Sample records for acute cold stress

  1. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    PubMed

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p < 0.05) after chronic cold stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p < 0.05) in both of the acute and chronic cold stress groups. Malondialdehyde (MDA) content was significantly increased (p < 0.05) under cold stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  2. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    PubMed

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  3. Acute cold stress improved the transcription of pro-inflammatory cytokines of Chinese soft-shelled turtle against Aeromonas hydrophila.

    PubMed

    Zhang, Zuobing; Chen, Bojian; Yuan, Lin; Niu, Cuijuan

    2015-03-01

    Chinese soft-shelled turtle, Pelodiscus sinensis, is widely cultured in East and Southeast Asian countries. It frequently encounters the stress of abrupt temperature changes, which leads to mass death in most cases. However, the mechanism underlying the stress-elicited death remains unknown. We have suspected that the stress impaired the immune function of Chinese soft-shelled turtle, which could result in the mass death, as we noticed that there was a clinical syndrome of infection in dead turtles. To test our hypothesis, we first performed bioinformatic annotation of several pro-inflammatory molecules (IL-1β, TNFα, IL-6, IL-12β) of Chinese soft-shelled turtle. Then, we treated the turtles in six groups, injected with Aeromonas hydrophila before acute cold stress (25 °C) and controls, after acute cold stress (15 °C) and controls as well as after the temperature was restored to 25 °C and controls, respectively. Subsequently, real-time PCR for several pro-inflammatory cytokines (IL-1β, TNFα, IL-6, IL-12β, IL-8 and IFNγ) was performed to assess the turtle immune function in spleen and intestine, 24 hours after the injection. We found that the mRNA expression levels of the immune molecules were all enhanced after acute cold stress. This change disappeared when the temperature was restored back to 25 °C. Our results suggest that abrupt temperature drop did not suppress the immune function of Chinese soft-shelled turtle in response to germ challenge after abrupt temperature drop. In contrast, it may even increase the expression of various cytokines at least, within a short time after acute cold stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  5. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  6. Stress does not increase blood–brain barrier permeability in mice

    PubMed Central

    Roszkowski, Martin

    2016-01-01

    Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood–brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood–brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood–brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood–brain barrier permeability. To additionally assess if stress could change blood–brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood–brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood–brain barrier permeability. PMID:27146513

  7. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  8. Intrinsic and extrinsic apoptotic pathways are involved in rat testis by cold water immersion-induced acute and chronic stress.

    PubMed

    Juárez-Rojas, Adriana Lizbeth; García-Lorenzana, Mario; Aragón-Martínez, Andrés; Gómez-Quiroz, Luis Enrique; Retana-Márquez, María del Socorro

    2015-01-01

    Testicular apoptosis is activated by stress, but it is not clear which signaling pathway is activated in response to stress. The aim of this study was to investigate whether intrinsic, extrinsic, or both apoptotic signaling pathways are activated by acute and chronic stress. Adult male rats were subjected to cold water immersion-induced stress for 1, 20, 40, and 50 consecutive days. The seminiferous tubules:apoptotic cell ratio was assayed on acute (1 day) and chronic (20, 40, 50 days) stress. Apoptotic markers, including cleaved-caspase 3 and 8, the pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were also determined after acute and chronic stress induction. Additionally, epididymal sperm quality was evaluated, as well as corticosterone and testosterone levels. An increase in tubule apoptotic cell count percentage after an hour of acute stress and during chronic stress induction was observed. The apoptotic cells rate per tubule increment was only detected one hour after acute stress, but not with chronic stress. Accordingly, there was an increase in Bax, cleaved caspase-8 and caspase-3 pro-apoptotic proteins with a decrease of anti-apoptotic Bcl-2 in both acutely and chronically stressed male testes. In addition, sperm count, viability, as well as total and progressive motility were low in chronically stressed males. Finally, the levels of corticosterone increased whereas testosterone levels decreased in chronically stressed males. Activation of the extrinsic apoptotic pathway was shown by cleaved caspase-8 increase whereas the intrinsic apoptotic pathway activation was determined by the increase of Bax, along with Bcl-2 decrease, making evident a cross-talk between these two pathways with the activation of caspase-3. These results suggest that both acute and chronic stress can potentially activate the intrinsic/extrinsic apoptosis pathways in testes. Chronic stress also reduces the quality of epididymal spermatozoa, possibly due to a decrease in testosterone.

  9. Chronic Mild Cold Conditioning Modulates the Expression of Hypothalamic Neuropeptide and Intermediary Metabolic-related Genes and Improves Growth Performances in Young Chicks

    USDA-ARS?s Scientific Manuscript database

    Background: Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the pre...

  10. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    PubMed

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.

  11. Acute Exposure to Stress Improves Performance in Trace Eyeblink Conditioning and Spatial Learning Tasks in Healthy Men

    ERIC Educational Resources Information Center

    Duncko, Roman; Cornwell, Brian; Cui, Lihong; Merikangas, Kathleen R.; Grillon, Christian

    2007-01-01

    The present study investigated the effects of acute stress exposure on learning performance in humans using analogs of two paradigms frequently used in animals. Healthy male participants were exposed to the cold pressor test (CPT) procedure, i.e., insertion of the dominant hand into ice water for 60 sec. Following the CPT or the control procedure,…

  12. Effect of acute transdermal estrogen administration on basal, mental stress and cold pressor-induced sympathetic responses in postmenopausal women.

    PubMed

    Sofowora, Gbemiga G; Singh, Iqbal; He, Huai B; Wood, Alastair J J; Stein, C Michael

    2005-06-01

    Administration of estrogen has vascular effects through poorly defined mechanisms that may include sympathetic withdrawal. To define the effects of acute estrogen administration on sympathetic responses, nineteen healthy postmenopausal women (age 54+/-2 years) were studied after application of a placebo or estrogen patch for 36 hours, in random order. A p-value, adjusted for multiple comparisons, of <0.017 was used to determine statistical significance. Heart rate, blood pressure, and norepinephrine spillover were measured at rest, during mental stress (Stroop test), and during a cold pressor test. Estrogen did not attenuate basal or stimulated hemodynamic responses significantly. The increase in mean arterial pressure after the Stroop test (5.9+/-1.2mm/ Hg on placebo vs 6.1+/-1.6mm/Hg on estrogen, p=0.9) and after the cold pressor test (12.6+/-2.4mm/Hg on placebo vs 13.0+/-2.2 mm/Hg on estrogen, p=0.8) did not differ. Basal, mental stress and cold pressor-stimulated norepinephrine spillover were not significantly affected by short-term estrogen administration. Norepinephrine spillover tended to be higher after estrogen (1296.2+/-238 ng/min) than placebo (832.5+/-129 ng/min) (p=0.02) at baseline and after the Stroop test (1881.1+/-330 ng/min vs 1014.6+/-249 ng/min) (p=0.02). Acute transdermal estrogen administration did not attenuate norepinephrine spillover or sympathetically mediated hemodynamic responses.

