Science.gov

Sample records for acute cerebellar slices

  1. Acute cerebellar ataxia

    MedlinePlus

    Cerebellar ataxia; Ataxia - acute cerebellar; Cerebellitis; Post-varicella acute cerebellar ataxia; PVACA ... virus. Viral infections that may cause this include chickenpox , Coxsackie disease, Epstein-Barr, and echovirus . Other causes ...

  2. Acute hydrocephalus following cerebellar infarct

    PubMed Central

    Epstein, Elliot; Naqvi, Huma

    2010-01-01

    A 59-year-old man was admitted with a diagnosis of acute cerebellar infarct. The next day his level of consciousness deteriorated (Glasgow Coma Score 5) and repeat computed tomography (CT) brain scan showed subtle signs of hydrocephalus. Following neurosurgical intervention, he recovered and is now walking with a frame and assistance. The CT changes of hydrocephalus were subtle and difficult to spot. Recognition of these signs of hydrocephalus and prompt neurosurgical intervention were lifesaving. PMID:22355298

  3. Fingolimod Attenuates Splenocyte-Induced Demyelination in Cerebellar Slice Cultures

    PubMed Central

    Pritchard, Adam J.; Mir, Anis K.; Dev, Kumlesh K.

    2014-01-01

    The family of sphingosine-1-phosphate receptors (S1PRs) is G-protein-coupled, comprised of subtypes S1PR1-S1PR5 and activated by the endogenous ligand S1P. The phosphorylated version of Fingolimod (pFTY720), an oral therapy for multiple sclerosis (MS), induces S1PR1 internalisation in T cells, subsequent insensitivity to S1P gradients and sequestering of these cells within lymphoid organs, thus limiting immune response. S1PRs are also expressed in neuronal and glial cells where pFTY720 is suggested to directly protect against lysolecithin-induced deficits in myelination state in organotypic cerebellar slices. Of note, the effect of pFTY720 on immune cells already migrated into the CNS, prior to treatment, has not been well established. We have previously found that organotypic slice cultures do contain immune cells, which, in principle, could also be regulated by pFTY720 to maintain levels of myelin. Here, a mouse organotypic cerebellar slice and splenocyte co-culture model was thus used to investigate the effects of pFTY720 on splenocyte-induced demyelination. Spleen cells isolated from myelin oligodendrocyte glycoprotein immunised mice (MOG-splenocytes) or from 2D2 transgenic mice (2D2-splenocytes) both induced demyelination when co-cultured with mouse organotypic cerebellar slices, to a similar extent as lysolecithin. As expected, in vivo treatment of MOG-immunised mice with FTY720 inhibited demyelination induced by MOG-splenocytes. Importantly, in vitro treatment of MOG- and 2D2-splenocytes with pFTY720 also attenuated demyelination caused by these cells. In addition, while in vitro treatment of 2D2-splenocytes with pFTY720 did not alter cell phenotype, pFTY720 inhibited the release of the pro-inflammatory cytokines such as interferon gamma (IFNγ) and interleukin 6 (IL6) from these cells. This work suggests that treatment of splenocytes by pFTY720 attenuates demyelination and reduces pro-inflammatory cytokine release, which likely contributes to enhanced

  4. Orthostatic hypotension in acute cerebellar infarction.

    PubMed

    Kim, Hyun-Ah; Lee, Hyung

    2016-01-01

    To investigate the frequency and pattern of orthostatic hypotension (OH) associated with acute isolated cerebellar infarction, and to identify the cerebellar structure(s) potentially responsible for OH, 29 patients (mean age 60.0) with acute isolated cerebellar infarction performed a standard battery of autonomic function tests including the head up tilt test using Finapres for recording of the beat-to-beat BP response during the acute period. Cerebellar infarction related OH was defined as fall in BP (>20 mmHg systolic BP) on tilting in patients without any disease(s) that could potentially cause autonomic dysfunction, or in patients who had a potential cause of autonomic dysfunction, but showed the absence of OH during a follow-up test. The severity and distribution of autonomic dysfunction were measured by the composite autonomic severity score (CASS). Nine patients (31 %) had OH (range 24-53 mmHg) on tilting during the acute period. Most patients (7/9) had a remarkable decrement in systolic BP immediately upon tilting, but OH rapidly normalized. Mean of maximal decrease in systolic BP during head up tilt test was 37.0 mmHg. The OH group showed mild autonomic dysfunctions (CASS, 3.7) with adrenergic sympathetic dysfunction appearing as the most common abnormality. Lesion subtraction analyses revealed that damage to the medial part of the superior semilunar lobule (Crus I) and tonsil was more frequent in OH group compared to non-OH group. Cerebellar infarction may cause a brief episode of OH. The medial part of the superior semilunar lobule and tonsil may participate in regulating the early BP response during orthostasis. PMID:26530504

  5. Extending the viability of acute brain slices

    PubMed Central

    Buskila, Yossi; Breen, Paul P.; Tapson, Jonathan; van Schaik, André; Barton, Matthew; Morley, John W.

    2014-01-01

    The lifespan of an acute brain slice is approximately 6–12 hours, limiting potential experimentation time. We have designed a new recovery incubation system capable of extending their lifespan to more than 36 hours. This system controls the temperature of the incubated artificial cerebral spinal fluid (aCSF) while continuously passing the fluid through a UVC filtration system and simultaneously monitoring temperature and pH. The combination of controlled temperature and UVC filtering maintains bacteria levels in the lag phase and leads to the dramatic extension of the brain slice lifespan. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays. This system benefits researchers by monitoring incubation conditions and standardizing this artificial environment. It further provides viable tissue for two experimental days, reducing the time spent preparing brain slices and the number of animals required for research. PMID:24930889

  6. Non-progressive cerebellar ataxia and previous undetermined acute cerebellar injury: a mysterious clinical condition.

    PubMed

    Pinto, Wladimir Bocca Vieira de Rezende; Pedroso, José Luiz; Souza, Paulo Victor Sgobbi de; Albuquerque, Marcus Vinícius Cristino de; Barsottini, Orlando Graziani Povoas

    2015-10-01

    Cerebellar ataxias represent a wide group of neurological diseases secondary to dysfunctions of cerebellum or its associated pathways, rarely coursing with acute-onset acquired etiologies and chronic non-progressive presentation. We evaluated patients with acquired non-progressive cerebellar ataxia that presented previous acute or subacute onset. Clinical and neuroimaging characterization of adult patients with acquired non-progressive ataxia were performed. Five patients were identified with the phenotype of acquired non-progressive ataxia. Most patients presented with a juvenile to adult-onset acute to subacute appendicular and truncal cerebellar ataxia with mild to moderate cerebellar or olivopontocerebellar atrophy. Establishing the etiology of the acute triggering events of such ataxias is complex. Non-progressive ataxia in adults must be distinguished from hereditary ataxias.

  7. Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning.

    PubMed

    Schreurs, B G; Alkon, D L

    1993-12-24

    Cerebellar long-term depression (LTD) has been proposed as a mechanism underlying classical conditioning of the rabbit nictitating membrane/eyelid response (NMR). However, LTD has only been obtained reliably when (1) cerebellar slices are bathed in GABA antagonists which abolish disynaptic inhibitory post synaptic potentials, and (2) the temporal sequence of stimulation used in slice or intact preparations is the opposite of that used in classical conditioning. Based on intradendritic Purkinje cell recordings obtained from rabbit cerebellar slices, we report that stimulation of climbing fibers and then parallel fibers in the presence of the GABA antagonist, bicuculline, produced significant depression of parallel fiber excitatory post synaptic potential (epsp) amplitude that continued to increase for at least 20 min after stimulation. However, application of the same stimulation protocol without GABA antagonists produced a brief depression of parallel fiber epsps that disappeared within minutes. Activation of parallel fibers and then climbing fibers in an order opposite to the LTD-producing sequence (i.e. a classical conditioning-like order) produced a brief depression that dissipated quickly. Stimulation of parallel fibers alone produced a small, slowly developing potentiation, but stimulation of parallel fibers during depolarization-induced local dendritic calcium spikes produced significant depression almost immediately which then declined slowly to more modest levels. Finally, stimulation of parallel fibers at frequencies used in in vivo parallel fiber-climbing fiber stimulation experiments (e.g. 100 Hz) produced an immediate and profound long-lasting epsp depression. The depression occurred, however, whether parallel and climbing fibers were stimulated separately (unpaired) or in a classical conditioning-like protocol (paired) where parallel fiber stimulation coterminated with climbing fiber stimulation (10 Hz).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Abnormal cerebellar volume in acute and remitted major depression.

    PubMed

    Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Hirjak, Dusan; Thomann, Philipp A; Wolf, Robert C

    2016-11-01

    Abnormal cortical volume is well-documented in patients with major depressive disorder (MDD), but cerebellar findings have been heterogeneous. It is unclear whether abnormal cerebellar structure relates to disease state or medication. In this study, using structural MRI, we investigated cerebellar volume in clinically acute (with and without psychotropic treatment) and remitted MDD patients. High-resolution structural MRI data at 3T were obtained from acute medicated (n=29), acute unmedicated (n=14) and remitted patients (n=16). Data from 29 healthy controls were used for comparison purposes. Cerebellar volume was investigated using cerebellum-optimized voxel-based analysis methods. Patients with an acute MDD episode showed increased volume of left cerebellar area IX, and this was true for both medicated and unmedicated individuals (p<0.05 cluster-corrected). Remitted patients exhibited bilaterally increased area IX volume. In remitted, but not in acutely ill patients, area IX volume was significantly associated with measures of depression severity, as assessed by the Hamilton Depression Rating Scale (HAMD). In addition, area IX volume in remitted patients was significantly related to the duration of antidepressant treatment. In acutely ill patients, no significant relationships were established using clinical variables, such as HAMD, illness or treatment duration and number of depressive episodes. The data suggest that cerebellar area IX, a non-motor region that belongs to a large-scale brain functional network with known relevance to core depressive symptom expression, exhibits abnormal volume in patients independent of clinical severity or medication. Thus, the data imply a possible trait marker of the disorder. However, given bilaterality and an association with clinical scores at least in remitted patients, the current findings raise the possibility that cerebellar volume may be reflective of successful treatment as well.

  9. Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair L; Tsunoda, Ikuo; Carlson, Noel G

    2010-10-01

    Paraneoplastic cerebellar degeneration accompanying gynecological and breast cancers is characteristically accompanied by a serum and cerebrospinal fluid (CSF) antibody response, termed "anti-Yo," which reacts with cytoplasmic proteins of cerebellar Purkinje cells. Because these antibodies interact with cytoplasmic rather than cell surface membrane proteins, their role in causing Purkinje cell death has been questioned. To address this issue, we studied the interaction of anti-Yo antibodies with Purkinje cells in slice (organotypic) cultures of rat cerebellum. We incubated cultures with immunoglobulin G (IgG)-containing anti-Yo antibodies using titers of anti-Yo antibody equivalent to those found in CSF of affected patients. Cultures were then studied in real time and after fixation for potential uptake of antibody and induction of cell death. Anti-Yo antibodies delivered in serum, CSF, or purified IgG were taken up by viable Purkinje cells, accumulated intracellularly, and were associated with cell death. Normal IgG was also taken up by Purkinje cells but did not accumulate and did not affect cell viability. These findings indicate that autoantibodies directed against intracellular Purkinje cell proteins can be taken up to cause cell death and suggest that anti-Yo antibody may be directly involved in the pathogenesis of paraneoplastic cerebellar degeneration.

  10. Verb Generation in Children and Adolescents with Acute Cerebellar Lesions

    ERIC Educational Resources Information Center

    Frank, B.; Schoch, B.; Hein-Kropp, C.; Dimitrova, A.; Hovel, M.; Ziegler, W.; Gizewski, E. R.; Timmann, D.

    2007-01-01

    The aim of the present study was to examine verb generation in a larger group of children and adolescents with acute focal lesions of the cerebellum. Nine children and adolescents with cerebellar tumours participated. Subjects were tested a few days after tumour surgery. For comparison, a subgroup was tested also 1 or 2 days before surgery. None…

  11. Verb generation in children and adolescents with acute cerebellar lesions.

    PubMed

    Frank, B; Schoch, B; Hein-Kropp, C; Dimitrova, A; Hövel, M; Ziegler, W; Gizewski, E R; Timmann, D

    2007-03-14

    The aim of the present study was to examine verb generation in a larger group of children and adolescents with acute focal lesions of the cerebellum. Nine children and adolescents with cerebellar tumours participated. Subjects were tested a few days after tumour surgery. For comparison, a subgroup was tested also 1 or 2 days before surgery. None of the children had received radiation or chemotherapy at or before the time of testing. Eleven age- and education-matched control subjects participated. Subjects had to generate verbs to blocked presentations of photographs of objects. As control condition, the objects had to be named. Furthermore, dysarthria was quantified by means of a sentence production and syllable repetition task. Detailed analysis of individual 3D-MR images revealed that lesions affected cerebellar hemispheres in all children and adolescents. The right cerebellar hemisphere was affected in four and the left hemisphere in five subjects. In the present study, naming and verb generation accuracy were preserved in the majority of subjects with cerebellar lesions. No significant signs of learning deficits were observed, as reduction of reaction times over blocks was not different compared to controls. There was a trend of children and adolescents with right-hemispheric lesions to perform worse compared to controls. In this group, however, significant signs of dysarthria were present. In sum, no significant signs of disordered verb generation were observed in children and adolescents with acute cerebellar lesions. Findings suggest that the role of the cerebellum in verb generation may be less pronounced than previously suggested. Findings need to be confirmed in a larger group of subjects with acute focal lesions.

  12. Walking unsteadily: a case of acute cerebellar ataxia.

    PubMed

    Simonetta, Federico; Christou, Fotini; Vandoni, Riccardo E; Nierle, Thomas

    2013-01-01

    Acute cerebellar ataxia is an infrequent neurological syndrome in adults especially if complicated by additional neurological deficits. We report the case of a 69-year-old woman who presented with sudden onset of left facial droop, dizziness, slurred speech and impaired balance. Her medical history included paroxysmal atrial fibrillation and a sigmoid diverticular abscess treated with ciprofloxacin and metronidazole. Cranial computed tomographic angiography and MRI showed no signs of acute ischaemia or haemorrhage but demonstrated symmetrically distributed lesions in the cerebellar dentate nuclei. A diagnosis of metronidazole-induced encephalopathy was suspected. Metronidazole was stopped and the patient completely recovered. Metronidazole is a commonly prescribed medication. Clinicians should be aware of the clinical and radiological presentation of metronidazole-induced encephalopathy so that this serious but completely reversible condition can be promptly diagnosed. PMID:23283615

  13. Deposition pattern and subcellular distribution of disease-associated prion protein in cerebellar organotypic slice cultures infected with scrapie

    PubMed Central

    Wolf, Hanna; Hossinger, André; Fehlinger, Andrea; Büttner, Sven; Sim, Valerie; McKenzie, Debbie; Vorberg, Ina M.

    2015-01-01

    Organotypic cerebellar slices represent a suitable model for characterizing and manipulating prion replication in complex cell environments. Organotypic slices recapitulate prion pathology and are amenable to drug testing in the absence of a blood-brain-barrier. So far, the cellular and subcellular distribution of disease-specific prion protein in organotypic slices is unclear. Here we report the simultaneous detection of disease-specific prion protein and central nervous system markers in wild-type mouse cerebellar slices infected with mouse-adapted prion strain 22L. The disease-specific prion protein distribution profile in slices closely resembles that in vivo, demonstrating granular spot like deposition predominately in the molecular and Purkinje cell layers. Double immunostaining identified abnormal prion protein in the neuropil and associated with neurons, astrocytes and microglia, but absence in Purkinje cells. The established protocol for the simultaneous immunohistochemical detection of disease-specific prion protein and cellular markers enables detailed analysis of prion replication and drug efficacy in an ex vivo model of the central nervous system. PMID:26581229

  14. Fingolimod (FTY720) Enhances Remyelination Following Demyelination of Organotypic Cerebellar Slices

    PubMed Central

    Miron, Veronique E.; Ludwin, Samuel K.; Darlington, Peter J.; Jarjour, Andrew A.; Soliven, Betty; Kennedy, Timothy E.; Antel, Jack P.

    2010-01-01

    Remyelination, which occurs subsequent to demyelination, contributes to functional recovery and is mediated by oligodendrocyte progenitor cells (OPCs) that have differentiated into myelinating cells. Therapeutics that impact remyelination in the CNS could be critical determinants of long-term functional outcome in multiple sclerosis (MS). Fingolimod is a S1P receptor modulator in MS clinical trials due to systemic anti-inflammatory properties, yet may impact cells within the CNS by crossing the blood-brain barrier. Previous studies using isolated dissociated cultures indicate that neural cells express S1P receptors and respond to receptor engagement. Our objective was to assess the effects of fingolimod on myelin-related processes within a multicellular environment that maintains physiological cell-cell interactions, using organotypic cerebellar slice cultures. Fingolimod treatment had no impact on myelin under basal conditions. Fingolimod treatment subsequent to lysolecithin-induced demyelination enhanced remyelination and process extension by OPCs and mature oligodendrocytes, while increasing microglia numbers and immunoreactivity for the astrocytic marker glial fibrillary acidic protein. The number of phagocytosing microglia was not increased by fingolimod. Using S1P receptor specific agonists and antagonists, we determined that fingolimod-induced effects on remyelination and astrogliosis were mediated primarily through S1P3 and S1P5, whereas enhanced microgliosis was mediated through S1P1 and S1P5. Taken together, these data demonstrate that fingolimod modulates multiple neuroglial cell responses, resulting in enhanced remyelination in organotypic slice cultures that maintain the complex cellular interactions of the mammalian brain. PMID:20413685

  15. In Vitro Assessment Reveals Parameters-Dependent Modulation on Excitability and Functional Connectivity of Cerebellar Slice by Repetitive Transcranial Magnetic Stimulation

    PubMed Central

    Tang, Rongyu; Zhang, Guanghao; Weng, Xiechuan; Han, Yao; Lang, Yiran; Zhao, Yuwei; Zhao, Xiaobo; Wang, Kun; Lin, Qiuxia; Wang, Changyong

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is an increasingly common technique used to selectively modify neural excitability and plasticity. There is still controversy concerning the cortical response to rTMS of different frequencies. In this study, a novel in vitro paradigm utilizing the Multi-Electrodes Array (MEA) system and acute cerebellar slicing is described. In a controllable environment that comprises perfusion, incubation, recording and stimulation modules, the spontaneous single-unit spiking activity in response to rTMS of different frequencies and powers was directly measured and analyzed. Investigation using this in vitro paradigm revealed frequency-dependent modulation upon the excitability and functional connectivity of cerebellar slices. The 1-Hz rTMS sessions induced short-term inhibition or lagged inhibition, whereas 20-Hz sessions induced excitation. The level of modulation is influenced by the value of power. However the long-term response fluctuated without persistent direction. The choice of evaluation method may also interfere with the interpretation of modulation direction. Furthermore, both short-term and long-term functional connectivity was strengthened by 1-Hz rTMS and weakened by 20-Hz rTMS. PMID:27000527

  16. Simvastatin induces cell death in a mouse cerebellar slice culture (CSC) model of developmental myelination

    PubMed Central

    Xiang, Zhongmin; Reeves, Steven A.

    2009-01-01

    Statins (inhibitors of HMG-CoA reductase) have shown promise in treating multiple sclerosis (MS). However, their effect on oligodendrocyte remyelination of demyelinated axons has not been clarified. Since developmental myelination shares many features with the remyelination process, we investigated the effect of lipophilic simvastatin on developmental myelination in organotypic cerebellar slice cultures (CSC). In this study, we first characterized developmental myelination in CSC from postnatal day (P)5 and P10 mice that express enhanced green fluorescence protein (eGFP) in oligodendrocyte-lineage cells. We then examined the effect of simvastain on three developmental myelination stages: early myelination (P5 CSC, 2DIV), late myelination (P10 CSC, 2DIV) and full myelination (P10 CSC, 10DIV). We found that treatment with simvastatin (0.1 μM) for 6 days decreased the survival of Purkinje cells and oligodendrocytes drastically during the early myelination stage, while moderately during the late and full myelination stages. Oligodendrocytes are more resistant than Purkinje cells. The toxic effect of simvastatin could be rescued by the product of HMG-CoA reductase mevalonate but not low-density lipoprotein (LDL). Additionally, this toxic effect is independent of isoprenylation since farnesyl pyrophosphate (Fpp) but not geranylgeranyl pyrophosphate (GGpp) provided partial rescue. Our findings therefore suggest that inhibition of cholesterol synthesis is detrimental to neuronal tissue. PMID:18929563

  17. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices.

    PubMed Central

    Llinás, R; Sugimori, M

    1980-01-01

    1. The electrical activity of Purkinje cells was studied in guinea-pig cerebellar slices in vitro. Intracellular recordings from Purkinje cell somata were obtained under direct vision, and antidromic, synaptic and direct electroresponsiveness was demonstrated. Synaptic potentials produced by the activation of the climbing fibre afferent could be reversed by direct membrane depolarization. 2. Input resistance of impaled neurones ranged from 10 to 19 M omega and demonstrated non-linearities in both hyperpolarizing and depolarizing directions. 3. Direct activation of a Purkinje cell indicated that repetitive firing of fast somatic spikes (s.s.) occurs, after a threshold, with a minimum spike frequency of about 30 spikes/sec, resembling the '2-class' response of crab nerve (Hodgkin, 1948). 4. As the amplitude of the stimulus was increased, a second form of electroresponsiveness characterized by depolarizing spike bursts (d.s.b.) was observed and was often accomppanied by momentary inactivation of the s.s. potentials. Upon application of tetrodotoxin (TTX) or removal of Na+ ions from the superfusion fluid, the s.s. potentials were abolished while the burst responses remained intact. However, Ca conductance blockers such as Co, Cd, Mn and D600, or the replacement of Ca by Mg, completely abolish d.s.b.s. 5. If Ca conductance was blocked, or Ca removed from the superfusion fluid without blockage of Na conductance, two types of Na-dependent electroresponsiveness were seen: (a) the s.s. potentials and (b) slow rising all-or-none responses which reached plateau at approximately -15 mV and could last for several seconds. These all-or-none Na-dependent plateau depolarizations outlasted the stimulus and were accompanied by a large increase in membrane conductance. Within certain limits the rate of rise and amplitude of the plateau were independent of stimulus strength. The latency, however, was shortened as stimulus amplitude was increased. These potentials were blocked by TTX

  18. Acute bilateral cerebellar infarction in the territory of the medial branches of posterior inferior cerebellar arteries.

    PubMed

    Gurer, G; Sahin, G; Cekirge, S; Tan, E; Saribas, O

    2001-10-01

    The most frequent type of cerebellar infarcts involved the posterior inferior cerebellar artery (PICA) and superior cerebellar artery territories but bilateral involvement of lateral or medial branches of PICA is extremely rare. In this report, we present a 55-year-old male who admitted to hospital with vomiting, nausea and dizziness. On examination left-sided hemiparesia and ataxic gait were detected. Infarct on bilateral medial branch of PICA artery territories was found out with cranial magnetic resonance imaging (MRI) technique and 99% stenosis of the left vertebral artery was found out with digital subtraction arteriography. The patient was put on heparin treatment. After 3 weeks, his complaints and symptoms had disappeared except for mild gait ataxia. PMID:11532563

  19. A case of midbrain infarction with acute bilateral cerebellar ataxia visualized by diffusion tensor imaging.

    PubMed

    Maya, Yuka; Kawabori, Masahito; Oura, Daisuke; Niiya, Yoshimasa; Iwasaki, Motoyuki; Mabuchi, Shoji

    2016-08-31

    An 85-year-old woman with hypertension was admitted with a sudden onset of gait disturbance and dysarthria. On admission, the patient showed severe bilateral cerebellar ataxia with moderate right medial longitudinal fasciculus (MLF) syndrome. Magnetic resonance (MR) imaging showed an acute infarction in the lower and medial part of midbrain. Diffusion tensor imaging (DTI) started from both cerebellar peduncles revealed that the lesion of the acute infarction matched the decussation of superior cerebellar peduncle where crossing of tract was seen and a part of its tract was interrupted at the site. Interruption of the cerebellum red nuclear path at the medial part of midbrain was considered to be the reason for bilateral cerebellar ataxia and visualization of cerebellum red nuclear path by DTI can give better understanding of the neurological symptom. PMID:27477572

  20. A case of midbrain infarction with acute bilateral cerebellar ataxia visualized by diffusion tensor imaging.

    PubMed

    Maya, Yuka; Kawabori, Masahito; Oura, Daisuke; Niiya, Yoshimasa; Iwasaki, Motoyuki; Mabuchi, Shoji

    2016-08-31

    An 85-year-old woman with hypertension was admitted with a sudden onset of gait disturbance and dysarthria. On admission, the patient showed severe bilateral cerebellar ataxia with moderate right medial longitudinal fasciculus (MLF) syndrome. Magnetic resonance (MR) imaging showed an acute infarction in the lower and medial part of midbrain. Diffusion tensor imaging (DTI) started from both cerebellar peduncles revealed that the lesion of the acute infarction matched the decussation of superior cerebellar peduncle where crossing of tract was seen and a part of its tract was interrupted at the site. Interruption of the cerebellum red nuclear path at the medial part of midbrain was considered to be the reason for bilateral cerebellar ataxia and visualization of cerebellum red nuclear path by DTI can give better understanding of the neurological symptom.

  1. Acute cerebellar ataxia associated with enteric fever in a child: a case report.

    PubMed

    İncecik, Faruk; Hergüner, M Özlem; Mert, Gülen; Alabaz, Derya; Altunbaşak, Şakir

    2013-01-01

    Enteric fever is a common infectious disease of the tropical world. Characteristic presenting features include fever, relative bradycardia, diarrhea or constipation, and abdominal pain. Central nervous system involvement is not rare and has a wide spectrum of presentation in enteric fever. Complications such as meningism, delirium, coma, and convulsions have been reported often. However, isolated acute cerebellar ataxia associated with enteric fever is rare. Here, we report a seven-year-old boy with enteric fever who presented with acute cerebellar ataxia. Following treatment with appropriate antibiotics, the patient showed complete recovery over the next four weeks. PMID:24292041

  2. Humor, laughter, and the cerebellum: insights from patients with acute cerebellar stroke.

    PubMed

    Frank, B; Andrzejewski, K; Göricke, S; Wondzinski, E; Siebler, M; Wild, B; Timmann, D

    2013-12-01

    Extent of cerebellar involvement in cognition and emotion is still a topic of ongoing research. In particular, the cerebellar role in humor processing and control of laughter is not well known. A hypermetric dysregulation of affective behavior has been assumed in cerebellar damage. Thus, we aimed at investigating humor comprehension and appreciation as well as the expression of laughter in 21 patients in the acute or subacute state after stroke restricted to the cerebellum, and in the same number of matched healthy control subjects. Patients with acute and subacute cerebellar damage showed preserved comprehension and appreciation of humor using a validated humor test evaluating comprehension, funniness and aversiveness of cartoons ("3WD Humor Test"). Additionally, there was no difference when compared to healthy controls in the number and intensity of facial reactions and laughter while observing jokes, humorous cartoons, or video sketches measured by the Facial Action Coding System. However, as depression scores were significantly increased in patients with cerebellar stroke, a concealing effect of accompanying depression cannot be excluded. Current findings add to descriptions in the literature that cognitive or affective disorders in patients with lesions restricted to the cerebellum, even in the acute state after damage, are frequently mild and might only be present in more sensitive or specific tests.

  3. Dendro-somatic distribution of calcium-mediated electrogenesis in Purkinje cells from rat cerebellar slice cultures

    PubMed Central

    Pouille, F; Cavelier, P; Desplantez, T; Beekenkamp, H; Craig, P J; Beattie, R E; Volsen, S G; Bossu, J L

    2000-01-01

    The role of Ca2+ entry in determining the electrical properties of cerebellar Purkinje cell (PC) dendrites and somata was investigated in cerebellar slice cultures. Immunohistofluorescence demonstrated the presence of at least three distinct types of Ca2+ channel proteins in PCs: the α1A subunit (P/Q type Ca2+ channel), the α1G subunit (T type) and the α1E subunit (R type). In PC dendrites, the response started in 66 % of cases with a slow depolarization (50 ± 15 ms) triggering one or two fast (∼1 ms) action potentials (APs). The slow depolarization was identified as a low-threshold non-P/Q Ca2+ AP initiated, most probably, in the dendrites. In 16 % of cases, this response propagated to the soma to elicit an initial burst of fast APs. Somatic recordings revealed three modes of discharge. In mode 1, PCs display a single or a short burst of fast APs. In contrast, PCs fire repetitively in mode 2 and 3, with a sustained discharge of APs in mode 2, and bursts of APs in mode 3. Removal of external Ca2+ or bath applications of a membrane-permeable Ca2+ chelator abolished repetitive firing. Tetraethylammonium (TEA) prolonged dendritic and somatic fast APs by a depolarizing plateau sensitive to Cd2+ and to ω-conotoxin MVII C or ω-agatoxin TK. Therefore, the role of Ca2+ channels in determining somatic PC firing has been investigated. Cd2+ or P/Q type Ca2+ channel-specific toxins reduced the duration of the discharge and occasionallyinduced the appearance of oscillations in the membrane potential associated with bursts of APs. In summary, we demonstrate that Ca2+ entry through low-voltage gated Ca2+ channels, not yet identified, underlies a dendritic AP rarelyeliciting a somatic burst of APs whereas Ca2+ entry through P/Q type Ca2+ channels allowed a repetitive firing mainly by inducing a Ca2+-dependent hyperpolarization. PMID:10970428

  4. Altered Cerebellar White Matter Integrity in Patients with Mild Traumatic Brain Injury in the Acute Stage

    PubMed Central

    Wang, Zhongqiu; Wu, Wenzhong; Liu, Yongkang; Wang, Tianyao; Chen, Xiao; Zhang, Jianhua; Zhou, Guoxing; Chen, Rong

    2016-01-01

    Background and Purpose Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts. Materials and Methods This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients. Results Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037). Conclusion Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing. PMID:26967320

  5. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L; Tsunoda, Ikuo; Carlson, Noel G

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not

  6. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI.

    PubMed

    Schreurs, B G; Gusev, P A; Tomsic, D; Alkon, D L; Shi, T

    1998-07-15

    Intradendritic recordings in Purkinje cells from a defined area in parasaggital slices of cerebellar lobule HVI, obtained after rabbits were given either paired (classical conditioning) or explicitly unpaired (control) presentations of tone and periorbital electrical stimulation, were used to assess the nature and duration of conditioning-specific changes in Purkinje cell dendritic membrane excitability. We found a strong relationship between the level of conditioning and Purkinje cell dendritic membrane excitability after initial acquisition of the conditioned response. Moreover, conditioning-specific increases in Purkinje cell excitability were still present 1 month after classical conditioning. Although dendritically recorded membrane potential, input resistance, and amplitude of somatic and dendritic spikes were not different in cells from paired or control animals, the size of a potassium channel-mediated transient hyperpolarization was significantly smaller in cells from animals that received classical conditioning. In slices of lobule HVI obtained from naive rabbits, the conditioning-related increases in membrane excitability could be mimicked by application of potassium channel antagonist tetraethylammonium chloride, iberiotoxin, or 4-aminopyridine. However, only 4-aminopyridine was able to reduce the transient hyperpolarization. The pharmacological data suggest a role for potassium channels and, possibly, channels mediating an IA-like current, in learning-specific changes in membrane excitability. The conditioning-specific increase in Purkinje cell dendritic excitability produces an afterhyperpolarization, which is hypothesized to release the cerebellar deep nuclei from inhibition, allowing conditioned responses to be elicited via the red nucleus and accessory abducens motorneurons.

  7. Acute brain slice methods for adult and aging animals: application of targeted patch clampanalysis and optogenetics

    PubMed Central

    Daigle, Tanya L.; Chen, Qian; Feng, Guoping

    2014-01-01

    Summary The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically-defined neuronal subtypes. PMID:25023312

  8. Effect of edaravone on acute brainstem-cerebellar infarction with vertigo and sudden hearing loss.

    PubMed

    Inoue, Yuta; Yabe, Takao; Okada, Kazunari; Nakamura, Yuka

    2014-06-01

    We report 2 cases with acute brainstem and brainstem-cerebellar infarction showed improvement of their signs and symptoms after administration of edaravone. Case 1, a 74-year-old woman who experienced sudden vertigo, also had dysarthria and left hemiplegia. Magnetic resonance imaging (MRI) showed an abnormal region in the right ventrolateral medulla oblongata. The patient's vertigo and hemiplegia improved completely after treatment. Case 2, a 50-year-old man who experienced sudden vertigo and sensorineural hearing loss (SNHL), developed dysarthria after admission. MRI revealed acute infarction in the right cerebellar hemisphere. Magnetic resonance angiography revealed dissection of the basilar artery and occlusion of the right anterior inferior cerebellar artery. The patient's vertigo and hearing remarkably improved. We have described 2 patients whose early symptoms were vertigo and sudden SNHL, but who were later shown to have ischemic lesions of the central nervous system. Edaravone is neuroprotective drug with free radical-scavenging actions. Free radicals in the ear are responsible for ischemic damage. Edaravone, a free radical scavenger, may be useful in the treatment of vertigo and SNHL.

  9. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices

    PubMed Central

    Israel, Jean-Marc; Oliet, Stéphane H.; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains. PMID:27065780

  10. Barr humbug: acute cerebellar ataxia due to Epstein-Barr virus.

    PubMed

    Davies, Benjamin; Machin, Nicholas; Lavin, Timothy; Ul Haq, Mian Ayaz

    2016-01-01

    Epstein-Barr virus (EBV) infection is associated with neurological sequellae, but rarely there is acute cerebellar ataxia (ACA) in an adult. We present a novel case of a 26-year-old man, who presented with ACA. He had normal MRI and CSF analysis. Serum testing confirmed active EBV. A course of oral prednisolone 1 mg/kg for 4 weeks, with a subsequent taper was started. He made a full recovery within 3 weeks of presentation. PMID:27558189

  11. Two-photon excitation STED microscopy in two colors in acute brain slices.

    PubMed

    Bethge, Philipp; Chéreau, Ronan; Avignone, Elena; Marsicano, Giovanni; Nägerl, U Valentin

    2013-02-19

    Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ~350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.

  12. Synaptic action of ethanol on cerebellar auditory granule cells reveals acute tolerance

    SciTech Connect

    Huang, C.M.; Liu, G.; Huang, R.H. )

    1991-03-11

    The cerebellum is very sensitive to acute intoxication by ethanol. The authors have recorded electrophysiological responses of granule cells to auditory stimulation from the posterior cerebellar vermis of cats before and after a relatively low dose of ethanol. Auditory responses of granule cells were severely inhibited by ethanol at a transient, peak ethanol concentration of 15-18 mM in the cerebrospinal fluid (CSF). Thereafter, the clearance of ethanol from CSF followed an exponential time course, with 50% of the CSF ethanol being cleared with every passing hour. Auditory responses of granule cells returned to control levels within 60-90 minutes, despite the presence of a DSF ethanol concentration at 8-10mM, indicating acute tolerance. Moreover, a second, identical dose of ethanol, delivered two hours after the first dose produced an attenuated inhibition in the auditory response of cerebellar granule cells. The inhibition took a longer time to be evident but a shorter time to recover than that followed by the first dose of ethanol.

  13. Solitary C1 spinal osteochondroma causing vertebral artery compression and acute cerebellar infarct.

    PubMed

    Zhang, Yaxia; Ilaslan, Hakan; Hussain, Muhammad S; Bain, Mark; Bauer, Thomas W

    2015-02-01

    Osteochondroma is a common benign bone lesion, usually involving the long bones. Spinal involvement is rare. The clinical presentation of spinal osteochondroma varies according to the site of the lesion. The most common reported clinical presentation is secondary to encroachment of the lesion on the spinal canal or nerve roots. Less common presentations such as a palpable neck mass, dysphagia, sleep apnea, paralysis of left vocal cord or acute respiratory distress have been reported when the lesions compress the anatomic structures anteriorly. We describe a rare case of a young patient who presented with an emergent critical condition of acute cerebellar infarct as a result of vertebral artery compression caused by a solitary C1 spinal osteochondroma. PMID:25109381

  14. Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice.

    PubMed

    Schreurs, B G; Oh, M M; Alkon, D L

    1996-03-01

    1. Using a rabbit cerebellar slice preparation, we stimulated a classical conditioning procedure by stimulating parallel fiber inputs to Purkinje cells with the use of a brief, high-frequency train of eight constant-current pulses 80 ms before climbing fiber inputs to the same Purkinje cell were stimulated with the use of a brief, lower frequency train of three constant-current pulses. In all experiments, we assessed the effects of stimulation by measuring the peak amplitude of Purkinje cell excitatory postsynaptic potentials (EPSPs) to single parallel fiber test pulses. 2. Intradendritically recorded Purkinje cell EPSPs underwent a long-term (> 20 min) reduction in peak amplitude (30%) after paired stimulation of the parallel and climbing fibers but not after unpaired or parallel fiber alone stimulation. We call this phenomenon pairing-specific long-term depression (PSD). 3. Facilitation of the peak amplitude of a second EPSP elicited by a parallel fiber train occurred both before and after paired stimulation suggesting that the locus of depression was not presynaptic. Depression of the peak amplitude of a depolarizing response to focal application of glutamate following pairings of parallel and climbing fiber stimulation added support to a suggested postsynaptic locus of the PSD effect. 4. The application of aniracetam potentiated EPSP peak amplitude by 40%, but these values returned to baseline as a result of pairings. With the removal of aniracetam from the bath 20 min after pairings, normal levels of pairing-specific EPSP depression were observed, indicating that the effect did not result from direct desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. 5. Incubation of slices in the protein kinase inhibitor H-7 potentiated EPSP peak amplitudes slightly (9%), but peak amplitudes returned to baseline levels after pairings. The net reduction in EPSP peak amplitude of < 10% after pairings suggested that H-7 partially

  15. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices.

    PubMed

    Batchelor, A M; Madge, D J; Garthwaite, J

    1994-12-01

    Glutamate, the major excitatory neurotransmitter in the central nervous system, acts through two broad classes of receptors: ion channel-linked (ionotropic) receptors, which include N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and metabotropic receptors which couple via G-proteins to intracellular messenger cascades. Seven subtypes of mGluR are known to exist but their roles in synaptic physiology are poorly understood. In cerebellar Purkinje cells, application of the mGluR agonist, trans-1-aminocyclopentane-1,3-dicarboxylic acid, or the active enantiomer, 1S,3R-ACPD, results in a depolarization associated with an inward current and an elevation of intracellular Ca2+ (for review see Ref. 29). Moreover, using an extracellular (grease-gap) technique that monitors population responses, we have previously discovered that, in Purkinje cells of adult rat cerebellum, brief tetanic stimulation of the glutamatergic parallel fibre input gives rise to a slow depolarising synaptic potential that is resistant to ionotropic glutamate receptor blockers and to antagonists acting at GABA receptors. It was suggested that this novel potential is mediated by metabotropic receptors. The advent of antagonists for metabotropic receptors has allowed us to test this hypothesis. We find that the S-enantiomer of alpha-methyl-4-carboxyphenylglycine stereoselectively antagonizes the slow synaptic potential recorded using the grease-gap method. The results were confirmed by intracellular recording from Purkinje cells. To our knowledge this is the first direct evidence of an mGluR-mediated EPSP in intact brain tissue. PMID:7535396

  16. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    NASA Astrophysics Data System (ADS)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  17. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    PubMed Central

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-01-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models. PMID:26971573

  18. Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials

    PubMed Central

    Lee, S. J.; Sun, J.; Flint, J. J.; Guo, S.; Xie, H. K.; King, M. A.; Sarntinoranont, M.

    2011-01-01

    Currently, micro-indentation testing of soft biological materials is limited in its capability to test over long time scales due to accumulated instrumental drift errors. As a result, there is a paucity of measures for mechanical properties such as the equilibrium modulus. In this study, indentation combined with optical coherence tomography (OCT) was used for mechanical testing of thin tissue slices. OCT was used to measure the surface deformation profiles by placing spherical beads onto submerged test samples. Agarose-based hydrogels at low-concentrations (w/v, 0.3–0.6 %) and acute rat brain tissue slices were tested using this technique over a 30 min time window. To establish that tissue slices maintained cell viability, allowable testing times were determined by measuring neuronal death or degeneration as a function of incubation time with Fluor-Jade C (FJC) staining. Since large deformations at equilibrium were measured, displacements of surface beads were compared with finite element elastic contact simulations to predict the equilibrium modulus, μ∞. Values of μ∞ for the low- concentration hydrogels ranged from 0.07–1.8 kPa, and μ∞ for acute rat brain tissue slices was 0.13 ± 0.04 kPa for the cortex and 0.09 ± 0.015 kPa for the hippocampus (for Poisson ratio=0.35). This indentation technique offers a localized, real-time, and high resolution method for long-time scale mechanical testing of very soft materials. This test method may also be adapted for viscoelasticity, for testing of different tissues and biomaterials, and for analyzing changes in internal structures with loading. PMID:21290586

  19. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Beggs, J. M.; Dabrowski, W.; Hottowy, P.; Kenney, C. J.; Sher, A.; Litke, A. M.; Mathieson, K.

    2013-02-01

    Objective. This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. Approach. Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. Main results. This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ˜15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. Significance. The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.

  20. Expression of voltage-activated chloride currents in acute slices of human gliomas.

    PubMed

    Ullrich, N; Bordey, A; Gillespie, G Y; Sontheimer, H

    1998-04-01

    Using whole-cell patch-clamp recordings, we identified a novel voltage-activated chloride current that was selectively expressed in glioma cells from 23 patient biopsies. Chloride currents were identified in 64% of glioma cells studied in acute slices of nine patient biopsies. These derived from gliomas of various pathological grades. In addition, 98% of cells acutely isolated or in short-term culture from 23 patients diagnosed with gliomas showed chloride current expression. These currents, which we termed glioma chloride currents activated at potentials >45 mV, showed pronounced outward rectification, and were sensitive to bath application of the presumed Cl- channel specific peptide chlorotoxin (approximately 600 nM) derived from Leiurus scorpion venom. Interestingly, low grade tumours (e.g., pilocytic astrocytomas), containing more differentiated, astrocyte-like cells showed expression of glioma chloride currents in concert with voltage-activated sodium and potassium currents also seen in normal astrocytes. By contrast, high grade tumours (e.g., glioblastoma multiforme) expressed almost exclusively chloride currents, suggesting a gradual loss of Na+ currents and gain of Cl- currents with increasing pathological tumour grade. To expand on the observation that these chloride currents are glioma-specific, we introduced experimental tumours in scid mice by intracranial injection of D54MG glioma cells and subsequently recorded from tumour cells and adjacent normal glial cells in acute slices. We consistently observed expression of chlorotoxin-sensitive chloride channels in implanted glioma cells, but without evidence for expression of chloride channels in surrounding "normal" host glial cells, suggesting that these chloride channels are probably a glioma-specific feature. Finding of this novel glioma specific Cl- channel in gliomas in situ and it's selective binding of chlorotoxin may provide a way to identify or target glioma cells in the future.

  1. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents

    PubMed Central

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  2. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents.

    PubMed

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  3. Glucose-Stimulated Calcium Dynamics in Islets of Langerhans in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Dolenšek, Jurij; Rupnik, Marjan Slak

    2013-01-01

    In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future. PMID:23358454

  4. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  5. Multi-slice computed tomography in the evaluation of patients with acute chest pain.

    PubMed

    Schuijf, J D; Jukema, J W; van der Wall, E E; Bax, J J

    2007-01-01

    Every year, a considerable number of patients present at the Emergency Department (ED) with acute chest pain complaints. In these patients, determining accurate diagnosis of acute coronary syndrome (ACS) remains clinically challenging. In general, triage is based on the initial clinical assessment including (stress) ECG and serial serum markers measurements. While management is relatively straightforward in case of ECG changes and elevated serum markers, a considerable number of patients presents with both serum markers and ECG that are either within normal limits or inconclusive. In these patients, non-invasive cardiac imaging has become an important tool in decision-making. Recently, non-invasive visualization of the coronary arteries has become possible with computed tomography (CT) techniques. Both electron beam CT (EBCT) and multi-slice CT (MSCT) allow assessment of coronary calcium burden as a marker of coronary artery disease (CAD). More recently, non-invasive coronary angiography can also be performed, for which MSCT in particular is increasingly used. Potentially these techniques could become useful in the clinical work-up of patients presenting with suspected ACS. The purpose of the present review is to discuss the potential roles of calcium scoring and non-invasive coronary angiography in patients presenting with suspected ACS. PMID:18030626

  6. Cerebellar endocannabinoids: retrograde signaling from purkinje cells.

    PubMed

    Marcaggi, Païkan

    2015-06-01

    The cerebellar cortex exhibits a strikingly high expression of type 1 cannabinoid receptor (CB1), the cannabinoid binding protein responsible for the psychoactive effects of marijuana. CB1 is primarily found in presynaptic elements in the molecular layer. While the functional importance of cerebellar CB1 is supported by the effect of gene deletion or exogenous cannabinoids on animal behavior, evidence for a role of endocannabinoids in synaptic signaling is provided by in vitro experiments on superfused acute rodent cerebellar slices. These studies have demonstrated that endocannabinoids can be transiently released by Purkinje cells and signal at synapses in a direction opposite to information transfer (retrograde). Here, following a description of the reported expression pattern of the endocannabinoid system in the cerebellum, I review the accumulated in vitro data, which have addressed the mechanism of retrograde endocannabinoid signaling and identified 2-arachidonoylglycerol as the mediator of this signaling. The mechanisms leading to endocannabinoid release, the effects of CB1 activation, and the associated synaptic plasticity mechanisms are discussed and the remaining unknowns are pointed. Notably, it is argued that the spatial specificity of this signaling and the physiological conditions required for its induction need to be determined in order to understand endocannabinoid function in the cerebellar cortex. PMID:25520276

  7. Acute cerebellar dysfunction with neuromuscular manifestations after scorpionism presumably caused by Tityus obscurus in Santarém, Pará / Brazil.

    PubMed

    Torrez, Pasesa P Q; Quiroga, Mariana M M; Abati, Paulo A M; Mascheretti, Melissa; Costa, Walter Silva; Campos, Luciana P; França, Francisco O S

    2015-03-01

    Scorpionism is a public health problem in many tropical countries, especially in North Africa, South India, Latin America and the Middle East. In Brazil, patients with severe scorpion envenoming have mainly cardiovascular events, including acute heart failure, acute respiratory distress syndrome and shock, death is rare. We described 58 accidents presumably caused by Tityus obscurus in Brazilian Amazonia. Patients reported a sensation of "electric shocks" which could last hours. The vast majority of patients presented a clinical picture compatible with acute cerebellar dysfunction, beginning minutes and lasting up to 2 days after the accident. They presented cerebellar ataxia, dysdiadochokinesia, dysmetry, dysarthria, dyslalia, nausea and vomiting. Besides, some patients presented myoclonus and fasciculation which can also be attributed to cerebellar dysfunction or maybe the result of direct action on skeletal muscle. Two patients had evidence of intense rhabdomyolysis and acute kidney injury. The clinical picture in this scorpion envenoming is mainly characterized by an acute dysfunction of cerebellar activities and abnormal neuromuscular manifestations and in some cases muscle injury which are not described in any other region of the world. This work presents clinical, epidemiologic, laboratory and treatment aspects of this unmatched scorpion envenoming in the state of Pará, northern Brazil. PMID:25549940

  8. The relationship between decorrelation time and sample thickness in acute rat brain tissue slices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-03-01

    The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.

  9. Imaging pheromone sensing in a mouse vomeronasal acute tissue slice preparation.

    PubMed

    Brechbühl, Julien; Luyet, Gaëlle; Moine, Fabian; Rodriguez, Ivan; Broillet, Marie-Christine

    2011-01-01

    . Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.

  10. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    PubMed Central

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons. PMID:22065958

  11. Acute slices of mice testis seminiferous tubules unveil spontaneous and synchronous Ca2+ oscillations in germ cell clusters.

    PubMed

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-10-01

    Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca(2+) ([Ca(2+)]i); however, very few studies exist on [Ca(2+)]i dynamics in these cells. Other tissues display Ca(2+) oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca(2+) imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca(2+)]i changes of living germ cells in situ within the SST preparation. Ca(2+) imaging revealed that a subpopulation of male germ cells display spontaneous [Ca(2+)]i fluctuations resulting from Ca(2+) entry possibly throughout Ca(V)3 channels. These [Ca(2+)]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca(2+) fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca(2+) oscillations for at least 10 min. Synchronous Ca(2+) oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca(2+)]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca(2+) signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  12. High-strain-rate brain injury model using submerged acute rat brain tissue slices.

    PubMed

    Sarntinoranont, Malisa; Lee, Sung J; Hong, Yu; King, Michael A; Subhash, Ghatu; Kwon, Jiwoon; Moore, David F

    2012-01-20

    Blast-induced traumatic brain injury (bTBI) has received increasing attention in recent years due to ongoing military operations in Iraq and Afghanistan. Sudden impacts or explosive blasts generate stress and pressure waves that propagate at high velocities and affect sensitive neurological tissues. The immediate soft tissue response to these stress waves is difficult to assess using current in vivo imaging technologies. However, these stress waves and resultant stretching and shearing of tissue within the nano- to microsecond time scale of blast and impact are likely to cause initial injury. To visualize the effects of stress wave loading, we have developed a new ex vivo model in which living tissue slices from rat brain, attached to a ballistic gelatin substrate, were subjected to high-strain-rate loads using a polymer split Hopkinson pressure bar (PSHPB) with real-time high-speed imaging. In this study, average peak fluid pressure within the test chamber reached a value of 1584±63.3 psi. Cavitation due to a trailing underpressure wave was also observed. Time-resolved images of tissue deformation were collected and large maximum eigenstrains (0.03-0.42), minimum eigenstrains (-0.33 to -0.03), maximum shear strains (0.09-0.45), and strain rates (8.4×10³/sec) were estimated using digital image correlation (DIC). Injury at 4 and 6 h was quantified using Fluoro-Jade C. Neuronal injury due to PSHPB testing was found to be significantly greater than injury associated with the tissue slice paradigm alone. While large pressures and strains were encountered for these tests, this system provides a controllable test environment to study injury to submerged brain slices over a range of strain rate, pressure, and strain loads. PMID:21970544

  13. Acute anti-emetic withdrawal associated with a hemorrhagic cerebellar arteriovenous malformation.

    PubMed

    Vadivelu, S; Tomlinson, K; Valles, J; Hundert, M; Bagdonas, R; Eisenberg, M

    2010-08-01

    We present a 67-year-old right-handed male with a brachium pontis arteriovenous malformation on continuous anti-emetic therapy who demonstrated acute withdrawal symptoms after the abrupt discontinuation of ondansetron, a 5-HT(3) receptor antagonist. Removal of anti-emetic therapy led to the development of extreme flushing and tremor, but subsequent return of ondansetron resulted in the resolution of these symptoms. This is the first clinical report demonstrating acute withdrawal from an anti-emetic agent and we further highlight the need for future studies evaluating not only arterial supply with pressure gradients and anatomical location, but also the association with periventricular venous drainage, venous drainage stenosis, and mass effect from venous stasis as this may contribute partly to the sensitivity of the serotonergic receptors seen here. PMID:20488707

  14. Analyzing the relationship between decorrelation time and tissue thickness in acute rat brain slices using multispeckle diffusing wave spectroscopy.

    PubMed

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-02-01

    Novel techniques in the field of wavefront shaping have enabled light to be focused deep inside or through scattering media such as biological tissue. However, most of these demonstrations have been limited to thin, static samples since these techniques are very sensitive to changes in the arrangement of the scatterers within. As the samples of interest get thicker, the influence of the dynamic nature of the sample becomes even more pronounced and the window of time in which the wavefront solutions remain valid shrinks further. In this paper, we examine the time scales upon which this decorrelation happens in acute rat brain slices via multispeckle diffusing wave spectroscopy and investigate the relationship between this decorrelation time and the thickness of the sample using diffusing wave spectroscopy theory and Monte Carlo photon transport simulation.

  15. Acute Slices of Mice Testis Seminiferous Tubules Unveil Spontaneous and Synchronous Ca2+ Oscillations in Germ Cell Clusters1

    PubMed Central

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-01-01

    ABSTRACT Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca2+ ([Ca2+]i); however, very few studies exist on [Ca2+]i dynamics in these cells. Other tissues display Ca2+ oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca2+ imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca2+]i changes of living germ cells in situ within the SST preparation. Ca2+ imaging revealed that a subpopulation of male germ cells display spontaneous [Ca2+]i fluctuations resulting from Ca2+ entry possibly throughout CaV3 channels. These [Ca2+]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca2+ fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca2+ oscillations for at least 10 min. Synchronous Ca2+ oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca2+]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca2+ signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  16. Cerebellar Hypoplasia

    MedlinePlus

    ... disorders that begin in early childhood, such as ataxia telangiectasia. In an infant or young child, symptoms of a disorder that features cerebellar hypoplasia might include floppy muscle tone, developmental or ...

  17. Cerebellar Degeneration

    MedlinePlus

    ... Degeneration? Cerebellar degeneration is a process in which neurons in the cerebellum - the area of the brain ... proteins that are necessary for the survival of neurons. Associated diseases: Diseases that are specific to the ...

  18. [Cerebellar stroke].

    PubMed

    Paradowski, Michał; Zimny, Anna; Paradowski, Bogusław

    2015-01-01

    Cerebellar stroke belongs to a group of rare diseases of vascular origin. Cerebellum, supplied by three pairs of arteries (AICA, PICA, SCA) with many anastomoses between them is less susceptible for a stroke, especially ischemic one. Diagnosis of the stroke in this region is harder due to lower sensibility of commonly used CT of the head in case of stroke suspicion. The authors highlight clinical symptoms distinguishing between vascular territories or topographical locations of the stroke, diagnostic procedures, classical and surgical treatment, the most common misdiagnoses are also mentioned. The authors suggest a diagnostic and therapeutic algorithm development, including rtPA treatment criteria for ischemic cerebellar stroke. PMID:26181157

  19. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    PubMed

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  20. FGF-1 Triggers Pannexin-1 Hemichannel Opening in Spinal Astrocytes of Rodents and Promotes Inflammatory Responses in Acute Spinal Cord Slices

    PubMed Central

    Yang, Guang; Bukauskas, Feliksas F.

    2016-01-01

    We show here that the growth factor FGF-1 is proinflammatory in the spinal cord and explore the inflammatory mechanisms. FGF-1 applied to rat spinal astrocytes in culture initiates calcium signaling and induces secretion of ATP that within minutes increases membrane permeability to ethidium (Etd+) and Ca2+ by activating P2X7 receptors (P2X7Rs) that open pannexin hemichannels (Px1 HCs) that release further ATP; by 7 h treatment, connexin 43 hemichannels (Cx43 HCs) are also opened. In acute mouse spinal cord slices ex vivo, we found that FGF-1 treatment for 1 h increases the percentage of GFAP-positive astrocytes that show enhanced Px1 HC-mediated Etd+ uptake. This response to FGF-1 was not observed in astrocytes in slices of cerebral cortex. FGF-1-induced dye uptake by astrocytes is prevented by BAPTA-AM or a phospholipase C (PLC) inhibitor. Furthermore, in spinal cord slices, P2X7R antagonists (BBG and A740003) and Px1 HC blockers (10Panx1 and carbenoxolone) prevent the increase in Etd+ uptake by astrocytes, whereas Gap19, a selective Cx43 HC blocker, has no effect on dye uptake at this time. Microglia are not required for the increase in Etd+ uptake by astrocytes induced by FGF-1, although they are activated by FGF-1 treatment. The morphological signs of microglia activation are inhibited by P2X7R antagonists and 10Panx1 and are associated with elevated levels of proinflammatory cytokines in cord slices treated with FGF-1. The FGF-1 initiated cascade may play an important role in spinal cord inflammation in vivo. SIGNIFICANCE STATEMENT We find that FGF-1 elevates [Ca2+]i in spinal astrocytes, which causes vesicular release of ATP and activation of P2X7Rs to trigger opening of Px1 HCs, which release further ATP. This regenerative response occurs in astrocyte cultures and in acute spinal cord slices. In the latter, FGF-1 application promotes the activation of microglia and increases the production of proinflammatory cytokines through mechanisms depending on P2X7

  1. Multiple large and small cerebellar infarcts

    PubMed Central

    Canaple, S.; Bogousslavsky, J.

    1999-01-01

    To assess the clinical, topographical, and aetiological features of multiple cerebellar infarcts,18 patients (16.5% of patients with cerebellar infarction) were collected from a prospective acute stroke registry, using a standard investigation protocol including MRI and magnetic resonance angiography. Infarcts in the posterior inferior cerebellar artery (PICA)+superior cerebellar artery (SCA) territory were most common (9/18; 50%), followed by PICA+anterior inferior cerebellar artery (AICA)+SCA territory infarcts (6/18; 33%). One patient had bilateral AICA infarcts. No infarct involved the PICA+AICA combined territory. Other infarcts in the posterior circulation were present in half of the patients and the clinical presentation largely depended on them. Large artery disease was the main aetiology. Our findings emphasised the common occurrence of very small multiple cerebellar infarcts (<2 cm diameter).These very small multiple cerebellar infarcts may occur with (13 patients/18; 72%) or without (3/18; 22%) territorial cerebellar infarcts. Unlike previous series, they could not all be considered junctional infarcts (between two main cerebellar artery territories: 51/91), but also small territorial infarcts (40/91). It is suggested that these very small territorial infarcts may be endzone infarcts, due to the involvement of small distal arterial branches. It is possible that some very small territorial infarcts may be due to a microembolic process, but this hypothesis needs pathological confirmation.

