sensor concentration, we demonstrate that quantitative assessment of NADH redox is possible using a single fluorophore biosensor. Conclusion: Imaging of the sensor in mouse hippocampal brain slices reveals that astrocytes are typically much more reduced (with higher NADH:NAD+ ratio) than neurons under basal conditions, consistent with the hypothesis that astrocytes are more glycolytic than neurons. Antioxid. Redox Signal. 25, 553–563. PMID:26857245

  20. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    NASA Astrophysics Data System (ADS)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-10-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  1. Electrochemical Sensor Array and Its Application to Real Time Imaging of a Brain Slice

    NASA Astrophysics Data System (ADS)

    Kasai, Nahoko; Shimada, Akiyoshi; Nyberg, Tobias; Torimitsu, Keiichi

    An electrochemical sensing system using a planar microelectrode array has been developed to monitor biological molecules with relatively high special and temporal resolutions. This enables us a real time imaging of the biological molecules release from a tissue invasively. In this study, we have established a multichannel hydrogen peroxide (H2O2) sensing system to monitor the real time H2O2 distribution in a tissue using a planar sensor array. H2O2 has been recognized in association with the pathology of neurological diseases because it is a by-product of a degenerative reaction of reactive oxygen species, one of the major causes of oxidative stress in mammalian cells. The sensor array is based on a 64-channel ITO electrode array of 50x50 μm electrodes modified with an enzyme, horseradish peroxidase, and an electron transfer mediator. Then we place a cultured rat hippocampal slice on the array and measure the current at each sensor using a multipotentiostat. When we introduce bicuculline into the solution as a stimulant, in the presence of a catalase inhibitor, we can observe a distinct increase in the H2O2 concentration. This real-time H2O2 distribution monitoring system will be a powerful tool with which to explore the neuronal cell death mechanism in biological systems.

  2. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation☆

    PubMed Central

    Cui, Hong; Han, Weijuan; Yang, Lijun; Chang, Yanzhong

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment. PMID:25206673

  3. Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices.

    PubMed

    Dvorzhak, Anton; Myakhar, Olga; Unichenko, Petr; Kirmse, Knut; Kirischuk, Sergei

    2010-07-01

    GABAergic synapses on Cajal-Retzius neurons in layer I of the murine neocortex experience GABA(B) receptor (GABA(B)R)-mediated tonic inhibition. Extracellular GABA concentration ([GABA](o)) that determines the strength of GABA(B)R-mediated inhibition is controlled by GABA transporters (GATs). In this study, we hypothesized that the strength of presynaptic GABA(B)R activation reflects [GABA](o) in the vicinity of synaptic contacts. Slices obtained from two age groups were used, namely postnatal days (P)2-3 and P5-7. GABAergic postsynaptic currents (IPSCs) were recorded using the whole-cell patch-clamp technique. Minimal electrical stimulation in layer I was applied to elicit evoked IPSCs (eIPSCs) using a paired-pulse protocol. Three parameters were selected for comparison: the mean eIPSC amplitude, paired-pulse ratio, and failure rate. When GAT-1 and GAT-2/3 were blocked by NO-711 (10 microM) and SNAP-5114 (40 microM), respectively, no tonic GABA(B)R-mediated inhibition was observed. In order to restore the control levels of GABA(B)R-mediated inhibition, 250 and 125 nm exogenous GABA was required at P2-3 and P5-7, respectively. Addition of 3-mercaptopropionic acid, a glutamate decarboxylase inhibitor, did not significantly change the obtained values arguing against the suggestion that a mechanism different from GATs contributes to [GABA](o) control. We conclude that juxtasynaptic [GABA](o) is higher (about 250 nM) at P2-3 than at P5-7 (about 125 nM). As both radial cell migration and corticogenesis in general are strongly dependent on [GABA](o) and the formation of the last layer 2/3 is finished by P4 in rodents, the observed [GABA](o) reduction in layer I might reflect this crucial event in the cortical development. PMID:20421290

  4. Blood-brain barrier in acute liver failure

    PubMed Central

    Nguyen, Justin H.

    2011-01-01

    Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF. PMID:22100566

  5. A visual thalamocortical slice.

    PubMed

    MacLean, Jason N; Fenstermaker, Vivian; Watson, Brendon O; Yuste, Rafael

    2006-02-01

    We describe a thalamocortical slice preparation in which connectivity between the mouse lateral geniculate nucleus (LGN) and primary visual cortex (V1) is preserved. Through DiI injections in fixed brains we traced and created a three-dimensional model of the mouse visual pathways. From this computer model we designed a slice preparation that contains a projection from LGN to V1. We prepared brain slices with these predicted coordinates and demonstrated anatomical LGN-V1 connectivity in these slices after LGN tracer injections. We also revealed functional LGN-V1 connectivity by stimulating LGN electrically and detecting responses in layer 4 of V1 using calcium imaging, field potential recordings and whole-cell recordings. We also identified layer-4 neurons that receive direct thalamocortical input. Finally, we compared cortical activity after LGN stimulation with spontaneous cortical activity and found significant overlap of the spatiotemporal dynamics generated by both types of events.

  6. Lithium lengthens circadian period of cultured brain slices in area specific manner.

    PubMed

    Yoshikawa, Tomoko; Honma, Sato

    2016-11-01

    Lithium has been used for the treatment of bipolar disorder (BD). However, the mechanisms how lithium exerts its mood stabilizing effects remain to be studied. The disorder in circadian pacemaking has been suggested as an underlying mechanism of the characteristic mood instability of the BD. Lithium is also known to lengthen the circadian periods. We recently proposed that chronic methamphetamine treatment induced circadian oscillation as a complex oscillator including multiple dopaminergic brain areas, and the complex oscillator regulates behavior rhythm independent from the central circadian oscillator in the suprachiasmatic nucleus (SCN). Sleep-wake pattern of rapid cycling BD exhibits similar rhythm disorganization to methamphetamine treated animals. Therefore, we hypothesized that the dysregulated circadian rhythm in BD patients is caused by desynchronization of sleep-wake rhythms from the central clock in the SCN, and that mood stabilizing effect of lithium is achieved through their resynchronization. In the present experiment, we examined how lithium affects the circadian rhythms of brain areas involved in the complex oscillator as well as the SCN. Here we report that lithium lengthens the circadian periods in the SCN, olfactory bulb, median eminence and substantia nigra with dose and area specific manner. The effective lithium dose was much higher than the plasma levels that are required for lengthening the circadian behavior rhythms as well for therapeutic use. Low dose of lithium did not lengthen the period but enhanced the amplitude of circadian rhythms, which may exert therapeutic effects on BD. PMID:27478137

  7. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke

    PubMed Central

    Van Kanegan, Michael J.; Dunn, Denise E.; Kaltenbach, Linda S.; Shah, Bijal; He, Dong Ning; McCoy, Daniel D.; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H.; Newman, Robert A.; Lo, Donald C.

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0–4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0–4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer’s disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD. PMID:27172999

  8. A Slice of the Suicidal Brain: What Have Postmortem Molecular Studies Taught Us?

    PubMed

    Almeida, Daniel; Turecki, Gustavo

    2016-11-01

    Suicide ranks amongst the leading causes of death worldwide. Contemporary models of suicide risk posit that suicide results from the interaction of distal and proximal factors, including neurobiological, psychological/clinical, and social factors. While a wealth of neurobiological studies aimed at identifying biological processes associated with suicidal behaviour have been conducted over the last decades, the more recent development of arrays and high-throughput sequencing methods have led to an increased capacity and interest in the study of genomic factors. Postmortem studies are a unique tool to directly investigate genomic processes that may be dysregulated in the suicidal brain. In this review, we discuss postmortem literature investigating functional genomic studies of suicide, particularly focusing on epigenetic mechanisms. PMID:27671915

  9. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    PubMed

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  10. Visualization of implanted GL261 glioma cells in living mouse brain slices using fluorescent 4-(4-(dimethylamino)-styryl)-N-methylpyridinium iodide (ASP+)

    PubMed Central

    Kucheryavykh, Lilia Y.; Kucheryavykh, Yuriy V.; Rolón-Reyes, Kimberleve; Skatchkov, Serguei N.; Eaton, Misty J.; Cubano, Luis A.; Inyushin, Mikhail

    2013-01-01

    Here we describe a new method of glioma cell visualization in living brain slices that can be used for evaluation of tumor size or visualization of internal tumor structures. Glial cells, as well as glioma cells of glial origin, express high levels of organic cation transporters. We demonstrate that application of a fluorescent substrate for these transporters 4-(4-(dimethylamino)-styryl)-N-methylpyridinium iodide (ASP+) to the incubation medium leads to quick accumulation of fluorescence in glioma cells during early developmental stages and in astrocytes, but not in neurons. Stained brain slices can be immediately investigated using confocal or fluorescence microscopy. Glioma and glial cells can be discriminated from each other due to their different morphology. The method described has an advantage of staining living tissue and is simple to perform. PMID:23570046

  11. Imaging Evaluation of Acute Traumatic Brain Injury.

    PubMed

    Mutch, Christopher A; Talbott, Jason F; Gean, Alisa

    2016-10-01

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it also helps predict patient outcomes. TBI consists of multiple pathoanatomic entities. This article reviews the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each of these pathoanatomic entities. Also briefly surveyed are advanced imaging techniques, which include several promising areas of TBI research. PMID:27637393

  12. Autophagy in acute brain injury: feast, famine, or folly?

    PubMed

    Smith, Craig M; Chen, Yaming; Sullivan, Mara L; Kochanek, Patrick M; Clark, Robert S B

    2011-07-01

    In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids, and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids, and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell's autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury and are the subject of this review. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."

  13. Estrogen Receptor Beta and 2-arachidonoylglycerol Mediate the Suppressive Effects of Estradiol on Frequency of Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons of Metestrous Mice: An Acute Slice Electrophysiological Study

    PubMed Central

    Bálint, Flóra; Liposits, Zsolt; Farkas, Imre

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are controlled by 17β-estradiol (E2) contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM) on GnRH neurons in acute brain slices obtained from metestrous GnRH-green fluorescent protein (GFP) mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachidonoylglycerol (2-AG) signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs) in GnRH neurons (49.62 ± 7.6%) which effect was abolished by application of the estrogen receptor (ER) α/β blocker Faslodex (1 μM). Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1) inverse agonist AM251 (1 μM) and intracellularly applied endocannabinoid synthesis blocker THL (10 μM) significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of tetrodotoxin (TTX) indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM) also significantly decreased the frequency of miniature postsynaptic currents (mPSCs) in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 μM) indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM) or the membrane-associated G protein-coupled estrogen receptor (GPR30) agonist G1 (10 pM) had no significant effect on the frequency of mPSCs in these neurons. AM251 and tetrahydrolipstatin (THL) significantly abolished

  14. β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices

    PubMed Central

    2010-01-01

    Background Inflammation acting in synergy with brain ischemia aggravates perinatal ischemic brain damage. The sensitizing effect of pro-inflammatory exposure prior to hypoxia is dependent on signaling by TNF-α through TNF receptor (TNFR) 1. Adrenoceptor (AR) activation is known to modulate the immune response and synaptic transmission. The possible protective effect of α˜ and β˜AR activation against neuronal damage caused by tissue ischemia and inflammation, acting in concert, was evaluated in murine hippocampal organotypic slices treated with lipopolysaccharide (LPS) and subsequently subjected to oxygen-glucose deprivation (OGD). Method Hippocampal slices from mice were obtained at P6, and were grown in vitro for 9 days on nitrocellulose membranes. Slices were treated with β1(dobutamine)-, β2(terbutaline)-, α1(phenylephrine)- and α2(clonidine)-AR agonists (5 and 50 μM, respectively) during LPS (1 μg/mL, 24 h) -exposure followed by exposure to OGD (15 min) in a hypoxic chamber. Cell death in the slice CA1 region was assessed by propidium iodide staining of dead cells. Results Exposure to LPS + OGD caused extensive cell death from 4 up to 48 h after reoxygenation. Co-incubation with β1-agonist (50 μM) during LPS exposure before OGD conferred complete protection from cell death (P < 0.001) whereas the β2-agonist (50 μM) was partially protective (p < 0.01). Phenylephrine was weakly protective while no protection was attained by clonidine. Exposure to both β1- and β2-agonist during LPS exposure decreased the levels of secreted TNF-α, IL-6 and monocyte chemoattractant protein-1 and prevented microglia activation in the slices. Dobutamine remained neuroprotective in slices exposed to pure OGD as well as in TNFR1-/- and TNFR2-/- slices exposed to LPS followed by OGD. Conclusions Our data demonstrate that activation of both β1- and β2-receptors is neuroprotective and may offer mechanistic insights valuable for development of neuro-protective strategies

  15. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury

    PubMed Central

    Sheth, Sunil A.; Iavarone, Anthony T.; Liebeskind, David S.; Won, Seok Joon; Swanson, Raymond A.

    2015-01-01

    Prior efforts to identify a blood biomarker of brain injury have relied almost exclusively on proteins; however their low levels at early time points and poor correlation with injury severity have been limiting. Lipids, on the other hand, are the most abundant molecules in the brain and readily cross the blood-brain barrier. We previously showed that certain sphingolipid (SL) species are highly specific to the brain. Here we examined the feasibility of using SLs as biomarkers for acute brain injury. A rat model of traumatic brain injury (TBI) and a mouse model of stroke were used to identify candidate SL species though our mass-spectrometry based lipid profiling approach. Plasma samples collected after TBI in the rat showed large increases in many circulating SLs following injury, and larger lesions produced proportionately larger increases. Plasma samples collected 24 hours after stroke in mice similarly revealed a large increase in many SLs. We constructed an SL score (sum of the two SL species showing the largest relative increases in the mouse stroke model) and then evaluated the diagnostic value of this score on a small sample of patients (n = 14) who presented with acute stroke symptoms. Patients with true stroke had significantly higher SL scores than patients found to have non-stroke causes of their symptoms. The SL score correlated with the volume of ischemic brain tissue. These results demonstrate the feasibility of using lipid biomarkers to diagnose brain injury. Future studies will be needed to further characterize the diagnostic utility of this approach and to transition to an assay method applicable to clinical settings. PMID:26076478

  16. A Combination Therapy of 17β-Estradiol and Memantine Is More Neuroprotective Than Monotherapies in an Organotypic Brain Slice Culture Model of Traumatic Brain Injury.

    PubMed

    Lamprecht, Michael R; Morrison, Barclay

    2015-09-01

    Combination therapies are a promising therapeutic option for traumatic brain injury (TBI) owing to the clinical failure of monotherapy treatments, such as progesterone. Organotypic hippocampal slice cultures (OHSCs) from Sprague-Dawley rats were subjected to an in vitro TBI, and the neuroprotective effects of 17β-estradiol (E2) or memantine (MEM) monotherapies were quantified. Several combination treatments at different concentrations of both drugs were tested, with 100 pM of E2 and 10 μM of MEM statistically and significantly reducing cell death over either monotherapy when administered immediately after injury. This combination was also significantly neuroprotective when administered 1 h postinjury, possibly supporting future in vivo studies. Further, we hypothesized that this synergy could be the result of MEM blocking a potentially deleterious effect of E2, specifically E2 enhancement of N-methyl-D-aspartate (NMDA) currents. Evoked electrophysiological responses in OHSCs were potentiated by E2 treatment, whereas this potentiation was significantly reduced by MEM. In conclusion, a combination therapy of E2 and memantine was significantly more neuroprotective than both monotherapy treatments, and this synergy may be the result of MEM blocking a deleterious E2-mediated enhancement of NMDA receptors.

  17. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  18. FGF-1 Triggers Pannexin-1 Hemichannel Opening in Spinal Astrocytes of Rodents and Promotes Inflammatory Responses in Acute Spinal Cord Slices

    PubMed Central

    Yang, Guang; Bukauskas, Feliksas F.

    2016-01-01

    We show here that the growth factor FGF-1 is proinflammatory in the spinal cord and explore the inflammatory mechanisms. FGF-1 applied to rat spinal astrocytes in culture initiates calcium signaling and induces secretion of ATP that within minutes increases membrane permeability to ethidium (Etd+) and Ca2+ by activating P2X7 receptors (P2X7Rs) that open pannexin hemichannels (Px1 HCs) that release further ATP; by 7 h treatment, connexin 43 hemichannels (Cx43 HCs) are also opened. In acute mouse spinal cord slices ex vivo, we found that FGF-1 treatment for 1 h increases the percentage of GFAP-positive astrocytes that show enhanced Px1 HC-mediated Etd+ uptake. This response to FGF-1 was not observed in astrocytes in slices of cerebral cortex. FGF-1-induced dye uptake by astrocytes is prevented by BAPTA-AM or a phospholipase C (PLC) inhibitor. Furthermore, in spinal cord slices, P2X7R antagonists (BBG and A740003) and Px1 HC blockers (10Panx1 and carbenoxolone) prevent the increase in Etd+ uptake by astrocytes, whereas Gap19, a selective Cx43 HC blocker, has no effect on dye uptake at this time. Microglia are not required for the increase in Etd+ uptake by astrocytes induced by FGF-1, although they are activated by FGF-1 treatment. The morphological signs of microglia activation are inhibited by P2X7R antagonists and 10Panx1 and are associated with elevated levels of proinflammatory cytokines in cord slices treated with FGF-1. The FGF-1 initiated cascade may play an important role in spinal cord inflammation in vivo. SIGNIFICANCE STATEMENT We find that FGF-1 elevates [Ca2+]i in spinal astrocytes, which causes vesicular release of ATP and activation of P2X7Rs to trigger opening of Px1 HCs, which release further ATP. This regenerative response occurs in astrocyte cultures and in acute spinal cord slices. In the latter, FGF-1 application promotes the activation of microglia and increases the production of proinflammatory cytokines through mechanisms depending on P2X7

  19. [Arterial and venous brain reactivity in the acute period of brain concussion].

    PubMed

    Dicheskul, M L; Kulikov, V P

    2009-01-01

    Arterial and venous brain reactivity has been studied in 38 patients in the acute period of brain concussion (BC) and 32 healthy volunteers using transcranial color duplex scanning of brain vessels. The assessment of arterial inflow was conducted for the medial brain artery (MBA) and that of venous outflow - for the basal vein (BV) of Rosenthal. Hyperkinetic and orthostatic probes were used for assessment of cerebrovascular reactivity. BC was not accompanied by marked changes of cerebral resting hemodynamic parameters. The increase of peak blood flow velocity in MBA in the acute period which is characteristic of the brain hyperinfusion was found in 20% of patients and that in BA compensating the disturbed outflow along the surface brain system - in 25% of patients. In normalcy, the brain venous reactivity to hypercapnia was higher than arterial one and that to orthostasis corresponded to the intensity of arterial changes. The lack of quantitative differences in the reaction of arterial and venous blood flow to hypercapnia and the predominance of venous reactivity value in orthostasis in patients with BC suggest the disturbance of venous tone regulation in these patients.

  20. Biomarkers and acute brain injuries: interest and limits.

    PubMed

    Mrozek, Ségolène; Dumurgier, Julien; Citerio, Giuseppe; Mebazaa, Alexandre; Geeraerts, Thomas

    2014-04-24

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied.

  1. Biomarkers and acute brain injuries: interest and limits

    PubMed Central

    2014-01-01

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied. PMID:25029344

  2. A brain slice culture model of viral encephalitis reveals an innate CNS cytokine response profile and the therapeutic potential of caspase inhibition

    PubMed Central

    Dionne, Kalen R.; Leser, J. Smith; Lorenzen, Kristi A.; Beckham, J. David; Tyler, Kenneth L.

    2011-01-01

    Viral encephalitis is a significant cause of human morbidity and mortality in large part due to suboptimal diagnosis and treatment. Murine reovirus infection serves as a classic experimental model of viral encephalitis. Infection of neonatal mice with T3 reoviruses results in lethal encephalitis associated with neuronal infection, apoptosis, and CNS tissue injury. We have developed an ex vivo brain slice culture (BSC) system that recapitulates the basic pathological features and kinetics of viral replication seen in vivo. We utilize the BSC model to identify an innate, brain-tissue specific inflammatory cytokine response to reoviral infection, which is characterized by the release of IL6, CXCL10, RANTES, and murine IL8 analog (KC). Additionally, we demonstrate the potential utility of this system as a pharmaceutical screening platform by inhibiting reovirus-induced apoptosis and CNS tissue injury with the pan-caspase inhibitor, Q-VD-OPh. Cultured brain slices not only serve to model events occurring during viral encephalitis, but can also be utilized to investigate aspects of pathogenesis and therapy that are not experimentally accessible in vivo. PMID:21241693

  3. Central diabetes insipidus in children with acute brain insult.

    PubMed

    Yang, Yun-Hsuan; Lin, Jainn-Jim; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong; Hung, Po-Cheng; Chou, Min-Liang; Hsieh, Meng-Ying; Lin, Kuang-Lin

    2011-12-01

    Central diabetes insipidus occurs in patients with overwhelming central nervous system injuries, and may be associated with brain death. The clinical picture of children with acquired central diabetes insipidus after acute brain insult is seldom reported. We retrospectively reviewed cases dating from January 2000-February 2008 at a tertiary pediatric intensive care unit. Fifty-four patients (28 girls, 26 boys), aged 3 months to 18 years, were enrolled. Etiologies included severe central nervous system infection (35.2%), hypoxic-ischemic events (31.5%), head injury (18.5%), and vascular lesions (14.8%). In 39 (72.2%) patients, diabetes insipidus was diagnosed during the first 2 days after acute central nervous system injury, and 40 (74.0%) developed maximum serum sodium concentrations of >160 mEq/L. In 16, sequential cerebral salt wasting syndrome developed after their initial diabetes insipidus presentation. Overall mortality at 2 months after admission was 77.8%. Our results demonstrate that patients who develop central diabetes insipidus after acute central nervous system injury manifest high mortality. Development of central diabetes insipidus within the first 2 days and a maximum plasma sodium >160 mEq/L were significant predictors of outcomes.

  4. Differential responses of circadian Per2 rhythms in cultured slices of discrete brain areas from rats showing internal desynchronisation by methamphetamine.

    PubMed

    Natsubori, Akiyo; Honma, Ken-Ichi; Honma, Sato

    2013-08-01

    Chronic methamphetamine (MAP) treatment desynchronises the behavior rhythms of rats from light-dark cycles. Our previous study (Masubuchi et al., 2000) demonstrated the phase reversal of circadian rhythms in clock gene expression in several brain areas of rats treated with MAP. However, for technical reasons, it was not clear whether the phase shifts were the consequence of phase-shifted behavior rhythms or reflected phase shifts of extra-suprachiasmatic nucleus (SCN) oscillators in these areas. In the present study, circadian gene expression rhythms in discrete brain areas were continuously monitored in slice cultures of MAP-treated rats. Methamphetamine was given to rats carrying a Period2-dLuciferase reporter system via the drinking water for more than 2 weeks. When behavior rhythms were completely phase reversed, the brain was sampled for slice cultures and circadian bioluminescence rhythms were measured for 5 days in the SCN and four areas of the dopaminergic system, the olfactory bulb, caudate putamen, parietal cortex and substantia nigra. The circadian rhythms in the SCN and caudate putamen were not significantly phase shifted, whereas those in the parietal cortex and substantia nigra showed significant phase-delay shifts of 6-8 h and that in the olfactory bulb showed phase-advance shifts of ca. 8 h. Neither the period nor the amplitude of the circadian rhythm was changed by MAP treatment. These findings indicate that the extra-SCN oscillators in several brain areas are desynchronised from the SCN circadian pacemaker by MAP treatment in parallel with the desynchronisation of behavior rhythms in rats. As the direction and extent of phase shifts of circadian rhythms were different among the areas examined, the brain extra-SCN oscillators responded differentially to MAP.

  5. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  6. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  7. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome.

    PubMed

    Betjes, Michiel G.H.

    2002-02-01

    Hyponatremia in acute brain disease is a common occurrence, especially after an aneurysmal subarachnoid hemorrhage. Originally, excessive natriuresis, called cerebral salt wasting, and later the syndrome of inappropriate antidiuretic hormone secretion (SIADH), were considered to be the causes of hyponatremia. In recent years, it has become clear that most of these patients are volume-depleted and have a negative sodium balance, consistent with the original description of cerebral salt wasting. Elevated plasma concentrations of atrial or brain natriuretic peptide have been identified as the putative natriuretic factor. Hyponatremia and volume depletion may aggravate neurological symptoms, and timely treatment with adequate replacement of water and NaCl is essential. The use of fludrocortisone to increase sodium reabsorption by the renal tubules may be an alternative approach.

  8. Electrophysiological characterization of potent agonists and antagonists at pre- and postsynaptic GABAB receptors on neurones in rat brain slices.

    PubMed

    Seabrook, G R; Howson, W; Lacey, M G

    1990-12-01

    1. Intracellular recordings were made from neurons in striatum (caudate-putamen) and substantia nigra pars compacta in rat brain slices. Three GABAB agonists, baclofen, 3-aminopropylphosphinic acid (3-APPA) and 3-aminopropyl(methyl)phosphinic acid (SK&F 97541), depressed excitatory postsynaptic potentials (e.p.s.ps) mediated by glutamate in the striatum, and hyperpolarized neurones in the substantia nigra. The ability of 3-aminopropyl(diethyoxymethyl)phosphinic acid (CGP 35348), 3-aminopropyl (hexyl)phosphinic acid (3-APHPA) and phaclofen to antagonize these responses was assessed. 2. Striatal e.p.s.ps, studied in the presence of bicuculline (30 microns), were reduced in amplitude by 92% with 6,7-dinitroquinoxaline-2,3-dione (DNQX; 30 microns). These e.p.s.ps were depressed by up to 95% by SK&F 97541 and baclofen with EC50s of 0.092 microns and 1.25 microns respectively. The maximal effect of 3-APPA was 67% with an EC50 of 0.83 microns. Agonist concentration-effect data fitted a single-site logistic model. GABAB agonists were without effect on striatal neurone membrane potential, input resistance or depolarizations induced by applied glutamate. 3. The depression of striatal e.p.s.ps by SK&F 97541 was reversibly antagonized by CGP 35348, 3-APHPA and phaclofen with estimated equilibrium dissociation constants (KB) of 11.2 +/- 1.7 microns (n = 4), 13.3 +/- 0.4 microM (n = 3) and 405 +/- 43 microM (n = 3) respectively. CGP 35348 and 3-APHPA appeared to act competitively (Schild plot slopes of 0.99 and 1.01 respectively). 4. Nigral neurones were hyperpolarized by up to 25 mV by SK&F 97541 and baclofen with EC50s of 0.15 microns and 3.6 microns respectively. The maximum hyperpolarization by 3-APPA was only 84% that of the other agonists, with an EC50 of 9.0 microM. Agonist concentration-effect data fitted a single-site logistic model. 5. The SK&F 97541-induced hyperpolarization was reversibly antagonized by CGP 35348, 3-APHPA and phaclofen with estimated KBS of 17.6 + 4

  9. A microscopic setup for combined, and time-coordinated electrophysiological and confocal fluorescence microscopic experiments on neurons in living brain slices

    NASA Astrophysics Data System (ADS)

    Helm, P. J.

    1996-02-01

    In this paper, a microscopic system for cell physiological research is presented. The setup which is to a large extent based on commercially available products was designed to establish a platform for time-coordinated electrophysiological and fluorescence optical compound experiments on living neurons in brain slices. Instruments for infrared differential interference contrast video microscopy (IRDICM), confocal scanning laser microscopy (CSLM), and for patch clamp studies have been assembled into one unit. Using the IRDICM equipment, a neuron can be patched somatically and dendritically. Loading the neuron with a Ca2+ indicating dye substance can be examined epifluorescence optically using the Hg lamp or Xe lamp of the microscope. A stimulus initiating the propagation of an action potential through a dendrite can be synchronized to the electronic control unit of the CSLM, and changes in the concentration of Ca2+ in the dendrite can be recorded in a time-coordinated way. The setup has been used successfully in order to study in vitro the dynamics of intracellular Ca2+ in the dendritic system of living neurons in brain slices.

  10. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. PMID:27369091

  11. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress.

  12. Induction of acute phase gene expression by brain irradiation

    SciTech Connect

    Hong, Ji-Hong |; Sun, Ji-Rong; Withers, H.R.

    1995-10-15

    To investigate the in vivo acute phase molecular response of the brain to ionizing radiation, C3Hf/Sed/Kam mice were given midbrain or whole-body irradiation. Cerebral expression of interleukins (IL-1{alpha}, IL-1{beta}, IL-2, IL-3, IL-4, IL-5, IL-6), interferon (IFN-{gamma}), tumor necrosis factors (TNF-{alpha} and TNF-{beta}), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthetase (iNOS), von Willebrand factor (vWF), {alpha}1-antichymotrypsin (EB22/5.3), and glial fibrillary acidic protein (GFAP) was measured at various times after various radiation doses by ribonuclease (RNase) protection assay. The effects of dexamethasone or pentoxifylline treatment of mice on radiation-induced gene expression were also examined. Levels of TNF-{alpha}, IL-1{beta}, ICAM-1, EB22/5.3, and to a lesser extent IL-1{alpha} and GFAP, messenger RNA were increased in the brain after irradiation, whether the dose was delivered to the whole body or only to the midbrain. Responses were radiation dose dependent, but were not found below 7 Gy; the exception being ICAM-1, which was increased by doses as low as 2 Gy. Most responses were rapid, peaking within 4-8 h, but antichymotrypsin and GFAP responses were delayed and still elevated at 24 h, by which time the others had subsided. Pretreatment of mice with dexamethasone or pentoxifylline suppressed radiation-induced gene expression, either partially or completely. Dexamethasone was more inhibitory than pentoxifylline at the doses chosen. The initial response of the brain to irradiation involves expression of inflammatory gene products, which are probably responsible for clinically observed early symptoms of brain radiotherapy. This mechanism explains the beneficial effects of the clinical use of steroids in such circumstances. 64 refs., 4 figs.

  13. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography.

    PubMed

    Hayashi, Takana Yamakawa; Matsuda, Izuru; Hagiwara, Kazuchika; Takayanagi, Tomoko; Hagiwara, Akifumi

    2016-09-01

    We report a case of splenic infarction in a patient with sickle cell traits (SCT), focusing on the computed tomography (CT) findings. The patient was an African-American man in his twenties with no past medical history who experienced sudden left upper quadrant pain while climbing a mountain (over 3000 m above sea level). Dynamic contrast-enhanced CT revealed massive non-segmental splenic infarction accompanied with nodule-like preserved splenic tissue. The region of splenic infarction did not coincide with the arterial vascular territory and differed from the features of infarction caused by large arterial embolism. In addition, thrombotic occlusion of the distal splenic vein was depicted on plain and contrast-enhanced thin-slice CT images. Early-phase contrast-enhanced images also showed inhomogeneous enhancement of the hepatic parenchyma. The patient's symptoms improved with conservative therapy. A hemoglobin electrophoresis test confirmed the diagnosis of SCT. SCT is usually asymptomatic, but hypoxic environments may induce acute splenic syndrome, which is commonly manifested as splenic infarction. We observed splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement in addition to a huge splenic infarction in our patient. To the best of our knowledge, this is the first report describing the specific imaging findings, particularly splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement, of acute splenic syndrome in a patient with previously undiagnosed SCT. These findings demonstrate the pathophysiology of SCT, and may help with the diagnosis of this disease. PMID:27251735

  14. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography.

    PubMed

    Hayashi, Takana Yamakawa; Matsuda, Izuru; Hagiwara, Kazuchika; Takayanagi, Tomoko; Hagiwara, Akifumi

    2016-09-01

    We report a case of splenic infarction in a patient with sickle cell traits (SCT), focusing on the computed tomography (CT) findings. The patient was an African-American man in his twenties with no past medical history who experienced sudden left upper quadrant pain while climbing a mountain (over 3000 m above sea level). Dynamic contrast-enhanced CT revealed massive non-segmental splenic infarction accompanied with nodule-like preserved splenic tissue. The region of splenic infarction did not coincide with the arterial vascular territory and differed from the features of infarction caused by large arterial embolism. In addition, thrombotic occlusion of the distal splenic vein was depicted on plain and contrast-enhanced thin-slice CT images. Early-phase contrast-enhanced images also showed inhomogeneous enhancement of the hepatic parenchyma. The patient's symptoms improved with conservative therapy. A hemoglobin electrophoresis test confirmed the diagnosis of SCT. SCT is usually asymptomatic, but hypoxic environments may induce acute splenic syndrome, which is commonly manifested as splenic infarction. We observed splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement in addition to a huge splenic infarction in our patient. To the best of our knowledge, this is the first report describing the specific imaging findings, particularly splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement, of acute splenic syndrome in a patient with previously undiagnosed SCT. These findings demonstrate the pathophysiology of SCT, and may help with the diagnosis of this disease.

  15. Waiver of consent in studies of acute brain injury.

    PubMed

    Clifton, Guy L; Knudson, Paula; McDonald, Marilyn

    2002-10-01

    A multicenter trial of hypothermia in patients with acute brain injury, designed to accrue 140 patients per year and randomizing in less than 6 h from injury, enrolled 392 patients. The design was to achieve 33 degrees C within 8 h after injury. For the first 9 months of the trial, the only consent mechanism permitted by federal regulations was prospective, informed consent. In the subsequent 33 months, after a change in federal regulations, waiver of consent could be used when family could not be located. Waiver of consent was used in 62% of patients enrolled. In the first 9 months of the trial, accrual was 65 patients. In the subsequent 3 years, an average yearly accrual was 127 patients. In the first 9 months, time from injury to randomization was 4.5 +/- 1.2 h; time to achievement of target temperature was 11.7 +/- 2.6 h. In years when waiver of consent was permitted, randomization time was 4.1 +/- 1.1 h, and time to target temperature was 7.9 +/- 2.7 h. For all years of the study, waiver of consent was used for 53% of minorities, 47% of unskilled workers, 33% of nonminorities, and 29% of skilled or professional workers. Minorities were underrepresented by 30% in the first 9 months of the study. We conclude that it is impracticable and unjust to perform studies of acute brain injury without use of waiver of consent when the treatment window is less than 6 h. PMID:12427322

  16. Acute Gonadotroph and Somatotroph Hormonal Suppression after Traumatic Brain Injury

    PubMed Central

    Wagner, Justin; Dusick, Joshua R.; McArthur, David L.; Cohan, Pejman; Wang, Christina; Swerdloff, Ronald; Boscardin, W. John

    2010-01-01

    Abstract Hormonal dysfunction is a known consequence of moderate and severe traumatic brain injury (TBI). In this study we determined the incidence, time course, and clinical correlates of acute post-TBI gonadotroph and somatotroph dysfunction. Patients had daily measurement of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, estradiol, growth hormone, and insulin-like growth factor-1 (IGF-1) for up to 10 days post-injury. Values below the fifth percentile of a healthy cohort were considered abnormal, as were non-measurable growth hormone (GH) values. Outcome measures were frequency and time course of hormonal suppression, injury characteristics, and Glasgow Outcome Scale (GOS) score. The cohort consisted of 101 patients (82% males; mean age 35 years; Glasgow Coma Scale [GCS] score ≤8 in 87%). In men, 100% had at least one low testosterone value, and 93% of all values were low; in premenopausal women, 43% had at least one low estradiol value, and 39% of all values were low. Non-measurable GH levels occurred in 38% of patients, while low IGF-1 levels were observed in 77% of patients, but tended to normalize within 10 days. Multivariate analysis revealed associations of younger age with low FSH and low IGF-1, acute anemia with low IGF-1, and older age and higher body mass index (BMI) with low GH. Hormonal suppression was not predictive of GOS score. These results indicate that within 10 days of complicated mild, moderate, and severe TBI, testosterone suppression occurs in all men and estrogen suppression occurs in over 40% of women. Transient somatotroph suppression occurs in over 75% of patients. Although this acute neuroendocrine dysfunction may not be TBI-specific, low gonadal steroids, IGF-1, and GH may be important given their putative neuroprotective functions. PMID:20214417

  17. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    NASA Astrophysics Data System (ADS)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  18. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    PubMed Central

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries. PMID:27351915

  19. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries.