  13. Cold Condition Influence on the Pulmonary Function in Smoking Military Men

    DTIC Science & Technology

    2002-04-01

    abundance, allergy and frequent airways acute inflammatory diseases in anamnesis and have been made routine clinical examination. 23-3 During...physical exercise, emotional stress etc.; and have in anamnesis (during last 2 year) 3-4 times and over acute airway inflammatory diseases: 17 persons

  14. Effects of heat and cold on health, with special reference to Finnish sauna bathing.

    PubMed

    Heinonen, Ilkka; Laukkanen, Jari A

    2018-05-01

    Environmental stress such as extremely warm or cold temperature is often considered a challenge to human health and body homeostasis. However, the human body can adapt relatively well to heat and cold environments, and recent studies have also elucidated that particularly heat stress might be even highly beneficial for human health. Consequently, the aim of the present brief review is first to discuss general cardiovascular and other responses to acute heat stress, followed by a review of beneficial effects of Finnish sauna bathing on general and cardiovascular health and mortality as well as dementia and Alzheimer's disease risk. Plausible mechanisms included are improved endothelial and microvascular function, reduced blood pressure and arterial stiffness, and possibly increased angiogenesis in humans, which are likely to mediate the health benefits of sauna bathing. In addition to heat exposure with physiological adaptations, cold stress-induced physiological responses and brown fat activation on health are also discussed. This is important to take into consideration, as sauna bathing is frequently associated with cooling periods in cold(er) environments, but their combination remains poorly investigated. We finally propose, therefore, that possible additive effects of heat- and cold-stress-induced adaptations and effects on health would be worthy of further investigation.

  15. Body temperature modulates the antioxidant and acute immune responses to exercise.

    PubMed

    Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni

    2012-06-01

    The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.

  16. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  17. Impacts of hot and cold spells differ for acute and chronic ischaemic heart diseases

    PubMed Central

    2014-01-01

    Background Many studies have reported associations between temperature extremes and cardiovascular mortality but little has been understood about differences in the effects on acute and chronic diseases. The present study examines hot and cold spell effects on ischaemic heart disease (IHD) mortality in the Czech Republic during 1994–2009, with emphasis upon differences in the effects on acute myocardial infarction (AMI) and chronic IHD. Methods We use analogous definitions for hot and cold spells based on quantiles of daily average temperature anomalies, thus allowing for comparison of results for summer hot spells and winter cold spells. Daily mortality data were standardised to account for the long-term trend and the seasonal and weekly cycles. Periods when the data were affected by epidemics of influenza and other acute respiratory infections were removed from the analysis. Results Both hot and cold spells were associated with excess IHD mortality. For hot spells, chronic IHD was responsible for most IHD excess deaths in both male and female populations, and the impacts were much more pronounced in the 65+ years age group. The excess mortality from AMI was much lower compared to chronic IHD mortality during hot spells. For cold spells, by contrast, the relative excess IHD mortality was most pronounced in the younger age group (0–64 years), and we found different pattern for chronic IHD and AMI, with larger effects on AMI. Conclusions The findings show that while excess deaths due to IHD during hot spells are mainly of persons with chronic diseases whose health had already been compromised, cardiovascular changes induced by cold stress may result in deaths from acute coronary events rather than chronic IHD, and this effect is important also in the younger population. This suggests that the most vulnerable population groups as well as the most affected cardiovascular diseases differ between hot and cold spells, which needs to be taken into account when designing and implementing preventive actions. PMID:24886566

  18. Stress sensitizes the brain: increased processing of unpleasant pictures after exposure to acute stress.

    PubMed

    Weymar, Mathias; Schwabe, Lars; Löw, Andreas; Hamm, Alfons O

    2012-07-01

    A key component of acute stress is a surge in vigilance that enables a prioritized processing of highly salient information to promote the organism's survival. In this study, we investigated the neural effects of acute stress on emotional picture processing. ERPs were measured during a deep encoding task, in which 40 male participants categorized 50 unpleasant and 50 neutral pictures according to arousal and valence. Before picture encoding, participants were subjected either to the Socially Evaluated Cold Pressor Test (SECPT) or to a warm water control procedure. The exposure to the SECPT resulted in increased subjective and autonomic (heart rate and blood pressure) stress responses relative to the control condition. Viewing of unpleasant relative to neutral pictures evoked enhanced late positive potentials (LPPs) over centro-parietal scalp sites around 400 msec after picture onset. Prior exposure to acute stress selectively increased the LPPs for unpleasant pictures. Moreover, the LPP magnitude for unpleasant pictures following the SECPT was positively associated with incidental free recall performance 24 hr later. The present results suggest that acute stress sensitizes the brain for increased processing of cues in the environment, particularly priming the processing of unpleasant cues. This increased processing is related to later long-term memory performance.

  19. Enhanced thermogenesis in rats by Panax ginseng, multivitamins and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, Ratan; Grover, S. K.; Divekar, H. M.; Gupta, A. K.; Shyam, Radhey; Srivastava, K. K.

    1996-12-01

    Substances which enhance endurance for physical and mental work and increase non-specific resistance to stress during a prolonged stay in physiologically adverse habitats are called ‘adaptogens’. Panax ginseng is well known for its anti-stress and adaptogenic properties. In the present study, adaptogenic activity by the intake of a herbo-vitamin-mineral preparation (HVMP) containing P. ginseng and multivitamin-mineral preparation (MVMP) was evaluated using the cold-hypoxia-restrained (C-H-R) animal model. The aim was to determine whether the cold tolerance and recovery from acute hypothermia mediated by P. ginseng was modified by simultaneous intake of additional vitamins and minerals. Results suggest that the adaptogenic effect of HVMP was more or less the sum total of its two components P. ginseng and MVMP. In HVMP, P. ginseng was found to be effective for developing resistance to cooling and MVMP helped in stimulating faster recovery from acute hypothermia.

  20. Physiological response and microRNA expression profiles in head kidney of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to acute cold stress.

    PubMed

    Qiang, Jun; Cui, Yan T; Tao, Fan Y; Bao, Wen J; He, Jie; Li, Xia H; Xu, Pao; Sun, Lan Y

    2018-01-09

    Cold stress has a serious impact on the overwintering survival and yield of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Understanding the physiological and molecular regulation mechanisms of low-temperature adaptation is necessary to help breed new tolerant strains. The semi-lethal low temperature of juvenile GIFT at 96 h was determined as 9.4 °C. We constructed and sequenced two small RNA libraries from head kidney tissues, one for the control (CO) group and one for the 9.4 °C-stressed (LTS) group, and identified 1736 and 1481 known microRNAs (miRNAs), and 164 and 152 novel miRNAs in the CO and LTS libraries, respectively. We verify the expression of nine up-regulated miRNAs and eight down-regulation miRNAs by qRT-PCR, and found their expression patterns were consistent with the sequencing results. We found that cold stress may have produced dysregulation of free radical and lipid metabolism, decreased superoxide dismutase activity, reduced respiratory burst and phagocytic activity of macrophages, increased malondialdehyde content, and adversely affected the physiological adaptation of GIFT, eventually leading to death. This study revealed interactions among miRNAs and signal regulated pathways in GIFT under cold stress that may help to understand the pathways involved in cold resistance.