 PMID:10329747

  2. [Case of cerebellar and spinal cord infarction presenting with acute brachial diplegia due to right vertebral artery occlusion].

    PubMed

    Fujii, Takayuki; Santa, Yo; Akutagawa, Noriko; Nagano, Sukehisa; Yoshimura, Takeo

    2012-01-01

    A 73-year-old man was admitted for evaluation of sudden onset of dizziness, bilateral shoulder pain, and brachial diplegia. Neurological examination revealed severe bilateral weakness of the triceps brachii, wrist flexor, and wrist extensor muscles. There was no paresis of the lower limbs. His gait was ataxic. Pinprick and temperature sensations were diminished at the bilateral C6-C8 dermatomes. Vibration and position senses were intact. An MRI of the head revealed a right cerebellar infarction and occlusion of the right vertebral artery. An MRI of the cervical spine on T₂ weighted imaging (T₂WI) showed cord compression at the C3/4-C5/6 level secondary to spondylotic degeneration without any intramedullary signal changes of the cord. On the following day, however, high-signal lesions on T₂WI appeared in the C5-C6 spinal cord, suggesting cord infarction. Unilateral vertebral artery occlusion does not usually result in cervical cord infarction because of anastomosis of arteries. Because of the long-term mechanical compression in our case, it was likely that cervical cord ischemia was present before the onset of symptoms. On the basis of chronic cord compression, our case suggests that occlusion of a unilateral vertebral artery could cause cervical cord infarction.

  3. Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells

    PubMed Central

    Elisabetta Cesana, Lia Forti; Mapelli, Jonathan; D'Angelo, Egidio

    2006-01-01

    Although Golgi cells (GoCs), the main type of inhibitory interneuron in the cerebellar granular layer (GL), are thought to play a central role in cerebellar network function, their excitable properties have remained unexplored. GoCs fire rhythmically in vivo and in slices, but it was unclear whether this activity originated from pacemaker ionic mechanisms. We explored this issue in acute cerebellar slices from 3-week-old rats by combining loose cell-attached (LCA) and whole-cell (WC) recordings. GoCs displayed spontaneous firing at 1–10 Hz (room temperature) and 2–20 Hz (35–37°C), which persisted in the presence of blockers of fast synaptic receptors and mGluR and GABAB receptors, thus behaving, in our conditions, as pacemaker neurons. ZD 7288 (20 μm), a potent hyperpolarization-activated current (Ih) blocker, slowed down pacemaker frequency. The role of subthreshold Na+ currents (INa,sub) could not be tested directly, but we observed a robust TTX-sensitive, non-inactivating Na+ current in the subthreshold voltage range. When studying repolarizing currents, we found that retigabine (5 μm), an activator of KCNQ K+ channels generating neuronal M-type K+ (IM) currents, reduced GoC excitability in the threshold region. The KCNQ channel antagonist XE991 (5 μm) did not modify firing, suggesting that GoC IM has low XE991 sensitivity. Spike repolarization was followed by an after-hyperpolarization (AHP) supported by apamin-sensitive Ca2+-dependent K+ currents (Iapa). Block of Iapa decreased pacemaker precision without altering average frequency. We propose that feed-forward depolarization is sustained by Ih and INa,sub, and that delayed repolarizing feedback involves an IM-like current whose properties remain to be characterized. The multiple ionic mechanisms shown here to contribute to GoC pacemaking should provide the substrate for fine regulation of firing frequency and precision, thus influencing the cyclic inhibition exerted by GoCs onto the cerebellar GL

  4. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6.

    PubMed

    Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E; Watt, Alanna J

    2016-01-01

    Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA6(84Q/+)) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA6(84Q/84Q)) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA6(84Q/84Q) mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6. PMID:27381005

  5. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6

    PubMed Central

    Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E.; Watt, Alanna J.

    2016-01-01

    Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA684Q/+) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA684Q/84Q) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA684Q/84Q mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6. PMID:27381005

  6. Neuro-Otological Aspects of Cerebellar Stroke Syndrome

    PubMed Central

    2009-01-01

    Cerebellar stroke is a common cause of a vascular vestibular syndrome. Although vertigo ascribed to cerebellar stroke is usually associated with other neurological symptoms or signs, it may mimic acute peripheral vestibulopathy (APV), so called pseudo-APV. The most common pseudo-APV is a cerebellar infarction in the territory of the medial branch of the posterior inferior cerebellar artery (PICA). Recent studies have shown that a normal head impulse result can differentiate acute medial PICA infarction from APV. Therefore, physicians who evaluate stroke patients should be trained to perform and interpret the results of the head impulse test. Cerebellar infarction in the territory of the anterior inferior cerebellar artery (AICA) can produce a unique stroke syndrome in that it is typically accompanied by unilateral hearing loss, which could easily go unnoticed by patients. The low incidence of vertigo associated with infarction involving the superior cerebellar artery distribution may be a useful way of distinguishing it clinically from PICA or AICA cerebellar infarction in patients with acute vertigo and limb ataxia. For the purpose of prompt diagnosis and adequate treatment, it is imperative to recognize the characteristic patterns of the clinical presentation of each cerebellar stroke syndrome. This paper provides a concise review of the key features of cerebellar stroke syndromes from the neuro-otology viewpoint. PMID:19587812

  7. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. PMID:27369091

  8. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress.

  9. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography.

    PubMed

    Hayashi, Takana Yamakawa; Matsuda, Izuru; Hagiwara, Kazuchika; Takayanagi, Tomoko; Hagiwara, Akifumi

    2016-09-01

    We report a case of splenic infarction in a patient with sickle cell traits (SCT), focusing on the computed tomography (CT) findings. The patient was an African-American man in his twenties with no past medical history who experienced sudden left upper quadrant pain while climbing a mountain (over 3000 m above sea level). Dynamic contrast-enhanced CT revealed massive non-segmental splenic infarction accompanied with nodule-like preserved splenic tissue. The region of splenic infarction did not coincide with the arterial vascular territory and differed from the features of infarction caused by large arterial embolism. In addition, thrombotic occlusion of the distal splenic vein was depicted on plain and contrast-enhanced thin-slice CT images. Early-phase contrast-enhanced images also showed inhomogeneous enhancement of the hepatic parenchyma. The patient's symptoms improved with conservative therapy. A hemoglobin electrophoresis test confirmed the diagnosis of SCT. SCT is usually asymptomatic, but hypoxic environments may induce acute splenic syndrome, which is commonly manifested as splenic infarction. We observed splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement in addition to a huge splenic infarction in our patient. To the best of our knowledge, this is the first report describing the specific imaging findings, particularly splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement, of acute splenic syndrome in a patient with previously undiagnosed SCT. These findings demonstrate the pathophysiology of SCT, and may help with the diagnosis of this disease. PMID:27251735

  10. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography.

    PubMed

    Hayashi, Takana Yamakawa; Matsuda, Izuru; Hagiwara, Kazuchika; Takayanagi, Tomoko; Hagiwara, Akifumi

    2016-09-01

    We report a case of splenic infarction in a patient with sickle cell traits (SCT), focusing on the computed tomography (CT) findings. The patient was an African-American man in his twenties with no past medical history who experienced sudden left upper quadrant pain while climbing a mountain (over 3000 m above sea level). Dynamic contrast-enhanced CT revealed massive non-segmental splenic infarction accompanied with nodule-like preserved splenic tissue. The region of splenic infarction did not coincide with the arterial vascular territory and differed from the features of infarction caused by large arterial embolism. In addition, thrombotic occlusion of the distal splenic vein was depicted on plain and contrast-enhanced thin-slice CT images. Early-phase contrast-enhanced images also showed inhomogeneous enhancement of the hepatic parenchyma. The patient's symptoms improved with conservative therapy. A hemoglobin electrophoresis test confirmed the diagnosis of SCT. SCT is usually asymptomatic, but hypoxic environments may induce acute splenic syndrome, which is commonly manifested as splenic infarction. We observed splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement in addition to a huge splenic infarction in our patient. To the best of our knowledge, this is the first report describing the specific imaging findings, particularly splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement, of acute splenic syndrome in a patient with previously undiagnosed SCT. These findings demonstrate the pathophysiology of SCT, and may help with the diagnosis of this disease.

  11. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    PubMed Central

    Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2014-01-01

    Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies. PMID:24917788

  12. Evaluation of Mitochondrial Function in the CNS of Rodent Models of Alzheimer's Disease - High Resolution Respirometry Applied to Acute Hippocampal Slices.

    PubMed

    Dias, Candida; Barbosa, Rui M; Laranjinha, Joao; Ledo, Ana

    2014-10-01

    Alzheimer's disease (AD) is a multifactorial disease characterized by extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles. These hallmark alterations are preceded by synaptic deterioration, changes in neuromolecular plasticity phenomena, mitochondrial dysfunction, increase in oxidative damage to cellular constituents and decreased energy metabolism. The hippocampus is a structure of the temporal medial lobe implicated in specific forms of memory processes. It is also one of the first and most affected regions of the CNS in AD. Here we present a novel approach to the study if mitochondrial function/disfunction in 2 rodent models of AD: an acute rat model obtained by intracerebroventricular injection of the toxin streptozotocin (STZ) and a progressive triple transgenic mouse model (3TgAD) harboring PS1M146V, APPSwe, and tauP301L transgenes. Mitochondrial dysfunction has classically been assessed in such models by isolating mitochondria, synaptossoms or working with cell cultures. Anyone of these approaches destroys the intricate intercellular connectivity and cytoarchitecture of neuronal tissue. We used acute hippocampal slices obtained from the 2 models of AD and evaluated changes in mitochondrial function as a function of disease and/or age. Mitochondrial stress test were performed on the high resolution respirometry (Oroboros 2K Oxymeter). Upon analysis of oxygen consumption rates (OCR) we observed significant decreases in basal OCR, maximal respiratory capacity, ATP turnover and a tendency for decrease in sparing capacity in the STZ rat model compared to shame injected animals. Regarding the 3TgAD model we observed an age-dependent decrease in all parameters evaluated in the mitochondrial stress test, in both 3TgAD and NTg animals. However, although a tendency towards decreased OCR was observed when comparing 3TgAD and age-matched NTg animals, no statistically significant difference was observed. PMID:26461355

  13. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  14. Lumican as a novel potential clinical indicator for acute aortic dissection: A comparative study, based on multi-slice computed tomography angiography

    PubMed Central

    GU, GUORONG; WAN, FANG; XUE, YUAN; CHENG, WEIZHONG; ZHENG, HAIYIN; ZHAO, YUN; FAN, FAN; HAN, YI; TONG, CHAOYANG; YAO, CHENLING

    2016-01-01

    The aim of the present study was to investigate the association between serum lumican levels and acute aortic dissection (AAD) severity. A total of 82 patients with chest or back pain and 30 healthy volunteers were recruited. Among the patients, there were 70 cases of AAD and 12 cases of intramural hematoma (IMH). AAD severity was determined using multi-slice computed tomography angiography (MSCTA). Serum was collected from the patients upon admission, and lumican levels were detected using an enzyme-linked immunosorbent assay. In addition, correlation analyses were conducted between lumican levels and AAD severity by designing a ‘SCORE X, RANGE Y’ system to measure the number of affected vital arteries and vertical range of false lumen, based on the MSCTA. Lumican levels differed significantly among the AAD patients (2.32±4.29 ng/ml), IMH patients (0.72±0.32 ng/ml) and healthy volunteers (0.85±0.53 ng/ml; P=0.003). In the AAD patients presenting within 12–72 h of symptom onset, the Spearman's rho correlation coefficient between lumican and SCORE or RANGE was 0.373 (P=0.046) and 0.468 (P=0.010), respectively. The present results suggest that lumican may be a potential marker for aiding the diagnosis and screening for AAD, and may be used to predict the severity of AAD. PMID:26998013

  15. Development and characterization of an ex-vivo brain slice culture model of chronic wasting disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases have long incubation times in vivo, therefore, modeling the diseases ex-vivo will advance the development of rationale-based therapeutic strategies. An organotypic slice culture assay (POSCA) was recently developed for scrapie prions by inoculating mouse cerebellar brain slices with R...

  16. The spatiotemporal organization of cerebellar network activity resolved by two-photon imaging of multiple single neurons

    PubMed Central

    Gandolfi, Daniela; Pozzi, Paolo; Tognolina, Marialuisa; Chirico, Giuseppe; Mapelli, Jonathan; D'Angelo, Egidio

    2014-01-01

    In order to investigate the spatiotemporal organization of neuronal activity in local microcircuits, techniques allowing the simultaneous recording from multiple single neurons are required. To this end, we implemented an advanced spatial-light modulator two-photon microscope (SLM-2PM). A critical issue for cerebellar theory is the organization of granular layer activity in the cerebellum, which has been predicted by single-cell recordings and computational models. With SLM-2PM, calcium signals could be recorded from different network elements in acute cerebellar slices including granule cells (GrCs), Purkinje cells (PCs) and molecular layer interneurons. By combining WCRs with SLM-2PM, the spike/calcium relationship in GrCs and PCs could be extrapolated toward the detection of single spikes. The SLM-2PM technique made it possible to monitor activity of over tens to hundreds neurons simultaneously. GrC activity depended on the number of spikes in the input mossy fiber bursts. PC and molecular layer interneuron activity paralleled that in the underlying GrC population revealing the spread of activity through the cerebellar cortical network. Moreover, circuit activity was increased by the GABA-A receptor blocker, gabazine, and reduced by the AMPA and NMDA receptor blockers, NBQX and APV. The SLM-2PM analysis of spatiotemporal patterns lent experimental support to the time-window and center-surround organizing principles of the granular layer. PMID:24782707

  17. Cerebellar ataxia as a possible complication of babesiosis in two dogs.

    PubMed

    Jacobson, L S

    1994-09-01

    A 6-month-old Miniature Doberman Pinscher was presented with inappetance and cerebellar signs. Babesia canis organisms were found on a capillary bloodsmear. The cerebellar signs resolved rapidly following treatment with diminazene aceturate. A 7-month-old Siberian Husky developed cerebellar signs, blindness and quadriparesis 9 d after presentation with clinical signs typical of uncomplicated canine babesiosis. The dog responded favourably to treatment with prednisolone. Both acute and delayed cerebellar ataxia have been associated with malaria in humans. The clinical signs shown by these dogs were similar to those reported for malaria in humans. Cerebellar ataxia should be considered a possible complication of canine babesiosis.

  18. Cerebellar and Brainstem Malformations.

    PubMed

    Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2016-08-01

    The frequency and importance of the evaluation of the posterior fossa have increased significantly over the past 20 years owing to advances in neuroimaging. Conventional and advanced neuroimaging techniques allow detailed evaluation of the complex anatomic structures within the posterior fossa. A wide spectrum of cerebellar and brainstem malformations has been shown. Familiarity with the spectrum of cerebellar and brainstem malformations and their well-defined diagnostic criteria is crucial for optimal therapy, an accurate prognosis, and correct genetic counseling. This article discusses cerebellar and brainstem malformations, with emphasis on neuroimaging findings (including diagnostic criteria), neurologic presentation, systemic involvement, prognosis, and recurrence. PMID:27423798

  19. Pre and Post Synaptic NMDA Effects Targeting Purkinje Cells in the Mouse Cerebellar Cortex

    PubMed Central

    Lonchamp, Etienne; Gambino, Frédéric; Dupont, Jean Luc; Doussau, Frédéric; Valera, Antoine; Poulain, Bernard; Bossu, Jean-Louis

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not juvenile rat and mice. A presynaptic effect of NMDA on GABA release by cerebellar interneurons was identified recently. Nevertheless whereas NMDA receptor subunits are detected on parallel fiber terminals, a presynaptic effect of NMDA on spontaneous release of glutamate has not been demonstrated. Using mouse cerebellar cultures and patch-clamp recordings we show that NMDA facilitates glutamate release onto Purkinje cells in young cultures via a presynaptic mechanism, whereas NMDA activates extrasynaptic receptors in Purkinje cells recorded in old cultures. The presynaptic effect of NMDA on glutamate release is also observed in Purkinje cells recorded in acute slices prepared from juvenile but not from adult mice and requires a specific protocol of NMDA application. PMID:22276158

  20. Cerebellar disorders: clinical/radiologic findings and modern imaging tools.

    PubMed

    Manto, Mario; Habas, Christophe

    2016-01-01

    Cerebellar disorders, also called cerebellar ataxias, comprise a large group of sporadic and genetic diseases. Their core clinical features include impaired control of coordination and gait, as well as cognitive/behavioral deficits usually not detectable by a standard neurologic examination and therefore often overlooked. Two forms of cognitive/behavioral syndromes are now well identified: (1) the cerebellar cognitive affective syndrome, which combines an impairment of executive functions, including planning and working memory, deficits in visuospatial skills, linguistic deficiencies such as agrammatism, and inappropriate behavior; and (2) the posterior fossa syndrome, a very acute form of cerebellar cognitive affective syndrome occurring essentially in children. Sporadic ataxias include stroke, toxic causes, immune ataxias, infectious/parainfectious ataxias, traumatic causes, neoplasias and paraneoplastic syndromes, endocrine disorders affecting the cerebellum, and the so-called "degenerative ataxias" (multiple system atrophy, and sporadic adult-onset ataxias). Genetic ataxias include mainly four groups of disorders: autosomal-recessive cerebellar ataxias, autosomal-dominant ataxias (spinocerebellar ataxias and episodic ataxias), mitochondrial disorders, and X-linked ataxias. In addition to biochemical studies and genetic tests, brain imaging techniques are a cornerstone for the diagnosis, clinicoanatomic correlations, and follow-up of cerebellar ataxias. Modern radiologic tools to assess cerebellar ataxias include: functional imaging studies, magnetic resonance spectroscopy, volumetric studies, and tractography. These complementary methods provide a multimodal appreciation of the whole long-range cerebellar network functioning, and allow the extraction of potential biomarkers for prognosis and rating level of recovery after treatment. PMID:27432679

  1. Humor and laughter in patients with cerebellar degeneration.

    PubMed

    Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D

    2012-06-01

    Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.

  2. Thick Slice and Thin Slice Teaching Evaluations

    ERIC Educational Resources Information Center

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  3. Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method.

    PubMed

    Pan, Geng; Li, Yue; Geng, Hong-Yan; Yang, Jian-Ming; Li, Ke-Xin; Li, Xiao-Ming

    2015-04-01

    Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions. PMID:25648546

  4. Abnormal cerebellar morphometry in abstinent adolescent marijuana users

    PubMed Central

    Medina, Krista Lisdahl; Nagel, Bonnie J.; Tapert, Susan F.

    2010-01-01

    Background Functional neuroimaging data from adults have, in general, found frontocerebellar dysfunction associated with acute and chronic marijuana (MJ) use (Loeber & Yurgelun-Todd, 1999). One structural neuroimaging study found reduced cerebellar vermis volume in young adult MJ users with a history of heavy polysubstance use (Aasly et al., 1993). The goal of this study was to characterize cerebellar volume in adolescent chronic MJ users following one month of monitored abstinence. Method Participants were MJ users (n=16) and controls (n=16) aged 16-18 years. Extensive exclusionary criteria included history of psychiatric or neurologic disorders. Drug use history, neuropsychological data, and structural brain scans were collected after 28 days of monitored abstinence. Trained research staff defined cerebellar volumes (including three cerebellar vermis lobes and both cerebellar hemispheres) on high-resolution T1-weighted magnetic resonance images. Results Adolescent MJ users demonstrated significantly larger inferior posterior (lobules VIII-X) vermis volume (p<.009) than controls, above and beyond effects of lifetime alcohol and other drug use, gender, and intracranial volume. Larger vermis volumes were associated with poorer executive functioning (p’s<.05). Conclusions Following one month of abstinence, adolescent MJ users had significantly larger posterior cerebellar vermis volumes than non-using controls. These greater volumes are suggested to be pathological based on linkage to poorer executive functioning. Longitudinal studies are needed to examine typical cerebellar development during adolescence and the influence of marijuana use. PMID:20413277

  5. Cerebellar learning mechanisms

    PubMed Central

    Freeman, John H.

    2014-01-01

    The mechanisms underlying cerebellar learning are reviewed with an emphasis on old arguments and new perspectives on eyeblink conditioning. Eyeblink conditioning has been used for decades a model system for elucidating cerebellar learning mechanisms. The standard model of the mechanisms underlying eyeblink conditioning is that there two synaptic plasticity processes within the cerebellum that are necessary for acquisition of the conditioned response: 1) long-term depression (LTD) at parallel fiber-Purkinje cell synapses and 2) long-term potentiation (LTP) at mossy fiber-interpositus nucleus synapses. Additional Purkinje cell plasticity mechanisms may also contribute to eyeblink conditioning including LTP, excitability, and entrainment of deep nucleus activity. Recent analyses of the sensory input pathways necessary for eyeblink conditioning indicate that the cerebellum regulates its inputs to facilitate learning and maintain plasticity. Cerebellar learning during eyeblink conditioning is therefore a dynamic interactive process which maximizes responding to significant stimuli and suppresses responding to irrelevant or redundant stimuli. PMID:25289586

  6. Unilateral cerebellar aplasia.

    PubMed

    Boltshauser, E; Steinlin, M; Martin, E; Deonna, T

    1996-02-01

    We describe three children with unilateral cerebellar aplasia (UCA). Deliveries at term and neonatal periods were uneventful. Pregnancy was normal in one and complicated by mild bleeding (in second and fourth month respectively) in two instances. Presenting signs were delayed motor development with marked contralateral torticollis (n = 1), hemiplegia (n = 1) and unusual head nodding (n = 1). Neuroradiological investigations revealed complete aplasia (n = 1) and subtotal aplasia (n = 2) of one cerebellar hemisphere with only a residual wing-like structure below the tentorium. There was contralateral underdevelopment of the brainstem. The infant with hemiplegic cerebral palsy had an additional supratentorial periventricular parenchymal defect, contralateral to the cerebellar hypoplasia. In view of literature reports, describing similar neuroradiological or neuropathological findings in asymptomatic individuals, it is doubtful whether UCA is responsible for our patient's problems. In our cases UCA has presumably resulted from a prenatal destructive lesion, possibly an infarct, but the timing and exact nature are unknown. PMID:8677027

  7. Cerebellar ataxia as presenting feature of hypothyroidism.

    PubMed

    Kotwal, Suman Kumar; Kotwal, Shalija; Gupta, Rohan; Singh, Jang Bhadur; Mahajan, Annil

    2016-04-01

    Symptoms and signs of the hypothyroidism vary in relation to the magnitude and acuteness of the thyroid hormone deficiency. The usual clinical features are constipation, fatigue, cold intolerance and weight gain. Rarely it can present with neurologic problems like reversible cerebellar ataxia, dementia, peripheral neuropathy, psychosis and coma. Hypothyroidism should be suspected in all cases of ataxia, as it is easily treatable. A 40 year-old male presented with the history facial puffiness, hoarseness of voice and gait-ataxia. Investigations revealed frank primary hypothyroidism. Anti-TPO antibody was positive. Thyroxine was started and patient improved completely within eight weeks. Hypothyroidism can present with ataxia as presenting feature. Hypothyroidism should be considered in all cases of cerebellar ataxia as it is a reversible cause of ataxia. PMID:26886095

  8. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  9. Developmental change in the contribution of voltage-gated Ca(2+) channels to the pacemaking of deep cerebellar nuclei neurons.

    PubMed

    Alviña, K; Tara, E; Khodakhah, K

    2016-05-13

    The activity of the deep cerebellar nuclei (DCN) neurons conveys the bulk of the output of the cerebellum. To generate these motor signals, DCN neurons integrate synaptic inputs with their own spontaneous activity. We have previously reported that N-type voltage-gated Ca(2+) channels modulate the spontaneous activity of the majority of juvenile DCN neurons in vitro. Specifically, pharmacologically blocking N-type Ca(2+) channels increases their firing rate causing DCN cells to burst. Adult DCN neurons however, behaved differently. To further investigate this change, we have studied here the effect of cadmium on the firing rate of DCN neurons in acute cerebellar slices obtained from adult (>2 months old) or juvenile (12-21 days old) rats and mice. Strikingly, and in contrast to juvenile DCN cells, cadmium did not affect the pacemaking of adult DCN cells. The activity of Purkinje cells (PCs) however was transformed into high-frequency bursting, regardless the age. Further, we questioned whether these findings could be due to an artifact associated with the added difficulty of preparing adult DCN slices. Hence we proceeded to examine the spontaneous activity of DCN neurons in anesthetized juvenile and adult rats and mice in vivo. When cadmium was injected into the DCN in vivo no significant change in firing rate was observed, conversely to most juvenile DCN neurons which showed high-frequency bursts after cadmium injection. In these same animals, PCs pacemaking showed no developmental difference. Thus our results demonstrate a remarkable age-dependent functional modification in the regulation of DCN neurons pacemaking. PMID:26902515

  10. Estrogen Receptor Beta and 2-arachidonoylglycerol Mediate the Suppressive Effects of Estradiol on Frequency of Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons of Metestrous Mice: An Acute Slice Electrophysiological Study

    PubMed Central

    Bálint, Flóra; Liposits, Zsolt; Farkas, Imre

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are controlled by 17β-estradiol (E2) contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM) on GnRH neurons in acute brain slices obtained from metestrous GnRH-green fluorescent protein (GFP) mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachidonoylglycerol (2-AG) signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs) in GnRH neurons (49.62 ± 7.6%) which effect was abolished by application of the estrogen receptor (ER) α/β blocker Faslodex (1 μM). Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1) inverse agonist AM251 (1 μM) and intracellularly applied endocannabinoid synthesis blocker THL (10 μM) significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of tetrodotoxin (TTX) indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM) also significantly decreased the frequency of miniature postsynaptic currents (mPSCs) in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 μM) indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM) or the membrane-associated G protein-coupled estrogen receptor (GPR30) agonist G1 (10 pM) had no significant effect on the frequency of mPSCs in these neurons. AM251 and tetrahydrolipstatin (THL) significantly abolished

  11. Metronidazole induced cerebellar ataxia

    PubMed Central

    Hari, Aditya; Srikanth, B. Akshaya; Lakshmi, G. Sriranga

    2013-01-01

    Metronidazole is a widely used antimicrobial usually prescribed by many specialist doctors for a short duration of 10-15 days. Prolonged use of metronidazole is rare. The present case is of a patient who used the drug for 4 months and developed peripheral neuropathy, convulsions, and cerebellar ataxia. He was treated with diazepam and levetiracetam. The patient recovered completely following discontinuation of metronidazole. PMID:23833378

  12. Automated Factor Slice Sampling

    PubMed Central

    Tibbits, Matthew M.; Groendyke, Chris; Haran, Murali; Liechty, John C.

    2013-01-01

    Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution, can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler”, a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters in order to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. PMID:24955002

  13. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats.

    PubMed

    Baba, Hiroshi; Petrenko, Andrey B; Fujiwara, Naoshi

    2016-10-01

    Pregabalin is thought to exert its therapeutic effect in neuropathic pain via binding to α2δ-1 subunits of voltage-gated calcium (Ca(2+)) channels. However, the exact analgesic mechanism after its binding to α2δ-1 subunits remains largely unknown. Whether a clinical concentration of pregabalin (≈10μM) can cause acute inhibition of dorsal horn neurons in the spinal cord is controversial. To address this issue, we undertook intracellular Ca(2+)-imaging studies using spinal cord slices with an intact attached L5 dorsal root, and examined if pregabalin acutely inhibits the primary afferent stimulation-evoked excitation of dorsal horn neurons in normal rats and in rats with streptozotocin-induced painful diabetic neuropathy. Under normal conditions, stimulation of a dorsal root evoked Ca(2+) signals predominantly in the superficial dorsal horn. Clinically relevant (10μM) and a very high concentration of pregabalin (100μM) did not affect the intensity or spread of dorsal root stimulation-evoked Ca(2+) signals, whereas an extremely high dose of pregabalin (300μM) slightly but significantly attenuated Ca(2+) signals in normal rats and in diabetic neuropathic (DN) rats. There was no difference between normal rats and DN rats with regard to the extent of signal attenuation at all concentrations tested. These results suggest that the activity of dorsal horn neurons in the spinal cord is not inhibited acutely by clinical doses of pregabalin under normal or DN conditions. It is very unlikely that an acute inhibitory action in the dorsal horn is the main analgesic mechanism of pregabalin in neuropathic pain states. PMID:27543338

  14. Cerebellar function in developmental dyslexia.

    PubMed

    Stoodley, Catherine J; Stein, John F

    2013-04-01

    Developmental dyslexia is a genetically based neurobiological syndrome, which is characterized by reading difficulty despite normal or high general intelligence. Even remediated dyslexic readers rarely achieve fast, fluent reading. Some dyslexics also have impairments in attention, short-term memory, sequencing (letters, word sounds, and motor acts), eye movements, poor balance, and general clumsiness. The presence of "cerebellar" motor and fluency symptoms led to the proposal that cerebellar dysfunction contributes to the etiology of dyslexia. Supporting this, functional imaging studies suggest that the cerebellum is part of the neural network supporting reading in typically developing readers, and reading difficulties have been reported in patients with cerebellar damage. Differences in both cerebellar asymmetry and gray matter volume are some of the most consistent structural brain findings in dyslexics compared with good readers. Furthermore, cerebellar functional activation patterns during reading and motor learning can differ in dyslexic readers. Behaviorally, some children and adults with dyslexia show poorer performance on cerebellar motor tasks, including eye movement control, postural stability, and implicit motor learning. However, many dyslexics do not have cerebellar signs, many cerebellar patients do not have reading problems, and differences in dyslexic brains are found throughout the whole reading network, and not isolated to the cerebellum. Therefore, impaired cerebellar function is probably not the primary cause of dyslexia, but rather a more fundamental neurodevelopmental abnormality leads to differences throughout the reading network.

  15. [Cerebellar cognitive affective syndrome secondary to a cerebellar tumour].

    PubMed

    Domínguez-Carral, J; Carreras-Sáez, I; García-Peñas, J J; Fournier-Del Castillo, C; Villalobos-Reales, J

    2015-01-01

    Cerebellar cognitive affective syndrome is characterized by disturbances of executive function, impaired spatial cognition, linguistic difficulties, and personality change. The case of an 11 year old boy is presented, with behavior problems, learning difficulties and social interaction problems. In the physical examination he had poor visual contact, immature behavior, reduced expressive language and global motor disability with gait dyspraxia, with no defined cerebellar motor signs. In the neuropsychological evaluation he has a full scale overall intellectual quotient of 84, with signs of cerebellar cognitive affective syndrome. A tumour affecting inferior cerebellar vermis was observed in the magnetic resonance imaging, which had not significantly grown during 5 years of follow up. The cerebellum participates in controlling cognitive and affective functions. Cerebellar pathology must be considered in the differential diagnosis of children with cognitive or learning disorder with associated behavioral and emotional components. PMID:24954915

  16. [Cerebellar cognitive affective syndrome secondary to a cerebellar tumour].

    PubMed

    Domínguez-Carral, J; Carreras-Sáez, I; García-Peñas, J J; Fournier-Del Castillo, C; Villalobos-Reales, J

    2015-01-01

    Cerebellar cognitive affective syndrome is characterized by disturbances of executive function, impaired spatial cognition, linguistic difficulties, and personality change. The case of an 11 year old boy is presented, with behavior problems, learning difficulties and social interaction problems. In the physical examination he had poor visual contact, immature behavior, reduced expressive language and global motor disability with gait dyspraxia, with no defined cerebellar motor signs. In the neuropsychological evaluation he has a full scale overall intellectual quotient of 84, with signs of cerebellar cognitive affective syndrome. A tumour affecting inferior cerebellar vermis was observed in the magnetic resonance imaging, which had not significantly grown during 5 years of follow up. The cerebellum participates in controlling cognitive and affective functions. Cerebellar pathology must be considered in the differential diagnosis of children with cognitive or learning disorder with associated behavioral and emotional components.

  17. Propofol effects on cerebellar long-term depression.

    PubMed

    Lee, Kwan Young; Kim, Young Im; Kim, Se Hoon; Park, Hyung Seo; Park, Youn Joon; Ha, Myung Sook; Jin, Yunju; Kim, Dong Kwan

    2015-11-16

    Propofol is an intravenously administered anesthetic that induces γ-aminobutyric acid-mediated inhibition in the central nervous system. It has been implicated in prolonged movement disorders. Since the cerebellum is important for motor coordination and learning, we investigated the potential effects of propofol on cerebellar circuitry. Using the whole-cell patch-clamp technique in Wister rat cerebellar slices, we demonstrated that propofol administration impaired long-term depression from the parallel fiber (PF) to Purkinje cell (PC) synapses (PF-LTD). Also, propofol reduced metabotropic glutamate receptor 1 (mGluR1)-mediated and group I mGluR agonist-induced slow currents in PCs. These results suggest that the propofol-induced PF-LTD impairment may be related to an alteration in mGluR1 signaling, which is essential to motor learning.

  18. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury.

    PubMed

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, Rosalinde; Groothuis, Geny M M; Russel, Frans G M

    2014-09-01

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker identification, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PCLS were incubated with acetaminophen (APAP), 3-acetamidophenol, diclofenac and lipopolysaccharide for 24-48 h. PCLS medium from all species treated with APAP demonstrated similar changes in protein profiles, as previously found in mouse urine after APAP-induced liver injury, including the same key proteins: superoxide dismutase 1, carbonic anhydrase 3 and calmodulin. Further analysis showed that the concentration of hepcidin, a hepatic iron-regulating hormone peptide, was reduced in PCLS medium after APAP treatment, resembling the decreased mouse plasma concentrations of hepcidin observed after APAP treatment. Interestingly, comparable results were obtained after 3-acetamidophenol incubation in rat and human, but not mouse PCLS. Incubation with diclofenac, but not with lipopolysaccharide, resulted in the same toxicity parameters as observed for APAP, albeit to a lesser extent. In conclusion, proteomics can be applied to identify potential translational biomarkers using the PCLS system.

  19. A visual thalamocortical slice.

    PubMed

    MacLean, Jason N; Fenstermaker, Vivian; Watson, Brendon O; Yuste, Rafael

    2006-02-01

    We describe a thalamocortical slice preparation in which connectivity between the mouse lateral geniculate nucleus (LGN) and primary visual cortex (V1) is preserved. Through DiI injections in fixed brains we traced and created a three-dimensional model of the mouse visual pathways. From this computer model we designed a slice preparation that contains a projection from LGN to V1. We prepared brain slices with these predicted coordinates and demonstrated anatomical LGN-V1 connectivity in these slices after LGN tracer injections. We also revealed functional LGN-V1 connectivity by stimulating LGN electrically and detecting responses in layer 4 of V1 using calcium imaging, field potential recordings and whole-cell recordings. We also identified layer-4 neurons that receive direct thalamocortical input. Finally, we compared cortical activity after LGN stimulation with spontaneous cortical activity and found significant overlap of the spatiotemporal dynamics generated by both types of events.

  20. Treatable causes of cerebellar ataxia.

    PubMed

    Ramirez-Zamora, Adolfo; Zeigler, Warren; Desai, Neeja; Biller, José

    2015-04-15

    The cerebellar ataxia syndromes are a heterogeneous group of disorders clinically characterized by the presence of cerebellar dysfunction. Initial assessment of patients with progressive cerebellar ataxia is complex because of an extensive list of potential diagnoses. A detailed history and comprehensive examination are required for an accurate diagnosis and hierarchical diagnostic investigations. Although no cure exists for most of these conditions, a small group of metabolic, hereditary, inflammatory, and immune-mediated etiologies of cerebellar ataxia are amenable to disease-modifying, targeted therapies. Over the past years, disease-specific treatments have emerged. Thus, clinicians must become familiar with these disorders because maximal therapeutic benefit is only possible when done early. In this article, we review disorders in which cerebellar ataxia is a prominent clinical feature requiring targeted treatments along with specific management recommendations.

  1. Gravity-dependent nystagmus and inner-ear dysfunction suggest anterior and posterior inferior cerebellar artery infarct.

    PubMed

    Shaikh, Aasef G; Miller, Benjamin R; Sundararajan, Sophia; Katirji, Bashar

    2014-04-01

    Cerebellar lesions may present with gravity-dependent nystagmus, where the direction and velocity of the drifts change with alterations in head position. Two patients had acute onset of hearing loss, vertigo, oscillopsia, nausea, and vomiting. Examination revealed gravity-dependent nystagmus, unilateral hypoactive vestibulo-ocular reflex (VOR), and hearing loss ipsilateral to the VOR hypofunction. Traditionally, the hypoactive VOR and hearing loss suggest inner-ear dysfunction. Vertigo, nausea, vomiting, and nystagmus may suggest peripheral or central vestibulopathy. The gravity-dependent modulation of nystagmus, however, localizes to the posterior cerebellar vermis. Magnetic resonance imaging in our patients revealed acute cerebellar infarct affecting posterior cerebellar vermis, in the vascular distribution of the posterior inferior cerebellar artery (PICA). This lesion explains the gravity-dependent nystagmus, nausea, and vomiting. Acute onset of unilateral hearing loss and VOR hypofunction could be the manifestation of inner-ear ischemic injury secondary to the anterior inferior cerebellar artery (AICA) compromise. In cases of combined AICA and PICA infarction, the symptoms of peripheral vestibulopathy might masquerade the central vestibular syndrome and harbor a cerebellar stroke. However, the gravity-dependent nystagmus allows prompt identification of acute cerebellar infarct.

  2. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    PubMed

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.

  3. Crossed Cerebellar Diaschisis

    PubMed Central

    Han, Shuguang; Wang, Xiaopeng; Xu, Kai; Hu, Chunfeng

    2016-01-01

    Abstract Crossed cerebellar diaschisis (CCD) describes a depression of oxidative metabolism glucose and blood flow in the cerebellum secondary to a supratentorial lesion in the contralateral cerebral hemisphere. PET/MR has the potential to become a powerful tool for demonstrating and imaging intracranial lesions .We herein report 3 cases of CCD imaging using a tri-modality PET/CT–MR set-up for investigating the value of adding MRI rather than CT to PET in clinical routine. We describe 3 patients with CCD and neurological symptoms in conjunction with abnormal cerebral fluorodeoxyglucose (FDG) positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT–MR) manifestations including arterial spin-labeling (ASL) and T2-weighted images. In all, 18FDG-PET/CT detected positive FDG uptake in supratentorial lesions, and hypometabolism with atrophy in the contralateral cerebellum. More than that, hybrid PET/MRI provided a more accurate anatomic localization and ASL indicated disruption of the cortico-ponto-cerebellar pathway. Using pathology or long-term clinical follow-up to confirm the PET and ASL findings, the supratentorial lesions of the 3 patients were respectively diagnosed with cerebral infarction, recurrent glioma, and metastasis. The reports emphasize the significance of multimodality radiological examinations. Multimodality imaging contributes to proper diagnosis, management, and follow-up of supratentorial lesions with CCD. PMID:26765477

  4. Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease.

    PubMed

    Yang, Zhen; Ye, Chuyang; Bogovic, John A; Carass, Aaron; Jedynak, Bruno M; Ying, Sarah H; Prince, Jerry L

    2016-02-15

    The cerebellum plays an important role in both motor control and cognitive function. Cerebellar function is topographically organized and diseases that affect specific parts of the cerebellum are associated with specific patterns of symptoms. Accordingly, delineation and quantification of cerebellar sub-regions from magnetic resonance images are important in the study of cerebellar atrophy and associated functional losses. This paper describes an automated cerebellar lobule segmentation method based on a graph cut segmentation framework. Results from multi-atlas labeling and tissue classification contribute to the region terms in the graph cut energy function and boundary classification contributes to the boundary term in the energy function. A cerebellar parcellation is achieved by minimizing the energy function using the α-expansion technique. The proposed method was evaluated using a leave-one-out cross-validation on 15 subjects including both healthy controls and patients with cerebellar diseases. Based on reported Dice coefficients, the proposed method outperforms two state-of-the-art methods. The proposed method was then applied to 77 subjects to study the region-specific cerebellar structural differences in three spinocerebellar ataxia (SCA) genetic subtypes. Quantitative analysis of the lobule volumes shows distinct patterns of volume changes associated with different SCA subtypes consistent with known patterns of atrophy in these genetic subtypes. PMID:26408861

  5. Speech prosody in cerebellar ataxia

    NASA Astrophysics Data System (ADS)

    Casper, Maureen

    The present study sought an acoustic signature for the speech disturbance recognized in cerebellar degeneration. Magnetic resonance imaging was used for a radiological rating of cerebellar involvement in six cerebellar ataxic dysarthric speakers. Acoustic measures of the [pap] syllables in contrastive prosodic conditions and of normal vs. brain-damaged patients were used to further our understanding both of the speech degeneration that accompanies cerebellar pathology and of speech motor control and movement in general. Pair-wise comparisons of the prosodic conditions within the normal group showed statistically significant differences for four prosodic contrasts. For three of the four contrasts analyzed, the normal speakers showed both longer durations and higher formant and fundamental frequency values in the more prominent first condition of the contrast. The acoustic measures of the normal prosodic contrast values were then used as a model to measure the degree of speech deterioration for individual cerebellar subjects. This estimate of speech deterioration as determined by individual differences between cerebellar and normal subjects' acoustic values of the four prosodic contrasts was used in correlation analyses with MRI ratings. Moderate correlations between speech deterioration and cerebellar atrophy were found in the measures of syllable duration and f0. A strong negative correlation was found for F1. Moreover, the normal model presented by these acoustic data allows for a description of the flexibility of task- oriented behavior in normal speech motor control. These data challenge spatio-temporal theory which explains movement as an artifact of time wherein longer durations predict more extreme movements and give further evidence for gestural internal dynamics of movement in which time emerges from articulatory events rather than dictating those events. This model provides a sensitive index of cerebellar pathology with quantitative acoustic

  6. Organotypic slice culture of the hypothalamic paraventricular nucleus of rat

    PubMed Central

    Cho, Eun Seong; Lee, So Yeong; Park, Jae-Yong; Hong, Seong-Geun

    2007-01-01

    Organotypic slice cultures have been developed as an alternative to acute brain slices because the neuronal viability and synaptic connectivity in these cultures can be preserved well for a prolonged period of time. This study evaluated a stationary organotypic slice culture developed for the hypothalamic paraventricular nucleus (PVN) of rat. The results showed that the slice cultures maintain the typical shape of the nucleus, the immunocytochemical signals for oxytocin, vasopressin, and corticotropin-releasing hormone, and the electrophysiological properties of PVN neurons for up to 3 weeks in vitro. The PVN neurons in the culture expressed the green fluorescent protein gene that had been delivered by the adenoviral vectors. The results indicate that the cultured slices preserve the properties of the PVN neurons, and can be used in longterm studies on these neurons in vitro. PMID:17322769

  7. Bestrophin1 Channels are Insensitive to Ethanol and Do not Mediate Tonic GABAergic Currents in Cerebellar Granule Cells

    PubMed Central

    Diaz, Marvin R.; Wadleigh, Aya; Hughes, Benjamin A.; Woodward, John J.; Valenzuela, C. Fernando

    2012-01-01

    The granule cell layer of the cerebellum functions in spatio-temporal encoding of information. Granule cells (GCs) are tonically inhibited by spillover of GABA released from Golgi cells and this tonic inhibition is facilitated by acute ethanol. Recently, it was demonstrated that a specialized Ca2+-activated anion-channel, bestrophin1 (Best1), found on glial cells, can release GABA that contributes up to 50–75% of the tonic GABAergic current. However, it is unknown if ethanol has any actions on Best1 function. Using whole-cell electrophysiology, we found that recombinant Best1 channels expressed in HEK-293 cells were insensitive to 40 and 80 mM ethanol. We attempted to measure the Best1-mediated component of the tonic current in slices using 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We confirmed that this agent blocks recombinant Best1 channels. Unexpectedly, we found that NPPB significantly potentiated the tonic current and the area and decay of GABAA-mediated spontaneous inhibitory post-synaptic currents (IPSCs) in GCs in rodent slices under two different recording conditions. To better isolate the Best1-dependent tonic current component, we blocked the Golgi cell component of the tonic current with tetrodotoxin and found that NPPB similarly and significantly potentiated the tonic current amplitude and decay time of miniature IPSCs. Two other Cl−-channel blockers were also tested: 4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS) showed no effect on GABAergic transmission, while niflumic acid (NFA) significantly suppressed the tonic current noise, as well as the mIPSC frequency, amplitude, and area. These data suggest that acute ethanol exposure does not modulate Best1 channels and these findings serve to challenge recent data indicating that these channels participate in the generation of tonic GABAergic currents in cerebellar GCs. PMID:22275879

  8. The mysterious microcircuitry of the cerebellar nuclei

    PubMed Central

    Uusisaari, Marylka; De Schutter, Erik

    2011-01-01

    Abstract The microcircuitry of cerebellar cortex and, in particular, the physiology of its main element, the Purkinje neuron, has been extensively investigated and described. However, activity in Purkinje neurons, either as single cells or populations, does not directly mediate the cerebellar effects on the motor effector systems. Rather, the result of the entire cerebellar cortical computation is passed to the relatively small cerebellar nuclei that act as the final, integrative processing unit in the cerebellar circuitry. The nuclei ultimately control the temporal and spatial features of the cerebellar output. Given this key role, it is striking that the internal organization and the connectivity with afferent and efferent pathways in the cerebellar nuclei are rather poorly known. In the present review, we discuss some of the many critical shortcomings in the understanding of cerebellar nuclei microcircuitry: the extent of convergence and divergence of the cerebellar cortical pathway to the various cerebellar nuclei neurons and subareas, the possible (lack of) conservation of the finely-divided topographical organization in the cerebellar cortex at the level of the nuclei, as well as the absence of knowledge of the synaptic circuitry within the cerebellar nuclei. All these issues are important for predicting the pattern-extraction and encoding capabilities of the cerebellar nuclei and, until resolved, theories and models of cerebellar motor control and learning may err considerably. PMID:21521761

  9. [Surgical decompression for massive cerebellar infarction].

    PubMed

    Ogasawara, K; Koshu, K; Nagamine, Y; Fujiwara, S; Mizoi, K; Yoshimoto, T

    1995-01-01

    The authors report 10 patients with progressive neurological deterioration due to massive cerebellar infarctions. Computerized tomography scans confirmed obstructive hydrocephalus and brain stem compression. All 10 patients (seven men, three women; mean age, 59 years) were treated by external ventricular drainage and decompressive suboccipital craniectomy. After discharge from the hospital, they were followed up (23-101 months) and their functional independence was evaluated by the Barthel Index. The condition of three patients with brain-stem infarction had deteriorated despite decompressive surgery. Two of these died during the acute stage and one because severely disabled. The remaining seven patients showed neurological improvement during the postoperative period. Four patients with preoperative Japan Coma Scale of 100 returned to their previous jobs within the follow-up period and three patients with preoperative Japan Coma Scale of 200 required some assistance in daily activities. It is suggested that decompressive surgery may be beneficial for massive cerebellar infarction. The postoperative prognosis depends mainly on the presence or absence of coexisting brain-stem infarction. It is possible that, without brain-stem infarction, patients who remained in a "dependent" state may have recovered better if they had been operated on earlier.

  10. Portable Device Slices Thermoplastic Prepregs

    NASA Technical Reports Server (NTRS)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  11. [Cerebellar infarctions and their mechanisms].

    PubMed

    Amarenco, P

    1993-01-01

    Cerebellar infarcts have been neglected for a long time and are now shown well by CT and especially MRI. Some infarcts involve the full territory supplied by a cerebellar artery. They are frequently complicated by edema with brain stem compression and supratentorial hydrocephalus, requiring at times emergency surgery, and are often accompanied by other medullary, medial pontine, mesencephalic, thalamic and occipital infarcts. On the other hand, partial territory infarcts are usually confined to the cerebellum and have a benign outcome with total recovery or minimal disability. They are more common than full territory infarcts. However, clinical presentations are similar to those full territory infarcts, differing mainly by the lack of drowsiness or unconsciousness. The main symptoms are vertigo, headache, vomiting, unsteadiness of gait and dysarthria. Signs include ipsilateral limb dysmetria, ipsilateral axial lateropulsion, ataxia and dysarthria. Vertigo is more severe and rotary in posterior inferior cerebellar artery territory infarcts, whereas dysarthria and ataxia are prominent in superior cerebellar artery territory infarcts. A few brain stem signs are sometimes added. In these territorial cerebellar infarcts, cardioembolism is the most common cause. Atherosclerotic occlusion comes next, involving the intracranial part of the vertebral artery and, less frequently, the lower basilar artery, both locations inaccessible to surgery. Other causes are artery to artery embolism from a vertebral artery origin stenosis, or the aortic arch, in situ intracranial branch atherosclerotic occlusion, and vertebral artery dissection. Border zone cerebellar infarcts occur in one third of the cases. They are small cortical or deep infarcts. They have the same symptoms and signs as territorial infarcts except for more frequent postural symptoms occurring over days, weeks or months after the ischemic event. The infarcts mainly have a thromboembolic mechanism, and sometimes have a

  12. Ataxia, dysmetria, tremor. Cerebellar diseases.

    PubMed

    Kornegay, J N

    1991-09-01

    Diseases affecting the cerebellum typically cause ataxia, coupled with dysmetria and tremor. Dysmetria is a condition in which there is improper measuring of distance in muscular acts; hypermetria is overreaching (overstepping) and hypometria is underreaching (understepping). Tremor refers to an involuntary, rhythmic, oscillatory movement of a body part. The tremor of cerebellar disease typically is exaggerated by goal-oriented movements (intention tremor). Cerebellar lesions also often cause loss of the menace response, despite the presence of normal vision. The anatomic basis for this phenomenon is obscure. The principal disease affecting the cerebellum in cats is cerebellar hypoplasia due to in utero infection with the panleukopenia virus. This disease will be discussed here. Neurologic signs of cerebellar involvement also may be seen in association with those diseases that affect the CNS multifocally. In these cats, there may be additional signs indicating involvement of other anatomic areas or the cerebellar deficits may occur alone (see discussion of multifocal diseases in Multiple Neurologic Deficits: Inflammatory Diseases [page 426] and Multiple Neurologic Deficits: Noninfectious Diseases [page 440]). PMID:1802262

  13. Speech prosody in cerebellar ataxia.

    PubMed

    Casper, Maureen A; Raphael, Lawrence J; Harris, Katherine S; Geibel, Jennifer M

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy speakers and six with ataxia. The speaking task was designed to elicit six different prosodic conditions and four contrastive prosodic events. Distinct prosodic patterns were elicited by the examiner for cerebellar patients and healthy speakers. These utterances were digitally recorded and analysed acoustically and statistically. The healthy speakers showed statistically significant differences among all four prosodic contrasts. The normal model described by the prosodic contrasts provided a sensitive index of cerebellar pathology with quantitative acoustic analyses. A significant interaction between subject groups and prosodic conditions revealed a compromised prosody in cerebellar patients. Significant differences were found for durational parameters, F0 and formant frequencies. The cerebellar speakers demonstrated different patterns of syllable lengthening and syllable reduction from that of the healthy speakers. PMID:17613097

  14. Ataxias and Cerebellar or Spinocerebellar Degeneration

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Ataxias and Cerebellar or Spinocerebellar Degeneration Information Page Synonym(s): ... Publications and Information Publicaciones en Español What are Ataxias and Cerebellar or Spinocerebellar Degeneration? Ataxia often occurs ...

  15. The genetics of cerebellar malformations.

    PubMed

    Aldinger, Kimberly A; Doherty, Dan

    2016-10-01

    The cerebellum has long been recognized for its role in motor co-ordination, but it is also increasingly appreciated for its role in complex cognitive behavior. Historically, the cerebellum has been overwhelmingly understudied compared to the neocortex in both humans and model organisms. However, this tide is changing as advances in neuroimaging, neuropathology, and neurogenetics have led to clinical classification and gene identification for numerous developmental disorders that impact cerebellar structure and function associated with significant overall neurodevelopmental dysfunction. Given the broad range in prognosis and associated medical and neurodevelopmental concerns accompanying cerebellar malformations, a working knowledge of these disorders and their causes is critical for obstetricians, perinatologists, and neonatologists. Here we present an update on the genetic causes for cerebellar malformations that can be recognized by neuroimaging and clinical characteristics during the prenatal and postnatal periods. PMID:27160001

  16. Alcohol Withdrawal and Cerebellar Mitochondria.

    PubMed

    Jung, Marianna E

    2015-08-01

    Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new

  17. Alcohol Withdrawal and Cerebellar Mitochondria.

    PubMed

    Jung, Marianna E

    2015-08-01

    Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new

  18. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.

    PubMed

    Najac, Marion; Raman, Indira M

    2015-01-14

    Neurons in the cerebellar cortex, cerebellar nuclei, and inferior olive (IO) form a trisynaptic loop critical for motor learning. IO neurons excite Purkinje cells via climbing fibers and depress their parallel fiber inputs. Purkinje cells inhibit diverse cells in the cerebellar nuclei, including small GABAergic nucleo-olivary neurons that project to the IO. To investigate how these neurons integrate synaptic signals from Purkinje cells, we retrogradely labeled nucleo-olivary cells in the contralateral interpositus and lateral nuclei with cholera toxin subunit B-Alexa Fluor 488 and recorded their electrophysiological properties in cerebellar slices from weanling mice. Nucleo-olivary cells fired action potentials over a relatively narrow dynamic range (maximal rate, ∼ 70 spikes/s), unlike large cells that project to premotor areas (maximal rate, ∼ 400 spikes/s). GABA(A) receptor-mediated IPSCs evoked by electrical or optogenetic stimulation of Purkinje cells were more than 10-fold slower in nucleo-olivary cells (decay time, ∼ 25 ms) than in large cells (∼ 2 ms), and repetitive stimulation at 20-150 Hz evoked greatly summating IPSCs. Nucleo-olivary firing rates varied inversely with IPSP frequency, and the timing of Purkinje IPSPs and nucleo-olivary spikes was uncorrelated. These attributes contrast with large cells, whose brief IPSCs and rapid firing rates can permit well timed postinhibitory spiking. Thus, the intrinsic and synaptic properties of these two projection neurons from the cerebellar nuclei tailor them for differential integration and transmission of their Purkinje cell input.

  19. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.

    PubMed

    Najac, Marion; Raman, Indira M

    2015-01-14

    Neurons in the cerebellar cortex, cerebellar nuclei, and inferior olive (IO) form a trisynaptic loop critical for motor learning. IO neurons excite Purkinje cells via climbing fibers and depress their parallel fiber inputs. Purkinje cells inhibit diverse cells in the cerebellar nuclei, including small GABAergic nucleo-olivary neurons that project to the IO. To investigate how these neurons integrate synaptic signals from Purkinje cells, we retrogradely labeled nucleo-olivary cells in the contralateral interpositus and lateral nuclei with cholera toxin subunit B-Alexa Fluor 488 and recorded their electrophysiological properties in cerebellar slices from weanling mice. Nucleo-olivary cells fired action potentials over a relatively narrow dynamic range (maximal rate, ∼ 70 spikes/s), unlike large cells that project to premotor areas (maximal rate, ∼ 400 spikes/s). GABA(A) receptor-mediated IPSCs evoked by electrical or optogenetic stimulation of Purkinje cells were more than 10-fold slower in nucleo-olivary cells (decay time, ∼ 25 ms) than in large cells (∼ 2 ms), and repetitive stimulation at 20-150 Hz evoked greatly summating IPSCs. Nucleo-olivary firing rates varied inversely with IPSP frequency, and the timing of Purkinje IPSPs and nucleo-olivary spikes was uncorrelated. These attributes contrast with large cells, whose brief IPSCs and rapid firing rates can permit well timed postinhibitory spiking. Thus, the intrinsic and synaptic properties of these two projection neurons from the cerebellar nuclei tailor them for differential integration and transmission of their Purkinje cell input. PMID:25589749

  20. Failure of Fixation Suppression of Spontaneous Nystagmus in Cerebellar Infarction: Frequency, Pattern, and a Possible Structure.