    PubMed

    Mann, Aman P; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J; Ruoslahti, Erkki

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries. PMID:27351915

  20. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    PubMed

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve.

  1. Regional variations in protein phosphorylating activity in rat brain studied in micro-slices labeled with ( sup 32 P)phosphate

    SciTech Connect

    Rodnight, R.; Leal, R. )

    1990-01-01

    Regional variations in protein phosphorylating activity in the rat brain were studied. Micro-slices (1 mm diameter) were prepared from 19 brain areas, phosphoproteins labeled by incubation with ({sup 32}P)phosphate, and the tissue analyzed by nonequilibrium two-dimensional electrophoresis and autoradiography. Attention was focused on three phosphorylating systems that showed consistent variation in activity. (1) A system that phosphorylates a substrate of 47 kDa (ppH-47) whose activity was highest in the hippocampus. The next highest activity of this system was observed in the globus pallidus, followed by the periventricular gray matter of the aqueduct, lateral septum, cerebellar cortex, entorhinal cortex, hypothalamus, mammillary nuclei, amygdala, and substantia nigra. Activity was low or undetectable in the cerebral cortex, neostriatum, and the colliculi. (2) A system that phosphorylates a substrate of 50 kDa (ppC-50) whose activity was highest in the caudate nucleus. The activity of this system was roughly inversely correlated with that of the ppH-47 system. (3) The protein kinase C system that phosphorylates an 82- to 87-kDa substrate known as MARCKS. The highest activity of this system was observed in the cerebellar cortex, followed by the hypothalamus, mammillary nuclei, periventricular gray matter of the aqueduct, and the superior colliculus. Activity of this system was relatively low in several regions of the cerebral cortex, the neostriatum, and the inferior colliculus.

  2. Validation of optical voltage reporting by the genetically encoded voltage indicator VSFP-Butterfly from cortical layer 2/3 pyramidal neurons in mouse brain slices

    PubMed Central

    Empson, Ruth M; Goulton, Chelsea; Scholtz, David; Gallero-Salas, Yasir; Zeng, Hongkui; Knöpfel, Thomas

    2015-01-01

    Understanding how behavior emerges from brain electrical activity is one of the ultimate goals of neuroscience. To achieve this goal we require methods for large-scale recording of the electrical activity of specific neuronal circuits. A very promising approach is to use optical reporting of membrane voltage transients, particularly if the voltage reporter is genetically targeted to specific neuronal populations. Targeting in this way allows population signals to be recorded and interpreted without blindness to neuronal diversity. Here, we evaluated the voltage-sensitive fluorescent protein, VSFP Butterfly 2.1, a genetically encoded voltage indicator (GEVI), for monitoring electrical activity of layer 2/3 cortical pyramidal neurons in mouse brain slices. Standard widefield fluorescence and two-photon imaging revealed robust, high signal-to-noise ratio read-outs of membrane voltage transients that are predominantly synaptic in nature and can be resolved as discrete areas of synaptically connected layer 2/3 neurons. We find that targeted expression of this GEVI in the cortex provides a flexible and promising tool for the analysis of L2/3 cortical network function. PMID:26229003

  3. The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging.

    PubMed

    Stebbings, Kevin A; Choi, Hyun W; Ravindra, Aditya; Llano, Daniel Adolfo

    2016-06-01

    The relationships between oxidative stress in the hippocampus and other aging-related changes such as hearing loss, cortical thinning, or changes in body weight are not yet known. We measured the redox ratio in a number of neural structures in brain slices taken from young and aged mice. Hearing thresholds, body weight, and cortical thickness were also measured. We found striking aging-related increases in the redox ratio that were isolated to the stratum pyramidale, while such changes were not observed in thalamus or cortex. These changes were driven primarily by changes in flavin adenine dinucleotide, not nicotinamide adenine dinucleotide hydride. Multiple regression analysis suggested that neither hearing threshold nor cortical thickness independently contributed to this change in hippocampal redox ratio. However, body weight did independently contribute to predicted changes in hippocampal redox ratio. These data suggest that aging-related changes in hippocampal redox ratio are not a general reflection of overall brain oxidative state but are highly localized, while still being related to at least one marker of late aging, weight loss at the end of life.

  4. Evaluation of Mitochondrial Function in the CNS of Rodent Models of Alzheimer's Disease - High Resolution Respirometry Applied to Acute Hippocampal Slices.

    PubMed

    Dias, Candida; Barbosa, Rui M; Laranjinha, Joao; Ledo, Ana

    2014-10-01

    Alzheimer's disease (AD) is a multifactorial disease characterized by extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles. These hallmark alterations are preceded by synaptic deterioration, changes in neuromolecular plasticity phenomena, mitochondrial dysfunction, increase in oxidative damage to cellular constituents and decreased energy metabolism. The hippocampus is a structure of the temporal medial lobe implicated in specific forms of memory processes. It is also one of the first and most affected regions of the CNS in AD. Here we present a novel approach to the study if mitochondrial function/disfunction in 2 rodent models of AD: an acute rat model obtained by intracerebroventricular injection of the toxin streptozotocin (STZ) and a progressive triple transgenic mouse model (3TgAD) harboring PS1M146V, APPSwe, and tauP301L transgenes. Mitochondrial dysfunction has classically been assessed in such models by isolating mitochondria, synaptossoms or working with cell cultures. Anyone of these approaches destroys the intricate intercellular connectivity and cytoarchitecture of neuronal tissue. We used acute hippocampal slices obtained from the 2 models of AD and evaluated changes in mitochondrial function as a function of disease and/or age. Mitochondrial stress test were performed on the high resolution respirometry (Oroboros 2K Oxymeter). Upon analysis of oxygen consumption rates (OCR) we observed significant decreases in basal OCR, maximal respiratory capacity, ATP turnover and a tendency for decrease in sparing capacity in the STZ rat model compared to shame injected animals. Regarding the 3TgAD model we observed an age-dependent decrease in all parameters evaluated in the mitochondrial stress test, in both 3TgAD and NTg animals. However, although a tendency towards decreased OCR was observed when comparing 3TgAD and age-matched NTg animals, no statistically significant difference was observed. PMID:26461355

  5. REGULATION OF BRAIN-DERIVED NEUROTROPHIC FACTOR MESSENGER RNA LEVELS IN AVIAN HYPOTHALAMIC SLICE CULTURES. (R825294)

    EPA Science Inventory

    Mechanisms regulating the expression of brain-derived neurotrophic factor, a member of the neurotrophin family, have been extensively studied in the rat cerebral cortex, hippocampus and cerebellum. In contrast, little is known regarding the regulation of this growth factor in ...

  6. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  7. Lumican as a novel potential clinical indicator for acute aortic dissection: A comparative study, based on multi-slice computed tomography angiography

    PubMed Central

    GU, GUORONG; WAN, FANG; XUE, YUAN; CHENG, WEIZHONG; ZHENG, HAIYIN; ZHAO, YUN; FAN, FAN; HAN, YI; TONG, CHAOYANG; YAO, CHENLING

    2016-01-01

    The aim of the present study was to investigate the association between serum lumican levels and acute aortic dissection (AAD) severity. A total of 82 patients with chest or back pain and 30 healthy volunteers were recruited. Among the patients, there were 70 cases of AAD and 12 cases of intramural hematoma (IMH). AAD severity was determined using multi-slice computed tomography angiography (MSCTA). Serum was collected from the patients upon admission, and lumican levels were detected using an enzyme-linked immunosorbent assay. In addition, correlation analyses were conducted between lumican levels and AAD severity by designing a ‘SCORE X, RANGE Y’ system to measure the number of affected vital arteries and vertical range of false lumen, based on the MSCTA. Lumican levels differed significantly among the AAD patients (2.32±4.29 ng/ml), IMH patients (0.72±0.32 ng/ml) and healthy volunteers (0.85±0.53 ng/ml; P=0.003). In the AAD patients presenting within 12–72 h of symptom onset, the Spearman's rho correlation coefficient between lumican and SCORE or RANGE was 0.373 (P=0.046) and 0.468 (P=0.010), respectively. The present results suggest that lumican may be a potential marker for aiding the diagnosis and screening for AAD, and may be used to predict the severity of AAD. PMID:26998013

  8. Stimulation of brain muscarinic acetylcholine receptors acutely reverses radiogenic hypodipsia

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.

    1986-03-01

    A sufficiently large dose of ionizing radiation produces changes in water consumption. However, the direction, durations, and physiological substrates of these alterations remain in question. Here we report a 5-d hypodipsia in rats exposed to 600 rads /sup 60/Co but a more transient, albeit larger, reduction in drinking after 1000 /sup 60/Co. Brain cholinergic neurons have been implicated as mediators of thirst. Therefore, we explored the role of hypothalamic muscarinic receptors in the production of radiation-induced hypodipsia. This was accomplished through the intrahypothalamic injection of carbachol (a muscarinic agonist) or atropine (a muscarinic antagonist) in irradiated rats. Intracranial carbachol produced acute reversal of radiogenic hypodipsia while atropine potentiated the hypodipsia. These post-irradiation drug-induced behaviors were similar to those observed after the same drug treatments before irradiation. Since cholinergic neuronal functions persist and are labile (can be pharmacologically stimulated and blocked) after irradiation, this suggests that other neuronal systems and/or neurochemicals may be more prominently involved in radiogenic hypodipsia.

  9. Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain and kidney.

    PubMed

    Lohr, J W; McReynolds, J; Grimaldi, T; Acara, M

    1988-01-01

    In animal models of hypernatremia, increases in brain electrolyte content account for the entire increase in osmolality in acute but not chronic hypernatremia, suggesting that there is generation of additional intracellular solutes ("idiogenic osmoles") in chronic hypernatremic states. In the present study, the concentration of the polyols myoinositol and sorbitol and water content were determined in the brain and kidneys of rats made acutely (2 hours) and chronically (72 hours) hypernatremic by intraperitoneal injection of NaCl and water restriction. Both the brain and the kidney responded to chronic hypernatremia with increased levels of myoinositol. Sorbitol levels increased in the kidney in response to both acute and chronic hypernatremia. Water content dropped in acute hypernatremia, but remained unchanged during chronic hyperosmolar challenge. We conclude that the polyols, myoinositol and sorbitol, may play a significant role in cellular osmoregulation in brain and kidney during chronic hypernatremia in the rat.

  10. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts.

    PubMed

    Todd, Nick; Moeller, Steen; Auerbach, Edward J; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5mm isotropic whole-brain acquisitions at 3T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2× (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2×GRAPPA 2, MB 4×GRAPPA 2, and MB 6×GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2×GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4

  11. Very Early Administration of Progesterone for Acute Traumatic Brain Injury

    PubMed Central

    Wright, David W.; Yeatts, Sharon D.; Silbergleit, Robert; Palesch, Yuko Y.; Hertzberg, Vicki S.; Frankel, Michael; Goldstein, Felicia C.; Caveney, Angela F.; Howlett-Smith, Harriet; Bengelink, Erin M.; Manley, Geoffrey T.; Merck, Lisa H.; Janis, L. Scott; Barsan, William G.

    2015-01-01

    BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Progesterone has been shown to improve neurologic outcome in multiple experimental models and two early-phase trials involving patients with TBI. METHODS We conducted a double-blind, multicenter clinical trial in which patients with severe, moderate-to-severe, or moderate acute TBI (Glasgow Coma Scale score of 4 to 12, on a scale from 3 to 15, with lower scores indicating a lower level of consciousness) were randomly assigned to intravenous progesterone or placebo, with the study treatment initiated within 4 hours after injury and administered for a total of 96 hours. Efficacy was defined as an increase of 10 percentage points in the proportion of patients with a favorable outcome, as determined with the use of the stratified dichotomy of the Extended Glasgow Outcome Scale score at 6 months after injury. Secondary outcomes included mortality and the Disability Rating Scale score. RESULTS A total of 882 of the planned sample of 1140 patients underwent randomization before the trial was stopped for futility with respect to the primary outcome. The study groups were similar with regard to baseline characteristics; the median age of the patients was 35 years, 73.7% were men, 15.2% were black, and the mean Injury Severity Score was 24.4 (on a scale from 0 to 75, with higher scores indicating greater severity). The most frequent mechanism of injury was a motor vehicle accident. There was no significant difference between the progesterone group and the placebo group in the proportion of patients with a favorable outcome (relative benefit of progesterone, 0.95; 95% confidence interval [CI], 0.85 to 1.06; P = 0.35). Phlebitis or thrombophlebitis was more frequent in the progesterone group than in the placebo group (relative risk, 3.03; CI, 1.96 to 4.66). There were no significant differences in the other prespecified safety outcomes. CONCLUSIONS This clinical trial did not show a

  12. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  13. Protection of the blood-brain barrier by hypercapnia during acute hypertension

    SciTech Connect

    Baumbach, G.L.; Mayhan, W.G.; Heistad, D.D.

    1986-08-01

    The purpose of this study was to examine effects of hypercapnia on susceptibility of the blood-brain barrier to disruption during acute hypertension. Two methods were used to test the hypothesis that cerebral vasodilation during hypercapnia increases disruption of the blood-brain barrier. First, permeability of the blood-brain barrier was measured in anesthetized cats with SVI-labeled serum albumin. Severe hypertension markedly increased permeability of the blood-brain barrier during normocapnia, but not during hypercapnia. The protective effect of hypercapnia was not dependent on sympathetic nerves. Second, in anesthetized rats, permeability of the barrier was quantitated by clearance of fluorescent dextran. Disruption of the blood-brain barrier during hypertension was decreased by hypercapnia. Because disruption of the blood-brain barrier occurred primarily in pial venules, the authors also measured pial venular diameter and pressure. Acute hypertension increased pial venular pressure and diameter in normocapnic rats. Hypercapnia alone increased pial venular pressure and pial venular diameter, and acute hypertension during hypercapnia further increased venular pressure. The magnitude of increase in pial venular pressure during acute hypertension was significantly less in hypercapnic than in normocapnic rats. They conclude that hypercapnia protects the blood-brain barrier. Possible mechanisms of this effect include attenuation of the incremental increase in pial venular pressure by hypercapnia or a direct effect on the blood-brain barrier not related to venous pressure.

  14. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  15. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    PubMed

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; p<0.0001) than for Global R1 (median difference: 0.154 s-1; p = 0.027). Both Lipids R1 and Global R1 values in the unaffected contralateral brain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects. PMID:26267901

  16. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor

    PubMed Central

    Ghitani, Nima; Bayguinov, Peter O.; Ma, Yihe

    2014-01-01

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  17. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.

    PubMed

    Ghitani, Nima; Bayguinov, Peter O; Ma, Yihe; Jackson, Meyer B

    2015-02-15

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  18. Acute stress differentially affects aromatase activity in specific brain nuclei of adult male and female quail.

    PubMed

    Dickens, Molly J; Cornil, Charlotte A; Balthazart, Jacques

    2011-11-01

    The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress-induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15 min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction.

  19. Stimulant mechanisms of cathinones - effects of mephedrone and other cathinones on basal and electrically evoked dopamine efflux in rat accumbens brain slices.

    PubMed

    Opacka-Juffry, Jolanta; Pinnell, Thomas; Patel, Nisha; Bevan, Melissa; Meintel, Meghan; Davidson, Colin

    2014-10-01

    Mephedrone, an erstwhile "legal high", and some non-abused cathinones (ethcathinone, diethylpropion and bupropion) were tested for stimulant effects in vitro, through assessing their abilities to increase basal and electrically evoked dopamine efflux in rat accumbens brain slices, and compared with cocaine and amphetamine. We also tested mephedrone against cocaine in a dopamine transporter binding study. Dopamine efflux was electrically evoked and recorded using voltammetry in the rat accumbens core. We constructed concentration response curves for these cathinones for effects on basal dopamine levels; peak efflux after local electrical stimulation and the time-constant of the dopamine decay phase, an index of dopamine reuptake. We also examined competition between mephedrone or cocaine and [(125)I]RTI121 at the dopamine transporter. Mephedrone was less potent than cocaine at displacing [(125)I]RTI121. Mephedrone and amphetamine increased basal levels of dopamine in the absence of electrical stimulation. Cocaine, bupropion, diethylpropion and ethcathinone all increased the peak dopamine efflux after electrical stimulation and slowed dopamine reuptake. Cocaine was more potent than bupropion and ethcathinone, while diethylpropion was least potent. Notably, cocaine had the fastest onset of action. These data suggest that, with respect to dopamine efflux, mephedrone is more similar to amphetamine than cocaine. These findings also show that cocaine was more potent than bupropion and ethcathinone while diethylpropion was least potent. Mephedrone's binding to the dopamine transporter is consistent with stimulant effects but its potency was lower than that of cocaine. These findings confirm and further characterize stimulant properties of mephedrone and other cathinones in adolescent rat brain.

  20. The effects of acute alcohol administration on the human brain: insights from neuroimaging.

    PubMed

    Bjork, James M; Gilman, Jodi M

    2014-09-01

    Over the last quarter century, researchers have peered into the living human brain to develop and refine mechanistic accounts of alcohol-induced behavior, as well as neurobiological mechanisms for development and maintenance of addiction. These in vivo neuroimaging studies generally show that acute alcohol administration affects brain structures implicated in motivation and behavior control, and that chronic intoxication is correlated with structural and functional abnormalities in these same structures, where some elements of these decrements normalize with extended sobriety. In this review, we will summarize recent findings about acute human brain responses to alcohol using neuroimaging techniques, and how they might explain behavioral effects of alcohol intoxication. We then briefly address how chronic alcohol intoxication (as inferred from cross-sectional differences between various drinking populations and controls) may yield individual brain differences between drinking subjects that may confound interpretation of acute alcohol administration effects. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.

  1. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.

    PubMed

    Morris, P G; Feeney, J; Cox, D W; Bachelard, H S

    1985-05-01

    The technique of 31P saturation-transfer n.m.r. was used to determine the forward and the reverse rate constants of creatine phosphotransferase in superfused guinea-pig cerebral tissues in vitro. The calculated forward rate constant of 0.22 +/- 0.03s-1 compared well with a previously reported value for rat brain in vivo [Shoubridge, Briggs & Radda (1982) FEBS Lett. 140, 288-292]. The reverse rate constant was found to be 0.55 +/- 0.10s-1. 3. By using concentrations of ATP and phosphocreatine estimated previously for this superfused preparation [Cox, Morris, Feeney & Bachelard (1983) Biochem. J. 212, 365-370], forward and reverse flux rates were calculated to be 0.68 and 0.72 mumol X s-1 X g-1 respectively. The concordance of forward and reverse fluxes contrasts with the situation observed in vitro in other tissues, and suggests that the creatine phosphotransferase reaction is at equilibrium under the conditions used here. 4. Lowering the concentration of glucose in the superfusing medium from 10mM to 0.5mM had no significant effect on phosphocreatine concentration or on the forward (ATP-generating) flux through creatine phosphotransferase. The results indicate that a normal phosphocreatine content in the presence of lowered glucose availability is reflected by an unchanged turnover rate.

  2. A Brain Signature to Differentiate Acute and Chronic Pain in Rats

    PubMed Central

    Guo, Yifei; Wang, Yuzheng; Sun, Yabin; Wang, Jin-Yan

    2016-01-01

    The transition from acute pain to chronic pain entails considerable changes of patients at multiple levels of the nervous system and in psychological states. An accurate differentiation between acute and chronic pain is essential in pain management as it may help optimize analgesic treatments according to the pain state of patients. Given that acute and chronic pain could modulate brain states in different ways and that brain states could greatly shape the neural processing of external inputs, we hypothesized that acute and chronic pain would show differential effects on cortical responses to non-nociceptive sensory information. Here by analyzing auditory-evoked potentials (AEPs) to pure tones in rats with acute or chronic pain, we found opposite influences of acute and chronic pain on cortical responses to auditory inputs. In particular, compared to no-pain controls, the N100 wave of rat AEPs was significantly enhanced in rats with acute pain but significantly reduced in rats with chronic pain, indicating that acute pain facilitated cortical processing of auditory information while chronic pain exerted an inhibitory effect. These findings could be justified by the fact that individuals suffering from acute or chronic pain would have different vigilance states, i.e., the vigilance level to external sensory stimuli would be increased with acute pain, but decreased with chronic pain. Therefore, this auditory response holds promise of being a brain signature to differentiate acute and chronic pain. Instead of investigating the pain system per se, the study of pain-induced influences on cortical processing of non-nocicpetive sensory information might represent a potential strategy to monitor the progress of pain chronification in clinical applications. PMID:27199727

  3. Effect of acute and chronic cholinesterase inhibition on biogenic amines in rat brain.

    PubMed

    Soininen, H; Unni, L; Shillcutt, S

    1990-12-01

    The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied and increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindoleacetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems. PMID:1711162

  4. Altered Cerebellar White Matter Integrity in Patients with Mild Traumatic Brain Injury in the Acute Stage

    PubMed Central

    Wang, Zhongqiu; Wu, Wenzhong; Liu, Yongkang; Wang, Tianyao; Chen, Xiao; Zhang, Jianhua; Zhou, Guoxing; Chen, Rong

    2016-01-01

    Background and Purpose Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts. Materials and Methods This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients. Results Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037). Conclusion Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing. PMID:26967320

  5. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T.

    PubMed

    Wang, Yi; Moeller, Steen; Li, Xiufeng; Vu, An T; Krasileva, Kate; Ugurbil, Kamil; Yacoub, Essa; Wang, Danny J J

    2015-06-01

    Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label and improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 T. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76 ± 0.10 and 0.74 ± 0.11 at 7 T and 0.70 ± 0.05 and 0.65 ± 0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84 ± 0.09 and 0.79 ± 0.10 for MB factor of 3 and 5, respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields.

  6. Simultaneous Multi-slice Turbo-FLASH Imaging with CAIPIRINHA for Whole Brain Distortion-Free Pseudo-Continuous Arterial Spin Labeling at 3 and 7T

    PubMed Central

    Wang, Yi; Moeller, Steen; Li, Xiufeng; Vu, An T.; Krasileva, Kate; Ugurbil, Kamil; Yacoub, Essa; Wang, Danny JJ

    2015-01-01

    Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label, improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 Tesla. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76±0.10 and 0.74±0.11 at 7T, 0.70±0.05 and 0.65±0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84±0.09 and 0.79±0.10 for MB factor of 3 and 5 respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields. PMID:25837601

  7. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment

    PubMed Central

    Irimia, Andrei; Goh, S.-Y. Matthew; Torgerson, Carinna M.; Stein, Nathan R.; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.

    2013-01-01

    Objective To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Methods Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. Results We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Conclusion Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. PMID:24011495

  8. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  9. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors.

  10. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  11. Acute functional reactivation of the language network during awake intraoperative brain mapping.

    PubMed

    Spena, Giannantonio; Costi, Emanuele; Panciani, Pier Paolo; Roca, Elena; Migliorati, Karol; Fontanella, Marco Maria

    2015-01-01

    Acute brain plasticity during resection of central lesions has been recently described. In the cases reported, perilesional latent networks, useful to preserve the neurological functions, were detected in asymptomatic patients. In this paper, we presented a case of acute functional reactivation (AFR) of the language network in a symptomatic patient. Tumor resection allowed to acutely restore the neurological deficit. Intraoperative direct cortical stimulation (DCS) and functional neuroimaging showed new epicentres of activation of the language network after tumor excision. DCS in awake surgery is mandatory to reveal AFR needful to improve the extent of resection preserving the quality of life.

  12. [Clinical-diagnostic features of the acute period of brain concussion in military personnel].

    PubMed

    Tkachov, A V

    2008-01-01

    The comparative analysis of a complex examination of 78 patients aged 16-45 years in acute period of closed craniocereberal trauma (CCRCT) has been carried out. Physical examination was done on the first 10th and 30th day of the treatment. The author used specially developed multiple-aspect scales and questionnaires for objectification of patient complaints, magnetic resonance tomography, brain electroencephalography. A complex clinical and neuropsychological examination revealed that all cases of brain concussion were accompanied by various signs of asthenic disorders and in 81% of cases--by cognitive disorders. Patients in the acute period of brain concussion had significantly low indicators of cerebral neurodynamics in comparison with healthy individuals. It was shown by increase in signs of irritation, changes of bioelectric activity of the brain that was expressed by considerable blurriness of regional disjunctions and fading of an alpha rhythm. Specific changes of brain tissue in acute period of brain concussion were not registered when CT or MRT were used.

  13. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed Central

    Xu, Feng; Liu, Peiying; Pekar, James J.; Lu, Hanzhang

    2015-01-01

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain’s response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine’s effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  14. Thick Slice and Thin Slice Teaching Evaluations

    ERIC Educational Resources Information Center

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  15. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia

    PubMed Central

    Holliday, Malcolm A.; Kalayci, M. N.; Harrah, Jean

    1968-01-01

    Rats were made acutely hyper- or hyponatremic by infusion of hypertonic saline or water, respectively. Other rats were maintained in these states from 1 to 7 days to observe the effects of time. Brain tissue water, Na, Cl, and K were compared with serum Na and Cl concentration (NaE and ClE). The following observations are noted: Brain Cl content varies directly with ClE and brain Na content in the Cl space (Nae) varies directly with NaE, indicating little or no restraint on the inward or outward movement of Na or Cl from the Cl space of brain. The intracellular volume of brain fluid (Vi) derived as the difference between total water and Cl space, decreases with hypernatremia and increases with hyponatremia. The changes in Vi in the acute studies are not accompanied by any change in brain K content, or calculated intracellular Na content, and are approximately 0.6 the changes predicted from osmotic behavior of cells, which apply four assumptions: (a) NaE is proportional to osmolality; (b) brain osmolality remains equal to plasma osmolality; (c) Vi is osmotically active; and (d) there is no net gain or loss of solute from Vi. The validity of these assumptions is considered. When changes in osmolality are sustained, Vi is much closer to control values than when in the acute phase. K content increases in hypernatremia and decreases in hyponatremia. The changes in K content can account for some of the adjustment in Vi observed over the extended period of hyper- or hyponatremia. The regression of (Na + K)/v upon NaE describes a slope less than 1.0 and an intercept of (Na + K)/v equal to 40% of the control (Na + K)/v. These characteristics are interpreted to mean that significant quantities of Na and K in brain are osmotically inactive. The brain protects itself from acute volume changes in response to change in NaE by the freedom for Na and Cl to move from the Cl space, by Vi not changing acutely to the degree predicted from osmotic properties of cells in general, and by

  16. Cognitive Impairment and Whole Brain Diffusion in Patients with Neuromyelitis Optica after Acute Relapse

    ERIC Educational Resources Information Center

    He, Diane; Wu, Qizhu; Chen, Xiuying; Zhao, Daidi; Gong, Qiyong; Zhou, Hongyu

    2011-01-01

    The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive…

  17. Reversible acute bilateral blindness resulting from a frontal brain tumor: a case report.

    PubMed

    Hayashi, Koji; Nakada, Mitsutoshi; Miyashita, Katsuyoshi; Hayashi, Yutaka; Hamada, Jun-ichiro

    2014-12-01

    We experienced an unusual case of a 15-year-old girl who suffered acute bilateral blindness caused by a frontal lobe tumour. She underwent emergent operation, after which her vision recovered. This case emphasizes that a brain mass can cause sudden onset blindness and an emergency intervention might save the patient's sight.

  18. Divergent developmental expression and function of the proton-coupled oligopeptide transporters PepT2 and PhT1 in regional brain slices of mouse and rat.

    PubMed

    Hu, Yongjun; Xie, Yehua; Keep, Richard F; Smith, David E

    2014-06-01

    This study evaluated the developmental gene and protein expression of proton-coupled oligopeptide transporters (POTs: peptide transporter, PepT1 and PepT2; peptide-histidine transporter, PhT1 and PhT2) in different regions of rodent brain, and the age-dependent uptake of a POT substrate, glycylsarcosine (GlySar), in brain slices. Slices were obtained from cerebral cortex, cerebellum and hippocampus of wildtype and PepT2 null mice, and from rats at different ages. Gene and protein expression were determined by real-time PCR and immunoblot analyses. Brain slice uptakes of radiolabeled glycylsarcosine were determined in the absence and presence of excess unlabeled glycylsarcosine or l-histidine, the latter being an inhibitor of PhT1/2 but not PepT1/2. As PepT2 and PhT1 transcripts were abundantly expressed in all three regions of mouse brain, little to no expression was observed for PepT1 and PhT2. PhT1 protein was present in brain regions of adult but not neonatal mice and expression levels increased with age in rats. Glycylsarcosine uptake, inhibition and transporter dominance did not show regional brain or species differences. However, there were clear age-related differences in functional activity, with PepT2 dominating in neonatal mice and rats, and PhT1 dominating in adult rodents. These developmental changes may markedly impact the neural activity of both endogenous and exogenous (drug) peptides/mimetics. Developmental gene and protein expression of peptide transporters was evaluated in various regions of rodent brain, along with age-dependent uptake of dipeptide. We found marked changes in protein expression and functional activity of PhT1 and PepT2, the former predominating in adult and the latter in neonate. These developmental changes may markedly impact the neural activity of endogenous and exogenous peptides/mimetics.

  19. Association between Peripheral Oxidative Stress and White Matter Damage in Acute Traumatic Brain Injury

    PubMed Central

    Lin, Wei-Ming; Chen, Meng-Hsiang; Wang, Hung-Chen; Lu, Cheng-Hsien; Chen, Pei-Chin; Chen, Hsiu-Ling; Tsai, Nai-Wen; Su, Yu-Jih; Li, Shau-Hsuan; Kung, Chia-Te; Chiu, Tsui-Min; Weng, Hsu-Huei; Lin, Wei-Che

    2014-01-01

    The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI). However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS) concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA) and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM) damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI. PMID:24804213

  20. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    PubMed

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  1. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system.

    PubMed

    Gulyás, Balázs; Makkai, Boglárka; Kása, Péter; Gulya, Károly; Bakota, Lidia; Várszegi, Szilvia; Beliczai, Zsuzsa; Andersson, Jan; Csiba, László; Thiele, Andrea; Dyrks, Thomas; Suhara, Tetsua; Suzuki, Kazutoshi; Higuchi, Makato; Halldin, Christer

    2009-01-01

    The binding of two radiolabelled analogues (N-(5-[125I]Iodo-2-phenoxyphenyl)-N-(2,5-dimethoxybenzyl)acetamide ([125I]desfluoro-DAA1106) and N-(5-[125I]Fluoro-2-phenoxyphenyl)-N-(2-[125I]Iodo-5-methoxybenzyl)acetamide ([125I]desmethoxy-DAA1106) of the peripheral benzodiazepine receptor (PBR) (or TSPO, 18kDa translocator protein) ligand DAA1106 was examined by in vitro autoradiography on human post mortem whole hemisphere brain slices obtained from Alzheimer's disease (AD) patients and age-matched controls. Both [(125)I]desfluoro-IDAA1106 and [(125)I]desmethoxy-IDAA1106 were effectively binding to various brain structures. The binding could be blocked by the unlabelled ligand as well as by other PBR specific ligands. With both radiolabelled compounds, the binding showed regional inhomogeneity and the specific binding values proved to be the highest in the hippocampus, temporal and parietal cortex, the basal ganglia and thalamus in the AD brains. Compared with age-matched control brains, specific binding in several brain structures (temporal and parietal lobes, thalamus and white matter) in Alzheimer brains was significantly higher, indicating that the radioligands can effectively label-activated microglia and the up-regulated PBR/TSPO system in AD. Complementary immunohistochemical studies demonstrated reactive microglia activation in the AD brain tissue and indicated that increased ligand binding coincides with increased regional microglia activation due to neuroinflammation. These investigations yield further support to the PBR/TSPO binding capacity of DAA1106 in human brain tissue, demonstrate the effective usefulness of its radio-iodinated analogues as imaging biomarkers in post mortem human studies, and indicate that its radiolabelled analogues, labelled with short half-time bioisotopes, can serve as prospective in vivo imaging biomarkers of activated microglia and the up-regulated PBR/TSPO system in the human brain.

  2. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system.

    PubMed

    Gulyás, Balázs; Makkai, Boglárka; Kása, Péter; Gulya, Károly; Bakota, Lidia; Várszegi, Szilvia; Beliczai, Zsuzsa; Andersson, Jan; Csiba, László; Thiele, Andrea; Dyrks, Thomas; Suhara, Tetsua; Suzuki, Kazutoshi; Higuchi, Makato; Halldin, Christer

    2009-01-01

    The binding of two radiolabelled analogues (N-(5-[125I]Iodo-2-phenoxyphenyl)-N-(2,5-dimethoxybenzyl)acetamide ([125I]desfluoro-DAA1106) and N-(5-[125I]Fluoro-2-phenoxyphenyl)-N-(2-[125I]Iodo-5-methoxybenzyl)acetamide ([125I]desmethoxy-DAA1106) of the peripheral benzodiazepine receptor (PBR) (or TSPO, 18kDa translocator protein) ligand DAA1106 was examined by in vitro autoradiography on human post mortem whole hemisphere brain slices obtained from Alzheimer's disease (AD) patients and age-matched controls. Both [(125)I]desfluoro-IDAA1106 and [(125)I]desmethoxy-IDAA1106 were effectively binding to various brain structures. The binding could be blocked by the unlabelled ligand as well as by other PBR specific ligands. With both radiolabelled compounds, the binding showed regional inhomogeneity and the specific binding values proved to be the highest in the hippocampus, temporal and parietal cortex, the basal ganglia and thalamus in the AD brains. Compared with age-matched control brains, specific binding in several brain structures (temporal and parietal lobes, thalamus and white matter) in Alzheimer brains was significantly higher, indicating that the radioligands can effectively label-activated microglia and the up-regulated PBR/TSPO system in AD. Complementary immunohistochemical studies demonstrated reactive microglia activation in the AD brain tissue and indicated that increased ligand binding coincides with increased regional microglia activation due to neuroinflammation. These investigations yield further support to the PBR/TSPO binding capacity of DAA1106 in human brain tissue, demonstrate the effective usefulness of its radio-iodinated analogues as imaging biomarkers in post mortem human studies, and indicate that its radiolabelled analogues, labelled with short half-time bioisotopes, can serve as prospective in vivo imaging biomarkers of activated microglia and the up-regulated PBR/TSPO system in the human brain. PMID:18984021

  3. Blood-brain barrier dysfunction in acute lead encephalopathy: a reappraisal.

    PubMed

    Bouldin, T W; Mushak, P; O'Tuama, L A; Krigman, M R

    1975-12-01

    Acute lead encephalopathy was induced in adult guinea pigs by administering daily oral doses of lead carbonate. During the development of the encephalopathy, the structural and functional integrity of the blood-brain barrier was evaluated with electron microscopy and tracer probes. Blood, cerebral gray matter, liver, and kidney were analyzed for lead, calcium, and magnesium content. The animals regularly developed an encephalopathy after four doses of lead. There were no discernible pathomorphologic alterations in the cerebral capillaries or perivascular glial sheaths. Furthermore, no evidence of blood-brain barrier dysfunction was demonstrated with Evans blue-albumin complex or horseradish peroxidase. Blood-brain barrier permeability to radiolead was not increased in the intoxicated animals. During the development of the encephalopathy there was a progressive rise in the lead concentration in all tissues. Concurrently, there was a significant rise in brain calcium. These results suggest that the encephalopathic effects of lead may be mediated directly at the neuronal level.