  1. Exposure to Acute Stress is Associated with Attenuated Sweet Taste

    PubMed Central

    al’Absi, Mustafa; Nakajima, Motohiro; Hooker, Stephanie; Wittmers, Larry; Cragin, Tiffany

    2011-01-01

    This study examined the effects of stress on taste perception. Participants (N = 38; 21 women) completed two laboratory sessions: one stress (public speaking, math, and cold pressor) and one control rest session. The taste perception test was conducted at the end of each session and included rating the intensity and pleasantness of sweet, salty, sour, and savory solutions at suprathreshold concentrations. Cardiovascular, hormonal, and mood measures were collected throughout the sessions. Participants showed the expected changes in cardiovascular, hormonal, and mood measures in response to stress. Reported intensity of the sweet solution was significantly lower on the stress day than on the rest day. Cortisol level post stress predicted reduced intensity of salt and sour, suggesting that stress-related changes in adrenocortical activity were related to reduced taste intensity. Results indicate that acute stress may alter taste perception, and ongoing research investigates the extent to which these changes mediate effects of stress on appetite. PMID:22091733

  2. Stress lowers the detection threshold for foul-smelling 2-mercaptoethanol.

    PubMed

    Pacharra, Marlene; Schäper, Michael; Kleinbeck, Stefan; Blaszkewicz, Meinolf; Wolf, Oliver T; van Thriel, Christoph

    2016-01-01

    Previous studies have reported enhanced vigilance for threat-related information in response to acute stress. While it is known that acute stress modulates sensory systems in humans, its impact on olfaction and the olfactory detection of potential threats is less clear. Two psychophysical experiments examined, if acute stress lowers the detection threshold for foul-smelling 2-mercaptoethanol. Participants in Experiment 1 (N = 30) and Experiment 2 (N = 32) were randomly allocated to a control group or a stress group. Participants in the stress group underwent a purely psychosocial stressor (public mental arithmetic) in Experiment 1 and a stressor that combined a physically demanding task with social-evaluative threat in Experiment 2 (socially evaluated cold-pressor test). In both experiments, olfactory detection thresholds were repeatedly assessed by means of dynamic dilution olfactometry. Each threshold measurement consisted of three trials conducted using an ascending method of limits. Participants in the stress groups showed the expected changes in heart rate, salivary cortisol, and mood measures in response to stress. About 20 min after the stressor, participants in the stress groups could detect 2-mercaptoethanol at a lower concentration than participants in the corresponding control groups. Our results show that acute stress lowers the detection threshold for a malodor.

  3. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress.

    PubMed

    Kaplan, Fatma; Guy, Charles L

    2005-12-01

    It has been suggested that beta-amylase (BMY) induction during temperature stress in Arabidopsis could lead to starch-dependent maltose accumulation, and that maltose may contribute to protection of the electron transport chain and proteins in the chloroplast stroma during acute stress. A time-course transcript profiling analysis for cold shock at 4 degrees C revealed that BMY8 (At4g17090) was induced specifically in response to cold shock, while major induction was not observed for any of the other eight beta-amylases. A parallel metabolite-profiling analysis revealed a robust transient maltose accumulation during cold shock. BMY8 RNAi lines with lower BMY8 expression exhibited a starch-excess phenotype, and a dramatic decrease in maltose accumulation during a 6-h cold shock at 4 degrees C. The decreased maltose content was also accompanied by decreased glucose, fructose and sucrose content in the BMY8 RNAi plants, consistent with the roles of beta-amylase and maltose in transitory starch metabolism. BMY8 RNAi lines with reduced soluble sugar content exhibited diminished chlorophyll fluorescence as F(v)/F(m) ratio compared with wild type, suggesting that PSII photochemical efficiency was more sensitive to freezing stress. Together, carbohydrate analysis and freezing stress results of BMY8 RNAi lines indicate that increased maltose content, by itself or together through a maltose-dependent increase in other soluble sugars, contributes to the protection of the photosynthetic electron transport chain during freezing stress.

  4. Similar post-stress metabolic trajectories in young and old flies.

    PubMed

    Colinet, Hervé; Renault, David

    2018-02-01

    Homeostenosis (i.e. decline in stress resistance and resilience with age) is a fundamental notion of the biogerontology and physiology of aging. Stressful situations typically challenge metabolic homeostasis and the capacity to recover from a stress-induced metabolic disorder might be particularly compromised in senescent individuals. In the present work, we report the effects of aging on low temperature stress tolerance and metabolic profiles in Drosophila melanogaster females of different ages. Adult flies aged 4, 16, 30 and 44days were subjected to acute and chronic cold stress, and data confirmed a strong decline in cold tolerance and resilience of old flies compared to young counterparts. Using quantitative target GC-MS analysis, we found distinct metabolic phenotypes between young (4day-old) and old (44day-old) flies, with glycolytic pathways being differentially affected between the two age groups. We also compared the robustness of metabolic homeostasis in young vs. old flies when exposed to cold stress using time-series metabolic analysis. In both age groups, we found evidence of strong alteration of metabolic profiles when flies were exposed to low temperature stress. Interestingly, the temporal metabolic trajectories during the recovery period were similar in young and old flies, despite strong differences in thermotolerance. In conclusion, metabolic signatures markedly changed with age and homeostenosis was observed in the phenotypic response to cold stress. However, these changes did not reflect in different temporal homeostatic response at metabolic level. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Acute effects of coffee consumption on self-reported gastrointestinal symptoms, blood pressure and stress indices in healthy individuals.

    PubMed

    Papakonstantinou, Emilia; Kechribari, Ioanna; Sotirakoglou, Κyriaki; Tarantilis, Petros; Gourdomichali, Theodora; Michas, George; Kravvariti, Vassiliki; Voumvourakis, Konstantinos; Zampelas, Antonis

    2016-03-15

    It has been suggested that coffee may affect the gut-brain axis with conflicting outcomes. Moreover, there is insufficient evidence to determine whether the type or temperature of coffee consumed will have a different impact on the gut-brain axis. The purpose of this study was to investigate the effects of acute coffee consumption on the following: 1. self-reported GI symptoms and salivary gastrin, 2. stress indices [salivary cortisol and alpha-amylase (sAA)] and psychometric measures, and 3. blood pressure (BP), in healthy, daily coffee consuming individuals in non-stressful conditions. This was a randomized, double blind, crossover clinical trial, in which 40 healthy individuals (20 men, 20 women), 20-55 years of age, randomly consumed four 200 ml coffee beverages containing 160 mg caffeine (hot and cold instant coffee, cold espresso, hot filtered coffee), 1 week apart. Salivary samples and psychometric questionnaires were collected at baseline and post-coffee consumption at 15,30, and 60 min for salivary gastrin and sAA measurements and at 60,120, and 180 min for cortisol measurements. BP was measured at beginning and end of each intervention. ClinicalTrials.gov ID: NCT02253628 RESULTS: Coffee consumption significantly increased sAA activity (P = 0.041), with significant differences only between cold instant and filter coffee at 15 and 30 min post-consumption (P < 0.05). Coffee temporarily increased salivary gastrin, without differences between coffee types. Coffee did not affect salivary cortisol or self-reported anxiety levels. Coffee consumption significantly increased BP, within the healthy physiological levels, in a gender specific manner at the end of the experimental periods, without differences between coffee types. Acute coffee consumption in non-stressful conditions activated sAA and BP but not salivary cortisol, indicating activation of the sympathetic nervous system. Post-coffee sAA increase without a concomitant cortisol increase may also indicate that coffee may have some anti-stress properties.

  6. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats.