    PubMed

    Kim, Hyun-Ah; Yi, Hyon-Ah; Lee, Hyung

    2016-04-01

    To investigate the frequency and pattern of failure of the fixation suppression (FFS) of spontaneous nystagmus (SN) in unilateral cerebellar infarction, and to identify the structure responsible for FFS, 29 patients with acute, mainly unilateral, isolated cerebellar infarction who had SN with a predominantly horizontal component were enrolled in this study. The ocular fixation index (OFI) was defined as the mean slow phase velocity (SPV) of the horizontal component of SN with fixation divided by the mean SPV of the horizontal component of SN without fixation. The OFI from age- and sex-matched patients with vestibular neuritis was calculated and used as the control data. The FFS of SN was only found in less than half (41 %, 12/29) of the patients. Approximately 65 % (n = 7) of the patients with isolated anterior inferior cerebellar artery territory cerebellar infarction showed FFS, whereas only a quarter (n = 3) of the patients with isolated posterior inferior cerebellar artery (PICA) territory cerebellar infarction showed FFS. The proportion of gaze-evoked nystagmus (6/12 [50 %] vs. 2/17 [12 %], p = 0.04) and deficient gain of ipsilesional pursuit (10/12 [83 %] vs. 6/17 [35 %], p = 0.05) was more frequent in the FFS group than in the group without FFS. Lesion subtraction analysis in isolated PICA territory cerebellar infarction revealed that the nodulus was commonly damaged in patients with FFS, compared to that of patients without FFS. Our study shows that FFS of SN due to acute cerebellar infarction is less common than previously thought and the nodulus may be an important structure for the suppression of SN in humans. PMID:26082303

  1. GDNF-induced cerebellar toxicity: A brief review.

    PubMed

    Luz, Matthias; Mohr, Erich; Fibiger, H Christian

    2016-01-01

    Recombinant-methionyl human glial cell line-derived neurotrophic factor (GDNF) is known for its neurorestorative and neuroprotective effects in rodent and primate models of Parkinson's disease (PD). When administered locally into the putamen of Parkinsonian subjects, early clinical studies showed its potential promise as a disease-modifying agent. However, the development of GDNF for the treatment of PD has been significantly clouded by findings of cerebellar toxicity after continuous intraputamenal high-dose administration in a 6-month treatment/3-month recovery toxicology study in rhesus monkeys. Specifically, multifocal cerebellar Purkinje cell loss affecting 1-21% of the cerebellar cortex was observed in 4 of 15 (26.7%; 95% confidence interval [CI]: 10.5-52.4%) animals treated at the highest dose level tested (3000μg/month). No cerebellar toxicity was observed at lower doses (450 and 900μg/month) in the same study, or at similar or higher doses (up to 10,000μg/month) in subchronic or chronic toxicology studies testing intermittent intracerebroventricular administration. While seemingly associated with the use of GDNF, the pathogenesis of the cerebellar lesions has not been fully understood to date. This review integrates available information to evaluate potential pathogenic mechanisms and provide a consolidated assessment of the findings. While other explanations are considered, the existing evidence is most consistent with the hypothesis that leakage of GDNF into cerebrospinal fluid during chronic infusions into the putamen down-regulates GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF generates the observed lesions. The implications of these findings for clinical studies with GDNF are discussed.

  2. Orthostatic tremor: a cerebellar pathology?

    PubMed Central

    Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Apartis, Emmanuelle; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Meunier, Sabine; Vidailhet, Marie

    2016-01-01

    See Muthuraman et al. (doi:10.1093/aww164) for a scientific commentary on this article. Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects. PMID:27329770

  3. Speech Prosody in Cerebellar Ataxia

    ERIC Educational Resources Information Center

    Casper, Maureen A.; Raphael, Lawrence J.; Harris, Katherine S.; Geibel, Jennifer M.

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy…

  4. Linking oscillations in cerebellar circuits

    PubMed Central

    Courtemanche, Richard; Robinson, Jennifer C.; Aponte, Daniel I.

    2013-01-01

    In many neuroscience fields, the study of local and global rhythmicity has been receiving increasing attention. These network influences could directly impact on how neuronal groups interact together, organizing for different contexts. The cerebellar cortex harbors a variety of such local circuit rhythms, from the rhythms in the cerebellar cortex per se, or those dictated from important afferents. We present here certain cerebellar oscillatory phenomena that have been recorded in rodents and primates. Those take place in a range of frequencies: from the more known oscillations in the 4–25 Hz band, such as the olivocerebellar oscillatory activity and the granule cell layer oscillations, to the more recently reported slow (<1 Hz oscillations), and the fast (>150 Hz) activity in the Purkinje cell layer. Many of these oscillations appear spontaneously in the circuits, and are modulated by behavioral imperatives. We review here how those oscillations are recorded, some of their modulatory mechanisms, and also identify some of the cerebellar nodes where they could interact. A particular emphasis has been placed on how these oscillations could be modulated by movement and certain neuropathological manifestations. Many of those oscillations could have a definite impact on the way information is processed in the cerebellum and how it interacts with other structures in a variety of contexts. PMID:23908606

  5. Differences in in vitro cerebellar neuronal responses to hypoxia in eider ducks, chicken and rats.

    PubMed

    Ludvigsen, Stian; Folkow, Lars P

    2009-11-01

    Ducks are well-known to be more tolerant to asphyxia than non-diving birds, but it is not known if their defences include enhanced neuronal hypoxia tolerance. To test this, we compared extracellular recordings of spontaneous activity in the Purkinje cell layer of 400 mum thick isolated cerebellar slices from eider ducks, chickens and rats, before, during and after 60 min hypoxia (95%N(2)-5%CO(2)) or chemical anoxia (hypoxia + 2 mM NaCN). Most slices rapidly lost activity in hypoxia, with or without recovery after rinse and return to normoxia (95%O(2)-5%CO(2)), but some maintained spontaneous activity throughout the insult. Proportions of 'surviving' (i.e. recovering or active) duck slices were significantly higher than for chickens in anoxia, and relative activity levels were higher for ducks than for chickens during hypoxia, anoxia and recovery. Survival of rat slices was significantly poorer than for birds under all conditions. Results suggest that (1) duck cerebellar neurons are intrinsically more hypoxia-tolerant than chicken neurons; (2) avian neurons are more hypoxia-tolerant than rat neurons, and (3) the enhanced hypoxic tolerance of duck neurons largely depended on efficient anaerobiosis since it mainly manifested itself in chemical anoxia. Mechanisms underlying the observed differences in neuronal hypoxic responses remain to be elucidated. PMID:19779726

  6. The theory of interface slicing

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.

  7. Amygdala Modulation of Cerebellar Learning

    PubMed Central

    Farley, Sean J.; Radley, Jason J.

    2016-01-01

    Previous studies showed that amygdala lesions or inactivation slow the acquisition rate of cerebellum-dependent eyeblink conditioning, a type of associative motor learning. The current study was designed to determine the behavioral nature of amygdala–cerebellum interactions, to identify the neural pathways underlying amygdala–cerebellum interactions, and to examine how the amygdala influences cerebellar learning mechanisms in rats. Pharmacological inactivation of the central amygdala (CeA) severely impaired acquisition and retention of eyeblink conditioning, indicating that the amygdala continues to interact with the cerebellum after conditioning is consolidated (Experiment 1). CeA inactivation also substantially reduced stimulus-evoked and learning-related neuronal activity in the cerebellar anterior interpositus nucleus during acquisition and retention of eyeblink conditioning (Experiment 2). A very small proportion of cerebellar neurons responded to the conditioned stimulus (CS) during CeA inactivation. Finally, retrograde and anterograde tracing experiments identified the basilar pontine nucleus at the confluence of outputs from CeA that may support amygdala modulation of CS input to the cerebellum (Experiment 3). Together, these results highlight a role for the CeA in the gating of CS-related input to the cerebellum during motor learning that is maintained even after the conditioned response is well learned. SIGNIFICANCE STATEMENT The current study is the first to demonstrate that the amygdala modulates sensory-evoked and learning-related neuronal activity within the cerebellum during acquisition and retention of associative learning. The findings suggest a model of amygdala–cerebellum interactions in which the amygdala gates conditioned stimulus inputs to the cerebellum through a direct projection from the medial central nucleus to the basilar pontine nucleus. Amygdala gating of sensory input to the cerebellum may be an attention-like mechanism that

  8. Posttraumatic Cerebellar Infarction after Repeated Sport-related Minor Head Injuries in a Young Adult: A Case Report

    PubMed Central

    MATSUMOTO, Hiroaki; YOSHIDA, Yasuhisa

    2015-01-01

    A healthy 23-year-old man suffered helmet-to-helmet collisions with an opponent during American football game twice within 3 days. He then experienced continuous vomiting and dizziness. Magnetic resonance imaging revealed acute infarction in the right cerebellar hemisphere, and magnetic resonance angiography revealed transient stenosis of the right superior cerebellar artery. Although minor head injury is not usually accompanied by complications, posttraumatic ischemic stroke has been reported on rare occasions. We report a case of cerebellar infarction after repeated sports-related minor head injuries in a young adult and discuss the etiology. PMID:25746313

  9. Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system.

    PubMed

    Manfroi, C B; Schwalm, F D; Cereser, V; Abreu, F; Oliveira, A; Bizarro, L; Rocha, J B T; Frizzo, M E S; Souza, D O; Farina, M

    2004-09-01

    Methylmercury (MeHg) is a highly neurotoxic compound and several studies have reported intoxication signs in children whose mothers were exposed to this environmental toxicant. Although it is well established that the in utero exposure to MeHg causes neurological deficits in animals and humans, there is no evidence of the exclusive contribution of lactational exposure to MeHg as a possible cause of neurotoxicity in the offspring. In this study, we investigated the exclusive contribution of MeHg exposure through maternal milk on biochemical parameters related to the glutamatergic homeostasis (glutamate uptake by slices) and to the oxidative stress (total and nonprotein sulfhydryl groups, nonprotein hydroperoxides, glutathione peroxidase and catalase activities) in the cerebellum of suckling mice (Swiss albino). The same parameters were also evaluated in the cerebellum of mothers. Our results showed, for the first time, that lactational exposure to MeHg caused a high percent of inhibition (50%) on glutamate uptake by cerebellar slices in pups. Contrarily, this effect was not observed in mothers, which were submitted to a direct oral exposure to MeHg (15 mg/l in drinking water). In addition, behavioral/functional changes were observed in the weaning mice exposed to MeHg. It was observed an increase in the levels of nonprotein hydroperoxides in cerebellum, and this increase was negatively correlated to the glutamate uptake by cerebellar slices. This study indicates that (1) the exposure of lactating mice to MeHg causes inhibition of the glutamate uptake by cerebellar slices in the offspring; (2) this inhibitory effect seems to be related to increased levels of hydroperoxide. PMID:15201443

  10. Visuomotor learning in cerebellar patients.

    PubMed

    Timmann, D; Shimansky, Y; Larson, P S; Wunderlich, D A; Stelmach, G E; Bloedel, J R

    1996-11-01

    The aim of the present study was to demonstrate that patients with pathology affecting substantial regions of the cerebellum can improve their performance in a series of two-dimensional tracing tasks, thus supporting the view that this type of motor behavior can be acquired even when the integrity of this structure is compromised. Eight patients with chronic, isolated cerebellar lesions and eight age- and sex-matched healthy controls were tested. Three patients had mild, five had moderate upper limb ataxia. The experiment was divided into two parts. In the first, subjects traced an irregularly shaped outline over 20 consecutive trials ('Trace 1' task). Next, subjects were asked to redraw the object without any underlying template as a guide ('Memory 1' task). In the second part of the study, subjects were asked to trace a different, irregularly shaped outline over 20 consecutive trials ('Trace 2' task). Next, they were required to redraw it by memory with its axis rotated 90 degrees ('Memory 2' task). In each of the memory tasks the template was placed over the drawn image after each trial and shown to the subjects. The error of performance was determined by calculating three different measurements, each focused on different aspects of the task. Based on these measurements, the cerebellar patients showed improvement in both memory tasks. In the 'Memory 1' task the calculated error decreased significantly for the patients with mild ataxia. In the 'Memory 2' task all cerebellar patients improved their performance substantially enough to reduce significantly the magnitude of all three error measurements. The experiments demonstrate that patients with cerebellar lesions are capable of improving substantially their performance of a complex motor task involving the recall of memorized shapes and the visuomotor control of a tracing movement.

  11. Whole Cell Recording from an Organotypic Slice Preparation of Neocortex

    PubMed Central

    Foehring, Robert C.; Guan, Dongxu; Toleman, Tara; Cantrell, Angela R.

    2011-01-01

    We have been studying the expression and functional roles of voltage-gated potassium channels in pyramidal neurons from rat neocortex. Because of the lack of specific pharmacological agents for these channels, we have taken a genetic approach to manipulating channel expression. We use an organotypic culture preparation (16) in order to maintain cell morphology and the laminar pattern of cortex. We typically isolate acute neocortical slices at postnatal days 8-10 and maintain the slices in culture for 3-7 days. This allows us to study neurons at a similar age to those in our work with acute slices and minimizes the development of exuberant excitatory connections in the slice. We record from visually-identified pyramidal neurons in layers II/III or V using infrared illumination (IR-) and differential interference contrast microscopy (DIC) with whole cell patch clamp in current- or voltage-clamp. We use biolistic (Gene gun) transfection of wild type or mutant potassium channel DNA to manipulate expression of the channels to study their function. The transfected cells are easily identified by epifluorescence microscopy after co-transfection with cDNA for green fluorescent protein (GFP). We compare recordings of transfected cells to adjacent, untransfected neurons in the same layer from the same slice. PMID:21673642

  12. Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance

    PubMed Central

    Ben-Ari, Shani; Ofek, Keren; Barbash, Shahar; Meiri, Hanoch; Kovalev, Eugenia; Greenberg, David Samuel; Soreq, Hermona; Shoham, Shai

    2012-01-01

    Abstract Exercise and inherited factors both affect recovery from stroke and head injury, but the underlying mechanisms and interconnections between them are yet unknown. Here, we report that similar cation channels mediate the protective effect of exercise and specific genetic background in a kainate injection model of cerebellar stroke. Microinjection to the cerebellum of the glutamatergic agonist, kainate, creates glutamatergic excito-toxicity characteristic of focal stroke, head injury or alcoholism. Inherited protection and prior exercise were both accompanied by higher cerebellar expression levels of the Kir6.1 ATP-dependent potassium channel in adjacent Bergmann glia, and voltage-gated KVbeta2 and cyclic nucleotide-gated cation HCN1 channels in basket cells. Sedentary FVB/N and exercised C57BL/6 mice both expressed higher levels of these cation channels compared to sedentary C57BL/6 mice, and were both found to be less sensitive to glutamate toxicity. Moreover, blocking ATP-dependent potassium channels with Glibenclamide enhanced kainate-induced cell death in cerebellar slices from the resilient sedentary FVB/N mice. Furthermore, exercise increased the number of acetylcholinesterase-positive fibres in the molecular layer, reduced cerebellar cytokine levels and suppressed serum acetylcholinesterase activity, suggesting anti-inflammatory protection by enhanced cholinergic signalling. Our findings demonstrate for the first time that routine exercise and specific genetic backgrounds confer protection from cerebellar glutamatergic damages by similar molecular mechanisms, including elevated expression of cation channels. In addition, our findings highlight the involvement of the cholinergic anti-inflammatory pathway in insult-inducible cerebellar processes. These mechanisms are likely to play similar roles in other brain regions and injuries as well, opening new venues for targeted research efforts. PMID:21507200

  13. Remote cerebellar hemorrhage following supratentorial cerebrovascular surgery.

    PubMed

    Smith, Ross; Kebriaei, Meysam; Gard, Andrew; Thorell, William; Surdell, Daniel

    2014-04-01

    Three patients with remote cerebellar hemorrhage following supratentorial cerebrovascular surgery are presented. Remote cerebellar hemorrhage is a rare surgical complication that is most often associated with aneurysm clipping or temporal lobectomies. Bleeding occurs on the superior cerebellar cortex and is believed to be venous in origin. The precise pathogenesis of remote cerebellar hemorrhage has yet to be fully elucidated but is generally considered to be a consequence of intraoperative cerebrospinal fluid loss causing caudal displacement of the cerebellum with resultant stretching of the supracerebellar veins. This case series will hopefully shed further light on the incidence, presentation, workup, and treatment of this particular complication of supratentorial surgery. PMID:24238635

  14. Inpatient Rehabilitation Performance of Patients with Paraneoplastic Cerebellar Degeneration

    PubMed Central

    Fu, Jack B.; Raj, Vishwa S.; Asher, Arash; Lee, Jay; Guo, Ying; Konzen, Benedict S.; Bruera, Eduardo

    2014-01-01

    Objective To evaluate the functional improvement of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Design Retrospective Review Setting Three tertiary referral based hospitals. Interventions Medical records were retrospectively analyzed for demographic, laboratory, medical and functional data. Main Outcome Measure Functional Independence Measure (FIM) Participants Cancer rehabilitation inpatients admitted to three different cancer centers with a diagnosis of paraneoplastic cerebellar degeneration (n=7). Results All 7 patients were white females. Median age was 62. Primary cancers included ovarian carcinoma (2), small cell lung cancer (2), uterine carcinoma (2), and invasive ductal breast carcinoma. Mean admission total FIM score was 61.0 (SD=23.97). Mean discharge total FIM score was 73.6 (SD=29.35). The mean change in total FIM score was 12.6 (p=.0018). The mean length of rehabilitation stay was 17.1 days. The mean total FIM efficiency was 0.73. 5/7 (71%) patients were discharged home. 1/7 (14%) was discharged to a nursing home. 1/7 (14%) transferred to the primary acute care service. Conclusions This is the first study to demonstrate the functional performance of a group of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Despite the poor neurologic prognosis associated with this syndrome, these patients made significant functional improvements on inpatient rehabilitation. When appropriate, inpatient rehabilitation should be considered. Further studies with larger sample sizes are needed. PMID:25051460

  15. Infantile intracranial aneurysm of the superior cerebellar artery.

    PubMed

    Del Santo, Molly Ann; Cordina, Steve Mario

    2016-01-01

    Intracranial aneurysms in the pediatric population are rare. We report a case of a 3-month-old infant who presented with inconsolable crying, vomiting, and sunset eye sign. CT revealed a subarachnoid hemorrhage, with CT angiogram revealing a superior cerebellar artery aneurysm. An external ventricular drain was placed for acute management of hydrocephalus, with definitive treatment by endovascular technique with a total of six microcoils to embolize the aneurysm. Serial transcranial Dopplers revealed no subsequent vasospasm. Although aneurysms in the pediatric population are rare, once the diagnosis is established, early treatment results in better outcomes. PMID:26929222

  16. Infantile intracranial aneurysm of the superior cerebellar artery.

    PubMed

    Del Santo, Molly Ann; Cordina, Steve Mario

    2016-02-29

    Intracranial aneurysms in the pediatric population are rare. We report a case of a 3-month-old infant who presented with inconsolable crying, vomiting, and sunset eye sign. CT revealed a subarachnoid hemorrhage, with CT angiogram revealing a superior cerebellar artery aneurysm. An external ventricular drain was placed for acute management of hydrocephalus, with definitive treatment by endovascular technique with a total of six microcoils to embolize the aneurysm. Serial transcranial Dopplers revealed no subsequent vasospasm. Although aneurysms in the pediatric population are rare, once the diagnosis is established, early treatment results in better outcomes.

  17. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

    PubMed Central

    Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.

    2016-01-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921

  18. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  19. Altered cerebellar feedback projections in Asperger syndrome.

    PubMed

    Catani, Marco; Jones, Derek K; Daly, Eileen; Embiricos, Nitzia; Deeley, Quinton; Pugliese, Luca; Curran, Sarah; Robertson, Dene; Murphy, Declan G M

    2008-07-15

    It has been proposed that the biological basis of autism spectrum disorder includes cerebellar 'disconnection'. However, direct in vivo evidence in support of this is lacking. Here, the microstructural integrity of cerebellar white matter in adults with Asperger syndrome was studied using diffusion tensor magnetic resonance tractography. Fifteen adults with Asperger syndrome and 16 age-IQ-gender-matched healthy controls underwent diffusion tensor magnetic resonance imaging. For each subject, tract-specific measurements of mean diffusivity and fractional anisotropy were made within the inferior, middle, superior cerebellar peduncles and short intracerebellar fibres. No group differences were observed in mean diffusivity. However, people with Asperger syndrome had significantly lower fractional anisotropy in the short intracerebellar fibres (p<0.001) and right superior cerebellar (output) peduncle (p<0.001) compared to controls; but no difference in the input tracts. Severity of social impairment, as measured by the Autistic Diagnostic Interview, was negatively correlated with diffusion anisotropy in the fibres of the left superior cerebellar peduncle. These findings suggest a vulnerability of specific cerebellar neural pathways in people with Asperger syndrome. The localised abnormalities in the main cerebellar outflow pathway may prevent the cerebral cortex from receiving those cerebellar feedback inputs necessary for a successful adaptive social behaviour.

  20. Consensus Paper: Management of Degenerative Cerebellar Disorders

    PubMed Central

    Ilg, W.; Bastian, A. J.; Boesch, S.; Burciu, R. G.; Celnik, P.; Claaßen, J.; Feil, K.; Kalla, R.; Miyai, I.; Nachbauer, W.; Schöls, L.; Strupp, M.; Synofzik, M.; Teufel, J.

    2015-01-01

    Treatment of motor symptoms of degenerative cerebellar ataxia remains difficult. Yet there are recent developments that are likely to lead to significant improvements in the future. Most desirable would be a causative treatment of the underlying cerebellar disease. This is currently available only for a very small subset of cerebellar ataxias with known metabolic dysfunction. However, increasing knowledge of the pathophysiology of hereditary ataxia should lead to an increasing number of medically sensible drug trials. In this paper, data from recent drug trials in patients with recessive and dominant cerebellar ataxias will be summarized. There is consensus that up to date, no medication has been proven effective. Aminopyridines and acetazolamide are the only exception, which are beneficial in patients with episodic ataxia type 2. Aminopyridines are also effective in a subset of patients presenting with downbeat nystagmus. As such, all authors agreed that the mainstays of treatment of degenerative cerebellar ataxia are currently physiotherapy, occupational therapy, and speech therapy. For many years, well-controlled rehabilitation studies in patients with cerebellar ataxia were lacking. Data of recently published studies show that coordinative training improves motor function in both adult and juvenile patients with cerebellar degeneration. Given the well-known contribution of the cerebellum to motor learning, possible mechanisms underlying improvement will be outlined. There is consensus that evidence-based guidelines for the physiotherapy of degenerative cerebellar ataxia need to be developed. Future developments in physiotherapeutical interventions will be discussed including application of non-invasive brain stimulation. PMID:24222635

  1. Crossed Cerebellar Diaschisis in Status Epilepticus.

    PubMed

    Miyazaki, Daigo; Fukushima, Kazuhiro; Nakahara, Asa; Kodaira, Minori; Mochizuki, Katsunori; Kaneko, Kikuko; Kaneko, Tomoki; Sekijima, Yoshiki; Ikeda, Shu-Ichi

    2016-01-01

    Crossed cerebellar diaschisis (CCD) is an interesting phenomenon which classically refers to the depressed blood flow and metabolism affecting one cerebellar hemisphere after a contralateral hemispheric infarction. However, CCD can also be caused by a prolonged seizure. We herein report a case of CCD due to status epilepticus in a patient who showed unique magnetic resonance imaging findings.

  2. Learning of Sensory Sequences in Cerebellar Patients

    ERIC Educational Resources Information Center

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…

  3. Metronidazole-Induced Cerebellar Toxicity

    PubMed Central

    Agarwal, Amit; Kanekar, Sangam; Sabat, Shyam; Thamburaj, Krishnamurthy

    2016-01-01

    Metronidazole is a very common antibacterial and antiprotozoal with wide usage across the globe, including the least developed countries. It is generally well-tolerated with a low incidence of serious side-effects. Neurological toxicity is fairly common with this drug, however majority of these are peripheral neuropathy with very few cases of central nervous toxicity reported. We report the imaging findings in two patients with cerebellar dysfunction after Metronidazole usage. Signal changes in the dentate and red nucleus were seen on magnetic resonance imaging in these patients. Most of the cases reported in literature reported similar findings, suggesting high predilection for the dentate nucleus in metronidazole induced encephalopathy. PMID:27127600

  4. Cerebellar Stroke-manifesting as Mania

    PubMed Central

    Jagadesan, Venkatesan; Thiruvengadam, Kannapiran R.; Muralidharan, Rengarajalu

    2014-01-01

    Secondary mania resulting from cerebral Cortex are described commonly. But secondary mania produced by cerebellar lesions are relatively uncommon. This case report describes a patient who developed cerebellar stoke and manic features simultaneously. 28 years old male developed giddiness and projectile vomiting. Then he would lie down for about an hour only to find that he could not walk. He became quarrelsome. His Psycho motor activities and speech were increased. He was euphoric and was expressing grandiose ideas. Bender Gestalt Test showed signs of organicity. Score in Young mania relating scale was 32; productivity was low in Rorschach. Neurological examination revealed left cerebellar signs like ataxia and slurring of speech. Computed tomography of brain showed left cerebellar infarct. Relationship between Psychiatric manifestations and cerebellar lesion are discussed. PMID:25035567

  5. Cerebellar Stroke-manifesting as Mania.

    PubMed

    Jagadesan, Venkatesan; Thiruvengadam, Kannapiran R; Muralidharan, Rengarajalu

    2014-07-01

    Secondary mania resulting from cerebral Cortex are described commonly. But secondary mania produced by cerebellar lesions are relatively uncommon. This case report describes a patient who developed cerebellar stoke and manic features simultaneously. 28 years old male developed giddiness and projectile vomiting. Then he would lie down for about an hour only to find that he could not walk. He became quarrelsome. His Psycho motor activities and speech were increased. He was euphoric and was expressing grandiose ideas. Bender Gestalt Test showed signs of organicity. Score in Young mania relating scale was 32; productivity was low in Rorschach. Neurological examination revealed left cerebellar signs like ataxia and slurring of speech. Computed tomography of brain showed left cerebellar infarct. Relationship between Psychiatric manifestations and cerebellar lesion are discussed. PMID:25035567

  6. Cerebellar hemangioblastoma manifesting as hearing disturbance.

    PubMed

    Amano, Toshiyuki; Tokunaga, So; Shono, Tadahisa; Mizoguchi, Masahiro; Matsumoto, Kenichi; Yoshida, Fumiaki; Sasaki, Tomio

    2009-09-01

    A 49-year-old man presented with a rare case of cerebellar hemangioblastoma manifesting as only hearing disturbance. He had suffered from hearing difficulty in the right ear for a few months. Magnetic resonance imaging revealed a cystic mass lesion with an internal fluid level and surrounding flow voids in the right cerebellopontine (CP) angle. Cerebral angiography disclosed a vascular-rich tumor fed by both the superior cerebellar and anterior inferior cerebellar arteries. En bloc resection of the tumor was planned under a preoperative diagnosis of cerebellar hemangioblastoma. The tumor protruded into the CP cistern and compressed cranial nerve VIII. The feeding arteries were meticulously coagulated and the tumor was successfully removed. The histological diagnosis was hemangioblastoma. After the operation, the patient's hearing acuity improved dramatically. Cerebellar hemangioblastoma should be considered in the differential diagnosis of CP angle tumors associated with hearing disturbance.

  7. Isolated Hemiataxia and Cerebellar Diaschisis after a Small Dorsolateral Medullary Infarct

    PubMed Central

    Kishi, Masahiko; Sakakibara, Ryuji; Nagao, Takeki; Terada, Hitoshi; Ogawa, Emina

    2009-01-01

    Isolated hemiataxia after a medullary infarct is rare. We describe a case of isolated hemiataxia after a small infarct localized at the ipsilateral dorsolateral medulla. An 83-year-old man developed acute onset of ataxia in the left arm and in both legs. Speech and extraocular movement were normal, and he did not have any other neurological manifestations. Brain MRI showed a small infarct localized at the left dorsolateral medulla, which involved the inferior cerebellar peduncle. 123ECD-SPECT showed hypoperfusion in the left cerebellar hemisphere without clear vascular territory. Neuroimaging findings for our patient suggested the involvement of the inferior cerebellar peduncle that projects to the cerebellum in our patient. PMID:20847835

  8. Developmental Cerebellar Cognitive Affective Syndrome in Ex-preterm Survivors Following Cerebellar Injury

    PubMed Central

    Brossard-Racine, Marie; du Plessis, Adre J.; Limperopoulos, Catherine

    2015-01-01

    Cerebellar injury is increasingly recognized as an important complication of very preterm birth. However, the neurodevelopmental consequences of early life cerebellar injury in prematurely born infants have not been well elucidated. We performed a literature search of studies published between 1997 and 2014 describing neurodevelopmental outcomes of preterm infants following direct cerebellar injury or indirect cerebellar injury/underdevelopment. Available data suggests that both direct and indirect mechanisms of cerebellar injury appear to stunt cerebellar growth and adversely affect neurodevelopment. This review also provides important insights into the highly integrated cerebral-cerebellar structural and functional correlates. Finally, this review highlights that early life impairment of cerebellar growth extends far beyond motor impairments and plays a critical, previously underrecognized role in the long-term cognitive, behavioral, and social deficits associated with brain injury among premature infants. These data point to a developmental form of the cerebellar cognitive affective syndrome previously described in adults. Longitudinal prospective studies using serial advanced magnetic resonance imaging techniques are needed to better delineate the full extent of the role of prematurity-related cerebellar injury and topography in the genesis of cognitive, social-behavioral dysfunction. PMID:25241880

  9. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone.

    PubMed

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang

    2016-09-01

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects. PMID:27369072

  10. Pediatric Neurocutaneous Syndromes with Cerebellar Involvement.

    PubMed

    Bosemani, Thangamadhan; Huisman, Thierry A G M; Poretti, Andrea

    2016-08-01

    Neurocutaneous syndromes encompasses a broad group of genetic disorders with different clinical, genetic, and pathologic features that share developmental lesions of the skin as well as central and peripheral nervous system. Cerebellar involvement has been shown in numerous types of neurocutaneous syndrome. It may help or be needed for the diagnosis and to explain the cognitive and behavioral phenotype of affected children. This article describes various types of neurocutaneous syndrome with cerebellar involvement. For each neurocutaneous disease or syndrome, clinical features, genetic, neuroimaging findings, and the potential role of the cerebellar involvement is discussed. PMID:27423801

  11. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  12. A theory of cerebellar cortex.

    PubMed

    Marr, D

    1969-06-01

    1. A detailed theory of cerebellar cortex is proposed whose consequence is that the cerebellum learns to perform motor skills. Two forms of input-output relation are described, both consistent with the cortical theory. One is suitable for learning movements (actions), and the other for learning to maintain posture and balance (maintenance reflexes).2. It is known that the cells of the inferior olive and the cerebellar Purkinje cells have a special one-to-one relationship induced by the climbing fibre input. For learning actions, it is assumed that:(a) each olivary cell responds to a cerebral instruction for an elemental movement. Any action has a defining representation in terms of elemental movements, and this representation has a neural expression as a sequence of firing patterns in the inferior olive; and(b) in the correct state of the nervous system, a Purkinje cell can initiate the elemental movement to which its corresponding olivary cell responds.3. Whenever an olivary cell fires, it sends an impulse (via the climbing fibre input) to its corresponding Purkinje cell. This Purkinje cell is also exposed (via the mossy fibre input) to information about the context in which its olivary cell fired; and it is shown how, during rehearsal of an action, each Purkinje cell can learn to recognize such contexts. Later, when the action has been learnt, occurrence of the context alone is enough to fire the Purkinje cell, which then causes the next elemental movement. The action thus progresses as it did during rehearsal.4. It is shown that an interpretation of cerebellar cortex as a structure which allows each Purkinje cell to learn a number of contexts is consistent both with the distributions of the various types of cell, and with their known excitatory or inhibitory natures. It is demonstrated that the mossy fibre-granule cell arrangement provides the required pattern discrimination capability.5. The following predictions are made.(a) The synapses from parallel fibres

  13. Regional cerebellar volumes predict functional outcome in children with cerebellar malformations.

    PubMed

    Bolduc, Marie-Eve; du Plessis, Adre J; Sullivan, Nancy; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2012-06-01

    The cerebellum has recently been recognized for its role in high-order functions, including cognition, language, and behavior. Recent studies have also begun to describe a functional topography of the mature cerebellum that includes organization on a mediolateral axis. However, no study to date has examined the relationship between regional cerebellar volume and developmental disabilities in children with cerebellar malformations. The objective of this study was to estimate the extent to which total and regional cerebellar volumes are associated with developmental disabilities in a cohort of children with cerebellar malformations. Children aged 1 to 6 years with a diagnosis of cerebellar malformation underwent standardized outcome measures and quantitative magnetic resonance scanning. The cerebellum was parcellated into seven mediolateral zones (three for each hemisphere plus the vermis) for regional volume analysis. In children with cerebellar malformations, decreased total cerebellar volume was associated with delays in global development, expressive language, cognition, as well as gross and fine motor function. Decreased volume in the right lateral cerebellar hemisphere was related to impaired cognition, expressive language, and gross motor function. Additionally, reduced vermis volume was associated with impaired global development, cognition, expressive language, and gross and fine motor skills, as well as behavior problems and a higher rate of positive autism spectrum screening test. These results begin to define the structural topography of functional outcome in children with cerebellar malformations and should lead to greater accuracy of prognostication as well as timely early developmental interventions.

  14. A dynamical system view of cerebellar function

    NASA Astrophysics Data System (ADS)

    Keeler, James D.

    1990-06-01

    First some previous theories of cerebellar function are reviewed, and deficiencies in how they map onto the neurophysiological structure are pointed out. I hypothesize that the cerebellar cortex builds an internal model, or prediction, of the dynamics of the animal. A class of algorithms for doing prediction based on local reconstruction of attractors are described, and it is shown how this class maps very well onto the structure of the cerebellar cortex. I hypothesize that the climbing fibers multiplex between different trajectories corresponding to different modes of operation. Then the vestibulo-ocular reflex is examined, and experiments to test the proposed model are suggested. The purpose of the presentation here is twofold: (1) To enlighten physiologists to the mathematics of a class of prediction algorithms that map well onto cerebellar architecture. (2) To enlighten dynamical system theorists to the physiological and anatomical details of the cerebellum.

  15. Urea Biosynthesis Using Liver Slices

    ERIC Educational Resources Information Center

    Teal, A. R.

    1976-01-01

    Presented is a practical scheme to enable introductory biology students to investigate the mechanism by which urea is synthesized in the liver. The tissue-slice technique is discussed, and methods for the quantitative analysis of metabolites are presented. (Author/SL)

  16. Cerebellar involvement of Griscelli syndrome type 2

    PubMed Central

    Işikay, Sedat

    2014-01-01

    Griscelli syndrome type 2 is characterised by partial albinism and primary immunodeficiency. We present a case of a 3-year-old girl diagnosed with cerebellar involvement of Griscelli syndrome type 2. Neurological complications may accompany Griscelli syndrome, however, to the best of my knowledge there are only a few case reports of cerebellar involvement of Griscelli syndrome type 2 in the literature. PMID:25315806

  17. Consensus Paper: Radiological Biomarkers of Cerebellar Diseases

    PubMed Central

    Baldarçara, Leonardo; Currie, Stuart; Hadjivassiliou, M.; Hoggard, Nigel; Jack, Allison; Jackowski, Andrea P.; Mascalchi, Mario; Parazzini, Cecilia; Reetz, Kathrin; Righini, Andrea; Schulz, Jörg B.; Vella, Alessandra; Webb, Sara Jane; Habas, Christophe

    2016-01-01

    Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine. PMID:25382714

  18. KATP-channels play a minor role in the protective hypoxic shut-down of cerebellar activity in eider ducks (Somateria mollissima).

    PubMed

    Geiseler, S J; Ludvigsen, S; Folkow, L P

    2015-01-22

    Eider duck (Somateria mollissima) cerebellar neurons are highly tolerant toward hypoxia in vitro, which in part is due to a hypoxia-induced depression of their spontaneous activity. We have studied whether this response involves ATP-sensitive potassium (KATP) channels, which are known to be involved in the hypoxic/ischemic defense of mammalian neural and muscular tissues, by causing hyperpolarization and reduced ATP demand. Extracellular recordings in the Purkinje layer of isolated normoxic eider duck cerebellar slices showed that their spontaneous neuronal activity decreased significantly compared to in control slices when the KATP channel opener diazoxide (600 μM) was added (F1,70=92.781, p<0.001). Adding the KATP channel blocker tolbutamide (400 μM) 5 min prior to diazoxide completely abolished its effect (F1,55=39.639, p<0.001), strongly suggesting that these drugs have a similar mode of action in this avian species as in mammals. The spontaneous activity of slices treated with tolbutamide in combined hypoxia/chemical anoxia (95% N2-5% CO2 and 2 mM NaCN) was not significantly different from that of control slices (F1,203=0.071, p=0.791). Recovery from hypoxia/anoxia was, however, slightly but significantly weaker in tolbutamide-treated slices than in control slices (F1,137=15.539, p<0.001). We conclude that KATP channels are present in eider duck cerebellar neurons and are activated in hypoxia/anoxia, but that they do not play a key role in the protective shut-down response to hypoxia/anoxia. PMID:25451290

  19. Voltage-dependent calcium signaling in rat cerebellar unipolar brush cells.

    PubMed

    Birnstiel, S; Slater, N T; McCrimmon, D R; Mugnaini, E; Hartell, N A

    2009-09-01

    Unipolar brush cells (UBCs) are a class of excitatory interneuron found in the granule cell layer of the vestibulocerebellum. Mossy fibers form excitatory inputs on to the paint brush shaped dendrioles in the form of giant, glutamatergic synapses, activation of which results in prolonged bursts of action potentials in the postsynaptic UBC. The axons of UBCs themselves form mossy fiber contacts with other UBCs and granule cells, forming an excitatory, intrinsic cerebellar network that has the capacity to synchronize and amplify mossy fiber inputs to potentially large populations of granule cells. In this paper, we demonstrate that UBCs in rat cerebellar slices express low voltage activated (LVA) fast-inactivating and high voltage activated (HVA) slowly inactivating calcium channels. LVA calcium currents are mediated by T-type calcium channels and they are associated with calcium increases in the dendrites and to a lesser extent the cell soma. HVA currents, mediated by L-type calcium channels, are slowly inactivating and they produce larger overall increases in intracellular calcium but with a similar distribution pattern. We review these observations alongside several recent papers that examine how intrinsic membrane properties influence UBCs firing patterns and we discuss how UBC signaling may affect downstream cerebellar processing. PMID:19409228

  20. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Astrophysics Data System (ADS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-02-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  1. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  2. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca{sup 2+}

    SciTech Connect

    Zhao Shidi; Chen Na; Yang Zhilai; Huang Li; Zhu Yan; Guan Sudong; Chen Qianfen; Wang Jinhui

    2008-02-08

    Ischemia-induced excitotoxicity at cerebellar Purkinje cells is presumably due to a persistent glutamate action. To the fact that they are more vulnerable to ischemia than other glutamate-innervated neurons, we studied whether additional mechanisms are present and whether cytoplasm Ca{sup 2+} plays a key role in their ischemic excitotoxicity. Ischemic changes in the excitability of Purkinje cells were measured by whole-cell recording in cerebellar slices of rats with less glutamate action. The role of cytoplasm Ca{sup 2+} was examined by two-photon cellular imaging and BAPTA infusion in Purkinje cells. Lowering perfusion rate to cerebellar slices deteriorated spike timing and raised spike capacity of Purkinje cells. These changes were associated with the reduction of spike refractory periods and threshold potentials, as well as the loss of their control to spike encoding. Ischemia-induced functional deterioration at Purkinje neurons was accompanied by cytoplasm Ca{sup 2+} rise and prevented by BAPTA infusion. Therefore, the ischemia destabilizes the spike encoding of Purkinje cells via raising cytoplasm Ca{sup 2+} without a need for glutamate, which subsequently causes their excitotoxic death.

  3. Locomotor patterns in cerebellar ataxia.

    PubMed

    Martino, G; Ivanenko, Y P; Serrao, M; Ranavolo, A; d'Avella, A; Draicchio, F; Conte, C; Casali, C; Lacquaniti, F

    2014-12-01

    Several studies have demonstrated how cerebellar ataxia (CA) affects gait, resulting in deficits in multijoint coordination and stability. Nevertheless, how lesions of cerebellum influence the locomotor muscle pattern generation is still unclear. To better understand the effects of CA on locomotor output, here we investigated the idiosyncratic features of the spatiotemporal structure of leg muscle activity and impairments in the biomechanics of CA gait. To this end, we recorded the electromyographic (EMG) activity of 12 unilateral lower limb muscles and analyzed kinematic and kinetic parameters of 19 ataxic patients and 20 age-matched healthy subjects during overground walking. Neuromuscular control of gait in CA was characterized by a considerable widening of EMG bursts and significant temporal shifts in the center of activity due to overall enhanced muscle activation between late swing and mid-stance. Patients also demonstrated significant changes in the intersegmental coordination, an abnormal transient in the vertical ground reaction force and instability of limb loading at heel strike. The observed abnormalities in EMG patterns and foot loading correlated with the severity of pathology [International Cooperative Ataxia Rating Scale (ICARS), a clinical ataxia scale] and the changes in the biomechanical output. The findings provide new insights into the physiological role of cerebellum in optimizing the duration of muscle activity bursts and the control of appropriate foot loading during locomotion.

  4. Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study.

    PubMed

    Mariën, Peter; Baillieux, Hanne; De Smet, Hyo Jung; Engelborghs, Sebastiaan; Wilssens, Ineke; Paquier, Philippe; De Deyn, Peter P

    2009-04-01

    The cerebellar cognitive affective syndrome (CCAS) is a neurobehavioral syndrome that may develop after congenital and acquired cerebellar lesions. The syndrome consists of deficits in executive functioning, spatial cognition, visual-spatial memory and language and also involves personality and behavioral changes. We describe a 58-year-old right-handed man who in addition to affective disturbances presented with a unique combination of cognitive and linguistic deficits following an ischemic infarction in the vascular territory of the right superior cerebellar artery (SCA). Neurocognitive and neurolinguistic examinations were performed in the acute phase (10 days post-onset) and lesion phase (four weeks post-onset) of the stroke. A Tc-99m-ECD SPECT study was performed five weeks after the stroke. Acute phase data revealed a generalized cognitive decline and mild transcortical sensory aphasia. In the lesion phase, the neurobehavioral tableau was dominated by executive dysfunctions, disrupted divided attention, disturbed visual-spatial organization and behavioral abnormalities. Neurolinguistic investigations disclosed visual dyslexia and surface dysgraphia. Reading of words and visual lexical decision tasks of words and nonwords were severely defective and predominantly characterized by visual errors. In addition, writing irregular and ambiguous words resulted in regularization errors (phonologically plausible errors based on phoneme-grapheme correspondence rules). In the absence of any structural damage in the supratentorial brain regions, a quantified SPECT study showed a relative hypoperfusion in the right cerebellar hemisphere and the left medial frontal lobe. CCAS is for the first time reported in association with visual dyslexia and surface dysgraphia. We hypothesize that the cognitive and linguistic deficits might result from functional disruption of the cerebellar-encephalic pathways, connecting the cerebellum to the frontal supratentorial areas which subserve

  5. Cerebellar modules operate at different frequencies

    PubMed Central

    Zhou, Haibo; Lin, Zhanmin; Voges, Kai; Ju, Chiheng; Gao, Zhenyu; Bosman, Laurens WJ; Ruigrok, Tom JH; Hoebeek, Freek E

    2014-01-01

    Due to the uniform cyto-architecture of the cerebellar cortex, its overall physiological characteristics have traditionally been considered to be homogeneous. In this study, we show in awake mice at rest that spiking activity of Purkinje cells, the sole output cells of the cerebellar cortex, differs between cerebellar modules and correlates with their expression of the glycolytic enzyme aldolase C or zebrin. Simple spike and complex spike frequencies were significantly higher in Purkinje cells located in zebrin-negative than zebrin-positive modules. The difference in simple spike frequency persisted when the synaptic input to, but not intrinsic activity of, Purkinje cells was manipulated. Blocking TRPC3, the effector channel of a cascade of proteins that have zebrin-like distribution patterns, attenuated the simple spike frequency difference. Our results indicate that zebrin-discriminated cerebellar modules operate at different frequencies, which depend on activation of TRPC3, and that this property is relevant for all cerebellar functions. DOI: http://dx.doi.org/10.7554/eLife.02536.001 PMID:24843004

  6. Metabolic anatomy of paraneoplastic cerebellar degeneration

    SciTech Connect

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-06-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration (PCD)) were evaluated using neuropsychological tests and /sup 18/F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis.

  7. Automatic basal slice detection for cardiac analysis.

    PubMed

    Paknezhad, Mahsa; Marchesseau, Stephanie; Brown, Michael S

    2016-07-01

    Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction of the left ventricle. Despite all the effort placed on automatic cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, suffers from high interobserver variability. As a result, an automatic algorithm for basal slice identification is required. Guidelines published in 2013 identify the basal slice based on the percentage of myocardium surrounding the blood cavity in the short-axis view. Existing methods, however, assume that the basal slice is the first short-axis view slice below the mitral valve and are consequently at times identifying the incorrect short-axis slice. Correct identification of the basal slice under the Society for Cardiovascular Magnetic Resonance guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that utilizes the two-chamber view to determine the basal slice while following the guidelines. To this end, an active shape model is trained to segment the two-chamber view and create temporal binary profiles from which the basal slice is identified. From the 51 tested cases, our method obtains 92% and 84% accurate basal slice detection for the end-systole and the end-diastole, respectively. PMID:27660805

  8. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    MedlinePlus

    ... Health Conditions ARCA1 autosomal recessive cerebellar ataxia type 1 Enable Javascript to view the expand/collapse boxes. ... Close All Description Autosomal recessive cerebellar ataxia type 1 ( ARCA1 ) is a condition characterized by progressive problems ...

  9. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats

    EPA Science Inventory

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...

  10. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice

    PubMed Central

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  11. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice.

    PubMed

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  12. Automatic basal slice detection for cardiac analysis

    NASA Astrophysics Data System (ADS)

    Paknezhad, Mahsa; Marchesseau, Stephanie; Brown, Michael S.

    2016-03-01

    Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction (EF) of the left ventricle (LV). Despite research on cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, has been shown to have high inter-observer variability, with a variation of the EF by up to 8%. Therefore, an automatic way of identifying the basal slice is still required. Prior published methods operate by automatically tracking the mitral valve points from the long-axis view of the LV. These approaches assumed that the basal slice is the first short-axis slice below the mitral valve. However, guidelines published in 2013 by the society for cardiovascular magnetic resonance indicate that the basal slice is the uppermost short-axis slice with more than 50% myocardium surrounding the blood cavity. Consequently, these existing methods are at times identifying the incorrect short-axis slice. Correct identification of the basal slice under these guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that focuses on the two-chamber slice to find the basal slice. To this end, an active shape model is trained to automatically segment the two-chamber view for 51 samples using the leave-one-out strategy. The basal slice was detected using temporal binary profiles created for each short-axis slice from the segmented two-chamber slice. From the 51 successfully tested samples, 92% and 84% of detection results were accurate at the end-systolic and the end-diastolic phases of the cardiac cycle, respectively.

  13. Landmark Based Shape Analysis for Cerebellar Ataxia Classification and Cerebellar Atrophy Pattern Visualization

    PubMed Central

    Yang, Zhen; Abulnaga, S. Mazdak; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi; Ying, Sarah H.; Prince, Jerry L.

    2016-01-01

    Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, prognosis, and treatment planning. In this paper, we present a landmark based shape analysis pipeline to classify healthy control and different ataxia types and to visualize the characteristic cerebellar atrophy patterns associated with different types. A highly informative feature representation of the cerebellar structure is constructed by extracting dense homologous landmarks on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this representation is built using partial least square dimension reduction and regularized linear discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by sampling along the discriminant direction between healthy controls and the ataxia type. Experimental results show that the proposed method can successfully classify healthy controls and different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional volume decreases observed in previous studies, but the proposed method provides intuitive and detailed understanding about changes of overall size and shape of the cerebellum, as well as that of individual lobules. PMID:27303111

  14. Landmark based shape analysis for cerebellar ataxia classification and cerebellar atrophy pattern visualization

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Abulnaga, S. Mazdak; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, prognosis, and treatment planning. In this paper, we present a landmark based shape analysis pipeline to classify healthy control and different ataxia types and to visualize the characteristic cerebellar atrophy patterns associated with different types. A highly informative feature representation of the cerebellar structure is constructed by extracting dense homologous landmarks on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this representation is built using partial least square dimension reduction and regularized linear discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by sampling along the discriminant direction between healthy controls and the ataxia type. Experimental results show that the proposed method can successfully classify healthy controls and different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional volume decreases observed in previous studies, but the proposed method provides intuitive and detailed understanding about changes of overall size and shape of the cerebellum, as well as that of individual lobules.

  15. Mapping cerebellar degeneration in HIV/AIDS.

    PubMed

    Klunder, Andrea D; Chiang, Ming-Chang; Dutton, Rebecca A; Lee, Sharon E; Toga, Arthur W; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Thompson, Paul M

    2008-11-19

    Progressive brain atrophy in HIV/AIDS is associated with impaired psychomotor performance, perhaps partly reflecting cerebellar degeneration; yet little is known about how HIV/AIDS affects the cerebellum. We visualized the three-dimensional profile of atrophy in 19 HIV-positive patients (age: 42.9+/-8.3 years) versus 15 healthy controls (age: 38.5+/-12.0 years). We localized consistent patterns of subregional atrophy with an image analysis method that automatically deforms each patient's scan, in three dimensions, to match a reference image. Atrophy was greatest in the posterior cerebellar vermis (14.9% deficit) and correlated with depression severity (P=0.009, corrected), but not with dementia, alcohol/substance abuse, CD4+T-cell counts, or viral load. Profound cerebellar deficits in HIV/AIDS (P=0.007, corrected) were associated with depression, suggesting a surrogate disease marker for antiretroviral trials.

  16. Clinical study of medial area infarction in the region of posterior inferior cerebellar artery.

    PubMed

    Ogawa, Katsuhiko; Suzuki, Yutaka; Oishi, Minoru; Kamei, Satoshi; Shigihara, Shuntaro; Nomura, Yasuyuki

    2013-05-01

    Our objective is to study the neurological characteristics of medial area infarction in the caudal cerebellum. Medial area of the caudal cerebellum is supplied with 2 branches of the posterior inferior cerebellar artery (PICA). The medial hemispheric branch of the PICA distributes to the medial area of the caudal cerebellar hemisphere. The medial branch of the PICA (mPICA) distributes to the inferior vermis. We studied the neurological characteristics of 18 patients with medial area infarction of the caudal cerebellum. The infarction was located in the medial area of the cerebellar hemisphere and vermis (medial ch/vermis) in 11 patients and in the medial area of the cerebellar hemisphere (medial ch) in 7 patients. All the 18 patients showed acute vertigo and disturbance of standing and gait at onset. On admission, the lateropulsion and wide-based gait were present in 13 patients, respectively. Mild ataxia of the extremities was shown in 7 patients. Acute vertigo and unsteadiness were prominent at onset in the 18 patients, although their ataxia of the extremities was mild or none. This result was consistent with the characteristics of medial area infarction of the caudal cerebellum. Comparing the neurological symptoms between the medial ch/vermis group and medial ch group, both lateropulsion and wide-based gait were significantly infrequent in medial ch group. This result indicated that the vermis was spared because the mPICA was not involved in the medial ch group. It is necessary to make a careful diagnosis when we encounter patients who present acute vertigo because truncal and gait ataxia are unremarkable on admission in patients with the medial area infarction of the caudal cerebellum without vermis involvement.

  17. Cerebellar disorders in childhood: cognitive problems.

    PubMed

    Steinlin, Maja

    2008-01-01

    Over the last decade, increasing evidence of cognitive functions of the cerebellum during development and learning processes could be ascertained. Posterior fossa malformations such as cerebellar hypoplasia or Joubert syndrome are known to be related to developmental problems in a marked to moderate extent. More detailed analyses reveal special deficits in attention, processing speed, visuospatial functions, and language. A study about Dandy Walker syndrome states a relationship of abnormalities in vermis lobulation with developmental problems. Further lobulation or volume abnormalities of the cerebellum and/or vermis can be detected in disorders as fragile X syndrome, Downs's syndrome, William's syndrome, and autism. Neuropsychological studies reveal a relation of dyslexia and attention deficit disorder with cerebellar functions. These functional studies are supported by structural abnormalities in neuroimaging in these disorders. Acquired cerebellar or vermis atrophy was found in groups of children with developmental problems such as prenatal alcohol exposure or extreme prematurity. Also, focal lesions during childhood or adolescence such as cerebellar tumor or stroke are related with neuropsychological abnormalities, which are most pronounced in visuospatial, language, and memory functions. In addition, cerebellar atrophy was shown to be a bad prognostic factor considering cognitive outcome in children after brain trauma and leukemia. In ataxia teleangiectasia, a neurodegenerative disorder affecting primarily the cerebellar cortex, a reduced verbal intelligence quotient and problems of judgment of duration are a hint of the importance of the cerebellum in cognition. In conclusion, the cerebellum seems to play an important role in many higher cognitive functions, especially in learning. There is a suggestion that the earlier the incorrect influence, the more pronounced the problems.

  18. Postirradiation cerebellar glioma. Case report

    SciTech Connect

    Raffel, C.; Edwards, M.S.; Davis, R.L.; Ablin, A.R.

    1985-02-01

    A 13-year-old girl developed an anaplastic astrocytoma of the cerebellum 7 years after irradiation of the central nervous system and prophylactic chemotherapy for acute lymphocytic leukemia. The fact that the astrocytoma was anaplastic and infiltrative was unusual for astroglial tumors at this site. It is proposed that this is a radiation-induced glioma.

  19. Lgr4 protein deficiency induces ataxia-like phenotype in mice and impairs long term depression at cerebellar parallel fiber-Purkinje cell synapses.

    PubMed

    Guan, Xin; Duan, Yanhong; Zeng, Qingwen; Pan, Hongjie; Qian, Yu; Li, Dali; Cao, Xiaohua; Liu, Mingyao

    2014-09-19

    Cerebellar dysfunction causes ataxia characterized by loss of balance and coordination. Until now, the molecular and neuronal mechanisms of several types of inherited cerebellar ataxia have not been completely clarified. Here, we report that leucine-rich G protein-coupled receptor 4 (Lgr4/Gpr48) is highly expressed in Purkinje cells (PCs) in the cerebellum. Deficiency of Lgr4 leads to an ataxia-like phenotype in mice. Histologically, no obvious morphological changes were observed in the cerebellum of Lgr4 mutant mice. However, the number of PCs was slightly but significantly reduced in Lgr4(-/-) mice. In addition, in vitro electrophysiological analysis showed an impaired long term depression (LTD) at parallel fiber-PC (PF-PC) synapses in Lgr4(-/-) mice. Consistently, immunostaining experiments showed that the level of phosphorylated cAMP-responsive element-binding protein (Creb) was significantly decreased in Lgr4(-/-) PCs. Furthermore, treatment with forskolin, an adenylyl cyclase agonist, rescued phospho-Creb in PCs and reversed the impairment in PF-PC LTD in Lgr4(-/-) cerebellar slices, indicating that Lgr4 is an upstream regulator of Creb signaling, which is underlying PF-PC LTD. Together, our findings demonstrate for first time an important role for Lgr4 in motor coordination and cerebellar synaptic plasticity and provide a potential therapeutic target for certain types of inherited cerebellar ataxia. PMID:25063812

  20. Robust reflective pupil slicing technology

    NASA Astrophysics Data System (ADS)

    Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.

    2014-07-01

    Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly

  1. The Cerebellar Mutism Syndrome and Its Relation to Cerebellar Cognitive Function and the Cerebellar Cognitive Affective Disorder

    ERIC Educational Resources Information Center

    Wells, Elizabeth M.; Walsh, Karin S.; Khademian, Zarir P.; Keating, Robert F.; Packer, Roger J.

    2008-01-01

    The postoperative cerebellar mutism syndrome (CMS), consisting of diminished speech output, hypotonia, ataxia, and emotional lability, occurs after surgery in up to 25% of patients with medulloblastoma and occasionally after removal of other posterior fossa tumors. Although the mutism is transient, speech rarely normalizes and the syndrome is…

  2. A case of follicular lymphoma associated with paraneoplastic cerebellar degeneration.

    PubMed

    Shimazu, Yayoi; Minakawa, Eiko N; Nishikori, Momoko; Ihara, Masafumi; Hashi, Yuichiro; Matsuyama, Hirofumi; Hishizawa, Masakatsu; Yoshida, Sonoyo; Kitano, Toshiyuki; Kondo, Tadakazu; Ishikawa, Takayuki; Takahashi, Ryosuke; Takaori-Kondo, Akifumi

    2012-01-01

    Paraneoplastic neurological disorders (PND) are neurological effects of malignancy that are recognized as immune-mediated disorders caused by aberrant expression of a tumor antigen that is normally expressed in the nervous system. We report a case of cerebellar ataxia which turned out to be paraneoplastic cerebellar degeneration, a subtype of PND that develops cerebellar symptoms, that was caused by follicular lymphoma. After chemotherapy, the patient attained sufficient improvement of cerebellar symptoms along with complete remission of lymphoma. Paraneoplastic cerebellar degeneration should be recognized as a rare complication of lymphoma as it is important to start proper treatment before the neurological symptoms become irreversible.

  3. Anti-Yo antibody-mediated paraneoplastic cerebellar degeneration in a female patient with pleural malignant mesothelioma.