  4. Indian research on acute organic brain syndrome: Delirium

    PubMed Central

    Pinto, Charles

    2010-01-01

    Delirium, though quite often referred to psychiatrists for management, does not find many takers for analysis, research and publications. Acute in onset, multiplicity of etiology and manifestations, high risk of mortality delirium is very rewarding in proper management and outcome. Delirium has a limited agenda on teaching programs, research protocols and therapeutic strategies. There is a dearth of Indian studies both in international and national scientific literature. This annotation is based on a Medline search for “delirium India” on Pubmed, which resulted in 54 articles. A search in Indian Journal of Psychiatry for “delirium” resulted in 38 published articles, “delirium tremens” showed up only five articles. The articles are primarily from the Indian Journal of Psychiatry with cross reference to articles on Pubmed or Google search on Indian studies and a few international studies PMID:21836671

  5. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  6. Parameters of diffusional kurtosis imaging for the diagnosis of acute cerebral infarction in different brain regions

    PubMed Central

    Guo, Yue-Lin; Li, Su-Juan; Zhang, Zhong-Ping; Shen, Zhi-Wei; Zhang, Gui-Shan; Yan, Gen; Wang, Yan-Ting; Rao, Hai-Bing; Zheng, Wen-Bin; Wu, Ren-Hua

    2016-01-01

    Diffusional kurtosis imaging (DKI) is a new type diffusion-weighted sequence which measures the non-Gaussianity of water diffusion. The present study aimed to investigate whether the parameters of DKI could distinguish between differences in water molecule diffusion in various brain regions under the conditions of acute infarction and to identify the optimal DKI parameter for locating ischemic lesions in each brain region. A total of 28 patients with acute ischemic stroke in different brain regions were recruited for the present study. The relative values of DKI parameters were selected as major assessment indices, and the homogeneity of background image and contrast of adjacent structures were used as minor assessment indices. According to the brain region involved in three DKI parametric maps, including mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr), 112 groups of regions of interest were outlined in the following regions: Corpus callosum (n=17); corona radiata (n=26); thalamus (n=21); subcortical white matter (n=24); and cerebral cortex (n=24). For ischemic lesions in the corpus callosum and corona radiata, significant increases in relative Ka were detected, as compared with the other parameters (P<0.05). For ischemic lesions in the thalamus, subcortical white matter and cerebral cortices, an increase in the three parameters was detected, however this difference was not significant. Minor assessment indices demonstrated that Ka lacked tissue contrast and the background of Kr was heterogeneous; thus, MK was the superior assessment parameter for ischemic lesions in these regions. In conclusion, Ka is better suited for the diagnosis of acute ischemic lesions in highly anisotropic brain regions, such as the corpus callosum and corona radiate. MK may be appropriate for the lesions in low anisotropic or isotropic brain regions, such as the thalamus, subcortical white matter and cerebral cortices. PMID:27446298

  7. Induction of acute brain injury in mice by irradiation with high-LET charged particles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Hong

    The present study was performed to evaluate the induction of acute brain injury in mice after 235 Mev/u carbon ion irradiation. In our study, young outbred Kunming mice were divided into four treatment groups according to the penetration depth of carbon ions. Animals were irradiated with a sublethal dose of carbon ion beams prior to the Bragg curve. An experiment was performed to evaluate the acute alterations in histology, DNA double-strand breaks (DNA DSBs) as well as p53and Bax expression in the brain 96 h post-irradiation. The results demonstrated that various histopathological changes, a significant number of DNA DSBs and elevated p53 and Bax protein expression were induced in the brain following exposure to carbon ions. This was particularly true for mice irradiated with ions having a 9.1 cm-pentration depth, indicating that carbon ions can led to deleterious lesions in the brain of young animals within 96 h. Moreover, there was a remarkable increase in DNA DSBs and in the severity of histopathological changes as the penetration depths of ions increased, which may be associated with the complex track structure of heavy ions. These data reveal that carbon ions can promote serious neuropathological degeneration in the cerebral cortex of young mice. Given that damaged neurons cannot regenerate, these findings warrant further investigation of the adverse effects of the space radiation and the passage of a therapeutic heavy ion beam in the plateau region of the Bragg curve through healthy brain tissue.

  8. Catalase-independent early-gene expression in rat brain following acute ethanol exposure.

    PubMed

    Canales, Juan J

    2004-07-30

    Early-gene expression evoked by acute ethanol treatment was studied in rat brain by quantitative immunocytochemistry, with reference to ethanol metabolism by the enzyme catalase. Colocalization with mu-opioid receptor (MOR) sites was also examined. Ethanol challenges [1, 2.5, and 4 g/kg intraperitoneally (i.p.)] evoked dose-dependent increases in c-Fos expression in several brain regions, but overlap with MOR-rich sites was only partial. Strong inhibition of brain catalase activity (ca. 60%) with 3-amino-1,2,4-triazole (AT, 1 g/kg i.p.) did not alter ethanol-induced c-Fos nor Krox-24 expression in any of the brain regions analyzed. This evidence demonstrates that catalase-mediated metabolism is not a requisite for c-Fos nor Krox-24 induction in rat brain following acute ethanol treatment, and suggests that ethanol is by itself capable of eliciting strong neuronal and circuit-level adaptations in the nervous system.

  9. Beneficial Effect of Erythropoietin Short Peptide on Acute Traumatic Brain Injury.

    PubMed

    Wang, Bo; Kang, Mitchell; Marchese, Michelle; Rodriguez, Esther; Lu, Wei; Li, Xintong; Maeda, Yasuhiro; Dowling, Peter

    2016-04-01

    There is currently no effective medical treatment for traumatic brain injury (TBI). Beyond the immediate physical damage caused by the initial impact, additional damage evolves due to the inflammatory response that follows brain injury. Here we show that therapy with JM4, a low molecular weight 19-amino acid nonhematopoietic erythropoietin (EPO) peptidyl fragment, containing amino acids 28-46 derived from the first loop of EPO, markedly reduces acute brain injury. Mice underwent controlled cortical injury and received either whole molecule EPO, JM4, or sham-treatment with phosphate-buffered saline. Animals treated with JM4 peptide exhibited a large decrease in number of dead neural cells and a marked reduction in lesion size at both 3 and 8 days postinjury. Therapy with JM4 also led to improved functional recovery and we observed a treatment window for JM4 peptide that remained open for at least 9 h postinjury. The full-length EPO molecule was divided into a series of 6 contiguous peptide segments; the JM4-containing segment and the adjoining downstream region contained the bulk of the death attenuating effects seen with intact EPO molecule following TBI. These findings indicate that the JM4 molecule substantially blocks cell death and brain injury following acute brain trauma and, as such, presents an excellent opportunity to explore the therapeutic potential of a small-peptide EPO derivative in the medical treatment of TBI. PMID:26715414

  10. Pattern of Brain Injury in the Acute Setting of Human Septic Shock

    PubMed Central

    2013-01-01

    Background Sepsis-associated brain dysfunction has been linked to white matter lesions (leukoencephalopathy) and ischemic stroke. Our objective was to assess the prevalence of brain lesions in septic shock patients requiring magnetic resonance imaging (MRI) for an acute neurologic change. Method Seventy-one septic shock patients were included in a prospective observational study. Patients underwent daily neurological examination. Brain MRI was obtained in patients who developed focal neurological deficit, seizure, coma, or delirium. Electroencephalogy was performed in case of coma, delirium, or seizure. Leukoencephalopathy was graded and considered present when white matter lesions were either confluent or diffuse. Patient outcome was evaluated at 6 months with the Glasgow Outcome Scale (GOS). Results We included 71 patients with median age of 65 years (56 to 76) and SAPS II at admission of 49 (38 to 60). MRI was indicated on focal neurological sign in 13 (18%), seizure in 7 (10%), coma in 33 (46%), and delirium in 35 (49%). MRI was normal in 37 patients (52%) and showed cerebral infarcts in 21 (29%), leukoencephalopathy in 15 (21%), and mixed lesions in 6 (8%). EEG malignant pattern was more frequent in patients with ischemic stroke or leukoencephalopathy. Ischemic stroke was independently associated with disseminated intravascular coagulation (DIC), focal neurologic signs, increased mortality, and worse GOS at 6 months. Conclusions Brain MRI in septic shock patients who developed acute brain dysfunction can reveal leukoencephalopathy and ischemic stroke, which is associated with DIC and increased mortality. PMID:24047502

  11. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia

    SciTech Connect

    Melton, J.E.; Patlak, C.S.; Pettigrew, K.D.; Cserr, H.F.

    1987-04-01

    This study quantitatively evaluates the contribution of tissue Na, Cl, and K loss to brain volume regulation during acute dilutional hyponatremia (DH) and examines the mechanism of Na loss. DH was produced in pentobarbital sodium-anesthetized rats by intraperitoneal infusion of distilled water and brain water and electrolytes analyzed 30 min, 1 h, 3 h, 4 h, or 6 h later. The rate of Na and Cl loss was greatest during the first 30 min of DH. Net loss of Na and Cl was maximal after 3 h of DH. K loss was slower, achieving significance after 3 h. Electrolyte loss was sufficient to account for observed brain volume regulation after three or more hours of DH. Measurements of /sup 22/Na influx and efflux across the blood brain barrier showed that barrier permeability to Na is unchanged during DH. Analysis of results using a two-compartment model of plasma-brain exchange suggests that loss of brain Na during DH does not result solely from a shift of electrolyte across the blood-brain barrier to plasma, and thus provides indirect evidence for an additional pathway for Na loss, presumably via cerebrospinal fluid.

  12. Altered Spontaneous Brain Activity in Patients with Acute Spinal Cord Injury Revealed by Resting-State Functional MRI

    PubMed Central

    Zhu, Ling; Wu, Guangyao; Zhou, Xin; Li, Jielan; Wen, Zhi; Lin, Fuchun

    2015-01-01

    Background Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging. Methods A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity. Results Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores. Conclusion Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as

  13. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    PubMed

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes. PMID:24679120

  14. Acute evaluation of conversational discourse skills in traumatic brain injury.

    PubMed

    LeBlanc, Joanne; de Guise, Elaine; Champoux, Marie-Claude; Couturier, Céline; Lamoureux, Julie; Marcoux, Judith; Maleki, Mohammed; Feyz, Mitra

    2014-12-01

    This study looked at performance on the conversational discourse checklist of the Protocole Montréal d'évaluation de la communication (D-MEC) in 195 adults with TBI of all severity hospitalized in a Level 1 Trauma Centre. To explore validity, results were compared to findings on tests of memory, mental flexibility, confrontation naming, semantic and letter category naming, verbal reasoning, and to scores on the Montreal Cognitive Assessment. The relationship to outcome as measured with the Disability Rating Scale (DRS), the Extended Glasgow Outcome Scale (GOS-E), length of stay, and discharge destinations was also determined. Patients with severe TBI performed significantly worse than mild and moderate groups (χ(2)(KW2df) = 24.435, p = .0001). The total D-MEC score correlated significantly with all cognitive and language measures (p < .05). It also had a significant moderate correlation with the DRS total score (r = -.6090, p < .0001) and the GOS-E score (r = .539, p < .0001), indicating that better performance on conversational discourse was associated with a lower disability rating and better global outcome. Finally, the total D-MEC score was significantly different between the discharge destination groups (F(3,90) = 20.19, p < .0001). Thus, early identification of conversational discourse impairment in acute care post-TBI was possible with the D-MEC and could allow for early intervention in speech-language pathology.

  15. Change in Brain Magnetic Resonance Spectroscopy after Treatment during Acute HIV Infection

    PubMed Central

    Sailasuta, Napapon; Ross, William; Ananworanich, Jintanat; Chalermchai, Thep; DeGruttola, Victor; Lerdlum, Sukalaya; Pothisri, Mantana; Busovaca, Edgar; Ratto-Kim, Silvia; Jagodzinski, Linda; Spudich, Serena; Michael, Nelson; Kim, Jerome H.; Valcour, Victor

    2012-01-01

    Objective Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). Methods Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. Results After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. Interpretation We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury. PMID:23229129

  16. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  17. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury

    PubMed Central

    Szczupak, Mikhaylo; Kiderman, Alexander; Crawford, James; Murphy, Sara; Marshall, Kathryn; Pelusso, Constanza

    2016-01-01

    Mild Traumatic Brain Injury (mTBI) is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications. PMID:26727256

  18. Acute sports-related traumatic brain injury and repetitive concussion.

    PubMed

    Guskiewicz, Kevin M; Broglio, Steven P

    2015-01-01

    Concussions are described as functional, not structural injuries, and therefore cannot be easily detected through standard diagnostic imaging. The vast differences between individual athletes makes identifying and evaluating sport-related concussion one of the most complex and perplexing injuries faced by medical personnel. The literature, as well as most consensus statements, supports the use of a multifaceted approach to concussion evaluation on the sideline of the athletic field. Using a standardized clinical examination that is supported by objective measures of concussion-related symptoms, cognitive function, and balance provides clinicians with the ability to track recovery in an objective manner. When used in combination, these tests allow for more informed diagnosis and treatment plan, which should involve a graduated return to play progression. Establishing a comprehensive emergency action plan that can guide the on-field management of a more serious and potentially catastrophic brain injury is also essential. This review will address these management issues, as well as the recent concerns about the risk of long-term neurologic conditions believed to be associated with repetitive concussion.

  19. Brain and muscle redox imbalance elicited by acute ethylmalonic acid administration.

    PubMed

    Schuck, Patrícia Fernanda; Milanez, Ana Paula; Felisberto, Francine; Galant, Leticia Selinger; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2015-01-01

    Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2',7'-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy.

  20. Brain and muscle redox imbalance elicited by acute ethylmalonic acid administration.

    PubMed

    Schuck, Patrícia Fernanda; Milanez, Ana Paula; Felisberto, Francine; Galant, Leticia Selinger; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2015-01-01

    Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2',7'-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy. PMID:26010931

  1. Brain and Muscle Redox Imbalance Elicited by Acute Ethylmalonic Acid Administration

    PubMed Central

    Schuck, Patrícia Fernanda; Milanez, Ana Paula; Felisberto, Francine; Galant, Leticia Selinger; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2015-01-01

    Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2’,7’-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy. PMID:26010931

  2. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    PubMed Central

    Levy, Stewart; Carrick, Matthew; Mains, Charles W.; Slone, Denetta S.

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome.

  3. Chronic and acute alcohol administration induced neurochemical changes in the brain: comparison of distinct zebrafish populations.

    PubMed

    Chatterjee, Diptendu; Shams, Soaleha; Gerlai, Robert

    2014-04-01

    The zebrafish is increasingly utilized in the analysis of the effects of ethanol (alcohol) on brain function and behavior. We have shown significant population-dependent alcohol-induced changes in zebrafish behavior and have started to analyze alterations in dopaminergic and serotoninergic responses. Here, we analyze the effects of alcohol on levels of selected neurochemicals using a 2 × 3 (chronic × acute) between-subject alcohol exposure paradigm randomized for two zebrafish populations, AB and SF. Each fish first received the particular chronic treatment (0 or 0.5 vol/vol% alcohol) and subsequently the acute exposure (0, 0.5 or 1.0% alcohol). We report changes in levels of dopamine, DOPAC, serotonin, 5HIAA, glutamate, GABA, aspartate, glycine and taurine as quantified from whole brain extracts using HPLC. We also analyze monoamine oxidase and tyrosine hydroxylase enzymatic activity. The results demonstrate that compared to SF, AB is more responsive to both acute alcohol exposure and acute alcohol withdrawal at the level of neurochemistry, a finding that correlates well with prior behavioral observations and one which suggests the involvement of genes in the observed alcohol effects. We discuss correlations between the current results and prior behavioral findings, and stress the importance of characterization of zebrafish strains for future behavior genetic and psychopharmacology studies.

  4. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury.

    PubMed

    Bjugstad, Kimberly B; Rael, Leonard T; Levy, Stewart; Carrick, Matthew; Mains, Charles W; Slone, Denetta S; Bar-Or, David

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome. PMID:27642494

  5. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    PubMed Central

    Levy, Stewart; Carrick, Matthew; Mains, Charles W.; Slone, Denetta S.

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome. PMID:27642494

  6. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury.

    PubMed

    Bjugstad, Kimberly B; Rael, Leonard T; Levy, Stewart; Carrick, Matthew; Mains, Charles W; Slone, Denetta S; Bar-Or, David

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome.

  7. Proton relaxation in acute and subacute ischemic brain edema

    SciTech Connect

    Boisvert, D.P.; Handa, Y.; Allen, P.S. )

    1990-01-01

    The relation between regional ischemic brain edema and tissue proton relaxation rates (R1 = 1/T1; R2 = 1/T2) were studied in 16 macaque monkeys subjected to MCA occlusion. In vivo R2 measurements were obtained from multiple spin-echo (eight echoes) images taken at 2-, 3-, 4-, and 72-hr postischemia. In vitro R1 and R2 values were determined for corresponding regions after sacrifice at 4 hr (n = 8) or at 72-hr postischemia in seven surviving animals. The water content of the white and gray matter tissue samples was measured by the wet/dry method. Four animals (25%) showed ipsilateral regions of increased signal intensity as early as 2 hr after MCA occlusion. All seven animals imaged at 72 hr displayed such regions. Despite the absence of measured changes in tissue water content, significant decreases in R2, but not in R1, occurred at 4 hr. At this stage, R2 values correlated more closely than R1 with individual variations in water content. At 72 hr, marked decreases in both R1 and R2 were measured in ischemic deep gray matter and white matter. Cortical gray matter was unchanged. In edematous gray and white matter, both R1 and R2 correlated closely with tissue water content, but R2 was consistently 10 to 20 times more sensitive than R1. Biexponential R2 decay was observed at 4 and 72 hr, but only in the white matter region that became severely edematous at 72 hr.

  8. Increased blood-brain transfer in a rabbit model of acute liver failure

    SciTech Connect

    Horowitz, M.E.; Schafer, D.F.; Molnar, P.; Jones, E.A.; Blasberg, R.G.; Patlak, C.S.; Waggoner, J.; Fenstermacher, J.D.

    1983-05-01

    The blood-to-brain transfer of (/sup 14/C)alpha-aminoisobutyric acid was investigated by quantitative autoradiography in normal rabbits and rabbits with acute liver failure induced by the selective hepatotoxin galactosamine. The blood-to-brain transfer of alpha-aminoisobutyric acid was similar in control animals and animals 2 and 7 h after galactosamine injections, but was increased five- to tenfold in certain gray-matter areas of the brain in animals 11 and 18 h after galactosamine treatment. No detectable differences in white-matter uptake of (/sup 14/C)alpha-aminoisobutyric acid were found between the control and treated groups. The increase in alpha-aminoisobutyric acid transfer within the gray-matter areas suggested that a general or nonspecific increase in brain capillary permeability occurred in these areas. No clinical signs of early hepatic encephalopathy were observed in the treated rabbits, except for 1 animal from the 18-h postgalactosamine group. Thus, enhanced blood-brain transfer of alpha-aminoisobutyric acid preceded the development of overt hepatic encephalopathy. The distribution of radioactivity after the intravenous administration of (/sup 14/C)galactosamine showed that virtually none of the hepatotoxin localized in the brain, suggesting that the drug itself does not have a direct effect upon the blood-brain barrier or the brain. The increased uptake of alpha-aminoisobutyric acid at 11 and 18 h implies that the transfer of other solutes would also be enhanced, that central nervous system homeostasis would be compromised, and that the resulting changes in brain fluid composition could contribute to or cause hepatic encephalopathy.

  9. The effects of acute ethanol exposure and ageing on rat brain glutathione metabolism.

    PubMed

    Sommavilla, Michela; Sánchez-Villarejo, M Victoria; Almansa, Inmaculada; Sánchez-Vallejo, Violeta; Barcia, Jorge M; Romero, Francisco Javier; Miranda, María

    2012-09-01

    Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.

  10. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia.

    PubMed

    Johann, Sonja; Beyer, Cordian

    2013-09-01

    The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'. PMID:23196064

  11. Simvastatin reduces VEGF and NO levels in acute stages of experimental traumatic brain injury.

    PubMed

    Yüksel, Hatice; Yavuz, Özlem; Iş, Merih; Çomunoğlu, Nil; Üzüm, Gülay; Akyüz, Feyzullah; Yıldırım, Hayriye Ak

    2013-11-01

    This study was undertaken to evaluate the effect of simvastatin, a cholesterol-lowering agent, on vascular endothelial growth factors (VEGFs), nitric oxide (NO) levels and neuroprotection, in rats with experimentally induced traumatic brain injury (TBI). Forty Wistar albino rats were categorized into four groups: sham operated (S), trauma (T), trauma + vehicle (T + V) and trauma + simvastatin (T + S). The T, T + V and T + S groups were subjected to TBI. The T + V group was administered vehicle [ethanol:saline (1/2)] and the T + S group was administered 1 mg/kg of simvastatin 3 h after the injury insult. Blood and brain tissue specimens were obtained 24 h after the trauma to measure VEGFs and NO levels and perform histopathological examinations. The histopathological injury scores of brain tissues were significantly higher in the T group, and simvastatin significantly prevented brain injury in the T + S group. In the T group, significant increases of VEGF levels in serum and brain tissues were noted, which were prevented with simvastatin treatment in the T + S group. The markedly high levels of NO in brain tissues of the T group were decreased by simvastatin treatment in the T + S group. It can be concluded that, as evidenced by histopathological findings, simvastatin treatment improves neuropathology in acute stages of TBI.

  12. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction.

  13. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction. PMID:20680706

  14. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented.

    PubMed

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality. PMID:27301072

  15. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality.

  16. Automated Factor Slice Sampling

    PubMed Central

    Tibbits, Matthew M.; Groendyke, Chris; Haran, Murali; Liechty, John C.

    2013-01-01

    Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution, can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler”, a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters in order to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. PMID:24955002

  17. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    PubMed

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  18. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  19. Sulfonylurea Receptor 1 Contributes to the Astrocyte Swelling and Brain Edema in Acute Liver Failure

    PubMed Central

    Jayakumar, A.R.; Valdes, V.; Tong, X.Y.; Shamaladevi, N.; Gonzalez, W.; Norenberg, M.D.

    2014-01-01

    Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, non-selective cation channel (NCCa-ATP channel). We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a 3-fold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by co-treatment of cells with BAY 11-7082, an inhibitor of NF-κB, indicating the involvement of an NF-κB-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF, and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF. PMID:24443056

  20. Methylprednisolone exacerbates acute critical illness-related corticosteroid insufficiency associated with traumatic brain injury in rats.

    PubMed

    Chen, Xin; Zhang, Bin; Chai, Yan; Dong, Bo; Lei, Ping; Jiang, Rongcai; Zhang, Jianning

    2011-03-25

    Emerging evidence demonstrates that severe illness could induce critical illness-related corticosteroid insufficiency (CIRCI) and cause poor prognosis. The purpose of this study was to test the hypothesis that methylprednisolone (MP), a synthetic glucocorticoid, promotes post-traumatic apoptosis in both the hypothalamus and pituitary, resulting in acute CIRCI and increased mortality in the acute phase of traumatic brain injury (TBI). We tested this hypothesis by measuring acute CIRCI in rats subjected to fluid percussion injury (FPI) and treated with MP (5-30mg/kg). The corticosteroid response to TBI was evaluated using the corticosterone increase index (CII), where values less than 2.5 were considered indicative of acute CIRCI. The CII of MP treated rats was comparable to that of saline treated control rats before injury but was significantly decreased in injured rats receiving high-dose MP on post-injury day 7. Similarly, the incidence of acute CIRCI was significantly higher in the high-dose MP group on post-injury day 7. Furthermore, the CII of rats that did not survive post-injury was significantly lower compared to that of survival and was indicative of acute CIRCI. We also examined apoptosis in the paraventricular nucleus (PVN) of the hypothalamus and the adenohypophysis of the pituitary, using a TUNEL assay and transmission electron microscopy (TEM). The number of TUNEL-positive cells was significantly higher in injured rats treated with high-dose MP. No TUNEL-positive cells were detected in the adenohypophysis across experimental groups at either 7 or 14days after TBI. However, autopsies performed on rats that did not survive post-injury revealed obvious apoptotic cells in the adenohypophysis. Moreover, TEM revealed morphological changes characteristic of apoptosis in both the PVN and adenohypophysis of high-dose MP treated rats. These data suggest that MP therapy for TBI could increase neuronal apoptosis in both the hypothalamus and pituitary and

  1. [The importance of the cortex and subcortical structures of the brain in the perception of acute and chronic pain].

    PubMed

    Reschetniak, V K; Kukushkin, M L; Gurko, N S

    2014-01-01

    This review presents the current data in the literature about the importance of the cortex and subcortical structures of the brain in the perception of acute and chronic pain. Discussed the importance of various areas of the brain in perception discriminative and affective components of pain. Discusses also gender differences in pain perception depending on the functional activity of brain cortex and antinociceptive subcortical structures. Analyzed the morphological changes of cortical and subcortical structures of the brain in chronic pain syndromes. It is proved that the decrease in the volume of gray and white matter of cerebral cortex and subcortical structures is a consequence and not the cause of chronic pain syndrome. Discusses the features activate and deactivate certain areas of the cortex of the brain in acute and chronic pain. Analyzed same features the activation of several brain structures in migraine and cluster headache.

  2. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats.

    PubMed

    Baba, Hiroshi; Petrenko, Andrey B; Fujiwara, Naoshi

    2016-10-01

    Pregabalin is thought to exert its therapeutic effect in neuropathic pain via binding to α2δ-1 subunits of voltage-gated calcium (Ca(2+)) channels. However, the exact analgesic mechanism after its binding to α2δ-1 subunits remains largely unknown. Whether a clinical concentration of pregabalin (≈10μM) can cause acute inhibition of dorsal horn neurons in the spinal cord is controversial. To address this issue, we undertook intracellular Ca(2+)-imaging studies using spinal cord slices with an intact attached L5 dorsal root, and examined if pregabalin acutely inhibits the primary afferent stimulation-evoked excitation of dorsal horn neurons in normal rats and in rats with streptozotocin-induced painful diabetic neuropathy. Under normal conditions, stimulation of a dorsal root evoked Ca(2+) signals predominantly in the superficial dorsal horn. Clinically relevant (10μM) and a very high concentration of pregabalin (100μM) did not affect the intensity or spread of dorsal root stimulation-evoked Ca(2+) signals, whereas an extremely high dose of pregabalin (300μM) slightly but significantly attenuated Ca(2+) signals in normal rats and in diabetic neuropathic (DN) rats. There was no difference between normal rats and DN rats with regard to the extent of signal attenuation at all concentrations tested. These results suggest that the activity of dorsal horn neurons in the spinal cord is not inhibited acutely by clinical doses of pregabalin under normal or DN conditions. It is very unlikely that an acute inhibitory action in the dorsal horn is the main analgesic mechanism of pregabalin in neuropathic pain states. PMID:27543338

  3. Neuroanatomical technique for studying long axonal projections in the central nervous system: combined axonal staining and pre-labeling in parasagittal gerbil brain slices.

    PubMed

    Kuwabara, N

    2012-08-01

    A method is described for studying the morphological features of extensive axonal projections within the central nervous system of the gerbil, Meriones anguiculatus. Potentially long descending axonal projections between the auditory thalamus and lower brainstem were used as a model. The inferior colliculus (IC) in the tectum was injected in vivo with a fluorescent retrograde tracer, Fluoro-Gold, to label cells in the medial geniculate body (MGB) that had descending projections to the IC, and cells in the superior olivary complex (SOC) that had ascending projections to the IC. Another fluorescent retrograde tracer, fast blue, was injected into the cochlea to label olivocochlear (OC) cells in the SOC. Inferomedially curved parasagittal slices containing ipsilateral auditory cell groups from the thalamus to the brainstem were cut and descending axons of the pre-labeled MGB cells were traced anterogradely with Biocytin. After visualizing histologically the injected Biocytin, discretely labeled IC-projecting axons of the MGB cells were traced including their collaterals that extended further into the SOC. In the SOC, these axons terminated on pre-labeled cells including OC cells. The combination of anterograde and retrograde tracing in the slice preparations described here demonstrated extensive descending axonal projections from the thalamus to their targets in the lower brainstem that had known ascending/descending projections within the auditory system.

  4. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    PubMed Central

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  5. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    SciTech Connect

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Papadakis, Antonios E.; Damilakis, John

    2013-01-15

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peak tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of

  6. Whole-Brain Computed Tomographic Perfusion Imaging in Acute Cerebral Venous Sinus Thrombosis

    PubMed Central

    Mokin, Maxim; Ciambella, Chelsey C.; Masud, Muhammad W.; Levy, Elad I.; Snyder, Kenneth V.; Siddiqui, Adnan H.

    2016-01-01

    Background Acute cerebral venous sinus thrombosis (VST) can be difficult to diagnose because of its diverse clinical presentation. The utility of perfusion imaging for diagnosing VST is not well understood. Summary We retrospectively reviewed cases of acute VST in patients who underwent whole-brain (320-detector-row) computed tomographic (CT) perfusion imaging in combination with craniocervical CT venography. Perfusion maps that were analyzed included cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time, and time to peak. Among the 10 patients with acute VST included in this study, 9 had perfusion abnormalities. All perfusion abnormalities were localized in areas adjacent to the occluded sinus and did not match typical anterior or posterior circulation arterial territories. Bilateral perfusion deficits were seen in 4 cases. In 2 cases, parenchymal hemorrhage was diagnosed on noncontrast CT imaging; in those cases, focal CBV and CBF were reduced. Key Messages Whole-brain CT perfusion imaging with 320-detector-row scanners can further assist in establishing the diagnosis of VST by detecting perfusion abnormalities corresponding to venous and not arterial territories. CT perfusion could assist in the differentiation between focal reversible changes, such as those caused by vasogenic edema, and irreversible changes due to infarction. PMID:27051406

  7. Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke

    PubMed Central

    Lakhan, Shaheen E.; Kirchgessner, Annette; Tepper, Deborah; Leonard, Aidan

    2013-01-01

    Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA) remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs) in blood-brain barrier (BBB) disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPA-associated hemorrhagic complications. Reactive oxygen species can enhance the effects of tPA on MMP activation through the loss of caveolin-1 (cav-1), a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs’ role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined. PMID:23565108

  8. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury.

    PubMed

    Kim, Eunhee; Yang, Jiwon; Beltran, Cesar D; Cho, Sunghee

    2014-08-01

    Monocytes/macrophages (MMs), mononuclear phagocytes, have been implicated in stroke-induced inflammation and injury. However, the presence of pro-inflammatory Ly-6C(high) and antiinflammatory Ly-6C(low) monocyte subsets raises uncertainty regarding their role in stroke pathologic assessment. With recent identification of the spleen as an immediate reservoir of MMs, this current study addresses whether the spleen-derived MMs are required for stroke pathologic assessment. We observed that the spleen was contracted in poststroke animals and the contraction was accompanied by decreased number of Ly-6C(high) and Ly-6C(low) subsets in the spleen. The deployment of these subsets from the spleen temporally coincided with respective increases in the ischemic brain. Compared to mice with the spleen, mice receiving a splenectomy just before the stroke displayed less accumulation of Ly-6C(high) and Ly-6C(low) MMs in the brain. Despite the reduced accumulation of both subsets, infarct size and swelling were not reduced in the asplenic mice. The dissociative findings of infarct size and extent of MM infiltration in the postischemic brain indicate minimal involvement of spleen-derived total MMs in acute infarct development. Selective Ly-6C(high) or Ly-6C(low) MM targeting is suggested to address the contribution of the individual subset to acute stroke pathologic assessment.

  9. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress. PMID:26445572

  10. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress.

  11. Intraoperative Targeted Temperature Management in Acute Brain and Spinal Cord Injury.

    PubMed

    Kraft, Jacqueline; Karpenko, Anna; Rincon, Fred

    2016-02-01

    Acute brain and spinal cord injuries affect hundreds of thousands of people worldwide. Though advances in pre-hospital and emergency and neurocritical care have improved the survival of some to these devastating diseases, very few clinical trials of potential neuro-protective strategies have produced promising results. Medical therapies such as targeted temperature management (TTM) have been trialed in traumatic brain injury (TBI), spinal cord injury (SCI), acute ischemic stroke (AIS), subarachnoid hemorrhage (SAH), and intracranial hemorrhage (ICH), but in no study has a meaningful effect on outcome been demonstrated. To this end, patient selection for potential neuro-protective therapies such as TTM may be the most important factor to effectively demonstrate efficacy in clinical trials. The use of TTM as a strategy to treat and prevent secondary neuronal damage in the intraoperative setting is an area of ongoing investigation. In this review we will discuss recent and ongoing studies that address the role of TTM in combination with surgical approaches for different types of brain injury. PMID:26759319

  12. [Asystolias in the acute phase of brain stroke. Report of a case].

    PubMed

    Belvis, R; Marti-Fàbregas, J; Franquet, E; Cocho, D; Valencia, C; Martí-Vilalta, J L

    2003-04-01

    Brain areas involved in heart autonomic control are not well characterized. Insulae have been proposed as control centers. A lesion in these areas may induce a cardiac autonomic dysfunction (arrhythmias, atrioventricular conduction abnormalities). Asystolia has not been previously reported. A 65-year-old man suffered an acute ischemia of the right middle cerebral artery (MCA) territory. NIHSS score was 19 points. Brain CT scan was normal. Transcranial Doppler (TCD) showed occlusion of the right MCA. Fibrinolysis was initiated 135 minutes after stroke onset with TCD monitoring. Twenty minutes later he suffered cardiac arrest with asystolia trace in the ECG monitor. Fibrinolysis was stopped during resuscitation. Four minutes later, he recovered with the same NIHSS score. Aggressive resuscitation maneuvers were not necessary. A repeated brain CT scan showed infarct signs in the whole MCA territory and a new TCD did not show any change. Serial blood analyses including cardiac nzymes were normal. The patient experienced four brief cardiac arrests in the next nine hours, so a temporary cardiac pacemaker was placed for four days. He was treated with aspirin and was discharged 14 days after admission. He has not experienced recurrences during a 6-month follow-up. We could not diagnose the etiology of the cardiac arrests. All the episodes occurred in the acute stroke stage and arrhythmia, atrioventricular block, myocardial ischemia or structural lesions were not found in the cardiac study. We propose that ischemia in the right insula induced sudden and transitory interruptions of the sympathetic cardiac tone. PMID:12677486

  13. Somatotopic organization of rat thalamocortical slices.

    PubMed

    Land, Peter W; Kandler, Karl

    2002-09-15

    The thalamocortical slice is widely employed for in vitro studies of cortical circuits. This preparation was developed in order to preserve anatomical and functional connectivity between the ventrobasal thalamus and somatosensory (whisker/barrel) cortex of young mice, and thalamocortical slice experiments have contributed significantly to our understanding of the thalamocortical synapse. Cortical somatotopy within thalamocortical slices, however, has not been characterized, and this greatly limits their use in studies that require identification of cortical areas associated with particular regions of the sensory periphery. To address this shortcoming we used electrophysiological recording and neuroanatomical labeling techniques in rats to mark the position of functionally defined whisker barrels, in vivo. We subsequently processed the brains in a plane appropriate for TC slices and characterized the location of somatotopically identified barrels in relation to other aspects of slice topology. We found that barrels associated with the large mobile whiskers occupy a particular location in TC slices, but that there are certain constraints to studying this portion of the barrelfield in vitro.

  14. Acute decrease in alkaline phosphatase after brain injury: A potential mechanism for tauopathy.

    PubMed

    Arun, Peethambaran; Oguntayo, Samuel; Albert, Stephen Van; Gist, Irene; Wang, Ying; Nambiar, Madhusoodana P; Long, Joseph B

    2015-11-16

    Dephosphorylation of phosphorylated Tau (pTau) protein, which is essential for the preservation of neuronal microtubule assemblies and for protection against trauma-induced tauopathy and chronic traumatic encephalopathy (CTE), is primarily achieved in brain by tissue non-specific alkaline phosphatase (TNAP). Paired helical filaments (PHFs) and Tau isolated from Alzheimer's disease (AD) patients' brains have been shown to form microtubule assemblies with tubulin only after treatment with TNAP or protein phosphatase-2A, 2B and -1, suggesting that Tau protein in the PHFs of neurons in AD brain is hyperphosphorylated, which prevents microtubule assembly. Using blast or weight drop models of traumatic brain injury (TBI) in rats, we observed pTau accumulation in the brain as early as 6h post-injury and further accumulation which varied regionally by 24h post-injury. The pTau accumulation was accompanied by reduced TNAP expression and activity in these brain regions and a significantly decreased plasma total alkaline phosphatase activity after the weight drop. These results reveal that both blast- and impact acceleration-induced head injuries cause an acute decrease in the level/activity of TNAP in the brain, which potentially contributes to trauma-induced accumulation of pTau and the resultant tauopathy. The regional changes in the level/activity of TNAP or accumulation of pTau after these injuries did not correlate with the accumulation of amyloid precursor protein, suggesting that the basic mechanism underlying tauopathy in TBI might be distinct from that associated with AD.