    PubMed

    Gao, Bihu; Kikuchi-Utsumi, Kazue; Ohinata, Hiroshi; Hashimoto, Masaaki; Kuroshima, Akihiro

    2003-06-01

    Repeat immobilization-stressed rats are leaner and have improved cold tolerance due to enhancement of brown adipose tissue (BAT) thermogenesis. This process likely involves stress-induced sympathetic nervous system activation and adrenocortical hormone release, which dynamically enhances and suppresses uncoupling protein 1 (UCP1) function, respectively. To investigate whether repeated immobilization influences UCP1 thermogenic properties, we assessed UCP1 mRNA, protein expression, and activity (GDP binding) in BAT from immobilization-naive or repeatedly immobilized rats (3 h daily for 4 weeks) and sham operated or adrenalectomized (ADX) rats. UCP1 properties were assessed before (basal) and after exposure to 3 h of acute immobilization. Basal levels of GDP binding and UCP1 expression was significantly increased (140 and 140%) in the repeated immobilized group. Acute immobilization increased GDP binding in both naive (180%) and repeated immobilized groups (220%) without changing UCP1 expression. In ADX rats, basal GDP binding and UCP1 gene expression significantly increased (140 and 110%), and acute immobilization induced further increase. These data demonstrate that repeated immobilization resulted in enhanced UCP1 function, suggesting that enhanced BAT thermogenesis contributes to lower body weight gain through excess energy loss and an improved ability to maintain body temperature during cold exposure.

  7. Comparison of three acute stress models for simulating the pathophysiology of stress-related mucosal disease.

    PubMed

    Saxena, Bhagawati; Singh, Sanjay

    2017-05-30

    Stress-related mucosal disease (SRMD) is highly prevalent in intensive care patients leading to increasing treatment cost and mortality. SRMD is a disease elusive of ideal treatment. Evaluation of drugs is very pertinent for the efficient and safe treatment of SRMD. It relies mainly on in vivo screening models. There are various stress models, and till date, none of them is validated for simulating the SRMD pathophysiology. The present study aims to choose the best model, which reproduce pathophysiology of SRMD, among previously established stress models. This study evaluates ulcer index, hexosamine content, microvascular permeability, and gastric content in three acute stress models (cold-restraint, restraint, and water immersion restraint). Macroscopic pictures of the ulcerogenic stomach explain that in contrast to other models, cold-restraint stress (CRS) exposure produced marked ulcers on the fundic area of the stomach. Results of the present study depicted that each stress model significantly increased ulcer index, microvascular permeability and decreased hexosamine level, however, the maximum in the case of CRS-exposed rats. Total acidity and pH of the gastric content remains unchanged in all the stress models. On the contrary, the gastric volume significantly decreased only in case of CRS, while unchanged in other stress models. The overall results revealed that the CRS resembles the pathophysiology of SRMD closely. It is the best and feasible model among all the models to evaluate drugs for the treatment of SRMD.

  8. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.

    PubMed

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  9. Deep Transcriptomic Analysis of Black Rockfish (Sebastes schlegelii) Provides New Insights on Responses to Acute Temperature Stress.

    PubMed

    Lyu, Likang; Wen, Haishen; Li, Yun; Li, Jifang; Zhao, Ji; Zhang, Simin; Song, Min; Wang, Xiaojie

    2018-06-14

    In the present study, we conducted an RNA-Seq analysis to characterize the genes and pathways involved in acute thermal and cold stress responses in the liver of black rockfish, a viviparous teleost that has the ability to cope with a wide range of temperature changes. A total of 584 annotated differentially expressed genes (DEGs) were identified in all three comparisons (HT vs NT, HT vs LT and LT vs NT). Based on an enrichment analysis, DEGs with a potential role in stress accommodation were classified into several categories, including protein folding, metabolism, immune response, signal transduction, molecule transport, membrane, and cell proliferation/apoptosis. Considering that thermal stress has a greater effect than cold stress in black rockfish, 24 shared DEGs in the intersection of the HT vs LT and HT vs NT groups were enriched in 2 oxidation-related gene ontology (GO) terms. Nine important heat-stress-reducing pathways were significantly identified and classified into 3 classes: immune and infectious diseases, organismal immune system and endocrine system. Eight DEGs (early growth response protein 1, bile salt export pump, abcb11, hsp70a, rtp3, 1,25-dihydroxyvitamin d(3) 24-hydroxylase, apoa4, transcription factor jun-b-like and an uncharacterized gene) were observed among all three comparisons, strongly implying their potentially important roles in temperature stress responses.

  10. [Effects of caspase-1 inhibitor VX765 on cold-restraint stress-induced acute gastric ulcer in mice].

    PubMed

    Zheng, S Q; Hong, X D; Chen, T S; Luo, P F; Xiao, S C

    2017-11-20

    Objective: To investigate the protective effects of caspase-1 inhibitor VX765 on gastric mucosa of mice with cold-restraint stress-induced acute gastric ulcer. Methods: Twenty-four specific pathogen free male C57BL/6J mice were divided into normal control group (NC), cold restrain group (CR), VX765 pre-treatment+ cold restrain group (VCR), and rabeprazole pre-treatment+ cold restrain group (RCR) according to the random number table, with 6 mice in each group. Mice in group NC were injected intraperitoneally with solution of 10 mL/kg dimethylsulfoxide (DMSO) and phosphate buffer solution (PBS). Mice in group CR were inflicted with acute gastric ulcer induced by cold-restraint stress 30 minutes after intraperitoneal injection of solution of DMSO and PBS. Mice in groups VCR and RCR were inflicted with acute gastric ulcer as above 30 minutes after intraperitoneal injection of solution of DMSO and PBS with dose of 12.5 μmol/kg containing 10 mg VX765 and 40 mg/kg containing 20 mg rabeprazole, respectively. Four hour after cold-restraint stress, serum content of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6)was determined by enzyme-linked immunosorbent assay. Gross condition of gastric tissue was observed. Ulcer index was evaluated. Pathological change of gastric tissue was observed with HE staining. The relative expression of IL-1β, IL-18, and cleaved-caspase-1 in gastric tissue were detected by Western blotting. Mice in group NC were detected as above at the same time point. Data were processed with one-way analysis of variance and Bonferroni test. Results: The serum content of TNF-α and IL-6 and the relative expression of cleaved-caspase-1, IL-1β, and IL-18 in gastric tissue of mice in group NC were significantly lower than those in group CR (with P values below 0.01). The content of the above-mentioned inflammatory indexes in serum and gastric tissue of mice in group VCR was significantly lower than that in group CR (with P values below 0.01). There were no statistically significant differences in content of the above-mentioned inflammatory indexes in serum and gastric tissue of mice between groups RCR and CR (with P values above 0.05). The content of the above-mentioned inflammatory indexes in serum and gastric tissue of mice in group VCR was significantly lower than that in group RCR (with P values below 0.01). Surface of gastric mucosa was smooth and morphology of mucosal cells was normal with clear structure of mice in group NC. Multiple hemorrhage of gastric mucosa, disorderly arrangement of mucosal cells, and large number of inflammatory cell infiltration around necrotic tissue were observed in mice of group CR. Decreased number of gastric mucosa bleeding, intact mucosal structure, and small amount of inflammatory cell infiltration around necrotic tissue were observed in mice of groups VCR and RCR. The ulcer indexes of mice in groups NC, CR, VCR, and RCR were 0, 18.7±1.1, 6.3±1.5, and 8.2±1.3, respectively. The ulcer index of mice in group NC was significantly lower than that in the other 3 groups (with P values below 0.05). The ulcer indexes of mice in groups VCR and RCR were close ( P >0.05), which were significantly lower than ulcer index of mice in group CR (with P values below 0.05). Conclusions: VX765 can effectively inhibit the activation of caspase-1, reduce production of inflammatory factor, and alleviate inflammatory response, which have protective effects on gastric mucosa of mice with cold-restraint stress-induced acute gastric ulcer.