    PubMed

    Tanriverdi, Ozgur; Meydan, Nezih; Barutca, Sabri; Ozsan, Nazan; Gurel, Duygu; Veral, Ali

    2013-05-01

    Paraneoplastic cerebellar degeneration is a rare non-metastatic complication of malignancies. It presents with acute or subacute onset of ataxia, dysarthria and intention tremor. Paraneoplastic cerebellar degeneration is most commonly associated with malignancies of the ovary, breast and lung. The anti-Yo (anti-Purkinje cells) antibodies that specifically damage the Purkinje cells of the cerebellum are found in the serum and cerebrospinal fluid. Anti-Yo-related paraneoplastic cerebellar degeneration is most commonly found in women with gynecological and breast cancers, but it is reported in other malignancies. Patients with paraneoplastic syndromes most often present with neurologic symptoms before an underlying cancer is detected. We report a case of anti-Yo-related paraneoplastic cerebellar degeneration associated with pleural malignant mesothelioma in a 51-year-old female patient. She presented to our department with a 2-week history after the last chemotherapy of progressive dizziness related to head movement, nausea, vomiting, ataxia and unsteady gait. A western blot assay was negative for anti-Hu, anti-Ri, anti-Ma2, anti-CV2 and anti-amphiphysin paraneoplastic antibody markers but positive for anti-Yo. In conclusion, we report a case of paraneoplastic cerebellar degeneration in a patient with pleural malignant mesothelioma because of the rarity of this neurologic presentation after the diagnosis of malignant mesothelioma and of the association with anti-Yo antibodies.

  4. Cerebellar cortical inhibition and classical eyeblink conditioning.

    PubMed

    Bao, Shaowen; Chen, Lu; Kim, Jeansok J; Thompson, Richard F

    2002-02-01

    The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.

  5. Improving cerebellar segmentation with statistical fusion

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.

  6. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    PubMed

    Buchin, Anatoly; Rieubland, Sarah; Häusser, Michael; Gutkin, Boris S; Roth, Arnd

    2016-08-01

    Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958

  7. Cerebellar Disease in an Adult Cow

    PubMed Central

    Oz, H. H.; Nicholson, S. S.; Al-Bagdadi, F. K.; Zeman, D. H.

    1986-01-01

    This is the report of clinical signs and lesions of a cerebellar disorder in an adult four year old Limousin cow grazing perennial ryegrass (Lolium perenne). The most striking histopathological lesion was a marked paucity of Purkinje cells throughout the cerebellum. ImagesFigure 1.Figure 2. PMID:17422607

  8. Vergence Deficits in Patients with Cerebellar Lesions

    ERIC Educational Resources Information Center

    Sander, T.; Sprenger, A.; Neumann, G.; Machner, B.; Gottschalk, S.; Rambold, H.; Helmchen, C.

    2009-01-01

    The cerebellum is part of the cortico-ponto-cerebellar circuit for conjugate eye movements. Recent animal data suggest an additional role of the cerebellum for the control of binocular alignment and disconjugate, i.e. vergence eye movements. The latter is separated into two different components: fast vergence (to step targets) and slow vergence…

  9. Inverse Stochastic Resonance in Cerebellar Purkinje Cells

    PubMed Central

    Häusser, Michael; Gutkin, Boris S.; Roth, Arnd

    2016-01-01

    Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958

  10. Radiation sterilization and identification of gizzard slices

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Fu, C.; Jiang, W.; Yao, D.; Zhao, K.; Zhang, Y.

    1998-06-01

    An orthogonal test of 4 factors of radiation dose, storage temperature, storage time, and sanitation of cutting places was carried out to optimize the conditions for disinfection of gizzard slices. In the optimized condition, both the sanitary quality and the shelf-life of gizzard slices were improved. To identify irradiated gizzard slices, the sensory change, and the levels of water-soluble nitrogen, amino acid, total volatile basic nitrogen, peroxide value, vitamin C consumption and KMnO 4 consumption were determinated. No significant change was observed except for the color which was light brown on the surface of irradiated slices.

  11. Posterior fossa syndrome after cerebellar stroke.

    PubMed

    Mariën, Peter; Verslegers, Lieven; Moens, Maarten; Dua, Guido; Herregods, Piet; Verhoeven, Jo

    2013-10-01

    Posterior fossa syndrome (PFS) due to vascular etiology is rare in children and adults. To the best of our knowledge, PFS due to cerebellar stroke has only been reported in patients who also underwent surgical treatment of the underlying vascular cause. We report longitudinal clinical, neurocognitive and neuroradiological findings in a 71-year-old right-handed patient who developed PFS following a right cerebellar haemorrhage that was not surgically evacuated. During follow-up, functional neuroimaging was conducted by means of quantified Tc-99m-ECD SPECT studies. After a 10-day period of akinetic mutism, the clinical picture developed into cerebellar cognitive affective syndrome (CCAS) with reversion to a previously learnt accent, consistent with neurogenic foreign accent syndrome (FAS). No psychometric evidence for dementia was found. Quantified Tc-99m-ECD SPECT studies consistently disclosed perfusional deficits in the anatomoclinically suspected but structurally intact bilateral prefrontal brain regions. Since no surgical treatment of the cerebellar haematoma was performed, this case report is presumably the first description of pure, "non-surgical vascular PFS". In addition, reversion to a previously learnt accent which represents a subtype of FAS has never been reported after cerebellar damage. The combination of this unique constellation of poststroke neurobehavioural changes reflected on SPECT shows that the cerebellum is crucially implicated in the modulation of neurocognitive and affective processes. A decrease of excitatory impulses from the lesioned cerebellum to the structurally intact supratentorial network subserving cognitive, behavioural and affective processes constitutes the likely pathophysiological mechanism underlying PFS and CCAS in this patient. PMID:23575947

  12. Cerebellar circuitry as a neuronal machine.

    PubMed

    Ito, Masao

    2006-01-01

    Shortly after John Eccles completed his studies of synaptic inhibition in the spinal cord, for which he was awarded the 1963 Nobel Prize in physiology/medicine, he opened another chapter of neuroscience with his work on the cerebellum. From 1963 to 1967, Eccles and his colleagues in Canberra successfully dissected the complex neuronal circuitry in the cerebellar cortex. In the 1967 monograph, "The Cerebellum as a Neuronal Machine", he, in collaboration with Masao Ito and Janos Szentágothai, presented blue-print-like wiring diagrams of the cerebellar neuronal circuitry. These stimulated worldwide discussions and experimentation on the potential operational mechanisms of the circuitry and spurred theoreticians to develop relevant network models of the machinelike function of the cerebellum. In following decades, the neuronal machine concept of the cerebellum was strengthened by additional knowledge of the modular organization of its structure and memory mechanism, the latter in the form of synaptic plasticity, in particular, long-term depression. Moreover, several types of motor control were established as model systems representing learning mechanisms of the cerebellum. More recently, both the quantitative preciseness of cerebellar analyses and overall knowledge about the cerebellum have advanced considerably at the cellular and molecular levels of analysis. Cerebellar circuitry now includes Lugaro cells and unipolar brush cells as additional unique elements. Other new revelations include the operation of the complex glomerulus structure, intricate signal transduction for synaptic plasticity, silent synapses, irregularity of spike discharges, temporal fidelity of synaptic activation, rhythm generators, a Golgi cell clock circuit, and sensory or motor representation by mossy fibers and climbing fibers. Furthermore, it has become evident that the cerebellum has cognitive functions, and probably also emotion, as well as better-known motor and autonomic functions

  13. Ruminant organotypic brain-slice cultures as a model for the investigation of CNS listeriosis.

    PubMed

    Guldimann, Claudia; Lejeune, Beatrice; Hofer, Sandra; Leib, Stephen L; Frey, Joachim; Zurbriggen, Andreas; Seuberlich, Torsten; Oevermann, Anna

    2012-08-01

    Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host-pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host-pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases. PMID:22804762

  14. Ruminant organotypic brain-slice cultures as a model for the investigation of CNS listeriosis

    PubMed Central

    Guldimann, Claudia; Lejeune, Beatrice; Hofer, Sandra; Leib, Stephen L; Frey, Joachim; Zurbriggen, Andreas; Seuberlich, Torsten; Oevermann, Anna

    2012-01-01

    Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host–pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host–pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases. PMID:22804762

  15. A slice of the universe

    NASA Technical Reports Server (NTRS)

    De Lapparent, V.; Geller, M. J.; Huchra, J. P.

    1986-01-01

    A preliminary discussion is presented of recent results obtained as part of the extension of the Center of Astrophysics redshift survey. Several features of the results are striking. The distribution of galaxies in the sample, which contains 1100 galaxies in a 6 deg x 117 deg strip going through the Coma cluster, looks like a slice through the suds in the kitchen sink. It appears that the galaxies are on the surfaces of bubble-like structures with diameters of 25-50/h-Mpc. The largest bubble in the survey has a diameter comparable with the most recent estimates of the diameter of the void in Bootes. This topology poses serious challenges for current models for the formation of large-scale structure. The best available model for generating these structures is the explosive galaxy formation theory of Ostriker and Cowie (1981).

  16. Electrohydrodynamic Drying of Carrot Slices

    PubMed Central

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique. PMID:25874695

  17. A probabilistic atlas of the cerebellar white matter.

    PubMed

    van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders.

  18. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  19. Developmental Decrease of Neuronal Chloride Concentration Is Independent of Trauma in Thalamocortical Brain Slices

    PubMed Central

    Glykys, Joseph; Staley, Kevin J.

    2016-01-01

    The intraneuronal chloride concentration ([Cl-]i) is paramount for determining the polarity of signaling at GABAA synapses in the central nervous system. Sectioning hippocampal brain slices increases [Cl-]i in the superficial layers. It is not known whether cutting trauma also increases [Cl-]i in the neocortex and thalamus, and whether the effects of trauma change during development. We used Cl- imaging to study the [Cl-]i vs. the distance from the cut surface in acute thalamocortical slices from mice at developmental ages ranging from post-natal day 5 (P5) to P20. We demonstrate: 1) [Cl-]i is higher in the most superficial areas in both neocortical and thalamic brain slices at all ages tested and, 2) there is a developmental decrease in [Cl-]i that is independent of acute trauma caused by brain slicing. We conclude that [Cl-]i has a developmental progression during P5-20 in both the neocortex and thalamus. However, in both brain regions and during development the neurons closest to the slicing trauma have an elevated [Cl-]i. PMID:27337272

  20. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    NASA Astrophysics Data System (ADS)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  1. Cannabinoids decrease excitatory synaptic transmission and impair long-term depression in rat cerebellar Purkinje cells.

    PubMed

    Lévénés, C; Daniel, H; Soubrié, P; Crépel, F

    1998-08-01

    1. CB-1 cannabinoid receptors are strongly expressed in the molecular layer of the cerebellar cortex. We have analysed, in patch-clamped Purkinje cells (PCs) in rat cerebellar slices, the effect of the selective CB-1 agonists WIN55,212-2 and CP55,940 and of the selective CB-1 antagonist SR141716-A on excitatory synaptic transmission and synaptic plasticity. 2. Bath application of both agonists markedly depressed parallel fibre (PF) EPSCs. This effect was reversed by SR141716-A. In contrast, responses of PCs to ionophoretic application of glutamate were not affected by WIN55, 212-2. 3. The coefficient of variation and the paired-pulse facilitation of these PF-mediated EPSCs increased in the presence of WIN55,212-2. 4. WIN55,212-2 decreased the frequency of miniature EPSCs and of asynchronous synaptic events evoked in the presence of strontium in the bath, but did not affect their amplitude. 5. WIN55, 212-2 did not change the excitability of PFs. 6. WIN55,212-2 impaired long-term depression induced by pairing protocols in PCs. This effect was antagonized by SR141716-A. The same impairment of LTD was produced by 2-chloroadenosine, a compound that decreases the probability of release of glutamate at PF-PC synapses. 7. The present study demonstrates that cannabinoids inhibit synaptic transmission at PF-PC synapses by decreasing the probability of release of glutamate, and thereby impair LTD. These two effects might represent a plausible cellular mechanism underlying cerebellar dysfunction caused by cannabinoids.

  2. Functional circuitry of a unique cerebellar specialization: the valvula cerebelli of a mormyrid fish.

    PubMed

    Zhang, Y; Shi, Z; Magnus, G; Meek, J; Han, V Z; Qiao, J T

    2011-05-19

    The valvula cerebelli of the mormyrid electric fish is a useful site for the study of cerebellar function. The valvula forms a part of the electrosensory-electromotor system of this fish, a system that offers many possibilities for the study of sensory-motor integration. The valvula also has a number of histological features not present in mammals which facilitate investigation of cerebellar circuitry and its plasticity. This initial study characterizes the basic physiology and pharmacology of cells in the valvula using an in vitro slice preparation. Intrinsic properties and synaptic responses of Purkinje cells and other cell types were examined. We found that Purkinje cells fire a small narrow Na(+) spike and a large broad Ca(2+) spike, generated in the axon initial segment and dendritic-soma region, respectively. Purkinje cells respond to parallel fiber inputs with graded excitatory postsynaptic potentials (EPSPs) and to climbing fiber inputs with all-or-none EPSPs. Efferent cells, Golgi cells, and deep stellate cells all fire a single type of large narrow spike and respond only to parallel fiber inputs. Both parallel fiber and climbing fiber responses in Purkinje cells appear to be entirely mediated by AMPA-type glutamate receptors, whereas parallel fiber responses in efferent cells and stellate cells include AMPA and NMDA components. In addition, a strong synaptic inhibition was uncovered in both Purkinje cells and efferent cells in response to the focal stimulation of parallel fibers. Dual cell recordings indicate that deep stellate cells contribute at least partially to this inhibition. We conclude that despite its unique histology, the local functional circuitry of the mormyrid valvula cerebelli is largely similar to that of the mammalian cerebellum. Thus, what is learned concerning the functioning of the mormyrid valvula cerebelli may be expected to be informative about cerebellar function in general. PMID:21414387

  3. Low resolution scanning electron microscopy of cerebellar neurons and neuroglial cells of the granular layer.

    PubMed

    Castejón, O J

    1984-01-01

    Teleost fishes, Arius Spixii and Salmo trout and adult Swiss albino mice have been processed with the freeze-fracture technique for SEM to explore the inner cytoplasmic and nuclear surface details of neurons and neuroglial cells. The specimens were fixed by vascular perfusion with Karnovsky fixative and 2-3 mm thick cerebellar slices were subsequently fixed by immersion in the same fixative. They were postfixed in osmium tetroxide, dehydrated in ethanol, frozen in Freon 22, cooled by liquid nitrogen and fractured. After thawing in ethanol, they were critically point dried, coated with gold-palladium and viewed by SEM. The surface features of perikaryon were examined at low resolution and magnifications. The image of endoplasmic reticulum, GERL complex and chromatin were described in fractured cerebellar neurons (granule and Golgi cells). The fractured protoplasmic astrocytes displayed a characteristic glass surface appearance of cytoplasmic body and processes, which facilitated their recognition at the neuropile and perivascular region. The oligodendrocytes appeared as fusiform cells depicting a thin rim of perinuclear cytoplasm. The surface view of endoplasmic reticulum was well studied at the nuclear poles. Fine cytoplasmic beaded canaliculi appeared connecting the outer surface of nuclear envelope with the plasma membrane inner surface. The nucleus exhibited well developed peripheral heterochromatin masses forming anastomotic bands separated by vacuolar spaces. The SEM nerve and neuroglial cell fractographs were compared with similar images obtained by conventional transmission electron microscopy and freeze etching technique. PMID:6505621

  4. Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit

    PubMed Central

    Zampini, Valeria; Liu, Jian K; Diana, Marco A; Maldonado, Paloma P; Brunel, Nicolas; Dieudonné, Stéphane

    2016-01-01

    Synaptic currents display a large degree of heterogeneity of their temporal characteristics, but the functional role of such heterogeneities remains unknown. We investigated in rat cerebellar slices synaptic currents in Unipolar Brush Cells (UBCs), which generate intrinsic mossy fibers relaying vestibular inputs to the cerebellar cortex. We show that UBCs respond to sinusoidal modulations of their sensory input with heterogeneous amplitudes and phase shifts. Experiments and modeling indicate that this variability results both from the kinetics of synaptic glutamate transients and from the diversity of postsynaptic receptors. While phase inversion is produced by an mGluR2-activated outward conductance in OFF-UBCs, the phase delay of ON UBCs is caused by a late rebound current resulting from AMPAR recovery from desensitization. Granular layer network modeling indicates that phase dispersion of UBC responses generates diverse phase coding in the granule cell population, allowing climbing-fiber-driven Purkinje cell learning at arbitrary phases of the vestibular input. DOI: http://dx.doi.org/10.7554/eLife.15872.001 PMID:27642013

  5. Cerebellar secretin modulates eyeblink classical conditioning.

    PubMed

    Fuchs, Jason R; Robinson, Gain M; Dean, Aaron M; Schoenberg, Heidi E; Williams, Michael R; Morielli, Anthony D; Green, John T

    2014-12-01

    We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received intracerebellar infusions of the secretin receptor antagonist 5-27 secretin or vehicle into the lobulus simplex of cerebellar cortex immediately prior to sessions 1-3 of acquisition. Antagonist-infused rats showed a reduction in the percentage of eyeblink CRs compared with vehicle-infused rats. In Experiment 2, rats received intracerebellar infusions of secretin or vehicle immediately prior to sessions 1-2 of extinction. Secretin did not significantly affect extinction performance. In Experiment 3, rats received intracerebellar infusions of 5-27 secretin or vehicle immediately prior to sessions 1-2 of extinction. The secretin antagonist did not significantly affect extinction performance. Together, our current and previous results indicate that both exogenous and endogenous cerebellar secretin modulate acquisition, but not extinction, of EBC. We have previously shown that (1) secretin reduces surface expression of the voltage-gated potassium channel α-subunit Kv1.2 in cerebellar cortex and (2) intracerebellar infusions of a Kv1.2 blocker enhance EBC acquisition, much like secretin. Kv1.2 is almost exclusively expressed in cerebellar cortex at basket cell-Purkinje cell pinceaus and Purkinje cell dendrites; we propose that EBC-induced secretin release from PCs modulates EBC acquisition by reducing surface expression of Kv1.2 at one or both of these sites.

  6. Cerebellar secretin modulates eyeblink classical conditioning

    PubMed Central

    Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.

    2014-01-01

    We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received intracerebellar infusions of the secretin receptor antagonist 5-27 secretin or vehicle into the lobulus simplex of cerebellar cortex immediately prior to sessions 1–3 of acquisition. Antagonist-infused rats showed a reduction in the percentage of eyeblink CRs compared with vehicle-infused rats. In Experiment 2, rats received intracerebellar infusions of secretin or vehicle immediately prior to sessions 1–2 of extinction. Secretin did not significantly affect extinction performance. In Experiment 3, rats received intracerebellar infusions of 5-27 secretin or vehicle immediately prior to sessions 1–2 of extinction. The secretin antagonist did not significantly affect extinction performance. Together, our current and previous results indicate that both exogenous and endogenous cerebellar secretin modulate acquisition, but not extinction, of EBC. We have previously shown that (1) secretin reduces surface expression of the voltage-gated potassium channel α-subunit Kv1.2 in cerebellar cortex and (2) intracerebellar infusions of a Kv1.2 blocker enhance EBC acquisition, much like secretin. Kv1.2 is almost exclusively expressed in cerebellar cortex at basket cell–Purkinje cell pinceaus and Purkinje cell dendrites; we propose that EBC-induced secretin release from PCs modulates EBC acquisition by reducing surface expression of Kv1.2 at one or both of these sites. PMID:25403455

  7. The microvasculature of the human cerebellar meninges.

    PubMed

    Nonaka, Hiroko; Akima, Michiko; Hatori, Tsutomu; Nagayama, Tadashi; Zhang, Zean; Ihara, Fumie

    2002-12-01

    The vascular architecture of the human cerebellar meninges was investigated. The surface meninges were poor in vasculature. In the sulci, the meninges were highly vascular but had few capillaries. The venous blood vessels gave long side branches at right angles to the parent vessels in a cruciform pattern, running horizontally along the cerebellar sulci. They were situated at the origin of the secondary or tertiary sulci. Anastomoses between these horizontal branches gave a crosshatched appearance. Short branches often extended to the bases of the sulci, terminating in T-shaped bifurcations with numerous tiny branches, like the roots of a tree. The arteries ran perpendicular to venous branches which were parallel to each other exclusively along the sagittal plane. These arteries bifurcated to straddle the horizontally running veins at the origin of the secondary or tertiary sulci. They gave off many small branches like teeth of a fork from each artery in the secondary or tertiary sulci after they bifurcated to straddle the venous branches and penetrated the cerebellar cortex at the bases of sulci. These fork-like ramifications in the bases of the sulci were most likely responsible for the ready development of pronounced ischemic state. They might also play an important role in the occurrence of ischemic damage at the bases of sulci in cases of severe generalized ischemia.

  8. From cerebellar texture to movement optimization.

    PubMed

    Sultan, Fahad

    2014-10-01

    The cerebellum is a major site for supervised procedural learning and appears to be crucial for optimizing sensorimotor performance. However, the site and origin of the supervising signal are still elusive. Furthermore, its relationship with the prominent neuronal circuitry remains puzzling. In this paper, I will review the relevant information and seek to synthesize a working hypothesis that explains the unique cerebellar structure. The aim of this review was to link the distinctive functions of the cerebellum, as derived from cerebellar lesion studies, with potential elementary computations, as observed by a bottom-up approach from the cerebellar microcircuitry. The parallel fiber geometry is ideal for performing millisecond computations that extract instructive signals. In this scenario, the higher time derivatives of kinematics such as acceleration and/or jerk that occur during motor performance are detected via a tidal wave mechanism and are used (with appropriate gating) as the instructive signal to guide motor smoothing. The advantage of such a mechanism is that movements are optimized by reducing "jerkiness" which, in turn, lowers their energy requirements. PMID:25037239

  9. Cerebro-cerebellar circuits in autism spectrum disorder

    PubMed Central

    D'Mello, Anila M.; Stoodley, Catherine J.

    2015-01-01

    The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD. PMID:26594140

  10. Isolated lateropulsion of the trunk in cerebellar infarct.

    PubMed

    Shan, D E; Wang, V; Chen, J T

    1995-05-01

    MRI in a 63-year-old male with isolated lateropulsion of the trunk disclosed an infarct in the inferior portion of the right cerebellar hemisphere, suggesting an end-zone type infarct in the lateral branch of the right posterior inferior cerebellar artery (1PICA) or a borderzone infarct between 1PICA and superior cerebellar artery. A close clinico-topographical relationship between isolated lateropulsion of the trunk and lesion in the territory of 1PICA was demonstrated.

  11. Cerebro-cerebellar circuits in autism spectrum disorder.

    PubMed

    D'Mello, Anila M; Stoodley, Catherine J

    2015-01-01

    The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  12. Cerebellar ataxia as the presenting manifestation of Lyme disease.

    PubMed

    Arav-Boger, Ravit; Crawford, Thomas; Steere, Allen C; Halsey, Neal A

    2002-04-01

    A 7-year-old boy from suburban Baltimore who presented with cerebellar ataxia and headaches was found by magnetic resonance imaging to have multiple cerebellar enhancing lesions. He had no history of tick exposure. He was initially treated with steroids for presumptive postinfectious encephalitis. Lyme disease was diagnosed 10 weeks later after arthritis developed. Testing of the cerebrospinal fluid obtained at the time cerebellar ataxia was diagnosed revealed intrathecal antibody production to Borrelia burgdorferi. Treatment with intravenous antibiotics led to rapid resolution of persistent cerebellar findings.

  13. Immune activation during cerebellar dysfunction following Plasmodium falciparum malaria.

    PubMed

    de Silva, H J; Hoang, P; Dalton, H; de Silva, N R; Jewell, D P; Peiris, J B

    1992-01-01

    Evidence for immune activation was investigated in 12 patients with a rare syndrome of self-limiting, delayed onset cerebellar dysfunction following an attack of falciparum malaria which occurred 18-26 d previously. Concentrations of tumour necrosis factor, interleukin 6 and interleukin 2 were all significantly higher in serum samples of patients during cerebellar ataxia than in recovery sera and in the sera of 8 patients who did not develop delayed cerebellar dysfunction following an attack of falciparum malaria. Cytokine concentrations in the cerebrospinal fluid were also significantly higher in ataxic patients than in controls. These findings suggest that immunological mechanisms may play a role in delayed cerebellar dysfunction following falciparum malaria.

  14. Cerebellar liponeurocytoma in two siblings suggests a possible familial predisposition.

    PubMed

    Pikis, Stylianos; Fellig, Yakov; Margolin, Emil

    2016-10-01

    There is limited data on the genetic origin and natural history of cerebellar liponeurocytoma. To the best of our knowledge there has been only one report of a familial presentation of this rare entity. We report a 72-year-old female with a posterior fossa tumor presenting with progressive cerebellar signs and symptoms. The patient underwent total tumor resection via an uncomplicated sub-occipital craniotomy. Histopathologic examination was diagnostic for cerebellar liponeurocytoma. Her sister was previously treated for a similar tumor. Our report provides further evidence for the possible existence of a hereditary abnormality predisposing afflicted families to cerebellar liponeurocytoma development. PMID:27349466

  15. [Buspirone in the treatment of cerebellar ataxia].

    PubMed

    Svetel, M; Vojvodić, N; Filipović, S R; Dragasević, N; Sternić, N; Kostić, V S

    1999-01-01

    Ataxia is defined as a disturbance which, quite independent of any motor weakness, alters direction and extent of voluntary movement and impairs the sustained voluntary of reflex muscle contraction necessary for maintaining postiue and equilibrium [1]. Since pathophysiological basis of cerebeller ataxia is still not completely clear, the current therapeutic attempts are mainly symptom-oriented [3]. One possible approach could be a modification of potentially involved neurotransmitter systems of the cerebellum, where particularly interesting is the serotonergic system. However, attempts with levorotatory form of tryptophan (5-HT precursors) proved to be ineffective [4, 5]. Since receptors in the cerebellum are mainly of 5-HTIA subtype, the use of specific agonists might be a more reasonable therapy [6]. The study initially involved 11 patients, but only 9 completed the protocol due to unfavorable side effects. Our open label prospective study lasted for 15 weeks. The patients were tested before the beginning of the treatment (initial visit), at 7th (first visit) and 11th week (second visit) of continuous therapy, and eventually at 15th week (final visit). The daily dose was 40 mg at the first and 60 mg at the second visit. We used the evaluation scale gurposed for cerebellar functions testing (speech, gait, coordination and ocular movements). Significant improvement of cerebellar ataxia in patients under buspiron therapy has been noted. We analyzed the results obtained from our 9 patients (4 females and 5 males), of which 6 patients suffered from cerebellar degeneration, one from multiple sclerosis, one from Ramsey-Hunt syndrome, and one from pontine myelinolysis. At the initial visit the patient score was 18.9 (SD = 7.3), subsequently, at the iirst visit the score was 15.4 (SD = 8), while the second visit yielded the score of 12.9 (SD = 8.2), and finally, after a two-weeks lasting wash-out period, it was 17.7 (SD = 7.1) (Table 1). It was found that patients

  16. Dependence, dementia, cerebellar dysfunction, and myopathy in association with chronic isopropanol ingestion.

    PubMed

    Hanawalt-Squires, Cindy; Anfinson, Theodore J

    2002-01-01

    Little is known about the chronic sequelae of isopropanol ingestion. Acute effects of isopropanol ingestion include central nervous system depression, gastrointestinal irritation, impaired gluconeogenesis, delirium, hypotension, and coma. We present a case of a patient who preferentially consumed isopropyl alcohol for at least 17 years and developed sequelae of alcoholic neuromyopathy, recurrent rhabdomyolysis, cerebellar dysfunction, and dementia. Issues related to the patient's preferential consumption of isopropanol are discussed, along with descriptions of the neurobehavioral, neurophysiologic, and neuropathologic studies related to her chronic isopropanol ingestion. The epidemiology of nonbeverage alcohol is briefly reviewed, and clinicians are encouraged to inquire about nonbeverage-alcohol consumption in patients presenting with alcohol-related problems.

  17. Cerebellar hemorrhage provoked by combined use of nattokinase and aspirin in a patient with cerebral microbleeds.

    PubMed

    Chang, Yung-Yee; Liu, Jia-Shou; Lai, Shung-Lon; Wu, Hsiu-Shan; Lan, Min-Yu

    2008-01-01

    Nattokinase is used as a health-promoting medicine for preventing thrombosis due to its fibrinolytic activity. Cerebral microbleed is remnant of blood extravasations from the damaged vessels related to cerebral microangiopathies. We report a patient, having used aspirin for secondary stroke prevention, who had an acute cerebellar hemorrhage after taking nattokinase 400 mg daily for 7 consecutive days. In addition to the hemorrhagic lesion, multiple microbleeds were demonstrated on brain MR images. We suggest that nattokinase may increase risk of intracerebral hemorrhage in patients who have bleeding-prone cerebral microangiopathy and are receiving other antithrombotic agent at the same time.

  18. Overview of a new slicing method: Fixed Abrasive Slicing Technique (FAST)

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Smith, M. B.; Khattak, C. P.

    1982-01-01

    The fixed abrasive slicing technique (FAST) was developed to slice silicon ingots more effectively. It was demonstrated that 25 wafers/cm can be sliced from 10 cm diameter and 19 wafers/cm from 15 cm diameter ingots. This was achieved with a combination of machine development and wire-blade development programs. Correlation was established between cutting effectiveness and high surface speeds. A high speed slicer was designed and fabricated for FAST slicing. Wirepack life of slicing three 10 cm diameter ingots was established. Electroforming techniques were developed to control widths and prolong life of wire-blades. Economic analysis indicates that the projected add-on price of FAST slicing is compatible with the DOE price allocation to meet the 1986 cost goals.

  19. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  20. Somatotopic organization of rat thalamocortical slices.

    PubMed

    Land, Peter W; Kandler, Karl

    2002-09-15

    The thalamocortical slice is widely employed for in vitro studies of cortical circuits. This preparation was developed in order to preserve anatomical and functional connectivity between the ventrobasal thalamus and somatosensory (whisker/barrel) cortex of young mice, and thalamocortical slice experiments have contributed significantly to our understanding of the thalamocortical synapse. Cortical somatotopy within thalamocortical slices, however, has not been characterized, and this greatly limits their use in studies that require identification of cortical areas associated with particular regions of the sensory periphery. To address this shortcoming we used electrophysiological recording and neuroanatomical labeling techniques in rats to mark the position of functionally defined whisker barrels, in vivo. We subsequently processed the brains in a plane appropriate for TC slices and characterized the location of somatotopically identified barrels in relation to other aspects of slice topology. We found that barrels associated with the large mobile whiskers occupy a particular location in TC slices, but that there are certain constraints to studying this portion of the barrelfield in vitro.

  1. [Cerebellar Control of Ocular Movements: Application to the Topographical Diagnosis of Cerebellar Lesions].

    PubMed

    Hirose, Genjiro

    2016-03-01

    Over the last decade, substantial information on cerebellar oculomotor control has been provided by the use of sophisticated neuroanatomical, neurophysiological, and imaging techniques. We now know that an intact cerebellum is a prerequisite for normal oculomotor performance. This review clarifies the current knowledge on structure-function correlations of the cerebellum in relation to ocular movements and allows them to be applied to topographical diagnosis of cerebellar lesions. The cerebellar regions most closely related to oculomotor function are: (1) the flocculus/paraflocculus for VOR suppression, cancellation, smooth pursuit eye movement and gaze-holding, (2) the nodulus/ventral uvula for velocity storage and low frequency prolonged vestibular response, and (3) the dorsal oculomotor vermis (declive VI, folium VII) and the posterior portion of the fastigial nucleus (fastigial oculomotor region) for saccades and smooth pursuit initiation. Symptomatically, defects in the flocculus/parflocculus cause saccadic pursuit, downbeat nystagmus, and impairments to visual suppression of the VOR. Lesions of the nodulus/uvula reveal as periodic alternating nystagmus. Lesions of the oculomotor vermis and the fastigial nucleus can induce saccadic dysmetria, while fastigial nucleus lesions may also cause ocular flutter/opsoclonus. A detailed knowledge of cerebellar anatomy and the physiology of eye movements enables localization of lesions to specific areas of the cerebellum. PMID:27001776

  2. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study.

    PubMed

    Crepel, F; Krupa, M

    1988-08-23

    In immature rat cerebellar slices in vitro, a long term depression (LTD) of the responses of Purkinje cells (PCs) to L-glutamate (Glu) was achieved in 30% of the recorded cells by simultaneous stimulation of the neurones by Glu and by climbing fibres (CFs). This effect was not observed for L-aspartate (Asp)-induced responses. Similarly, selective LTD of Glu-induced responses was obtained in 22% of the cells by pairing Glu applications with direct stimulation of the cells which elicited calcium spikes in these neurones. Finally, bath application of phorbol esters also induced a selective LTD of Glu-induced responses in all cells tested. These results suggest that protein kinase C is involved in cerebellar synaptic plasticity.

  3. Dystonia and Cerebellar Degeneration in the Leaner Mouse Mutant

    PubMed Central

    Raike, Robert S.; Hess, Ellen J.; Jinnah, H.A.

    2015-01-01

    Cerebellar degeneration is traditionally associated with ataxia. Yet, there are examples of both ataxia and dystonia occurring in individuals with cerebellar degeneration. There is also substantial evidence suggesting that cerebellar dysfunction alone may cause dystonia. The types of cerebellar defects that may cause ataxia, dystonia, or both have not been delineated. In the current study, we explored the relationship between cerebellar degeneration and dystonia using the leaner mouse mutant. Leaner mice have severe dystonia that is associated with dysfunctional and degenerating cerebellar Purkinje cells. Whereas the density of Purkinje cells was not significantly reduced in 4 week-old leaner mice, approximately 50% of the neurons were lost by 34 weeks of age. On the other hand, the dystonia and associated functional disability became significantly less severe during this same interval. In other words, dystonia improved as Purkinje cells were lost, suggesting that dysfunctional Purkinje cells, rather than Purkinje cell loss, contribute to the dystonia. These results provide evidence that distorted cerebellar function may cause dystonia and support the concept that different types of cerebellar defects can have different functional consequences. PMID:25791619

  4. Distinct Critical Cerebellar Subregions for Components of Verbal Working Memory

    ERIC Educational Resources Information Center

    Cooper, Freya E.; Grube, Manon; Von Kriegstein, Katharina; Kumar, Sukhbinder; English, Philip; Kelly, Thomas P.; Chinnery, Patrick F.; Griffiths, Timothy D.

    2012-01-01

    A role for the cerebellum in cognition has been proposed based on studies suggesting a profile of cognitive deficits due to cerebellar stroke. Such studies are limited in the determination of the detailed organisation of cerebellar subregions that are critical for different aspects of cognition. In this study we examined the correlation between…

  5. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage.

    PubMed

    Morales, Daniver; Hatten, Mary E

    2006-11-22

    The cerebellum, like the cerebrum, includes a nuclear structure and an overlying cortical structure. Experiments in the past decade have expanded knowledge beyond the traditional function of the cerebellum to include critical roles in motor learning and memory and sensory discrimination. The initial steps in cerebellar development depend on inductive signaling involving FGF and Wnt proteins produced at the mesencephalic/metencephalic boundary. To address the issue of how individual cerebellar cell fates within the cerebellar territory are specified, we examined the expression of transcription factors, including mammalian homologues of LIM homeodomain-containing proteins, basic helix-loop-helix proteins, and three amino acid loop-containing proteins. The results of these studies show that combinatorial codes of transcription factors define precursors of the cerebellar nuclei, and both Purkinje cells and granule neurons of the cerebellar cortex. Examination of gene expression patterns in several hundred lines of Egfp-BAC (bacterial artificial chromosome) transgenic mice in the GENSAT Project revealed numerous genes with restricted expression in cerebellar progenitor populations, including genes specific for cerebellar nuclear precursors and Purkinje cell precursors. In addition, we identified patterns of gene expression that link granule and Purkinje cells to their precerebellar nuclei. These results identify molecular pathways that offer new insights on the development of the nuclear and cortical structures of the cerebellum, as well as components of the cerebellar circuitry.

  6. An integrator circuit in cerebellar cortex.

    PubMed

    Maex, Reinoud; Steuber, Volker

    2013-09-01

    The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low (< 1 per s) and high rates (> 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant.

  7. A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.

    PubMed

    Heyward, P M

    2010-12-01

    Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. PMID:21077881

  8. The physiological basis of therapies for cerebellar ataxias

    PubMed Central

    Mitoma, Hiroshi; Manto, Mario

    2016-01-01

    Cerebellar ataxias represent a group of heterogeneous disorders impacting on activities of daily living and quality of life. Various therapies have been proposed to improve symptoms in cerebellar ataxias. This review examines the physiological background of the various treatments currently administered worldwide. We analyze the mechanisms of action of drugs with a focus on aminopyridines and other antiataxic medications, of noninvasive cerebellar stimulation, and of motor rehabilitation. Considering the cerebellum as a controller, we propose the novel concept of ‘restorable stage’. Because of its unique anatomical architecture and its diffuse connectivity in particular with the cerebral cortex, keeping in mind the anatomophysiology of the cerebellar circuitry is a necessary step to understand the rationale of therapies of cerebellar ataxias and develop novel therapeutic tools. PMID:27582895

  9. Cerebellar vermis plays a causal role in visual motion discrimination.

    PubMed

    Cattaneo, Zaira; Renzi, Chiara; Casali, Stefano; Silvanto, Juha; Vecchi, Tomaso; Papagno, Costanza; D'Angelo, Egidio

    2014-09-01

    Cerebellar patients have been found to show deficits in visual motion discrimination, suggesting that the cerebellum may play a role in visual sensory processing beyond mediating motor control. Here we show that triple-pulse online transcranial magnetic stimulation (TMS) over cerebellar vermis but not over the cerebellar hemispheres significantly impaired motion discrimination. Critically, the interference caused by vermis TMS on motion discrimination did not depend on an indirect effect of TMS over nearby visual areas, as demonstrated by a control experiment in which TMS over V1 but not over cerebellar vermis significantly impaired orientation discrimination. These findings demonstrate the causal role of the cerebellar vermis in visual motion processing in neurologically normal participants.

  10. The physiological basis of therapies for cerebellar ataxias.

    PubMed

    Mitoma, Hiroshi; Manto, Mario

    2016-09-01

    Cerebellar ataxias represent a group of heterogeneous disorders impacting on activities of daily living and quality of life. Various therapies have been proposed to improve symptoms in cerebellar ataxias. This review examines the physiological background of the various treatments currently administered worldwide. We analyze the mechanisms of action of drugs with a focus on aminopyridines and other antiataxic medications, of noninvasive cerebellar stimulation, and of motor rehabilitation. Considering the cerebellum as a controller, we propose the novel concept of 'restorable stage'. Because of its unique anatomical architecture and its diffuse connectivity in particular with the cerebral cortex, keeping in mind the anatomophysiology of the cerebellar circuitry is a necessary step to understand the rationale of therapies of cerebellar ataxias and develop novel therapeutic tools. PMID:27582895

  11. New evidence for the cerebellar involvement in personality traits

    PubMed Central

    Picerni, Eleonora; Petrosini, Laura; Piras, Fabrizio; Laricchiuta, Daniela; Cutuli, Debora; Chiapponi, Chiara; Fagioli, Sabrina; Girardi, Paolo; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    Following the recognition of its role in sensory-motor coordination and learning, the cerebellum has been involved in cognitive, emotional, and even personality domains. This study investigated the relationships between cerebellar macro- and micro-structural variations and temperamental traits measured by Temperament and Character Inventory (TCI). High resolution T1-weighted, and Diffusion Tensor Images of 100 healthy subjects aged 18–59 years were acquired by 3 Tesla Magnetic Resonance scanner. In multiple regression analyses, cerebellar Gray Matter (GM) or White Matter (WM) volumes, GM Mean Diffusivity (MD), and WM Fractional Anisotropy (FA) were used as dependent variables, TCI scores as regressors, gender, age, and education years as covariates. Novelty Seeking scores were associated positively with the cerebellar GM volumes and FA, and negatively with MD. No significant association between Harm Avoidance, Reward Dependence or Persistence scores and cerebellar structural measures was found. The present data put toward a cerebellar involvement in the management of novelty. PMID:24106465

  12. Wafer Manufacturing and Slicing Using Wiresaw

    NASA Astrophysics Data System (ADS)

    Kao, Imin; Chung, Chunhui; Moreno Rodriguez, Roosevelt

    Wafer manufacturing (or wafer production) refers to a series of modern manufacturing processes of producing single-crystalline or poly-crystalline wafers from crystal ingot (or boule) of different sizes and materials. The majority of wafers are single-crystalline silicon wafers used in microelectronics fabrication although there is increasing importance in slicing poly-crystalline photovoltaic (PV) silicon wafers as well as wafers of different materials such as aluminum oxide, lithium niobate, quartz, sapphire, III-V and II-VI compounds, and others. Slicing is the first major post crystal growth manufacturing process toward wafer production. The modern wiresaw has emerged as the technology for slicing various types of wafers, especially for large silicon wafers, gradually replacing the ID saw which has been the technology for wafer slicing in the last 30 years of the 20th century. Modern slurry wiresaw has been deployed to slice wafers from small to large diameters with varying wafer thickness characterized by minimum kerf loss and high surface quality. The needs for slicing large crystal ingots (300 mm in diameter or larger) effectively with minimum kerf losses and high surface quality have made it indispensable to employ the modern slurry wiresaw as the preferred tool for slicing. In this chapter, advances in technology and research on the modern slurry wiresaw manufacturing machines and technology are reviewed. Fundamental research in modeling and control of modern wiresaw manufacturing process are required in order to understand the cutting mechanism and to make it relevant for improving industrial processes. To this end, investigation and research have been conducted for the modeling, characterization, metrology, and control of the modern wiresaw manufacturing processes to meet the stringent precision requirements of the semiconductor industry. Research results in mathematical modeling, numerical simulation, experiments, and composition of slurry versus wafer

  13. Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials

    PubMed Central

    Kang, C.; Qiao, Y.; Li, G.; Baechle, K.; Camelliti, P.; Rentschler, S.; Efimov, I. R.

    2016-01-01

    Translation of novel therapies from bench to bedside is hampered by profound disparities between animal and human genetics and physiology. The ability to test for efficacy and cardiotoxicity in a clinically relevant human model system would enable more rapid therapy development. We have developed a preclinical platform for validation of new therapies in human heart tissue using organotypic slices isolated from donor and end-stage failing hearts. A major advantage of the slices when compared with human iPS-derived cardiomyocytes is that native tissue architecture and extracellular matrix are preserved, thereby allowing investigation of multi-cellular physiology in normal or diseased myocardium. To validate this model, we used optical mapping of transmembrane potential and calcium transients. We found that normal human electrophysiology is preserved in slice preparations when compared with intact hearts, including slices obtained from the region of the sinus node. Physiology is maintained in slices during culture, enabling testing the acute and chronic effects of pharmacological, gene, cell, optogenetic, device, and other therapies. This methodology offers a powerful high-throughput platform for assessing the physiological response of the human heart to disease and novel putative therapies. PMID:27356882

  14. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    PubMed

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes. PMID:24679120

  15. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented.

    PubMed

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality. PMID:27301072

  16. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality.

  17. Cerebellar ependymal cyst in a dog.

    PubMed

    Wyss-Fluehmann, G; Konar, M; Jaggy, A; Vandevelde, M; Oevermann, A

    2008-11-01

    An 11-week-old, male, Staffordshire Bull Terrier had a history of generalized ataxia and falling since birth. The neurologic findings suggested a localization in the cerebellum. Magnetic resonance imaging of the brain was performed. In all sequences the area of the cerebellum was almost replaced by fluid isointense to cerebrospinal fluid. A complete necropsy was performed after euthanasia. Histologically, the lesion was characterized by extensive loss of cerebellar tissue in both hemispheres and vermis. Toward the surface of the cerebellar defect, the cavity was confined by ruptured and folded membranes consisting of a layer of glial fibrillary acidic (GFAP)-positive glial cells covered multifocally by epithelial cells. Some of these cells bore apical cilia and were cytokeratin and GFAP negative, supporting their ependymal origin. The histopathologic features of our case are consistent with the diagnosis of an ependymal cyst. Its glial and ependymal nature as demonstrated by histopathologic and immunohistochemical examination differs from arachnoid cysts, which have also been reported in dogs. The origin of these cysts remains controversial, but it has been suggested that they develop during embryogenesis subsequent to sequestration of developing neuroectoderm. We speculate that the cyst could have been the result of a pre- or perinatal, possibly traumatic, insult because hemorrhage, and tissue destruction had occurred. To our knowledge, this is the first description of an ependymal cyst in the veterinary literature.

  18. Insights into cerebellar development and medulloblastoma.

    PubMed

    Bihannic, Laure; Ayrault, Olivier

    2016-01-01

    Cerebellar development is an extensive process that begins during early embryonic stages and persists more than one year after birth in human. Therefore, the cerebellum is susceptible to acquire various developmental abnormalities leading to numerous diseases such as medulloblastoma, the most common pediatric malignant brain tumor. One third of the patients with medulloblastoma are incurable and survivors have a poor quality of life due to the aggressiveness of the broad-spectrum treatments. Within the past few years, it has been highlighted that medulloblastoma is a heterogeneous disease that is divided in four molecular subgroups. This recent advance in the field, combined with the development of associated preclinical models for each subgroup, should enable, in the future, the discovery and use of targeted therapy in clinical treatments for each subtype of medulloblastoma. In this review, we first aim to show how deregulation of cerebellar development can lead to medulloblastoma formation and then to present the advances in the molecular subgrouping of medulloblastoma and the associated preclinical models.

  19. Comparative Visualization of Ensembles Using Ensemble Surface Slicing

    PubMed Central

    Alabi, Oluwafemi S.; Wu, Xunlei; Harter, Jonathan M.; Phadke, Madhura; Pinto, Lifford; Petersen, Hannah; Bass, Steffen; Keifer, Michael; Zhong, Sharon; Healey, Chris; Taylor, Russell M.

    2012-01-01

    By definition, an ensemble is a set of surfaces or volumes derived from a series of simulations or experiments. Sometimes the series is run with different initial conditions for one parameter to determine parameter sensitivity. The understanding and identification of visual similarities and differences among the shapes of members of an ensemble is an acute and growing challenge for researchers across the physical sciences. More specifically, the task of gaining spatial understanding and identifying similarities and differences between multiple complex geometric data sets simultaneously has proved challenging. This paper proposes a comparison and visualization technique to support the visual study of parameter sensitivity. We present a novel single-image view and sampling technique which we call Ensemble Surface Slicing (ESS). ESS produces a single image that is useful for determining differences and similarities between surfaces simultaneously from several data sets. We demonstrate the usefulness of ESS on two real-world data sets from our collaborators. PMID:23560167

  20. Prenatal Cerebellar Disruptions: Neuroimaging Spectrum of Findings in Correlation with Likely Mechanisms and Etiologies of Injury.

    PubMed

    Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2016-08-01

    There is increasing evidence that the cerebellum is susceptible to prenatal infections and hemorrhages and that congenital morphologic anomalies of the cerebellum may be caused by disruptive (acquired) causes. Starting from the neuroimaging pattern, this report describes a spectrum of prenatal cerebellar disruptions including cerebellar agenesis, unilateral cerebellar hypoplasia, cerebellar cleft, global cerebellar hypoplasia, and vanishing cerebellum in Chiari type II malformation. The neuroimaging findings, possible causative disruptive events, and clinical features of each disruption are discussed. Recognition of cerebellar disruptions and their differentiation from cerebellar malformations is important in terms of diagnosis, prognosis, and genetic counselling. PMID:27423799

  1. Staining protocol for organotypic hippocampal slice cultures.

    PubMed

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method to immunostain organotypic slice cultures from mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly, from the time of isolation at postnatal day 6-9 up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over periods ranging from seconds to months. Subsequent to imaging, the slices can be processed for immunocytochemistry to collect further information about the imaged structures. This protocol can be completed in 3 d.

  2. Neural correlates of impaired emotional face recognition in cerebellar lesions.

    PubMed

    Adamaszek, Michael; Kirkby, Kenneth C; D'Agata, Fedrico; Olbrich, Sebastian; Langner, Sönke; Steele, Christopher; Sehm, Bernhard; Busse, Stefan; Kessler, Christof; Hamm, Alfons

    2015-07-10

    Clinical and neuroimaging data indicate a cerebellar contribution to emotional processing, which may account for affective-behavioral disturbances in patients with cerebellar lesions. We studied the neurophysiology of cerebellar involvement in recognition of emotional facial expression. Participants comprised eight patients with discrete ischemic cerebellar lesions and eight control patients without any cerebrovascular stroke. Event-related potentials (ERP) were used to measure responses to faces from the Karolinska Directed Emotional Faces Database (KDEF), interspersed in a stream of images with salient contents. Images of faces augmented N170 in both groups, but increased late positive potential (LPP) only in control patients without brain lesions. Dipole analysis revealed altered activation patterns for negative emotions in patients with cerebellar lesions, including activation of the left inferior prefrontal area to images of faces showing fear, contralateral to controls. Correlation analysis indicated that lesions of cerebellar area Crus I contribute to ERP deviations. Overall, our results implicate the cerebellum in integrating emotional information at different higher order stages, suggesting distinct cerebellar contributions to the proposed large-scale cerebral network of emotional face recognition. PMID:25912431

  3. Developmental dyslexia and widespread activation across the cerebellar hemispheres.

    PubMed

    Baillieux, Hanne; Vandervliet, Everhard J M; Manto, Mario; Parizel, Paul M; De Deyn, Peter P; Mariën, Peter

    2009-02-01

    Developmental dyslexia is the most common learning disability in school-aged children with an estimated incidence of five to ten percent. The cause and pathophysiological substrate of this developmental disorder is unclear. Recently, a possible involvement of the cerebellum in the pathogenesis of dyslexia has been postulated. In this study, 15 dyslexic children and 7 age-matched control subjects were investigated by means of functional neuroimaging (fMRI) using a noun-verb association paradigm. Comparison of activation patterns between dyslexic and control subjects revealed distinct and significant differences in cerebral and cerebellar activation. Control subjects showed bilaterally well-defined and focal activation patterns in the frontal and parietal lobes and the posterior regions of the cerebellar hemispheres. The dyslexic children, however, presented widespread and diffuse activations on the cerebral and cerebellar level. Cerebral activations were found in frontal, parietal, temporal and occipital regions. Activations in the cerebellum were found predominantly in the cerebellar cortex, including Crus I, Crus II, hemispheric lobule VI, VII and vermal lobules I, II, III, IV and VII. This preliminary study is the first to reveal a significant difference in cerebellar functioning between dyslexic children and controls during a semantic association task. As a result, we propose a new hypothesis regarding the pathophysiological mechanisms of developmental dyslexia. Given the sites of activation in the cerebellum in the dyslexic group, a defect of the intra-cerebellar distribution of activity is suspected, suggesting a disorder of the processing or transfer of information within the cerebellar cortex. PMID:18986695

  4. Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory

    PubMed Central

    Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo

    2012-01-01

    Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133

  5. Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity

    PubMed Central

    Velayudhan, B.; Hubsch, C.; Pradeep, S.; Roze, E.; Vidailhet, M.; Meunier, S.; Kishore, A.

    2013-01-01

    Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations. PMID:22351647

  6. Neural correlates of impaired emotional face recognition in cerebellar lesions.

    PubMed

    Adamaszek, Michael; Kirkby, Kenneth C; D'Agata, Fedrico; Olbrich, Sebastian; Langner, Sönke; Steele, Christopher; Sehm, Bernhard; Busse, Stefan; Kessler, Christof; Hamm, Alfons

    2015-07-10

    Clinical and neuroimaging data indicate a cerebellar contribution to emotional processing, which may account for affective-behavioral disturbances in patients with cerebellar lesions. We studied the neurophysiology of cerebellar involvement in recognition of emotional facial expression. Participants comprised eight patients with discrete ischemic cerebellar lesions and eight control patients without any cerebrovascular stroke. Event-related potentials (ERP) were used to measure responses to faces from the Karolinska Directed Emotional Faces Database (KDEF), interspersed in a stream of images with salient contents. Images of faces augmented N170 in both groups, but increased late positive potential (LPP) only in control patients without brain lesions. Dipole analysis revealed altered activation patterns for negative emotions in patients with cerebellar lesions, including activation of the left inferior prefrontal area to images of faces showing fear, contralateral to controls. Correlation analysis indicated that lesions of cerebellar area Crus I contribute to ERP deviations. Overall, our results implicate the cerebellum in integrating emotional information at different higher order stages, suggesting distinct cerebellar contributions to the proposed large-scale cerebral network of emotional face recognition.

  7. Ultrashort pulse laser slicing of semiconductor crystal

    NASA Astrophysics Data System (ADS)

    Kim, Eunho; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka

    2016-07-01

    Meanwhile, by the convention wire-saw technique, it is difficult to slice off a thin wafer from bulk SiC crystal without the reserving space for cutting. In this study, we have achieved exfoliation of 4H-SiC single crystal by femtosecond laser induced slicing method. By using this, the exfoliated surface with the root-mean-square roughness of 3 μm and the cutting-loss thickness smaller than 30 μm was successfully demonstrated. We have also observed the nanostructure on the exfoliated surface in SiC crystal.

  8. Sporadic adult-onset neuronal intranuclear inclusion disease with the main presentation of repeated cerebellar ataxia: a case study.

    PubMed

    Sakurai, Takeo; Harada, Seiko; Wakida, Kenji; Yoshida, Mari; Nishida, Hiroshi

    2016-06-22

    A 66-year-old woman suddenly experienced unsteadiness while walking; she had experienced the same symptom before, but it had resolved immediately. Her neurological findings showed cerebellar ataxia, absence of tendon reflex in the extremities, and orthostatic hypotension. MRI with DWI of the brain showed linear high-intensity areas at the white matter just below the cerebral cortex. Therefore, we suspected neuronal intranuclear inclusion disease (NIID). In her cutaneous skin biopsy, intranuclear inclusion bodies, which tested positive for an anti-ubiquitin antibody and anti-p62 antibody, were observed in sweat gland cells and fibroblasts; therefore, we diagnosed her with NIID. As no one in her family had similar symptoms, this was a case of sporadic NIID. Adult-onset NIID with the main presentation of cerebellar ataxia is rare; in our case, this repeated acute-onset symptom was a unique manifestation of the condition. PMID:27181748

  9. Unilateral cerebellar and brain stem hypoplasia in a child with a postnatal diagnosis of dissecting aneurysm in basilar artery.

    PubMed

    Akkas-Yazici, Sinem; Benbir, Gulcin; Kocer, Naci; Yalcinkaya, Cengiz

    2014-12-01

    Cerebellum is highly vulnerable in the prenatal period. Increasing experience with fetal imaging studies has demonstrated that unilateral cerebellar hypoplasia (UCH) is mainly prenatally acquired, representing disruption rather than a true malformation. Here, we report the case of a 17-month-old boy presented with a sudden onset of abnormal eye movements, who was diagnosed during routine fetal screening with UCH and brain stem hypoplasia and suffered from cerebral palsy; however, no posterior arterial system pathology was detected on cranial magnetic resonance images at that time. Following this acute event, diagnostic neuroradiological interventions revealed a dissecting aneurysm with a saccular component in midbasilar arterial segment and hypoplastic left posterior cerebral artery, which may support the ischemic disruptive mechanism in the development of prenatally detected UCH in this child. The pathogenetic mechanisms for cerebellar disruption are certainly multifactorial in origin, although ischemic arterial etiologies were often undervalued.

  10. Distal myopathy with rimmed vacuoles and cerebellar atrophy.

    PubMed

    Merkli, Hajnalka; Pál, Endre; Gáti, István; Czopf, József

    2006-01-01

    Distal myopathies constitute a clinically and pathologically heterogeneous group of genetically determined neuromuscular disorders, where the distal muscles of the upper or lower limbs are affected. The disease of a 41-year-old male patient started with gait disturbances, when he was 25. The progression was slow, but after 16 years he became seriously disabled. Neurological examination showed moderate to severe weakness in distal muscles of all extremities, marked cerebellar sign and steppage gait. Muscle biopsy resulted in myopathic changes with rimmed vacuoles. Brain MRI scan showed cerebellar atrophy. This case demonstrates a rare association of distal myopathy and cerebellar atrophy.

  11. Cerebellar morphological alterations in rats induced by prenatal ozone exposure.

    PubMed

    Rivas-Manzano, P; Paz, C

    1999-11-26

    The present study analyzes the morphological aspects of the cerebellum of rats with prenatal exposure to ozone. A double blind histological and planimetric analysis was performed studying sagittal sections of the anterior cerebellar lobe at postnatal days 0, 12 and 60. Ozone exposed rats showed cerebellar necrotic signs at age 0, diminished area of the molecular layer with Purkinje cells with pale nucleoli and perinucleolar bodies at age 12, and Purkinje cells showing nuclei with unusual clumps of chromatin in the periphery at age 60. We conclude that exposure to high concentrations of ozone during gestation induces permanent cerebellar damage in rats.

  12. [A case of cerebral gigantism with cerebellar atrophy].

    PubMed

    Kitazawa, K; Ikeda, M; Tsukagoshi, H

    1990-05-01

    A 37-year-old housewife, who had physical characteristics of cerebral gigantism, such as the tall stature, acromegaly, macrocephalia, high arched palate and antimongoloid slant, developed cerebellar ataxia and dysarthria. Her mother, uncle and grandmother were also reported to have slowly progressive gait disturbance. Her mother was also tall. Endocrinological studies failed to show any definite abnormality. CT and MRI revealed remarkable cerebellar atrophy. Though cerebral gigantism is often associated with clumsiness and incoordination, the etiology of the ataxia is poorly understood. This case indicates that the ataxia in cerebral gigantism may be, at least partly, caused by cerebellar atrophy. PMID:2401112

  13. Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome.