  15. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury.

    PubMed

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, Rosalinde; Groothuis, Geny M M; Russel, Frans G M

    2014-09-01

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker identification, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PCLS were incubated with acetaminophen (APAP), 3-acetamidophenol, diclofenac and lipopolysaccharide for 24-48 h. PCLS medium from all species treated with APAP demonstrated similar changes in protein profiles, as previously found in mouse urine after APAP-induced liver injury, including the same key proteins: superoxide dismutase 1, carbonic anhydrase 3 and calmodulin. Further analysis showed that the concentration of hepcidin, a hepatic iron-regulating hormone peptide, was reduced in PCLS medium after APAP treatment, resembling the decreased mouse plasma concentrations of hepcidin observed after APAP treatment. Interestingly, comparable results were obtained after 3-acetamidophenol incubation in rat and human, but not mouse PCLS. Incubation with diclofenac, but not with lipopolysaccharide, resulted in the same toxicity parameters as observed for APAP, albeit to a lesser extent. In conclusion, proteomics can be applied to identify potential translational biomarkers using the PCLS system.

  16. Corticosteroids in acute traumatic brain injury: systematic review of randomised controlled trials.

    PubMed Central

    Alderson, P.; Roberts, I.

    1997-01-01

    OBJECTIVE: To quantify the effectiveness and safety of corticosteroids in the treatment of acute traumatic brain injury. DESIGN: Systematic review of randomised controlled trials of corticosteroids in acute traumatic brain injury. Summary odds ratios were estimated as an inverse variance weighted average of the odds ratios for each study. SETTING: Randomised trials available by March 1996. SUBJECTS: The included trials with outcome data comprised 2073 randomised participants. RESULTS: The effect of corticosteroids on the risk of death was reported in 13 included trials. The pooled odds ratio for the 13 trials was 0.91 (95% confidence interval 0.74 to 1.12). Pooled absolute risk reduction was 1.8% (-2.5% to 5.7%). For the 10 trials that reported death or disability the pooled odds ratio was 0.90 (0.72 to 1.11). For infections of any type the pooled odds ratio was 0.92 (0.69 to 1.23) and for the seven trials reporting gastrointestinal bleeding it was 1.05 (0.44 to 2.52). With only those trials with the best quality of concealment of allocation, the pooled odds ratio estimates for death and death or disability became closer to unity. CONCLUSIONS: This systematic review of randomised controlled trials of corticosteroids in acute traumatic brain injury shows that there remains considerable uncertainty over their effects. Neither moderate benefits nor moderate harmful effects can be excluded. The widely practicable nature of the drugs and the importance of the health problem suggest that large simple trials are feasible and worth while to establish whether there are any benefits from use of corticosteroids in this setting. PMID:9224126

  17. Interleukin-1beta reduces temperature sensitivity but elevates thermal thresholds in different populations of warm-sensitive hypothalamic neurons in rat brain slices.

    PubMed

    Vasilenko, V Y; Petruchuk, T A; Gourine, V N; Pierau, F K

    2000-10-13

    Extracellularly recorded firing rates of neurons in slices of the preoptic area and anterior hypothalamus (PO/AH) of the rat were determined during thermal stimulation. Human recombinant interleukin-1beta (20 ng/ml) did not influence temperature-insensitive neurons, but reduced the firing rate and thermosensitivity in linear warm-sensitive neurons, and shifted the thermal thresholds of activation in threshold warm- and cold-sensitive neurons by 1.1-2.3 degrees C to hyperthermic temperatures. The data support the suggestion that endogenous pyrogens may act on different populations of thermosensitive PO/AH neurons to induce fever. The shift of the thermal thresholds of activation of threshold warm- and cold-sensitive neurons in combination with the otherwise maintained temperature sensitivity of these neurons appears to play a major part for the controlled shift of body temperature and the maintenance of the elevated body temperature during cytokine-induced fever.

  18. Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain

    PubMed Central

    Suyatin, Dmitry B.; Wallman, Lars; Thelin, Jonas; Prinz, Christelle N.; Jörntell, Henrik; Samuelson, Lars; Montelius, Lars; Schouenborg, Jens

    2013-01-01

    We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo. PMID:23431387

  19. Acute brain ischemia as a complication of the Ehlers-Danlos syndrome, the case series.

    PubMed

    Pajak, Michal; Majos, Marcin A; Szubert, Wojciech; Stefanczyk, Ludomir; Majos, Agata

    2014-10-01

    Vascular type of Ehlers-Danlos syndrome involves many severe complications leading not only to organ-specific symptoms but often ends in a sudden death. The aim of this paper was to present a diagnostic possibilities and its efficiency rate in patients with vascular complications of Ehlers-Danlos syndrome who suffered from artery dissection resulting in acute brain or limb ischemia. We analysed three patients with diagnosed Ehlers-Danlos syndrome who were referred to radiology department for diagnostic imaging of affected vascular beds, each experienced brain ischemia. The paper also aims at offering some general recommendations for patients suffering from possible complications of type IV Ehlers-Danlos syndrome basing on our own experience and available literature data.

  20. Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition.

    PubMed

    Ogasawara, Daisuke; Deng, Hui; Viader, Andreu; Baggelaar, Marc P; Breman, Arjen; den Dulk, Hans; van den Nieuwendijk, Adrianus M C H; van den Nieuwendijk, Adriann M C H; Soethoudt, Marjolein; van der Wel, Tom; Zhou, Juan; Overkleeft, Herman S; Sanchez-Alavez, Manuel; Mori, Simone; Mo, Simone; Nguyen, William; Conti, Bruno; Liu, Xiaojie; Chen, Yao; Liu, Qing-Song; Cravatt, Benjamin F; van der Stelt, Mario

    2016-01-01

    Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.

  1. Features of Neurotoxicity on Brain CT of Acutely Intoxicated Unconscious Patients

    PubMed Central

    Sanei Taheri, Morteza; Noori, Maryam; Nahvi, Vahideh; Moharamzad, Yashar

    2010-01-01

    Diagnostic imaging is a valuable device in clinical management of poisoned patients presenting to emergency units in a comatose state. Some toxic agents have adverse effects on the central nervous system (CNS). Non-contrast computed tomography (CT) of the brain, as an available diagnostic method with a high resolution, can provide useful information about structural disturbances of unconscious patients with suspected drug or chemical intoxication. The authors would describe various presentations of toxic substances detected on the brain CT scans of ten patients with acute intoxication. While non-specific, CT findings of low-attenuation lesions in the basal ganglia, infarctions in young patients, or diffuse edema should raise suspicion for poisoning or overdose. PMID:21270943

  2. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    USGS Publications Warehouse

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pbrain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  3. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury.

    PubMed

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Bai, Lijun; Kuang, Hongmei; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2016-01-01

    Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; and typical: 0.01-0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients. PMID:26869907

  4. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals.

    PubMed

    Slusher, A L; Whitehurst, M; Zoeller, R F; Mock, J T; Maharaj, A; Huang, C-J

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) serves as a vital regulator of neuronal proliferation and survival, and has been shown to regulate energy homeostasis, glucose metabolism and body weight maintenance. Elevated concentrations of plasma BDNF have been associated with obesity and type 2 diabetes mellitus. Acute aerobic exercise transiently increases circulating BDNF, potentially correcting obesity-related metabolic impairment. The present study aimed to compare acute aerobic exercise elicited BDNF responses in obese and normal-weight subjects. Furthermore, we aimed to investigate whether acute exercise-induced plasma BDNF elevations would be associated with improved indices of insulin resistance, as well as substrate utilization [carbohydrate oxidation (CHOoxi) and fat oxidation (FAToxi)]. Twenty-two healthy, untrained subjects [11 obese (four men and seven women; age = 22.91 ± 4.44 years; body mass index = 35.72 ± 4.17 kg/m(2)) and 11 normal-weight (five men and six women; age = 23.27 ± 2.24 years; body mass index = 21.89 ± 1.63 kg/m(2))] performed 30 min of continuous submaximal aerobic exercise at 75% maximal oxygen consumption. Our analyses showed that the BDNF response to acute aerobic exercise was similar in obese and normal-weight subjects across time (time: P = 0.015; group: P = not significant) and was not associated with indices of IR. Although no differences in the rates of CHOoxi and FAToxi were found between both groups, total relative energy expenditure was significantly lower in obese subjects compared to normal-weight subjects (3.53 ± 0.25 versus 5.59 ± 0.85; P < 0.001). These findings suggest that acute exercise-elicited BDNF elevation may not be sufficient to modulate indices of IR or the utilization of either carbohydrates or fats in obese individuals.

  5. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    PubMed Central

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  6. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury.

    PubMed

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  7. Effective factors on linguistic disorder during acute phase following traumatic brain injury in adults.

    PubMed

    Chabok, Shahrokh Yousefzadeh; Kapourchali, Sara Ramezani; Leili, Ehsan Kazemnezhad; Saberi, Alia; Mohtasham-Amiri, Zahra

    2012-06-01

    Traumatic brain injury (TBI) has been known to be the leading cause of breakdown and long-term disability in people under 45 years of age. This study highlights the effective factors on post-traumatic (PT) linguistic disorder and relations between linguistic and cognitive function after trauma in adults with acute TBI. A cross-sectional design was employed to study 60 post-TBI hospitalized adults aged 18-65 years. Post-traumatic (PT) linguistic disorder and cognitive deficit after TBI were respectively diagnosed using the Persian Aphasia Test (PAT) and Persian version of Mini-Mental State Examination (MMSE) at discharge. Primary post-resuscitation consciousness level was determined using the Glasgow Coma Scale (GCS). Paracilinical data was obtained by CT scan technique. Multiple logistic regression analysis illustrated that brain injury severity was the first powerful significant predictor of PT linguistic disorder after TBI and frontotemporal lesion was the second. It was also revealed that cognitive function score was significantly correlated with score of each language skill except repetition. Subsequences of TBI are more commonly language dysfunctions that demand cognitive flexibility. Moderate, severe and fronto-temporal lesion can increase the risk of processing deficit in linguistic macrostructure production and comprehension. The dissociation risk of cortical and subcortical pathways related to cognitive-linguistic processing due to intracranial lesions can augment possibility of lexical-semantic processing deficit in acute phase which probably contributes to later cognitive-communication disorder.

  8. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia.

    PubMed

    Adibzadeh, F; Verhaart, R F; Verduijn, G M; Fortunati, V; Rijnen, Z; Franckena, M; van Rhoon, G C; Paulides, M M

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR₁₀g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR₁₀g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  9. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    NASA Astrophysics Data System (ADS)

    Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  10. Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures.

    PubMed

    Ajmone-Cat, Maria Antonietta; Mancini, Melissa; De Simone, Roberta; Cilli, Piera; Minghetti, Luisa

    2013-10-01

    Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals. PMID:23918452

  11. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study.

    PubMed

    Gregoire, Simone M; Charidimou, Andreas; Gadapa, Naveen; Dolan, Eamon; Antoun, Nagui; Peeters, Andre; Vandermeeren, Yves; Laloux, Patrice; Baron, Jean-Claude; Jäger, Hans R; Werring, David J

    2011-08-01

    Subclinical acute ischaemic lesions on brain magnetic resonance imaging have recently been described in spontaneous intracerebral haemorrhage, and may be important to understand pathophysiology and guide treatment. The underlying mechanisms are uncertain. We tested the hypothesis that ischaemic lesions are related to magnetic resonance imaging markers of the severity and type of small-vessel disease (hypertensive arteriopathy or cerebral amyloid angiopathy) in a multicentre, cross-sectional study. We studied consecutive patients with intracerebral haemorrhage from four specialist stroke centres, and age-matched stroke service referrals without intracerebral haemorrhage. Acute ischaemic lesions were assessed on magnetic resonance imaging (<3 months after intracerebral haemorrhage) using diffusion-weighted imaging. White matter changes and cerebral microbleeds were rated with validated scales. We investigated associations between diffusion-weighted imaging lesions, clinical and radiological characteristics. We included 114 patients with intracerebral haemorrhage (39 with clinically probable cerebral amyloid angiopathy) and 47 age-matched controls. The prevalence of diffusion-weighted imaging lesions was 9/39 (23%) in probable cerebral amyloid angiopathy-related intracerebral haemorrhage versus 6/75 (8%) in the remaining patients with intracerebral haemorrhage (P = 0.024); no diffusion-weighted imaging lesions were found in controls. Diffusion-weighted imaging lesions were mainly cortical and were associated with mean white matter change score (odds ratio 1.14 per unit increase, 95% confidence interval 1.02-1.28, P = 0.024) and the presence of strictly lobar cerebral microbleeds (odds ratio 3.85, 95% confidence interval 1.15-12.93, P = 0.029). Acute, subclinical ischaemic brain lesions are frequent but previously underestimated after intracerebral haemorrhage, and are three times more common in cerebral amyloid angiopathy-related intracerebral haemorrhage than in

  12. A glass capillary microelectrode based on capillarity and its application to the detection of L-glutamate release from mouse brain slices.

    PubMed

    Nakajima, Kumiko; Yamagiwa, Takashi; Hirano, Ayumi; Sugawara, Masao

    2003-01-01

    A new glass capillary microelectrode for L-glutamate is described using pulled glass capillaries (tip size, approximately 12.5 microm) with a very small volume (approximately 2 microl) of inner solution containing glutamate oxidase (GluOx) and ascorbate oxidase. The operation of the electrode is based on capillary action that samples L-glutamate into the inner solution. The enzyme reaction by GluOx generates hydrogen peroxide that is detected at an Os-gel-HRP polymer modified Pt electrode in a three-electrode configuration. The amperometric response behavior of the electrode was characterized in terms of the capillarity, response time, sensitivity and selectivity for measurements of L-glutamate. The currents at 0 V vs. Ag/AgCl increased linearly with the L-glutamate concentration from 10 to 150 microM for in vitro and in situ calibrations. The response was highly selective to L-glutamate over ascorbate, dopamine, serotonin and other amino acids. The detection of L-glutamate in the extracellular fluids of different regions of mouse hippocampal slices under stimulation of KCl was demonstrated.

  13. Experimental carbon dioxide laser brain lesions and intracranial dynamics. Part 2. Effect on brain water content and its response to acute therapy

    SciTech Connect

    Tiznado, E.G.; James, H.E.; Moore, S.

    1985-04-01

    Experimental brain lesions were created over the left parietooccipital cortex of the albino rabbit through the intact dura mater with high radiating carbon dioxide laser energy. The brain water content was studied 2, 6, and 24 hours after the insult. Another two groups of animals received acute therapy with either dexamethasone (1 mg/kg) or furosemide (1 mg/kg). In all groups, Evans blue extravasation uniformly extended from the impact crater into the surrounding white matter. The brain water content in the gray matter was elevated from the control value by 2 hours after impact and remained elevated at 6 and 24 hours. The white matter brain water content did not increase until 6 hours after impact and remained elevated in the 24-hour group. After dexamethasone treatment, there was a significant decrease of water in the gray matter, but not in the white matter. With furosemide therapy, there was no reduction of gray or white matter brain water.

  14. Fiberoptic endoscopic evaluation of swallowing in patients with acute traumatic brain injury.

    PubMed

    Leder, S B

    1999-10-01

    Dysphagia and aspiration in intensive care unit patients with acute traumatic brain injury (TBI) is a frequent and potentially life-threatening problem. Any diagnostic technique used with this population, therefore, must be able to be performed in a timely and efficient manner while providing objective information on the nature of the swallowing problem. The purpose of the present study was to investigate the utility of using the fiberoptic endoscopic evaluation of swallowing (FEES) technique to diagnosis pharyngeal stage dysphagia and determine aspiration status in patients who presented with acute TBI. A total of 47 subjects were assessed with FEES. Thirty of 47 (64%) subjects swallowed successfully and were able to take an oral diet: 2 of 30 (7%) thickened liquids and purée consistencies, 8 of 30 (27%) a soft diet, and 20 of 30 (67%) a regular diet. Seventeen of 47 (36%) subjects exhibited pharyngeal stage dysphagia with aspiration and were not permitted an oral diet based on objective results provided by FEES. Of the 17 subjects who aspirated, 9 of 17 (53%) exhibited silent aspiration. Younger subjects (mean age 34 years, 3 months) aspirated significantly less often than older subjects (mean age 51 years, 8 months). No significant age difference was observed for gender or between overt and silent aspirators. It was concluded that FEES is an objective and sensitive tool that can be used successfully to diagnose pharyngeal stage dysphagia, determine aspiration status, and make recommendations for oral or nonoral feeding in patients with acute TBI.

  15. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  16. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    PubMed

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  17. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury

    PubMed Central

    Tu, Yue; Miao, Xiao-mei; Yi, Tai-long; Chen, Xu-yi; Sun, Hong-tao; Cheng, Shi-xiang; Zhang, Sai

    2016-01-01

    Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury. PMID:27482221

  18. Effects of Acute Lithium Treatment on Brain Levels of Inflammatory Mediators in Poststroke Rats.

    PubMed

    Boyko, Matthew; Nassar, Ahmad; Kaplanski, Jacob; Zlotnik, Alexander; Sharon-Granit, Yael; Azab, Abed N

    2015-01-01

    Stroke is a leading cause of mortality and morbidity worldwide. Few therapeutic options with proven efficacy are available for the treatment of this disabling disease. Lithium is the gold standard treatment for bipolar disorder. Moreover, lithium has been shown to exhibit neuroprotective effects and therapeutic efficacy as a treatment of other neurological disorders. This study was undertaken to examine the effects of lithium on brain inflammatory mediators levels, fever, and mortality in postischemic stroke rats. Ischemic stroke was induced by occlusion of the mid cerebral artery (MCAO). Pretreatment with a single dose of lithium at 2 hours before MCAO induction significantly reduced the elevation in interleukin- (IL-) 6 and prostaglandin E2 levels in brain of post-MCAO rats, as compared to vehicle-treated animals. On the other hand, lithium did not affect the elevation in IL-1α, IL-10, IL-12, and tumor necrosis factor-α levels in brain of post-MCAO rats. Moreover, pretreatment with lithium did not alter post-MCAO fever and mortality. These results suggest that acute pretreatment with a single dose of lithium did not markedly affect post-MCAO morbidity and mortality in rats.

  19. Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke.

    PubMed

    Silva, Bruno; Sousa, Larissa; Miranda, Aline; Vasconcelos, Anilton; Reis, Helton; Barcelos, Lucíola; Arantes, Rosa; Teixeira, Antonio; Rachid, Milene Alvarenga

    2015-08-01

    The present study aimed to investigate behavioral changes and neuroinflammatory process following left unilateral common carotid artery occlusion (UCCAO), a model of cerebral ischemia. Post-ischemic behavioral changes following 15 min UCCAO were recorded 24 hours after reperfusion. The novel object recognition task was used to assess learning and memory. After behavioral test, brains from sham and ischemic mice were removed and processed to evaluate central nervous system pathology by TTC and H&E techniques as well as inflammatory mediators by ELISA. UCCAO promoted long-term memory impairment after reperfusion. Infarct areas were observed in the cerebrum by TTC stain. Moreover, the histopathological analysis revealed cerebral necrotic cavities surrounded by ischemic neurons and hippocampal neurodegeneration. In parallel with memory dysfunction, brain levels of TNF-a, IL-1b and CXCL1 were increased post ischemia compared with sham-operated group. These findings suggest an involvement of central nervous system inflammatory mediators and brain damage in cognitive impairment following unilateral acute ischemia.

  20. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    PubMed Central

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  1. Pravastatin acute neuroprotective effects depend on blood brain barrier integrity in experimental cerebral ischemia.

    PubMed

    Carone, D; Librizzi, L; Cattalini, A; Sala, G; Conti, E; Cuccione, E; Versace, A; Cai, R; Monza, L; de Curtis, M; Ferrarese, C; Beretta, S

    2015-07-30

    Statins have since long been reported to exert acute neuroprotection in experimental stroke models. However, crucial questions still need to be addressed as far as the timing of their cerebral effects after intravascular administration and the role played by the blood brain barrier (BBB) crossing properties. We tested the effects of an hydrophilic statin (pravastatin, 100 nM), which poorly crosses BBB under physiological conditions. Pravastatin was administered either 90 min before or immediately after transient middle cerebral artery occlusion in the in vitro isolated guinea pig brain preparation. A multi-modal outcome assessment was performed, through electrophysiological and cerebral vascular tone recordings, MAP-2 immunohistochemistry, BBB evaluation via ZO-1/FITC-albumin analysis, AKT and ERK activation and whole-cell antioxidant capacity. Pravastatin pre-ischemic administration did not produce any significant effect. Pravastatin post-ischemic administration significantly prevented MAP-2 immunoreactivity loss in ischemic areas, increased ERK phosphorylation in the ischemic hemisphere and enhanced whole-cell antioxidant capacity. Electrophysiological parameters, vascular tone and AKT signaling were unchanged. In all tested ischemic brains, ZO-1 fragmentation and FITC albumin extravasation was observed, starting 30 min from ischemia onset, indicating loss of BBB integrity. Our findings indicate that the rapid anti-ischemic effects of intravascular pravastatin are highly dependent on BBB increased permeability after stroke.

  2. Behavioural training during acute brain trauma rehabilitation: an empirical case study.

    PubMed

    Slifer, K J; Cataldo, M D; Kurtz, P F

    1995-01-01

    Operant conditioning-based behavioural interventions are commonly used for the behavioural problems of individuals with mental retardation. There is also growing evidence of the benefits of these interventions for treating some of the behavioural problems of individuals with acquired cognitive deficits resulting from brain trauma. However, the effects of behavioural interventions on behavioural problems occurring during acute neurorehabilitation, when orientation and memory are most impaired, have not been studied. In this empirical case study, operant conditioning-based procedures were applied with an 8-year-old girl recovering from brain trauma and related neurosurgery. Screaming, non-compliance and aggression, which were disrupting rehabilitation therapies and follow-up neuroimaging, were treated using differential positive reinforcement techniques. Beneficial behavioural intervention effects were demonstrated using single-subject experimental methods. Aberrant behaviour during physical and occupational therapies was reduced, and cooperation with a computerized tomography (CT) scan without sedation was accomplished using operant behavioural intervention. Results support the use of operant interventions early in recovery from brain trauma, and highlight the importance of interdisciplinary collaboration for the implementation and further study of early behavioural interventions.

  3. Readmission to Acute Care Hospital during Inpatient Rehabilitation for Traumatic Brain Injury

    PubMed Central

    Hammond, Flora M.; Horn, Susan D.; Smout, Randall J.; Beaulieu, Cynthia L.; Barrett, Ryan S.; Ryser, David K.; Sommerfeld, Teri

    2015-01-01

    Objective To investigate frequency, reasons, and factors associated with readmission to acute care (RTAC) during inpatient rehabilitation for traumatic brain injury (TBI). Design Prospective observational cohort. Setting Inpatient rehabilitation. Participants 2,130 consecutive admissions for TBI rehabilitation. Interventions Not applicable. Main Outcome Measure(s) RTAC incidence, RTAC causes, rehabilitation length of stay (RLOS), and rehabilitation discharge location. Results 183 participants (9%) experienced RTAC for a total 210 episodes. 161 patients experienced 1 RTAC episode, 17 had 2, and 5 had 3. Mean days from rehabilitation admission to first RTAC was 22 days (SD 22). Mean duration in acute care during RTAC was 7 days (SD 8). 84 participants (46%) had >1 RTAC episode for medical reasons, 102 (56%) had >1 RTAC for surgical reasons, and RTAC reason was unknown for 6 (3%) participants. Most common surgical RTAC reasons were: neurosurgical (65%), pulmonary (9%), infection (5%), and orthopedic (5%); most common medical reasons were infection (26%), neurologic (23%), and cardiac (12%). Older age, history of coronary artery disease, history of congestive heart failure, acute care diagnosis of depression, craniotomy or craniectomy during acute care, and presence of dysphagia at rehabilitation admission predicted patients with RTAC. RTAC was less likely for patients with higher admission Functional Independence Measure Motor scores and education less than high school diploma. RTAC occurrence during rehabilitation was significantly associated with longer RLOS and smaller likelihood of discharge home. Conclusion(s) Approximately 9% of patients with TBI experience RTAC during inpatient rehabilitation for various medical and surgical reasons. This information may help inform interventions aimed at reducing interruptions in rehabilitation due to RTAC. RTACs were associated with longer RLOS and discharge to an institutional setting. PMID:26212405

  4. Acute exposure of uranyl nitrate causes lipid peroxidation and histopathological damage in brain and bone of Wistar rat.

    PubMed

    Ghosh, Somnath; Kumar, Amit; Pandey, Badri Narain; Mishra, Kaushala Prasad

    2007-01-01

    Although the kidneys are the main target organs for uranium (U) toxicity, recent studies have shown that U can cross the blood-brain barrier to accumulate in the brain. Uranyl nitrate (U-238)induced oxidative damage was investigated in brain and bone of Wistar rats after intraperitoneal injection of uranyl nitrate at acute doses either nephrotoxic (576 microg of U/kg body weight) or subnephrotoxic (144 microg U/kg body weight). The health effects of U administration at 576 microg of U/kg body weight were seen in terms of decrease in food intake and no gain in body weight compared to respective controls. These alterations were correlated with increased lipid peroxidation as measured by thiobarbituric acid reactive substances in rat brain and bone. However, at lower dosage of U (144 microg U/kg body weight), no significant lipid peroxidation was observed in brain and bone. Histological examination of U-treated (576 microg of U/kg body weight) rat brain tissues showed marked and diffuse cystic degeneration and a similar pattern in histological alterations was observed in kidneys in treated animals; whereas no significant histological change was observed in rat brains and kidney treated with a lower dose of U (144 microg U/kg body weight). It is concluded that administration of U at an acute nephrotoxic dose caused oxidative stress in brain and bone manifested as lipid peroxidation and histopathological damage.

  5. The sleep lipid oleamide may represent an endogenous anticonvulsant: an in vitro comparative study in the 4-aminopyridine rat brain-slice model.

    PubMed

    Dougalis, Antonios; Lees, George; Ganellin, C Robin

    2004-03-01

    cis-Oleamide (cOA) is a putative endocannabinoid, which modulates GABA(A) receptors, Na+ channels and gap-junctions (important targets for clinical and experimental anticonvulsants). Here we address the hypothesis that cOA possesses seizure limiting properties and might represent an endogenous anticonvulsant. Field potentials were recorded from the rat hippocampus and visual cortex. The effects of cOA, were compared to carbamazepine (CBZ), pentobarbital (PB) and carbenoxolone (CRX) on 4-Aminopyridine(4AP)-induced epileptiform discharges. CBZ (100 microM), PB (50 microM) and CRX (100 microM), but not cOA (64 microM), significantly attenuated the duration of the evoked epileptiform discharges in CA1. Interictal activity in CA3 was significantly depressed by CRX and cOA (irreversible by AM251), increased by CBZ and remained unaffected by PB. CBZ, PB and CRX abolished spontaneous ictal events and attenuated evoked ictal discharges in the visual cortex. cOA did not abolish spontaneous ictal events, but significantly (albeit weakly) reduced the duration of evoked ictal events. cOA and CRX, in contrast to CBZ or PB, caused a significant delay in the development of the evoked (tonic phase) epileptiform discharges. The weak effects of cOA seem independent of cannabinoid (CB1) receptors. Enzymatic cleavage and lack of specific antagonists for cOA confound simple interpretations of its actions in slices. Its high lipophilicity, imposing a permeability barrier, may also explain the lack of anticonvulsant activity. The effects of cOA may well be masked by release of the endogenous ligand upon ictal depolarisation as we demonstrate here for established endocannabinoids. cOA does not possess profound antiepileptic actions in our hands compared to CBZ, PB or CRX. PMID:14975678

  6. Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue.

    PubMed

    Varela, Juan A; Ferreira, Joana S; Dupuis, Julien P; Durand, Pauline; Bouchet, Delphine; Groc, Laurent

    2016-10-01

    Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic [Formula: see text]-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics.

  7. Effects of chronic and acute stimulants on brain functional connectivity hubs.

    PubMed

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Goldstein, Rita Z

    2015-12-01

    The spatial distribution and strength of information processing 'hubs' are essential features of the brain׳s network topology, and may thus be particularly susceptible to neuropsychiatric disease. Despite growing evidence that drug addiction alters functioning and connectivity of discrete brain regions, little is known about whether chronic drug use is associated with abnormalities in this network-level organization, and if such abnormalities could be targeted for intervention. We used functional connectivity density (FCD) mapping to evaluate how chronic and acute stimulants affect brain hubs (i.e., regions with many short-range or long-range functional connections). Nineteen individuals with cocaine use disorders (CUD) and 15 healthy controls completed resting-state fMRI scans following a randomly assigned dose of methylphenidate (MPH; 20mg) or placebo. Short-range and long-range FCD maps were computed for each participant and medication condition. CUD participants had increased short-range and long-range FCD in the ventromedial prefrontal cortex, posterior cingulate/precuneus, and putamen/amygdala, which in areas of the default mode network correlated with years of use. Across participants, MPH decreased short-range FCD in the thalamus/putamen, and decreased long-range FCD in the supplementary motor area and postcentral gyrus. Increased density of short-range and long-range functional connections to default mode hubs in CUD suggests an overrepresentation of these resource-expensive hubs. While the effects of MPH on FCD were only partly overlapping with those of CUD, MPH-induced reduction in the density of short-range connections to the putamen/thalamus, a network of core relevance to habit formation and addiction, suggests that some FCD abnormalities could be targeted for intervention.

  8. Changes in brain oxidative metabolism induced by inhibitory avoidance learning and acute administration of amitriptyline.

    PubMed

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L; Monleón, Santiago; Vinader-Caerols, Concepción; Parra, Andrés

    2008-05-01

    The effects of antidepressant drugs on memory have been somewhat ignored, having been considered a mere side effect of these compounds. However, the memory impairment caused by several antidepressants could be considered to form part of their therapeutic effects. Amitriptyline is currently one of the most prescribed tricyclic antidepressants, and exerts marked anticholinergic and antihistaminergic effects. In this study, we evaluated the effects of inhibitory avoidance (IA) learning and acute administration of amitriptyline on brain oxidative metabolism. Brain oxidative metabolism was measured in several limbic regions using cytochrome oxidase (CO) quantitative histochemistry. Amitriptyline produced a clear impairment in the IA task. In animals exposed only to the apparatus, amitriptyline decreased CO activity in nine brain regions, without affecting the remaining regions. In animals that underwent the IA training phase, amitriptyline reduced CO activity in only three of these nine regions. In animals treated with saline, IA acquisition increased CO activity in the medial prefrontal cortex, the prelimbic cortex, and the medial mammillary body, and diminished it in the medial septum and the nucleus basalis of Meynert with respect to animals exposed only to the IA apparatus. In animals treated with amitriptyline, IA acquisition did not modify CO activity in any of these regions, but increased it in the anteromedial nucleus of the thalamus, the diagonal band of Broca, and the dentate gyrus. The results reveal a pattern of changes in brain oxidative metabolism induced by IA training in saline-treated animals that was clearly absent in animals submitted to the same behavioural training but treated with amitriptyline. PMID:18313125

  9. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload

    PubMed Central

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  10. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

    PubMed

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  11. Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period.

    PubMed

    Wylie, Glenn R; Freeman, Kalev; Thomas, Alex; Shpaner, Marina; OKeefe, Michael; Watts, Richard; Naylor, Magdalena R

    2015-01-01

    Functional neuroimaging studies in mild traumatic brain injury (mTBI) have been largely limited to patients with persistent post-concussive symptoms, utilizing images obtained months to years after the actual head trauma. We sought to distinguish acute and delayed effects of mild traumatic brain injury on working memory functional brain activation patterns < 72 hours after mild traumatic brain injury (mTBI) and again one-week later. We hypothesized that clinical and fMRI measures of working memory would be abnormal in symptomatic mTBI patients assessed < 72 hours after injury, with most patients showing clinical recovery (i.e., improvement in these measures) within 1 week after the initial assessment. We also hypothesized that increased memory workload at 1 week following injury would expose different cortical activation patterns in mTBI patients with persistent post-concussive symptoms, compared to those with full clinical recovery. We performed a prospective, cohort study of working memory in emergency department patients with isolated head injury and clinical diagnosis of concussion, compared to control subjects (both uninjured volunteers and emergency department patients with extremity injuries and no head trauma). The primary outcome of cognitive recovery was defined as resolution of reported cognitive impairment and quantified by scoring the subject's reported cognitive post-concussive symptoms at 1 week. Secondary outcomes included additional post-concussive symptoms and neurocognitive testing results. We enrolled 46 subjects: 27 with mild TBI and 19 controls. The time of initial neuroimaging was 48 (+22 S.D.) hours after injury (time 1). At follow up (8.7, + 1.2 S.D., days after injury, time 2), 18 of mTBI subjects (64%) reported moderate to complete cognitive recovery, 8 of whom fully recovered between initial and follow-up imaging. fMRI changes from time 1 to time 2 showed an increase in posterior cingulate activation in the mTBI subjects compared to

  12. [CHARACTERIZATION OF VESTIBULAR DISORDERS IN THE INJURED PERSONS WITH THE BRAIN CONCUSSION IN ACUTE PERIOD].

    PubMed

    Skobska, O E; Kadzhaya, N V; Andreyev, O A; Potapov, E V

    2015-04-01

    There were examined 32 injured persons, ageing (34.1 ± 1.3) yrs at average, for the brain commotion (BC). The adopted protocol SCAT-3 (Standardized Concussion Assessment Tool, 3rd ed.), DHI (Dizziness Handicap Inventory questionnaire), computer stabilography (KS) were applied for the vestibular disorders diagnosis. There was established, that in acute period of BC a dyssociation between regression of objective neurological symptoms and permanence of the BC indices occurs, what confirms a latent disorder of the balance function. Changes of basic indices of statokinesiography, including increase of the vibration amplitude enhancement in general centre of pressure in a saggital square and the BC square (235.3 ± 13.7) mm2 in a modified functional test of Romberg with the closed eyes is possible to apply as objective criteria for the BC diagnosis.

  13. Brain sarcoma of meningeal origin after cranial irradiation in childhood acute lymphocytic leukemia. Case report

    SciTech Connect

    Tiberin, P.; Maor, E.; Zaizov, R.; Cohen, I.J.; Hirsch, M.; Yosefovich, T.; Ronen, J.; Goldstein, J.

    1984-10-01

    The authors report their experience with an unusual case of intracerebral sarcoma of meningeal cell origin in an 8 1/2-year-old girl. This tumor occurred 6 1/2 years after cranial irradiation at relatively low dosage (2200 rads) had been delivered to the head in the course of a multimodality treatment for acute lymphocytic leukemia. The tumor recurred approximately 10 months after the first surgical intervention. Macroscopic total excision of the recurrent growth followed by whole-brain irradiation (4500 rads) failed to eradicate it completely and local recurrence prompted reoperation 18 months later. This complication of treatment in long-term childhood leukemia survivors is briefly discussed, as well as the pathology of meningeal sarcomas.

  14. [Possibilities of magnetic-laser therapy in comprehensive treatment of patients with brain concussion in acute period].

    PubMed

    Zubkova, O V; Samosiuk, I Z; Polishchuk, O V; Shul'ga, N M; Samosiuk, N I

    2012-01-01

    The efficacy of magnetic-laser therapy used according to the method developed by us was studied in patients having the brain concussion (BC) in an acute period. The study was based on the dynamics of values of the evoked vestibular potentials and the disease clinical course. It was shown that following the magnetic-laser therapy in combination with traditional pharmacotherapy in BC acute period, the statistically significant positive changes were registered in the quantitative characteristics of the evoked vestibular brain potentials that correlated with the dynamics of the disease clinical course. The data obtained substantiate the possibility of using the magnetic-laser therapy in patients with a mild craniocereblal injury in an acute period.