  11. Mechanism by Which Cold Shock Evokes Exocytosis of Symbiotic Algae in Marine Cnidarians

    DTIC Science & Technology

    1993-05-30

    shock, and UV irradiation, and the mode of release of zooxanthellae was investigated. It was determined that all three types of acute stress evoked...detachment and expulsion of intact host endoderm cells containing zooxanthellae . To determine how cold shock evokes cell detachment we have formulated...Coral Reefs 11:143-154. Bil’, K., P. Kolmakov. and L. Muscatine (1992) Photosynthetic products of zooxanthellae of the reef building corals

  12. Acclimation to cold and warm temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism.

    PubMed

    Dietrich, Mariola A; Hliwa, Piotr; Adamek, Mikołaj; Steinhagen, Dieter; Karol, Halina; Ciereszko, Andrzej

    2018-05-01

    The environmental temperature affects plasma biochemical indicators, antioxidant status and hematological and immunological parameters in fish. So far, only single blood proteins have been identified in response to temperature changes. The aim of this study was to compare the proteome of carp blood plasma from males acclimated to warm (30 °C) and cold (10 °C) temperatures by two-dimensional differential gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry. A total of 47 spots were found to be differentially regulated by temperature (>1.2-fold change, p < 0.05): 25 protein spots were more abundant in warm-acclimated males and 22 were enriched in cold-acclimated males. The majority of differentially regulated proteins were associated with acute phase response signalling involved in: i) activation of the complement system (complement C3-H1), ii) neutralization of proteolytic enzymes (inter-alpha inhibitor H3, fetuin, serpinA1, antithrombin, alpha2-macroglobulin), iii) scavenging of free hemoglobin and radicals (haptoglobin, Wap65 kDa), iv) clot-formation (fibrinogen beta and alpha chain, T-kininogen) and v) the host's immune response modulation (ApoA1 and ApoA2). However, quite different sets of these proteins or proteoforms were involved in response to cold and warm temperatures. In addition, cold acclimation seems to be related to the proteins involved in lipid metabolism (apolipoproteins A and 14 kDa) and stress response (corticosteroid binding globulin). We discovered a strongly regulated protein Cap31 upon cold acclimation, which can serve as a potential blood biomarker of cold response in carp. These studies significantly extend our knowledge concerning mechanisms underlying thermal adaptation in poikilotherms. Copyright © 2018. Published by Elsevier Ltd.

  13. Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects

    PubMed Central

    Alomari, Rima A.; Fernandez, Mercedes; Banks, Jonathan B.; Acosta, Juliana; Tartar, Jaime L.

    2015-01-01

    Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min following an acute stressor. Our measure of emotion processing was the late positive potential (LPP) component of the visual event-related potential (ERP), and our measure of non-emotional attention was the sustained attention to response task (SART). We also measured cortisol levels before and after the socially evaluated cold pressor test (SECPT) induction. We found that the effects of stress on the LPP ERP emotion measure were time sensitive. Specifically, the LPP ERP was only altered in the late time-point (30–40 min post-stress) when cortisol was at its highest level. Here, the LPP no longer discriminated between the emotional and non-emotional picture categories, most likely because neutral pictures were perceived as emotional. Moreover, compared to the non-stress condition, the stress-condition showed impaired performance on the SART. Our results support the idea that a limit in attention resources after an emotional stressor is associated with the brain incorrectly processing non-emotional stimuli as emotional and interferes with sustained attention. PMID:26010485

  14. Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects.

    PubMed

    Alomari, Rima A; Fernandez, Mercedes; Banks, Jonathan B; Acosta, Juliana; Tartar, Jaime L

    2015-05-20

    Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min following an acute stressor. Our measure of emotion processing was the late positive potential (LPP) component of the visual event-related potential (ERP), and our measure of non-emotional attention was the sustained attention to response task (SART). We also measured cortisol levels before and after the socially evaluated cold pressor test (SECPT) induction. We found that the effects of stress on the LPP ERP emotion measure were time sensitive. Specifically, the LPP ERP was only altered in the late time-point (30-40 min post-stress) when cortisol was at its highest level. Here, the LPP no longer discriminated between the emotional and non-emotional picture categories, most likely because neutral pictures were perceived as emotional. Moreover, compared to the non-stress condition, the stress-condition showed impaired performance on the SART. Our results support the idea that a limit in attention resources after an emotional stressor is associated with the brain incorrectly processing non-emotional stimuli as emotional and interferes with sustained attention.

  15. Cardiovascular Effects of Stress During Acutely Increased Free Fatty Acids in a Randomized, Double-Blind, Cross-Over Study in Humans.

    PubMed

    Rezaei, Safoura Sheikh; Litschauer, Brigitte; Gouya, Gazaleh; Baumgartner-Parzer, Sabina; Stulnig, Thomas; Wolzt, Michael

    2018-06-01

    Increased free fatty acids stimulate sympathetic nervous system activity, impair endothelium-dependent vasodilation, and increase regional blood flow. The aim of this study was to assess if fatty acids acutely elevated by infusion of intralipid/heparin affect cardiovascular reactivity employing two stressors eliciting either a cardiac (Stroop test) or vascular (Cold Face test) dominated pressor response. Two stress tasks were performed in 20 healthy subjects (10 women, 10 men) before and during a 180-min intralipid/heparin or saline infusion as placebo on alternate trial days in a randomized crossover study design. Blood pressure, heart rate, cardiac index, and total peripheral resistance index were measured. At baseline, the Stroop test did not affect hemodynamic parameters, and the Cold Face test had an impact on hemodynamic parameters except for heart rate. Plasma fatty acids concentrations increased to 810% (t=11.0, p<0.001) of baseline and C-peptide increased by 17% (t=4.66, p<0.001) during intralipid/heparin infusion. This was paralleled by increased cardiac index (F=9.98; p<0.005 vs. saline) and reduced total peripheral resistance index (F=4.46; p<0.05 vs saline). There was no effect of intralipid/heparin or saline infusion on Stroop test or Cold Face test reactivity of hemodynamic parameters. An acute increase in free fatty acids does not affect the magnitude or pattern of stress response in healthy volunteers, but primarily alter the underlying cardiovascular tone by decreasing total peripheral resistance index and increasing cardiac index to maintain a constant blood pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Sleep and stress in man: an approach through exercise and exposure to extreme environments.

    PubMed

    Buguet, A; Cespuglio, R; Radomski, M W

    1998-05-01

    In this paper, the effects of exercise on human sleep (in temperate, cold, and hot climates) are compared with those of exposure to extreme environments (tropical, polar climates). Exercise has two effect: (i) when the exercise load is too heavy or if the subject is not trained to the exercise conditions, the hypothalamo-pituitary-adrenocortical axis (HPA) is strongly activated (somatic stress reaction), and a diachronic (delayed) decrease in total sleep time and slow-wave sleep (SWS) occurs with a synchronic (concomitant) sleep disruption (such as a decrease in REM sleep); (ii) a diachronic enhancement of SWS and (or) REM sleep occurs during moderate training and in athletes, with a moderate HPA activation (neurogenic stress reaction). Heat acclimatization (neurogenic stress response) results in a diachronic increase in SWS, contrary to acute heat exposure (somatic stress) which leads to a diachronic decrease in SWS. Nocturnal cold exposure (somatic and (or) neurogenic stress) provokes a synchronic decrease in REM sleep with an activation of stress hormones, which are reduced by previous acclimation (neurogenic pathway); SWS remains undisturbed in the cold, as it occurs at the beginning of the night before body cooling. In conclusion, when the brain can deal with the stressor (neurogenic stress), diachronic increases in SWS and (or) REM sleep occur. When these "central" mechanisms are overloaded, the classical "somatic" stress reaction occurs with diachronic and synchronic disruptions of the sleep structure.