    PubMed

    Bodranghien, Florian; Bastian, Amy; Casali, Carlo; Hallett, Mark; Louis, Elan D; Manto, Mario; Mariën, Peter; Nowak, Dennis A; Schmahmann, Jeremy D; Serrao, Mariano; Steiner, Katharina Marie; Strupp, Michael; Tilikete, Caroline; Timmann, Dagmar; van Dun, Kim

    2016-06-01

    The cerebellum is involved in sensorimotor operations, cognitive tasks and affective processes. Here, we revisit the concept of the cerebellar syndrome in the light of recent advances in our understanding of cerebellar operations. The key symptoms and signs of cerebellar dysfunction, often grouped under the generic term of ataxia, are discussed. Vertigo, dizziness, and imbalance are associated with lesions of the vestibulo-cerebellar, vestibulo-spinal, or cerebellar ocular motor systems. The cerebellum plays a major role in the online to long-term control of eye movements (control of calibration, reduction of eye instability, maintenance of ocular alignment). Ocular instability, nystagmus, saccadic intrusions, impaired smooth pursuit, impaired vestibulo-ocular reflex (VOR), and ocular misalignment are at the core of oculomotor cerebellar deficits. As a motor speech disorder, ataxic dysarthria is highly suggestive of cerebellar pathology. Regarding motor control of limbs, hypotonia, a- or dysdiadochokinesia, dysmetria, grasping deficits and various tremor phenomenologies are observed in cerebellar disorders to varying degrees. There is clear evidence that the cerebellum participates in force perception and proprioceptive sense during active movements. Gait is staggering with a wide base, and tandem gait is very often impaired in cerebellar disorders. In terms of cognitive and affective operations, impairments are found in executive functions, visual-spatial processing, linguistic function, and affective regulation (Schmahmann's syndrome). Nonmotor linguistic deficits including disruption of articulatory and graphomotor planning, language dynamics, verbal fluency, phonological, and semantic word retrieval, expressive and receptive syntax, and various aspects of reading and writing may be impaired after cerebellar damage. The cerebellum is organized into (a) a primary sensorimotor region in the anterior lobe and adjacent part of lobule VI, (b) a second sensorimotor

  14. Silicon ingot casting: Heat exchanger method. Multi-wire slicing: Fixed abrasive slicing technique, phase 3

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    In the area of ingot casting the proof of concept of heat exchanger method (HEM) was established. It was also established that HEM cast silicon yielded solar cell performance comparable to Czochralski grown material. Solar cells with conversion efficiencies of up to 15% were fabricated. It was shown that square cross-section ingots can be cast. In the area of crystal slicing, it was established that silicon can be sliced efficiently with the fixed abrasive slicing technique approach. This concept was carried forward to 10 cm diameter workpiece.

  15. Hereditary Cerebellar Ataxias: A Korean Perspective

    PubMed Central

    Kim, Ji Sun; Cho, Jin Whan

    2015-01-01

    Hereditary ataxia is a heterogeneous disorder characterized by progressive ataxia combined with/without peripheral neuropathy, extrapyramidal symptoms, pyramidal symptoms, seizure, and multiple systematic involvements. More than 35 autosomal dominant cerebellar ataxias have been designated as spinocerebellar ataxia, and there are 55 recessive ataxias that have not been named systematically. Conducting genetic sequencing to confirm a diagnosis is difficult due to the large amount of subtypes with phenotypic overlap. The prevalence of hereditary ataxia can vary among countries, and estimations of prevalence and subtype frequencies are necessary for planning a diagnostic strategy in a specific population. This review covers the various hereditary ataxias reported in the Korean population with a focus on the prevalence and subtype frequencies as the clinical characteristics of the various subtypes. PMID:26090078

  16. Thin-Slice Perception Develops Slowly

    ERIC Educational Resources Information Center

    Balas, Benjamin; Kanwisher, Nancy; Saxe, Rebecca

    2012-01-01

    Body language and facial gesture provide sufficient visual information to support high-level social inferences from "thin slices" of behavior. Given short movies of nonverbal behavior, adults make reliable judgments in a large number of tasks. Here we find that the high precision of adults' nonverbal social perception depends on the slow…

  17. Detecting Psychopathy from Thin Slices of Behavior

    ERIC Educational Resources Information Center

    Fowler, Katherine A.; Lilienfeld, Scott O.; Patrick, Christopher J.

    2009-01-01

    This study is the first to demonstrate that features of psychopathy can be reliably and validly detected by lay raters from "thin slices" (i.e., small samples) of behavior. Brief excerpts (5 s, 10 s, and 20 s) from interviews with 96 maximum-security inmates were presented in video or audio form or in both modalities combined. Forty raters used…

  18. nem_slice ver. 3.34

    2009-06-08

    Nem_slice reads in a finite element model description of the geometry of a problem from an ExodusII file and generates either a nodal or elemental graph of the problem. It then calls Chaco to load balance the graph and then outputs a NemesisI load-balance file.

  19. Cerebellar transcranial direct current stimulation in neurological disease.

    PubMed

    Ferrucci, Roberta; Bocci, Tommaso; Cortese, Francesca; Ruggiero, Fabiana; Priori, Alberto

    2016-01-01

    Several studies have highlighted the therapeutic potential of transcranial direct current stimulation (tDCS) in patients with neurological diseases, including dementia, epilepsy, post-stroke dysfunctions, movement disorders, and other pathological conditions. Because of this technique's ability to modify cerebellar excitability without significant side effects, cerebellar tDCS is a new, interesting, and powerful tool to induce plastic modifications in the cerebellum. In this report, we review a number of interesting studies on the application of cerebellar tDCS for various neurological conditions (ataxia, Parkinson's disease, dystonia, essential tremor) and the possible mechanism by which the stimulation acts on the cerebellum. Study findings indicate that cerebellar tDCS is a promising therapeutic tool in treating several neurological disorders; however, this method's efficacy appears to be limited, given the current data. PMID:27595007

  20. Novel Approaches to Studying the Genetic Basis of Cerebellar Development

    PubMed Central

    Sajan, Samin A.; Waimey, Kathryn E.

    2010-01-01

    The list of genes that when mutated cause disruptions in cerebellar development is rapidly increasing. The study of both spontaneous and engineered mouse mutants has been essential to this progress, as it has revealed much of our current understanding of the developmental processes required to construct the mature cerebellum. Improvements in brain imaging, such as magnetic resonance imaging (MRI) and the emergence of better classification schemes for human cerebellar malformations, have recently led to the identification of a number of genes which cause human cerebellar disorders. In this review we argue that synergistic approaches combining classical molecular techniques, genomics, and mouse models of human malformations will be essential to fuel additional discoveries of cerebellar developmental genes and mechanisms. PMID:20387026

  1. Anomalous Cerebellar Anatomy in Chinese Children with Dyslexia

    PubMed Central

    Yang, Yang; Chen, Bao-Guo; Zhang, Yi-Wei; Bi, Hong-Yan

    2016-01-01

    The cerebellar deficit hypothesis for developmental dyslexia claims that cerebellar dysfunction causes the failures in the acquisition of visuomotor skills and automatic reading and writing skills. In people with dyslexia in the alphabetic languages, the abnormal activation and structure of the right or bilateral cerebellar lobes have been identified. Using a typical implicit motor learning task, however, one neuroimaging study demonstrated the left cerebellar dysfunction in Chinese children with dyslexia. In the present study, using voxel-based morphometry, we found decreased gray matter volume in the left cerebellum in Chinese children with dyslexia relative to age-matched controls. The positive correlation between reading performance and regional gray matter volume suggests that the abnormal structure in the left cerebellum is responsible for reading disability in Chinese children with dyslexia. PMID:27047403

  2. Anomalous Cerebellar Anatomy in Chinese Children with Dyslexia.

    PubMed

    Yang, Ying-Hui; Yang, Yang; Chen, Bao-Guo; Zhang, Yi-Wei; Bi, Hong-Yan

    2016-01-01

    The cerebellar deficit hypothesis for developmental dyslexia claims that cerebellar dysfunction causes the failures in the acquisition of visuomotor skills and automatic reading and writing skills. In people with dyslexia in the alphabetic languages, the abnormal activation and structure of the right or bilateral cerebellar lobes have been identified. Using a typical implicit motor learning task, however, one neuroimaging study demonstrated the left cerebellar dysfunction in Chinese children with dyslexia. In the present study, using voxel-based morphometry, we found decreased gray matter volume in the left cerebellum in Chinese children with dyslexia relative to age-matched controls. The positive correlation between reading performance and regional gray matter volume suggests that the abnormal structure in the left cerebellum is responsible for reading disability in Chinese children with dyslexia. PMID:27047403

  3. Past, Present and Future Therapeutics for Cerebellar Ataxias

    PubMed Central

    Marmolino, D; Manto, M

    2010-01-01

    Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development. PMID:20808545

  4. Cerebellar contributions to neurological soft signs in healthy young adults.

    PubMed

    Hirjak, Dusan; Thomann, Philipp A; Kubera, Katharina M; Stieltjes, Bram; Wolf, Robert C

    2016-02-01

    Neurological soft signs (NSS) are frequently found in psychiatric disorders of significant neurodevelopmental origin, e.g., in patients with schizophrenia and autism. Yet NSS are also present in healthy individuals suggesting a neurodevelopmental signature of motor function, probably as a continuum between health and disease. So far, little is known about the neural mechanisms underlying these motor phenomena in healthy persons, and it is even less known whether the cerebellum contributes to NSS expression. Thirty-seven healthy young adults (mean age = 23 years) were studied using high-resolution structural magnetic resonance imaging (MRI) and "resting-state" functional MRI at three Tesla. NSS levels were measured using the "Heidelberg Scale." Cerebellar gray matter volume was investigated using cerebellum-optimized voxel-based analysis methods. Cerebellar function was assessed using regional homogeneity (ReHo), a measure of local network strength. The relationship between cerebellar structure and function and NSS was analyzed using regression models. There was no significant relationship between cerebellar volume and NSS (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). Positive associations with cerebellar lobule VI activity were found for the "motor coordination" and "hard signs" NSS domains. A negative relationship was found between lobule VI activity and "complex motor task" domain (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). The data indicate that in healthy young adults, distinct NSS domains are related to cerebellar activity, specifically with activity of cerebellar subregions with known cortical somatomotor projections. In contrast, cerebellar volume is not predictive of NSS in healthy persons.

  5. Primary cerebellar agenesis presenting as isolated cognitive impairment

    PubMed Central

    Ashraf, Obaid; Jabeen, Shumyla; Khan, Azhar; Shaheen, Feroze

    2016-01-01

    Primary cerebellar agenesis is a rare entity. To the best of our knowledge, eleven living cases have been reported till date. Most of these were associated with some degree of motor impairment. We present a case of cerebellar agenesis in a child who presented with cognitive abnormalities leading to poor performance at school. No motor impairment was seen. Among the eleven cases reported earlier, only one case showed lack of motor impairment.

  6. Primary cerebellar agenesis presenting as isolated cognitive impairment

    PubMed Central

    Ashraf, Obaid; Jabeen, Shumyla; Khan, Azhar; Shaheen, Feroze

    2016-01-01

    Primary cerebellar agenesis is a rare entity. To the best of our knowledge, eleven living cases have been reported till date. Most of these were associated with some degree of motor impairment. We present a case of cerebellar agenesis in a child who presented with cognitive abnormalities leading to poor performance at school. No motor impairment was seen. Among the eleven cases reported earlier, only one case showed lack of motor impairment. PMID:27606028

  7. Aryl hydrocarbon receptor expression and activity in cerebellar granule neuroblasts: implications for development and dioxin neurotoxicity.

    PubMed

    Williamson, Mary A; Gasiewicz, Thomas A; Opanashuk, Lisa A

    2005-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent teratogen that produces neurobehavioral abnormalities associated with both cognitive and locomotor systems, yet the precise regional and cellular targets of developmental neurotoxicity remain largely unknown. Most, if not all, TCDD-induced pathology is mediated via binding to the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that belongs to the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) superfamily. Upon ligand binding, AhR translocates to the nucleus, dimerizes with the AhR nuclear translocator protein (Arnt), and regulates transcription by interaction with dioxin-response elements (DREs) in target genes, most notably specific cytochrome P450 (CYP) family members. To assess whether developing cerebellar granule neuroblasts are potential direct targets for TCDD toxicity, AhR expression and transcriptional activity were examined. AhR and Arnt proteins were present in mouse cerebellum from birth throughout postnatal development. AhR protein levels peaked between postnatal day (PND) 3-10, a critical period for granule neuroblast growth and maturation. Transcriptionally active AhR was detected in immature cerebellar granule cells in a transgenic dioxin-responsive lacZ mouse model after acute TCDD exposure. AhR and Arnt were also expressed in cerebellar granule neuroblast cultures. AhR localized to the nucleus in granule cells 15 min after TCDD treatment. TCCD elicited time-dependent and concentration-dependent increases in CYP1A1 and 1B1 mRNA and protein levels. Moreover, TCDD treatment reduced both thymidine incorporation and granule neuroblast survival in a concentration-dependent manner. These data suggest that (1) granule neuroblasts are direct targets for developmental AhR-mediated TCDD neurotoxicity and (2) TCDD exposure may disrupt granule cell neurogenesis.

  8. Oxidative injury in multiple sclerosis cerebellar grey matter.

    PubMed

    Kemp, Kevin; Redondo, Juliana; Hares, Kelly; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2016-07-01

    Cerebellar dysfunction is a significant contributor to disability in multiple sclerosis (MS). Both white matter (WM) and grey matter (GM) injury occurs within MS cerebellum and, within GM, demyelination, inflammatory cell infiltration and neuronal injury contribute to on-going pathology. The precise nature of cerebellar GM injury is, however, unknown. Oxidative stress pathways with ultimate lipid peroxidation and cell membrane injury occur extensively in MS and the purpose of this study was to investigate these processes in MS cerebellar GM. Post-mortem human cerebellar GM from MS and control subjects was analysed immunohistochemically, followed by semi-quantitative analysis of markers of cellular injury, lipid peroxidation and anti-oxidant enzyme expression. We have shown evidence for reduction in myelin and neuronal markers in MS GM, coupled to an increase in expression of a microglial marker. We also show that the lipid peroxidation product 4-hydroxynonenal co-localises with myelin and its levels negatively correlate to myelin basic protein levels. Furthermore, superoxide dismutase (SOD1 and 2) enzymes, localised within cerebellar neurons, are up-regulated, yet the activation of subsequent enzymes responsible for the detoxification of hydrogen peroxide, catalase and glutathione peroxidase are relatively deficient. These studies provide evidence for oxidative injury in MS cerebellar GM and further help define disease mechanisms within the MS brain. PMID:27086975

  9. Emotions and their cognitive control in children with cerebellar tumors.

    PubMed

    Hopyan, Talar; Laughlin, Suzanne; Dennis, Maureen

    2010-11-01

    A constellation of deficits, termed the cerebellar cognitive affective syndrome (CCAS), has been reported following acquired cerebellar lesions. We studied emotion identification and the cognitive control of emotion in children treated for acquired tumors of the cerebellum. Participants were 37 children (7-16 years) treated for cerebellar tumors (19 benign astrocytomas (AST), 18 malignant medulloblastomas (MB), and 37 matched controls (CON). The Emotion Identification Task investigated recognition of happy and sad emotions in music. In two cognitive control tasks, we investigated whether children could identify emotion in situations in which the emotion in the music and the emotion in the lyrics was either congruent or incongruent. Children with cerebellar tumors identified emotion as accurately and quickly as controls (p > .05), although there was a significant interaction of emotions and group (p < .01), with the MB group performing less accurately identifying sad emotions, and both cerebellar tumor groups were impaired in the cognitive control of emotions (p < .01). The fact that childhood acquired cerebellar tumors disrupt cognitive control of emotion rather than emotion identification provides some support for a model of the CCAS as a disorder, not so much of emotion as of the regulation of emotion by cognition. PMID:20887648

  10. Altered cerebellar connectivity in Parkinson's patients ON and OFF L-DOPA medication.

    PubMed

    Festini, Sara B; Bernard, Jessica A; Kwak, Youngbin; Peltier, Scott; Bohnen, Nicolaas I; Müller, Martijn L T M; Dayalu, Praveen; Seidler, Rachael D

    2015-01-01

    Although nigrostriatal changes are most commonly affiliated with Parkinson's disease, the role of the cerebellum in Parkinson's has become increasingly apparent. The present study used lobule-based cerebellar resting state functional connectivity to (1) compare cerebellar-whole brain and cerebellar-cerebellar connectivity in Parkinson's patients both ON and OFF L-DOPA medication and controls, and to (2) relate variations in cerebellar connectivity to behavioral performance. Results indicated that, when contrasted to the control group, Parkinson's patients OFF medication had increased levels of cerebellar-whole brain and cerebellar-cerebellar connectivity, whereas Parkinson's patients ON medication had decreased levels of cerebellar-whole brain and cerebellar-cerebellar connectivity. Moreover, analyses relating levels of cerebellar connectivity to behavioral measures demonstrated that, within each group, increased levels of connectivity were most often associated with improved cognitive and motor performance, but there were several instances where increased connectivity was related to poorer performance. Overall, the present study found medication-variant cerebellar connectivity in Parkinson's patients, further demonstrating cerebellar changes associated with Parkinson's disease and the moderating effects of medication. PMID:25954184

  11. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans.

    PubMed

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hammer, Monia; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-06-28

    A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  12. Maintenance of high-frequency transmission at purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites.

    PubMed

    Telgkamp, Petra; Padgett, Daniel E; Ledoux, Veronica A; Woolley, Catherine S; Raman, Indira M

    2004-01-01

    Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-pulse ratio (IPSC(2)/IPSC(1)) of the total IPSC was approximately 1 and the steady-state ratio (IPSC(20)/IPSC(1)) was approximately 0.5, suggesting a high response probability of postsynaptic receptors, without an unusually high release probability. Three-dimensional electron microscopic reconstructions of Purkinje boutons revealed multiple active zones without intervening transporters, suggestive of "spillover"-mediated transmission. Simulations of boutons with 10-16 release sites, in which transmitter from any site can reach all receptors opposite the bouton, replicated multiple-pulse depression during normal, high, and low presynaptic Ca influx. These results suggest that release from multiple-site boutons limits depletion-based depression, permitting prolonged, high-frequency inhibition at corticonuclear synapses. PMID:14715139

  13. Visible Human Slice Web Server: a first assessment

    NASA Astrophysics Data System (ADS)

    Hersch, Roger D.; Gennart, Benoit A.; Figueiredo, Oscar; Mazzariol, Marc; Tarraga, Joaquin; Vetsch, S.; Messerli, Vincent; Welz, R.; Bidaut, Luc M.

    1999-12-01

    The Visible Human Slice Server started offering its slicing services at the end of June 1998. From that date until the end of May, more than 280,000 slices were extracted from the Visible Man, by layman interested in anatomy, by students and by specialists. The Slice Server is based one Bi-Pentium PC and 16 disks. It is a scaled down version of a powerful parallel server comprising 5 Bi-Pentium Pro PCs and 60 disks. The parallel server program was created thanks to a computer-aided parallelization framework, which takes over the task of creating a multi-threaded pipelined parallel program from a high-level parallel program description. On the full blown architecture, the parallel program enables the extraction and resampling of up to 5 color slices per second. Extracting 5 slice/s requires to access the disks and extract subvolumes of the Visible Human at an aggregate throughput of 105 MB/s. The publicly accessible server enables to extract slices having any orientation. The slice position and orientation can either be specified for each slice separately or as a position and orientation offered by a Java applet and possible future improvements. In the very near future, the Web Slice Server will offer additional services, such as the possibility to extract ruled surfaces and to extract animations incorporating slices perpendicular to a user defined trajectory.

  14. Human brain slices for epilepsy research: Pitfalls, solutions and future challenges.

    PubMed

    Jones, Roland S G; da Silva, Anderson Brito; Whittaker, Roger G; Woodhall, Gavin L; Cunningham, Mark O

    2016-02-15

    Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.

  15. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies

    PubMed Central

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc

    2016-01-01

    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  16. Characteristic diffusion tensor tractography in multiple system atrophy with predominant cerebellar ataxia and cortical cerebellar atrophy.

    PubMed

    Fukui, Yusuke; Hishikawa, Nozomi; Sato, Kota; Nakano, Yumiko; Morihara, Ryuta; Ohta, Yasuyuki; Yamashita, Toru; Abe, Koji

    2016-01-01

    The objective of this study is to determine whether diffusion tensor imaging (DTI) tractography analysis is a potential method for differentiating cerebellar ataxia patients with multiple system atrophy with predominant cerebellar ataxia (MSA-C) and cortical cerebellar atrophy (CCA). Forty-one MSA-C patients (62.7 ± 8.1 years old, mean ± SD) and age- and gender-matched 15 CCA patients (63.0 ± 8.6 years old) were examined.Tractography was performed using the DTI track module provided in the MedINRIA version 1.9.4, and regions of interest were drawn manually to reconstruct an efferent fiber tract and two afferent fiber tracts via the cerebellum. Compared with CCA, MSA-C patients showed significant declines of fractional anisotropy (FA) values of afferent 1 and 2 (p<0.01, respectively) and a significant increase of the radial diffusivity (RD) value in afferent 1 (p<0.05). Receiver-operator characteristic curve analysis showed 85.7 % sensitivity and 75.0 % specificity of FA values in afferent 1 (cutoff value 0.476). Linear regressions showed strong correlations between FA value and disease duration in CCA patients (efferent 1, r = -0.466; afferent 2, r = -0.543; both p<0.05), and between the FA value and the ratio of the standardized scale for the assessment and rating of ataxia (SARA)/disease duration in MSA-C patients (afferent 1, r = -0.407; p<0.01). The present DTI tractography newly showed that the FA values of two afferent fiber tracts showed significant declines in MSA-C patients, and afferent 1 showed good diagnostic sensitivity and specificity. When combining the FA values of efferent 1 with disease duration, the present DTI tractography analysis could be useful for differentiating MSA-C and CCA patients.

  17. Disruptive SCYL1 Mutations Underlie a Syndrome Characterized by Recurrent Episodes of Liver Failure, Peripheral Neuropathy, Cerebellar Atrophy, and Ataxia

    PubMed Central

    Schmidt, Wolfgang M.; Rutledge, S. Lane; Schüle, Rebecca; Mayerhofer, Benjamin; Züchner, Stephan; Boltshauser, Eugen; Bittner, Reginald E.

    2015-01-01

    Hereditary ataxias comprise a group of genetically heterogeneous disorders characterized by clinically variable cerebellar dysfunction and accompanied by involvement of other organ systems. The molecular underpinnings for many of these diseases are widely unknown. Previously, we discovered the disruption of Scyl1 as the molecular basis of the mouse mutant mdf, which is affected by neurogenic muscular atrophy, progressive gait ataxia with tremor, cerebellar vermis atrophy, and optic-nerve thinning. Here, we report on three human individuals, from two unrelated families, who presented with recurrent episodes of acute liver failure in early infancy and are affected by cerebellar vermis atrophy, ataxia, and peripheral neuropathy. By whole-exome sequencing, compound-heterozygous mutations within SCYL1 were identified in all affected individuals. We further show that in SCYL1-deficient human fibroblasts, the Golgi apparatus is massively enlarged, which is in line with the concept that SCYL1 regulates Golgi integrity. Thus, our findings define SCYL1 mutations as the genetic cause of a human hepatocerebellar neuropathy syndrome. PMID:26581903

  18. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics

    PubMed Central

    Cho, Seongeun; Wood, Andrew; Bowlby, Mark R

    2007-01-01

    Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context. In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro. PMID:18615151

  19. Trafficking of astrocytic vesicles in hippocampal slices

    SciTech Connect

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  20. Cerebellar development in the absence of Gbx function in zebrafish.

    PubMed

    Su, Chen-Ying; Kemp, Hilary A; Moens, Cecilia B

    2014-02-01

    The midbrain-hindbrain boundary (MHB) is a well-known organizing center during vertebrate brain development. The MHB forms at the expression boundary of Otx2 and Gbx2, mutually repressive homeodomain transcription factors expressed in the midbrain/forebrain and anterior hindbrain, respectively. The genetic hierarchy of gene expression at the MHB is complex, involving multiple positive and negative feedback loops that result in the establishment of non-overlapping domains of Wnt1 and Fgf8 on either side of the boundary and the consequent specification of the cerebellum. The cerebellum derives from the dorsal part of the anterior-most hindbrain segment, rhombomere 1 (r1), which undergoes a distinctive morphogenesis to give rise to the cerebellar primordium within which the various cerebellar neuron types are specified. Previous studies in the mouse have shown that Gbx2 is essential for cerebellar development. Using zebrafish mutants we show here that in the zebrafish gbx1 and gbx2 are required redundantly for morphogenesis of the cerebellar primordium and subsequent cerebellar differentiation, but that this requirement is alleviated by knocking down Otx. Expression of fgf8, wnt1 and the entire MHB genetic program is progressively lost in gbx1-;gbx2- double mutants but is rescued by Otx knock-down. This rescue of the MHB genetic program depends on rescued Fgf signaling, however the rescue of cerebellar primordium morphogenesis is independent of both Gbx and Fgf. Based on our findings we propose a revised model for the role of Gbx in cerebellar development.

  1. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    PubMed Central

    Herreros, Ivan; Giovannucci, Andrea; Taub, Aryeh H.; Hogri, Roni; Magal, Ari; Bamford, Sim; Prueckl, Robert; Verschure, Paul F. M. J.

    2014-01-01

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans. PMID:25152887

  2. Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism

    PubMed Central

    Roos, Daniel Henrique; Puntel, Robson Luiz; Farina, Marcelo; Aschner, Michael; Bohrer, Denise; Rocha, João Batista T.; de Vargas Barbosa, Nilda B.

    2016-01-01

    Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg–Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg–Cys complex. The liver slices were pre-treated with Met (250 μM) 15 min before being exposed to MeHg (25 μM) or MeHg–Cys (25 μM each) for 30 min at 37 °C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg–Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg–Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg–Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg–Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg–Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg-and/or MeHg–Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the

  3. Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism

    SciTech Connect

    Roos, Daniel Henrique; Puntel, Robson Luiz; Farina, Marcelo; Aschner, Michael; Bohrer, Denise; Rocha, Joao Batista T.; Vargas Barbosa, Nilda B. de

    2011-04-01

    Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg-Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg-Cys complex. The liver slices were pre-treated with Met (250 {mu}M) 15 min before being exposed to MeHg (25 {mu}M) or MeHg-Cys (25 {mu}M each) for 30 min at 37 {sup o}C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg-Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg-Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg-Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg-Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg-Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg- and/or MeHg-Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the competition

  4. Aprosencephaly and cerebellar dysgenesis in SIBS

    SciTech Connect

    Florell, S.R.; Townsend, J.J.; Klatt, E.C.

    1996-06-28

    Aprosencephaly is a rare, lethal malformation sequence of the central nervous system that has been attributed to a postneuralation encephaloclastic process. We describe autopsy findings consistent with aprosencephaly in 2 fetuses conceived from a consanguineous mating (first cousins). Both showed anecephalic manifestations; however, the crania were intact, with fused sutures. The neuropathologic findings were essentially identical. Each fetus had complete absence of the telecephalon and pyramidal tracts, rudimentary diencephalic and mesencephalic structures, primitive cerebellar hemispheres, posterolateral clusters of primitive neural cells in the medullas suggesting an abnormality of neural migration, a normally-formed spinal cord, and retinal dysplasia within normally-formed globes. In addition, both fetuses manifested a peculiar perivascular mesenchymal proliferation seen only within the central nervous system. The similarity of these cases, coupled with parental consanguinity, suggests a primary malformation in brain development due to the homozygous representation of a mutant allele. We hypothesize that these patients may represent a defect in a gene important in brain development, the nature of which has yet to be elucidated. 26 refs., 4 figs., 4 tabs.

  5. Morphological characteristics of the superior cerebellar artery.

    PubMed

    Dodevski, A; Tosovska Lazarova, D; Zhivadinovik, J; Lazareska, M; Stojovska-Jovanovska, E

    2015-01-01

    With the introduction of new techniques in diagnostic and interventional radiology and progress in micro neurosurgery, accurate knowledge of the brain blood vessels is essential for daily clinical work. The aim of this study was to describe the morphological characteristics of the superior cerebellar artery and to emphasize their clinical significance. In this study we examined radiographs of 109 patients who had CT angiography at the University Clinic for Radiology in Skopje, R. Macedonia. This study included 49 females and 60 males, ranging in age from 27 to 83 years; mean age 57.4 ± 11.8 years. In 105 patients SCA arose from the basilar artery on both sides as a single vessel. In two patients SCA arose as a duplicate trunk from the basilar artery. We found unilateral duplication on the right SCA in one patient, and bilateral duplication in one patient. In two patients was noticed origin of the SCA from PCA as a single trunk from adult type of the PCA. Through knowledge of the anatomy and variations of SCA is important for clinicians as well as basic scientists who deal with problems related to intracranial vasculature in daily basis for save performance of diagnostic and interventional procedures. PMID:26076777

  6. α6 integrin subunit regulates cerebellar development

    PubMed Central

    Marchetti, Giovanni; De Arcangelis, Adèle; Pfister, Véronique; Georges-Labouesse, Elisabeth

    2013-01-01

    Mutations in genes encoding several basal lamina components as well as their cellular receptors disrupt normal deposition and remodeling of the cortical basement membrane resulting in a disorganized cerebral and cerebellar cortex. The α6 integrin was the first α subunit associated with cortical lamination defects and formation of neural ectopias. In order to understand the precise role of α6 integrin in the central nervous system (CNS), we have generated mutant mice carrying specific deletion of α6 integrin in neuronal and glia precursors by crossing α6 conditional knockout mice with Nestin-Cre line. Cerebral cortex development occurred properly in the resulting α6fl/fl;nestin-Cre mutant animals. Interestingly, however, cerebellum displayed foliation pattern defects although granule cell (GC) proliferation and migration were not affected. Intriguingly, analysis of Bergmann glial (BG) scaffold revealed abnormalities in fibers morphology associated with reduced processes outgrowth and altered actin cytoskeleton. Overall, these data show that α6 integrin receptors are required in BG cells to provide a proper fissure formation during cerebellum morphogenesis. PMID:23722246

  7. Forebrain-Cerebellar Interactions During Learning

    PubMed Central

    Weible, Aldis P.; Galvez, Roberto; Disterhoft, John F.

    2013-01-01

    The cerebral cortex and cerebellum are high level neural centers that must interact cooperatively to generate coordinated and efficient goal directed movements, including those necessary for a well-timed conditioned response. In this review we describe the progress made in utilizing the forebrain-dependent trace eyeblink conditioning paradigm to understand the neural substrates mediating cerebro-cerebellar interactions during learning and consolidation of conditioned responses. This review expands upon our previous hypothesis that the interaction occurs at sites that project to the pontine nuclei (Weiss & Disterhoft, 1996), by offering more details on the function of the hippocampus and prefrontal cortex during acquisition and the circuitry involved in facilitating pontine input to the cerebellum as a necessary requisite for trace eyeblink conditioning. Our discussion describes the role of the hippocampus, caudal anterior cingulate gyrus, basal ganglia, thalamus, and sensory cortex, including the benefit of utilizing the whisker barrel cortical system. We propose that permanent changes in the sensory cortex, along with input from the caudate and claustrum, and a homologue of the primate dorsolateral prefrontal cortex, serve to bridge the stimulus free trace interval and allow the cerebellum to generate a well-timed conditioned response. PMID:26617664

  8. Morphological characteristics of the superior cerebellar artery.

    PubMed

    Dodevski, A; Tosovska Lazarova, D; Zhivadinovik, J; Lazareska, M; Stojovska-Jovanovska, E

    2015-01-01

    With the introduction of new techniques in diagnostic and interventional radiology and progress in micro neurosurgery, accurate knowledge of the brain blood vessels is essential for daily clinical work. The aim of this study was to describe the morphological characteristics of the superior cerebellar artery and to emphasize their clinical significance. In this study we examined radiographs of 109 patients who had CT angiography at the University Clinic for Radiology in Skopje, R. Macedonia. This study included 49 females and 60 males, ranging in age from 27 to 83 years; mean age 57.4 ± 11.8 years. In 105 patients SCA arose from the basilar artery on both sides as a single vessel. In two patients SCA arose as a duplicate trunk from the basilar artery. We found unilateral duplication on the right SCA in one patient, and bilateral duplication in one patient. In two patients was noticed origin of the SCA from PCA as a single trunk from adult type of the PCA. Through knowledge of the anatomy and variations of SCA is important for clinicians as well as basic scientists who deal with problems related to intracranial vasculature in daily basis for save performance of diagnostic and interventional procedures.

  9. Multiplexed coding by cerebellar Purkinje neurons

    PubMed Central

    Hong, Sungho; Negrello, Mario; Junker, Marc; Smilgin, Aleksandra; Thier, Peter; De Schutter, Erik

    2016-01-01

    Purkinje cells (PC), the sole output neurons of the cerebellar cortex, encode sensorimotor information, but how they do it remains a matter of debate. Here we show that PCs use a multiplexed spike code. Synchrony/spike time and firing rate encode different information in behaving monkeys during saccadic eye motion tasks. Using the local field potential (LFP) as a probe of local network activity, we found that infrequent pause spikes, which initiated or terminated intermittent pauses in simple spike trains, provide a temporally reliable signal for eye motion onset, with strong phase-coupling to the β/γ band LFP. Concurrently, regularly firing, non-pause spikes were weakly correlated with the LFP, but were crucial to linear encoding of eye movement kinematics by firing rate. Therefore, PC spike trains can simultaneously convey information necessary to achieve precision in both timing and continuous control of motion. DOI: http://dx.doi.org/10.7554/eLife.13810.001 PMID:27458803

  10. Spontaneous cluster activity in the inferior olivary nucleus in brainstem slices from postnatal mice.

    PubMed

    Rekling, Jens C; Jensen, Kristian H R; Jahnsen, Henrik

    2012-04-01

    A distinctive property of the cerebellar system is olivocerebellar modules, where synchronized electrical activity in neurons in the inferior olivary nucleus (IO) evokes organized activity in the cerebellar cortex. However, the exact function of these modules, and how they are developed, is still largely unknown. Here we show that the IO in in vitro slices from postnatal mice spontaneously generates clusters of neurons with synchronous Ca(2+) transients. Neurons in the principal olive (PO), and the vestibular-related dorsomedial cell column (dmcc), showed an age-dependent increase in spontaneous calcium transients. The spatiotemporal activity pattern was occasionally organized in clusters of co-active neighbouring neurons,with regular (16 min-1) and irregular (2-3 min(-1)) repeating cluster activity in the dmcc and PO, respectively. IO clusters had a diameter of 100-170 μm, lasted~1 s, and increased in occurrence from postnatal day P5.5 to P12.5, followed by a sharp drop to near zero at P15.5. IO clusters were overlapping, and comprised nearly identical neurons at some time points, and a varied subset of neurons at others. Some neurons had hub-like properties, being co-active with many other neighbours, and some were co-active with separate clusters at different times. The coherence between calcium transients in IO neurons decreased with Euclidean distance between the cells reaching low values at 100-200 μm distances. Intracellular recordings from IO neurons during cluster formation revealed the presence of spikelet-like potentials, suggesting that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. In conclusion, the IO shows spontaneous cluster activity under in vitro conditions, coinciding with a critical postnatal period in olivocerebellar development. We propose that these clusters may be forerunners of the ensembles of IO neurons shown to be co-active in adult animals spontaneously and during motor acts.

  11. Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model

    PubMed Central

    Luque, Niceto R.; Garrido, Jesús A.; Naveros, Francisco; Carrillo, Richard R.; D'Angelo, Egidio; Ros, Eduardo

    2016-01-01

    Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells) in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward optimizing its working range). PMID:26973504

  12. A Review of Variable Slicing in Fused Deposition Modeling

    NASA Astrophysics Data System (ADS)

    Nadiyapara, Hitesh Hirjibhai; Pande, Sarang

    2016-06-01

    The paper presents a literature survey in the field of fused deposition of plastic wires especially in the field of slicing and deposition using extrusion of thermoplastic wires. Various researchers working in the field of computation of deposition path have used their algorithms for variable slicing. In the study, a flowchart has also been proposed for the slicing and deposition process. The algorithm already been developed by previous researcher will be used to be implemented on the fused deposition modelling machine. To demonstrate the capabilities of the fused deposition modeling machine a case study has been taken. It uses a manipulated G-code to be fed to the fused deposition modeling machine. Two types of slicing strategies, namely uniform slicing and variable slicing have been evaluated. In the uniform slicing, the slice thickness has been used for deposition is varying from 0.1 to 0.4 mm. In the variable slicing, thickness has been varied from 0.1 in the polar region to 0.4 in the equatorial region Time required and the number of slices required to deposit a hemisphere of 20 mm diameter have been compared with that using the variable slicing.

  13. Modeling the Generation of Output by the Cerebellar Nuclei

    PubMed Central

    Steuber, Volker; Jaeger, Dieter

    2012-01-01

    Functional aspects of network integration in the cerebellar cortex have been studied experimentally and modeled in much detail ever since the early work by theoreticians such as Marr, Albus and Braitenberg more than 40 years ago. In contrast, much less is known about cerebellar processing at the output stage, namely in the cerebellar nuclei (CN). Here, input from Purkinje cells converges to control CN neuron spiking via GABAergic inhibition, before the output from the CN reaches cerebellar targets such as the brainstem and the motor thalamus. In this article we review modeling studies that address how the CN may integrate cerebellar cortical inputs, and what kind of signals may be transmitted. Specific hypotheses in the literature contrast rate coding and temporal coding of information in the spiking output from the CN. One popular hypothesis states that postinhibitory rebound spiking may be an important mechanism by which Purkinje cell inhibition is turned into CN output spiking, but this hypothesis remains controversial. Rate coding clearly does take place, but in what way it may be augmented by temporal codes remains to be more clearly established. Several candidate mechanisms distinct from rebound spiking are discussed, such as the significance of spike time correlations between Purkinje cell pools to determine CN spike timing, irregularity of Purkinje cell spiking as a determinant of CN firing rate, and shared brief pauses between Purkinje cell pools that may trigger individual CN spikes precisely. PMID:23200193

  14. Motor learning of mice lacking cerebellar Purkinje cells.

    PubMed

    Porras-García, M Elena; Ruiz, Rocío; Pérez-Villegas, Eva M; Armengol, José Á

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input-output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  15. Cerebellar liponeurocytoma: A case report and review of the literature

    PubMed Central

    WANG, KE; NI, MING; WANG, LIANG; JIA, GUIJUN; WU, ZHEN; ZHANG, LIWEI; ZHANG, JUNTING

    2016-01-01

    Cerebellar liponeurocytoma is rare, and the clinical characteristics and treatment strategy remain unclear. In the present study, a case of cerebellar liponeurocytoma was retrospectively reported and a literature review was performed. A 45-year-old female presented due to occipital headaches, exhibiting a hoarse voice and a broad-based gait. Pre-operative magnetic resonance images revealed a lesion occupying the right hemisphere of the cerebellum and the inferior vermis, compressing the medulla oblongata from the right side, and extending through the foramen magnum to the C2 level. A total resection was performed, and pathological analysis of the lesion showed positivity for synaptophysin, S-100 and neuronal nuclear antigen, partial positivity for Olig-2, and negativity for glial fibrillary acidic protein and epithelial membrane antigen. In addition, the Ki-67 index was low (<5%). Thus, a diagnosis of cerebellar liponeurocytoma was determined. Total resection was successful and the patient was followed up closely. A review of the literature showed that cerebellar liponeurocytoma is mainly located in the cerebellum, with rare extra-cerebellar cases. Certain studies have suggested that the tumor may be located supratentorially and subtentorially, and should be renamed as solely liponeurocytoma. Total resection of the tumor contributes to an improved prognosis, while a subtotal resection and high Ki-67 index lead to recurrence. The tumor is similar to a tumor of low malignancy, with long-term recurrence. Radiation is recommended when there is residual tumor, recurrence or when the Ki-67 is high. PMID:26893691

  16. Motor learning of mice lacking cerebellar Purkinje cells

    PubMed Central

    Porras-García, M. Elena; Ruiz, Rocío; Pérez-Villegas, Eva M.; Armengol, José Á.

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input–output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  17. Motor learning of mice lacking cerebellar Purkinje cells.

    PubMed

    Porras-García, M Elena; Ruiz, Rocío; Pérez-Villegas, Eva M; Armengol, José Á

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input-output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum.

  18. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    SciTech Connect

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  19. Lateralized cognitive deficits in children following cerebellar lesions.

    PubMed

    Scott, R B; Stoodley, C J; Anslow, P; Paul, C; Stein, J F; Sugden, E M; Mitchell, C D

    2001-10-01

    The aim of this preliminary study was to examine the developing cognitive profiles of children with cerebellar tumours in a consecutive series of clinical patients. MRI and longitudinal intellectual profiles were obtained on seven children (two females, five males; mean age 3 years at diagnosis; mean age 7 years at first assessment). Tumours in three of the children were astrocytomas; of the remaining tumours, two were medulloblastomas, one low-grade glioma, and one ependymoma. In right-handed children, we observed an association between greater damage to right cerebellar structures and a plateauing in verbal and/or literacy skills. In contrast, greater damage to left cerebellar structures was associated with delayed or impaired non-verbal/spatial skills. Long-term cognitive development of the children studied tentatively supports a role for the cerebellum in learning/development. These findings suggest that lateralized cerebellar damage may selectively impair the development of cognitive functions subserved by the contralateral cerebral hemisphere and, in addition, that all children with cerebellar lesions in early childhood should routinely undergo long-term monitoring of their intellectual development. PMID:11665825

  20. Inherited cerebellar ataxia in childhood: a pattern-recognition approach using brain MRI.

    PubMed

    Vedolin, L; Gonzalez, G; Souza, C F; Lourenço, C; Barkovich, A J

    2013-05-01

    Ataxia is the principal symptom of many common neurologic diseases in childhood. Ataxias caused by dysfunction of the cerebellum occur in acute, intermittent, and progressive disorders. Most of the chronic progressive processes are secondary to degenerative and metabolic diseases. In addition, congenital malformation of the midbrain and hindbrain can also be present, with posterior fossa symptoms related to ataxia. Brain MR imaging is the most accurate imaging technique to investigate these patients, and imaging abnormalities include size, shape, and/or signal of the brain stem and/or cerebellum. Supratentorial and cord lesions are also common. This review will discuss a pattern-recognition approach to inherited cerebellar ataxia in childhood. The purpose is to provide a comprehensive discussion that ultimately could help neuroradiologists better manage this important topic in pediatric neurology.

  1. Calcium channels responsible for potassium-induced transmitter release at rat cerebellar synapses.

    PubMed

    Momiyama, A; Takahashi, T

    1994-04-15

    The effects of calcium channel blockers on potassium-induced transmitter release were studied in thin slices of cerebellum from neonatal rats using whole-cell patch clamp methods. Miniature inhibitory postsynaptic currents (mIPSCs) mediated by gamma-aminobutyric acid (GABA) were recorded from deep cerebellar nuclear neurones in the presence of tetrodotoxin. The frequency of mIPSCs was reproducibly increased by a brief application of high-potassium solution. In the presence of the L-type Ca2+ channel blocker nicardipine (10 microM), the potassium-induced increase in mIPSC frequency was suppressed by 49%. Neither the mean amplitude nor the time course of mIPSCs was affected by the blocker. The N-type Ca2+ channel blocker omega-conotoxin GVIA (omega-CgTX, 3 microM) had no effect on the frequency of potassium-induced mIPSCs. The P-type Ca2+ channel blocker omega-Aga-IVA (200 nM) suppressed the potassium-induced increase in mIPSC frequency by 83% without affecting the mean amplitude or time course of mIPSCs. Comparing these data with previous studies of neurally evoked transmission, it is concluded that the Ca2+ channel subtypes responsible for potassium-induced transmitter release may be different from those mediating fast synaptic transmission.

  2. Mitotic Events in Cerebellar Granule Progenitor Cells that Expand Cerebellar Surface Area Are Critical for Normal Cerebellar Cortical Lamination in Mice

    PubMed Central

    Chang, Joshua C.; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-01-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereological principles. We demonstrate that during the proliferative phase of the external granule layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding either 2 cells in the same layer to increase surface area (β-events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α-events). As the cerebellum grows, therefore, β-events lie upstream of α-events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify inter-mitotic times for β-events on a per-cell basis in post-natal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereological studies. PMID:25668568

  3. Presynaptic Calcium Signalling in Cerebellar Mossy Fibres

    PubMed Central

    Thomsen, Louiza B.; Jörntell, Henrik; Midtgaard, Jens

    2009-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX)-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette. PMID:20162034

  4. Mechanical characteristics of native tendon slices for tissue engineering scaffold.

    PubMed

    Qin, Ting-Wu; Chen, Qingshan; Sun, Yu-Long; Steinmann, Scott P; Amadio, Peter C; An, Kai-Nan; Zhao, Chunfeng

    2012-04-01

    The purpose of this study was to characterize the mechanical behavior of tendon slices with different thicknesses. Tendon slices of 100, 200, 300, 400, and 500 μm thickness were mechanically tested. The 300 μm slices were further tested for strength and modulus after 21,000-cycle fatigue testing under different applied strain levels (0, 1, 3, 5, 8, 10, and 12%). The tendon slice structure, morphology, and viability of bone marrow stromal cells (BMSCs) seeded onto the slices were also examined with histology, scanning electron microscopy, and vital cell labeling, respectively. Tendon slices 300 μm or more in thickness had similar ultimate tensile strength and Young's modulus to the intact tendon bundle. A strain of 5% or less did not cause any structural damage, nor did it change the mechanical properties of a 300 μm-thick tendon slice after 21,000-cycle fatigue testing. BMSCs were viable between and on the tendon slices after 2 weeks in tissue culture. This study demonstrated that, if tendon slices are used as a scaffold for tendon tissue engineering, slices 300 μm or more in thickness would be preferable from a mechanical strength point of view. If mechanical stimulation is performed for seeded-cell preparations, 5% strain or less would be appropriate.

  5. Recurrent cerebellar architecture solves the motor-error problem.

    PubMed Central

    Porrill, John; Dean, Paul; Stone, James V.

    2004-01-01

    Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex. PMID:15255096

  6. Cerebellar networks with the cerebral cortex and basal ganglia.

    PubMed

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2013-05-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  7. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning.

    PubMed

    Gao, Zhenyu; Proietti-Onori, Martina; Lin, Zhanmin; Ten Brinke, Michiel M; Boele, Henk-Jan; Potters, Jan-Willem; Ruigrok, Tom J H; Hoebeek, Freek E; De Zeeuw, Chris I

    2016-02-01

    Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning. PMID:26844836

  8. Abnormal Head Impulse Test in a Unilateral Cerebellar Lesion

    PubMed Central

    Baek, Seol-Hee; Jung, Jin-Man; Kwon, Do-Young; Park, Moon Ho; Choi, June; Kim, Ji-Soo

    2015-01-01

    Background The findings of head impulse tests (HIT) are usually normal in cerebellar lesions. Case Report A 46-year-old male presented with progressive dizziness and imbalance of 3 weeks duration. The patient exhibited catch-up saccades during bedside horizontal HIT to either side, which was more evident during the rightward HIT. However, results of bithermal caloric tests and rotatory chair test were normal. MRI revealed a lesion in the inferior cerebellum near the flocculus. Conclusions This case provides additional evidence that damage to the flocculus or its connections may impair the vestibulo-ocular reflex only during high-speed stimuli, especially when the stimuli are applied to the contralesional side. By observing accompanying cerebellar signs, the abnormal HIT findings caused by a cerebellar disorder can be distinguished from those produced by peripheral vestibular disorders. PMID:25749819

  9. Behavioral effects of neonatal lesions on the cerebellar system.

    PubMed

    Lalonde, Robert; Strazielle, Catherine

    2015-06-01

    Several rodent models with spontaneous mutations causing cerebellar pathology are impaired in motor functions during the neonatal period, including Grid2(Lc), Rora(sg), Dab1(scm), Girk2(Wv), Lmx1a(dr-sst), Myo5a(dn), Inpp4a(wbl), and Cacna1a(rol) mice as well as shaker and dystonic rats. Deficits are also evident in murine null mutants such as Zic1, Fgfr1/FgFr2, and Xpa/Ercc8. Behavioral deficits are time-dependent following X-irradiated- or aspiration-induced lesions of the cerebellum in rats. In addition, motor functions are deficient after lesions in cerebellar-related pathways. As in animal subjects, sensorimotor disturbances have been described in children with cerebellar lesions. These results underline the importance of the cerebellum and its connections in the development of motor functions.

  10. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    PubMed Central

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, Birgitta K.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction. Materials and Methods From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF), and motion correction on the perfusion values was investigated. Results Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small. Conclusions This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are

  11. Cerebellar substrates for error correction in motor conditioning.

    PubMed

    Gluck, M A; Allen, M T; Myers, C E; Thompson, R F

    2001-11-01

    The authors evaluate a mapping of Rescorla and Wagner's (1972) behavioral model of classical conditioning onto the cerebellar substrates for motor reflex learning and illustrate how the limitations of the Rescorla-Wagner model are just as useful as its successes for guiding the development of new psychobiological theories of learning. They postulate that the inhibitory pathway that returns conditioned response information from the cerebellar interpositus nucleus back to the inferior olive is the neural basis for the error correction learning proposed by Rescorla and Wagner (Gluck, Myers, & Thompson, 1994; Thompson, 1986). The authors' cerebellar model expects that behavioral processes described by the Rescorla-Wagner model will be localized within the cerebellum and related brain stem structures, whereas behavioral processes beyond the scope of the Rescorla-Wagner model will depend on extracerebellar structures such as the hippocampus and related cortical regions. Simulations presented here support both implications. Several novel implications of the authors' cerebellar error-correcting model are described including a recent empirical study by Kim, Krupa, and Thompson (1998), who verified that suppressing the putative error correction pathway should interfere with the Kamin (1969) blocking effect, a behavioral manifestation of error correction learning. The authors also discuss the model's implications for understanding the limits of cerebellar contributions to associative learning and how this informs our understanding of hippocampal function in conditioning. This leads to a more integrative view of the neural substrates of conditioning in which the authors' real-time circuit-level model of the cerebellum can be viewed as a generalization of the long-term memory module of Gluck and Myers' (1993) trial-level theory of cerebellar-hippocampal interaction in motor conditioning. PMID:11726240

  12. Cerebellar substrates for error correction in motor conditioning.

    PubMed

    Gluck, M A; Allen, M T; Myers, C E; Thompson, R F

    2001-11-01

    The authors evaluate a mapping of Rescorla and Wagner's (1972) behavioral model of classical conditioning onto the cerebellar substrates for motor reflex learning and illustrate how the limitations of the Rescorla-Wagner model are just as useful as its successes for guiding the development of new psychobiological theories of learning. They postulate that the inhibitory pathway that returns conditioned response information from the cerebellar interpositus nucleus back to the inferior olive is the neural basis for the error correction learning proposed by Rescorla and Wagner (Gluck, Myers, & Thompson, 1994; Thompson, 1986). The authors' cerebellar model expects that behavioral processes described by the Rescorla-Wagner model will be localized within the cerebellum and related brain stem structures, whereas behavioral processes beyond the scope of the Rescorla-Wagner model will depend on extracerebellar structures such as the hippocampus and related cortical regions. Simulations presented here support both implications. Several novel implications of the authors' cerebellar error-correcting model are described including a recent empirical study by Kim, Krupa, and Thompson (1998), who verified that suppressing the putative error correction pathway should interfere with the Kamin (1969) blocking effect, a behavioral manifestation of error correction learning. The authors also discuss the model's implications for understanding the limits of cerebellar contributions to associative learning and how this informs our understanding of hippocampal function in conditioning. This leads to a more integrative view of the neural substrates of conditioning in which the authors' real-time circuit-level model of the cerebellum can be viewed as a generalization of the long-term memory module of Gluck and Myers' (1993) trial-level theory of cerebellar-hippocampal interaction in motor conditioning.

  13. Early Increase and Late Decrease of Purkinje Cell Dendritic Spine Density in Prion-Infected Organotypic Mouse Cerebellar Cultures

    PubMed Central

    Campeau, Jody L.; Wu, Gengshu; Bell, John R.; Rasmussen, Jay; Sim, Valerie L.

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4–5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis. PMID:24312586

  14. Movement Disorders Following Cerebrovascular Lesions in Cerebellar Circuits.

    PubMed

    Choi, Seong-Min

    2016-05-01

    Cerebellar circuitry is important to controlling and modifying motor activity. It conducts the coordination and correction of errors in muscle contractions during active movements. Therefore, cerebrovascular lesions of the cerebellum or its pathways can cause diverse movement disorders, such as action tremor, Holmes' tremor, palatal tremor, asterixis, and dystonia. The pathophysiology of abnormal movements after stroke remains poorly understood. However, due to the current advances in functional neuroimaging, it has recently been described as changes in functional brain networks. This review describes the clinical features and pathophysiological mechanisms in different types of movement disorders following cerebrovascular lesions in the cerebellar circuits. PMID:27240809

  15. Paraneoplastic cerebellar degeneration as a marker of endometrial cancer recurrence.

    PubMed

    Lie, Geoffrey; Morley, Thomas; Chowdhury, Muhammad

    2016-01-01

    An 84-year-old woman developed a cerebellar syndrome having undergone a total abdominal hysterectomy and bilateral salpingo-oophorectomy for endometrial cancer 1 year previously. She was found to be anti-Yo antibody positive and was diagnosed with paraneoplastic cerebellar degeneration (PCD). A subsequent positron emission tomography scan and lymph node biopsy identified recurrence of her endometrial cancer. This case illustrates how PCD can be an indicator of cancer recurrence, underlines the significance of PCD as a prompt to search for underlying malignancy, and highlights the difficulties PCD poses to the clinician in terms of diagnosis and management.

  16. Cerebellar atrophy in a patient with velocardiofacial syndrome.

    PubMed Central

    Lynch, D R; McDonald-McGinn, D M; Zackai, E H; Emanuel, B S; Driscoll, D A; Whitaker, L A; Fischbeck, K H

    1995-01-01

    Velocardiofacial syndrome and DiGeorge syndrome have not previously been associated with central nervous system degeneration. We report a 34 year old man who presented for neurological evaluation with cerebellar atrophy of unknown aetiology. On historical review, he had neonatal hypocalcaemia, an atrial septal defect, and a corrected cleft palate. His physical examination showed the characteristic facies of velocardiofacial syndrome as well as dysmetria and dysdiadocho-kinesia consistent with cerebellar degeneration. Molecular cytogenetic studies showed a deletion of 22q11.2. This man is the first reported patient with the association of a neurodegenerative disorder and 22q11.2 deletion syndrome. Images PMID:7562973

  17. The contribution of extrasynaptic signaling to cerebellar information processing

    PubMed Central

    Coddington, Luke T.; Nietz, Angela K.; Wadiche, Jacques I.

    2014-01-01

    The diversity of synapses within the simple modular structure of the cerebellum has been crucial for study of the phasic extrasynaptic signaling by fast neurotransmitters collectively referred to as ‘spillover.’ Additionally, the accessibility of cerebellar components for in vivo recordings and their recruitment by simple behaviors or sensory stimuli has allowed for both direct and indirect demonstrations of the effects of transmitter spillover in the intact brain. The continued study of spillover in the cerebellum not only promotes our understanding of information transfer through cerebellar structures but also how extrasynaptic signaling may be regulated and interpreted throughout the CNS. PMID:24590660

  18. Movement Disorders Following Cerebrovascular Lesions in Cerebellar Circuits

    PubMed Central

    Choi, Seong-Min

    2016-01-01

    Cerebellar circuitry is important to controlling and modifying motor activity. It conducts the coordination and correction of errors in muscle contractions during active movements. Therefore, cerebrovascular lesions of the cerebellum or its pathways can cause diverse movement disorders, such as action tremor, Holmes’ tremor, palatal tremor, asterixis, and dystonia. The pathophysiology of abnormal movements after stroke remains poorly understood. However, due to the current advances in functional neuroimaging, it has recently been described as changes in functional brain networks. This review describes the clinical features and pathophysiological mechanisms in different types of movement disorders following cerebrovascular lesions in the cerebellar circuits. PMID:27240809

  19. Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures.

    PubMed

    Ajmone-Cat, Maria Antonietta; Mancini, Melissa; De Simone, Roberta; Cilli, Piera; Minghetti, Luisa

    2013-10-01

    Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals. PMID:23918452

  20. SLICE/MARC-O: Description of Services. Second Revised Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Libraries, Oklahoma City.

    Following the discussions of: what is SLICE, what is MARC, what is MARC-O, and what is SLICE/MARC-O are descriptions of the five services offered by SLICE/MARC-O. These services are: (1) cataloging data search and print, (2) MARC record and search and copy, (3) standard S.D.I. current awareness, (4) custom S.D.I. current awareness and (5) SLICE…

  1. Acute Diagnosis and Management of Stroke Presenting Dizziness or Vertigo.

    PubMed

    Lee, Seung-Han; Kim, Ji-Soo

    2015-08-01

    Stroke involving the brainstem and cerebellum frequently presents acute vestibular syndrome. Although vascular vertigo is known to usually accompany other neurologic symptoms and signs, isolated vertigo from small infarcts involving the cerebellum or brainstem has been increasingly recognized. Bedside neuro-otologic examination can reliably differentiate acute vestibular syndrome due to stroke from more benign inner ear disease. Sometimes acute isolated audiovestibular loss may herald impending infarction in the territory of the anterior inferior cerebellar artery. Accurate identification of isolated vascular vertigo is very important because misdiagnosis of acute stroke may result in significant morbidity and mortality.