  15. Leptin acts in the brain to influence hypoglycemic counterregulation: disparate effects of acute and recurrent hypoglycemia on glucagon release.

    PubMed

    Reno, Candace M; Ding, Yuyan; Sherwin, Robert

    2015-12-15

    Leptin has been shown to diminish hyperglycemia via reduced glucagon secretion, although it can also enhance sympathoadrenal responses. However, whether leptin can also inhibit glucagon secretion during insulin-induced hypoglycemia or increase epinephrine during acute or recurrent hypoglycemia has not been examined. To test whether leptin acts in the brain to influence counterregulation, hyperinsulinemic hypoglycemic (∼45 mg/dl) clamps were performed on rats exposed to or not exposed to recurrent hypoglycemia (3 days, ∼40 mg/dl). Intracerebroventricular artificial cerebral spinal fluid or leptin was infused during the clamp. During acute hypoglycemia, leptin decreased glucagon responses by 51% but increased epinephrine and norepinephrine by 24 and 48%, respectively. After recurrent hypoglycemia, basal plasma leptin levels were undetectable. Subsequent brain leptin infusion during hypoglycemia paradoxically increased glucagon by 45% as well as epinephrine by 19%. In conclusion, leptin acts within the brain to diminish glucagon secretion during acute hypoglycemia but increases epinephrine, potentially limiting its detrimental effects during hypoglycemia. Exposure to recurrent hypoglycemia markedly suppresses plasma leptin, whereas exogenous brain leptin delivery enhances both glucagon and epinephrine release to subsequent hypoglycemia. These data suggest that recurrent hypoglycemia may diminish counterregulatory responses in part by reducing brain leptin action.

  16. Forward and inverse electroencephalographic modeling in health and in acute traumatic brain injury

    PubMed Central

    Irimia, Andrei; Goh, S.Y. Matthew; Torgerson, Carinna M.; Chambers, Micah C.; Kikinis, Ron; Van Horn, John D.

    2013-01-01

    Objective EEG source localization is demonstrated in three cases of acute traumatic brain injury (TBI) with progressive lesion loads using anatomically faithful models of the head which account for pathology. Methods Multimodal magnetic resonance imaging (MRI) volumes were used to generate head models via the finite element method (FEM). A total of 25 tissue types—including 6 types accounting for pathology— were included. To determine the effects of TBI upon source localization accuracy, a minimum-norm operator was used to perform inverse localization and to determine the accuracy of the latter. Results The importance of using a more comprehensive number of tissue types is confirmed in both health and in TBI. Pathology omission is found to cause substantial inaccuracies in EEG forward matrix calculations, with lead field sensitivity being underestimated by as much as ~200% in (peri-) contusional regions when TBI-related changes are ignored. Failing to account for such conductivity changes is found to misestimate substantial localization error by up to 35 mm. Conclusions Changes in head conductivity profiles should be accounted for when performing EEG modeling in acute TBI. Significance Given the challenges of inverse localization in TBI, this framework can benefit neurotrauma patients by providing useful insights on pathophysiology. PMID:23746499

  17. Early stage assessment and course of acute stress disorder after mild traumatic brain injury.

    PubMed

    Broomhall, Luke G J; Clark, C Richard; McFarlane, Alexander C; O'Donnell, Meagan; Bryant, Richard; Creamer, Mark; Silove, Derek

    2009-03-01

    Although it has been established that acute stress disorder (ASD) and posttraumatic stress disorder occur after mild traumatic brain injury (MTBI) the qualitative differences in symptom presentation between injury survivors with and without a MTBI have not been explored in depth. This study aimed to compare the ASD and posttraumatic stress disorder symptom presentation of injury survivors with and without MTBI. One thousand one hundred sixteen participants between the ages of 17 to 65 years (mean age: 38.97 years, SD: 14.23) were assessed in the acute hospital after a traumatic injury. Four hundred seventy-five individuals met the criteria for MTBI. Results showed a trend toward higher levels of ASD in the MTBI group compared with the non-MTBI group. Those with a MTBI and ASD had longer hospital admissions and higher levels of distress associated with their symptoms. Although many of the ASD symptoms that the MTBI group scored significantly higher were also part of a postconcussive syndrome, higher levels of avoidance symptoms may suggest that this group is at risk for longer term poor psychological adjustment. Mild TBI patients may represent a injury group at risk for poor psychological adjustment after traumatic injury. PMID:19282684

  18. Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure.

    PubMed

    Ju, Hee Young; Hong, Che Ry; Shin, Hee Young

    2014-10-01

    Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered. PMID:25379043

  19. TIMP-1 attenuates blood–brain barrier permeability in mice with acute liver failure

    PubMed Central

    Chen, Feng; Radisky, Evette S; Das, Pritam; Batra, Jyotica; Hata, Toshiyuki; Hori, Tomohide; Baine, Ann-Marie T; Gardner, Lindsay; Yue, Mei Y; Bu, Guojun; del Zoppo, Gregory; Patel, Tushar C; Nguyen, Justin H

    2013-01-01

    Blood–brain barrier (BBB) dysfunction in acute liver failure (ALF) results in increased BBB permeability that often precludes the patients from obtaining a life-saving liver transplantation. It remains controversial whether matrix metalloproteinase-9 (MMP-9) from the injured liver contributes to the deregulation of BBB function in ALF. We selectively upregulated a physiologic inhibitor of MMP-9 (TIMP-1) with a single intracerebroventricular injection of TIMP-1 cDNA plasmids at 48 and 72 hours, or with pegylated-TIMP-1 protein. Acute liver failure was induced with tumor necrosis factor-α and 𝒟-(+)-galactosamine in mice. Permeability of BBB was assessed with sodium fluorescein (NaF) extravasation. We found a significant increase in TIMP-1 within the central nervous system (CNS) after the administration of TIMP-1 cDNA plasmids and that increased TIMP-1 within the CNS resulted in an attenuation of BBB permeability, a reduction in activation of epidermal growth factor receptor and p38 mitogen-activated protein kinase signals, and a restoration of the tight junction protein occludin in mice with experimental ALF. Pegylated TIMP-1 provided similar protection against BBB permeability in mice with ALF. Our results provided a proof of principle that MMP-9 contributes to the BBB dysfunction in ALF and suggests a potential therapeutic role of TIMP-1 in ALF. PMID:23532086

  20. Acute Serum Hormone Levels: Characterization and Prognosis after Severe Traumatic Brain Injury

    PubMed Central

    McCullough, Emily H.; Niyonkuru, Christian; Ozawa, Haishin; Loucks, Tammy L.; Dobos, Julie A.; Brett, Christopher A.; Santarsieri, Martina; Dixon, C. Edward; Berga, Sarah L.; Fabio, Anthony

    2011-01-01

    Abstract Experimental traumatic brain injury (TBI) studies report the neuroprotective effects of female sex steroids on multiple mechanisms of injury, with the clinical assumption that women have hormonally mediated neuroprotection because of the endogenous presence of these hormones. Other literature indicates that testosterone may exacerbate injury. Further, stress hormone abnormalities that accompany critical illness may both amplify or blunt sex steroid levels. To better understand the role of sex steroid exposure in mediating TBI, we 1) characterized temporal profiles of serum gonadal and stress hormones in a population with severe TBI during the acute phases of their injury; and 2) used a biological systems approach to evaluate these hormones as biomarkers predicting global outcome. The study population was 117 adults (28 women; 89 men) with severe TBI. Serum samples (n=536) were collected for 7 days post-TBI for cortisol, progesterone, testosterone, estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Hormone data were linked with clinical data, including acute care mortality and Glasgow Outcome Scale (GOS) scores at 6 months. Hormone levels after TBI were compared to those in healthy controls (n=14). Group based trajectory analysis (TRAJ) was used to develop temporal hormone profiles that delineate distinct subpopulations in the cohort. Structural equations models were used to determine inter-relationships between hormones and outcomes within a multivariate model. Compared to controls, acute serum hormone levels were significantly altered after severe TBI. Changes in the post-TBI adrenal response and peripheral aromatization influenced hormone TRAJ profiles and contributed to the abnormalities, including increased estradiol in men and increased testosterone in women. In addition to older age and greater injury severity, increased estradiol and testosterone levels over time were associated with increased mortality and worse global

  1. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  2. Portable Device Slices Thermoplastic Prepregs

    NASA Technical Reports Server (NTRS)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  3. End-of-life and brain death in acute coma and disorders of consciousness.

    PubMed

    Greer, David M; Curiale, Gioacchino G

    2013-04-01

    Consulting neurologists are often asked to evaluate patients in acute nontraumatic coma. The authors review prognostication of functional outcomes, determining brain death, and managing end-of-life care. Prognostication of outcome after cardiac arrest in comatose patients is a frequently encountered scenario with high-stakes implications. However, current guidelines are limited by a failure to address the use of therapeutic hypothermia and thus may lead to overly pessimistic outcome prediction. Pupillary light responses and corneal reflexes remain highly predictive clinical signs of a poor prognosis. Motor responses have a high false-positive rate for predicting a poor outcome, especially in patients treated with therapeutic hypothermia. Ancillary testing with electroencephalography, somatosensory evoked potentials, serum neuron-specific enolase, and neuroimaging is often useful in predicting outcomes. Brain death is a clinical condition of irreversible coma of known cause with absent brainstem reflexes and apnea. An understanding of the value of confirmatory testing and the potential for confounding factors is essential in making a correct diagnosis. As coma carries a high mortality rate, neurologists must be capable of guiding goals of care, discussing end-of-life issues, and understanding organ-procurement procedures. PMID:23888399

  4. Effects of different kinds of acute stress on nerve growth factor content in rat brain.

    PubMed

    von Richthofen, Sita; Lang, Undine E; Hellweg, Rainer

    2003-10-17

    Nerve growth factor (NGF) has several effects on the central nervous system; on the one hand NGF fosters survival and function of cholinergic neurons of the basal forebrain, on the other hand this protein is implicated in the stress response of the hypothalamic-pituitary-adrenocortical axis (HPAA). In this study we tested the influence of threatening and painful stress treatments in three different intensities as well as forced motoric activity on NGF content in different brain areas in adult rats. We found that threatening treatment with or without painful stimuli was followed by a significant decrease of NGF concentration in the amygdala (44.5%; P=0.03) and the frontal cortex (-45.5%; P=0.02). We also observed that after stress of forced motoric activity NGF content in the frontal cortex (-32%; P=0.01) and the hippocampus (-32%; P=0.006) was significantly reduced. Thus, NGF content in distinct brain regions is decreased, following different forms of acute stress. This might be relevant for the pathophysiological understanding of psychiatric diseases, such as depression, which are associated with stress.

  5. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. PMID:27511839

  6. A compact and autoclavable system for acute extracellular neural recording and brain pressure monitoring for humans.

    PubMed

    Angotzi, Gian Nicola; Baranauskas, Gytis; Vato, Alessandro; Bonfanti, Andrea; Zambra, Guido; Maggiolini, Emma; Semprini, Marianna; Ricci, Davide; Ansaldo, Alberto; Castagnola, Elisa; Ius, Tamara; Skrap, Miran; Fadiga, Luciano

    2015-02-01

    One of the most difficult tasks for the surgeon during the removal of low-grade gliomas is to identify as precisely as possible the borders between functional and non-functional brain tissue with the aim of obtaining the maximal possible resection which allows to the patient the longer survival. For this purpose, systems for acute extracellular recordings of single neuron and multi-unit activity are considered promising. Here we describe a system to be used with 16 microelectrodes arrays that consists of an autoclavable headstage, a built-in inserter for precise electrode positioning and a system that measures and controls the pressure exerted by the headstage on the brain with a twofold purpose: to increase recording stability and to avoid disturbance of local perfusion which would cause a degradation of the quality of the recording and, eventually, local ischemia. With respect to devices where only electrodes are autoclavable, our design permits the reduction of noise arising from long cable connections preserving at the same time the flexibility and avoiding long-lasting gas sterilization procedures. Finally, size is much smaller and set up time much shorter compared to commercial systems currently in use in surgery rooms, making it easy to consider our system very useful for intra-operatory mapping operations. PMID:25486648

  7. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. PMID:27190065

  8. [Successful induction therapy for acute myeloid leukemia complicated with brain hemorrhage and hyperleukocytosis].

    PubMed

    Miyazaki, Takuya; Abe, Nana; Yamazaki, Etsuko; Koyama, Satoshi; Miyashita, Kazuho; Takahashi, Hiroyuki; Nakajima, Yuki; Tachibana, Takayoshi; Kamijo, Aki; Tomita, Naoto; Ishigastubo, Yoshiaki

    2016-02-01

    Adequate management of hyperleukocytosis in patients with acute myeloid leukemia (AML) is essential for the prevention of life-threatening complications related to leukostasis and tumor lysis syndrome, but the optimal therapeutic strategy remains unclear. We report a 15-year-old girl with newly diagnosed AML who had extreme hyperleukocytosis (leukocyte count at diagnosis, 733,000/μl) leading to a brain hemorrhage. She was initially treated with hydroxyurea, but presented with brain hemorrhage due to leukostasis and underwent leukapheresis emergently with intensive care and mechanical ventilation. Full-dose standard induction chemotherapy was initiated after achieving gradual cytoreduction (leukocyte count, 465,000/μl) within five days after the initiation of therapy with hydroxyurea and leukapheresis. These treatments were successful and she experienced no complications. The patient ultimately recovered fully and was discharged with complete remission of AML. Although the effects of hydroxyurea and leukapheresis in the setting of hyperleukocytosis are still controversial, these initial treatments may contribute to successful bridging therapy followed by subsequent induction chemotherapy, especially in AML cases with extreme hyperleukocytosis or life-threatening leukostasis. PMID:26935637

  9. Acute Ethanol Effects on Brain Activation in Low- and High-Level Responders to Alcohol

    PubMed Central

    Trim, Ryan S.; Simmons, Alan N.; Tolentino, Neil J.; Hall, Shana A.; Matthews, Scott C.; Robinson, Shannon K.; Smith, Tom L.; Padula, Claudia B.; Paulus, Martin P.; Tapert, Susan F.; Schuckit, Marc A.

    2013-01-01

    Background A low level of response (LR) to alcohol is an important endophenotype associated with an increased risk for alcoholism. However, little is known about how neural functioning may differ between individuals with low and high LRs to alcohol. This study examined whether LR group effects on neural activity varied as a function of acute alcohol consumption. Methods 30 matched high- and low-LR pairs (N=60 healthy young adults) were recruited from the University of California, San Diego and administered a structured diagnostic interview and laboratory alcohol challenge followed by two fMRI sessions under placebo and alcohol conditions, in randomized order. Task performance and BOLD response contrast to high relative to low working memory load in an event-related visual working memory (VWM) task was examined across 120 fMRI sessions. Results Both LR groups performed similarly on the VWM task across conditions. A significant LR group by condition interaction effect was observed in inferior frontal and cingulate regions, such that alcohol attenuated the LR group differences found under placebo (p<.05). The LR group by condition effect remained even after controlling for cerebral blood flow, age, and typical drinking quantity. Conclusions Alcohol had differential effects on brain activation for low and high LR individuals within frontal and cingulate regions. These findings represent an additional step in the search for physiological correlates of a low LR, and identify brain regions that may be associated with the low LR response. PMID:20477775

  10. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    PubMed

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    underestimated when brain coverage was 40 mm or less (P < .0001). Conclusion Correct threshold setting and whole-brain coverage CT perfusion allowed differentiation of the penumbra from the ischemic core in patients with acute ischemic stroke. (©) RSNA, 2016 Online supplemental material is available for this article.

  11. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  12. How mild traumatic brain injury may affect declarative memory performance in the post-acute stage.

    PubMed

    Stulemeijer, Maja; Vos, Pieter E; van der Werf, Sieberen; van Dijk, Gert; Rijpkema, Mark; Fernández, Guillén

    2010-09-01

    Memory deficits are among the most frequently reported sequelae of mild traumatic brain injury (MTBI), especially early after injury. To date, these cognitive deficits remain poorly understood, as in most patients the brain is macroscopically intact. To identify the mechanism by which MTBI causes declarative memory impairments, we probed the functionality of the medial temporal lobe (MTL) and the prefrontal cortex (PFC), within 6 weeks after injury in 43 patients from a consecutive cohort, and matched healthy controls. In addition to neuropsychological measures of declarative memory and other cognitive domains, all subjects underwent functional magnetic resonance imaging (fMRI). Behavioral results showed poorer declarative memory performance in patients than controls, and decreasing performance with increasing duration of post-traumatic amnesia (a measure of injury severity). Task performance in the scanner was, as intended by the task and design, similar in patients and controls, and did not relate to injury severity. The task used reliably activated the MTL and PFC. Although we did not find significant differences in brain activity when comparing patients and controls, we revealed, in agreement with our neuropsychological findings, an inverse correlation between MTL activity and injury severity. In contrast, no difference in prefrontal activation was found between patients and controls, nor was there a relation with injury severity. On a behavioral level, injury severity was inversely related to declarative memory performance. In all, these findings suggest that reduced medial temporal functionality may contribute to poorer declarative memory performance in the post-acute stage of MTBI, especially in patients with longer post-traumatic amnesia.

  13. Structural integrity of medial temporal lobes of patients with acute mild traumatic brain injury.

    PubMed

    Holli-Helenius, Kirsi; Luoto, Teemu M; Brander, Antti; Wäljas, Minna; Iverson, Grant L; Ohman, Juha

    2014-07-01

    Post-traumatic amnesia (PTA) is an acute characteristic of traumatic brain injury (TBI) and the duration of PTA is commonly used to estimate the severity of brain injury. In the context of mild traumatic brain injury (MTBI), PTA is an essential part of the routine clinical assessment. Macroscopic lesions in temporal lobes, especially hippocampal regions, are thought to be connected to memory loss. However, conventional neuroimaging has failed to reveal neuropathological correlates of PTA in MTBI. Texture analysis (TA) is an image analysis technique that quantifies the minor MRI signal changes among image pixels and, therefore, the variations in intensity patterns within the image. The objective of this work was to apply the TA technique to MR images of MTBI patients and control subjects, and to assess the microstructural damage in medial temporal lobes of patients with MTBI with definite PTA. TA was performed for fluid-attenuated inversion recovery (FLAIR) images of 50 MTBI patients and 50 age- and gender-matched controls in the regions of the amygdala, hippocampus, and thalamus. It was hypothesized that 1) there would be statistically significant differences in TA parameters between patients with MTBIs and controls, and 2) the duration of PTA would be related to TA parameters in patients with MTBI. No significant textural differences were observed between patients and controls in the regions of interest (p>0.01). No textural features were observed to correlate with the duration of PTA. Subgroup analyses were conducted on patients with PTA of>1 h, (n=33) and compared the four TA parameters to the age- and gender-matched controls (n=33). The findings were similar. This study did not reveal significant textural changes in medial temporal structures that could be related to the duration of PTA.

  14. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  15. The activity of the Ang/Tie-2 system in the brain that suffered acute carbon monoxide poisoning.

    PubMed

    Wang, Suping; Liu, Zanhua; Qu, Jing; Wang, Xiaoting

    2013-10-01

    Acute carbon monoxide poisoning (ACMP) leads to significant toxicity of the central nervous system and heart, and even death, following it, some patients suffered delayed encephalopathy. Until now, no theory had explained it exactly. It was reported that neovascularization was found in acute ischemic brains and also that angiopoietins (Ang) play important roles in the process of angiogenesis, for example, the members of Ang family, Ang-1 and Ang-2 may promote angiogenesis by combining with endothelial-specific cell surface tyrosine kinase receptor Tie-2. Interestingly, some studies suggested that small vascular injury may play an important role in the pathogenesis of delayed encephalopathy after carbon monoxide poisoning. Does neovascularization also occur in the brains after ACMP? Do Ang also take part in the pathologic processes in the brains that suffered ACMP? People know little about it. In the present study, we showed that neovascularization also occurred in the brains that suffered ACMP, and there are two expression peaks of Ang-1, Ang-2 and Tie-2, respectively, in the mice brains on the 3rd day and the 7th day following ACMP, and draw a conclusion that the Ang/Tie-2 system takes part in the pathologic processes in the brains that suffered ACMP by participating in neovascularization.

  16. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  17. Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review

    PubMed Central

    Frasca, Diana; Tomaszczyk, Jennifer; McFadyen, Bradford J.; Green, Robin E.

    2013-01-01

    Objectives: While a growing number of studies provide evidence of neural and cognitive decline in traumatic brain injury (TBI) survivors during the post-acute stages of injury, there is limited research as of yet on environmental factors that may influence this decline. The purposes of this paper, therefore, are to (1) examine evidence that environmental enrichment (EE) can influence long-term outcome following TBI, and (2) examine the nature of post-acute environments, whether they vary in degree of EE, and what impact these variations have on outcomes. Methods: We conducted a scoping review to identify studies on EE in animals and humans, and post-discharge experiences that relate to barriers to recovery. Results: One hundred and twenty-three articles that met inclusion criteria demonstrated the benefits of EE on brain and behavior in healthy and brain-injured animals and humans. Nineteen papers on post-discharge experiences revealed that variables such as insurance coverage, financial, and social support, home therapy, and transition from hospital to home, can have an impact on clinical outcomes. Conclusion: There is evidence to suggest that lack of EE, whether from lack of resources or limited ability to engage in such environments, may play a role in post-acute cognitive and neural decline. Maximizing EE in the post-acute stages of TBI may improve long-term outcomes for the individual, their family and society. PMID:23616755

  18. Alterations in catecholamine turnover in specific regions of the rat brain following acute exposure to nitrous oxide.

    PubMed

    Karuri, A R; Kugel, G; Engelking, L R; Kumar, M S

    1998-04-01

    The effects of nitrous oxide (N2O) on steady-state concentrations and turnover rates of catecholamines in the olfactory bulb, hypothalamus, brain stem, hippocampus, striatum, thalamus, cerebral cortex, and spinal cord were determined in rats. Animals were exposed for 2 h to either 60% N2O or air. Immediately following exposure, all animals were injected intraperitoneally with alpha-methylparatyrosine (alphaMPT), a competitive inhibitor of tyrosine hydroxylase, and sacrificed at 0, 30, or 90 min postinjection. Brain catecholamine concentrations were determined using high-performance liquid chromatography coupled with electrochemical detection (HPLC-EC). Results indicate that N2O exposure significantly elevates steady-state concentrations of norepinephrine (NE) in the hypothalamus and striatum yet decreases amine levels in the brain stem region. Steady-state levels of dopamine (DA) were not significantly altered in any region of the CNS by N2O exposure. Acute exposure to N2O also resulted in significant decreases in the turnover rate of NE in the brain stem, yet it increased turnover of this amine in the olfactory bulb, hypothalamus, and striatum. Acute exposure to N2O resulted in a decreased turnover rate of DA in the hippocampus and striatum. In contrast, N2O appears to increase DA turnover in the olfactory bulb. These results indicate that acute exposure to N2O in rats causes region-specific alterations in steady-state levels and turnover rates of DA and NE within the central nervous system.

  19. Alterations in blood-brain barrier function following acute hypertension: comparison of the blood-to-brain transfer of horseradish peroxidase with that of alpha-aminisobutyric acid

    SciTech Connect

    Ellison, M.D.B.

    1985-01-01

    The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study compares in rats, following acute hypertension, the cerebrovascular passage of /sup 14/C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction.

  20. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  1. Acute stress affects the global DNA methylation profile in rat brain: modulation by physical exercise.

    PubMed

    Rodrigues, Gelson M; Toffoli, Leandro V; Manfredo, Marcelo H; Francis-Oliveira, José; Silva, Andrey S; Raquel, Hiviny A; Martins-Pinge, Marli C; Moreira, Estefânia G; Fernandes, Karen B; Pelosi, Gislaine G; Gomes, Marcus V

    2015-02-15

    The vulnerability of epigenetic marks of brain cells to environmental stimuli and its implication for health have been recently debated. Thus, we used the rat model of acute restraint stress (ARS) to evaluate the impact of stress on the global DNA methylation and on the expression of the Dnmt1 and Bdnf genes of hippocampus, cortex, hypothalamus and periaqueductal gray (PAG). Furthermore, we verified the potential of physical exercise to modulate epigenetic responses evoked by ARS. Sedentary male Wistar rats were submitted to ARS at the 75th postnatal day (PND), whereas animals from a physically active group were previously submitted to swimming sessions (35-74th PND) and to ARS at the 75th PND. Global DNA methylation profile was quantified using an ELISA-based method and the quantitative expression of the Dnmt1 and Bdnf genes was evaluated by real-time PCR. ARS induced a decrease in global DNA methylation in hippocampus, cortex and PAG of sedentary animals and an increased expression of Bdnf in PAG. No change in DNA methylation was associated with ARS in the exercised animals, although it was associated with abnormal expression of Dnmt1 and Bdnf in cortex, hypothalamus and PAG. Our data reveal that ARS evokes adaptive changes in global DNA methylation of rat brain that are independent of the expression of the Dnmt1 gene but might be linked to abnormal expression of the Bdnf gene in the PAG. Furthermore, our evidence indicates that physical exercise has the potential to modulate changes in DNA methylation and gene expression consequent to ARS.

  2. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    PubMed Central

    Mulchandani, Nikhil; Yang, Weng-Lang; Khan, Mohammad Moshahid; Zhang, Fangming; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. PMID:26252187

  3. Clinical and imaging assessment of acute combat mild traumatic brain injury in Afghanistan

    PubMed Central

    Mac Donald, Christine L.; Rivet, Dennis; Ritter, John; May, Todd; Barefield, Maria; Duckworth, Josh; LaBarge, Donald; Asher, Dean; Drinkwine, Benjamin; Woods, Yvette; Connor, Michael; Brody, David L.

    2015-01-01

    Objective: To evaluate whether diffusion tensor imaging (DTI) will noninvasively reveal white matter changes not present on conventional MRI in acute blast-related mild traumatic brain injury (mTBI) and to determine correlations with clinical measures and recovery. Methods: Prospective observational study of 95 US military service members with mTBI enrolled within 7 days from injury in Afghanistan and 101 healthy controls. Assessments included Rivermead Post-Concussion Symptoms Questionnaire (RPCSQ), Post-Traumatic Stress Disorder Checklist Military (PCLM), Beck Depression Inventory (BDI), Balance Error Scoring System (BESS), Automated Neuropsychological Assessment Metrics (ANAM), conventional MRI, and DTI. Results: Significantly greater impairment was observed in participants with mTBI vs controls: RPCSQ (19.7 ± 12.9 vs 3.6 ± 7.1, p < 0.001), PCLM (32 ± 13.2 vs 20.9 ± 7.1, p < 0.001), BDI (7.4 ± 6.8 vs 2.5 ± 4.9, p < 0.001), and BESS (18.2 ± 8.4 vs 15.1 ± 8.3, p = 0.01). The largest effect size in ANAM performance decline was in simple reaction time (mTBI 74.5 ± 148.4 vs control −11 ± 46.6 milliseconds, p < 0.001). Fractional anisotropy was significantly reduced in mTBI compared with controls in the right superior longitudinal fasciculus (0.393 ± 0.022 vs 0.405 ± 0.023, p < 0.001). No abnormalities were detected with conventional MRI. Time to return to duty correlated with RPCSQ (r = 0.53, p < 0.001), ANAM simple reaction time decline (r = 0.49, p < 0.0001), PCLM (r = 0.47, p < 0.0001), and BDI (r = 0.36 p = 0.0005). Conclusions: Somatic, behavioral, and cognitive symptoms and performance deficits are substantially elevated in acute blast-related mTBI. Postconcussive symptoms and performance on measures of posttraumatic stress disorder, depression, and neurocognitive performance at initial presentation correlate with return-to-duty time. Although changes in fractional anisotropy are uncommon and subtle, DTI is more sensitive than conventional MRI in

  4. Physiological complexity of acute traumatic brain injury in patients treated with a brain oxygen protocol: utility of symbolic regression in predictive modeling of a dynamical system.

    PubMed

    Narotam, Pradeep K; Morrison, John F; Schmidt, Michael D; Nathoo, Narendra

    2014-04-01

    Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75

  5. Taurine enhances volume regulation in hippocampal slices swollen osmotically.

    PubMed

    Kreisman, N R; Olson, J E

    2003-01-01

    Cell volume regulation has been studied in neuronal and glial cultures but little is known about volume regulation in brain tissue with an intact extracellular space. We investigated volume regulation in hippocampal slices maintained in an interface chamber and exposed to hypo-osmotic medium. Relative changes in intracellular and extracellular volume were measured respectively as changes in light transmittance and extracellular resistance. Slices exposed to hypo-osmotic medium (200-240 mOsm/L) showed a decrease in light transmittance, which occasionally was preceded by a brief transient increase. However, hypo-osmotic exposure was always accompanied by a monotonic increase in extracellular resistance. Peak changes in light transmittance and extracellular resistance occurred at 15-20 min following exposure to hypo-osmotic medium. Optical evidence of volume regulation (RVD) was observed in six of 12 slices and occurred over the next 60-90 min. We hypothesized that the relatively low incidence of RVD was related to depletion of taurine, an osmolyte known to play an important role in volume regulation, during preparation of the slices. Indeed, taurine levels in freshly prepared slices were <50% of those reported in intact hippocampus. Incubation of slices in 1 mM taurine restored taurine to levels observed in situ and increased both the likelihood and magnitude of RVD in hypo-osmotic medium. Inhibition of taurine flux with 100 microM 5-nitro-2-(3 phenylpropylamino) benzoic acid blocked both RVD and the transient undershoot of volume commonly associated with return of swollen slices to iso-osmotic medium. Taurine treatment had no effect on levels of several other amino acids but preserved slice potassium content. The results indicate a critical role for cellular taurine during hypo-osmotic volume regulation in hippocampal slices. Inconsistencies between optical measurements of cellular volume changes and electrical measurements of extracellular space are likely to

  6. Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective.

    PubMed

    Ling, Josef M; Peña, Amanda; Yeo, Ronald A; Merideth, Flannery L; Klimaj, Stefan; Gasparovic, Charles; Mayer, Andrew R

    2012-04-01

    Mild traumatic brain injury is the most prevalent neurological insult and frequently results in neurobehavioural sequelae. However, little is known about the pathophysiology underlying the injury and how these injuries change as a function of time. Although diffusion tensor imaging holds promise for in vivo characterization of white matter pathology, both the direction and magnitude of anisotropic water diffusion abnormalities in axonal tracts are actively debated. The current study therefore represents both an independent replication effort (n = 28) of our previous findings (n = 22) of increased fractional anisotropy during semi-acute injury, as well as a prospective study (n = 26) on the putative recovery of diffusion abnormalities. Moreover, new analytical strategies were applied to capture spatially heterogeneous white matter injuries, which minimize implicit assumptions of uniform injury across diverse clinical presentations. Results indicate that whereas a general pattern of high anisotropic diffusion/low radial diffusivity was present in various white matter tracts in both the replication and original cohorts, this pattern was only consistently observed in the genu of the corpus callosum across both samples. Evidence for a greater number of localized clusters with increased anisotropic diffusion was identified across both cohorts at trend levels, confirming heterogeneity in white matter injury. Pooled analyses (50 patients; 50 controls) suggested that measures of diffusion within the genu were predictive of patient classification, albeit at very modest levels (71% accuracy). Finally, we observed evidence of recovery in lesion load in returning patients across a 4-month interval, which was correlated with a reduction in self-reported post-concussive symptomatology. In summary, the corpus callosum may serve as a common point of injury in mild traumatic brain injury secondary to anatomical (high frequency of long unmyelinated fibres) and biomechanics factors. A

  7. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  8. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    PubMed Central

    Namas, R; Ghuma, A; Hermus, L; Zamora, R; Okonkwo, DO; Billiar, TR; Vodovotz, Y

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partially propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP's). DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and non-human primates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS and TBI in the near future. PMID:21483522

  9. Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury

    PubMed Central

    Di Battista, Alex P.; Rizoli, Sandro B.; Lejnieks, Brandon; Min, Arimie; Shiu, Maria Y.; Peng, Henry T.; Baker, Andrew J.; Hutchison, Michael G.; Churchill, Nathan; Inaba, Kenji; Nascimento, Bartolomeu B.; de Oliveira Manoel, Airton Leonardo; Beckett, Andrew; Rhind, Shawn G.

    2016-01-01

    ABSTRACT Background: Acute coagulopathy after traumatic brain injury (TBI) involves a complex multifactorial hemostatic response that is poorly characterized. Objectives: To examine early posttraumatic alterations in coagulofibrinolytic, endothelial, and inflammatory blood biomarkers in relation to sympathetic nervous system (SNS) activation and 6-month patient outcomes, using multivariate partial least-squares (PLS) analysis. Patients and Methods: A multicenter observational study of 159 adult isolated TBI patients admitted to the emergency department at an urban level I trauma center, was performed. Plasma concentrations of 6 coagulofibrinolytic, 10 vascular endothelial, 19 inflammatory, and 2 catecholamine biomarkers were measured by immunoassay on admission and 24 h postinjury. Neurological outcome at 6 months was assessed using the Extended Glasgow Outcome Scale. PLS-discriminant analysis was used to identify salient biomarker contributions to unfavorable outcome, whereas PLS regression analysis was used to evaluate the covariance between SNS correlates (catecholamines) and biomarkers of coagulopathy, endotheliopathy, and inflammation. Results: Biomarker profiles in patients with an unfavorable outcome displayed procoagulation, hyperfibrinolysis, glycocalyx and endothelial damage, vasculature activation, and inflammation. A strong covariant relationship was evident between catecholamines and biomarkers of coagulopathy, endotheliopathy, and inflammation at both admission and 24 h postinjury. Conclusions: Biomarkers of coagulopathy and endotheliopathy are associated with poor outcome after TBI. Catecholamine levels were highly correlated with endotheliopathy and coagulopathy markers within the first 24 h after injury. Further research is warranted to characterize the pathogenic role of SNS-mediated hemostatic alterations in isolated TBI. PMID:27206278

  10. Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

    PubMed Central

    Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P.; Kumar, Sandeep; O’Buckley, Todd K.; Morrow, A. Leslie; Hodge, Clyde W.

    2010-01-01

    Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCγ immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. Conclusions These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior. PMID:17511744

  11. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  12. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability. PMID:26498936

  13. BM-16INCREASED ACUTE RADIATION EFFECT (ARE) WITH IPILUMUMAB AND RADIOSURGERY IN PATIENTS WITH MELANOMA BRAIN METASTASES

    PubMed Central

    Khoja, Leila; Kurtz, Goldie; Zadeh, Gelareh; Laperriere, Normand; Menard, Cynthia; Millar, Barbara-Ann; Bernstein, Mark; Kongkham, Paul; Joshua, Anthony; Hogg, David; Butler, Marcus; Chung, Caroline

    2014-01-01

    BACKGROUND: Ipilumumab (Ipi), an antibody that enhances T-cell activation, has been shown to improve survival in patients with metastatic melanoma. Ipilumumab may have synergistic effects with radiotherapy but this may result in increased toxicity. This study investigated the incidence of acute radiation effect (ARE) in patients with melanoma brain metastases treated with Ipi and radiosurgery (SRS) or whole brain radiotherapy (WBRT). METHODOLOGY: This retrospective study included metastatic melanoma patients treated at our institution from 2008-2013 who received SRS or WBRT for brain metastases within 4 months of Ipi treatment. We evaluated the incidence, timing and factors associated with acute radiation effect (ARE). RESULTS: From 159 patients treated with Ipi, 22 patients also received brain RT within 4 months of treatment. Three patients were excluded for lack of follow-up brain imaging, thus 19 were analysed: 14 males and 5 females, with median age 58 years (range 24-82). Ten were treated with SRS, 7 with WBRT, and 2 with SRS plus WBRT. Median dose for SRS was 21 Gy (range: 15-24 Gy). Five of 13 patients treated with SRS (38%) experienced symptomatic edema requiring steroids within 1 month of starting Ipi, and within 4 months of RT. One patient had a haemorrhage and 1 required surgical resection, which demonstrated viable disease. Therefore 3 patients (23%) treated with SRS developed isolated ARE. These metastases had volumes less than 4.2 cm3 and were treated within 4 months of Ipi to a median dose of 19.5 Gy (range 15-21 Gy). No patients with WBRT alone developed ARE. CONCLUSIONS: Following SRS for brain mets and Ipi, ARE was seen in 23% of patients within 4 months of starting Ipi treatment. This is greater than the commonly reported 10% risk of ARE after SRS alone for brain metastasis. No increased toxicity was seen with WBRT and Ipi.