  17. Exposure to acute stress is associated with attenuated sweet taste.

    PubMed

    Al'Absi, Mustafa; Nakajima, Motohiro; Hooker, Stephanie; Wittmers, Larry; Cragin, Tiffany

    2012-01-01

    This study examined the effects of stress on taste perception. Participants (N = 38; 21 women) completed two laboratory sessions: one stress (public speaking, math, and cold pressor) and one control rest session. The taste perception test was conducted at the end of each session and included rating the intensity and pleasantness of sweet, salty, sour, and savory solutions at suprathreshold concentrations. Cardiovascular, hormonal, and mood measures were collected throughout the sessions. Participants showed the expected changes in cardiovascular, hormonal, and mood measures in response to stress. Reported intensity of the sweet solution was significantly lower on the stress day than on the rest day. Cortisol level poststress predicted reduced intensity of salt and sour, suggesting that stress-related changes in adrenocortical activity were related to reduced taste intensity. Results indicate that acute stress may alter taste perception, and ongoing research investigates the extent to which these changes mediate effects of stress on appetite. Copyright © 2011 Society for Psychophysiological Research.

  18. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    PubMed

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  19. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures.

    PubMed

    Blagojević, Dusko P

    2007-01-01

    Hetero and endothermic adaptive responses arising as a result of natural responses to environmental cues include antioxidant systems that support adaptations to environmental low temperatures in the broadest sense. These temperatures induce phase changes in energy production and consequently changes in the concentration of reactive oxygen species (ROS). The latter may lead to oxidative stress and the impairment of cellular homeostasis and antioxidant defence systems (ADS) scavenge the ROS so generated. In endotherms the ADS responds to oxidative pressure during acute cold stress conditions, this response is tissue specific and does not extend to prevent other oxidative damage. The early acute phase of cold exposure is accompanied by a significant depletion in redox equivalents. Under such conditions it is questionable if ADS has the capacity to neutralize elevated levels of ROS since there is also an increased energy demand and enhanced ATP consumption. Prolonged exposure to cold leads to ADS adaptation. Hibernators and freeze-tolerant species elevate their ADS before hibernation or freezing in order to prepare for and cope with re-awakening. The involvement of ROS and the role of the ADS in organisms subjected to low temperatures are features intercalated into physiological mechanisms of homestasis. The exact mechanisms for ADS regulation have not been fully defined and are the subject of many ongoing intriguing scientific investigations.

  20. Heart Rate Variability, Catecholamine and Hemodynamic Responses During Rest and Stress in Coronary Artery Disease Patients: The PIMI Study

    DTIC Science & Technology

    2007-01-31

    fatal arrhythmias and cardiac ischemia can be linked to both physical and mental stress (Alpert, Thygesen, Antman , & Bassand, 2000; Malliani & Montano...symptoms of chest discomfort, shortness of breath, and diaphoresis (cold sweat) during acute ischemia ( Antman & Fox, 2000). Risk factors for...and cardiovascular reactivity in college males. Health Psychol, 6(2), 113-130. Alpert, J. S., Thygesen, K., Antman , E., & Bassand, J. P. (2000

  1. Syndecan-1 Is Required to Maintain Intradermal Fat and Prevent Cold Stress

    PubMed Central

    Wollny, Damian; Clark, Rod J.; Roopra, Avtar; Colman, Ricki J.; MacDougald, Ormond A.; Shedd, Timothy A.; Nelson, David W.; Yen, Mei-I; Yen, Chi-Liang Eric; Alexander, Caroline M.

    2014-01-01

    Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1−/− intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology. PMID:25101993

  2. Effects of chronic plus acute prolonged stress on measures of coping style, anxiety, and evoked HPA-axis reactivity.

    PubMed

    Roth, Megan K; Bingham, Brian; Shah, Aparna; Joshi, Ankur; Frazer, Alan; Strong, Randy; Morilak, David A

    2012-11-01

    Exposure to psychological trauma is the precipitating factor for PTSD. In addition, a history of chronic or traumatic stress exposure is a predisposing risk factor. We have developed a Chronic plus Acute Prolonged Stress (CAPS) treatment for rats that models some of the characteristics of stressful events that can lead to PTSD in humans. We have previously shown that CAPS enhances acute fear responses and impairs extinction of conditioned fear. Further, CAPS reduced the expression of glucocorticoid receptors in the medial prefrontal cortex. In this study we examined the effects of CAPS exposure on behavioral stress coping style, anxiety-like behaviors, and acute stress reactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Male Sprague-Dawley rats were exposed to CAPS treatment, consisting of chronic intermittent cold stress (4 °C, 6 h/day, 14 days) followed on day 15 by a single 1-h session of sequential acute stressors (social defeat, immobilization, swim). After CAPS or control treatment, different groups were tested for shock probe defensive burying, novelty suppressed feeding, or evoked activation of adrenocorticotropic hormone (ACTH) and corticosterone release by an acute immobilization stress. CAPS resulted in a decrease in active burying behavior and an increase in immobility in the shock probe test. Further, CAPS-treated rats displayed increases in the latency to feed in the novelty suppressed feeding test, despite an increase in food intake in the home cage. CAPS treatment also reduced the HPA response to a subsequent acute immobilization stress. These results further validate CAPS treatment as a rat model of relevance to PTSD, and together with results reported previously, suggest that CAPS impairs fear extinction, shifts coping behavior from an active to a more passive strategy, increases anxiety, and alters HPA reactivity, resembling many aspects of human PTSD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    PubMed Central

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  4. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  5. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    PubMed Central

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  6. Testing alternative models of climate-mediated extirpations.

    PubMed

    Beever, Erik A; Ray, Chris; Mote, Philip W; Wilkening, Jennifer L

    2010-01-01

    Biotic responses to climate change will vary among taxa and across latitudes, elevational gradients, and degrees of insularity. However, due to factors such as phenotypic plasticity, ecotypic variation, and evolved tolerance to thermal stress, it remains poorly understood whether losses should be greatest in populations experiencing the greatest climatic change or living in places where the prevailing climate is closest to the edge of the species' bioclimatic envelope (e.g., at the hottest, driest sites). Research on American pikas (Ochotona princeps) in montane areas of the Great Basin during 1994-1999 suggested that 20th-century population extirpations were predicted by a combination of biogeographic, anthropogenic, and especially climatic factors. Surveys during 2005-2007 documented additional extirpations and within-site shifts of pika distributions at remaining sites. To evaluate the evidence in support of alternative hypotheses involving effects of thermal stress on pikas, we placed temperature sensors at 156 locations within pika habitats in the vicinity of 25 sites with historical records of pikas in the Basin. We related these time series of sensor data to data on ambient temperature from weather stations within the Historical Climate Network. We then used these highly correlated relationships, combined with long-term data from the same weather stations, to hindcast temperatures within pika habitats from 1945 through 2006. To explain patterns of loss, we posited three alternative classes of direct thermal stress: (1) acute cold stress (number of days below a threshold temperature); (2) acute heat stress (number of days above a threshold temperature); and (3) chronic heat stress (average summer temperature). Climate change was defined as change in our thermal metrics between two 31-yr periods: 1945-1975 and 1976-2006. We found that patterns of persistence were well predicted by metrics of climate. Our best models suggest some effects of climate change; however, recent and long-term metrics of chronic heat stress and acute cold stress, neither previously recognized as sources of stress for pikas, were some of the best predictors of pika persistence. Results illustrate that extremely rapid distributional shifts can be explained by climatic influences and have implications for conservation topics such as reintroductions and early-warning indicators.