  2. Constant mean curvature slicings of Kantowski-Sachs spacetimes

    SciTech Connect

    Heinzle, J. Mark

    2011-04-15

    We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.

  3. Thin slices of child personality: Perceptual, situational, and behavioral contributions.

    PubMed

    Tackett, Jennifer L; Herzhoff, Kathrin; Kushner, Shauna C; Rule, Nicholas

    2016-01-01

    The present study examined whether thin-slice ratings of child personality serve as a resource-efficient and theoretically valid measurement of child personality traits. We extended theoretical work on the observability, perceptual accuracy, and situational consistency of childhood personality traits by examining intersource and interjudge agreement, cross-situational consistency, and convergent, divergent, and predictive validity of thin-slice ratings. Forty-five unacquainted independent coders rated 326 children's (ages 8-12) personality in 1 of 15 thin-slice behavioral scenarios (i.e., 3 raters per slice, for over 14,000 independent thin-slice ratings). Mothers, fathers, and children rated children's personality, psychopathology, and competence. We found robust evidence for correlations between thin-slice and mother/father ratings of child personality, within- and across-task consistency of thin-slice ratings, and convergent and divergent validity with psychopathology and competence. Surprisingly, thin-slice ratings were more consistent across situations in this child sample than previously found for adults. Taken together, these results suggest that thin slices are a valid and reliable measure to assess child personality, offering a useful method of measurement beyond questionnaires, helping to address novel questions of personality perception and consistency in childhood.

  4. Analysis of Slice Transverse Emittance Evolution ina Photocathode RF Gun

    SciTech Connect

    Huang, Z.; Ding, Y.; Qiang, J.; /LBL, Berkeley

    2007-10-17

    The slice transverse emittance of an electron beam is of critical significance for an x-ray FEL. In a photocathode RF gun, the slice transverse emittance is not only determined by the emission process, but also influenced strongly by the non-linear space charge effect. In this paper, we study the slice transverse emittance evolution in a photocathode RF gun using a simple model that includes effects of RF acceleration, focusing, and space charge force. The results are compared with IMPACT-T space charge simulations and may be used to understand the development of the slice emittance in an RF gun.

  5. Anterior and posterior inferior cerebellar artery infarction with sudden deafness and vertigo.

    PubMed

    Murakami, Takenobu; Nakayasu, Hiroyuki; Doi, Mitsuru; Fukada, Yasuyo; Hayashi, Miwa; Suzuki, Takeo; Takeuchi, Yuichi; Nakashima, Kenji

    2006-12-01

    We report a patient with anterior and posterior inferior cerebellar artery infarction, which manifested as profound deafness, transient vertigo, and minimal cerebellar signs. We suspect that ischaemia of the left internal auditory artery, which originates from the anterior inferior cerebellar artery, caused the deafness and transient vertigo. A small lesion in the middle cerebellar peduncle in the anterior inferior cerebellar artery territory and no lesion in the dentate nucleus in the posterior inferior cerebellar artery territory are thought to explain the minimal cerebellar signs despite the relatively large size of the infarction. Thus a relatively large infarction of the vertebral-basilar territory can manifest as sudden deafness with vertigo. Neuroimaging, including magnetic resonance imaging, is strongly recommended for patients with sudden deafness and vertigo to exclude infarction of the vertebral-basilar artery territory.

  6. Is a Cerebellar Deficit the Underlying Cause of Reading Disabilities?

    ERIC Educational Resources Information Center

    Irannejad, Shahrzad; Savage, Robert

    2012-01-01

    This study investigated whether children with dyslexia differed in their performance on reading, phonological, rapid naming, motor, and cerebellar-related tasks and automaticity measures compared to reading age (RA)-matched and chronological age (CA)-matched control groups. Participants were 51 children attending mainstream English elementary…

  7. Cortical networks of procedural learning: evidence from cerebellar damage.

    PubMed

    Torriero, Sara; Oliveri, Massimiliano; Koch, Giacomo; Lo Gerfo, Emanuele; Salerno, Silvia; Petrosini, Laura; Caltagirone, Carlo

    2007-03-25

    The lateral cerebellum plays a critical role in procedural learning that goes beyond the strict motor control functions attributed to it. Patients with cerebellar damage show marked impairment in the acquisition of procedures, as revealed by their performance on the serial reaction time task (SRTT). Here we present the case of a patient affected by ischemic damage involving the left cerebellum who showed a selective deficit in procedural learning while performing the SRTT with the left hand. The deficit recovered when the cortical excitability of an extensive network involving both cerebellar hemispheres and the dorsolateral prefrontal cortex (DLPFC) was decreased by low-frequency repetitive transcranial magnetic stimulation (rTMS). Although inhibition of the right DLPFC or a control fronto-parietal region did not modify the patient's performance, inhibition of the right (unaffected) cerebellum and the left DLPFC markedly improved task performance. These findings could be explained by the modulation of a set of inhibitory and excitatory connections between the lateral cerebellum and the contralateral prefrontal area induced by rTMS. The presence of left cerebellar damage is likely associated with a reduced excitatory drive from sub-cortical left cerebellar nuclei towards the right DLPFC, causing reduced excitability of the right DLPFC and, conversely, unbalanced activation of the left DLPFC. Inhibition of the left DLPFC would reduce the unbalancing of cortical activation, thus explaining the observed selective recovery of procedural memory. PMID:17166525

  8. Translational Approach to Behavioral Learning: Lessons from Cerebellar Plasticity

    PubMed Central

    Cheron, Guy; Dan, Bernard; Márquez-Ruiz, Javier

    2013-01-01

    The role of cerebellar plasticity has been increasingly recognized in learning. The privileged relationship between the cerebellum and the inferior olive offers an ideal circuit for attempting to integrate the numerous evidences of neuronal plasticity into a translational perspective. The high learning capacity of the Purkinje cells specifically controlled by the climbing fiber represents a major element within the feed-forward and feedback loops of the cerebellar cortex. Reciprocally connected with the basal ganglia and multimodal cerebral domains, this cerebellar network may realize fundamental functions in a wide range of behaviors. This review will outline the current understanding of three main experimental paradigms largely used for revealing cerebellar functions in behavioral learning: (1) the vestibuloocular reflex and smooth pursuit control, (2) the eyeblink conditioning, and (3) the sensory envelope plasticity. For each of these experimental conditions, we have critically revisited the chain of causalities linking together neural circuits, neural signals, and plasticity mechanisms, giving preference to behaving or alert animal physiology. Namely, recent experimental approaches mixing neural units and local field potentials recordings have demonstrated a spike timing dependent plasticity by which the cerebellum remains at a strategic crossroad for deciphering fundamental and translational mechanisms from cellular to network levels. PMID:24319600

  9. Milder progressive cerebellar atrophy caused by biallelic SEPSECS mutations.

    PubMed

    Iwama, Kazuhiro; Sasaki, Masayuki; Hirabayashi, Shinichi; Ohba, Chihiro; Iwabuchi, Emi; Miyatake, Satoko; Nakashima, Mitsuko; Miyake, Noriko; Ito, Shuichi; Saitsu, Hirotomo; Matsumoto, Naomichi

    2016-06-01

    Cerebellar atrophy is recognized in various types of childhood neurological disorders with clinical and genetic heterogeneity. Genetic analyses such as whole exome sequencing are useful for elucidating the genetic basis of these conditions. Pathological recessive mutations in Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase (SEPSECS) have been reported in a total of 11 patients with pontocerebellar hypoplasia type 2, progressive cerebellocerebral atrophy or progressive encephalopathy, yet detailed clinical features are limited to only four patients. We identified two new families with progressive cerebellar atrophy, and by whole exome sequencing detected biallelic SEPSECS mutations: c.356A>G (p.Asn119Ser) and c.77delG (p.Arg26Profs*42) in family 1, and c.356A>G (p.Asn119Ser) and c.467G>A (p.Arg156Gln) in family 2. Their development was slightly delayed regardless of normal brain magnetic resonance imaging (MRI) in infancy. The progression of clinical symptoms in these families is evidently slower than in previously reported cases, and the cerebellar atrophy milder by brain MRI, indicating that SEPSECS mutations are also involved in milder late-onset cerebellar atrophy. PMID:26888482

  10. Mapping the development of cerebellar Purkinje cells in zebrafish.

    PubMed

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease.

  11. Speech and Language Findings Associated with Paraneoplastic Cerebellar Degeneration

    ERIC Educational Resources Information Center

    Paslawski, Teresa; Duffy, Joseph R.; Vernino, Steven

    2005-01-01

    Paraneoplastic cerebellar degeneration (PCD) is an autoimmune disease that can be associated with cancer of the breast, lung, and ovary. The clinical presentation of PCD commonly includes ataxia, visual disturbances, and dysarthria. The speech disturbances associated with PCD have not been well characterized, despite general acceptance that…

  12. Caytaxin Deficiency Disrupts Signaling Pathways in Cerebellar Cortex

    PubMed Central

    Xiao, Jianfeng; Gong, Suzhen; LeDoux, Mark S.

    2007-01-01

    The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as a site of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time RT-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and calcium-transporting plasma membrane ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex. PMID:17092653

  13. Neurodevelopmental Outcomes in Children with Cerebellar Malformations: A Systematic Review

    ERIC Educational Resources Information Center

    Bolduc, Marie-Eve; Limperopoulos, Catherine

    2009-01-01

    Cerebellar malformations are increasingly diagnosed in the fetal period. Consequently, their consideration requires stressful and often critical decisions from both clinicians and families. This has resulted in an emergent need to understand better the impact of these early life lesions on child development. We performed a comprehensive literature…

  14. Transcranial magnetic stimulation in patients with cerebellar stroke.

    PubMed

    Cruz-Martínez, A; Arpa, J

    1997-01-01

    Conduction time of the central motor pathways (CMCT) by transcranial magnetic stimulation (TMS) was performed within the first two weeks in 7 patients with isolated hemicerebellar lesions after stroke. Cerebellar infarcts were small (< 2 cm in diameter) in 5 patients and no brainstem structure was involved in CT studies. The threshold (3 cases) and CMCT (4 cases) were abnormal or asymmetric by stimulation of the motor cortex contralateral to the impaired hemicerebellum. The follow-up study in 2 patients revealed electrophysiological improvement closely related to clinical cerebellar recovery rate. CMCT was significantly longer by cortex stimulation contralateral to the impaired hemicerebellum than by ipsilateral stimulation. Prolonged CMCT was significantly correlated with the rated severity of cerebellar signs. Increased threshold may be due to depressed facilitating action of the deep cerebellar nuclei on contralateral motor cortex. Abnormal CMCT might result in reduced size and increased dispersion of the efferent volleys. Recovery of electrophysiological results could represent in part true potentially reversible functional deficit. Whichever the pathophysiological mechanisms involved, our results demonstrate that the cerebellum dysfunction plays a role in the abnormalities of CMCT elicited by TMS.

  15. [Intraabdominal metastasis of cerebellar medulloblastoma through ventriculoperitoneal shunt].

    PubMed

    Carrasco Torrents, R; Sancho, M A; Juliá, V; Montaner, A; Costa, J M; Morales, L

    2001-01-01

    We present a 6-year-old girl with cerebellar medulloblastoma causing obstructive hydrocephalus that was treated by ventriculoperitoneal shunting. The patient subsequently underwent surgical excision of the tumor followed by adjuvant craniospinal radiotherapy. Nine months after shunting, multiple intraabdominal metastatic lesions were found. Although the risk is low, ventriculoperitoneal shunting may facilitate the spread of malignant cells.

  16. Predicting and correcting ataxia using a model of cerebellar function

    PubMed Central

    Bhanpuri, Nasir H.; Okamura, Allison M.

    2014-01-01

    Cerebellar damage results in uncoordinated, variable and dysmetric movements known as ataxia. Here we show that we can reliably model single-joint reaching trajectories of patients (n = 10), reproduce patient-like deficits in the behaviour of controls (n = 11), and apply patient-specific compensations that improve reaching accuracy (P < 0.02). Our approach was motivated by the theory that the cerebellum is essential for updating and/or storing an internal dynamic model that relates motor commands to changes in body state (e.g. arm position and velocity). We hypothesized that cerebellar damage causes a mismatch between the brain’s modelled dynamics and the actual body dynamics, resulting in ataxia. We used both behavioural and computational approaches to demonstrate that specific cerebellar patient deficits result from biased internal models. Our results strongly support the idea that an intact cerebellum is critical for maintaining accurate internal models of dynamics. Importantly, we demonstrate how subject-specific compensation can improve movement in cerebellar patients, who are notoriously unresponsive to treatment. PMID:24812203

  17. Grip-load force coordination in cerebellar patients.

    PubMed

    Serrien, D J; Wiesendanger, M

    1999-09-01

    The study examined the anticipatory grip force modulations to load force changes during a drawer-opening task. An impact force was induced by a mechanical stop which abruptly arrested movement of the pulling hand. In performing this task, normal subjects generated a typical grip force profile characterized by an initial force impulse related to drawer movement onset, followed by a ramp-like grip force increase prior to the impending load perturbation. Finally, a reactive response was triggered by the impact. In patients with bilateral cerebellar dysfunction, the drawer-opening task was performed with an alternative control strategy. During pulling, grip force was increased to a high (overestimated) default level. The latter suggests that cerebellar patients were unable to adjust and to scale precisely the grip force according to the load force. In addition, the latency between impact and reactive activity was prolonged in the patients, suggesting an impaired cerebellar transmission of the long-latency responses. In conclusion, these data demonstrate the involvement of cerebellar circuits in both proactive and reactive mechanisms in view of predictable load perturbations during manipulative behavior. PMID:10473743

  18. The history of the development of the cerebellar examination.

    PubMed

    Fine, Edward J; Ionita, Catalina C; Lohr, Linda

    2002-12-01

    The cerebellar examination evolved from observations of experimental lesions made by neurophysiologists and clinical descriptions of patients with trauma to the cerebellum. At the beginning of the 19th century, neurophysiologists such as Luigi Rolando, Marie-Jean-Pierre Flourens, and John Call Dalton, Jr. ablated portions of the cerebellum of a variety of animals and observed staggering gait, clumsiness, and falling from side to side without loss of strength. They concluded that the cerebellum coordinated voluntary movements. In 1899, Joseph Francois Félix Babinski observed that patients with cerebellar lesions could not execute complex movements without breaking down into their elemental movements and described the defect as dysmetria. In 1902, Babinski coined the term dysdiodochokinesis to describe the inability to perform rapid execution of movements requiring alternate contractions of agonist and antagonist muscles. Gordon Holmes in 1904 described the phenomena of rebound, noting that if a limb ipsilateral to a cerebellar lesion is suddenly released from tension, the appendage will flail. In 1917, Gordon Holmes reported hypotonia and dysmetria in men wounded by gunshot wounds to their cerebellum. These observations were rapidly included in descriptions of the cerebellar examination in popular contemporaneous textbooks of neurology. Modern observations have demonstrated that the cerebellum influences such cognitive functions such as planning, verbal fluency, abstract reasoning, prosody, and use of correct grammar.

  19. Bilateral cerebellar activation in unilaterally challenged essential tremor.

    PubMed

    Broersma, Marja; van der Stouwe, Anna M M; Buijink, Arthur W G; de Jong, Bauke M; Groot, Paul F C; Speelman, Johannes D; Tijssen, Marina A J; van Rootselaar, Anne-Fleur; Maurits, Natasha M

    2016-01-01

    •We added EMG as an index of tremor intensity to fMRI to study essential tremor.•Block- and tremor-related activations during a unilateral motor task were separated.•Block-related activations were found in the classical motor network.•Tremor-related activations were found in bilateral cerebellar lobules V, VI and VIII.

  20. Clinical manifestations of cerebellar infarction according to specific lobular involvement.

    PubMed

    Ye, Byoung Seok; Kim, Young Dae; Nam, Hyo Suk; Lee, Hye Sun; Nam, Chung Mo; Heo, Ji Hoe

    2010-12-01

    Lesions in the cerebellum produce various symptoms related to balance and motor coordination. However, the relationship between the exact topographical localization of a lesion and the resulting symptoms is not well understood in humans. In this study, we analyzed 66 consecutive patients with isolated cerebellar infarctions demonstrated on diffusion-weighted magnetic resonance imaging. We identified the involved lobules in these patients using a cross-referencing tool of the picture archiving and communication system, and we investigated the relationships between the sites of the lesions and specific symptoms using χ (2) tests and logistic regression analysis. The most common symptoms in patients with isolated cerebellar infarctions were vertigo (87%) and lateropulsion (82%). Isolated vertigo or lateropulsion without any other symptoms was present in 38% of patients. On the other hand, limb ataxia was a presenting symptom in only 40% of the patients. Lateropulsion, vertigo, and nystagmus were more common in patients with a lesion in the caudal vermis. Logistic regression analysis showed that lesions in the posterior paravermis or nodulus were independently associated with lateropulsion. Lesions in the nodulus were associated with contralateral pulsion, and involvement of the culmen was associated with ipsilateral pulsion and isolated lateropulsion without vertigo. Nystagmus was associated with lesions in the pyramis lobule, while lesions of the anterior paravermis were associated with dysarthria and limb ataxia. Our results showed that the cerebellar lobules are responsible for producing specific symptoms in cerebellar stroke patients.

  1. Cerebro-cerebellar interactions underlying temporal information processing.

    PubMed

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  2. Cerebellar neurodegeneration in human hereditary DNA repair disorders.

    PubMed

    Kohji, T; Hayashi, M; Shioda, K; Minagawa, M; Morimatsu, Y; Tamagawa, K; Oda, M

    1998-02-27

    Recent findings have focused attention on the role of apoptosis in neurodegenerative diseases, however, the apoptotic process in child-onset brain disorders has been little investigated. Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are hereditary disorders characterized by impaired DNA repair and neurodegeneration. We investigated apoptotic cell death in the cerebellum of five cases of XP group A (XPA), four cases of CS, and twelve controls, using TdT-mediated DIG-dUTP nick-end labeling (TUNEL) and immunohistochemical staining for bcl-2, bcl-x, p53, bax, BDNF and Trk B. The TUNEL-positive cells were found in the granule cells of the cerebellar cortex of two patients with XPA and two patients with CS, whereas such cells were not detected in the cerebellar cortex in controls. Upregulation of bcl-2 or BDNF was not observed, and bcl-x expression was not altered. Some patients showed nuclear expression of p53 in the granule cells and/or molecular layer, bax-positive glial cells in the cerebellar white matter, and a few Trk B-positive cells in the granular layer. These findings suggest that apoptotic cell death can be involved in the cerebellar degeneration in patients with hereditary defects in DNA repair mechanisms.

  3. Ultrastructural pathology of human peritumoural oedematous cerebellar cortex.

    PubMed

    Castejón, O J

    2016-01-01

    Cerebellar cortical biopsies of the peritumoural region of seven patients with cerebellar haemangioma, mesencephalic meningioma, cerebellopontine astrocytoma, cerebellopontine meningioma, and medulloblastoma of cerebellar vermis were examined by means of conventional transmission electron microscopy. Granule cells showed oedematous cytoplasm and mitochondria. Swollen Golgi cells exhibited lipofuscin granules and intranuclear inclusions. Both neuron cell types displayed swollen dendritic digits synapsing with afferent mossy fibre endings. Degenerated myelinated axons corresponding to afferent mossy and climbing fibres and efferent Purkinje cell axons were observed at the granular layer. Dense and clear ischaemic Purkinje cells established degenerated synapses with swollen parallel fibre synaptic varicosities. Degenerated Purkinje cell recurrent axonal collaterals were found at the molecular layer. Swollen and clear Bergmann glial cell cytoplasm was observed closely applied to the oedematous clear and dark Purkinje cell body, dendritic trunk, secondary and tertiary dendritic branches. Swollen climbing fibre endings featured by numerous microtubules and neurofilaments, and a decreased number of synaptic vesicles were observed making degenerated axo-spinodendritic synapses with clear and swollen dendritic spines from Purkinje, Golgi, basket and stellate cell dendrites. Swollen stellate neurons showed oedematous mitochondria. Lipofuscin-rich astrocytes and reactive phagocytic astrocytes were observed. The latter appeared engulfing haematogenous proteinaceous oedema fluid. All cerebellar neurons showed stress endoplasmic reticulum dysfunction featured by focal dilated cisterns and detachment of associated ribosomes. Myelin sheath degeneration was related with oligodendrocyte degenerating hydropic changes. The peritumoural ischaemic cerebellar nerve and glial cell abnormalities were related with neurobehavioral changes, tremor, nystagmus, dismetry and gait disturbance

  4. Automated MRI Cerebellar Size Measurements Using Active Appearance Modeling

    PubMed Central

    Price, Mathew; Cardenas, Valerie A.; Fein, George

    2014-01-01

    Although the human cerebellum has been increasingly identified as an important hub that shows potential for helping in the diagnosis of a large spectrum of disorders, such as alcoholism, autism, and fetal alcohol spectrum disorder, the high costs associated with manual segmentation, and low availability of reliable automated cerebellar segmentation tools, has resulted in a limited focus on cerebellar measurement in human neuroimaging studies. We present here the CATK (Cerebellar Analysis Toolkit), which is based on the Bayesian framework implemented in FMRIB’s FIRST. This approach involves training Active Appearance Models (AAM) using hand-delineated examples. CATK can currently delineate the cerebellar hemispheres and three vermal groups (lobules I–V, VI–VII, and VIII–X). Linear registration with the low-resolution MNI152 template is used to provide initial alignment, and Point Distribution Models (PDM) are parameterized using stellar sampling. The Bayesian approach models the relationship between shape and texture through computation of conditionals in the training set. Our method varies from the FIRST framework in that initial fitting is driven by 1D intensity profile matching, and the conditional likelihood function is subsequently used to refine fitting. The method was developed using T1-weighted images from 63 subjects that were imaged and manually labeled: 43 subjects were scanned once and were used for training models, and 20 subjects were imaged twice (with manual labeling applied to both runs) and used to assess reliability and validity. Intraclass correlation analysis shows that CATK is highly reliable (average test-retest ICCs of 0.96), and offers excellent agreement with the gold standard (average validity ICC of 0.87 against manual labels). Comparisons against an alternative atlas-based approach, SUIT (Spatially Unbiased Infratentorial Template), that registers images with a high-resolution template of the cerebellum, show that our AAM

  5. Long lasting cerebellar alterations after perinatal asphyxia in rats.

    PubMed

    Campanille, Verónica; Saraceno, G Ezequiel; Rivière, Stéphanie; Logica, Tamara; Kölliker, Rodolfo; Capani, Francisco; Castilla, Rocío

    2015-07-01

    The developing brain may be particularly vulnerable to injury before, at and after birth. Among possible insults, hypoxia suffered as a consequence of perinatal asphyxia (PA) exhibits the highest incidence levels and the cerebellar circuitry appears to be particularly susceptible, as the cellular makeup and the quantity of inputs change quickly during days and weeks following birth. In this work, we have used a murine model to induce severe global PA in rats at the time of birth. Short-term cerebellar alterations within this PA model have been previously reported but whether such alterations remain in adulthood has not been conclusively determined yet. For this reason, and given the crucial cerebellar role in determining connectivity patterns in the brain, the aim of our work is to unveil long-term cerebellum histomorphology following a PA insult. Morphological and cytological neuronal changes and glial reaction in the cerebellar cortex were analyzed at postnatal 120 (P120) following injury performed at birth. As compared to control, PA animals exhibited: (1) an increase in molecular and granular thickness, both presenting lower cellular density; (2) a disarrayed Purkinje cell layer presenting a higher number of anomalous calbindin-stained cells. (3) focal swelling and marked fragmentation of microtubule-associated protein 2 (MAP-2) in Purkinje cell dendrites and, (4) an increase in glial fibrillary acidic protein (GFAP) expression in Bergmann cells and the granular layer. In conclusion, we demonstrate that PA produces long-term damage in cellular histomorphology in rat cerebellar cortex which could be involved in the pathogenesis of cognitive deficits observed in both animals and humans.

  6. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia

    PubMed Central

    Bocchetta, Martina; Cardoso, M. Jorge; Cash, David M.; Ourselin, Sebastien; Warren, Jason D.; Rohrer, Jonathan D.

    2016-01-01

    Background Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder with a strong genetic component. The cerebellum has not traditionally been felt to be involved in FTD but recent research has suggested a potential role. Methods We investigated the volumetry of the cerebellum and its subregions in a cohort of 44 patients with genetic FTD (20 MAPT, 7 GRN, and 17 C9orf72 mutation carriers) compared with 18 cognitively normal controls. All groups were matched for age and gender. On volumetric T1-weighted magnetic resonance brain images we used an atlas propagation and label fusion strategy of the Diedrichsen cerebellar atlas to automatically extract subregions including the cerebellar lobules, the vermis and the deep nuclei. Results The global cerebellar volume was significantly smaller in C9orf72 carriers (mean (SD): 99989 (8939) mm3) compared with controls (108136 (7407) mm3). However, no significant differences were seen in the MAPT and GRN carriers compared with controls (104191 (6491) mm3 and 107883 (6205) mm3 respectively). Investigating the individual subregions, C9orf72 carriers had a significantly lower volume than controls in lobule VIIa-Crus I (15% smaller, p < 0.0005), whilst MAPT mutation carriers had a significantly lower vermal volume (10% smaller, p = 0.001) than controls. All cerebellar subregion volumes were preserved in GRN carriers compared with controls. Conclusion There appears to be a differential pattern of cerebellar atrophy in the major genetic forms of FTD, being relatively spared in GRN, localized to the lobule VIIa-Crus I in the superior-posterior region of the cerebellum in C9orf72, the area connected via the thalamus to the prefrontal cortex and involved in cognitive function, and localized to the vermis in MAPT, the ‘limbic cerebellum’ involved in emotional processing. PMID:26977398

  7. L1 modulates PKD1 phosphorylation in cerebellar granule neurons.

    PubMed

    Chen, Shuang-xi; Hu, Cheng-liang; Liao, Yong-hong; Zhao, Wei-jiang

    2015-01-01

    The neural cell adhesion molecule L1 (L1CAM) is crucial for the development of the nervous system, with an essential role in regulating multiple cellular activities. Protein kinase D1 (PKD1) serves as a key kinase given its diverse array of functions within the cell. Here, we investigated various aspects of the functional relationship between L1 and phosphorylated PKD1 (pPKD1) in cerebellar granule neurons. To study the relationship between L1 and PKD1 phosphorylation, human cerebellar tissue microarrays were subject to immunofluorescence staining. We observed a positive correlation between L1 protein levels and PKD1 phosphorylation. In addition, L1 also co-localized with pPKD1. To analyze the regulatory role of L1 on PKD1 phosphorylation, primary mouse cerebellar granule neurons were treated with various concentrations of rL1 for 48 h. Using Western blot, we revealed that L1 significantly increased PKD1 phosphorylation compared with vehicle control, with the maximal effect observed at 5 nM. ERK1/2 phosphorylation was significantly increased by 2.5 nM and 10nM L1, with no apparent change in SRC phosphorylation. However, SRC expression was markedly reduced by 10nM rL1. AKT1 expression and phosphorylation levels were significantly increased by rL1, with the maximal effect observed at 2.5 and 5 nM, respectively. Our combined data revealed a positive relationship between L1 and pPKD1 in both cultured cerebellar neurons and human cerebellar tissue, suggesting that L1 functions in the modulation of PKD1 phosphorylation. PMID:25445362

  8. Functional Relations of Cerebellar Modules of the Cat

    PubMed Central

    Pong, Milton; Gibson, Alan R.

    2010-01-01

    The cerebellum consists of parasagittal zones that define fundamental modules of neural processing. Each zone receives input from a distinct subdivision of the inferior olive (IO)—activity in one olivary subdivision will affect activity in one cerebellar module. To define functions of the cerebellar modules, we inactivated specific olivary subdivisions in six male cats with a glutamate receptor blocker. Olivary inactivation eliminates Purkinje cell complex spikes, which results in a high rate of Purkinje cell simple spike discharge. The increased simple spike discharge inhibits output from connected regions of the cerebellar nuclei. After inactivation, behavior was evaluated during a reach-to-grasp task and during locomotion. Inactivation of each subdivision produced unique behavioral deficits. Performance of the reach-to-grasp task was affected by inactivation of the rostral dorsal accessory olive (rDAO) and the rostral medial accessory olive (rMAO) and, possibly, the principal olive. rDAO inactivation produced paw drag during locomotion and a deficit in grasping the handle during the reach-to-grasp task. rMAO inactivation caused the cats to reach under the handle and produced severe limb drag during locomotion. Inactivation of the dorsal medial cell column, cell group β, or caudal medial accessory olive produced little deficit in the reach-to-grasp task, but each produced a different deficit during locomotion. In all cases, the cats appeared to have intact sensation, good spatial awareness, and no change of affect. Normal cerebellar function requires low rates of IO discharge, and each cerebellar module has a specific and unique function in sensory–motor integration. PMID:20631170

  9. Adaptive filters and internal models: multilevel description of cerebellar function.

    PubMed

    Porrill, John; Dean, Paul; Anderson, Sean R

    2013-11-01

    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections. Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically. We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure. This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles.

  10. Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network

    PubMed Central

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A.; Carrillo, Richard R.; Luque, Niceto R.; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions. PMID:25390365

  11. Adaptive robotic control driven by a versatile spiking cerebellar network.

    PubMed

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions. PMID:25390365

  12. Slicing AADL Specifications for Model Checking

    NASA Technical Reports Server (NTRS)

    Odenbrett, Maximilian; Nguyen, Viet Yen; Noll, Thomas

    2010-01-01

    To combat the state-space explosion problem in model checking larger systems, abstraction techniques can be employed. Here, methods that operate on the system specification before constructing its state space are preferable to those that try to minimize the resulting transition system as they generally reduce peak memory requirements. We sketch a slicing algorithm for system specifications written in (a variant of) the Architecture Analysis and Design Language (AADL). Given a specification and a property to be verified, it automatically removes those parts of the specification that are irrelevant for model checking the property, thus reducing the size of the corresponding transition system. The applicability and effectiveness of our approach is demonstrated by analyzing the state-space reduction for an example, employing a translator from AADL to Promela, the input language of the SPIN model checker.

  13. Passive Pressure Determination by Method of Slices

    NASA Astrophysics Data System (ADS)

    Kumar, Jyant; Subba Rao, Kanakapura S.

    1997-05-01

    A method of slices satisfying all the conditions of statical equilibrium has been developed to deal with the problem of determination of passive earth pressure over a retaining wall in sand. A method similar to that of Morgenstern and Price, which was used to solve the stability of slopes, has been followed. The earth pressure coefficients with the proposed methodology have been computed for a vertical retaining wall for both positive and negative wall friction angle. Also examined is the variation of the interslice shear force between the retaining wall and the Rankine Passive boundary. Due to complete satisfaction of the equilibrium conditions, the method generates exactly the same earth pressure coefficients as computed by using Terzaghi's overall limit equilibrium approach.

  14. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans.

    PubMed

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hammer, Monia; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-06-28

    A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans. PMID:27320912

  15. Defects in the CAPN1 gene result in alterations in cerebellar development and in cerebellar ataxia in mice and humans

    PubMed Central

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hamad, Monia Ben; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-01-01

    SUMMARY A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous CAPN1 null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knock-out (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1 mediated cleavage of PH domain and Leucine rich repeat Protein Phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis, and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans. PMID:27320912

  16. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  17. Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Sharma, H. K.; Singh, K.

    2016-03-01

    The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10-8 m2/s was obtained for LC samples while the lowest 0.83 × 10-8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.

  18. Timing Tasks Synchronize Cerebellar and Frontal Ramping Activity and Theta Oscillations: Implications for Cerebellar Stimulation in Diseases of Impaired Cognition

    PubMed Central

    Parker, Krystal L.

    2016-01-01

    Timing is a fundamental and highly conserved mammalian capability, yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning, which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here, we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. Lastly, we hypothesize that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. This hypothesis could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic potential of

  19. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease.

    PubMed

    Grimaldi, Giuliana; Argyropoulos, Georgios P; Bastian, Amy; Cortes, Mar; Davis, Nicholas J; Edwards, Dylan J; Ferrucci, Roberta; Fregni, Felipe; Galea, Joseph M; Hamada, Masahi; Manto, Mario; Miall, R Chris; Morales-Quezada, Leon; Pope, Paul A; Priori, Alberto; Rothwell, John; Tomlinson, S Paul; Celnik, Pablo

    2016-02-01

    The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct current stimulation of the cerebellum (ctDCS) promises to be a powerful tool for the modulation of cerebellar excitability. This technique has gained popularity in recent years as it can be used to investigate human cerebellar function, is easily delivered, is well tolerated, and has not shown serious adverse effects. Importantly, the ability of ctDCS to modify behavior makes it an interesting approach with a potential therapeutic role for neurological patients. Through both electrical and non-electrical effects (vascular, metabolic) ctDCS is thought to modify the activity of the cerebellum and alter the output from cerebellar nuclei. Physiological studies have shown a polarity-specific effect on the modulation of cerebellar-motor cortex connectivity, likely via cerebellar-thalamocortical pathways. Modeling studies that have assessed commonly used electrode montages have shown that the ctDCS-generated electric field reaches the human cerebellum with little diffusion to neighboring structures. The posterior and inferior parts of the cerebellum (i.e., lobules VI-VIII) seem particularly susceptible to modulation by ctDCS. Numerous studies have shown to date that ctDCS can modulate motor learning, and affect cognitive and emotional processes. Importantly, this intervention has a good safety profile; similar to when applied over cerebral areas. Thus, investigations have begun exploring ctDCS as a viable intervention for patients with neurological conditions. PMID:25406224

  20. A survey of program slicing for software engineering

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.

  1. Taurine enhances volume regulation in hippocampal slices swollen osmotically.

    PubMed

    Kreisman, N R; Olson, J E

    2003-01-01

    Cell volume regulation has been studied in neuronal and glial cultures but little is known about volume regulation in brain tissue with an intact extracellular space. We investigated volume regulation in hippocampal slices maintained in an interface chamber and exposed to hypo-osmotic medium. Relative changes in intracellular and extracellular volume were measured respectively as changes in light transmittance and extracellular resistance. Slices exposed to hypo-osmotic medium (200-240 mOsm/L) showed a decrease in light transmittance, which occasionally was preceded by a brief transient increase. However, hypo-osmotic exposure was always accompanied by a monotonic increase in extracellular resistance. Peak changes in light transmittance and extracellular resistance occurred at 15-20 min following exposure to hypo-osmotic medium. Optical evidence of volume regulation (RVD) was observed in six of 12 slices and occurred over the next 60-90 min. We hypothesized that the relatively low incidence of RVD was related to depletion of taurine, an osmolyte known to play an important role in volume regulation, during preparation of the slices. Indeed, taurine levels in freshly prepared slices were <50% of those reported in intact hippocampus. Incubation of slices in 1 mM taurine restored taurine to levels observed in situ and increased both the likelihood and magnitude of RVD in hypo-osmotic medium. Inhibition of taurine flux with 100 microM 5-nitro-2-(3 phenylpropylamino) benzoic acid blocked both RVD and the transient undershoot of volume commonly associated with return of swollen slices to iso-osmotic medium. Taurine treatment had no effect on levels of several other amino acids but preserved slice potassium content. The results indicate a critical role for cellular taurine during hypo-osmotic volume regulation in hippocampal slices. Inconsistencies between optical measurements of cellular volume changes and electrical measurements of extracellular space are likely to

  2. Cerebellar white matter pathways are associated with reading skills in children and adolescents.

    PubMed

    Travis, Katherine E; Leitner, Yael; Feldman, Heidi M; Ben-Shachar, Michal

    2015-04-01

    Reading is a critical life skill in the modern world. The neural basis of reading incorporates a distributed network of cortical areas and their white matter connections. The cerebellum has also been implicated in reading and reading disabilities. However, little is known about the contribution of cerebellar white matter pathways to major component skills of reading. We used diffusion magnetic resonance imaging (dMRI) with tractography to identify the cerebellar peduncles in a group of 9- to 17-year-old children and adolescents born full term (FT, n = 19) or preterm (PT, n = 26). In this cohort, no significant differences were found between fractional anisotropy (FA) measures of the peduncles in the PT and FT groups. FA of the cerebellar peduncles correlated significantly with measures of decoding and reading comprehension in the combined sample of FT and PT subjects. Correlations were negative in the superior and inferior cerebellar peduncles and positive in the middle cerebellar peduncle. Additional analyses revealed that FT and PT groups demonstrated similar patterns of reading associations within the left superior cerebellar peduncle, middle cerebellar peduncle, and left inferior cerebellar peduncle. Partial correlation analyses showed that distinct sub-skills of reading were associated with FA in segments of different cerebellar peduncles. Overall, the present findings are the first to document associations of microstructure of the cerebellar peduncles and the component skills of reading.

  3. In and out of the loop: external and internal modulation of the olivo-cerebellar loop

    PubMed Central

    Libster, Avraham M.; Yarom, Yosef

    2013-01-01

    Cerebellar anatomy is known for its crystal like structure, where neurons and connections are precisely and repeatedly organized with minor variations across the Cerebellar Cortex. The olivo-cerebellar loop, denoting the connections between the Cerebellar cortex, Inferior Olive and Cerebellar Nuclei (CN), is also modularly organized to form what is known as the cerebellar module. In contrast to the relatively organized and static anatomy, the cerebellum is innervated by a wide variety of neuromodulator carrying axons that are heterogeneously distributed along the olivo-cerebellar loop, providing heterogeneity to the static structure. In this manuscript we review modulatory processes in the olivo-cerebellar loop. We start by discussing the relationship between neuromodulators and the animal behavioral states. This is followed with an overview of the cerebellar neuromodulatory signals and a short discussion of why and when the cerebellar activity should be modulated. We then devote a section for three types of neurons where we briefly review its properties and propose possible neuromodulation scenarios. PMID:23626524

  4. Potential sources of intrinsic optical signals imaged in live brain slices.

    PubMed

    Andrew, R D; Jarvis, C R; Obeidat, A S

    1999-06-01

    Changes in how light is absorbed or scattered in biological tissue are termed intrinsic optical signals (IOSs). Imaging IOSs in the submerged brain slice preparation provides insight into brain activity if it involves significant water movement between intracellular and extracellular compartments. This includes responses to osmotic imbalance, excitotoxic glutamate agonists, and oxygen/glucose deprivation, the latter leading to spreading depression. There are several misconceptions regarding these signals. (1) IOSs are not generated by glial swelling alone. Although neuronal and glia sources cannot yet be directly imaged, several lines of evidence indicate that neurons contribute significantly to the changes in light transmittance. (2) Excitotoxic swelling and osmotic swelling are physiologically different, as are their associated IOSs. Hyposmotic swelling involves no detectable neuronal depolarization of cortical pyramidal neurons, only the passive drawing in of water from a dilute medium across the cell membrane. In contrast excitotoxic swelling involves sustained membrane depolarization associated with inordinate amounts of Na+ and Cl- entry followed by water. IOSs demonstrate substantial damage in the latter case. (3) Osmotic perturbations do not induce volume regulatory mechanisms as measured by IOSs. The osmotic responses measured by IOSs in brain slices are passive, without the compensatory mechanisms that are assumed to be active on a scale suggested by studies of cultured brain cells under excessive osmotic stress. (4) Spreading depression (SD) can cause neuronal damage. Innocuous during migraine aura, SD induces acute neuronal damage in brain slices that are metabolically compromised by oxygen/glucose deprivation, as demonstrated by IOSs. Neighboring tissue where SD does not spread remains relatively healthy as judged by a minimal reduction in light transmittance. IOSs show that the metabolic stress of SD combined with the compromise of energy resources

  5. Modification of a Colliculo-thalamocortical Mouse Brain Slice, Incorporating 3-D printing of Chamber Components and Multi-scale Optical Imaging.

    PubMed

    Slater, Bernard J; Fan, Anthony Y; Stebbings, Kevin A; Saif, M Taher A; Llano, Daniel A

    2015-01-01

    The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice(1), we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation. PMID:26437382

  6. Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices

    PubMed Central

    Papagiakoumou, Eirini; Ventalon, Cathie; Angulo, María Cecilia; Emiliani, Valentina

    2010-01-01

    Background Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. Methods/Principal Findings The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. Conclusions/Significance We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically encoded photoactivatable

  7. Attack diagnosis on binary executables using dynamic program slicing

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Zheng, Yudi; Zhang, Ruoyu

    2011-12-01

    Nowadays, the level of the practically used programs is often complex and of such a large scale so that it is not as easy to analyze and debug them as one might expect. And it is quite difficult to diagnose attacks and find vulnerabilities in such large-scale programs. Thus, dynamic program slicing becomes a popular and effective method for program comprehension and debugging since it can reduce the analysis scope greatly and drop useless data that do not influence the final result. Besides, most of existing dynamic slicing tools perform dynamic slicing in the source code level, but the source code is not easy to obtain in practice. We believe that we do need some kinds of systems to help the users understand binary programs. In this paper, we present an approach of diagnosing attacks using dynamic backward program slicing based on binary executables, and provide a dynamic binary slicing tool named DBS to analyze binary executables precisely and efficiently. It computes the set of instructions that may have affected or been affected by slicing criterion set in certain location of the binary execution stream. This tool also can organize the slicing results by function call graphs and control flow graphs clearly and hierarchically.

  8. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  9. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  10. Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation.

    PubMed

    Collin, Ludovic; Usiello, Alessandro; Erbs, Eric; Mathis, Carole; Borrelli, Emiliana

    2004-01-01

    The role played by oligodendrocytes (OLs), the myelinating cells of the CNS, during brain development has not been fully explored. We have addressed this question by inducing a temporal and reversible ablation of OLs on postnatal CNS development. OL ablation in newborn mice leads to a profound alteration in the structure of the cerebellar cortex, which can be progressively rescued by newly generated cells, leading to a delayed myelination. Nevertheless, the temporal shift of the OL proliferation and myelinating program cannot completely compensate for developmental defects, resulting in impaired motor functions in the adult. Strikingly, we show that, despite these abnormalities, epigenetic factors, such as motor training, are able to fully rescue cerebellar-directed motor skills. PMID:14694200

  11. Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation

    PubMed Central

    Collin, Ludovic; Usiello, Alessandro; Erbs, Eric; Mathis, Carole; Borrelli, Emiliana

    2004-01-01

    The role played by oligodendrocytes (OLs), the myelinating cells of the CNS, during brain development has not been fully explored. We have addressed this question by inducing a temporal and reversible ablation of OLs on postnatal CNS development. OL ablation in newborn mice leads to a profound alteration in the structure of the cerebellar cortex, which can be progressively rescued by newly generated cells, leading to a delayed myelination. Nevertheless, the temporal shift of the OL proliferation and myelinating program cannot completely compensate for developmental defects, resulting in impaired motor functions in the adult. Strikingly, we show that, despite these abnormalities, epigenetic factors, such as motor training, are able to fully rescue cerebellar-directed motor skills. PMID:14694200

  12. Acetylcholine sensitivity of cerebellar neurones in the cat

    PubMed Central

    Crawford, J. M.; Curtis, D. R.; Voorhoeve, P. E.; Wilson, V. J.

    1966-01-01

    1. Cholinomimetics, acetylcholine antagonists and some other compounds of pharmacological interest were administered electrophoretically near neurones within the vermal cerebellar cortex of anaesthetized (pentobarbitone) and unanaesthetized (cerveau isolé) cats. 2. The neurones were identified by position within the cortex, spontaneous activity, and the responses to afferent and antidromic stimulation. 3. Purkinje cells, but neither granule nor basket cells, were excited by cholinomimetics, and the acetylcholine receptors had muscarinic properties. Excitation was often preceded by depression of the spontaneous firing. 4. Intravenously administered atropine and dihydro-β-erythroidine did not depress the synaptic excitation of cerebellar neurones evoked by impulses in mossy, climbing or parallel fibres. 5. Acetylcholine is thus unlikely to be an excitatory transmitter within the feline cerebellum, particularly at mossy fibre-granule cell synapses, despite the presence of relatively high levels of acetylcholinesterase within mossy fibre terminals. PMID:5914249

  13. Abnormal ocular motility with brainstem and cerebellar disorders.

    PubMed

    Carlow, T J; Bicknell, J M

    1978-01-01

    The disorders of ocular motility seen in association with brainstem or cerebellar disorders may point to rather specific anatomical or pathological correlations. Pontine gaze palsy reflects involvement of the pontine paramedian reticular formation. Internuclear ophthalmoplegia signifies a lesion in the medial longitudinal fasciculus. Skew deviation may result from a lesion anywhere in the posterior fossa. Ocular bobbing typically results from a pontine lesion. The Sylvian aqueduct syndrome is characteristic of involvement in the upper midbrain-pretectal region, usually a pinealoma. Cerebellar lesions may be manifested by gaze paresis, skew deviation, disturbances of saccadic or smooth pursuit movements, ocular myoclonus, or several characteristic forms of nystagmus. Familiarity with these disorders may be of great help to the physician dealing with a patient with a possible posterior fossa lesion.

  14. Palatoglossal fusion with cleft palate and hypoplasia of cerebellar vermis.

    PubMed

    Solanki, Shailesh; Babu, M Narendra; Gowrishankar; Ramesh, S

    2016-01-01

    A new-born male presented within 12 h of birth with respiratory distress. On examination and workup, he had palatoglossal fusion, cleft palate and hypoplasia of the cerebellar vermis. A 2.5 Fr endotracheal tube was inserted into the pharynx through nostril as a nasopharyngeal stent, following which his respiratory distress improved. Once child was optimised, then feeding was started by nasogastric tube and feeds were tolerated well. Elective tracheostomy and gastrostomy were done, followed by release of adhesions between the tongue and palate at a later stage. Review of literature suggests that palatoglossal fusion is uncommon and presents as an emergency. Mostly, these oral synechiae are associated with digital and/or cardiac anomaly. Other disorders associated with intra-oral synechiae include congenital alveolar synechiae, van der Woude syndrome, popliteal pterygium syndrome and oromandibular limb hypogenesis syndrome. The authors report a hitherto undescribed association of palatoglossal fusion with cleft palate and hypoplasia of the cerebellar vermis. PMID:27274132

  15. Palatoglossal fusion with cleft palate and hypoplasia of cerebellar vermis

    PubMed Central

    Solanki, Shailesh; Babu, M. Narendra; Gowrishankar; Ramesh, S.

    2016-01-01

    A new-born male presented within 12 h of birth with respiratory distress. On examination and workup, he had palatoglossal fusion, cleft palate and hypoplasia of the cerebellar vermis. A 2.5 Fr endotracheal tube was inserted into the pharynx through nostril as a nasopharyngeal stent, following which his respiratory distress improved. Once child was optimised, then feeding was started by nasogastric tube and feeds were tolerated well. Elective tracheostomy and gastrostomy were done, followed by release of adhesions between the tongue and palate at a later stage. Review of literature suggests that palatoglossal fusion is uncommon and presents as an emergency. Mostly, these oral synechiae are associated with digital and/or cardiac anomaly. Other disorders associated with intra-oral synechiae include congenital alveolar synechiae, van der Woude syndrome, popliteal pterygium syndrome and oromandibular limb hypogenesis syndrome. The authors report a hitherto undescribed association of palatoglossal fusion with cleft palate and hypoplasia of the cerebellar vermis. PMID:27274132

  16. Cerebellar Cognitive Affective Syndrome Presented as Severe Borderline Personality Disorder

    PubMed Central

    Pesic, Danilo; Peljto, Amir; Lukic, Biljana; Milovanovic, Maja; Svetozarevic, Snezana; Lecic Tosevski, Dusica

    2014-01-01

    An increasing number of findings confirm the significance of cerebellum in affecting regulation and early learning. Most consistent findings refer to association of congenital vermis anomalies with deficits in nonmotor functions of cerebellum. In this paper we presented a young woman who was treated since sixteen years of age for polysubstance abuse, affective instability, and self-harming who was later diagnosed with borderline personality disorder. Since the neurological and neuropsychological reports pointed to signs of cerebellar dysfunction and dysexecutive syndrome, we performed magnetic resonance imaging of brain which demonstrated partially developed vermis and rhombencephalosynapsis. These findings match the description of cerebellar cognitive affective syndrome and show an overlap with clinical manifestations of borderline personality disorder. PMID:24715924

  17. Cerebellar networks with the cerebral cortex and basal ganglia

    PubMed Central

    Bostan, Andreea C.; Dum, Richard P.; Strick, Peter L.

    2013-01-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent results from neuroanatomical, behavioral and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that the output from the cerebellum reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, indicating that the two subcortical structures are part of a densely interconnected network. Altogether, these results provide the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  18. Differential Modulation of GABAA Receptors Underlies Postsynaptic Depolarization- and Purinoceptor-Mediated Enhancement of Cerebellar Inhibitory Transmission: A Non-Stationary Fluctuation Analysis Study

    PubMed Central

    Ono, Yumie; Saitow, Fumihito; Konishi, Shiro

    2016-01-01

    Cerebellar GABAergic inhibitory transmission between interneurons and Purkinje cells (PCs) undergoes a long-lasting enhancement following different stimulations, such as brief depolarization or activation of purinergic receptors of postsynaptic PCs. The underlying mechanisms, however, are not completely understood. Using a peak-scaled non-stationary fluctuation analysis, we therefore aimed at characterizing changes in the electrophysiological properties of GABAA receptors in PCs of rat cerebellar cortex during depolarization-induced “rebound potentiation (RP)” and purinoceptor-mediated long-term potentiation (PM-LTP), because both RP and PM-LTP likely depend on postsynaptic mechanisms. Stimulation-evoked inhibitory postsynaptic currents (eIPSCs) were recorded from PCs in neonatal rat cerebellar slices. Our analysis showed that postsynaptic membrane depolarization induced RP of eIPSCs in association with significant increase in the number of synaptic GABAA receptors without changing the channel conductance. By contrast, bath application of ATP induced PM-LTP of eIPSCs with a significant increase of the channel conductance of GABAA receptors without affecting the receptor number. Pretreatment with protein kinase A (PKA) inhibitors, H-89 and cAMPS-Rp, completely abolished the PM-LTP. The CaMKII inhibitor KN-62 reported to abolish RP did not alter PM-LTP. These results suggest that the signaling mechanism underlying PM-LTP could involve ATP-induced phosphorylation of synaptic GABAA receptors, thereby resulting in upregulation of the channel conductance by stimulating adenylyl cyclase-PKA signaling cascade, possibly via activation of P2Y11 purinoceptor. Thus, our findings reveal that postsynaptic GABAA receptors at the interneuron-PC inhibitory synapses are under the control of two distinct forms of long-term potentiation linked with different second messenger cascades. PMID:26930485

  19. Thin-slice perception develops slowly.

    PubMed

    Balas, Benjamin; Kanwisher, Nancy; Saxe, Rebecca

    2012-06-01

    Body language and facial gesture provide sufficient visual information to support high-level social inferences from "thin slices" of behavior. Given short movies of nonverbal behavior, adults make reliable judgments in a large number of tasks. Here we find that the high precision of adults' nonverbal social perception depends on the slow development, over childhood, of sensitivity to subtle visual cues. Children and adult participants watched short silent clips in which a target child played with Lego blocks either in the (off-screen) presence of an adult or alone. Participants judged whether the target was playing alone or not; that is, they detected the presence of a social interaction (from the behavior of one participant in that interaction). This task allowed us to compare performance across ages with the true answer. Children did not reach adult levels of performance on this task until 9 or 10 years of age, and we observed an interaction between age and video reversal. Adults and older children benefitted from the videos being played in temporal sequence, rather than reversed, suggesting that adults (but not young children) are sensitive to natural movement in social interactions. PMID:22417920

  20. Sliced Inverse Regression for Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Li-Sue

    1995-11-01

    In this thesis, general nonlinear models for time series data are considered. A basic form is x _{t} = f(beta_sp{1} {T}X_{t-1},beta_sp {2}{T}X_{t-1},... , beta_sp{k}{T}X_ {t-1},varepsilon_{t}), where x_{t} is an observed time series data, X_{t } is the first d time lag vector, (x _{t},x_{t-1},... ,x _{t-d-1}), f is an unknown function, beta_{i}'s are unknown vectors, varepsilon_{t }'s are independent distributed. Special cases include AR and TAR models. We investigate the feasibility applying SIR/PHD (Li 1990, 1991) (the sliced inverse regression and principal Hessian methods) in estimating beta _{i}'s. PCA (Principal component analysis) is brought in to check one critical condition for SIR/PHD. Through simulation and a study on 3 well -known data sets of Canadian lynx, U.S. unemployment rate and sunspot numbers, we demonstrate how SIR/PHD can effectively retrieve the interesting low-dimension structures for time series data.

  1. Maternal Postsecondary Education Associated With Improved Cerebellar Growth After Preterm Birth.

    PubMed

    Stiver, Mikaela L; Kamino, Daphne; Guo, Ting; Thompson, Angela; Duerden, Emma G; Taylor, Margot J; Tam, Emily W Y

    2015-10-01

    The preterm cerebellum is vulnerable to impaired development impacting long-term outcome. Preterm newborns (<32 weeks) underwent serial magnetic resonance imaging (MRI) scans. The association between parental education and cerebellar volume at each time point was assessed, adjusting for age at scan. In 26 infants, cerebellar volumes at term (P = .001), but not birth (P = .4), were associated with 2-year volumes. For 1 cm(3) smaller cerebellar volume (4% total volume) at term, the cerebellum was 3.18 cm(3) smaller (3% total volume) by 2 years. Maternal postsecondary education was not associated with cerebellar volume at term (P = .16). Maternal postsecondary education was a significant confounder in the relationship between term and 2-year cerebellar volumes (P = .016), with higher education associated with improved volumes by 2 years. Although preterm birth has been found to be associated with smaller cerebellar volumes at term, maternal postsecondary education is associated with improved growth detectable by 2 years.

  2. Altered corticomotor-cerebellar integrity in young ataxia telangiectasia patients.

    PubMed

    Sahama, Ishani; Sinclair, Kate; Fiori, Simona; Pannek, Kerstin; Lavin, Martin; Rose, Stephen

    2014-09-01

    Magnetic resonance imaging (MRI) research in identifying altered brain structure and function in ataxia-telangiectasia, an autosomal recessive neurodegenerative disorder, is limited. Diffusion-weighted MRI were obtained from 11 ataxia telangiectasia patients (age range, 7-22 years; mean, 12 years) and 11 typically developing age-matched participants (age range, 8-23 years; mean, 13 years). Gray matter volume alterations in patients were compared with those of healthy controls using voxel-based morphometry, whereas tract-based spatial statistics was employed to elucidate white matter microstructure differences between groups. White matter microstructure was probed using quantitative fractional anisotropy and mean diffusivity measures. Reduced gray matter volume in both cerebellar hemispheres and in the precentral-postcentral gyrus in the left cerebral hemisphere was observed in ataxia telangiectasia patients compared with controls (P < 0.05, corrected for multiple comparisons). A significant reduction in fractional anisotropy in the cerebellar hemispheres, anterior/posterior horns of the medulla, cerebral peduncles, and internal capsule white matter, particularly in the left posterior limb of the internal capsule and corona radiata in the left cerebral hemisphere, was observed in patients compared with controls (P < 0.05). Mean diffusivity differences were observed within the left cerebellar hemisphere and the white matter of the superior lobule of the right cerebellar hemisphere (P < 0.05). Cerebellum-localized gray matter changes are seen in young ataxia telangiectasia patients along with white matter tract degeneration projecting from the cerebellum into corticomotor regions. The lack of cortical involvement may reflect early-stage white matter motor pathway degeneration within young patients. PMID:25042086

  3. Evidence for distinct cognitive deficits after focal cerebellar lesions

    PubMed Central

    Gottwald, B; Wilde, B; Mihajlovic, Z; Mehdorn, H

    2004-01-01

    Objectives: Anatomical evidence and lesion studies, as well as functional magnetic resonance imaging (fMRI) studies, indicate that the cerebellum contributes to higher cognitive functions. Cerebellar posterior lateral regions seem to be relevant for cognition, while vermal lesions seem to be associated with changes in affect. However, the results remain controversial. Deficits of patients are sometimes still attributed to motor impairment. Methods: We present data from a detailed neuropsychological examination of 21 patients with cerebellar lesions due to tumour or haematoma, and 21 controls matched for age, sex, and years of education. Results: Patients showed deficits in executive function, and in attentional processes such as working memory and divided attention. Further analysis revealed that patients with right-sided lesions were in general more impaired than those with left-sided lesions. Conclusions: Those hypotheses that suggest that lesions of the right cerebellar hemisphere lead to verbal deficits, while those of the left lead to non-verbal deficits, have in part been confirmed. The generally greater impairment of those patients with a right-sided lesion has been interpreted as resulting from the connection of the right cerebellum to the left cerebral hemisphere, which is dominant for language functions and crucial for right hand movements. Motor impairment was correlated with less than half of the cognitive measures, with no stronger tendency for correlation with cognitive tests that require motor responses discernible. The results are discussed on the basis of an assumption that the cerebellum has a predicting and preparing function, indicating that cerebellar lesions lead to a "dysmetria of thought." PMID:15489381

  4. [Aneurysm of the anterior inferior cerebellar artery: case report].