  14. The impact of physical therapy in patients with severe traumatic brain injury during acute and post-acute rehabilitation according to coma duration.

    PubMed

    Lendraitienė, Eglė; Petruševičienė, Daiva; Savickas, Raimondas; Žemaitienė, Ieva; Mingaila, Sigitas

    2016-07-01

    [Purpose] The aim of study was to evaluate the impact of physical therapy on the recovery of motor and mental status in patients who sustained a severe traumatic brain injury, according to coma duration in acute and post-acute rehabilitation. [Subjects and Methods] The study population comprised patients with levels of consciousness ranging from 3 to 8 according to Glasgow Coma Scale score. The patients were divided into 2 groups based on coma duration as follows: group 1, those who were in a coma up to 1 week, and group 2, those who were in a coma for more than 2 weeks. The recovery of the patients' motor function was evaluated according to the Motor Assessment Scale and the recovery of mental status according to the Mini-Mental State Examination. [Results] The evaluation of motor and mental status recovery revealed that the patients who were in a coma up to 1 week recovered significantly better after physical therapy during the acute rehabilitation than those who were in a coma for longer than 2 weeks. [Conclusion] The recovery of motor and mental status of the patients in acute rehabilitation was significantly better for those in a coma for a shorter period.

  15. The impact of physical therapy in patients with severe traumatic brain injury during acute and post-acute rehabilitation according to coma duration.

    PubMed

    Lendraitienė, Eglė; Petruševičienė, Daiva; Savickas, Raimondas; Žemaitienė, Ieva; Mingaila, Sigitas

    2016-07-01

    [Purpose] The aim of study was to evaluate the impact of physical therapy on the recovery of motor and mental status in patients who sustained a severe traumatic brain injury, according to coma duration in acute and post-acute rehabilitation. [Subjects and Methods] The study population comprised patients with levels of consciousness ranging from 3 to 8 according to Glasgow Coma Scale score. The patients were divided into 2 groups based on coma duration as follows: group 1, those who were in a coma up to 1 week, and group 2, those who were in a coma for more than 2 weeks. The recovery of the patients' motor function was evaluated according to the Motor Assessment Scale and the recovery of mental status according to the Mini-Mental State Examination. [Results] The evaluation of motor and mental status recovery revealed that the patients who were in a coma up to 1 week recovered significantly better after physical therapy during the acute rehabilitation than those who were in a coma for longer than 2 weeks. [Conclusion] The recovery of motor and mental status of the patients in acute rehabilitation was significantly better for those in a coma for a shorter period. PMID:27512262

  16. The impact of physical therapy in patients with severe traumatic brain injury during acute and post-acute rehabilitation according to coma duration

    PubMed Central

    Lendraitienė, Eglė; Petruševičienė, Daiva; Savickas, Raimondas; Žemaitienė, Ieva; Mingaila, Sigitas

    2016-01-01

    [Purpose] The aim of study was to evaluate the impact of physical therapy on the recovery of motor and mental status in patients who sustained a severe traumatic brain injury, according to coma duration in acute and post-acute rehabilitation. [Subjects and Methods] The study population comprised patients with levels of consciousness ranging from 3 to 8 according to Glasgow Coma Scale score. The patients were divided into 2 groups based on coma duration as follows: group 1, those who were in a coma up to 1 week, and group 2, those who were in a coma for more than 2 weeks. The recovery of the patients’ motor function was evaluated according to the Motor Assessment Scale and the recovery of mental status according to the Mini-Mental State Examination. [Results] The evaluation of motor and mental status recovery revealed that the patients who were in a coma up to 1 week recovered significantly better after physical therapy during the acute rehabilitation than those who were in a coma for longer than 2 weeks. [Conclusion] The recovery of motor and mental status of the patients in acute rehabilitation was significantly better for those in a coma for a shorter period. PMID:27512262

  17. The theory of interface slicing

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.

  18. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  19. Microfluidics and multielectrode array-compatible organotypic slice culture method.

    PubMed

    Berdichevsky, Yevgeny; Sabolek, Helen; Levine, John B; Staley, Kevin J; Yarmush, Martin L

    2009-03-30

    Organotypic brain slice cultures are used for a variety of molecular, electrophysiological, and imaging studies. However, the existing culture methods are difficult or expensive to apply in studies requiring long-term recordings with multielectrode arrays (MEAs). In this work, a novel method to maintain organotypic cultures of rodent hippocampus for several weeks on standard MEAs in an unmodified tissue culture incubator is described. Polydimethylsiloxane (Sylgard) mini-wells were used to stabilize organotypic cultures on glass and MEA surfaces. Hippocampus slices were successfully maintained within PDMS mini-wells for multiple weeks, with preserved pyramidal layer organization, connectivity, and activity. MEAs were used to record the development of spontaneous activity in an organotypic cultures for 4 weeks. This method is compatible with integration of microchannels into the culture substrate. Microchannels were incorporated into the mini-wells and applied to the guidance of axons originating within the slice, paving the way for studies of axonal sprouting using organotypic slices.

  20. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria.

    PubMed

    Couturier, Karine; Hininger, Isabelle; Poulet, Laurent; Anderson, Richard A; Roussel, Anne-Marie; Canini, Frédéric; Batandier, Cécile

    2016-02-01

    Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3β and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions. PMID:26878796

  1. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.

  2. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke

    PubMed Central

    2011-01-01

    Background Neuroserpin has shown neuroprotective effects in animal models of cerebral ischemia and has been associated with functional outcome after ischemic stroke. Our aim was to study whether neuroserpin serum levels could be associated to biomarkers of excitotoxicity, inflammation and blood brain barrier disruption. Methods We prospectively included 129 patients with ischemic stroke (58.1% male; mean age, 72.4 ± 9.6 years) not treated with tPA within 12 hours (h) of symptoms onset (mean time, 4.7 ± 2.1 h). Poor functional outcome at 3 months was considered as a modified Rankin scale score >2. Serum levels of neuroserpin, Interleukin 6 (IL-6), Intercellular adhesion molecule-1 (ICAM-1), active Matrix metalloproteinase 9 (MMP-9), and cellular fibronectin (cFn) (determined by ELISA) and glutamate (determined by HPLC) were measured on admission, 24 and 72 h. The main variable was considered the decrease of neuroserpin levels within the first 24 h. ROC analysis was used to select the best predictive value for neuroserpin to predict poor functional outcome due to a lack of linearity. Results The decrease of neuroserpin levels within the first 24 h was negatively correlated with serum levels at 24 hours of glutamate (r = -0.642), IL-6 (r = -0.678), ICAM-1 (r = -0.345), MMP-9 (r = -0.554) and cFn (r = -0.703) (all P < 0.0001). In the multivariate analysis, serum levels of glutamate (OR, 1.04; CI95%, 1.01-1.06, p = 0.001); IL-6 (OR, 1.4; CI95%, 1.1-1.7, p = 0.001); and cFn (OR, 1.3; CI95%, 1.1-1.6, p = 0.002) were independently associated with a decrease of neuroserpin levels <70 ng/mL at 24 h after adjusting for confounding factors. Conclusions These findings suggest that neuroprotective properties of neuroserpin may be related to the inhibition of excitotoxicity, inflammation, as well as blood brain barrier disruption that occur after acute ischemic stroke. PMID:21569344

  3. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  4. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise.

  5. Acute-phase cytokines IL-1beta and TNF-alpha in brain development.

    PubMed

    Dziegielewska, K M; Møller, J E; Potter, A M; Ek, J; Lane, M A; Saunders, N R

    2000-03-01

    The nervous and the immune systems share several molecules that control their development and function. We studied the temporal and spatial distribution of the immunoreactivity of two acute-phase cytokines, TNF-alpha and IL-1beta, in the developing sheep neocortex and compared it with the well-described distribution of fetuin, a fetal glycoprotein also known to modulate the production of cytokines by lipopolysaccharide (LPS)-stimulated monocytes and macrophages. TNF-alpha was present first at embryonic day 30 (E30) (term is 150 days in sheep) as a faint band of immunoreactivity between the ventricular zone and the primordial plexiform layer (preplate). IL-1beta was detected at the first appearance of the cortical plate (E35-E40). Both cytokines were present on both sides of the cortical plate, which contained fetuin-positive cells, but was free from cytokine staining. By E60, TNF-alpha immunoreactivity was less prominent than that of IL-1beta and was confined to the marginal zone and outer developing white matter; IL-1beta was present in the marginal zone and in two bands of immunoreactive cells, one at the border of the cortical plate/developing layer VI (cells of neuronal morphology) and the other at the border of layer V and the developing white matter (identified as microglia). By E80, TNF-alpha staining had disappeared and IL-1beta-immunopositive microglia were no longer detectable. By E100-E140 only a few immunoreactive cells were identified in layers V-VI; these did not co-localize with fetuin-positive cells. The differences in distribution between fetuin and the two cytokines suggest that the opsonizing role of fetuin, proposed for monocyte production of cytokines, is probably not present in the developing brain. However, early in neocortical development TNF-alpha and IL-1beta were present in the subplate zone at a time of intense synaptogenesis.

  6. Risk taking in hospitalized patients with acute and severe traumatic brain injury.

    PubMed

    Fecteau, Shirley; Levasseur-Moreau, Jean; García-Molina, Alberto; Kumru, Hatiche; Vergara, Raúl Pelayo; Bernabeu, Monste; Roig, Teresa; Pascual-Leone, Alvaro; Tormos, José Maria

    2013-01-01

    Rehabilitation can improve cognitive deficits observed in patients with traumatic brain injury (TBI). However, despite rehabilitation, the ability of making a choice often remains impaired. Risk taking is a daily activity involving numerous cognitive processes subserved by a complex neural network. In this work we investigated risk taking using the Balloon Analogue Risk Task (BART) in patients with acute TBI and healthy controls. We hypothesized that individuals with TBI will take less risk at the BART as compared to healthy individuals. We also predicted that within the TBI group factors such as the number of days since the injury, severity of the injury, and sites of the lesion will play a role in risk taking as assessed with the BART. Main findings revealed that participants with TBI displayed abnormally cautious risk taking at the BART as compared to healthy subjects. Moreover, healthy individuals showed increased risk taking throughout the task which is in line with previous work. However, individuals with TBI did not show this increased risk taking during the task. We also investigated the influence of three patients' characteristics on their performance at the BART: Number of days post injury, Severity of the head injury, and Status of the frontal lobe. Results indicate that performance at the BART was influenced by the number of days post injury and the status of the frontal lobe, but not by the severity of the head injury. Reported findings are encouraging for risk taking seems to naturally improve with time postinjury. They support the need of conducting longitudinal prospective studies to ultimately identify impaired and intact cognitive skills that should be trained postinjury. PMID:24386232

  7. Trafficking of astrocytic vesicles in hippocampal slices

    SciTech Connect

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  8. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression.

  9. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression. PMID:27435420

  10. MRI measurement of angiogenesis and the therapeutic effect of acute marrow stromal cell administration on traumatic brain injury.

    PubMed

    Li, Lian; Chopp, Michael; Ding, Guang Liang; Qu, Chang Sheng; Li, Qing Jiang; Lu, Mei; Wang, Shiyang; Nejad-Davarani, Siamak P; Mahmood, Asim; Jiang, Quan

    2012-11-01

    Using magnetic resonance imaging (MRI), the present study was undertaken to investigate the therapeutic effect of acute administration of human bone marrow stromal cells (hMSCs) on traumatic brain injury (TBI) and to measure the temporal profile of angiogenesis after the injury with or without cell intervention. Male Wistar rats (300 to 350 g, n=18) subjected to controlled cortical impact TBI were intravenously injected with 1 mL of saline (n=9) or hMSCs in suspension (n=9, 3 × 10(6) hMSCs) 6 hours after TBI. In-vivo MRI acquisitions of T2-weighted imaging, cerebral blood flow (CBF), three-dimensional (3D) gradient echo imaging, and blood-to-brain transfer constant (Ki) of contrast agent were performed on all animals 2 days after injury and weekly for 6 weeks. Sensorimotor function and spatial learning were evaluated. Volumetric changes in the trauma-induced brain lesion and the lateral ventricles were tracked and quantified using T2 maps, and hemodynamic alteration and blood-brain barrier permeability were monitored by CBF and Ki, respectively. Our data show that transplantation of hMSCs 6 hours after TBI leads to reduced cerebral atrophy, early and enhanced cerebral tissue perfusion and improved functional outcome compared with controls. The hMSC treatment increases angiogenesis in the injured brain, which may promote neurologic recovery after TBI.

  11. Whole Cell Recording from an Organotypic Slice Preparation of Neocortex

    PubMed Central

    Foehring, Robert C.; Guan, Dongxu; Toleman, Tara; Cantrell, Angela R.

    2011-01-01

    We have been studying the expression and functional roles of voltage-gated potassium channels in pyramidal neurons from rat neocortex. Because of the lack of specific pharmacological agents for these channels, we have taken a genetic approach to manipulating channel expression. We use an organotypic culture preparation (16) in order to maintain cell morphology and the laminar pattern of cortex. We typically isolate acute neocortical slices at postnatal days 8-10 and maintain the slices in culture for 3-7 days. This allows us to study neurons at a similar age to those in our work with acute slices and minimizes the development of exuberant excitatory connections in the slice. We record from visually-identified pyramidal neurons in layers II/III or V using infrared illumination (IR-) and differential interference contrast microscopy (DIC) with whole cell patch clamp in current- or voltage-clamp. We use biolistic (Gene gun) transfection of wild type or mutant potassium channel DNA to manipulate expression of the channels to study their function. The transfected cells are easily identified by epifluorescence microscopy after co-transfection with cDNA for green fluorescent protein (GFP). We compare recordings of transfected cells to adjacent, untransfected neurons in the same layer from the same slice. PMID:21673642

  12. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure. PMID:25687701

  13. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure.

  14. Lung Protective Ventilation (ARDSNet) versus APRV: Ventilatory Management in a Combined Model of Acute Lung and Brain Injury

    PubMed Central

    Davies, Stephen W.; Leonard, Kenji L.; Falls, Randall K.; Mageau, Ronald P.; Efird, Jimmy T.; Hollowell, Joseph P.; Trainor, Wayne E.; Kanaan, Hilal A.; Hickner, Robert C.; Sawyer, Robert G.; Poulin, Nathaniel R.; Waibel, Brett H.; Toschlog, Eric A.

    2014-01-01

    Background Concomitant lung/brain traumatic injury, results in significant morbidity and mortality. Lung protective ventilation (ARDSNet) has become the standard for managing acute respiratory distress syndrome (ARDS); however, the resulting permissive hypercapnea may compound traumatic brain injury (TBI). Airway pressure release ventilation (APRV) offers an alternative strategy for management of this patient population. APRV was hypothesized to retard the progression of acute lung/brain injury to a greater degree than ARDSNet in a swine model. Methods Yorkshire swine were randomized to ARDSNet, APRV, or sham. Ventilatory settings and pulmonary parameters, vitals, blood gases, quantitative histopathology, and cerebral microdialysis were compared between groups using chi-square, Fisher’s exact, Student’s t-test, Wilcoxon rank-sum, and mixed effects repeated measures modeling. Results 22 swine (17 male, 5 female), weighing 25±6.0kg, were randomized to APRV (n=9), ARDSNet (n=12), or sham (n=1). PaO2/FiO2 (P/F) ratio dropped significantly while intracranial pressure increased significantly for all three groups immediately following lung and brain injury. Over time, peak inspiratory pressure, mean airway pressure, and P/F ratio significantly increased, while total respiratory rate significantly decreased within the APRV group compared to the ARDSNet group. Histopathology did not show significant differences between groups in overall brain or lung tissue injury; however, cerebral microdialysis trends suggested increased ischemia within the APRV group compared to ARDSNet over time. Conclusion Previous studies have not evaluated the effects of APRV in this population. While our macroscopic parameters and histopathology did not observe a significant difference between groups, microdialysis data suggest a trend toward increased cerebral ischemia associated with APRV over time. Additional and future studies should focus on extending the time interval for observation to

  15. The Acute Phase of Mild Traumatic Brain Injury Is Characterized by a Distance-Dependent Neuronal Hypoactivity

    PubMed Central

    Johnstone, Victoria P.A.; Shultz, Sandy R.; Yan, Edwin B.; O'Brien, Terence J.

    2014-01-01

    Abstract The consequences of mild traumatic brain injury (TBI) on neuronal functionality are only now being elucidated. We have now examined the changes in sensory encoding in the whisker-recipient barrel cortex and the brain tissue damage in the acute phase (24 h) after induction of TBI (n=9), with sham controls receiving surgery only (n=5). Injury was induced using the lateral fluid percussion injury method, which causes a mixture of focal and diffuse brain injury. Both population and single cell neuronal responses evoked by both simple and complex whisker stimuli revealed a suppression of activity that decreased with distance from the locus of injury both within a hemisphere and across hemispheres, with a greater extent of hypoactivity in ipsilateral barrel cortex compared with contralateral cortex. This was coupled with an increase in spontaneous output in Layer 5a, but only ipsilateral to the injury site. There was also disruption of axonal integrity in various regions in the ipsilateral but not contralateral hemisphere. These results complement our previous findings after mild diffuse-only TBI induced by the weight-drop impact acceleration method where, in the same acute post-injury phase, we found a similar depth-dependent hypoactivity in sensory cortex. This suggests a common sequelae of events in both diffuse TBI and mixed focal/diffuse TBI in the immediate post-injury period that then evolve over time to produce different long-term functional outcomes. PMID:24927383

  16. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice.

    PubMed

    Robert, Jérôme; Stukas, Sophie; Button, Emily; Cheng, Wai Hang; Lee, Michael; Fan, Jianjia; Wilkinson, Anna; Kulic, Iva; Wright, Samuel D; Wellington, Cheryl L

    2016-05-01

    Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimer's Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aβ) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aβ40 and Aβ42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aβ levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aβ levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aβ pool. That systemic administration of rHDL can acutely modify brain Aβ levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

  17. Acute effects of aspartame on concentrations of brain amines and their metabolites in selected brain regions of Fischer 344 and Sprague-Dawley rats.

    PubMed

    Freeman, G; Sobotka, T; Hattan, D

    1990-01-01

    This study is the first in a series to define a rodent model to document the effects of amino acid-modulating compounds on central neurotransmitter function. A time-response curve for a single dose of orally intubated aspartame was determined in male Fischer 344 and Sprague-Dawley rats. Regional brain concentrations of norepinephrine (NE), dopamine (DA), serotonin (5-HT) and their metabolites were analyzed in the hypothalamus, cerebellum, pons/medulla, hippocampus, striatum, cortex, and midbrain/thalamus at 30, 60, 120, or 240 min after oral aspartame (1000 mg/kg) administration. Without consideration for time and group variables, levels of most compounds were higher in the brain regions of Fischer than Sprague-Dawley rats. Aspartame in Fischer 344 or Sprague-Dawley rats had no significant effect on levels of the catecholamines or indoleamines at any of the time points monitored following its acute administration. From the results of this study, large oral loads of aspartame do not appear to lead to regional alterations in brain biogenic amine levels.

  18. Diagnostic Value of Elevated D-Dimer Level in Venous Thromboembolism in Patients With Acute or Subacute Brain Lesions

    PubMed Central

    Kim, Yeon Jin; Im, Sun; Jang, Yong Jun; Park, So Young; Sohn, Dong Gyun

    2015-01-01

    Objective To define the risk factors that influence the occurrence of venous thromboembolism (VTE) in patients with acute or subacute brain lesions and to determine the usefulness of D-dimer levels for VTE screening of these patients. Methods Medical data from January 2012 to December 2013 were retrospectively reviewed. Mean D-dimer levels in those with VTE versus those without VTE were compared. Factors associated with VTE were analyzed and the odds ratios (ORs) were calculated. The D-dimer cutoff value for patients with hemiplegia was defined using a receiver operating characteristic (ROC) curve. Results Of 117 patients with acute or subacute brain lesions, 65 patients with elevated D-dimer levels (mean, 5.1±5.8 mg/L; positive result >0.55 mg/L) were identified. Logistic regression analysis showed that the risk of VTE was 3.9 times higher in those with urinary tract infections (UTIs) (p=0.0255). The risk of VTE was 4.5 times higher in those who had recently undergone surgery (p=0.0151). Analysis of the ROC showed 3.95 mg/L to be the appropriate D-dimer cutoff value for screening for VTE (area under the curve [AUC], 0.63; 95% confidence interval [CI], 0.5-0.8) in patients with acute or subacute brain lesions. This differs greatly from the conventional D-dimer cutoff value of 0.55 mg/L. D-dimer levels less than 3.95 mg/L in the absence of surgery showed a negative predictive value of 95.8% (95% CI, 78.8-99.8). Conclusion Elevated D-dimer levels alone have some value in VTE diagnosis. However, the concomitant presence of UTI or a history of recent surgery significantly increased the risk of VTE in patients with acute or subacute brain lesions. Therefore, a different D-dimer cutoff value should be applied in these cases. PMID:26798616

  19. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    PubMed Central

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  20. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat.

    PubMed

    Fernández-López, David; Faustino, Joel; Daneman, Richard; Zhou, Lu; Lee, Sarah Y; Derugin, Nikita; Wendland, Michael F; Vexler, Zinaida S

    2012-07-11

    The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked whether the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2-24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70 kDa dextran) and small (3 kDa dextran), gadolinium (III)-diethyltriaminepentaacetic acid tracers remained largely undisturbed 24 h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24 h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and matrix metalloproteinase-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin, and zonula occludens protein 1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of cytokine-induced neutrophil chemoattractant-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability, and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke. PMID:22787045

  1. Neuropeptide Y administration acutely increases hypothalamic corticotropin-releasing factor immunoreactivity: lack of effect in other rat brain regions

    SciTech Connect

    Haas, D.A.; George, S.R.

    1987-12-21

    The effect of acute central administration of Neuropeptide Y (NPY) to adult male rats on the brain content of corticotropin-releasing factor immunoreactivity (CRF-ir) was investigated. The brain regions studied included frontal cortex, hippocampus, medulla-pons, midbrain-thalamus, cerebellum, neurointermediate lobe of pituitary, median eminence and the remaining hypothalamus. CRF-ir was determined in each of these regions using radioimmunoassay specific for rat CRF. CRF-ir was found to be significantly increased in the major site of CRF localization in the brain, the hypothalamus, in NPY-treated rats as compared to vehicle-treated controls either 15 minutes (p<0.025) or 45 minutes (p<0.005) post-injection. This increase was localized to the median eminence (p<0.05 after 15 minutes, p<0.01 after 45 minutes). No statistically significant differences were noted in any of the other brain regions assessed. Plasma adrenocorticotropin levels were also found to increase following NPY treatment, an effect which became significant after 45 minutes (p<0.05). These data show that NPY can alter the content of hypothalamic CRF and may play a role in its regulation. 33 references, 4 figures.

  2. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    PubMed

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  3. The Role of Multimodal Invasive Monitoring in Acute Traumatic Brain Injury.

    PubMed

    Lazaridis, Christos; Robertson, Claudia S

    2016-10-01

    This article reviews the role of modalities that directly monitor brain parenchyma in patients with severe traumatic brain injury. The physiology monitored involves compartmental and perfusion pressures, tissue oxygenation and metabolism, quantitative blood flow, pressure autoregulation, and electrophysiology. There are several proposed roles for this multimodality monitoring, such as to track, prevent, and treat the cascade of secondary brain injury; monitor the neurologically injured patient; integrate various data into a composite, patient-specific, and dynamic picture; apply protocolized, pathophysiology-driven intensive care; use as a prognostic marker; and understand pathophysiologic mechanisms involved in secondary brain injury to develop preventive and abortive therapies, and to inform future clinical trials. PMID:27637400

  4. The acute effects of hemorrhagic shock on cerebral blood flow, brain tissue oxygen tension, and spreading depolarization following penetrating ballistic-like brain injury.

    PubMed

    Leung, Lai Yee; Wei, Guo; Shear, Deborah A; Tortella, Frank C

    2013-07-15

    Traumatic brain injury (TBI) often occurs in conjunction with additional trauma, resulting in secondary complications, such as hypotension as a result of blood loss. This study investigated the combined effects of penetrating ballistic-like brain injury (PBBI) and hemorrhagic shock (HS) on physiological parameters, including acute changes in regional cerebral blood flow (rCBF), brain tissue oxygen tension (P(bt)O₂), and cortical spreading depolarizations (CSDs). All recordings were initiated before injury (PBBI/HS/both) and maintained for 2.5 h. Results showed that PBBI alone and combined PBBI and HS produced a sustained impairment of ipsilateral rCBF that decreased by 70% from baseline (p<0.05). Significant and sustained reductions in P(bt)O₂ (50% baseline; p<0.05) were also observed in the injured hemisphere of the animals subjected to both PBBI and HS (PBBI+HS). In contrast, PBBI alone produced smaller, more transient reductions in P(bt)O₂ levels. The lower limit of cerebral autoregulation was significantly higher in the PBBI+HS group (p<0.05, compared to HS alone). Critically, combined injury resulted in twice the number of spontaneous CSDs as in PBBI alone (p<0.05). It also lowered the propagation speed of CSD and the threshold of CSD occurrence [induced CSD at higher mean arterial pressure (MAP)]. However, rCBF and P(bt)O₂ were not responsive to the depolarizations. Our data suggest that PBBI together with HS causes persistent impairment of CBF and brain tissue oxygen tension, increasing the probability of CSDs that likely contribute to secondary neuropathology and compromise neurological recovery. PMID:23461630

  5. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    PubMed Central

    Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  6. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury.

  7. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain.

    PubMed

    Volkow, Nora D; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2013-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also the metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in the thalamus. In contrast, alcohol intoxication caused a significant increase in [1-(11)C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in the cerebellum and the smallest in the thalamus. In heavy alcohol drinkers [1-(11)C]acetate brain uptake during alcohol challenge tended to be higher than in occasional drinkers (p<0.06) and the increases in [1-(11)C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-(11)C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (i.e. ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  8. Acute effects of aspartame on large neutral amino acids and monoamines in rat brain.

    PubMed

    Fernstrom, J D; Fernstrom, M H; Gillis, M A

    1983-04-01

    The dipeptide aspartame (APM; aspartylphenylalanine methylester), an artificial sweetener, was studied in vivo for its ability to influence brain levels of the large neutral amino acids and the rates of hydroxylation of the aromatic amino acids. The administration by gavage of APM (200 mg/kg) caused large increments in blood and brain levels of phenylalanine and tyrosine by 60 minutes. Brain tryptophan level was occasionally reduced significantly, but the brain levels of the branched-chain amino acids were always unaffected. Smaller doses (50, 100 mg/kg) also raised blood and brain tyrosine and phenylalanine, but did not reduce brain tryptophan levels. At the highest dose (200 mg/kg), APM gavage caused an insignificant increase in dopa accumulation (after NSD-1015), and a modest reduction in 5-hydroxytryptophan accumulation. No changes in the brain levels of serotonin, 5-hydroxyindoleacetic acid, dopamine, dihydroxyphenylacetic acid, homovanillic acid, or norepinephrine were produced by APM administration (200 mg/kg). These results thus indicate that APM, even when administered in amounts that cause large increments in brain tyrosine and phenylalanine, produce minimal effects on the rates of formation of monoamine transmitters.

  9. GFAP-BDP as an Acute Diagnostic Marker in Traumatic Brain Injury: Results from the Prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study

    PubMed Central

    Yue, John K.; Puccio, Ava M.; Panczykowski, David M.; Inoue, Tomoo; McMahon, Paul J.; Sorani, Marco D.; Yuh, Esther L.; Lingsma, Hester F.; Maas, Andrew I.R.; Valadka, Alex B.; Manley, Geoffrey T.; Casey, Scott S.; Cheong, Maxwell; Cooper, Shelly R.; Dams-O'Connor, Kristen; Gordon, Wayne A.; Hricik, Allison J.; Hochberger, Kerri; Menon, David K.; Mukherjee, Pratik; Sinha, Tuhin K.; Schnyer, David M.; Vassar, Mary J.

    2013-01-01

    Abstract Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. Participants were identified as part of the prospective Transforming Research And Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. Acute plasma samples (<24 h post-injury) were collected from patients presenting with brain injury who had CT imaging. The ability of GFAP-BDP level to discriminate patients with demonstrable traumatic lesions on CT, and with failure to return to pre-injury baseline at 6 months, was evaluated by the area under the receiver operating characteristic curve (AUC). Of the 215 patients included for analysis, 83% had mild, 4% had moderate, and 13% had severe TBI; 54% had acute traumatic lesions on CT. The ability of GFAP-BDP level to discriminate patients with traumatic lesions on CT as evaluated by AUC was 0.88 (95% confidence interval [CI], 0.84–0.93). The optimal cutoff of 0.68 ng/mL for plasma GFAP-BDP level was associated with a 21.61 odds ratio for traumatic findings on head CT. Discriminatory ability of unfavorable 6 month outcome was lower, AUC 0.65 (95% CI, 0.55–0.74), with a 2.07 odds ratio. GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term “mild” continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409) PMID:23489259

  10. GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study.

    PubMed

    Okonkwo, David O; Yue, John K; Puccio, Ava M; Panczykowski, David M; Inoue, Tomoo; McMahon, Paul J; Sorani, Marco D; Yuh, Esther L; Lingsma, Hester F; Maas, Andrew I R; Valadka, Alex B; Manley, Geoffrey T

    2013-09-01

    Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. Participants were identified as part of the prospective Transforming Research And Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. Acute plasma samples (<24 h post-injury) were collected from patients presenting with brain injury who had CT imaging. The ability of GFAP-BDP level to discriminate patients with demonstrable traumatic lesions on CT, and with failure to return to pre-injury baseline at 6 months, was evaluated by the area under the receiver operating characteristic curve (AUC). Of the 215 patients included for analysis, 83% had mild, 4% had moderate, and 13% had severe TBI; 54% had acute traumatic lesions on CT. The ability of GFAP-BDP level to discriminate patients with traumatic lesions on CT as evaluated by AUC was 0.88 (95% confidence interval [CI], 0.84-0.93). The optimal cutoff of 0.68 ng/mL for plasma GFAP-BDP level was associated with a 21.61 odds ratio for traumatic findings on head CT. Discriminatory ability of unfavorable 6 month outcome was lower, AUC 0.65 (95% CI, 0.55-0.74), with a 2.07 odds ratio. GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term "mild" continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409).

  11. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  12. [Effect of acute hypoxia with hypercapnia on the content of monoamines in symmetrical brain structures of the BALB/c male mice].

    PubMed

    Karpova, I V; Mikheev, V V; Marysheva, V V; Bychkov, E R; Shabanov, P D

    2014-01-01

    The changes in activity of monoaminergic systems of both the right and the left brain hemispheres of the BALB/c male mice after an acute hypoxia with hypercapnia were studied. The concentrations of dopamine, serotonin and their metabolites dihydroxyphenylacetic, homovanilic and 5-hydroxyindolacetic acids were measured by HPLC in the brain cortex, hippocampus and striatum of the right and the left hemispheres. The more high concentration of serotonin was revealed only in the cortex of the left hemisphere in control mice without hypoxia with hypercapnia. The asymmetry in dopamine level was not registered in all structures studied. Acute hypoxia with hypercapnia decreased the dopamine level in the striatum and the serotonin level both in the hippocampus and the brain cortex. The dopamine metabolites level was reduced in the striatum and in the brain cortex of hypoxed mice: both metabolites in the right brain cortex and only dihydroxyphenylacetic acid in the left br ain cortex. Serotonin metabolism was decreased in all brain structures studied after hypoxia with hypercapnia in mice. Therefore, serotoninergic system of the brain is more sensitive to acute hypoxia with hypercapnia than dopaminergic system.

  13. Relationships between acute imaging biomarkers and theory of mind impairment in post-acute pediatric traumatic brain injury: A prospective analysis using susceptibility weighted imaging (SWI).

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Cooper, Janine M; Beare, Richard; Ditchfield, Michael; Coleman, Lee; Silk, Timothy; Crossley, Louise; Rogers, Kirrily; Beauchamp, Miriam H; Yeates, Keith O; Anderson, Vicki A

    2015-01-01

    Theory of Mind (ToM) forms an integral component of socially skilled behavior, and is critical for attaining developmentally appropriate goals. The protracted development of ToM is mediated by increasing connectivity between regions of the anatomically distributed 'mentalizing network', and may be vulnerable to disruption from pediatric traumatic brain injury (TBI). The present study aimed to evaluate the post-acute effects of TBI on first-order ToM, and examine relations between ToM and both local and global indices of macrostructural damage detected using susceptibility-weighted imaging (SWI). 104 children and adolescents with TBI and 43 age-matched typically developing (TD) controls underwent magnetic resonance imaging including a susceptibility-weighted imaging (SWI) sequence 2-8 weeks post-injury and were assessed on cognitive ToM tasks at 6-months after injury. Compared to TD controls and children with mild-moderate injuries, children with severe TBI showed significantly poorer ToM. Moreover, impairments in ToM were related to diffuse neuropathology, and parietal lobe lesions. Our findings support the vulnerability of the immature social brain network to disruption from TBI, and suggest that global macrostructural damage commonly associated with traumatic axonal injury (TAI) may contribute to structural disconnection of anatomically distributed regions that underlie ToM. This study suggests that SWI may be a valuable imaging biomarker to predict outcome and recovery of social cognition after pediatric TBI.

  14. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks.

    PubMed

    Grady, Cheryl L; Siebner, Hartwig R; Hornboll, Bettina; Macoveanu, Julian; Paulson, Olaf B; Knudsen, Gitte M

    2013-05-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender of neutral, fearful and angry faces. In three separate and counterbalanced sessions, participants received citalopram (CIT) to raise serotonin levels, underwent acute tryptophan depletion (ATD) to lower serotonin, or were studied without pharmacological challenge (Control). An analysis designed to identify distributed brain responses identified two brain networks with modulations of activity related to face emotion and serotonin level. The first network included the left amygdala, bilateral striatum, and fusiform gyri. During the Control session this network responded only to fearful faces; increasing serotonin decreased this response to fear, whereas reducing serotonin enhanced the response of this network to angry faces. The second network involved bilateral amygdala and ventrolateral prefrontal cortex, and these regions also showed increased activity to fear during the Control session. Both drug challenges enhanced the neural response of this set of regions to angry faces, relative to Control, and CIT also enhanced activity for neutral faces. The net effect of these changes in both networks was to abolish the selective response to fearful expressions. These results suggest that a normal level of serotonin is critical for maintaining a differentiated brain response to threatening face emotions. Lower serotonin leads to a broadening of a normally fear-specific response to anger, and higher levels reduce the differentiated brain response to aversive face emotions.

  15. The Natural History of Acute Recovery of Blast-Induced Mild Traumatic Brain Injury: A Case Series During War.

    PubMed

    Larres, David T; Carr, Walter; Gonzales, Elizandro G; Hawley, Jason S

    2016-05-01

    Traumatic brain injury (TBI) secondary to blast exposure is a common injury in the Global War on Terrorism, but little is known about the acute effects, recovery, pathophysiology, and neuropathology of blast-induced mild TBI (mTBI) in humans in a battlefield environment. Moreover, there is ongoing debate whether blast-induced mTBI is a different injury with a unique pathophysiology compared with mTBI from blunt trauma. In the case series reported here from Craig Joint Theater Hospital at Bagram Airfield, Afghanistan, 15 military service members with acute concussion/mTBI associated with blast exposure were evaluated within the first 24 hours after concussion and on days 2, 3, 5, and 7 with a Graded Symptom Checklist and a balance assessment, the Balance Error Scoring System. These data suggest that the recovery in blast-induced mTBI follows the pattern of recovery in sports-related concussion reported in The National Collegiate Athletic Association Concussion Study. In this retrospective case series, we provide the first description of the natural history of acute recovery in blast-induced mTBI, and we suspect, given our experience treating military service members, that further observations of the natural history of recovery in blast-induced mTBI will continue to mirror the natural history of recovery in sports concussion.