  7. Testing alternative models of climate-mediated extirpations

    USGS Publications Warehouse

    Beever, E.A.; Chris, R.A.Y.; Mote, P.W.; Wilkening, J.L.

    2010-01-01

    Biotic responses to climate change will vary among taxa and across latitudes, elevational gradients, and degrees of insularity. However, due to factors such as phenotypic plasticity, ecotypic variation, and evolved tolerance to thermal stress, it remains poorly understood whether losses should be greatest in populations experiencing the greatest climatic change or living in places where the prevailing climate is closest to the edge of the species' bioclimatic envelope (e.g., at the hottest, driest sites). Research on American pikas (Ochotona princeps) in montane areas of the Great Basin during 1994-1999 suggested that 20th-century population extirpations were predicted by a combination of biogeographic, anthropogenic, and especially climatic factors. Surveys during 2005-2007 documented additional extirpations and within-site shifts of pika distributions at remaining sites. To evaluate the evidence in support of alternative hypotheses involving effects of thermal stress on pikas, we placed temperature sensors at 156 locations within pika habitats in the vicinity of 25 sites with historical records of pikas in the Basin. We related these time series of sensor data to data on ambient temperature from weather stations within the Historical Climate Network. We then used these highly correlated relationships, combined with long-term data from the same weather stations, to hindcast temperatures within pika habitats from 1945 through 2006. To explain patterns of loss, we posited three alternative classes of direct thermal stress: (1) acute cold stress (number of days below a threshold temperature); (2) acute heat stress (number of days above a threshold, temperature); and. (3) chronic heat stress (average summer temperature). Climate change was defined as change in our thermal metrics between two 31-y.r periods: 1945-1975 and 1976-2006. We found that patterns of persistence were well predicted by metrics of climate. Our best models suggest some effects of climate change; however, recent and long-term metrics of chronic heat stress and acute cold stress, neither previously recognized as sources of stress for pikas, were some of the best predictors of pika persistence. Results illustrate that extremely rapid distributional shifts can be explained by climatic influences and have implications for conservation topics such as reintroductions and early-warning indicators. ?? 2010 by the Ecological society of America.

  8. Individual differences in fear extinction and anxiety-like behavior.

    PubMed

    King, Gabrielle; Scott, Elliot; Graham, Bronwyn M; Richardson, Rick

    2017-05-01

    There is growing appreciation for the substantial individual differences in the acquisition and inhibition of aversive associations, and the insights this might give into identifying individuals particularly vulnerable to stress and psychopathology. We examined whether animals that differed in rate of extinction (i.e., Fast versus Slow) were different in their response to an acute stress in adulthood or following a chronic stress that occurred either early or later in life. We found that Slow Extinguishers had significantly poorer extinction retention than Fast Extinguishers, but an acute stressor did not differentially affect anxiety-like behavior in the two groups. Further, while exposure to chronic stress in adulthood did not impact on the extinction phenotypes or anxiety-like behavior, exposure to chronic stress early in life affected both extinction retention and anxiety-like behavior. These findings have implications for the development of a more nuanced approach to identifying those most at risk of anxiety disorders. © 2017 King et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Stress, catecholaminergic system and cancer.

    PubMed

    Krizanova, O; Babula, P; Pacak, K

    2016-07-01

    Stress as a modern civilization factor significantly affects our lives. While acute stress might have a positive effect on the organism, chronic stress is usually detrimental and might lead to serious health complications. It is known that stress induced by the physical environment (temperature-induced cold stress) can significantly impair the efficacy of cytotoxic chemotherapies and the anti-tumor immune response. On the other hand, epidemiological evidence has shown that patients taking drugs known as β-adrenergic antagonists ("β-blockers"), which are commonly prescribed to treat arrhythmia, hypertension, and anxiety, have significantly lower rates of several cancers. In this review, we summarize the current knowledge about catecholamines as important stress hormones in tumorigenesis and discuss the use of β-blockers as the potential therapeutic agents.

  10. Environmental proteomics of the mussel Mytilus: implications for tolerance to stress and change in limits of biogeographic ranges in response to climate change.

    PubMed

    Tomanek, Lars

    2012-11-01

    Climate change will affect temperature extremes and averages, and hyposaline conditions in coastal areas due to extreme precipitation events and oceanic pH. How climate change will push species close to, or beyond, their physiological tolerance limits as well as change the limits of their biogeographic ranges can probably be investigated best in species that have already responded to climate change and whose distribution ranges are currently in flux. Blue mussels provide such a study system, with the invading warm-adapted Mediterranean Mytilus galloprovincialis having replaced the native more cold-adapted Mytilus trossulus from the southern part of its range in southern California over the past century, possibly due to climate change. However, freshwater input may prevent the latter species from expanding further north. We used a proteomics approach to characterize the responses of the two congeners to acute heat stress, chronic thermal acclimation, and hyposaline stress. In addition, we investigated the proteomic changes in response to decreasing seawater pH in another bivalve, the eastern oyster Crassostrea virginica. The results suggest that reactive oxygen species (ROS) are a common costressor during environmental stress, including oceanic acidification, and possibly cause modifications of cytoskeletal elements. All stressors disrupted protein homeostasis, indicated by the induction of molecular chaperones and, in the case of acute heat stress, proteasome isoforms, possibly due both to protein denaturation directly by the stressor and to the production of ROS. Acute stress by heat and hyposalinity changed several small G-proteins implicated in cytoskeletal modifications and vesicular transport, respectively. Changes in abundance of proteins involved in energy metabolism and ROS scavenging further suggest a possible trade-off during acute and chronic stress from heat and cold between ROS-generating NADH-producing pathways and ROS-scavenging NADPH-producing pathways, especially through the reaction of NADPH-dependent isocitrate dehydrogenase and the pentose-phosphate pathway. Some of the proteomic changes may not constitute de novo protein synthesis but rather shifts in abundance of isoforms differing in posttranslational modifications, specifically acetylation by a NAD-dependent deacetylase (sirtuin). Interspecific differences suggest that these processes set physiological tolerance limits and thereby contribute to recent biogeographic shifts in range, possibly caused by climate change.

  11. Acute stress induces hyperacusis in women with high levels of emotional exhaustion.

    PubMed

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23-71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5-6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems.