    PubMed

    Adorno, Juan Oscar Alarcón; de Andrade, Guilherme Cabral

    2002-12-01

    The intracranial aneurysms of the posterior circulation have been reported between 5 and 10% of all cerebral aneurysms and the aneurysms of the anterior inferior cerebellar artery (AICA) are considered rare, can cause cerebello pontine angle (CPA) syndrome with or without subarachnoid hemorrhage. Since 1948 few cases were described in the literature. We report on a 33 year-old female patient with subarachnoid hemorrhage due to sacular aneurysm of the left AICA. She was submitted to clipage of the aneurysm without complications.

  5. The cerebellar component of Friedreich’s ataxia

    PubMed Central

    Davis, Ashley N.; Morral, Jennifer A.

    2016-01-01

    Lack of frataxin in Friedreich’s ataxia (FRDA) causes a complex neurological and pathological phenotype. Progressive atrophy of the dentate nucleus (DN) is a major intrinsic central nervous system lesion. Antibodies to neuron-specific enolase (NSE), calbindin, glutamic acid decarboxylase (GAD), and vesicular glutamate transporters 1 and 2 (VGluT1, VGluT2) allowed insight into the disturbed synaptic circuitry of the DN. The available case material included autopsy specimens of 24 patients with genetically defined FRDA and 14 normal controls. In FRDA, the cerebellar cortex revealed intact Purkinje cell somata and dendrites as assessed by calbindin immunore-activity. The DN, however, displayed severe loss of large NSE-reactive neurons. Small neurons remained intact. Labeling of Purkinje cells, basket fibers, Golgi neurons, and Golgi axonal plexuses with antibodies to GAD indicated normal intrinsic circuitry of the cerebellar cortex involving γ-aminobutyric acid (GABA). In contrast, the DN displayed severe loss of GABA-ergic terminals and formation of GAD- and calbindin-reactive grumose degeneration. The surviving small GAD-positive DN neurons provided normal GABA-ergic terminals to intact inferior olivary nuclei. The olives also received normal glutamatergic terminals as shown by VGluT2-reactivity. VGluT1-immunocytochemistry of the cerebellar cortex confirmed normal glutamatergic input to the molecular layer by parallel fibers and the granular layer by mossy fibers. VGluT2-immunoreactivity visualized normal climbing fibers and mossy fiber terminals. The DN, however, showed depletion of VGluT1- and VGluT2-reactive terminals arising from climbing and mossy fiber collaterals. The main functional deficit underlying cerebellar ataxia in FRDA is defective processing of inhibitory and excitatory impulses that converge on the large neurons of the DN. The reason for the selective vulnerability of these nerve cells remains elusive. PMID:21638087

  6. Hippocampal and cerebellar atrophy in patients with Cushing's disease.

    PubMed

    Burkhardt, Till; Lüdecke, Daniel; Spies, Lothar; Wittmann, Linus; Westphal, Manfred; Flitsch, Jörg

    2015-11-01

    OBJECT Cushing's disease (CD) may cause atrophy of different regions of the human brain, mostly affecting the hippocampus and the cerebellum. This study evaluates the use of 3-T MRI of newly diagnosed patients with CD to detect atrophic degeneration with voxel-based volumetry. METHODS Subjects with newly diagnosed, untreated CD were included and underwent 3-T MRI. Images were analyzed using a voxelwise statistical test to detect reduction of brain parenchyma. In addition, an atlas-based volumetric study for regions likely to be affected by CD was performed. RESULTS Nineteen patients with a mean disease duration of 24 months were included. Tumor markers included adrenocorticotropic hormone (median 17.5 pmol/L), cortisol (949.4 nmol/L), and dehydroepiandrosterone sulfate (5.4 μmol/L). The following values are expressed as the mean ± SD. The voxelwise statistical test revealed clusters of significantly reduced gray matter in the hippocampus and cerebellum, with volumes of 2.90 ± 0.26 ml (right hippocampus), 2.89 ± 0.28 ml (left hippocampus), 41.95 ± 4.67 ml (right cerebellar hemisphere), and 42.11 ± 4.59 ml (left cerebellar hemisphere). Healthy control volunteers showed volumes of 3.22 ± 0.25 ml for the right hippocampus, 3.23 ± 0.25 ml for the left hippocampus, 50.87 ± 4.23 ml for the right cerebellar hemisphere, and 50.42 ± 3.97 ml for the left cerebellar hemisphere. CONCLUSIONS Patients with untreated CD show significant reduction of gray matter in the cerebellum and hippocampus. These changes can be analyzed and objectified with the quantitative voxel-based method described in this study.

  7. Bilateral cerebellar activation in unilaterally challenged essential tremor

    PubMed Central

    Broersma, Marja; van der Stouwe, Anna M.M.; Buijink, Arthur W.G.; de Jong, Bauke M.; Groot, Paul F.C.; Speelman, Johannes D.; Tijssen, Marina A.J.; van Rootselaar, Anne-Fleur; Maurits, Natasha M.

    2015-01-01

    Background Essential tremor (ET) is one of the most common hyperkinetic movement disorders. Previous research into the pathophysiology of ET suggested underlying cerebellar abnormalities. Objective In this study, we added electromyography as an index of tremor intensity to functional Magnetic Resonance Imaging (EMG-fMRI) to study a group of ET patients selected according to strict criteria to achieve maximal homogeneity. With this approach we expected to improve upon the localization of the bilateral cerebellar abnormalities found in earlier fMRI studies. Methods We included 21 propranolol sensitive patients, who were not using other tremor medication, with a definite diagnosis of ET defined by the Tremor Investigation Group. Simultaneous EMG-fMRI recordings were performed while patients were off tremor medication. Patients performed unilateral right hand and arm extension, inducing tremor, alternated with relaxation (rest). Twenty-one healthy, age- and sex-matched participants mimicked tremor during right arm extension. EMG power variability at the individual tremor frequency as a measure of tremor intensity variability was used as a regressor, mathematically independent of the block regressor, in the general linear model used for fMRI analysis, to find specific tremor-related activations. Results Block-related activations were found in the classical upper-limb motor network, both for ET patients and healthy participants in motor, premotor and supplementary motor areas. In ET patients, we found tremor-related activations bilaterally in the cerebellum: in left lobules V, VI, VIIb and IX and in right lobules V, VI, VIIIa and b, and in the brainstem. In healthy controls we found simulated tremor-related activations in right cerebellar lobule V. Conclusions Our results expand on previous findings of bilateral cerebellar involvement in ET. We have identified specific areas in the bilateral somatomotor regions of the cerebellum: lobules V, VI and VIII. PMID:26909321

  8. Imaging Spectrum of Cerebellar Pathologies: A Pictorial Essay

    PubMed Central

    Arora, Richa

    2015-01-01

    Summary The cerebellum is a crucial structure of hindbrain which helps in maintaining motor tone, posture, gait and also coordinates skilled voluntary movements including eye movements. Cerebellar abnormalities have different spectrum, presenting symptoms and prognosis as compared to supratentorial structures and brainstem. This article intends to review the various pathological processes involving the cerebellum along with their imaging features on MR, which are must to know for all radiologists, neurologists and neurosurgeons for their prompt diagnosis and management. PMID:25806100

  9. Depolymerization of dendritic microtubules following incubation of cortical slices.

    PubMed

    Burgoyne, R D; Gray, E G; Sullivan, K; Barron, J

    1982-07-20

    Electron microscopical examination indicated that incubation of slices of rat cerebral cortex in Krebs buffer at room temperature of 37 degrees C led to a rapid and more or less complete depolymerization of dendritic microtubules. The loss of dendritic microtubules did not appear to be a consequence of anoxia. Myelinated axons showed only a partial loss of microtubules and the microtubules of preterminal axons were unaffected by incubation. These results indicate differential labilities of axonal and dendritic microtubules under these conditions of incubation. Such an effect of the incubation of slices in Krebs buffer indicates a need for caution in the interpretation of experiments on slice preparations.

  10. The Advanced Light Source (ALS) Slicing Undulator Beamline

    SciTech Connect

    Heimann, P. A.; Glover, T. E.; Plate, D.; Brown, V. C.; Padmore, H. A.; Lee, H. J.; Schoenlein, R. W.

    2007-01-19

    A beamline optimized for the bunch slicing technique has been construction at the Advanced Light Source (ALS). This beamline includes an in-vacuum undulator, soft and hard x-ray beamlines and a femtosecond laser system. The soft x-ray beamline may operate in spectrometer mode, where an entire absorption spectrum is accumulated at one time, or in monochromator mode. The femtosecond laser system has a high repetition rate of 20 kHz to improve the average slicing flux. The performance of the soft x-ray branch of the ALS slicing undulator beamline will be presented.

  11. Paraneoplastic cerebellar degeneration with anti-Yo antibodies - a review.

    PubMed

    Venkatraman, Anand; Opal, Puneet

    2016-08-01

    The ataxic syndrome associated with Anti-Yo antibody, or Purkinje cell cytoplasmic antibody type 1 (PCA1), is the most common variant of paraneoplastic cerebellar degeneration (PCD). The typical presentation involves the subacute development of pancerebellar deficits with a clinical plateau within 6 months. The vast majority of cases have been reported in women with pelvic or breast tumors. Magnetic resonance imaging of the brain is often normal in the early stages, with cerebellar atrophy seen later. The underlying mechanism is believed to be an immunological reaction to cerebellar degeneration-related protein 2 (CDR2), a protein usually found in the cerebellum that is ectopically produced by tumor cells. Although both B- and T-cell abnormalities are seen, there is debate about the relative importance of the autoantibodies and cytotoxic T lymphocytes in the neuronal loss. Cerebrospinal fluid abnormalities, primarily elevated protein, lymphocytic pleocytosis, and oligoclonal bands, are common in the early stages. The low prevalence of this condition has not allowed for large-scale randomized controlled trials. Immunotherapies, such as steroids, intravenous immune globulins, and plasma exchange, have been extensively used in managing this condition, with limited success. Although some reports indicate benefit from antitumor therapies like surgery and chemotherapy, this has not been consistently observed. The prognosis for anti-Yo PCD is almost uniformly poor, with most patients left bedridden. Further studies are required to clarify the pathophysiology and provide evidence-based treatment options. PMID:27606347

  12. Deficits in reflexive covert attention following cerebellar injury.

    PubMed

    Striemer, Christopher L; Cantelmi, David; Cusimano, Michael D; Danckert, James A; Schweizer, Tom A

    2015-01-01

    Traditionally the cerebellum has been known for its important role in coordinating motor output. Over the past 15 years numerous studies have indicated that the cerebellum plays a role in a variety of cognitive functions including working memory, language, perceptual functions, and emotion. In addition, recent work suggests that regions of the cerebellum involved in eye movements also play a role in controlling covert visual attention. Here we investigated whether regions of the cerebellum that are not strictly tied to the control of eye movements might also contribute to covert attention. To address this question we examined the effects of circumscribed cerebellar lesions on reflexive covert attention in a group of patients (n = 11) without any gross motor or oculomotor deficits, and compared their performance to a group of age-matched controls (n = 11). Results indicated that the traditional RT advantage for validly cued targets was significantly smaller at the shortest (50 ms) SOA for cerebellar patients compared to controls. Critically, a lesion overlap analysis indicated that this deficit in the rapid deployment of attention was linked to damage in Crus I and Crus II of the lateral cerebellum. Importantly, both cerebellar regions have connections to non-motor regions of the prefrontal and posterior parietal cortices-regions important for controlling visuospatial attention. Together, these data provide converging evidence that both lateral and midline regions of the cerebellum play an important role in the control of reflexive covert visual attention.

  13. Hedgehog regulates cerebellar progenitor cell and medulloblastoma apoptosis.

    PubMed

    Noguchi, Kevin Kiyoshi; Cabrera, Omar Hoseá; Swiney, Brant S; Salinas-Contreras, Patricia; Smith, Julie Kathryn; Farber, Nuri B

    2015-11-01

    The external granule layer (EGL) is a proliferative region that produces over 90% of the neurons in the cerebellum but can also malignantly transform into a cerebellar tumor called the medulloblastoma (the most common malignant brain tumor in children). Current dogma considers Hedgehog stimulation a potent proliferative signal for EGL neural progenitor cells (NPCs) and medulloblastomas. However, the Hedgehog pathway also acts as a survival signal in the neural tube where it regulates dorsoventral patterning by controlling NPC apoptosis. Here we show that Hedgehog stimulation is also a potent survival signal in the EGL and medulloblastomas that produces a massive apoptotic response within hours of signal loss in mice. This toxicity can be produced by numerous Hedgehog antagonists (vismodegib, cyclopamine, and jervine) and is Bax/Bak dependent but p53 independent. Finally, since glucocorticoids can also induce EGL and medulloblastoma apoptosis, we show that Hedgehog's effects on apoptosis can occur independent of glucocorticoid stimulation. This effect may play a major role in cerebellar development by directing where EGL proliferation occurs thereby morphologically sculpting growth. It may also be a previously unknown major therapeutic effect of Hedgehog antagonists during medulloblastoma therapy. Results are discussed in terms of their implications for both cerebellar development and medulloblastoma treatment. PMID:26319366

  14. Mutations in PTF1A cause pancreatic and cerebellar agenesis.

    PubMed

    Sellick, Gabrielle S; Barker, Karen T; Stolte-Dijkstra, Irene; Fleischmann, Christina; Coleman, Richard J; Garrett, Christine; Gloyn, Anna L; Edghill, Emma L; Hattersley, Andrew T; Wellauer, Peter K; Goodwin, Graham; Houlston, Richard S

    2004-12-01

    Individuals with permanent neonatal diabetes mellitus usually present within the first three months of life and require insulin treatment. We recently identified a locus on chromosome 10p13-p12.1 involved in permanent neonatal diabetes mellitus associated with pancreatic and cerebellar agenesis in a genome-wide linkage search of a consanguineous Pakistani family. Here we report the further linkage analysis of this family and a second family of Northern European descent segregating an identical phenotype. Positional cloning identified the mutations 705insG and C886T in the gene PTF1A, encoding pancreas transcription factor 1alpha, as disease-causing sequence changes. Both mutations cause truncation of the expressed PTF1A protein C-terminal to the basic-helix-loop-helix domain. Reporter-gene studies using a minimal PTF1A deletion mutant indicate that the deleted region defines a new domain that is crucial for the function of this protein. PTF1A is known to have a role in mammalian pancreatic development, and the clinical phenotype of the affected individuals implicated the protein as a key regulator of cerebellar neurogenesis. The essential role of PTF1A in normal cerebellar development was confirmed by detailed neuropathological analysis of Ptf1a(-/-) mice. PMID:15543146

  15. Paraneoplastic cerebellar degeneration with anti-Yo antibodies - a review.

    PubMed

    Venkatraman, Anand; Opal, Puneet

    2016-08-01

    The ataxic syndrome associated with Anti-Yo antibody, or Purkinje cell cytoplasmic antibody type 1 (PCA1), is the most common variant of paraneoplastic cerebellar degeneration (PCD). The typical presentation involves the subacute development of pancerebellar deficits with a clinical plateau within 6 months. The vast majority of cases have been reported in women with pelvic or breast tumors. Magnetic resonance imaging of the brain is often normal in the early stages, with cerebellar atrophy seen later. The underlying mechanism is believed to be an immunological reaction to cerebellar degeneration-related protein 2 (CDR2), a protein usually found in the cerebellum that is ectopically produced by tumor cells. Although both B- and T-cell abnormalities are seen, there is debate about the relative importance of the autoantibodies and cytotoxic T lymphocytes in the neuronal loss. Cerebrospinal fluid abnormalities, primarily elevated protein, lymphocytic pleocytosis, and oligoclonal bands, are common in the early stages. The low prevalence of this condition has not allowed for large-scale randomized controlled trials. Immunotherapies, such as steroids, intravenous immune globulins, and plasma exchange, have been extensively used in managing this condition, with limited success. Although some reports indicate benefit from antitumor therapies like surgery and chemotherapy, this has not been consistently observed. The prognosis for anti-Yo PCD is almost uniformly poor, with most patients left bedridden. Further studies are required to clarify the pathophysiology and provide evidence-based treatment options.

  16. Deficits in reflexive covert attention following cerebellar injury.

    PubMed

    Striemer, Christopher L; Cantelmi, David; Cusimano, Michael D; Danckert, James A; Schweizer, Tom A

    2015-01-01

    Traditionally the cerebellum has been known for its important role in coordinating motor output. Over the past 15 years numerous studies have indicated that the cerebellum plays a role in a variety of cognitive functions including working memory, language, perceptual functions, and emotion. In addition, recent work suggests that regions of the cerebellum involved in eye movements also play a role in controlling covert visual attention. Here we investigated whether regions of the cerebellum that are not strictly tied to the control of eye movements might also contribute to covert attention. To address this question we examined the effects of circumscribed cerebellar lesions on reflexive covert attention in a group of patients (n = 11) without any gross motor or oculomotor deficits, and compared their performance to a group of age-matched controls (n = 11). Results indicated that the traditional RT advantage for validly cued targets was significantly smaller at the shortest (50 ms) SOA for cerebellar patients compared to controls. Critically, a lesion overlap analysis indicated that this deficit in the rapid deployment of attention was linked to damage in Crus I and Crus II of the lateral cerebellum. Importantly, both cerebellar regions have connections to non-motor regions of the prefrontal and posterior parietal cortices-regions important for controlling visuospatial attention. Together, these data provide converging evidence that both lateral and midline regions of the cerebellum play an important role in the control of reflexive covert visual attention. PMID:26300756

  17. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice. PMID:25524412

  18. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice.

  19. Deficits in reflexive covert attention following cerebellar injury

    PubMed Central

    Striemer, Christopher L.; Cantelmi, David; Cusimano, Michael D.; Danckert, James A.; Schweizer, Tom A.

    2015-01-01

    Traditionally the cerebellum has been known for its important role in coordinating motor output. Over the past 15 years numerous studies have indicated that the cerebellum plays a role in a variety of cognitive functions including working memory, language, perceptual functions, and emotion. In addition, recent work suggests that regions of the cerebellum involved in eye movements also play a role in controlling covert visual attention. Here we investigated whether regions of the cerebellum that are not strictly tied to the control of eye movements might also contribute to covert attention. To address this question we examined the effects of circumscribed cerebellar lesions on reflexive covert attention in a group of patients (n = 11) without any gross motor or oculomotor deficits, and compared their performance to a group of age-matched controls (n = 11). Results indicated that the traditional RT advantage for validly cued targets was significantly smaller at the shortest (50 ms) SOA for cerebellar patients compared to controls. Critically, a lesion overlap analysis indicated that this deficit in the rapid deployment of attention was linked to damage in Crus I and Crus II of the lateral cerebellum. Importantly, both cerebellar regions have connections to non-motor regions of the prefrontal and posterior parietal cortices—regions important for controlling visuospatial attention. Together, these data provide converging evidence that both lateral and midline regions of the cerebellum play an important role in the control of reflexive covert visual attention. PMID:26300756

  20. Cystitis - acute

    MedlinePlus

    Uncomplicated urinary tract infection; UTI - acute; Acute bladder infection; Acute bacterial cystitis ... International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 ...

  1. Administration of copper reduced the hyper-excitability of neurons in CA1 hippocampal slices from epileptic rats.

    PubMed

    Leiva, Juan; Infante, Claudio

    2016-04-01

    Copper as a trace metal is involved in several neurodegenerative illnesses, such as Menkes, Wilson's, Alzheimer's, amyotrophic lateral sclerosis (ALS), and Creutzfeldt-Jakob. Electrophysiological evidence indicates that acute perfusion of copper can inhibit long-term synaptic potentiation in hippocampal slices. The objective of this work is to determine whether Cu perfusion can perturb synaptic transmission in hippocampal slices derived from pilocarpine treated epileptic rats. Field potential (FP) recordings of the CA1 neurons of rats with chronic epilepsy showed voltage and response duration decrease following copper sulfate perfusion. However, voltage and response duration were higher after removing copper by washing. The discharge frequency of the CA1 neurons of hippocampal slices from non-epileptic control rats was increased after acute perfusion of 10 μM of pilocarpine. This increase was blocked by administering copper sulphate 10 μM. Krebs-Ringer solution washing re-established the discharges, with a higher frequency than that provoked by pilocarpine perfusion. We discuss the blocking effect of copper and the synaptic hyper-excitability generated by its removal. PMID:27548095

  2. Spatial patterns of high-frequency oscillations in the rat cerebellar cortex.

    PubMed

    Ordek, Gokhan; Sahin, Mesut

    2014-01-01

    Rhythmic signals in the brain have always intrigued neuroscientists and the cerebellum is not an exception. Cerebellar high-frequency oscillations have been explored over many decades, but underlying mechanisms have remained unclear. In this study, we have recorded spontaneous and evoked potentials from the cerebellar surface with chronically implanted, multi-electrode arrays. Evoked and spontaneous signals during behavior showed highly synchronized oscillations at ~150 Hz. Furthermore, this rhythmic activity displayed directional preference on the cerebellar surface. This preliminary study demonstrates the presence of highly synchronized cerebellar oscillations in high-frequency band that emerge episodically in anesthetized animals by sensory stimulation as well as during face cleaning in awake animals.

  3. Recovery of biological motion perception and network plasticity after cerebellar tumor removal.

    PubMed

    Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A

    2014-10-01

    Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition. PMID:25017648

  4. Importance of genetics in fetal alcohol effects: null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits.

    PubMed

    Bonthius, Daniel J; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J

    2015-01-01

    The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS-/- mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS-/- mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS-/- mice and their wild type controls received alcohol (0.0, 2.2, or 4.4mg/g) daily over postnatal days 4-9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS-/- and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS-/- mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS-/- mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS-/- mice, but not in wild type. Thus, homozygous

  5. Specific cerebellar activation during Braille reading in blind subjects.

    PubMed

    Gizewski, Elke R; Timmann, Dagmar; Forsting, Michael

    2004-07-01

    The traditional view that the cerebellum is involved only in the control of movements has been changed recently. It has been suggested that the human cerebellum is involved in cognition and language. Likewise, besides cortical activity in sensorimotor and visual areas, an increased global activation of the cerebellum has been revealed during Braille reading in blind subjects. Our purpose was to investigate whether there is cerebellar activation during Braille reading by blind subjects other than sensorimotor activation related to finger movements. Early blind and normal sighted subjects were studied with functional magnetic resonance imaging (fMRI) during Braille reading, tactile discrimination of nonsense dots, dots forming symbols, and finger tapping. The experiments were done in block design. Echo planar imaging sequences were carried out on a 1.5-T MR scanner. All blind individuals reading Braille showed robust activation of the posterior and lateral aspects of cerebellar hemispheral lobules Crus I bilaterally but more predominately on the right side. Additionally, activation was present in the medial cerebellum within lobules IV, V, and VIIIA, predominantly on the right. Discriminating nonsense dots did not reveal any activation of Crus I, but did reveal activation within the medial part of lobules IV, V, and VIIIA, predominately on the right. Analysis of sighted subjects during reading of printed text revealed activation of the posterolateral cerebellar hemisphere in Crus I bilaterally, predominantly on the right. Tactile analysis of dots representing symbols revealed an activation in lobules IV and VIII and in right Crus II but not in Crus I. In conclusion, parts of cerebellar activation during Braille reading in blind subjects (i.e., within lobules IV, V, and VIII) overlap with the known hand representation within the cerebellum and are likely related to the sensorimotor part of the task. Cerebellar activation during Braille reading within bilateral Crus I

  6. Communication: Time- and space-sliced velocity map electron imaging

    SciTech Connect

    Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen

    2014-12-14

    We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

  7. METHOXYCHLOR METABOLISM AND VITELLOGENINESIS IN MALE RAINBOW TROUT LIVER SLICES

    EPA Science Inventory

    Induction of vitellogenesis (VTG) in male fish has become an accepted biomarker for xenoestrogenicity. This study utilized the male rainbow trout liver slice model to determine the estrogenicity of parent compound, methoxychlor (MXC) and metabolites, di-hydroxy methoxychlor (HPTE...

  8. Microfluidics and multielectrode array-compatible organotypic slice culture method.

    PubMed

    Berdichevsky, Yevgeny; Sabolek, Helen; Levine, John B; Staley, Kevin J; Yarmush, Martin L

    2009-03-30

    Organotypic brain slice cultures are used for a variety of molecular, electrophysiological, and imaging studies. However, the existing culture methods are difficult or expensive to apply in studies requiring long-term recordings with multielectrode arrays (MEAs). In this work, a novel method to maintain organotypic cultures of rodent hippocampus for several weeks on standard MEAs in an unmodified tissue culture incubator is described. Polydimethylsiloxane (Sylgard) mini-wells were used to stabilize organotypic cultures on glass and MEA surfaces. Hippocampus slices were successfully maintained within PDMS mini-wells for multiple weeks, with preserved pyramidal layer organization, connectivity, and activity. MEAs were used to record the development of spontaneous activity in an organotypic cultures for 4 weeks. This method is compatible with integration of microchannels into the culture substrate. Microchannels were incorporated into the mini-wells and applied to the guidance of axons originating within the slice, paving the way for studies of axonal sprouting using organotypic slices.

  9. Eight-Bit-Slice GaAs General Processor Circuit

    NASA Technical Reports Server (NTRS)

    Weissman, John; Gauthier, Robert V.

    1989-01-01

    Novel GaAs 8-bit slice enables quick and efficient implementation of variety of fast GaAs digital systems ranging from central processing units of computers to special-purpose processors for communications and signal-processing applications. With GaAs 8-bit slice, designers quickly configure and test hearts of many digital systems that demand fast complex arithmetic, fast and sufficient register storage, efficient multiplexing and routing of data words, and ease of control.

  10. Cardiac tissue slices: preparation, handling, and successful optical mapping

    PubMed Central

    Wang, Ken; Lee, Peter; Mirams, Gary R.; Sarathchandra, Padmini; Borg, Thomas K.; Gavaghan, David J.; Kohl, Peter

    2015-01-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. PMID:25595366

  11. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  12. Combined infrared-vacuum drying of pumpkin slices.

    PubMed

    Ghaboos, Seyyed Hossein Hosseini; Ardabili, Seyed Mahdi Seyedain; Kashaninejad, Mahdi; Asadi, Gholamhassan; Aalami, Mehran

    2016-05-01

    Infrared-vacuum dehydration characteristics of pumpkin (Cucurbita moschata) were evaluated in a combined dryer system. The effects of drying parameters, infrared radiation power (204-272 W), system pressure (5-15 kPa), slice thickness (5 and 7 mm) and time (0-220 min) on the drying kinetics and characteristics of pumpkin slices were investigated. The vacuum pressure, lamp power and slice had significant effect on the drying kinetics and various qualities of the dried pumpkin. Moisture ratios were fitted to 10 different mathematical equations using nonlinear regression analysis. The quadratic equation satisfactorily described the drying behavior of pumpkin slices with the highest r value and the lowest SE values. The effective moisture diffusivity increased with power and ranged between 0.71 and 2.86 × 10(-9) m(2)/s. With increasing in infrared radiation power from 204 to 272 W, β-carotene content of dried pumpkins decreased from 30.04 to 24.55 mg/100 g. The rise in infrared power has a negative effect on the color changes (ΔE). The optimum condition was determined as power, 238W, pressure, 5 kPa and slice thickness, 5mm. These conditions resulted into dried pumpkin slices with maximum B-carotene retention.

  13. Combined infrared-vacuum drying of pumpkin slices.

    PubMed

    Ghaboos, Seyyed Hossein Hosseini; Ardabili, Seyed Mahdi Seyedain; Kashaninejad, Mahdi; Asadi, Gholamhassan; Aalami, Mehran

    2016-05-01

    Infrared-vacuum dehydration characteristics of pumpkin (Cucurbita moschata) were evaluated in a combined dryer system. The effects of drying parameters, infrared radiation power (204-272 W), system pressure (5-15 kPa), slice thickness (5 and 7 mm) and time (0-220 min) on the drying kinetics and characteristics of pumpkin slices were investigated. The vacuum pressure, lamp power and slice had significant effect on the drying kinetics and various qualities of the dried pumpkin. Moisture ratios were fitted to 10 different mathematical equations using nonlinear regression analysis. The quadratic equation satisfactorily described the drying behavior of pumpkin slices with the highest r value and the lowest SE values. The effective moisture diffusivity increased with power and ranged between 0.71 and 2.86 × 10(-9) m(2)/s. With increasing in infrared radiation power from 204 to 272 W, β-carotene content of dried pumpkins decreased from 30.04 to 24.55 mg/100 g. The rise in infrared power has a negative effect on the color changes (ΔE). The optimum condition was determined as power, 238W, pressure, 5 kPa and slice thickness, 5mm. These conditions resulted into dried pumpkin slices with maximum B-carotene retention. PMID:27407204

  14. Thin slice expert testimony and mock trial deliberations.

    PubMed

    Parrott, Caroline Titcomb; Brodsky, Stanley L; Wilson, Jennifer Kelly

    2015-01-01

    This study examined impressions of expert witness testimony in a not guilty by reason of insanity defense on two outcomes: witness's credibility and verdict. Borrowing in part from the "thin slice" methodology, we assessed outcomes in a 2 (deliberating vs. non-deliberating jurors) × 3 (length of videotaped testimony) between-subjects design. In 30 mock juries, 188 participants viewed the testimony by a forensic psychologist; then half of the juries deliberated. Thinner slices of the testimony were defined by the lower (30s long) and upper (5 min long) temporal bounds in the literature. The third, fuller testimony condition was 10 min long and served as the accuracy marker for the shorter sliced exposures. We aimed to explore potential consequences to jurors relying on impressions of the expert, and his or her opinion, and to test that effect post deliberation. Accounting for deliberation, brief impressions of expert credibility generally exerted a similar influence on credibility to fuller considerations. The essential finding was that a two-way interaction emerged from time slice and deliberation on verdict for jurors in the 30s condition. Overall, predictive accuracy was found in the 5 min slice, yet accuracy was not supported in the predictions based on the shortest slice. Individually-formed impressions are not likely to translate to the verdict ballot post-deliberation. Instead, brief impressions are likely to be heavily influenced by deliberation. Implications for understanding how impression-based testimony evaluations translate from the jury box to the deliberation room are discussed.

  15. The inhibitor of I kappa B alpha phosphorylation BAY 11-7082 prevents NMDA neurotoxicity in mouse hippocampal slices.

    PubMed

    Goffi, F; Boroni, F; Benarese, M; Sarnico, I; Benetti, A; Spano, P F; Pizzi, M

    2005-04-01

    NF-kappaB is a nuclear transcription factor involved in the control of fundamental cellular functions including cell survival. Among the many target genes of this factor, both pro- and anti-apoptotic genes have been described. To evaluate the contribution of NF-kappaB activation to excitotoxic insult, we analysed the effect of IkappaBalpha (IkappaBalpha) phosphorylation blockade on glutamate-induced toxicity in adult mouse hippocampal slices. By using immunocytochemical and EMSA techniques, we found that (i) acute exposure of hippocampal slices to NMDA induced nuclear translocation of NF-kappaB, (ii) NMDA-mediated activation of NF-kappaB was prevented by BAY 11-7082, an inhibitor of IkappaBalpha phosphorylation and degradation, and (iii) BAY 11-7082-mediated inhibition of NF-kappaB activation was associated with neuroprotection.

  16. Regional variations in protein phosphorylating activity in rat brain studied in micro-slices labeled with ( sup 32 P)phosphate

    SciTech Connect

    Rodnight, R.; Leal, R. )

    1990-01-01

    Regional variations in protein phosphorylating activity in the rat brain were studied. Micro-slices (1 mm diameter) were prepared from 19 brain areas, phosphoproteins labeled by incubation with ({sup 32}P)phosphate, and the tissue analyzed by nonequilibrium two-dimensional electrophoresis and autoradiography. Attention was focused on three phosphorylating systems that showed consistent variation in activity. (1) A system that phosphorylates a substrate of 47 kDa (ppH-47) whose activity was highest in the hippocampus. The next highest activity of this system was observed in the globus pallidus, followed by the periventricular gray matter of the aqueduct, lateral septum, cerebellar cortex, entorhinal cortex, hypothalamus, mammillary nuclei, amygdala, and substantia nigra. Activity was low or undetectable in the cerebral cortex, neostriatum, and the colliculi. (2) A system that phosphorylates a substrate of 50 kDa (ppC-50) whose activity was highest in the caudate nucleus. The activity of this system was roughly inversely correlated with that of the ppH-47 system. (3) The protein kinase C system that phosphorylates an 82- to 87-kDa substrate known as MARCKS. The highest activity of this system was observed in the cerebellar cortex, followed by the hypothalamus, mammillary nuclei, periventricular gray matter of the aqueduct, and the superior colliculus. Activity of this system was relatively low in several regions of the cerebral cortex, the neostriatum, and the inferior colliculus.

  17. Astrocyte inositol triphosphate receptor type 2 and cytosolic phospholipase A2 alpha regulate arteriole responses in mouse neocortical brain slices.

    PubMed

    He, Lihua; Linden, David J; Sapirstein, Adam

    2012-01-01

    Functional hyperemia of the cerebral vascular system matches regional blood flow to the metabolic demands of the brain. One current model of neurovascular control holds that glutamate released by neurons activates group I metabotropic glutamate receptors (mGluRs) on astrocytes, resulting in the production of diffusible messengers that act to regulate smooth muscle cells surrounding cerebral arterioles. The acute mouse brain slice is an experimental system in which changes in arteriole diameter can precisely measured with light microscopy. Stimulation of the brain slice triggers specific cellular responses that can be correlated to changes in arteriole diameter. Here we used inositol trisphosphate receptor type 2 (IP(3)R2) and cytosolic phospholipase A(2) alpha (cPLA(2)α) deficient mice to determine if astrocyte mGluR activation coupled to IP(3)R2-mediated Ca(2+) release and subsequent cPLA(2)α activation is required for arteriole regulation. We measured changes in astrocyte cytosolic free Ca(2+) and arteriole diameters in response to mGluR agonist or electrical field stimulation in acute neocortical mouse brain slices maintained in 95% or 20% O(2). Astrocyte Ca(2+) and arteriole responses to mGluR activation were absent in IP(3)R2(-/-) slices. Astrocyte Ca(2+) responses to mGluR activation were unchanged by deletion of cPLA(2)α but arteriole responses to either mGluR agonist or electrical stimulation were ablated. The valence of changes in arteriole diameter (dilation/constriction) was dependent upon both stimulus and O(2) concentration. Neuron-derived NO and activation of the group I mGluRs are required for responses to electrical stimulation. These findings indicate that an mGluR/IP(3)R2/cPLA(2)α signaling cascade in astrocytes is required to transduce neuronal glutamate release into arteriole responses.

  18. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies.

    PubMed

    Jaeger, Dieter

    2011-12-01

    The cerebellar nuclei (CN) process inhibition from Purkinje cells (PC) and excitation from mossy and climbing fiber collaterals. CN neurons in slices show intrinsic pacemaking activity, which is easily modulated by synaptic inputs. Our work using dynamic clamping and computer modeling shows that synchronicity between PC inputs is an important factor in determining spike rate and spike timing of CN neurons and that brief pauses in PC inputs provide a potent stimulus to trigger CN spikes. Excitatory input can equally control spike rate, but, due to a large slow, NMDA component also amplifies responses to inhibitory inputs. Intrinsic properties of CN neurons are well suited to provide prolonged responses to strong input transients and could be involved in motor pattern generation. One such specific mechanism is given by fast and slow rebound bursting. Nevertheless, we are just beginning to unravel synaptic integration in the CN, and the outcome of the work to date is best characterized by the generation of new specific questions that lend themselves to a combined experimental and computer modeling approach in future studies.

  19. Local application of drugs to study nicotinic acetylcholine receptor function in mouse brain slices.

    PubMed

    Engle, Staci E; Broderick, Hilary J; Drenan, Ryan M

    2012-10-29

    Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9'A mice (1) and α6 L9'S mice (2), allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of

  20. Purkinje Cell Activity in the Cerebellar Anterior Lobe after Rabbit Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus.…

  1. Congenital torticollis due to sternomastoid aplasia with unilateral cerebellar hypoplasia: a rare association.

    PubMed

    Kumar, V R Ravi; Sabapathy, S Raja; Duraisami, Vijayagiri

    2012-10-01

    Congenital torticollis is most commonly caused by sternomastoid contracture. Aplasia of sternomastoid muscle causing congenital torticollis, though rare, has been reported. However the association of cerebellar hypoplasia with sternomastoid aplasia is extremely rare. The authors describe a case of congenital torticollis due to absence of the left sternomastoid with ipsilateral cerebellar hypoplasia, confirmed by MRI.

  2. The Cerebellar Deficit Hypothesis and Dyslexic Tendencies in a Non-Clinical Sample

    ERIC Educational Resources Information Center

    Brookes, Rebecca L.; Stirling, John

    2005-01-01

    In order to assess the relationship between cerebellar deficits and dyslexic tendencies in a non-clinical sample, 27 primary school children aged 8-9 completed a cerebellar soft signs battery and were additionally assessed for reading age, sequential memory, picture arrangement and knowledge of common sequences. An average measure of the soft…

  3. Parvovirus associated cerebellar hypoplasia and hydrocephalus in day-old broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cerebellar hypoplasia and hydrocephalus were detected in day-old broiler chickens. Brains of chickens evaluated at necropsy appeared to be abnormal; some were disfigured and cerebellae appeared to be smaller than normal. Histopathologic examination of brains revealed cerebellar folia that were sho...

  4. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.

    PubMed

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita

    2013-10-15

    The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. Although the basic neuronal circuitry of the cerebellar cortex is uniform everywhere, anatomical data demonstrate that the input and output relationships of the cortex are spatially segregated between different cortical areas, which suggests that there are functional distinctions between these different areas. Perturbation of cerebellar cortical functions in a spatially restricted fashion is thus essential for investigating the distinctions among different cortical areas. In the cerebellar cortex, Purkinje cells are the sole output neurons that send information to downstream cerebellar and vestibular nuclei. Therefore, selective manipulation of Purkinje cell activities, without disturbing other neuronal types and passing fibers within the cortex, is a direct approach to spatially restrict the effects of perturbations. Although this type of approach has for many years been technically difficult, recent advances in optogenetics now enable selective activation or inhibition of Purkinje cell activities, with high temporal resolution. Here we discuss the effectiveness of using Purkinje cell-specific optogenetic approaches to elucidate the functions of local cerebellar cortex regions. We also discuss what improvements to current methods are necessary for future investigations of cerebellar functions to provide further advances.

  5. Incidence of Dysarthria in Children with Cerebellar Tumors: A Prospective Study

    ERIC Educational Resources Information Center

    Richter, S.; Schoch, B.; Ozimek, A.; Gorissen, B.; Hein-Kropp, C.; Kaiser, O.; Hovel, M.; Wieland, R.; Gizewski, E.; Timmann, D.

    2005-01-01

    The present study investigated dysarthric symptoms in children with cerebellar tumors. Ten children with cerebellar tumors and 10 orthopedic control children were tested prior and one week after surgery. Clinical dysarthric symptoms were quantified in spontaneous speech. Syllable durations were analyzed in syllable repetition and sentence…

  6. Silicon Ingot Casting: Heat Exchanger Method. Multi-wire Slicing: Fixed Abrasine Slicing Technique, Phase 3

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Ingot casting was scaled up to 16 cm by 16 cm square cross section size and ingots weighing up to 8.1 kg were cast. The high degree of crystallinity was maintained in the large ingot. For large sizes, the nonuniformity of heat treatment causes chipping of the surface of the ingot. Progress was made in the development of a uniform graded structure in the silica crucibles. The high speed slicer blade-head weight was reduced to 37 pounds, allowing surface speeds of up to 500 feet per minute. Slicing of 10 cm diameter workpieces at these speeds increased the through-put of the machine to 0.145 mm/min.

  7. Preparation and Applications of Organotypic Thymic Slice Cultures.

    PubMed

    Sood, Aditi; Dong, Mengqi; Melichar, Heather J

    2016-01-01

    Thymic selection proceeds in a unique and highly organized thymic microenvironment resulting in the generation of a functional, self-tolerant T cell repertoire. In vitro models to study T lineage commitment and development have provided valuable insights into this process. However, these systems lack the complete three-dimensional thymic milieu necessary for T cell development and, therefore, are incomplete approximations of in vivo thymic selection. Some of the challenges related to modeling T cell development can be overcome by using in situ models that provide an intact thymic microenvironment that fully supports thymic selection of developing T cells. Thymic slice organotypic cultures complement existing in situ techniques. Thymic slices preserve the integrity of the thymic cortical and medullary regions and provide a platform to study development of overlaid thymocytes of a defined developmental stage or of endogenous T cells within a mature thymic microenvironment. Given the ability to generate ~20 slices per mouse, thymic slices present a unique advantage in terms of scalability for high throughput experiments. Further, the relative ease in generating thymic slices and potential to overlay different thymic subsets or other cell populations from diverse genetic backgrounds enhances the versatility of this method. Here we describe a protocol for the preparation of thymic slices, isolation and overlay of thymocytes, and dissociation of thymic slices for flow cytometric analysis. This system can also be adapted to study non-conventional T cell development as well as visualize thymocyte migration, thymocyte-stromal cell interactions, and TCR signals associated with thymic selection by two-photon microscopy. PMID:27585240

  8. Probabilistic Identification of Cerebellar Cortical Neurones across Species

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.; Heiney, Shane A.; Blazquez, Pablo M.; Meng, Hui; Angelaki, Dora E.; Arenz, Alexander; Margrie, Troy W.; Mostofi, Abteen; Edgley, Steve; Bengtsson, Fredrik; Ekerot, Carl-Fredrik; Jörntell, Henrik; Dalley, Jeffrey W.; Holtzman, Tahl

    2013-01-01

    Despite our fine-grain anatomical knowledge of the cerebellar cortex, electrophysiological studies of circuit information processing over the last fifty years have been hampered by the difficulty of reliably assigning signals to identified cell types. We approached this problem by assessing the spontaneous activity signatures of identified cerebellar cortical neurones. A range of statistics describing firing frequency and irregularity were then used, individually and in combination, to build Gaussian Process Classifiers (GPC) leading to a probabilistic classification of each neurone type and the computation of equi-probable decision boundaries between cell classes. Firing frequency statistics were useful for separating Purkinje cells from granular layer units, whilst firing irregularity measures proved most useful for distinguishing cells within granular layer cell classes. Considered as single statistics, we achieved classification accuracies of 72.5% and 92.7% for granular layer and molecular layer units respectively. Combining statistics to form twin-variate GPC models substantially improved classification accuracies with the combination of mean spike frequency and log-interval entropy offering classification accuracies of 92.7% and 99.2% for our molecular and granular layer models, respectively. A cross-species comparison was performed, using data drawn from anaesthetised mice and decerebrate cats, where our models offered 80% and 100% classification accuracy. We then used our models to assess non-identified data from awake monkeys and rabbits in order to highlight subsets of neurones with the greatest degree of similarity to identified cell classes. In this way, our GPC-based approach for tentatively identifying neurones from their spontaneous activity signatures, in the absence of an established ground-truth, nonetheless affords the experimenter a statistically robust means of grouping cells with properties matching known cell classes. Our approach therefore

  9. Cerebellar cortical degeneration in adult American Staffordshire Terriers.

    PubMed

    Olby, Natasha; Blot, Stephane; Thibaud, Jean-Laurent; Phillips, Jeff; O'Brien, Dennis P; Burr, Jeanne; Berg, Jason; Brown, Talmage; Breen, Matthew

    2004-01-01

    Adult-onset cerebellar cortical degeneration recently has been reported in American Staffordshire Terriers. We describe the clinical and histopathologic features of this disease and examine its mode of inheritance in 63 affected dogs. The age at which neurologic deficits 1st were recognized varied from 18 months to 9 years, with the majority of dogs presented to veterinarians between 4 and 6 years of age. Time from onset of clinical signs to euthanasia varied from 6 months to 6.5 years, with the majority of affected dogs surviving from 2 to 4 years. Initial neurologic findings included stumbling, truncal sway, and ataxia exacerbated by lifting the head up and negotiating stairs. Signs progressed to obvious ataxia characterized by dysmetria, nystagmus, coarse intention tremor, variable loss of menace reaction, marked truncal sway, and falling with transient opisthotonus. With continued progression, dogs became unable to walk without falling repeatedly. Cerebellar atrophy was visible on magnetic resonance images and on gross pathology. Histopathologic findings included marked loss of Purkinje neurons with thinning of the molecular and granular layers and increased cellularity of the cerebellar nuclei. The closest common ancestor of the dogs was born in the 1950s and inheritance was most consistent with an autosomal recessive mode of transmission with a prevalence estimated at 1 in 400 dogs. This inherited disease is comparable to the group of diseases known as spinocerebellar ataxias in humans. Many spinocerebellar ataxias in humans are caused by nucleotide repeats, and this genetic aberration merits investigation as a potential cause of the disease in American Staffordshire Terriers. PMID:15058771

  10. Optogenetic Manipulation of Cerebellar Purkinje Cell Activity In Vivo

    PubMed Central

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita; Sato, Ayana; Miyashita, Yasushi

    2011-01-01

    Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. We injected into rat cerebellar cortex lentiviruses expressing either the light-activated cationic channel channelrhodopsin-2 (ChR2) or light-driven chloride pump halorhodopsin (eNpHR) under the control of the PC-specific L7 promoter. Transgene expression was observed in most PCs (ChR2, 92.6%; eNpHR, 95.3%), as determined by immunohistochemical analysis. In vivo electrophysiological recordings showed that all light-responsive PCs in ChR2-transduced rats increased frequency of simple spike in response to blue laser illumination. Similarly, most light-responsive PCs (93.8%) in eNpHR-transduced rats decreased frequency of simple spike in response to orange laser illumination. We then applied these techniques to characterize the roles of rat cerebellar uvula, one of the cardiovascular regulatory regions in the cerebellum, in resting blood pressure (BP) regulation in anesthetized rats. ChR2-mediated photostimulation and eNpHR-mediated photoinhibition of the uvula had opposite effects on resting BP, inducing depressor and pressor responses, respectively. In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didn't affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum

  11. Cerebellar Transcranial Direct Current Stimulation (ctDCS)

    PubMed Central

    Grimaldi, Giuliana; Argyropoulos, Georgios P.; Bastian, Amy; Cortes, Mar; Davis, Nicholas J.; Edwards, Dylan J.; Ferrucci, Roberta; Fregni, Felipe; Galea, Joseph M.; Hamada, Masahi; Manto, Mario; Miall, R. Chris; Morales-Quezada, Leon; Pope, Paul A.; Priori, Alberto; Rothwell, John; Tomlinson, S. Paul; Celnik, Pablo

    2016-01-01

    The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct current stimulation of the cerebellum (ctDCS) promises to be a powerful tool for the modulation of cerebellar excitability. This technique has gained popularity in recent years as it can be used to investigate human cerebellar function, is easily delivered, is well tolerated, and has not shown serious adverse effects. Importantly, the ability of ctDCS to modify behavior makes it an interesting approach with a potential therapeutic role for neurological patients. Through both electrical and non-electrical effects (vascular, metabolic) ctDCS is thought to modify the activity of the cerebellum and alter the output from cerebellar nuclei. Physiological studies have shown a polarity-specific effect on the modulation of cerebellar–motor cortex connectivity, likely via cerebellar–thalamocortical pathways. Modeling studies that have assessed commonly used electrode montages have shown that the ctDCS-generated electric field reaches the human cerebellum with little diffusion to neighboring structures. The posterior and inferior parts of the cerebellum (i.e., lobules VI-VIII) seem particularly susceptible to modulation by ctDCS. Numerous studies have shown to date that ctDCS can modulate motor learning, and affect cognitive and emotional processes. Importantly, this intervention has a good safety profile; similar to when applied over cerebral areas. Thus, investigations have begun exploring ctDCS as a viable intervention for patients with neurological conditions. PMID:25406224

  12. Cerebellar Contribution to Context Processing in Extinction Learning and Recall.

    PubMed

    Chang, D-I; Lissek, S; Ernst, T M; Thürling, M; Uengoer, M; Tegenthoff, M; Ladd, M E; Timmann, D

    2015-12-01

    Whereas acquisition of new associations is considered largely independent of the context, context dependency is a hallmark of extinction of the learned associations. The hippocampus and the prefrontal cortex are known to be involved in context processing during extinction learning and recall. Although the cerebellum has known functional and anatomic connections to the hippocampus and the prefrontal cortex, cerebellar contributions to context processing of extinction have rarely been studied. In the present study, we reanalyzed functional brain imaging data (fMRI) of previous work investigating context effects during extinction in a cognitive associative learning paradigm in 28 young and healthy subjects (Lissek et al. Neuroimage. 81:131-3, 2013). In that study, event-related fMRI analysis did not include the cerebellum. The 3 T fMRI dataset was reanalyzed using a spatial normalization method optimized for the cerebellum. Data of seven participants had to be excluded because the cerebellum had not been scanned in full. Cerebellar activation related to context change during extinction learning was most prominent in lobule Crus II bilaterally (p < 0.01, t > 2.53; partially corrected by predetermined cluster size). No significant cerebellar activations were observed related to context change during extinction retrieval. The posterolateral cerebellum appears to contribute to context-related processes during extinction learning, but not (or less) during extinction retrieval. The cerebellum may support context learning during extinction via its connections to the hippocampus. Alternatively, the cerebellum may support the shifting of attention to the context via its known connections to the dorsolateral prefrontal cortex. Because the ventromedial prefrontal cortex (vmPFC) is critically involved in context-related processes during extinction retrieval, and there are no known connections between the cerebellum and the vmPFC, the cerebellum may be less important

  13. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    PubMed Central

    Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.

    2015-01-01

    Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of

  14. Hereditary lissencephaly and cerebellar hypoplasia in Churra lambs

    PubMed Central

    2013-01-01

    Background Lissencephaly is a rare developmental brain disorder in veterinary and human medicine associated with defects in neuronal migration leading to a characteristic marked reduction or absence of the convolutional pattern of the cerebral hemispheres. In many human cases the disease has a genetic basis. In sheep, brain malformations, mainly cerebellar hypoplasia and forms of hydrocephalus, are frequently due to in utero viral infections. Although breed-related malformations of the brain have been described in sheep, breed-related lissencephaly has not been previously recorded in a peer reviewed publication. Results Here we report neuropathological findings in 42 newborn lambs from a pure Churra breed flock, with clinical signs of weakness, inability to walk, difficulty in sucking and muscular rigidity observed immediately after birth. All the lambs showed near-total agyria with only a rudimentary formation of few sulci and gyri, and a severe cerebellar hypoplasia. On coronal section, the cerebral grey matter was markedly thicker than that of age-matched unaffected lambs and the ventricular system was moderately dilated. Histologically, the normal layers of the cerebral cortex were disorganized and, using an immunohistochemical technique against neurofilaments, three layers were identified instead of the six present in normal brains. The hippocampus was also markedly disorganised and the number and size of lobules were reduced in the cerebellum. Heterotopic neurons were present in different areas of the white matter. The remainder of the brain structures appeared normal. The pathological features reported are consistent with the type LCH-b (lissencephaly with cerebellar hypoplasia group b) defined in human medicine. No involvement of pestivirus or bluetongue virus was detected by immunohistochemistry. An analysis of pedigree data was consistent with a monogenic autosomal recessive pattern inheritance. Conclusions The study describes the clinical and

  15. Application of a simple cerebellar model to geologic surface mapping

    USGS Publications Warehouse

    Hagens, A.; Doveton, J.H.

    1991-01-01

    Neurophysiological research into the structure and function of the cerebellum has inspired computational models that simulate information processing associated with coordination and motor movement. The cerebellar model arithmetic computer (CMAC) has a design structure which makes it readily applicable as an automated mapping device that "senses" a surface, based on a sample of discrete observations of surface elevation. The model operates as an iterative learning process, where cell weights are continuously modified by feedback to improve surface representation. The storage requirements are substantially less than those of a conventional memory allocation, and the model is extended easily to mapping in multidimensional space, where the memory savings are even greater. ?? 1991.

  16. Clipping of ipsilateral posterior communicating and superior cerebellar artery aneurysms.

    PubMed

    Welch, Babu G

    2015-01-01

    The case is a 55-year-old female who presented with dizziness as the chief complaint. She has a family history of two relatives with subarachnoid hemorrhage. Digital subtraction angiography revealed the presence of a left-sided posterior communicating artery aneurysm and an ipsilateral superior cerebellar artery (SCA) aneurysm. Due to the smaller nature of the SCA, a decision was made to proceed with surgical clipping of both lesions through a pterional approach. A narrated video with illustrations depicts the intraoperative management of these lesions with postoperative angiography results. The video can be found here: http://youtu.be/HCHToSsXv-4 . PMID:25554845

  17. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching.

    PubMed

    Lang, C E; Bastian, A J

    1999-11-01

    We evaluated the role of the cerebellum in adapting anticipatory muscle activity during a multijointed catching task. Individuals with and without cerebellar damage caught a series of balls of different weights dropped from above. In Experiment 1 (light-heavy-light), each subject was required to catch light balls (baseline phase), heavy balls (adaptation phase), and then light balls again (postadaptation phase). Subjects were not told when the balls would be switched, and they were required to keep their hand within a vertical spatial "window" during the catch. During the series of trials, we measured three-dimensional (3-D) position and electromyogram (EMG) from the catching arm. We modeled the adaptation process using an exponential decay function; this model allowed us to dissociate adaptation from performance variability. Results from the position data show that cerebellar subjects did not adapt or adapted very slowly to the changed ball weight when compared with the control subjects. The cerebellar group required an average of 30.9 +/- 8.7 trials (mean +/- SE) to progress approximately two-thirds of the way through the adaptation compared with 1.7 +/- 0.2 trials for the control group. Only control subjects showed a negative aftereffect indicating storage of the adaptation. No difference in performance variability existed between the two groups. EMG data show that control subjects increased their anticipatory muscle activity in the flexor muscles of the arm to control the momentum of the ball at impact. Cerebellar subjects were unable to differentially increase the anticipatory muscle activity across three joints to perform the task successfully. In Experiment 2 (heavy-light-heavy), we tested to see whether the rate of adaptation changed when adapting to a light ball versus a heavy ball. Subjects caught the heavy balls (baseline phase), the light balls (adaptation phase), and then heavy balls again (postadaptation phase). Comparison of rates of adaptation

  18. Understanding Cerebellar Liponeurocytomas: Case Report and Literature Review

    PubMed Central

    Oudrhiri, M. Y.; Raouzi, N.; El Kacemi, I.; El Fatemi, N.; Gana, R.; Maaqili, M. R.; Bellakhdar, F.

    2014-01-01

    Cerebellar liponeurocytomas were recognized in the 2000 WHO 3rd edition of CNS tumors as a distinct grade I pathological entity, a tumor with a more favorable prognosis than medulloblastoma. But reports of long-term recurrences and some possible aggressive behavior led to an upgrade on the latest WHO 4th edition of CNS tumors. The case of a 64-year-old female patient is reported in this paper. More than 30 cases of this lately recognized pathological entity have been reported to date. The diagnostic, radiological, and pathological features associated with this tumor are discussed through a literature review. PMID:24716015

  19. Schistosomiasis mansoni presenting as a cerebellar tumor: case report.

    PubMed

    Silva, Joacil Carlos da; Lima, Frederico de Melo Tavares de; Vidal, Cláudio Henrique; Azevedo Filho, Hildo Cirne Rocha de

    2007-09-01

    The Manson's schistosomiasis tumoral form rarely affects the brain. There are only 12 cases prior related with a mean age of 25 years and a male predominance. We describe a 16-year-old Brazilian Northeastern boy with a cerebellar mass lesion. The radiological aspect was considered compatible with glioma and a gross total resection was performed. Microscopic examination disclosed intraparenchymal granulomas surrounding Schistosoma mansoni eggs. The case is compared with the literature findings and some peculiar aspects of this trematode infection are reviewed. PMID:17952294

  20. Magnetic resonance image-based cerebellar volumetry in healthy Korean adults.

    PubMed

    Rhyu, I J; Cho, T H; Lee, N J; Uhm, C S; Kim, H; Suh, Y S

    1999-08-01

    The effects of age and gender on cerebellar size have not been established yet. To understand these effects, the area of cerebellar vermis and the volume of cerebellum were measured using serial magnetic resonance images of 124 Korean adults free of neurologic symptoms and signs. Cerebellar volume of male was significantly larger than that of female, although the size of vermis did not show significant gender difference. Correlation analysis revealed that cerebellar volume was not affected by aging. Regressional analysis demonstrated that female vermis had a tendency to shrink after age of 50, whereas male vermis and total cerebellar volume in both sexes were not altered with aging. The different response of vermis with aging and maintenance of cerebellum volume need to be more explored. PMID:10462116

  1. Somatosensory temporal discrimination threshold is increased in patients with cerebellar atrophy.

    PubMed

    Manganelli, Fiore; Dubbioso, Raffaele; Pisciotta, Chiara; Antenora, Antonella; Nolano, Maria; De Michele, Giuseppe; Filla, Alessandro; Berardelli, Alfredo; Santoro, Lucio

    2013-08-01

    Processing of time in the millisecond range seems to depend on cerebellar function and it can be assessed by using the somatosensory temporal discrimination threshold testing. No studies have yet investigated this temporal discrimination task in patients with cerebellar atrophy. Eleven patients with degenerative cerebellar ataxia and 11 controls underwent somatosensory temporal discrimination threshold evaluation. The degree of cerebellar dysfunction was measured by the International Cooperative Ataxia Rating Scale. Somatosensory temporal discrimination threshold was higher in patients compared to controls for each stimulated site (hand, neck, and eye). Age, disease duration, and International Cooperative Ataxia Rating Scale scores were not correlated to somatosensory temporal discrimination threshold. Somatosensory temporal discrimination threshold is abnormal in patients with cerebellar atrophy. These findings suggest that the cerebellum plays a role in modulating the somatosensory temporal discrimination threshold and confirm the role of cerebellum in the processing of time in the millisecond range.