  16. The Natural History of Acute Recovery of Blast-Induced Mild Traumatic Brain Injury: A Case Series During War.

    PubMed

    Larres, David T; Carr, Walter; Gonzales, Elizandro G; Hawley, Jason S

    2016-05-01

    Traumatic brain injury (TBI) secondary to blast exposure is a common injury in the Global War on Terrorism, but little is known about the acute effects, recovery, pathophysiology, and neuropathology of blast-induced mild TBI (mTBI) in humans in a battlefield environment. Moreover, there is ongoing debate whether blast-induced mTBI is a different injury with a unique pathophysiology compared with mTBI from blunt trauma. In the case series reported here from Craig Joint Theater Hospital at Bagram Airfield, Afghanistan, 15 military service members with acute concussion/mTBI associated with blast exposure were evaluated within the first 24 hours after concussion and on days 2, 3, 5, and 7 with a Graded Symptom Checklist and a balance assessment, the Balance Error Scoring System. These data suggest that the recovery in blast-induced mTBI follows the pattern of recovery in sports-related concussion reported in The National Collegiate Athletic Association Concussion Study. In this retrospective case series, we provide the first description of the natural history of acute recovery in blast-induced mTBI, and we suspect, given our experience treating military service members, that further observations of the natural history of recovery in blast-induced mTBI will continue to mirror the natural history of recovery in sports concussion. PMID:27168549

  17. Brain acetylcholinesterase activity recovery following acute methyl parathion intoxication in two feral rodent species: comparison to laboratory rodents

    SciTech Connect

    Roberts, D.K.; Silvey, N.J.; Bailey, E.M. Jr.

    1988-07-01

    Widespread use of organophosphorus insecticides (OPs) has produced both acute and chronic intoxication among nontarget organisms. Most such studies have included fish and birds as opposed to mammals. However, numerous OP toxicity studies have been conducted on laboratory rodents creating a temptation to apply this data to feral rodents. Chronic OP exposure has been reported to produce cholinergic adaptation which in turn lowers mortality rates following a subsequent acute anticholinesterase exposure. The relevance that these laboratory rodent studies have on feral rodents is subject to debate. Field studies involving OP exposure among nontarget feral mammals have produced contradictory results. Increased mortality as a result of repeated OP application has been reported. This observation may be of considerable importance to nontarget feral rodent populations due to the repetitive nature of OP application protocols. The ability of feral rodents to recover brain AChE activity (BAA) between OP application intervals undoubtedly promotes their survival. This study investigated and compared BAA recovery following acute oral methyl parathion intoxication among 2 feral rodent species and among 2 common laboratory rodent species.

  18. Acute Administration of Branched-Chain Amino Acids Increases the Pro-BDNF/Total-BDNF Ratio in the Rat Brain.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Furlanetto, Camila B; Kist, Luiza W; Pereira, Talita C B; Schuck, Patrícia F; Ferreira, Gustavo C; Pasquali, Matheus A B; Gelain, Daniel P; Moreira, José Cláudio F; Bogo, Maurício R; Streck, Emilio L

    2015-05-01

    Maple syrup urine disease (MSUD) is caused by an inborn error in metabolism resulting from a deficiency in the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. High levels of BCAAs are associated with neurological dysfunction and the role of pro- and mature brain-derived neurotrophic factor (BDNF) in the neurological dysfunction of MSUD is still unclear. Thus, in the present study we investigated the effect of an acute BCAA pool administration on BDNF levels and on the pro-BDNF cleavage-related proteins S100A10 and tissue plasminogen activator (tPA) in rat brains. Our results demonstrated that acute Hyper-BCAA (H-BCAA) exposure during the early postnatal period increases pro-BDNF and total-BDNF levels in the hippocampus and striatum. Moreover, tPA levels were significantly decreased, without modifications in the tPA transcript levels in the hippocampus and striatum. On the other hand, the S100A10 mRNA and S100A10 protein levels were not changed in the hippocampus and striatum. In the 30-day-old rats, we observed increased pro-BDNF, total-BDNF and tPA levels only in the striatum, whereas the tPA and S100A10 mRNA expression and the immunocontent of S100A10 were not altered. In conclusion, we demonstrated that acute H-BCAA administration increases the pro-BDNF/total-BDNF ratio and decreases the tPA levels in animals, suggesting that the BCAA effect may depend, at least in part, on changes in BDNF post-translational processing. PMID:25681161

  19. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Musazzi, Laura; Popoli, Maurizio

    2015-11-01

    Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain-derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress-induced decrease of BDNF transcripts. Physical exercise-induced up-regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down-regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.

  20. Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.

    PubMed

    Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M

    2016-10-01

    This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. PMID:27637395

  1. Similarities and differences of acute nonconvulsive seizures and other epileptic activities following penetrating and ischemic brain injuries in rats.

    PubMed

    Lu, Xi-Chun May; Mountney, Andrea; Chen, Zhiyong; Wei, Guo; Cao, Ying; Leung, Lai Yee; Khatri, Vivek; Cunningham, Tracy; Tortella, Frank C

    2013-04-01

    The similarities and differences between acute nonconvulsive seizures (NCS) and other epileptic events, for example, periodic epileptiform discharges (PED) and intermittent rhythmic delta activities (IRDA), were characterized in rat models of penetrating and ischemic brain injuries. The NCS were spontaneously induced by either unilateral frontal penetrating ballistic-like brain injury (PBBI) or permanent middle cerebral artery occlusion (pMCAO), and were detected by continuous electroencephalogram (EEG) monitoring begun immediately after the injury and continued for 72 h or 24 h, respectively. Analysis of NCS profiles (incidence, frequency, duration, and time distribution) revealed a high NCS incidence in both injury models. The EEG waveform expressions of NCS and PED exhibited intrinsic variations that resembled human electrographic manifestations of post-traumatic and post-ischemic ictal and inter-ictal events, but these waveform variations were not distinguishable between the two types of brain injury. However, the NCS after pMCAO occurred more acutely and intensely (latency=0.6 h, frequency=25 episodes/rat) compared with the PBBI-induced NCS (latency=24 h, frequency=10 episodes/rat), such that the most salient features differentiating post-traumatic and post-ischemic NCS were the intensity and time distribution of the NCS profiles. After pMCAO, nearly 50% of the seizures occurred within the first 2 h of injury, whereas after PBBI, NCS occurred sporadically (0-5%/h) throughout the 72 h recording period. The PED were episodically associated with NCS. By contrast, the IRDA appeared to be independent of other epileptic events. This study provided comprehensive comparisons of post-traumatic and post-ischemic epileptic profiles. The identification of the similarities and differences across a broad spectrum of epileptic events may lead to differential strategies for post-traumatic and post-stroke seizure interventions.

  2. Parallel Microfluidic Chemosensitivity Testing on Individual Slice Cultures

    PubMed Central

    Chang, Tim C.; Mikheev, Andrei M.; Huynh, Wilson; Monnat, Raymond J.; Rostomily, Robert C.; Folch, Albert

    2014-01-01

    There is a critical unmet need to tailor chemotherapies to individual patients. Personalized approaches could lower treatment toxicity, improve the patient’s quality of life, and ultimately reduce mortality. However, existing models of drug activity (based on tumor cells in culture or animal models) cannot accurately predict how drugs act in patients in time to inform the best possible treatment. Here we demonstrate a microfluidic device that integrates live slice cultures with an intuitive multi well platform that allows for exposing the slices to multiple compounds at once or in sequence. We demonstrate the response of live mouse brain slices to a range of drug doses in parallel. Drug response is measured by imaging of markers for cell apoptosis and for cell death. The platform has the potential to allow for identifying the subset of therapies of greatest potential value to individual patients, on a timescale rapid enough to guide therapeutic decision-making. PMID:25275698

  3. Bedside Ultrasonography versus Brain Natriuretic Peptide in Detecting Cardiogenic Causes of Acute Dyspnea

    PubMed Central

    Golshani, Keihan; Esmailian, Mehrdad; Valikhany, Aniseh; Zamani, Majid

    2016-01-01

    Introduction: Acute dyspnea is a common cause of hospitalization in emergency departments (ED).Distinguishing the cardiac causes of acute dyspnea from pulmonary ones is a major challenge for responsible physicians in EDs. This study compares the characteristics of bedside ultrasonography with serum level of blood natriuretic peptide (BNP) in this regard. Methods: This diagnostic accuracy study compares bedside ultrasonography with serum BNP levels in differentiating cardiogenic causes of acute respiratory distress. Echocardiography was considered as the reference test. A checklist including demographic data (age and sex), vital signs, medical history, underlying diseases, serum level of BNP, as well as findings of chest radiography, chest ultrasonography, and echocardiography was filled for all patients with acute onset of dyspnea. Screening characteristics of the two studied methods were calculated and compared using SPSS software, version 20. Results: 48 patients with acute respiratory distress were evaluated (50% female). The mean age of participants was 66.94 ± 16.33 (28-94) years. Based on the results of echocardiography and final diagnosis, the cause of dyspnea was cardiogenic in 20 (41.6%) cases. Bedside ultrasonography revealed the cardiogenic cause of acute dyspnea in 18 cases (0 false positive) and BNP in 44 cases (24 false positives). The area under the ROC curve for bedside ultrasonography and BNP for differentiating the cardiogenic cause of dyspnea were 86.4 (95% CI: 74.6-98.3) and 66.3 (95% CI: 49.8-89.2), respectively (p = 0.0021). Conclusion: It seems that bedside ultrasonography could be considered as a helpful and accurate method in differentiating cardiogenic causes of acute dyspnea in emergency settings. Nevertheless, more study is needed to make a runaway algorithm to evaluate patients with respiratory distress using bedside ultrasonography, which leads to rapid therapeutic decisions in a short time. PMID:27299143

  4. Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain

    PubMed Central

    Bhalala, Utpal S.; Koehler, Raymond C.; Kannan, Sujatha

    2015-01-01

    Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia – the so-called “brain macrophages,” infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds. PMID:25642419

  5. Acute Exposure to Perchlorethylene alters Rat Visual Evoked Potentials in Relation to Brain Concentration

    EPA Science Inventory

    These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...

  6. Ultrastructural readout of functional synaptic vesicle pools in hippocampal slices based on FM dye labeling and photoconversion.

    PubMed

    Marra, Vincenzo; Burden, Jemima J; Crawford, Freya; Staras, Kevin

    2014-01-01

    Fast activity-driven turnover of neurotransmitter-filled vesicles at presynaptic terminals is a crucial step in information transfer in the CNS. Characterization of the relationship between the nanoscale organization of synaptic vesicles and their functional properties during transmission is currently of interest. Here we outline a procedure for ultrastructural investigation of functional vesicles in synapses from native mammalian brain tissue. FM dye is injected into the target region of a brain slice and upstream axons are electrically activated to stimulate vesicle turnover and dye uptake. In the presence of diaminobenzidine (DAB), photoactivation of dye-filled vesicles yields an osmiophilic precipitate that is visible in electron micrographs. When combined with serial-section electron microscopy, fundamental ultrastructure-function relationships of presynaptic terminals in native circuits are revealed. We outline the utility of this protocol for the 3D reconstruction of a recycling vesicle pool in CA3-CA1 synapses from an acute hippocampal slice and for the characterization of its anatomically defined docked pool. This protocol requires 6-7 d.

  7. Multi-Shot 3D Slice-Select Tailored RF Pulses for MRI

    PubMed Central

    Stenger, V. Andrew; Boada, Fernando E.; Noll, Douglas C.

    2011-01-01

    A multi-shot three-dimensional slice-select tailored RF pulse method is presented for the excitation of slice profiles with arbitrary resolution. This method is derived from the linearity of the small tip angle approximation, allowing for the decomposition of small tip angle tailored RF pulses into separate excitations. The final image is created by complex summation of the images acquired from the individual excitations. This technique overcomes the limitation of requiring long pulse to excite thin slices with adequate resolution. This has implications in applications including T2*-weighted functional MRI in brain regions corrupted by intravoxel dephasing artifacts due to susceptibility variations. Simulations, phantom experiments, and human brain images are presented. It is demonstrated that at most four shots of 40 ms pulse length are needed to excite a 5 mm thick slice in the brain with reduced susceptibility artifacts at 3T. PMID:12111943

  8. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia.

    PubMed

    Amiry-Moghaddam, Mahmood; Xue, Rong; Haug, Finn-Mogens; Neely, John D; Bhardwaj, Anish; Agre, Peter; Adams, Marvin E; Froehner, Stanley C; Mori, Susumu; Ottersen, Ole P

    2004-03-01

    The formation of brain edema, commonly occurring as a potentially lethal complication of acute hyponatremia, is delayed following knockout of the water channel aquaporin-4 (AQP4). Here we show by high-resolution immunogold analysis of the blood-brain-barrier that AQP4 is expressed in brain endothelial cells as well as in the perivascular membranes of astrocyte endfeet. A selective removal of perivascular AQP4 by alpha-syntrophin deletion delays the buildup of brain edema (assessed by Diffusion-weighted MRI) following water intoxication, despite the presence of a normal complement of endothelial AQP4. This indicates that the perivascular membrane domain, which is peripheral to the endothelial blood-brain barrier, may control the rate of osmotically driven water entry. This study is also the first to demonstrate that the time course of edema development differs among brain regions, probably reflecting differences in aquaporin-4 distribution. The resolution of the molecular basis and subcellular site of osmotically driven brain water uptake should help design new therapies for acute brain edema.

  9. Different Circulating Brain-Derived Neurotrophic Factor Responses to Acute Exercise Between Physically Active and Sedentary Subjects

    PubMed Central

    Nofuji, Yu; Suwa, Masataka; Sasaki, Haruka; Ichimiya, Atsushi; Nishichi, Reiko; Kumagai, Shuzo

    2012-01-01

    Although circulating brain-derived neurotrophic factor (BDNF) level is affected by both acute and chronic physical activity, the interaction of acute and chronic physical activity was still unclear. In this study, we compared the serum and plasma BDNF responses to maximal and submaximal acute exercises between physically active and sedentary subjects. Eight active and 8 sedentary female subjects participated in the present study. Both groups performed 3 exercise tests with different intensities, i.e. 100% (maximal), 60% (moderate) and 40% (low) of their peak oxygen uptake. In each exercise test, blood samples were taken at the baseline and immediately, 30 and 60 min after the test. The serum BDNF concentration was found to significantly increase immediately after maximal and moderate exercise tests in both groups. In maximal exercise test, the pattern of change in the serum BDNF concentration was different between the groups. While the serum BDNF level for the sedentary group returned to the baseline level during the recovery phase, the BDNF levels for the active group decreased below the baseline level after the maximal exercise test. No group differences were observed in the pattern of plasma BDNF change for all exercise tests. These findings suggest that regular exercise facilitates the utilization of circulating BDNF during and/or after acute exercise with maximal intensity. Key points In maximal exercise test, the pattern of change in the serum BDNF concentration was different between the groups. While the serum BDNF level for the sedentary group returned to the baseline level during the recovery phase, the BDNF levels for the active group decreased below the baseline level after the maximal exercise test. No group differences were observed in the pattern of serum BDNF change for moderate or low exercise tests. No group differences were observed in the pattern of plasma BDNF change for all exercise tests. PMID:24137066

  10. How Healthcare Provider Talk with Parents of Children Following Severe Traumatic Brain Injury is Perceived in Early Acute Care

    PubMed Central

    Savage, Teresa A.; Grant, Gerald; Philipsen, Gerry

    2013-01-01

    Healthcare provider talk with parents in early acute care following children’s severe traumatic brain injury (TBI) affects parents’ orientations to these locales, but this connection has been minimally studied. This lack of attention to this topic in previous research may reflect providers’ and researchers’ views that these locales are generally neutral or supportive to parents’ subsequent needs. This secondary analysis used data from a larger descriptive phenomenological study (2005 – 2007) with parents of children following moderate to severe TBI recruited from across the United States. Parents of children with severe TBI consistently had strong negative responses to the early acute care talk processes they experienced with providers, while parents of children with moderate TBI did not. Transcript data were independently coded using discourse analysis in the framework of ethnography of speaking. The purpose was to understand the linguistic and paralinguistic talk factors parents used in their meta-communications that could give a preliminary understanding of their cultural expectations for early acute care talk in these settings. Final participants included 27 parents of children with severe TBI from 23 families. We found the human constructed talk factors that parents reacted to were: a) access to the child, which is where information was; b) regular discussions with key personnel; c) updated information that is explained; d) differing expectations for talk in this context; and, e) perceived parental involvement in decisions. We found that the organization and nature of providers’ talk with parents was perceived by parents to positively or negatively shape their early acute care identities in these locales, which influenced how they viewed these locales as places that either supported them and decreased their workload or discounted them and increased their workload for getting what they needed. PMID:23746606

  11. [Characteristics of antiischemic and nootropic properties of ademol in a rat model of acute brain ischemia].

    PubMed

    Khodakivs'kyĭ, O A

    2013-01-01

    In experiments with the rat model of acute disorder of encephalic circulation (bilateral carotid occlusion) it was found that introduction of derivate of adamantan 1-adamantiloxy-3-morfolino-2 propanol (under conventional name ademol) in the dose 2 mg/kg intraabdominal in treatment regimen (in an hour after reconstruction of insult and further 1 time every 24 hours during 21 days) was accompanied by a recovery of mnemotropic properties and is more effective than cytikolin, resulting in a decreased lethality and neurological deficiency in acute and recovery periods of insults. The data received proved the usefulness of development of ademol based cerebroprotective remedy.

  12. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    PubMed

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders.

  13. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  14. Acute effects of oral or parenteral aspartame on catecholamine metabolism in various regions of rat brain.

    PubMed

    Yokogoshi, H; Wurtman, R J

    1986-03-01

    Hypertensive (SHR) and nonhypertensive [Wistar-Kyoto (WKY); Sprague-Dawley (SD)] strains of rats received the dipeptide sweetener aspartame (200 mg/kg) or, as a positive control, tyrosine (200 mg/kg) by gavage or parenterally, after a brief (2-h) fast. Two hours later, compared with those of saline controls brain levels of the norepinephrine metabolite 3-methoxy-4-hydroxyphenylethylethyleneglycol (MHPG) sulfate were significantly higher in the hypothalamus (WKY), locus coeruleus (SD and SHR) and brain stem (SHR) in tyrosine-treated animals, and in the locus coeruleus (SD) of those given aspartame. Brain norepinephrine levels were also higher, compared with those of saline-treated control rats, in the cerebral cortex (SD and SHR), amygdala (SD) and locus coeruleus (WKY) after tyrosine administration, and in the amygdala (SD) and cerebral cortex (SHR) after aspartame administration. In another study, oral aspartame was found to be at least as effective as the parenterally administered sweetener in raising regional brain levels of tyrosine or MHPG sulfate (i.e., compared with corresponding levels in saline-treated rats). Animals receiving oral aspartame also exhibited higher plasma tyrosine and phenylalanine ratios (i.e., the ratios of their plasma concentrations to the summed concentrations of other large neutral amino acids that compete with them for uptake into the brain), than animals receiving saline.

  15. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  16. AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...

  17. TOXICITY PATHWAY ANALYSIS IN AGING BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental stressors is poorly understood. To investigate the contribution of different life stages on response to toxicants, we examined the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.3...

  18. [Brain metastasis from papillary thyroid carcinoma with acute intracerebral hemorrhage: a surgical case report].

    PubMed

    Chonan, Masashi; Mino, Masaki; Yoshida, Masahiro; Sakamoto, Kazuhiro

    2012-05-01

    We report a rare case of brain metastasis from papillary thyroid carcinoma with intracerebral hemorrhage. A 79-year-old woman presented with sudden headache and monoplegia of the right upper limb 10 years after diagnosis of thyroid papillary adenocarcinoma. Despite the known metastatic lesions in the cervical lymph nodes and lungs, she had been well for 10 years since thyroidectomy, focal irradiation and internal radiation of 131I. CT demonstrated intracerebral hemorrhage in the left temporal lobe. Magnetic resonance imaging showed marked signal heterogeneity. She underwent radical surgery on the day of the onset and the histological diagnosis was metastatic brain tumor of thyroid papillary carcinoma. Postoperative course was uneventful, and the monoplegia was improved. Papillary thyroid carcinoma has a relatively benign course, and surgical removal of the brain metastasis is able to contribute to longer survival times for patients.

  19. Rat brain and serum lithium concentrations after acute injections of lithium carbonate and orotate.

    PubMed

    Kling, M A; Manowitz, P; Pollack, I W

    1978-06-01

    Eight hours after intraperitoneal injections of 1.0, 2.0, and 4.0m equiv Li kg-1, the serum and brain lithium concentrations of rats were significantly greater after lithium orotate than after lithium carbonate. While little serum lithium remained at 24 h after injection of 2.0 m equiv kg-1 lithium carbonate, two-thirds of the 2 h serum lithium concentration was present 24h after lithium orotate. Furthermore, the 24 h brain concentration of lithium after lithium orotate was approximately three times greater than that after lithium carbonate. These data suggest the possibility that lower doses of lithium orotate than lithium carbonate may achieve therapeutic brain lithium concentrations and relatively stable serum concentrations. PMID:26768

  20. Use of High-Flow Continuous Renal Replacement Therapy with Citrate Anticoagulation to Control Intracranial Pressure by Maintaining Hypernatremia in a Patient with Acute Brain Injury and Renal Failure.

    PubMed

    Medow, Joshua E; Sanghvi, Shalin R; Hofmann, R Michael

    2015-06-01

    Traumatic brain injury and intracranial hypertension often require treatment to optimize patient outcome. There are a variety of complex medical conditions that can preclude standard approaches to the treatment of intracranial hypertension. We describe a case where a novel approach using continuous dialysis with trisodium citrate was used to optimize the outcome of a young male with acute renal failure and acute respiratory distress syndrome in the setting of acute traumatic brain injury.

  1. Use of a custom RT-PCR array to analyze toxicity pathways at different life stages in Brown Norway Rat Brain following acute Toluene exposure.

    EPA Science Inventory

    To investigate the contribution of different life stages on response to toxicants, we utilized a custom designed RT-PCR array to examine the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.65 or 1.0 glkg) in the brains of ma1e Brown Norwa...

  2. Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific.

    PubMed

    McConnell, Heather L; Schwartz, Daniel L; Richardson, Brian E; Woltjer, Randall L; Muldoon, Leslie L; Neuwelt, Edward A

    2016-08-01

    Ferumoxytol ultrasmall superparamagnetic iron oxide nanoparticles can enhance contrast between neuroinflamed and normal-appearing brain tissue when used as a contrast agent for high-sensitivity magnetic resonance imaging (MRI). Here we used an anti-dextran antibody (Dx1) that binds the nanoparticle's carboxymethyldextran coating to differentiate ferumoxytol from endogenous iron and localize it unequivocally in brain tissue. Intravenous injection of ferumoxytol into immune-competent rats that harbored human tumor xenograft-induced inflammatory brain lesions resulted in heterogeneous and lesion-specific signal enhancement on MRI scans in vivo. We used Dx1 immunolocalization and electron microscopy to identify ferumoxytol in affected tissue post-MRI. We found that ferumoxytol nanoparticles were taken up by astrocyte endfeet surrounding cerebral vessels, astrocyte processes, and CD163(+)/CD68(+) macrophages, but not by tumor cells. These results provide a biological basis for the delayed imaging changes seen with ferumoxytol and indicate that ferumoxytol-MRI can be used to assess the inflammatory component of brain lesions in the clinic. PMID:27071335

  3. Urea Biosynthesis Using Liver Slices

    ERIC Educational Resources Information Center

    Teal, A. R.

    1976-01-01

    Presented is a practical scheme to enable introductory biology students to investigate the mechanism by which urea is synthesized in the liver. The tissue-slice technique is discussed, and methods for the quantitative analysis of metabolites are presented. (Author/SL)

  4. Metabolic Changes in the Rodent Brain after Acute Administration of Salvinorin A

    PubMed Central

    Hooker, Jacob M.; Patel, Vinal; Kothari, Shiva; Schiffer, Wynne K.

    2009-01-01

    Purpose Salvinorin A (SA) is a potent and highly selective kappa opioid receptor (KOR) agonist with rapid kinetics and commensurate behavioral effects; however, brain regions associated with these effects have not been determined. Procedures Freely moving adult male rats were given SA intraperitoneally during uptake and trapping of the brain metabolic radiotracer, 18FDG, followed by image acquisition in a dedicated animal PET system. Age-matched control animals received vehicle treatment. Animal behavior during 18FDG uptake was recorded digitally and later analyzed for locomotion. Group differences in regional 18FDG uptake normalized to whole brain were determined using Statistical Parametric Mapping (SPM) and verified by region of interest (ROI) analysis. Results SA treated animals demonstrated significant increases in 18FDG uptake compared to controls in several brain regions associated with the distribution of KOR such as the periaqueductal grey, bed nucleus of the stria terminalis and the cerbellar vermis, as well as in the hypothalamus. Significant bilateral activations were also observed in the auditory, sensory and frontal cortices. Regional decreases in metabolic demand were observed bilaterally in the dorsolateral striatum and hippocampus. Locomotor activity did not differ between SA and vehicle during 18FDG uptake. Conclusions We have provided the first extensive maps of cerebral metabolic activation due to the potent κ-opioid agonist, salvinorin A. A major finding from our small animal PET studies using 18FDG was that neural circuits affected by SA may not be limited to direct activation or inhibition of kappa receptor-expressing cells. Instead, salvinorin A may trigger brain circuits that mediate the effects of the drug on cognition, mood, fear and anxiety, and motor output. PMID:19132449

  5. Brain angiotensin AT1 receptors as specific regulators of cardiovascular reactivity to acute psychoemotional stress.

    PubMed

    Mayorov, Dmitry N

    2011-02-01

    1. Cardiovascular reactivity, an abrupt rise in blood pressure (BP) and heart rate in response to psychoemotional stress, is a risk factor for heart disease. Pharmacological and molecular genetic studies suggest that brain angiotensin (Ang) II and AT(1) receptors are required for the normal expression of sympathetic cardiovascular responses to various psychological stressors. Moreover, overactivity of the brain AngII system may contribute to enhanced cardiovascular reactivity in hypertension. 2. Conversely, brain AT(1) receptors appear to be less important for the regulation of sympathetic cardiovascular responses to a range of stressors involving an immediate physiological threat (physical stressors) in animal models. 3. Apart from threatening events, appetitive stimuli can induce a distinct, central nervous system-mediated rise in BP. However, evidence indicates that brain AT(1) receptors are not essential for the regulation of cardiovascular arousal associated with positively motivated behaviour, such as anticipation and the consumption of palatable food. The role of central AT(1) receptors in regulating cardiovascular activation elicited by other types of appetitive stimuli remains to be determined. 4. Emerging evidence also indicates that brain AT(1) receptors play a limited role in the regulation of cardiovascular responses to non-emotional natural daily activities, sleep and exercise. 5. Collectively, these findings suggest that, with respect to cardiovascular arousal, central AT(1) receptors may be involved primarily in the regulation of the defence response. Therefore, these receptors could be a potential therapeutic target for selective attenuation of BP hyperreactivity to aversive stressors, without altering physiologically important cardiovascular adjustments to normal daily activities, sleep and exercise.

  6. OCT imaging of acute vascular changes following mild traumatic brain injury in mice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chico-Calero, Isabel; Shishkov, Milen; Welt, Jonathan; Blatter, Cedric; Vakoc, Benjamin J.

    2016-03-01

    While most people recover completely from mild traumatic brain injuries (mTBIs) and concussions, a subset develop lasting neurological disorders. Understanding the complex pathophysiology of these injuries is critical to developing improved prognostic and therapeutic approaches. Multiple studies have shown that the structure and perfusion of brain vessels are altered after mTBI. It is possible that these vascular injuries contribute to or trigger neurodegeneration. Intravital microscopy and mouse models of TBI offer a powerful platform to study the vascular component of mTBI. Because optical coherence tomography based angiography is based on perfusion contrast and is not significantly degraded by vessel leakage or blood brain barrier disruption, it is uniquely suited to studies of brain perfusion in the setting of trauma. However, existing TBI imaging models require surgical exposure of the brain at the time of injury which conflates TBI-related vascular changes with those caused by surgery. In this work, we describe a modified cranial window preparation based on a flexible, transparent polyurethane membrane. Impact injuries were delivered directly through this membrane, and imaging was performed immediately after injury without the need for additional surgical procedures. Using this model, we demonstrate that mTBI induces a transient cessation of flow in the capillaries and smaller vessels near the injury point. Reperfusion is observed in all animals within 3 hours of injury. This work describes new insight into the transient vascular changes induced by mTBI, and demonstrates more broadly the utility of the OCT/polyurethane window model platform in preclinical studies of mTBI.

  7. Chronic Neuropsychological Sequelae of Cholinesterase Inhibitors in the Absence of Structural Brain Damage: Two Cases of Acute Poisoning

    PubMed Central

    Roldán-Tapia, Lola; Leyva, Antonia; Laynez, Francisco; Santed, Fernando Sánchez

    2005-01-01

    Here we describe two cases of carbamate poisoning. Patients AMF and PVM were accidentally poisoned by cholinesterase inhibitors. The medical diagnosis in both cases was overcholinergic syndrome, as demonstrated by exposure to cholinesterase inhibitors. The widespread use of cholinesterase inhibitors, especially as pesticides, produces a great number of human poisoning events annually. The main known neurotoxic effect of these substances is cholinesterase inhibition, which causes cholinergic overstimulation. Once AMF and PVM had recovered from acute intoxication, they were subjected to extensive neuropsychological evaluation 3 and 12 months after the poisoning event. These assessments point to a cognitive deficit in attention, memory, perceptual, and motor domains 3 months after intoxication. One year later these sequelae remained, even though the brain magnetic resonance imaging (MRI) and computed tomography (CT) scans were interpreted as being within normal limits. We present these cases as examples of neuropsychological profiles of long-term sequelae related to acute poisoning by cholinesterase inhibitor pesticides and show the usefulness of neuropsychological assessment in detecting central nervous system dysfunction in the absence of biochemical or structural markers. PMID:15929901

  8. Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas.

    PubMed

    Wajima, Daisuke; Nakagawa, Ichiro; Nakase, Hiroyuki; Yonezawa, Taiji

    2013-06-26

    Acute subdural hematoma (ASDH) can cause massive ischemic cerebral blood flow (CBF) underneath the hematoma, but early surgical evacuation of the mass reduces mortality. The aim of this study was to evaluate whether arundic acid improves the secondary ischemic damage induced by ASDH. Our results confirmed that arundic acid decreases the expression of S100 protein produced by activated astrocytes around ischemic lesions due to cytotoxic edema after ASDH as well as reducing infarction volumes and numbers of apoptotic cells around the ischemic lesions. In this study, we also evaluate the relationship of brain edema and the expression of Aquaporin 4 (AQP4) in an ASDH model. The expression of AQP4 was decreased in the acute phase after ASDH. Cytotoxic edema, assumed to be the main cause of ASDH, could also cause ischemic lesions around the edema area. Arundic acid decreased the infarction volume and number of apoptotic cells via suppression of S100 protein expression in ischemic lesions without changing the expression of AQP4.

  9. Acute effects of alcohol on brain perfusion monitored with arterial spin labeling magnetic resonance imaging in young adults.

    PubMed

    Marxen, Michael; Gan, Gabriela; Schwarz, Daniel; Mennigen, Eva; Pilhatsch, Maximilian; Zimmermann, Ulrich S; Guenther, Matthias; Smolka, Michael N

    2014-03-01

    While a number of studies have established that moderate doses of alcohol increase brain perfusion, the time course of such an increase as a function of breath alcohol concentration (BrAC) has not yet been investigated, and studies differ about regional effects. Using arterial spin labeling (ASL) magnetic resonance imaging, we investigated (1) the time course of the perfusion increase during a 15-minute linear increase of BrAC up to 0.6 g/kg followed by a steady exposure of 100 minutes, (2) the regional distribution, (3) a potential gender effect, and (4) the temporal stability of perfusion effects. In 48 young adults who participated in the Dresden longitudinal study on alcohol effects in young adults, we observed (1) a 7% increase of global perfusion as compared with placebo and that perfusion and BrAC are tightly coupled in time, (2) that the increase reaches significance in most regions of the brain, (3) that the effect is stronger in women than in men, and (4) that an acute tolerance effect is not observable on the time scale of 2 hours. Larger studies are needed to investigate the origin and the consequences of the effect, as well as the correlates of inter-subject variations.

  10. [Asthenic syndrome in clinical course of acute period of brain concussion during complex treatment using nootropic agents].

    PubMed

    Tkachov, A V

    2008-01-01

    The comparative analysis of a complex examination of 108 persons aged from 16 till 60 years in acute period of closed craniocerebral injury (CCCT) has been done. Every participants have been divided into 2 groups depending on a nootrop medication they receive in a complex treatment. A control group consisted of 30 practically healthy people. Objective examination by means of tests was done on the 1-st, 10-th that 30-th day of treatment. Patients of 1-st (37 persons) group received piracetam in complex treatment and patients of the 2-nd group (71 persons) pramistar. Patients of the first group received a base treatment (analgetics, tranquilizers, vitamins of group B, magnesium sulfate, diuretic preparations) as well as piracetam at dosage 0.2, two tablets three times per day. The Patients of the 2-nd group received a base treatment as well as pramistar at dosage 0.6, one tablet 2 times per day. Specially developed multiaspects scales and questionnaires, MRT of the brain and EEG have been used for objectification of patient, complaints. During a complex clinico-neuropsychological examination it was found that all cases of concussion of the brain are accompanied by those or other asthenic disorders.

  11. Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study

    PubMed Central

    Shi, Yu; Liu, Ziping; Zhang, Shanshan; Li, Qiang; Guo, Shigui; Yang, Jiangming; Wu, Wen

    2015-01-01

    Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP) model and functional magnetic resonance imaging (fMRI) to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP) and once during tactile stimulation (SHAM) pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo) values in the pain matrix, limbic system, and default mode network (DMN) and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP. PMID:26161117

  12. Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study.

    PubMed

    Shi, Yu; Liu, Ziping; Zhang, Shanshan; Li, Qiang; Guo, Shigui; Yang, Jiangming; Wu, Wen

    2015-01-01

    Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP) model and functional magnetic resonance imaging (fMRI) to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP) and once during tactile stimulation (SHAM) pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo) values in the pain matrix, limbic system, and default mode network (DMN) and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP. PMID:26161117

  13. CO2 induced acute respiratory acidosis and brain tissue intracellular pH: a 31P NMR study in swine.

    PubMed

    Martoft, L; Stødkilde-Jørgensen, H; Forslid, A; Pedersen, H D; Jørgensen, P F

    2003-07-01

    High concentration carbon dioxide (CO(2)) is used to promote pre-slaughter anaesthesia in swine and poultry, as well as short-lasting surgical anaesthesia and euthanasia in laboratory animals. Questions related to animal welfare have been raised, as CO(2) anaesthesia does not set in momentarily. Carbon dioxide promotes anaesthesia by lowering the intracellular pH in the brain cells, but the dynamics of the changes in response to a high concentration of CO(2) is not known. Based on (31)P NMR spectroscopy, we describe CO(2)-induced changes in intracellular pH in the brains of five pigs inhaling 90% CO(2) in ambient air for a period of 60 s, and compare the results to changes in arterial blood pH, P(CO2), O(2) saturation and HCO(3)(-) concentration. The intracellular pH paralleled the arterial pH and P(CO2) during inhalation of CO(2); and it is suggested that the acute reaction to CO(2) inhalation mainly reflects respiratory acidosis, and not metabolic regulation as for example transmembrane fluxes of H(+)/HCO(3)(-). The intracellular pH decreased to approximately 6.7 within the 60 s inhalation period, and the situation was metabolically reversible after the end of CO(2) inhalation. The fast decrease in intracellular pH supports the conclusion that high concentration CO(2) leads to anaesthesia soon after the start of inhalation. PMID:12869287

  14. Effect of slice orientation on reproducibility of fMRI motor activation at 3 Tesla.

    PubMed

    Gustard, S; Fadili, J; Williams, E J; Hall, L D; Carpenter, T A; Brett, M; Bullmore, E T

    2001-12-01

    The effect of slice orientation on reproducibility and sensitivity of 3T fMRI activation using a motor task has been investigated in six normal volunteers. Four slice orientations were used; axial, oblique axial, coronal and sagittal. We applied analysis of variance (ANOVA) to suprathreshold voxel statistics to quantify variability in activation between orientations and between subjects. We also assessed signal detection accuracy in voxels across the whole brain by using a finite mixture model to fit receiver operating characteristic (ROC) curves to the data. Preliminary findings suggest that suprathreshold cluster characteristics demonstrate high motor reproducibility across subjects and orientations, although a significant difference between slice orientations in number of activated voxels was demonstrated in left motor cortex but not cerebellum. Subtle inter-orientation differences are highlighted in the ROC analyses, which are not obvious by ANOVA; the oblique axial slice orientation offers the highest signal detection accuracy, whereas coronal slices give the lowest.

  15. Thrombin induces ischemic LTP (iLTP): implications for synaptic plasticity in the acute phase of ischemic stroke

    PubMed Central

    Stein, Efrat Shavit; Itsekson-Hayosh, Zeev; Aronovich, Anna; Reisner, Yair; Bushi, Doron; Pick, Chaim G.; Tanne, David; Chapman, Joab; Vlachos, Andreas; Maggio, Nicola

    2015-01-01

    Acute brain ischemia modifies synaptic plasticity by inducing ischemic long-term potentiation (iLTP) of synaptic transmission through the activation of N-Methyl-D-aspartate receptors (NMDAR). Thrombin, a blood coagulation factor, affects synaptic plasticity in an NMDAR dependent manner. Since its activity and concentration is increased in brain tissue upon acute stroke, we sought to clarify whether thrombin could mediate iLTP through the activation of its receptor Protease-Activated receptor 1 (PAR1). Extracellular recordings were obtained in CA1 region of hippocampal slices from C57BL/6 mice. In vitro ischemia was induced by acute (3 minutes) oxygen and glucose deprivation (OGD). A specific ex vivo enzymatic assay was employed to assess thrombin activity in hippocampal slices, while OGD-induced changes in prothrombin mRNA levels were assessed by (RT)qPCR. Upon OGD, thrombin activity increased in hippocampal slices. A robust potentiation of excitatory synaptic strength was detected, which occluded the ability to induce further LTP. Inhibition of either thrombin or its receptor PAR1 blocked iLTP and restored the physiological, stimulus induced LTP. Our study provides important insights on the early changes occurring at excitatory synapses after ischemia and indicates the thrombin/PAR1 pathway as a novel target for developing therapeutic strategies to restore synaptic function in the acute phase of ischemic stroke. PMID:25604482

  16. Acute Dietary Tryptophan Manipulation Differentially Alters Social Behavior, Brain Serotonin and Plasma Corticosterone in Three Inbred Mouse Strains

    PubMed Central

    Zhang, Wynne Q.; Smolik, Corey M.; Barba-Escobedo, Priscilla A.; Gamez, Monica; Sanchez, Jesus J.; Javors, Martin A.; Daws, Lynette C.; Gould, Georgianna G.

    2014-01-01

    Clinical evidence indicates brain serotonin (5-HT) stores and neurotransmission may be inadequate in subpopulations of individuals with autism, and this may contribute to characteristically impaired social behaviors. Findings that depletion of the 5-HT precursor tryptophan (TRP) worsens autism symptoms support this hypothesis. Yet dietetic studies show and parents report that many children with autism consume less TRP than peers. To measure the impact of dietary TRP content on social behavior, we administered either diets devoid of TRP, with standard TRP (0.2 gm%), or with 1% added TRP (1.2 gm%) overnight to three mouse strains. Of these, BTBRT+Itpr3tf/J and 129S1/SvImJ consistently exhibit low preference for social interaction relative to C57BL/6. We found that TRP depletion reduced C57BL/6 and 129S social interaction preference, while TRP enhancement improved BTBR sociability (p < 0.05; N= 8–10). Subsequent marble burying was similar regardless of grouping. After behavior tests, brain TRP levels and plasma corticosterone were higher in TRP enhanced C57BL/6 and BTBR, while 5-HT levels were reduced in all strains by TRP depletion (p <0.05; N= 4 −10). Relative hyperactivity of BTBR and hypoactivity of 129S, evident in self-grooming and chamber entries during sociability tests, were uninfluenced by dietary TRP. Our findings demonstrate mouse sociability and brain 5-HT turnover are reduced by acute TRP depletion, and can be enhanced by TRP supplementation. This outcome warrants further basic and/or clinical studies employing biomarker combinations such as TRP metabolism and 5-HT regulated hormones to characterize the conditions wherein TRP supplementation can best ameliorate sociability deficits. PMID:25445490

  17. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    PubMed

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration.

  18. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    PubMed

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration. PMID:25820086

  19. Protective Ventilation of Preterm Lambs Exposed to Acute Chorioamnionitis Does Not Reduce Ventilation-Induced Lung or Brain Injury

    PubMed Central

    Barton, Samantha K.; Moss, Timothy J. M.; Hooper, Stuart B.; Crossley, Kelly J.; Gill, Andrew W.; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y.; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L.

    2014-01-01

    Background The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Methods Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. Results LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Conclusions Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor

  20. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Astrophysics Data System (ADS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-02-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  1. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  2. [Evaluation of the community integration of persons with lateralised post-acute acquired brain injury].

    PubMed

    Huertas-Hoyas, E; Pedrero-Perez, E J; Aguila-Maturana, A M; Gonzalez-Alted, C

    2013-08-16

    INTRODUCTION. Hemispheric specialization is a topic of interest that has motivated an enormous amount of research in recent decades. After a unilateral brain injury, the consequences can affect various areas of specialization, leading, depending on the location of the injury, impairment in quality of life and community integration. PATIENTS AND METHODS. Cross-sectional study with a sample of 58 patients, 28 traumatic brain injury (TBI) and 30 cerebrovascular accidents, both lateralized. The level of integration in the community is measured by the Community Integration Questionnaire. RESULTS. There were three groups analyzed by considering unilateral injury (full sample, stroke sample, and TBI sample). Results showed a significantly high community integration of people with right hemisphere injury. However, to measure the level of community integration between TBI and stroke, the results showed no significant differences. CONCLUSION. According to the results of the study people with brain injury in the right hemisphere have a better community integration than people with lesions in the left hemisphere regardless of the origin of the lesions (vascular or traumatic). We discussed the reasons that may motivate the differences and clinical implications.

  3. Ultrastructural mitochondria changes in perihematomal brain and neuroprotective effects of Huperzine A after acute intracerebral hemorrhage

    PubMed Central

    Lu, Haiying; Jiang, Mei; Lu, Lei; Zheng, Guo; Dong, Qiang

    2015-01-01

    Aim The purpose of the study was to observe the ultrastructural changes of neuronal mitochondria in perihematomal brain tissue and assess the therapeutic potential of Huperzine A (HA, a mitochondrial protector) following intracerebral hemorrhage (ICH). Methods Brain hemorrhage was induced in adult Sprague Dawley rats by injecting autologous blood into the striatum and then removing the brains 3, 6, 12, 24, or 48 hours later to analyze mitochondrial ultrastructure in a blinded manner. Parallel groups of ICH rats were treated with HA or saline immediately after ICH. Perihematomal apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase-3 activation and cytochrome C translocation were tracked by immunoblots, and neurobehavioral test results were compared between the groups. Results Mitochondria in perihematomal neurons demonstrated dramatic changes including mitochondrial swelling, intracristal dilation, and decreased matrix density. HA treatment decreased mitochondrial injury and apoptosis, inhibited caspase-3 activation and cytochrome C translocation, and improved behavioral recovery. Conclusion These data show that ICH induces dramatic mitochondrial damage, and HA exhibits protective effects possibly through ameliorating mitochondrial injury and apoptosis. Collectively, these findings suggest a new direction for novel therapeutics. PMID:26508860

  4. Tyrosine Hydroxylase Phosphorylation in Catecholaminergic Brain Regions: A Marker of Activation following Acute Hypotension and Glucoprivation

    PubMed Central

    Damanhuri, Hanafi A.; Burke, Peter G. R.; Ong, Lin K.; Bobrovskaya, Larisa; Dickson, Phillip W.; Dunkley, Peter R.; Goodchild, Ann K.

    2012-01-01

    The expression of c-Fos defines brain regions activated by the stressors hypotension and glucoprivation however, whether this identifies all brain sites involved is unknown. Furthermore, the neurochemicals that delineate these regions, or are utilized in them when responding to these stressors remain undefined. Conscious rats were subjected to hypotension, glucoprivation or vehicle for 30, 60 or 120 min and changes in the phosphorylation of serine residues 19, 31 and 40 in the biosynthetic enzyme, tyrosine hydroxylase (TH), the activity of TH and/or, the expression of c-Fos were determined, in up to ten brain regions simultaneously that contain catecholaminergic cell bodies and/or terminals: A1, A2, caudal C1, rostral C1, A6, A8/9, A10, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Glucoprivation evoked phosphorylation changes in A1, caudal C1, rostral C1 and nucleus accumbens whereas hypotension evoked changes A1, caudal C1, rostral C1, A6, A8/9, A10 and medial prefrontal cortex 30 min post stimulus whereas few changes were evident at 60 min. Although increases in pSer19, indicative of depolarization, were seen in sites where c-Fos was evoked, phosphorylation changes were a sensitive measure of activation in A8/9 and A10 regions that did not express c-Fos and in the prefrontal cortex that contains only catecholaminergic terminals. Specific patterns of serine residue phosphorylation were detected, dependent upon the stimulus and brain region, suggesting activation of distinct signaling cascades. Hypotension evoked a reduction in phosphorylation in A1 suggestive of reduced kinase activity. TH activity was increased, indicating synthesis of TH, in regions where pSer31 alone was increased (prefrontal cortex) or in conjunction with pSer40 (caudal C1). Thus, changes in phosphorylation of serine residues in TH provide a highly sensitive measure of activity, cellular signaling and catecholamine utilization in catecholaminergic brain regions, in the

  5. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.

    PubMed

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain. PMID:27127458

  6. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    PubMed Central

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain. PMID:27127458

  7. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro.

    PubMed

    Killian, Nathaniel J; Vernekar, Varadraj N; Potter, Steve M; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  8. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro

    PubMed Central

    Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  9. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions.

    PubMed

    Schnackenberg, B J; Saini, U T; Robinson, B L; Ali, S F; Patterson, T A

    2010-10-13

    Gamma-hydroxybutyric acid (GHB) is normally found in the brain in low concentrations and may function as a neurotransmitter, although the mechanism of action has not been completely elucidated. GHB has been used as a general anesthetic and is currently used to treat narcolepsy and alcoholism. Recreational use of GHB is primarily as a "club drug" and a "date rape drug," due to its amnesic effects. For this study, the hypothesis was that behavioral and neurochemical alterations may parallel gene expression changes in the brain after GHB administration. Adult male C57/B6N mice (n=5/group) were administered a single dose of 500 mg/kg GHB (i.p.) and were sacrificed 1, 2 and 4 h after treatment. Control mice were administered saline. Brains were removed and regionally dissected on ice. Total RNA from the hippocampus, cortex and striatum was extracted, amplified and labeled. Gene expression was evaluated using Agilent whole mouse genome 4x44K oligonucleotide microarrays. Microarray data were analyzed by ArrayTrack and differentially expressed genes (DEGs) were identified using P < or = 0.01 and a fold change > or = 1.7 as the criteria for significance. Principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that samples from each time point clustered into distinct treatment groups with respect to sacrifice time. Ingenuity pathways analysis (IPA) was used to identify involved pathways. The results show that GHB induces gene expression alterations in hundreds of genes in the hippocampus, cortex and striatum, and the number of affected genes increases throughout a 4-h time course. Many of these DEGs are involved in neurological disease, apoptosis, and oxidative stress.

  10. Effect of Coenzyme Q10 on Proteomic Profile of Rat Brain Amygdala during Acute Metabolic Stress.

    PubMed

    Kirbaeva, N V; Sharanova, N E; Zhminchenko, V M; Toropygin, I Yu; Koplik, E V; Pertsov, S S; Vasil'ev, A V

    2016-08-01

    Differences in the proteomic profiles of the brain amygdala in rats with different prognostic resistance to stress were found on the model of metabolic stress. Differential expression of tropomodulin-2, GTP-binding protein SAR1, peroxiredoxin-2, calcineurin B homologous protein 1, Ras-related protein Rab-14, glutathione S-transferase omega-1, Tcrb protein, and NADH dehydrogenase [ubiquinone] iron-sulfur protein 8 (mitochondrial) was shown to depend on the behavioral pattern of animals and stage of the study. Specific features were observed in the involvement of the amygdala in the stress response of specimens with various behavioral characteristics. PMID:27590759

  11. Protein-energy malnutrition developing after global brain ischemia induces an atypical acute-phase response and hinders expression of GAP-43.

    PubMed

    Smith, Shari E; Figley, Sarah A; Schreyer, David J; Paterson, Phyllis G

    2014-01-01

    Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery.

  12. Altered spontaneous brain activity patterns in patients with unilateral acute open globe injury using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study

    PubMed Central

    Tan, Gang; Huang, Xin; Ye, Lei; Wu, An-Hua; He, Li-Xian; Zhong, Yu-Lin; Jiang, Nan; Zhou, Fu-Qing; Shao, Yi

    2016-01-01

    Objective The aim of this study was to evaluate altered spontaneous brain activities in patients with unilateral acute open globe injury (OGI) using amplitude of low-frequency fluctuation (ALFF) method and its relationship with their clinical manifestations. Patients and methods A total of 18 patients with acute OGI (16 males and two females) and 18 healthy controls (HCs, 16 males and two females) closely matched in age, sex, and education were recruited in this study. The ALFF method was used to evaluate the altered spontaneous brain activities. The relationships between the mean ALFF signal values of different brain regions and the clinical features were evaluated by correlation analysis. Acute OGI patients were distinguished from HCs by receiver operating characteristic curve. Results Compared with HCs, acute OGI patients had significantly higher ALFF values in the left cuneus, left middle cingulum cortex, and bilateral precuneus. Furthermore, the age of OGI patients showed a negative correlation with the ALFF signal value of the left middle cingulum cortex (r=−0.557, P=0.016) and a negative correlation with the mean ALFF signal value of the bilateral precuneus (r=−0.746, P<0.001). The ALFF signal value of the bilateral precuneus was negatively correlated with the duration of OGI (r=−0.493, P=0.038) and positively correlated with the vision acuity of the injured eye (r=0.583, P=0.011). Conclusion Acute OGI mainly induces dysfunction in the left cuneus, left middle cingulum cortex, and bilateral precuneus, which may reflect the underlying pathologic mechanisms of abnormal brain activities in OGI patients. PMID:27570455

  13. SLIMMER: SLIce MRI motion estimation and reconstruction tool for studies of fetal anatomy

    NASA Astrophysics Data System (ADS)

    Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2011-03-01

    We describe a free software tool which combines a set of algorithms that provide a framework for building 3D volumetric images of regions of moving anatomy using multiple fast multi-slice MRI studies. It is specifically motivated by the clinical application of unsedated fetal brain imaging, which has emerged as an important area for image analysis. The tool reads multiple DICOM image stacks acquired in any angulation into a consistent patient coordinate frame and allows the user to select regions to be locally motion corrected. It combines algorithms for slice motion estimation, bias field inconsistency correction and 3D volume reconstruction from multiple scattered slice stacks. The tool is built onto the RView (http://rview.colin-studholme.net) medical image display software and allows the user to inspect slice stacks, and apply both stack and slice level motion estimation that incorporates temporal constraints based on slice timing and interleave information read from the DICOM data. Following motion estimation an algorithm for bias field inconsistency correction provides the user with the ability to remove artifacts arising from the motion of the local anatomy relative to the imaging coils. Full 3D visualization of the slice stacks and individual slice orientations is provided to assist in evaluating the quality of the motion correction and final image reconstruction. The tool has been evaluated on a range of clinical data acquired on GE, Siemens and Philips MRI scanners.

  14. Cerebral Hemodynamic Changes of Mild Traumatic Brain Injury at the Acute Stage

    PubMed Central

    Doshi, Hardik; Wiseman, Natalie; Liu, Jun; Wang, Wentao; Welch, Robert D.; O’Neil, Brian J.; Zuk, Conor; Wang, Xiao; Mika, Valerie; Szaflarski, Jerzy P.; Haacke, E. Mark; Kou, Zhifeng

    2015-01-01

    Mild traumatic brain injury (mTBI) is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI), we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM) for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL). We found increases in regional cerebral blood flow (CBF) in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively). We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both). mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation. PMID:25659079

  15. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  16. The Effect of Intravenous Lidocaine on Brain Activation During Non-Noxious and Acute Noxious Stimulation of the Forepaw: A Functional Magnetic Resonance Imaging Study in the Rat

    PubMed Central

    Luo, Zhongchi; Yu, Mei; Smith, S. David; Kritzer, Mary; Du, Congwu; Ma, Yu; Volkow, Nora D.; Glass, Peter S.; Benveniste, Helene

    2009-01-01

    BACKGROUND Lidocaine can alleviate acute as well as chronic neuropathic pain at very low plasma concentrations in humans and laboratory animals. The mechanism(s) underlying lidocaine’s analgesic effect when administered systemically is poorly understood but clearly not related to interruption of peripheral nerve conduction. Other targets for lidocaine’s analgesic action(s) have been suggested, including sodium channels and other receptor sites in the central rather than peripheral nervous system. To our knowledge, the effect of lidocaine on the brain’s functional response to pain has never been investigated. Here, we therefore characterized the effect of systemic lidocaine on the brain’s response to innocuous and acute noxious stimulation in the rat using functional magnetic resonance imaging (fMRI). METHODS Alpha-chloralose anesthetized rats underwent fMRI to quantify brain activation patterns in response to innocuous and noxious forepaw stimulation before and after IV administration of lidocaine. RESULTS Innocuous forepaw stimulation elicited brain activation only in the contralateral primary somatosensory (S1) cortex. Acute noxious forepaw stimulation induced activation in additional brain areas associated with pain perception, including the secondary somatosensory cortex (S2), thalamus, insula and limbic regions. Lidocaine administered at IV doses of either 1 mg/kg, 4 mg/kg or 10 mg/kg did not abolish or diminish brain activation in response to innocuous or noxious stimulation. In fact, IV doses of 4 mg/kg and 10 mg/kg lidocaine enhanced S1 and S2 responses to acute nociceptive stimulation, increasing the activated cortical volume by 50%–60%. CONCLUSION The analgesic action of systemic lidocaine in acute pain is not reflected in a straightforward interruption of pain-induced fMRI brain activation as has been observed with opioids. The enhancement of cortical fMRI responses to acute pain by lidocaine observed here has also been reported for cocaine. We

  17. Simulation and experimental study of DC electric field distribution characteristics of rat hippocampal slices in vitro

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Dong, Lei; Gao, Yang; Qiu, Qian; Li, Ze-yan; Zhao, Zhe; Chen, Rui-juan; Wang, Hui-quan

    2016-06-01

    Direct current (DC) electric field is a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons. Despite its efficacy, the dielectric constant of artificial cerebrospinal fluid and the position and direction of brain slices and other factors can affect the field intensity and distribution acting on the surface of rat hippocampus slices, thus causing errors. In this study, we describe a new analytical method optimized for DC electric fields acting on brain slices, and the design of an external DC electric field stimulator to allow scientific evaluation of brain slices. We investigated parameters regarding the uniformity of electric field distribution and identified the maximal parameters using the finite element method. Then, we selected and simplified slice images using magnetic resonance imaging data and calculated the electric field intensity of the original and simplified models. The electric field simulator induced action potential and excitatory postsynaptic current with intensities of 1, 5, and 10 V/m. This study describes the development of a new electric field stimulator and successfully demonstrates its practicability for scientific evaluation of tissue slices.

  18. Automatic basal slice detection for cardiac analysis.

    PubMed

    Paknezhad, Mahsa; Marchesseau, Stephanie; Brown, Michael S

    2016-07-01

    Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction of the left ventricle. Despite all the effort placed on automatic cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, suffers from high interobserver variability. As a result, an automatic algorithm for basal slice identification is required. Guidelines published in 2013 identify the basal slice based on the percentage of myocardium surrounding the blood cavity in the short-axis view. Existing methods, however, assume that the basal slice is the first short-axis view slice below the mitral valve and are consequently at times identifying the incorrect short-axis slice. Correct identification of the basal slice under the Society for Cardiovascular Magnetic Resonance guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that utilizes the two-chamber view to determine the basal slice while following the guidelines. To this end, an active shape model is trained to segment the two-chamber view and create temporal binary profiles from which the basal slice is identified. From the 51 tested cases, our method obtains 92% and 84% accurate basal slice detection for the end-systole and the end-diastole, respectively. PMID:27660805

  19. Time course of acute neuroprotective effects of lithium carbonate evaluated by brain impedanciometry in the global ischemia model.

    PubMed

    Wix-Ramos, R; Eblen-Zajjur, A

    2011-10-01

    It is well known that chronic treatment with lithium gives cytoprotection from ischemia and neurodegeneration. Despite the clinical relevance, the potential effects of acute lithium treatment just before and during early stages of ischemia are not well known. Brain impedance was measured in an experimental global ischemia model, to determine these potential effects and their time course,as measured in minutes. Thiobarbital anesthetized (60 mg·kg(-1), intraperitoneal injection) male Sprague-Dawley rats were infused intravenously (i.v.) with isovolumetric amounts of ringer (n = 10 rats) or lithium (Li(2)CO(3); 10; 30; 100 mg·kg(-1); n = 6 rats per dose tested). Cortico-subcortical impedance was recorded before (20 min) and after (20 min) the infusion, and during global cerebral ischemia (20 min) induced by cardiopulmonary arrest due to the administration of D-tubocurarine. Lithium did not change tissue impedance in normoxid animals. In the ringer-infused group, global cerebral ischemia first (9 min) shows a fast voltage decay rate (-7.08%·min(-1)), followed by a slow one (-0.94%·min(-1)) for the last 11 min of the recording. Lithium, at any dose tested, induced a strong reduction in voltage decay for both fast (-3.7%·min(-1)) and slow (-5.2%·min(-1)) phases, although the reduction was more intense in the first phase (>58%, Mann-Whitney Z = 2.02; P < 0.043). The reduction was more effective at 10 mg (Li₂CO₃)·kg(-1) than at 30 or 100 mg·kg(-1). The time course of brain edema was defined by curve fitting for ringer- (time constant λ = 512.9 s) or lithium-infused animals (λ = 302.0 s). These results suggest that acute lithium infusion 20 min prior to global ischemia, strongly reduces cerebral impedance by reducing the decay rate and the duration of the fast decay phase, and increasing time constant decay during ischemia.

  20. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    PubMed

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  1. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    PubMed

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  2. Automatic basal slice detection for cardiac analysis

    NASA Astrophysics Data System (ADS)

    Paknezhad, Mahsa; Marchesseau, Stephanie; Brown, Michael S.

    2016-03-01

    Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction (EF) of the left ventricle (LV). Despite research on cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, has been shown to have high inter-observer variability, with a variation of the EF by up to 8%. Therefore, an automatic way of identifying the basal slice is still required. Prior published methods operate by automatically tracking the mitral valve points from the long-axis view of the LV. These approaches assumed that the basal slice is the first short-axis slice below the mitral valve. However, guidelines published in 2013 by the society for cardiovascular magnetic resonance indicate that the basal slice is the uppermost short-axis slice with more than 50% myocardium surrounding the blood cavity. Consequently, these existing methods are at times identifying the incorrect short-axis slice. Correct identification of the basal slice under these guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that focuses on the two-chamber slice to find the basal slice. To this end, an active shape model is trained to automatically segment the two-chamber view for 51 samples using the leave-one-out strategy. The basal slice was detected using temporal binary profiles created for each short-axis slice from the segmented two-chamber slice. From the 51 successfully tested samples, 92% and 84% of detection results were accurate at the end-systolic and the end-diastolic phases of the cardiac cycle, respectively.

  3. Boussignac CPAP system for brain death confirmation with apneic test in case of acute lung injury/adult respiratory distress syndrome – series of cases

    PubMed Central

    Wieczorek, Andrzej; Gaszynski, Tomasz

    2015-01-01

    Introduction There are some patients with severe respiratory disturbances like adult respiratory distress syndrome (ARDS) and suspicion of brain death, for whom typical performance of the apneic test is difficult to complete because of quick desaturation and rapid deterioration without effective ventilation. To avoid failure of brain death confirmation and possible loss of organ donation another approach to apneic test is needed. We present two cases of patients with clinical symptoms of brain death, with lung pathology (acute lung injury, ARDS, lung embolism and lung infection), in whom apneic tests for recognizing brain death were difficult to perform. During typical performance of apneic test involving the use of oxygen catheter for apneic oxygenation we observed severe desaturation with growing hypotension and hemodynamic destabilization. But with the use of Boussignac CPAP system all necessary tests were successfully completed, confirming the patient’s brain death, which gave us the opportunity to perform procedures for organ donation. The main reason of apneic test difficulties was severe gas exchange disturbances secondary to ARDS. Thus lack of positive end expiratory pressure during classical performance of apneic test leads to quick desaturation and rapid hemodynamic deterioration, limiting the observation period below dedicated at least 10-minute interval. Conclusion The Boussignac CPAP system may be an effective tool for performing transparent apneic test in case of serious respiratory disturbances, especially in the form of acute lung injury or ARDS. PMID:26124664

  4. [Brain histaminergic neurons in rats subjected to the acute effect of alcohol].

    PubMed

    Zimatkin, S M; Fedina, E M; Kuznetsova, V B

    2012-01-01

    The purpose of the present investigation was to examine the effect of single injection of alcohol on histaminergic neurons of rat brain. The study included 41 male albino rats, histological, histochemical, electron microscopic and morphometric methods were used. It was found that 1 hour after the intraperitoneal administration of ethanol in a dose of 4 g/kg the neurons become more spherical, the activity of NADH and glucose-6-phosphate dehydrogenases in their cytoplasm decreased, but the activity of lactate dehydrogenase, type B monoaminooxidase and acid phosphatase increased, at the same time significant ultrastructural disturbances were observed. Six hours following alcohol administration, the signs of histaminergic neuronal damage were reduced while the features of structural and metabolic adaptation became more expressed.

  5. Influence of perinatal trans fat on behavioral responses and brain oxidative status of adolescent rats acutely exposed to stress.

    PubMed

    Pase, C S; Roversi, Kr; Trevizol, F; Roversi, K; Kuhn, F T; Schuster, A J; Vey, L T; Dias, V T; Barcelos, R C S; Piccolo, J; Emanuelli, T; Bürger, M E

    2013-09-01

    Because consumption of processed foods has increased in the last decades and so far its potential influence on emotionality and susceptibility to stress is unknown, we studied the influence of different fatty acids (FA) on behavioral and biochemical parameters after acute restrain stress (AS) exposure. Two sequential generations of female rats were supplemented with soybean oil (control group; C-SO), fish oil (FO) and hydrogenated vegetable fat (HVF) from pregnancy and during lactation. At 41days of age, half the animals of each supplemented group were exposed to AS and observed in open field and elevated plus maze task, followed by euthanasia for biochemical assessments. The HVF-supplemented group showed higher anxiety-like symptoms per se, while the C-SO and FO groups did not show these behaviors. Among groups exposed to AS, HVF showed locomotor restlessness in the open field, while both C-SO and HVF groups showed anxiety-like symptoms in the elevated plus maze, but this was not observed in the FO group. Biochemical evaluations showed higher lipoperoxidation levels and lower cell viability in cortex in the HVF group. In addition, HVF-treated rats showed reduced catalase activity in striatum and hippocampus, as well as increased generation of reactive species in striatum, while FO was associated with increased cell viability in the hippocampus. Among groups exposed to AS, HVF increased reactive species generation in the brain, decreased cell viability in the cortex and striatum, and decreased catalase activity in the striatum and hippocampus. Taken together, our findings show that the type of FA provided during development and growth over two generations is able to modify the brain oxidative status, which was particularly adversely affected by trans fat. In addition, the harmful influence of chronic consumption of trans fats as observed in this study can enhance emotionality and anxiety parameters resulting from stressful situations of everyday life, which can

  6. Comparison of Acute and Chronic Traumatic Brain Injury Using Semi-Automatic Multimodal Segmentation of MR Volumes

    PubMed Central

    Chambers, Micah C.; Alger, Jeffry R.; Filippou, Maria; Prastawa, Marcel W.; Wang, Bo; Hovda, David A.; Gerig, Guido; Toga, Arthur W.; Kikinis, Ron; Vespa, Paul M.; Van Horn, John D.

    2011-01-01

    Abstract Although neuroimaging is essential for prompt and proper management of traumatic brain injury (TBI), there is a regrettable and acute lack of robust methods for the visualization and assessment of TBI pathophysiology, especially for of the purpose of improving clinical outcome metrics. Until now, the application of automatic segmentation algorithms to TBI in a clinical setting has remained an elusive goal because existing methods have, for the most part, been insufficiently robust to faithfully capture TBI-related changes in brain anatomy. This article introduces and illustrates the combined use of multimodal TBI segmentation and time point comparison using 3D Slicer, a widely-used software environment whose TBI data processing solutions are openly available. For three representative TBI cases, semi-automatic tissue classification and 3D model generation are performed to perform intra-patient time point comparison of TBI using multimodal volumetrics and clinical atrophy measures. Identification and quantitative assessment of extra- and intra-cortical bleeding, lesions, edema, and diffuse axonal injury are demonstrated. The proposed tools allow cross-correlation of multimodal metrics from structural imaging (e.g., structural volume, atrophy measurements) with clinical outcome variables and other potential factors predictive of recovery. In addition, the workflows described are suitable for TBI clinical practice and patient monitoring, particularly for assessing damage extent and for the measurement of neuroanatomical change over time. With knowledge of general location, extent, and degree of change, such metrics can be associated with clinical measures and subsequently used to suggest viable treatment options. PMID:21787171

  7. The Effect of Paracetamol on Core Body Temperature in Acute Traumatic Brain Injury: A Randomised, Controlled Clinical Trial

    PubMed Central

    Saxena, Manoj K.; Taylor, Colman; Billot, Laurent; Bompoint, Severine; Gowardman, John; Roberts, Jason A.; Lipman, Jeffery; Myburgh, John

    2015-01-01

    Background Strategies to prevent pyrexia in patients with acute neurological injury may reduce secondary neuronal damage. The aim of this study was to determine the safety and efficacy of the routine administration of 6 grams/day of intravenous paracetamol in reducing body temperature following severe traumatic brain injury, compared to placebo. Methods A multicentre, randomised, blind, placebo-controlled clinical trial in adult patients with traumatic brain injury (TBI). Patients were randomised to receive an intravenous infusion of either 1g of paracetamol or 0.9% sodium chloride (saline) every 4 hours for 72 hours. The primary outcome was the mean difference in core temperature during the study intervention period. Results Forty-one patients were included in this study: 21 were allocated to paracetamol and 20 to saline. The median (interquartile range) number of doses of study drug was 18 (17–18) in the paracetamol group and 18 (16–18) in the saline group (P = 0.85). From randomisation until 4 hours after the last dose of study treatment, there were 2798 temperature measurements (median 73 [67–76] per patient). The mean ± standard deviation temperature was 37.4±0.5°C in the paracetamol group and 37.7±0.4°C in the saline group (absolute difference -0.3°C; 95% confidence interval -0.6 to 0.0; P = 0.09). There were no significant differences in the use of physical cooling, or episodes of hypotension or hepatic abnormalities, between the two groups. Conclusion The routine administration of 6g/day of intravenous paracetamol did not significantly reduce core body temperature in patients with TBI. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12609000444280 PMID:26678710

  8. Acute Effects of Modafinil on Brain Resting State Networks in Young Healthy Subjects

    PubMed Central

    Pieramico, Valentina; Ferretti, Antonio; Macchia, Antonella; Tommasi, Marco; Saggino, Aristide; Ciavardelli, Domenico; Manna, Antonietta; Navarra, Riccardo; Cieri, Filippo; Stuppia, Liborio; Tartaro, Armando; Sensi, Stefano L.

    2013-01-01

    Background There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. Methodology A single dose (100 mg) of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven’s Advanced Progressive Matrices II set (APM) before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI) was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI) was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. Principal Findings Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04) and Dorsal Attention (DAN; p<0.04) networks. No modifications in structural connectivity were observed. Conclusions and Significance Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. Trial Registration ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306. PMID:23935959

  9. Texture Analysis of T2-Weighted MR Images to Assess Acute Inflammation in Brain MS Lesions

    PubMed Central

    Michoux, Nicolas; Guillet, Alain; Rommel, Denis; Mazzamuto, Giosué; Sindic, Christian; Duprez, Thierry

    2015-01-01

    Brain blood barrier breakdown as assessed by contrast-enhanced (CE) T1-weighted MR imaging is currently the standard radiological marker of inflammatory activity in multiple sclerosis (MS) patients. Our objective was to evaluate the performance of an alternative model assessing the inflammatory activity of MS lesions by texture analysis of T2-weighted MR images. Twenty-one patients with definite MS were examined on the same 3.0T MR system by T2-weighted, FLAIR, diffusion-weighted and CE-T1 sequences. Lesions and mirrored contralateral areas within the normal appearing white matter (NAWM) were characterized by texture parameters computed from the gray level co-occurrence and run length matrices, and by the apparent diffusion coefficient (ADC). Statistical differences between MS lesions and NAWM were analyzed. ROC analysis and leave-one-out cross-validation were performed to evaluate the performance of individual parameters, and multi-parametric models using linear discriminant analysis (LDA), partial least squares (PLS) and logistic regression (LR) in the identification of CE lesions. ADC and all but one texture parameter were significantly different within white matter lesions compared to within NAWM (p < 0.0167). Using LDA, an 8-texture parameter model identified CE lesions with a sensitivity Se = 70% and a specificity Sp = 76%. Using LR, a 10-texture parameter model performed better with Se = 86% / Sp = 84%. Using PLS, a 6-texture parameter model achieved the highest accuracy with Se = 88% / Sp = 81%. Texture parameter from T2-weighted images can assess brain inflammatory activity with sufficient accuracy to be considered as a potential alternative to enhancement on CE T1-weighted images. PMID:26693908

  10. Behavioral deficits in rats following acute administration of glimepiride: Relationship with brain serotonin and dopamine.

    PubMed

    Sheikh, Shehnaz Abdul; Ikram, Huma; Haleem, Darakhshan Jabeen

    2015-07-01

    A considerable body of literature suggests that depression and diabetes mellitus are co-morbid. The present study was designed to test any possible behavioral deficits and/or neurochemical changes in the brain as induced by the anti-diabetic drugs. Twenty-four rats were divided into four groups: (i) saline (ii) glimepiride (2.5mg/kg)- (iii) glimepiride (5.0mg/kg)- and (iv) glimepiride (10 mg/kg) injected animals. Behavioral activities in Skinner's box, open field and elevated plus maze were monitored 20, 35 and 45 minutes post injection respectively. Animals were decapitated 60 minutes post injection to collect brain samples. Samples were kept at -70°C until neurochemical analysis by HPLC-EC. Results from the present study show decreased time spent in the open arm of the elevated plus maze (p<0.05) at all the three doses. A decrease in the HVA (Homovanillic acid) levels at all three doses (p<0.01) was also observed along with decreased 5-HT (5-Hydroxytryptamine) (p<0.05 at 5.0 and 10mg/kg) and 5-HIAA (5-Hydroxyindoleacetic acid) (p<0.05 at all three doses) levels. Since a decrease in 5-HT metabolism can induce depression-like effects, the present study therefore suggests t