  2. Changes in cerebellar activation pattern during two successive sequences of saccades.

    PubMed

    Stephan, Thomas; Mascolo, Andrea; Yousry, Tarek A; Bense, Sandra; Brandt, Thomas; Dieterich, Marianne

    2002-06-01

    The changes in the cerebellar activation pattern of two successive fMRI scanning runs were determined for visually guided to-and-fro saccades in 12 healthy volunteers familiar with the study paradigm. Group and single subject-analyses revealed a constant activation of the paramedian cerebellar vermis (uvula, tonsils, tuber, folium/declive), which reflects constant ocular motor activity in both runs. A significant decrease in activation of the cerebellar hemispheres found in the second run is best explained by either a decrease in attention or the effects of motor optimization and learning. The significant, systematic changes of the cerebellar activation pattern in two successive runs were not expected, because the ocular motor task was simple, familiar, and highly automated. These findings indicate that similar effects may bias other cerebellar activation studies, in which sensorimotor tasks are repeated in a single session.

  3. [Cerebellar abscess due to infection with the anaerobic bacteria fusobacterium nucleatum: a case report].

    PubMed

    Shimogawa, Takafumi; Sayama, Tetsuro; Haga, Sei; Akiyama, Tomoaki; Morioka, Takato

    2015-02-01

    We report a rare case of cerebellar abscess produced by anaerobic bacteria. A 76-year-old man was admitted to our hospital with a history of fever, vomiting, and dizziness lasting 14 days. Computed tomography(CT)scan and magnetic resonance images showed the presence of a multiloculated cerebellar abscess with a right subdural abscess. The patient underwent aspiration of the abscess through a suboccipital craniotomy. Fusobacterium nucleatum, which is an anaerobic bacteria naturally present in the human oral cavity, was detected in cultures of the aspirated abscess. The patient was administered antibiotic treatment combined with hyperbaric oxygen therapy(HBO). The symptoms were briefly relieved but the cerebellar abscess recurred, which required a second aspiration. The combined treatment with antibiotics and HBO was maintained after the second operation. After 6 weeks of treatment, the cerebellar abscess was completely controlled. We conclude that antibiotic treatment combined with HBO is useful for treatment of cerebellar abscesses caused by infection with anaerobic bacteria.

  4. Abnormal cerebellar volume and corticocerebellar dysfunction in early manifest Huntington's disease.

    PubMed

    Wolf, Robert Christian; Thomann, Philipp Arthur; Sambataro, Fabio; Wolf, Nadine Donata; Vasic, Nenad; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd Dietrich; Orth, Michael

    2015-01-01

    Evidence from animal models and neuropathological data has revealed cerebellar pathology in Huntington's disease (HD). The extent of cerebellar dysfunction in preclinical stages and in early manifest HD is unclear. In this study, using MRI we investigated cerebellar changes in preclinical (preHD) and early manifest HD individuals. High-resolution structural MRI data at 3 Tesla were obtained from two independent preHD samples (n = 20/25 participants), from two independent cohorts of healthy controls (n = 20/24 participants) and from patients with early manifest HD (n = 20 participants). Resting-state functional MRI data were acquired from 20 healthy controls and 20 HD patients. Cerebellar volume was investigated using cerebellum-optimized voxel-based analysis methods. Corticocerebellar connectivity at rest was investigated by means of seed-region correlations. In both preHD samples, between-group analyses revealed no change of cerebellar volume. In contrast, early manifest HD patients exhibited lower right cerebellar lobule VIIa volume (p < 0.05 cluster-corrected). Within the control group regions functionally coupled to right cerebellar lobule VII comprised bilateral cerebellar regions, right prefrontal and cingulate areas, whereas within manifest HD, functional coupling was found in paracentral, lingual and inferior frontal areas. Paracentral connectivity strength in patients was associated with disease burden and motor symptoms. These data suggest intact cerebellar volume in preHD. In contrast, early manifest HD patients exhibit atrophy of specific cerebellar subregions and abnormal corticocerebellar functional coupling. In early HD, the association between paracentral lobule function and clinical parameters suggests that corticocerebellar connectivity strength is related to the evolution of HD biology and the severity of HD motor signs.

  5. Cerebellar gray matter and lobular volumes correlate with core autism symptoms

    PubMed Central

    D'Mello, Anila M.; Crocetti, Deana; Mostofsky, Stewart H.; Stoodley, Catherine J.

    2015-01-01

    Neuroanatomical differences in the cerebellum are among the most consistent findings in autism spectrum disorder (ASD), but little is known about the relationship between cerebellar dysfunction and core ASD symptoms. The newly-emerging existence of cerebellar sensorimotor and cognitive subregions provides a new framework for interpreting the functional significance of cerebellar findings in ASD. Here we use two complementary analyses — whole-brain voxel-based morphometry (VBM) and the SUIT cerebellar atlas — to investigate cerebellar regional gray matter (GM) and volumetric lobular measurements in 35 children with ASD and 35 typically-developing (TD) children (mean age 10.4 ± 1.6 years; range 8–13 years). To examine the relationships between cerebellar structure and core ASD symptoms, correlations were calculated between scores on the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview (ADI) and the VBM and volumetric data. Both VBM and the SUIT analyses revealed reduced GM in ASD children in cerebellar lobule VII (Crus I/II). The degree of regional and lobular gray matter reductions in different cerebellar subregions correlated with the severity of symptoms in social interaction, communication, and repetitive behaviors. Structural differences and behavioral correlations converged on right cerebellar Crus I/II, a region which shows structural and functional connectivity with fronto-parietal and default mode networks. These results emphasize the importance of the location within the cerebellum to the potential functional impact of structural differences in ASD, and suggest that GM differences in cerebellar right Crus I/II are associated with the core ASD profile. PMID:25844317

  6. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  7. Rapid and quantitative discrimination of tumour cells on tissue slices

    NASA Astrophysics Data System (ADS)

    Huang, Kai-Wen; Chieh, Jen-Jie; Liao, Shu-Hsien; Wei, Wen-Chun; Hsiao, Pei-Yi; Yang, Hong-Chang; Horng, Herng-Er

    2016-06-01

    After a needle biopsy, immunohistochemistry is generally used to stain tissue slices for clinically confirming tumours. Currently, tissue slices are immersed in a bioprobe-linked fluorescent reagent for several minutes, washed to remove the unbound reagent, and then observed using a fluorescence microscope. However, the observation must be performed by experienced pathologists, and producing a qualitative analysis is time consuming. Therefore, this study proposes a novel scanning superconducting quantum interference device biosusceptometry (SSB) method for avoiding these drawbacks. First, stain reagents were synthesised for the dual modalities of fluorescent and magnetic imaging by combining iron-oxide magnetic nanoparticles and the currently used fluorescent reagent. The reagent for the proposed approach was stained using the same procedure as that for the current fluorescent reagent, and tissue slices were rapidly imaged using the developed SSB for obtaining coregistered optical and magnetic images. Analysing the total intensity of magnetic spots in SSB images enables quantitatively determining the tumour cells of tissue slices. To confirm the magnetic imaging results, a traditional observation methodology entailing the use of a fluorescence microscope was also performed as the gold standard. This study determined high consistency between the fluorescent and magnetic spots in different regions of the tissue slices, demonstrating the feasibility of the proposed approach, which will benefit future clinical pathology.

  8. Acute Bronchitis

    MedlinePlus

    ... tightness. There are two main types of bronchitis: acute and chronic. Most cases of acute bronchitis get better within several days. But your ... that cause colds and the flu often cause acute bronchitis. These viruses spread through the air when ...

  9. Imaging neuronal responses in slice preparations of vomeronasal organ expressing a genetically encoded calcium sensor.

    PubMed

    Ma, Limei; Haga-Yamanaka, Sachiko; Yu, Qingfeng Elden; Qiu, Qiang; Kim, Sangseong; Yu, C Ron

    2011-01-01

    The vomeronasal organ (VNO) detects chemosensory signals that carry information about the social, sexual and reproductive status of the individuals within the same species. These intraspecies signals, the pheromones, as well as signals from some predators, activate the vomeronasal sensory neurons (VSNs) with high levels of specificity and sensitivity. At least three distinct families of G-protein coupled receptors, V1R, V2R and FPR, are expressed in VNO neurons to mediate the detection of the chemosensory cues. To understand how pheromone information is encoded by the VNO, it is critical to analyze the response profiles of individual VSNs to various stimuli and identify the specific receptors that mediate these responses. The neuroepithelia of VNO are enclosed in a pair of vomer bones. The semi-blind tubular structure of VNO has one open end (the vomeronasal duct) connecting to the nasal cavity. VSNs extend their dendrites to the lumen part of the VNO, where the pheromone cues are in contact with the receptors expressed at the dendritic knobs. The cell bodies of the VSNs form pseudo-stratified layers with V1R and V2R expressed in the apical and basal layers respectively. Several techniques have been utilized to monitor responses of VSNs to sensory stimuli. Among these techniques, acute slice preparation offers several advantages. First, compared to dissociated VSNs, slice preparations maintain the neurons in their native morphology and the dendrites of the cells stay relatively intact. Second, the cell bodies of the VSNs are easily accessible in coronal slice of the VNO to allow electrophysiology studies and imaging experiments as compared to whole epithelium and whole-mount preparations. Third, this method can be combined with molecular cloning techniques to allow receptor identification. Sensory stimulation elicits strong Ca2+ influx in VSNs that is indicative of receptor activation. We thus develop transgenic mice that express G-CaMP2 in the olfactory sensory

  10. Inhibition promotes long-term potentiation at cerebellar excitatory synapses

    PubMed Central

    Binda, F.; Dorgans, K.; Reibel, S.; Sakimura, K.; Kano, M.; Poulain, B.; Isope, P.

    2016-01-01

    The ability of the cerebellar cortex to learn from experience ensures the accuracy of movements and reflex adaptation, processes which require long-term plasticity at granule cell (GC) to Purkinje neuron (PN) excitatory synapses. PNs also receive GABAergic inhibitory inputs via GCs activation of interneurons; despite the involvement of inhibition in motor learning, its role in long-term plasticity is poorly characterized. Here we reveal a functional coupling between ionotropic GABAA receptors and low threshold CaV3 calcium channels in PNs that sustains calcium influx and promotes long-term potentiation (LTP) at GC to PN synapses. High frequency stimulation induces LTP at GC to PN synapses and CaV3-mediated calcium influx provided that inhibition is intact; LTP is mGluR1, intracellular calcium store and CaV3 dependent. LTP is impaired in CaV3.1 knockout mice but it is nevertheless recovered by strengthening inhibitory transmission onto PNs; promoting a stronger hyperpolarization via GABAA receptor activation leads to an enhanced availability of an alternative Purkinje-expressed CaV3 isoform compensating for the lack of CaV3.1 and restoring LTP. Accordingly, a stronger hyperpolarization also restores CaV3-mediated calcium influx in PNs from CaV3.1 knockout mice. We conclude that by favoring CaV3 channels availability inhibition promotes LTP at cerebellar excitatory synapses. PMID:27641070

  11. Inhibition promotes long-term potentiation at cerebellar excitatory synapses.

    PubMed

    Binda, F; Dorgans, K; Reibel, S; Sakimura, K; Kano, M; Poulain, B; Isope, P

    2016-01-01

    The ability of the cerebellar cortex to learn from experience ensures the accuracy of movements and reflex adaptation, processes which require long-term plasticity at granule cell (GC) to Purkinje neuron (PN) excitatory synapses. PNs also receive GABAergic inhibitory inputs via GCs activation of interneurons; despite the involvement of inhibition in motor learning, its role in long-term plasticity is poorly characterized. Here we reveal a functional coupling between ionotropic GABAA receptors and low threshold CaV3 calcium channels in PNs that sustains calcium influx and promotes long-term potentiation (LTP) at GC to PN synapses. High frequency stimulation induces LTP at GC to PN synapses and CaV3-mediated calcium influx provided that inhibition is intact; LTP is mGluR1, intracellular calcium store and CaV3 dependent. LTP is impaired in CaV3.1 knockout mice but it is nevertheless recovered by strengthening inhibitory transmission onto PNs; promoting a stronger hyperpolarization via GABAA receptor activation leads to an enhanced availability of an alternative Purkinje-expressed CaV3 isoform compensating for the lack of CaV3.1 and restoring LTP. Accordingly, a stronger hyperpolarization also restores CaV3-mediated calcium influx in PNs from CaV3.1 knockout mice. We conclude that by favoring CaV3 channels availability inhibition promotes LTP at cerebellar excitatory synapses. PMID:27641070

  12. Cerebellar sequencing: a trick for predicting the future.

    PubMed

    Leggio, M; Molinari, M

    2015-02-01

    "Looking into the future" well depicts one of the most significant concepts in cognitive neuroscience: the brain is constantly predicting future events. Such directedness toward the future has been recognized to be relevant to and beneficial for many aspects of information processing in humans, such as perception, motor and cognitive control, decision-making, theory of mind, and other cognitive processes. Because one of the most adaptive characteristics of the brain is to correct errors, the ability to look into the future represents the best chance to avoid repeating errors. Within the structures that constitute the "predictive brain," the cerebellum has been proposed to have a central function, based on its ability to generate internal models. We suggested that "sequence detection" is the operational mode of the cerebellum in predictive processing. According to this hypothesis, the cerebellum detects and simulates repetitive patterns of temporally or spatially structured events and generates internal models that can be used to make predictions. Consequently, we demonstrate that the cerebellum recognizes serial events as a sequence, detects a sequence violation, and successfully reconstructs the correct sequence of events. Thus, we hypothesize that pattern detection and prediction and processing of anticipation are cerebellum-specific functions within the brain and that the sequence detection hypothesis links the multifarious impairments that are reported in patients with cerebellar damage. We propose that this cerebellar operational mode can advance our understanding of the pathophysiological mechanisms in various clinical conditions, such as schizophrenia and autism.

  13. Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression

    PubMed Central

    Yang, Zhen; Zhong, Shenghua; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2014-01-01

    Cerebellar ataxia is a progressive neuro-degenerative disease that has multiple genetic versions, each with a characteristic pattern of anatomical degeneration that yields distinctive motor and cognitive problems. Studying this pattern of degeneration can help with the diagnosis of disease subtypes, evaluation of disease stage, and treatment planning. In this work, we propose a learning framework using MR image data for discriminating a set of cerebellar ataxia types and predicting a disease related functional score. We address the difficulty in analyzing high-dimensional image data with limited training subjects by: 1) training weak classifiers/regressors on a set of image subdomains separately, and combining the weak classifier/regressor outputs to make the decision; 2) perturbing the image subdomain to increase the training samples; 3) using a deep learning technique called the stacked auto-encoder to develop highly representative feature vectors of the input data. Experiments show that our approach can reliably classify between one of four categories (healthy control and three types of ataxia), and predict the functional staging score for ataxia. PMID:25553339

  14. Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia Spectrum Disorders

    PubMed Central

    Forsyth, Jennifer K.; Bolbecker, Amanda R.; Mehta, Crystal S.; Klaunig, Mallory J.; Steinmetz, Joseph E.; O'Donnell, Brian F.; Hetrick, William P.

    2012-01-01

    Accumulating evidence suggests that abnormalities in neural circuitry and timing associated with the cerebellum may play a role in the pathophysiology of schizophrenia. Schizotypal personality disorder (SPD) may be genetically linked to schizophrenia, but individuals with SPD are freer from potential research confounds and may therefore offer insight into psychophysiological correlates of schizophrenia. The present study employed a delay eyeblink conditioning (EBC) procedure to examine cerebellar-dependent learning in schizophrenia, SPD, and healthy control subjects (n = 18 per group) who were matched for age and gender. The conditioned stimulus was a 400-ms tone that coterminated with a 50 ms unconditioned stimulus air puff. Cognitive performance on the Picture Completion, Digit Symbol Coding, Similarities, and Digit Span subscales of the Wechsler Adult Intelligence Scale—Third Edition was also investigated. The schizophrenia and SPD groups demonstrated robust EBC impairment relative to the control subjects; they had significantly fewer conditioned responses (CRs), as well as smaller CR amplitudes. Schizophrenia subjects showed cognitive impairment across subscales compared with SPD and control subjects; SPD subjects showed intermediate performance to schizophrenia and control subjects and performed significantly worse than controls on Picture Completion. Impaired EBC was significantly related to decreased processing speed in schizophrenia spectrum subjects. These findings support the role of altered cortico-cerebellar-thalamic-cortical circuitry in the pathophysiology of schizophrenia spectrum disorders. PMID:21148238

  15. Speech prosody in Friedreich's and olivo-ponto cerebellar atrophy

    NASA Astrophysics Data System (ADS)

    Casper, Maureen

    2001-05-01

    A critical issue in the study of speech motor control is the identification of the mechanisms that generate the temporal flow of serially ordered articulatory events. Two staged models of serial ordered events (Lashley, 1951; Lindblom, 1963) claim that time controls events whereas dynamic models predict a relative relation between time and space. Each of these models predicts a different relation between the acoustic measures of formant frequency and segmental duration. The most recent method described herein provides a sensitive index of speech deterioration which is both acoustically robust and phonetically systematic. Both acoustic and magnetic resonance imaging measures were used to describe the speech disturbance in two neurologically distinct groups of cerebellar ataxia: Friedreich's ataxia and olivo-ponto cerebellar ataxia. The speaking task was designed to elicit six different prosodic conditions and four prosodic contrasts. All subjects read the same syllable embedded in a sentence, under six different prosodic conditions. Pair-wise comparisons derived from the six conditions were used to describe (1) final lengthening, (2) phrasal accent, (3) nuclear accent and (4) syllable reduction. An estimate of speech deterioration as determined by individual and normal subects' acoustic values of syllable duration, formant and fundamental frequencies was used in correlation analyses with magnetic resonance imaging ratings.

  16. Sexual dimorphism of the cerebellar vermis in schizophrenia.

    PubMed

    Womer, Fay Y; Tang, Yanqing; Harms, Michael P; Bai, Chuan; Chang, Miao; Jiang, Xiaowei; Wei, Shengnan; Wang, Fei; Barch, Deanna M

    2016-10-01

    Converging lines of evidence implicate structural and functional abnormalities in the cerebellum in schizophrenia (SCZ). The cerebellar vermis is of particular interest given its association with clinical symptoms and cognitive deficits in SCZ and its known connections with cortical regions such as the prefrontal cortex. Prior neuroimaging studies have shown structural and functional abnormalities in the vermis in SCZ. In this study, we examined the cerebellar vermis in 50 individuals with SCZ and 54 healthy controls (HC) using a quantitative volumetric approach. All participants underwent high-resolution structural magnetic resonance imaging (MRI). The vermis was manually traced for each participant, and vermis volumes were computed using semiautomated methods. Volumes for total vermis and vermis subregions (anterior and posterior vermis) were analyzed in the SCZ and HC groups. Significant diagnosis-by-sex interaction effects were found in total vermis and vermis subregion analyses. These effects appeared to be driven by significantly decreased posterior vermis volumes in males with SCZ. Exploratory analyses did not reveal significant effects of clinical variables (FEP status, illness duration, and BPRS total score and subscores) on vermis volumes. The findings herein highlight the presence of neural sex differences in SCZ and the need for considering sex-related factors in studying the disorder. PMID:27401530

  17. Coordinated scaling of cortical and cerebellar numbers of neurons.

    PubMed

    Herculano-Houzel, Suzana

    2010-01-01

    While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species - an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of four different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora), Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  18. Coordinated Scaling of Cortical and Cerebellar Numbers of Neurons

    PubMed Central

    Herculano-Houzel, Suzana

    2010-01-01

    While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of four different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora), Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble. PMID:20300467

  19. Recent advances in the genetics of cerebellar ataxias.

    PubMed

    Sailer, Anna; Houlden, Henry

    2012-06-01

    The hereditary cerebellar ataxias are a clinically and genetically heterogeneous group of disorders that primarily affect the cerebellum; often there are additional features such as neuropathy, cognitive decline, or maculopathy that help define the clinical subtype of ataxia. They are commonly classified according to their mode of inheritance into autosomal dominant, autosomal recessive, X-linked, and mitochondrial forms. Great advances have been made in understanding the genetics of cerebellar ataxias in the last 15 years. At least 36 different forms of ADCA are known, 20 autosomal-recessive, two X-linked, and several forms of ataxia associated with mitochondrial defects are known to date. However, in about 40 % of suspected genetically determined ataxia cases, the underlying genetic defect remains undetermined. Although the majority of disease genes have been found in the last two decades, over the last 2 years the genetics has undergone a methodological revolution. New DNA sequencing technologies are enabling us to investigate the whole or large targeted proportions of the genome in a rapid, affordable, and comprehensive way. Exome and targeted sequencing has recently identified four new genes causing ataxia: TGM6, ANO10, SYT14, and rundataxin. This approach is likely to continue to discover new ataxia genes and make screening of existing genes more effective. Translating the genetic findings into isolated and overlapping disease pathways will help stratify patient groups and identify therapeutic targets for ataxia that have so far remained undiscovered.

  20. Congenital disorders of glycosylation with emphasis on cerebellar involvement.

    PubMed

    Barone, Rita; Fiumara, Agata; Jaeken, Jaak

    2014-07-01

    Congenital disorders of glycosylation (CDG) are genetic diseases due to defective glycosylation of proteins and lipids. The authors present an update on these disorders affecting the central nervous system with a focus on cerebellar involvement. The rate of identification of novel CDG shows an exponential increase. Some 76 CDG are actually known, not taking into account the defects in glycan-modifying proteins. Neurologic involvement is present in the large majority of CDG. Screening methods are limited to serum transferrin isoelectrofocusing (for N-glycosylation disorders with sialic acid deficiency), and serum apolipoprotein C-III isoelectrofocusing (for core 1 mucin-type O-glycosylation disorders). Whole exome/genome sequencing is increasingly used in the diagnostic workup of patients with CDG-X. Treatment is greatly lagging behind because only one CDG is efficiently treatable (MPI-CDG). Cerebellar involvement is an important feature of PMM2-CDG, the congenital muscular dystrophies due to dystroglycanopathy, and SRD5A3-CDG. It has also been reported in some patients with ALG1-CDG, ALG3-CDG, ALG9-CDG, ALG6-CDG, ALG8-CDG, PIGA-CDG, DPM1-CDG, DPM2-CDG, B4GALT1-CDG, SLC35A2-CDG, COG1-CDG, COG5-CDG, COG7-CDG, and COG8-CDG.

  1. Cerebellar sequencing: a trick for predicting the future.

    PubMed

    Leggio, M; Molinari, M

    2015-02-01

    "Looking into the future" well depicts one of the most significant concepts in cognitive neuroscience: the brain is constantly predicting future events. Such directedness toward the future has been recognized to be relevant to and beneficial for many aspects of information processing in humans, such as perception, motor and cognitive control, decision-making, theory of mind, and other cognitive processes. Because one of the most adaptive characteristics of the brain is to correct errors, the ability to look into the future represents the best chance to avoid repeating errors. Within the structures that constitute the "predictive brain," the cerebellum has been proposed to have a central function, based on its ability to generate internal models. We suggested that "sequence detection" is the operational mode of the cerebellum in predictive processing. According to this hypothesis, the cerebellum detects and simulates repetitive patterns of temporally or spatially structured events and generates internal models that can be used to make predictions. Consequently, we demonstrate that the cerebellum recognizes serial events as a sequence, detects a sequence violation, and successfully reconstructs the correct sequence of events. Thus, we hypothesize that pattern detection and prediction and processing of anticipation are cerebellum-specific functions within the brain and that the sequence detection hypothesis links the multifarious impairments that are reported in patients with cerebellar damage. We propose that this cerebellar operational mode can advance our understanding of the pathophysiological mechanisms in various clinical conditions, such as schizophrenia and autism. PMID:25331541

  2. Inhibition promotes long-term potentiation at cerebellar excitatory synapses.

    PubMed

    Binda, F; Dorgans, K; Reibel, S; Sakimura, K; Kano, M; Poulain, B; Isope, P

    2016-09-19

    The ability of the cerebellar cortex to learn from experience ensures the accuracy of movements and reflex adaptation, processes which require long-term plasticity at granule cell (GC) to Purkinje neuron (PN) excitatory synapses. PNs also receive GABAergic inhibitory inputs via GCs activation of interneurons; despite the involvement of inhibition in motor learning, its role in long-term plasticity is poorly characterized. Here we reveal a functional coupling between ionotropic GABAA receptors and low threshold CaV3 calcium channels in PNs that sustains calcium influx and promotes long-term potentiation (LTP) at GC to PN synapses. High frequency stimulation induces LTP at GC to PN synapses and CaV3-mediated calcium influx provided that inhibition is intact; LTP is mGluR1, intracellular calcium store and CaV3 dependent. LTP is impaired in CaV3.1 knockout mice but it is nevertheless recovered by strengthening inhibitory transmission onto PNs; promoting a stronger hyperpolarization via GABAA receptor activation leads to an enhanced availability of an alternative Purkinje-expressed CaV3 isoform compensating for the lack of CaV3.1 and restoring LTP. Accordingly, a stronger hyperpolarization also restores CaV3-mediated calcium influx in PNs from CaV3.1 knockout mice. We conclude that by favoring CaV3 channels availability inhibition promotes LTP at cerebellar excitatory synapses.

  3. [Cerebellar infarction due to vertebral artery dissection in a girl].

    PubMed

    Ushida, M; Fukuda, K; Endo, S; Pu, T; Nakagawa, Y; Shiino, S; Otomune, T; Nakano, O

    1998-11-01

    We report here a case of vertebral artery dissection, which is rare in childhood. A 12-year-old, previous healthy girl was admitted to our hospital with symptoms of vertigo, tinnitus, hearing loss, nausea and vomiting. Although there was neither higher cortical dysfunction, motor weakness, sensory disturbance nor slurred speech. She could not stand up because of severe vertigo. Cranial magnetic resonance imaging (MRI) revealed a subacute cerebellar infarct. A left vertebral artery angiogram on the hospital day 3 demonstrated a sharp narrowing at the C1-C2 level. After an anticoagulant therapy for about 2 weeks, all the symptoms disappeared except for mild tinnitus. Two months later, a left vertebral artery angiogram showed an abrupt occlusion at the C1 level. MRI T1-weighted images demonstrated a thrombus within the false lumen of the dissected vessels. A flow void revealed the patency of the residual true lumen. From these findings, we made a diagnosis of vertebral artery dissection, which was considered to have caused cerebellar infarction. The patient was mostly normal at discharge, and 100 mg/day of aspirin has been given until present.

  4. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures.

    PubMed

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits formed rapidly in microglia-free wild-type slices. The capacity to prevent Aβ plaque formation was absent in forebrain microglia from young adult but not juvenile 5xFamilial Alzheimer's disease (FAD) mice. Since no loss of Aβ clearance capacity was observed in both wild-type and cerebellar microglia from 5xFAD animals, the high Aβ1-42 burden in the forebrain of 5xFAD animals likely underlies the exhaustion of microglial Aβ clearance capacity. These data may therefore explain why Aβ plaque formation has never been described in wild-type mice, and point to a beneficial role of microglia in AD pathology. We also describe a new method to study Aβ plaque formation in a cell culture setting.

  5. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes

    PubMed Central

    Vimalanathan, Kasturi; Gascooke, Jason R.; Suarez-Martinez, Irene; Marks, Nigel A.; Kumari, Harshita; Garvey, Christopher J.; Atwood, Jerry L.; Lawrance, Warren D.; Raston, Colin L.

    2016-01-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes. PMID:26965728

  6. Unstable periodic orbits in human epileptic hippocampal slices.

    PubMed

    Pen-Ning Yu; Min-Chi Hsiao; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    Inter-ictal activity is studied in hippocampal slices resected from patients with epilepsy using local field potential recording. Inter-ictal activity in the dentate gyrus (DG) is induced by high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 μM 4-aminopyridine(4-AP). The dynamics of the inter-ictal activity is investigated by developing the first return map with inter-pulse intervals. Unstable periodic orbits (UPOs) are detected in the hippocampal slice at the DG area according to both the topological recurrence method and the periodic orbit transform method. Surrogate analysis suggests the presence of UPOs in hippocampal slices from patients with epilepsy. This finding also suggests that inter-ictal activity is a chaotic system and will allow us to apply chaos control techniques to manipulate inter-ictal activity.

  7. Approach to combined-function magnets via symplectic slicing

    NASA Astrophysics Data System (ADS)

    Titze, M.

    2016-05-01

    In this article we describe how to obtain symplectic "slice" maps for combined-function magnets, by using a method of generating functions. A feature of this method is that one can use an unexpanded and unsplit Hamiltonian. From such a slice map we obtain a first-order map which is symplectic at the closed orbit. We also obtain a symplectic kick map. Both results were implemented into the widely used program MAD-X to regain, in particular, the twiss parameters for the sliced model of the Proton Synchrotron at CERN. In addition, we obtain recursion equations for symplectic maps of general time-dependent Hamiltonians, which might be useful even beyond the scope of accelerator physics.

  8. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes.

    PubMed

    Vimalanathan, Kasturi; Gascooke, Jason R; Suarez-Martinez, Irene; Marks, Nigel A; Kumari, Harshita; Garvey, Christopher J; Atwood, Jerry L; Lawrance, Warren D; Raston, Colin L

    2016-01-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes. PMID:26965728

  9. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vimalanathan, Kasturi; Gascooke, Jason R.; Suarez-Martinez, Irene; Marks, Nigel A.; Kumari, Harshita; Garvey, Christopher J.; Atwood, Jerry L.; Lawrance, Warren D.; Raston, Colin L.

    2016-03-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes.

  10. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes.

    PubMed

    Vimalanathan, Kasturi; Gascooke, Jason R; Suarez-Martinez, Irene; Marks, Nigel A; Kumari, Harshita; Garvey, Christopher J; Atwood, Jerry L; Lawrance, Warren D; Raston, Colin L

    2016-01-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes.

  11. Parallel Microfluidic Chemosensitivity Testing on Individual Slice Cultures

    PubMed Central

    Chang, Tim C.; Mikheev, Andrei M.; Huynh, Wilson; Monnat, Raymond J.; Rostomily, Robert C.; Folch, Albert

    2014-01-01

    There is a critical unmet need to tailor chemotherapies to individual patients. Personalized approaches could lower treatment toxicity, improve the patient’s quality of life, and ultimately reduce mortality. However, existing models of drug activity (based on tumor cells in culture or animal models) cannot accurately predict how drugs act in patients in time to inform the best possible treatment. Here we demonstrate a microfluidic device that integrates live slice cultures with an intuitive multi well platform that allows for exposing the slices to multiple compounds at once or in sequence. We demonstrate the response of live mouse brain slices to a range of drug doses in parallel. Drug response is measured by imaging of markers for cell apoptosis and for cell death. The platform has the potential to allow for identifying the subset of therapies of greatest potential value to individual patients, on a timescale rapid enough to guide therapeutic decision-making. PMID:25275698

  12. Drying kinetics and colour change of lemon slices

    NASA Astrophysics Data System (ADS)

    Darvishi, Hosain; Khoshtaghaza, Mohammad H.; Minaei, Saeid

    2014-03-01

    The effect of microwave-convective heating on drying characteristics and colour change of lemon slices was investigated. The drying experiments were carried out at 180, 360, 540 and 720Wand at 22°C, with air velocity of 1ms-1. The values of effective moisture diffusivity were found to be in the range between 1.87 10-8 and 3.95 10-8 m2 s-1, and the activation energy was estimated to be 10.91 Wg-1. The drying data were fitted with ten mathematical models available in the literature. The model describing drying kinetics of lemon slices in the best way was found. The colour change of the dried lemon slices was analysed and considered as a quality index affecting the drying quality of the product. The values of lightness/darkness, yellowness/blueness and hue angle increased, while the value of redness/greenness decreased with increasing microwave power.

  13. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-05-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  14. Thin slice expert testimony and mock trial deliberations.

    PubMed

    Parrott, Caroline Titcomb; Brodsky, Stanley L; Wilson, Jennifer Kelly

    2015-01-01

    This study examined impressions of expert witness testimony in a not guilty by reason of insanity defense on two outcomes: witness's credibility and verdict. Borrowing in part from the "thin slice" methodology, we assessed outcomes in a 2 (deliberating vs. non-deliberating jurors) × 3 (length of videotaped testimony) between-subjects design. In 30 mock juries, 188 participants viewed the testimony by a forensic psychologist; then half of the juries deliberated. Thinner slices of the testimony were defined by the lower (30s long) and upper (5 min long) temporal bounds in the literature. The third, fuller testimony condition was 10 min long and served as the accuracy marker for the shorter sliced exposures. We aimed to explore potential consequences to jurors relying on impressions of the expert, and his or her opinion, and to test that effect post deliberation. Accounting for deliberation, brief impressions of expert credibility generally exerted a similar influence on credibility to fuller considerations. The essential finding was that a two-way interaction emerged from time slice and deliberation on verdict for jurors in the 30s condition. Overall, predictive accuracy was found in the 5 min slice, yet accuracy was not supported in the predictions based on the shortest slice. Individually-formed impressions are not likely to translate to the verdict ballot post-deliberation. Instead, brief impressions are likely to be heavily influenced by deliberation. Implications for understanding how impression-based testimony evaluations translate from the jury box to the deliberation room are discussed. PMID:26346686

  15. Single-slice mapping of ultrashort T 2

    NASA Astrophysics Data System (ADS)

    Kirsch, Stefan; Schad, Lothar R.

    2011-05-01

    In this communication we present a method for single-slice mapping of ultrashort transverse relaxation times T2. The RF pulse sequence consists of a spin echo preparation of the magnetization followed by slice-selective ultrashort echo time (UTE) imaging with radial k-space sampling. In order to keep the minimum echo time as small as possible, avoid out-of-slice contamination and signal contamination due to unwanted echoes, the implemented pulse sequence employs a slice-selective 180° RF refocusing pulse and a 4-step phase cycle. The slice overlap of the two slice-selective RF pulses was investigated. An acceptable Gaussian slice profile could be achieved by adjusting the strength of the two slice-selection gradients. The method was tested on a short T2 phantom consisting of an arrangement of a roll of adhesive tape, an eraser, a piece of modeling dough made of Plasticine®, and a 10% w/w agar gel. The T2 measurements on the phantom revealed exponential signal decays for all samples with T2(adhesive tape) = (0.5 ± 0.1) ms, T2(eraser) = (2.33 ± 0.07) ms, T2(Plasticine®) = (2.8 ± 0.06) ms, and T2(10% agar) = (9.5 ± 0.83) ms. The T2 values obtained by the mapping method show good agreement with the T2 values obtained by a non-selective T2 measurement. For all samples, except the adhesive tape, the effective transverse relaxation time T2∗ was significantly shorter than T2. Depending on the scanner hardware the presented method allows mapping of T2 down to a few hundreds of microseconds. Besides investigating material samples, the presented method can be used to study the rapidly decaying MR-signal from biological tissue (e.g.: bone, cartilage, and tendon) and quadrupolar nuclei (e.g.: 23Na, 35Cl, and 17O).

  16. Classification of CT-brain slices based on local histograms

    NASA Astrophysics Data System (ADS)

    Avrunin, Oleg G.; Tymkovych, Maksym Y.; Pavlov, Sergii V.; Timchik, Sergii V.; Kisała, Piotr; Orakbaev, Yerbol

    2015-12-01

    Neurosurgical intervention is a very complicated process. Modern operating procedures based on data such as CT, MRI, etc. Automated analysis of these data is an important task for researchers. Some modern methods of brain-slice segmentation use additional data to process these images. Classification can be used to obtain this information. To classify the CT images of the brain, we suggest using local histogram and features extracted from them. The paper shows the process of feature extraction and classification CT-slices of the brain. The process of feature extraction is specialized for axial cross-section of the brain. The work can be applied to medical neurosurgical systems.

  17. Verification of Software Product Lines with Delta-Oriented Slicing

    NASA Astrophysics Data System (ADS)

    Bruns, Daniel; Klebanov, Vladimir; Schaefer, Ina

    Software product line (SPL) engineering is a well-known approach to develop industry-size adaptable software systems. SPL are often used in domains where high-quality software is desirable; the overwhelming product diversity, however, remains a challenge for assuring correctness. In this paper, we present delta-oriented slicing, an approach to reduce the deductive verification effort across an SPL where individual products are Java programs and their relations are described by deltas. On the specification side, we extend the delta language to deal with formal specifications. On the verification side, we combine proof slicing and similarity-guided proof reuse to ease the verification process.

  18. Single-slice mapping of ultrashort T(2).

    PubMed

    Kirsch, Stefan; Schad, Lothar R

    2011-05-01

    In this communication we present a method for single-slice mapping of ultrashort transverse relaxation times T(2). The RF pulse sequence consists of a spin echo preparation of the magnetization followed by slice-selective ultrashort echo time (UTE) imaging with radial k-space sampling. In order to keep the minimum echo time as small as possible, avoid out-of-slice contamination and signal contamination due to unwanted echoes, the implemented pulse sequence employs a slice-selective 180° RF refocusing pulse and a 4-step phase cycle. The slice overlap of the two slice-selective RF pulses was investigated. An acceptable Gaussian slice profile could be achieved by adjusting the strength of the two slice-selection gradients. The method was tested on a short T(2) phantom consisting of an arrangement of a roll of adhesive tape, an eraser, a piece of modeling dough made of Plasticine®, and a 10% w/w agar gel. The T(2) measurements on the phantom revealed exponential signal decays for all samples with T(2)(adhesive tape)=(0.5 ± 0.1)ms, T(2)(eraser)=(2.33 ± 0.07)ms, T(2)(Plasticine®)=(2.8 ± 0.06)ms, and T(2)(10%agar)=(9.5 ± 0.83)ms. The T(2) values obtained by the mapping method show good agreement with the T(2) values obtained by a non-selective T(2) measurement. For all samples, except the adhesive tape, the effective transverse relaxation time T(2)(∗) was significantly shorter than T(2). Depending on the scanner hardware the presented method allows mapping of T(2) down to a few hundreds of microseconds. Besides investigating material samples, the presented method can be used to study the rapidly decaying MR-signal from biological tissue (e.g.: bone, cartilage, and tendon) and quadrupolar nuclei (e.g.: (23)Na, (35)Cl, and (17)O). PMID:21353799

  19. Long-term GnRH-induced gonadotropin secretion in a novel hypothalamo-pituitary slice culture from tilapia brain.

    PubMed

    Bloch, Corinne L; Kedar, Noa; Golan, Matan; Gutnick, Michael J; Fleidervish, Ilya A; Levavi-Sivan, Berta

    2014-10-01

    Organotypic cultures, prepared from hypothalamo-pituitary slices of tilapia, were developed to enable long-term study of secretory cells in the pituitary of a teleost. Values of membrane potential at rest were similar to those recorded from acute slices, and cells presented similar spontaneous spikes and spikelets. Some cells also exhibited slow spontaneous oscillations in membrane potential, which may be network-driven. Long-term (6days) continuous exposure to GnRH induced increases in LH and FSH secretion. FSH levels reached the highest levels after 24h of exposure to GnRH, and the highest secretion of LH was observed in days 4 and 5 of the experiment. Since slices were viable for several weeks in culture, maintaining the original cytoarchitecture, electrical membrane properties and the ability to secrete hormones in response to exogenous GnRH, this technique is ideal for studying the mechanisms regulating cell-to-cell communication under conditions resembling the in vivo tissue organization.

  20. Aneurysm in the anterior inferior cerebellar artery-posterior inferior cerebellar artery variant: Case report and review of literature

    PubMed Central

    Akhtar, Saad; Azeem, Abdul; Jiwani, Amyna; Javed, Gohar

    2016-01-01

    Introduction There are variations in the anatomy of the vertebrobasilar system amongst which the Anterior Inferior Cerebellar Artery-Posterior Inferior Cerebellar Artery (AICA-PICA) variant is thought to have a prevalence of 20–24% (based on retrospective studies). Despite this, aneurysms of the AICA-PICA variant are rare. We present a case of an AICA-PICA aneurysm and discuss its presentation and management, along with a review of literature. Presentation of case We describe the case of a 35 year old female who presented with signs of meningismus. On the basis of radiological imaging it was initially misdiagnosed as a thrombosed arteriovenous malformation (AVM). The patient was eventually discharged with a plan of interval imaging and interventional radiology (if required). The patient presented again with similar signs and symptoms. Re-evaluation of imaging revealed an aneurysm of the AICA-PICA variant which was managed surgically. Discussion Aneurysms of the AICA-PICA variant are rare. The radiological features and surgical management represent a unique clinical entity and are discussed below. Conclusion The prevalence of the AICA-PICA variant might be high but aneurysms in this vessel are rare. The scant knowledge available on this subject makes it a diagnostic difficulty. PMID:27017276

  1. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    PubMed Central

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  2. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    PubMed

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  3. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control

    PubMed Central

    Jiang, Juan; Azim, Eiman; Ekerot, Carl-Fredrik; Alstermark, Bror

    2015-01-01

    The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT) in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN), and the implications of this pre-cerebellar “detour” for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of dexterous limb movements. PMID:26217214

  4. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model

    PubMed Central

    Bruinsma, Caroline F.; Schonewille, Martijn; Gao, Zhenyu; Aronica, Eleonora M.A.; Judson, Matthew C.; Philpot, Benjamin D.; Hoebeek, Freek E.; van Woerden, Geeske M.; De Zeeuw, Chris I.; Elgersma, Ype

    2015-01-01

    Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am–/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS. PMID:26485287

  5. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.

    PubMed

    Muguruma, Keiko; Nishiyama, Ayaka; Kawakami, Hideshi; Hashimoto, Kouichi; Sasai, Yoshiki

    2015-02-01

    During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC) culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19) promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester. PMID:25640179

  6. Predictors of Depressive Mood in Patients With Isolated Cerebellar Stroke: A Retrospective Study

    PubMed Central

    2016-01-01

    Objective To identify predictive factors of depressive mood in patients with isolated cerebellar stroke. Methods A retrospective chart review was performed in patients who had experienced their first isolated cerebellar stroke during 2002–2014. The patients were classified into two groups by the Geriatric Depression Scale (GDS) (non-depressive group, 0≤GDS≤16; depressive group, 17≤GDS≤30). Data on demographic and socioeconomic factors, comorbidities, functional level, cognitive and linguistic function, and stroke characteristics were collected. Significant variables in univariate analysis were analyzed using logistic regression. Results Fifty-two patients were enrolled, of whom 55.8% had depressive mood, were older (p=0.021), and had higher hypertension rates (p=0.014). Cognitive and linguistic functions did not differ between the two groups. The depressive group had higher ischemic stroke rates (p=0.035) and showed a dominant right posterior cerebellar hemisphere lesion (p=0.028), which was independently associated with depressive mood in the multiple logistic regression analysis (odds ratio, 5.081; 95% confidence interval, 1.261–20.479). Conclusion The risk of depressive mood after cerebellar stroke was increased in patients at old age, with a history of hypertension, ischemic stroke, and lesion of the right posterior cerebellar hemisphere. The most significant determining factor was stroke lesion of the right posterior cerebellar hemisphere. Early detection of risk factors is important to prevent and manage depressive mood after cerebellar stroke. PMID:27446777

  7. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  8. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model.

    PubMed

    Bruinsma, Caroline F; Schonewille, Martijn; Gao, Zhenyu; Aronica, Eleonora M A; Judson, Matthew C; Philpot, Benjamin D; Hoebeek, Freek E; van Woerden, Geeske M; De Zeeuw, Chris I; Elgersma, Ype

    2015-11-01

    Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am-/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS. PMID:26485287

  9. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    PubMed

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies.

  10. Glutamate dysfunction associated with developmental cerebellar damage: Relevance to autism spectrum disorders

    PubMed Central

    McKimm, Erik J.; Corkill, Beau; Goldowitz, Dan; Albritton, Lorraine M.; Homayouni, Ramin; Blaha, Charles D.; Mittleman, Guy

    2014-01-01

    Neural abnormalities commonly associated with autism spectrum disorders include prefrontal cortex (PFC) dysfunction and cerebellar pathology in the form of Purkinje cell loss and cerebellar hypoplasia. It has been reported that loss of cerebellar Purkinje cells results in aberrant dopamine neurotransmission in the PFC which occurs via dysregulation of multisynaptic efferents from the cerebellum to the PFC. Using a mouse model we investigated the possibility that developmental cerebellar Purkinje cell loss could disrupt glutamatergic cerebellar projections to the PFC that ultimately modulate DA release. We measured glutamate release evoked by local electrical stimulation using fixed potential amperometry in combination with glutamate selective enzyme-based recording probes in urethane anesthetized Lurcher mutant and wildtype mice. Target sites included the medio-dorsal and ventro-lateral thalamic nuclei, reticulo-tegmental nuclei, pedunculopontine nuclei, and ventral tegmental area. With the exception of the ventral tegmental area, results indicated that in comparison to wildtype mice, evoked glutamate release was reduced in Lurcher mutants by between 9% to 72% at all stimulated sites. These results are consistent with the notion that developmental loss of cerebellar Purkinje cells drives reductions in evoked glutamate release in cerebellar efferent pathways that ultimately influence PFC dopamine release. Possible mechanisms whereby reductions in glutamate release could occur are discussed. PMID:24307139

  11. What Features of Limb Movements are Encoded in the Discharge of Cerebellar Neurons?

    PubMed Central

    Hewitt, Angela L.; Popa, Laurentiu S.

    2013-01-01

    This review examines the signals encoded in the discharge of cerebellar neurons during voluntary arm and hand movements, assessing the state of our knowledge and the implications for hypotheses of cerebellar function. The evidence for the representation of forces, joint torques, or muscle activity in the discharge of cerebellar neurons is limited, questioning the validity of theories that the cerebellum directly encodes the motor command. In contrast, kinematic parameters such as position, direction, and velocity are widely and robustly encoded in the activity of cerebellar neurons. These findings favor hypotheses that the cerebellum plans or controls movements in a kinematic framework, such as the proposal that the cerebellum provides a forward internal model. Error signals are needed for on-line correction and motor learning, and several hypotheses postulate the need for their representations in the cerebellum. Error signals have been described mostly in the complex spike discharge of Purkinje cells, but no consensus has emerged on the exact information signaled by complex spikes during limb movements. Newer studies suggest that simple spike firing may also encode error signals. Finally, Purkinje cells located more posterior and laterally in the cerebellar cortex and dentate neurons encode nonmotor, task-related signals such as visual cues. These results suggest that cerebellar neurons provide a complement of information about motor behaviors. We assert that additional single unit studies are needed using rich movement paradigms, given the power of this approach to directly test specific hypotheses about cerebellar function. PMID:21203875

  12. Tract Profiles of the Cerebellar White Matter Pathways in Children and Adolescents.

    PubMed

    Leitner, Yael; Travis, Katherine E; Ben-Shachar, Michal; Yeom, Kristen W; Feldman, Heidi M

    2015-12-01

    Intact development of cerebellar connectivity is essential for healthy neuromotor and neurocognitive development. To date, limited knowledge about the microstructural properties of the cerebellar peduncles, the major white matter tracts of the cerebellum, is available for children and adolescents. Such information would be useful as a comparison for studies of normal development, clinical conditions, or associations of cerebellar structures with cognitive and motor functions. The goal of the present study was to evaluate the variability in diffusion measures of the cerebellar peduncles within individuals and within a normative sample of healthy children. Participants were 19 healthy children and adolescents, aged 9-17 years, mean age 13.0 ± 2.3. We analyzed diffusion magnetic resonance imaging (dMRI) data with deterministic tractography. We generated tract profiles for each of the cerebellar peduncles by extracting four diffusion properties (fractional anisotropy (FA) and mean, radial, and axial diffusivity) at 30 equidistant points along each tract. We were able to identify the middle cerebellar peduncle and the bilateral inferior and superior cerebellar peduncles in all participants. The results showed that within each of the peduncles, the diffusion properties varied along the trajectory of the tracts. However, the tracts showed consistent patterns of variation across individuals; the coefficient of variation for FA across individual profiles was low (≤20%) for each tract. We observed no systematic variation of the diffusion properties with age. These cerebellar tract profiles of the cerebellar peduncles can serve as a reference for future studies of children across the age range and for children and adolescents with clinical conditions that affect the cerebellum.

  13. [The effect of anthropometric factors on human cerebellar mass and its age dynamics].

    PubMed

    Stepanenko, A Iu

    2014-01-01

    The purpose of this work was to examine the dependence of human cerebellar mass and its age dynamics on the body length and body-build type. The study was carried out on 295 objects--the corpses of the individuals of both sexes (173 males and 122 females) who died at the age of 20-99 years. The length of the body, the transverse diameter of the chest and the cerebellar mass were measured. Somatotype was determined by the Rees-Eysenck index. It was found that human cerebellar mass ranged from 103 to 197 g (with the average of 144 ± 1.0 g) and was significantly greater in men than in women (150.5 ± 1.3 g vs. 133.9 ± 1.2 g, P < 0.001). Age affected cerebellar mass in men (R = -0.46) more, than in women (R = -0.43). In men, a period of relative stability of the cerebellar mass lasted up to about 50 years and then was followed by a period of its decrease. In women, the stable period was observed until approximately 70 years. The cerebellar mass was related to the body length (R = 0.35 for men and R = 0.36 for women). The dependence of the cerebellar mass on the body length was greater in men (1.0 g/cm) greater than in women (0.5 g/cm): with the increase of the body length the difference in the values of the cerebellar mass between men and women was found to grow. The cerebellar mass in the individuals with various body-build types was not significantly different PMID:25552081

  14. Restoring Cognitive Functions Using Non-Invasive Brain Stimulation Techniques in Patients with Cerebellar Disorders

    PubMed Central

    Pope, Paul A.; Miall, R. Chris

    2014-01-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebro–cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral–lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato–rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro–cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided toward neuro-enhancement in certain patient populations, using what is commonly termed “non-invasive brain stimulation” as a cognitive rehabilitation tool to modulate cerebro–cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo

  15. [Immediate and remote results of treatment of cerebellar astrocytoma].

    PubMed

    Kunicki, A; Czerwiński, L

    1980-01-01

    Cerebellar astrocytoma accounted for 10% of all brain tumours treated at the Department of Neurosurgery, Medical Academy in Cracow in the years 1946 to 1968. It accounted for 16.6% of all gliomas, and 57% of subtentorial gliomas. Table I shows the distribution of the tumour according to age groups. The male:female sex ratio was near 1.0. In 124 cases the tumour was situated in the cerebellar hemispheres and in 91 in the vermis. The present study is based on an analysis of 215 cases with 124 tumours in the hemispheres and 91 in the vermis. In the hemispheres 77.8% of astrocytomas had cavities, while 22.2% were solid. In the vermis 60.6% of the tumours had cavities and 39.4% had no cavities. Infiltration of the brain stem or adherence to the floor of the fourth ventricle are mentioned in the protocols of 19 operations. The most frequent tumour in childhood and adolescence was pilocytic astrocytoma, in adulthood fibrillary and protoplasmic astrocytomas prevailed. In 10 cases of the last mentioned variety evidence of anaplasia was found. In the first four years when all operations were performed under local analgesia or rectal general anaesthesia the operative mortality was 21.5%, and in the subgroup of 40 first cases it was even 25%. After introduction of endotracheal anaesthesia the operative mortality fell to 13%, and in the subgroup of 40 last cases it was 9%. Detailed data about follow-up observations are available in 93 cases. Thirteen of them were disabled because of complete or nearly complete loss of vision. Nine of them completed schools for the blind and work in gainful occupations ad two founded families. Three patients are completely disabled because of equilibrium disturbances and ataxia. Two children attended a special school. The remaining 85 patients regarded themselves as healthy. This group comprised 66 patients operated upon at the age from 2 to 14 years, 12 were treated at the age from 15 to 21 years and 7 above that age. Some of them had high

  16. Moderate alcohol consumption and loss of cerebellar Purkinje cells.

    PubMed Central

    Karhunen, P. J.; Erkinjuntti, T.; Laippala, P.

    1994-01-01

    OBJECTIVE--To examine the dose-response effect of alcohol consumption on the number of cerebellar Purkinje cells. DESIGN--A prospective necropsy study combined with detailed reports on use of alcohol from a relative or friend. The number of Purkinje cells was counted in the anterior midsagittal section of the cerebellar vermis, the area of which was measured by computer assisted morphometry. SETTING--Department of forensic medicine, University of Helsinki. SUBJECTS--66 men, aged 35 to 69 years, subjected to medicolegal necropsy because of sudden or violent death. The average all year daily alcohol consumption over the year was 0 to 10 g in 17 men, 11 to 80 g in 24 men, and more than 80 g in 25 men. MAIN OUTCOME MEASURES--Number of Purkinje cells, alcohol consumption. RESULTS--The numbers and density of Purkinje cells in the cross section of vermis showed a consistent but weak decrease with increasing daily alcohol intake but not with age. A wide variation in the cell counts was observed, especially in men drinking more than 80 g, suggesting differences in the susceptibility to effects of alcohol. Compared with men drinking 40 g or less, a long term moderate consumption of an average of 41 to 80 g daily was associated with a significant average loss of 242 (95% confidence interval 45 to 439) Purkinje cells (15.2%) from a mean of 1583 to 1341 cells. In those drinking 81 to 180 g the average loss was 535 (259 to 811) cells (33.4%) to a mean of 1048 cells. The density of cells in the cross section of vermis also fell significantly by 0.9 cell/mm (0.1 to 1.7) when the daily consumption exceeded 40 g and by 1.4 cell/mm (0.3 to 2.5) when the intake was 81 to 180 g. Only three cases (4.5%) in the series showed macroscopical cerebellar atrophy. CONCLUSION--Long term intake of moderate doses of alcohol daily for 20-30 years may damage the cerebellum before the onset of macroscopical atrophy. Despite distinct individual differences an all year average daily alcohol intake of

  17. Cerebellar Infarction in Childhood: Delayed-Onset Complication of Mild Head Trauma

    PubMed Central

    Ilker OZ, Ibrahim; BOZAY OZ, Evrim; ŞERIFOĞLU, Ismail; KAYA, Nurullah; ERDEM, Oktay

    2016-01-01

    Objective Cerebellar ischemic infarction is a rare complication of minor head trauma. Vertebral artery dissection, vasospasm or systemic hypo perfusion can cause infarct. However, underlying causes of the ischemic infarct cannot be explained in nearly half of cases. The accurate diagnosis is essential to ensure appropriate treatment. Here we report a five yr old boy patient of cerebellar infraction after minor head trauma, admitted to emergency serves of BulentEcevit University, Turkey in 2013. We aimed to remind minor head trauma that causes cerebellar infarction during childhood, and to review the important points of the diagnosis, which should be keep in mind. PMID:27375760

  18. Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus.

    PubMed

    Scoville, Sheila A; Lane, Oksana P

    2013-05-01

    A fledged, 12-15 day-old saltmarsh sparrow, Ammodramus caudacutus, was collected from an accidental kill on Cinder Island, Long Island, NY, USA. The sparrow was assessed for feather mercury levels and the brain analyzed for cerebellar abnormalities by microscopic examination. In humans, fetal Minamata disease is caused by maternal ingestion of mercury. It is characterized by disrupted and disordered cerebellar neuronal migration in the fetus or infant. Results from this sparrow show cerebellar abnormalities typical of Minamata disease. It is the first known avian or mammalian specimen taken from the wild to show the abnormalities typical of the human fetal syndrome.

  19. Mathematical modeling on vacuum drying of Zizyphus jujuba Miller slices.

    PubMed

    Lee, Jun Ho; Zuo, Li

    2013-02-01

    The thin-layer vacuum drying behavior of Zizyphus jujuba Miller slices was experimentally investigated at the temperature of 50, 60, and 70 °C and the mathematical models were used to fit the thin-layer vacuum drying of Z. jujuba slices. The increase in drying air temperature resulted in a decrease in drying time. The drying rate was found to increase with temperature, thereby reducing the total drying time. It was found that Z. jujuba slices with thickness of 4 mm would be dried up to 0.08 kg water/kg dry matter in the range of 180-600 min in the vacuum dryer at the studied temperature range from 70 to 50 °C. The Midilli et al. model was selected as the most appropriate model to describe the thin-layer drying of Z. jujuba slices. The diffusivity coefficient increased linearly over the temperature range from 1.47 × 10(-10) to 3.27 × 10(-10) m(2)/s, as obtained using Fick's second law. The temperature dependence of the effective diffusivity coefficient followed an Arrhenius-type relationship. The activation energy for the moisture diffusion was determined to be 36.76 kJ/mol. PMID:24425895

  20. Blanching, salting and sun drying of different pumpkin fruit slices.