  12. Acute Stress Induces Hyperacusis in Women with High Levels of Emotional Exhaustion

    PubMed Central

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Background Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Methods Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23–71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). Results There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5–6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Conclusion Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems. PMID:23301005

  13. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    PubMed

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Comparative expression profile of NOD1/2 and certain acute inflammatory cytokines in thermal-stressed cell culture model of native and crossbred cattle

    NASA Astrophysics Data System (ADS)

    Bhanuprakash, V.; Singh, Umesh; Sengar, Gyanendra Singh; Raja, T. V.; Sajjanar, Basavraj; Alex, Rani; Kumar, Sushil; Alyethodi, R. R.; Kumar, Ashish; Sharma, Ankur; Kumar, Suresh; Bhusan, Bharat; Deb, Rajib

    2017-05-01

    Thermotolerance depends mainly on the health and immune status of the animals. The variation in the immune status of the animals may alter the level of tolerance of animals exposed to heat or cold stress. The present study was conducted to investigate the expression profile of two important nucleotide binding and oligomerization domain receptors (NLRs) (NOD1 and NOD2) and their central signalling molecule RIP2 gene during in vitro thermal-stressed bovine peripheral blood mononuclear cells (PBMCs) of native (Sahiwal) and crossbred (Sahiwal X HF) cattle. We also examined the differential expression profile of certain acute inflammatory cytokines in in vitro thermal-stressed PBMC culture among native and its crossbred counterparts. Results revealed that the expression profile of NOD1/2 positively correlates with the thermal stress, signalling molecule and cytokines. Present findings also highlighted that the expression patterns during thermal stress were comparatively superior among indigenous compared to crossbred cattle which may add references regarding the better immune adaptability of Zebu cattle.

  15. Effect of acute stress on taste perception: in relation with baseline anxiety level and body weight.

    PubMed

    Ileri-Gurel, Esin; Pehlivanoglu, Bilge; Dogan, Murat

    2013-01-01

    We aimed to determine the effect of acute stress on taste perception and its modulation in relation to body weight and baseline anxiety in this study. The anxiety of the participants, randomly allocated to stress (n = 35) or control (n = 16) groups, was assessed by State Trait Anxiety Inventory. Stroop color-word interference and cold pressor tests were applied as stress protocol. Glucose and salt taste detection thresholds were evaluated before and after the stress protocol in the stress group and corresponding times in the control group. Stress protocol increased heart rate and blood pressure as an indicator of stress system activation. Following stress glucose and salt thresholds decreased in the stress group, unchanged in the control group. Prestress salt thresholds were positively and decrements in salt thresholds were negatively correlated with trait anxiety scores of participants. The state anxiety levels of stress group positively correlated with the decrease in glucose thresholds. Waist-to-hip ratio was negatively correlated with prestress salt thresholds of the subjects. Our results revealed that thresholds for sweet and salty tastes are modulated during stressful conditions. Our data also demonstrated a relationship between taste perception and baseline anxiety levels of healthy individuals, which may be important to understand the appetite alterations in individuals under stressful conditions.

  16. Acetaminophen (Paracetamol) Induces Hypothermia During Acute Cold Stress.

    PubMed

    Foster, Josh; Mauger, Alexis R; Govus, Andrew; Hewson, David; Taylor, Lee

    2017-11-01

    Acetaminophen is an over-the-counter drug used to treat pain and fever, but it has also been shown to reduce core temperature (T c ) in the absence of fever. However, this side effect is not well examined in humans, and it is unknown if the hypothermic response to acetaminophen is exacerbated with cold exposure. To address this question, we mapped the thermoregulatory responses to acetaminophen and placebo administration during exposure to acute cold (10 °C) and thermal neutrality (25 °C). Nine healthy Caucasian males (aged 20-24 years) participated in the experiment. In a double-blind, randomised, repeated measures design, participants were passively exposed to a thermo-neutral or cold environment for 120 min, with administration of 20 mg/kg lean body mass acetaminophen or a placebo 5 min prior to exposure. T c , skin temperature (T sk ), heart rate, and thermal sensation were measured every 10 min, and mean arterial pressure was recorded every 30 min. Data were analysed using linear mixed effects models. Differences in thermal sensation were analysed using a cumulative link mixed model. Acetaminophen had no effect on T c in a thermo-neutral environment, but significantly reduced T c during cold exposure, compared with a placebo. T c was lower in the acetaminophen compared with the placebo condition at each 10-min interval from 80 to 120 min into the trial (all p < 0.05). On average, T c decreased by 0.42 ± 0.13 °C from baseline after 120 min of cold exposure (range 0.16-0.57 °C), whereas there was no change in the placebo group (0.01 ± 0.1 °C). T sk , heart rate, thermal sensation, and mean arterial pressure were not different between conditions (p > 0.05). This preliminary trial suggests that acetaminophen-induced hypothermia is exacerbated during cold stress. Larger scale trials seem warranted to determine if acetaminophen administration is associated with an increased risk of accidental hypothermia, particularly in vulnerable populations such as frail elderly individuals.

  17. Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos) under Hypothermal Stress

    PubMed Central

    Chang, Chia-Hao; Huang, Jian-Jun; Yeh, Chun-Yi; Tang, Cheng-Hao; Hwang, Lie-Yueh; Lee, Tsung-Han

    2018-01-01

    The fluctuation of temperature affects many physiological responses in ectothermic organisms, including feed intake, growth, reproduction, and behavior. Changes in environmental temperatures affect the acquisition of energy, whereas hepatic glycogen plays a central role in energy supply for the homeostasis of the entire body. Glycogen phosphorylase (GP), which catalyzes the rate-limiting step in glycogenolysis, is also an indicator of environmental stress. Here, we examined the effects of salinity on glycogen metabolism in milkfish livers under cold stress. A reduction of feed intake was observed in both freshwater (FW) and seawater (SW) milkfish under cold adaptation. At normal temperature (28°C), compared to the FW milkfish, the SW milkfish exhibited greater mRNA abundance of the liver isoform of GP (Ccpygl), higher GP activity, and less glycogen content in the livers. Upon hypothermal (18°C) stress, hepatic Ccpygl mRNA expression of FW milkfish surged at 3 h, declined at 6 and 12 h, increased again at 24 h, and increased significantly after 96 h. Increases in GP protein, GP activity, and the phosphorylation state and the breakdown of glycogen were also found in FW milkfish livers after 12 h of exposure at 18°C. Conversely, the Ccpygl transcript levels in SW milkfish were downregulated after 1 h of exposure at 18°C, whereas the protein abundance of GP, GP activity, and glycogen content were not significantly altered. Taken together, under 18°C cold stress, FW milkfish exhibited an acute response with the breakdown of hepatic glycogen for maintaining energy homeostasis of the entire body, whereas no change was observed in the hepatic glycogen content and GP activity of SW milkfish because of their greater tolerance to cold conditions. PMID:29483878

  18. Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos) under Hypothermal Stress.

    PubMed

    Chang, Chia-Hao; Huang, Jian-Jun; Yeh, Chun-Yi; Tang, Cheng-Hao; Hwang, Lie-Yueh; Lee, Tsung-Han

    2018-01-01

    The fluctuation of temperature affects many physiological responses in ectothermic organisms, including feed intake, growth, reproduction, and behavior. Changes in environmental temperatures affect the acquisition of energy, whereas hepatic glycogen plays a central role in energy supply for the homeostasis of the entire body. Glycogen phosphorylase (GP), which catalyzes the rate-limiting step in glycogenolysis, is also an indicator of environmental stress. Here, we examined the effects of salinity on glycogen metabolism in milkfish livers under cold stress. A reduction of feed intake was observed in both freshwater (FW) and seawater (SW) milkfish under cold adaptation. At normal temperature (28°C), compared to the FW milkfish, the SW milkfish exhibited greater mRNA abundance of the liver isoform of GP ( Ccpygl ), higher GP activity, and less glycogen content in the livers. Upon hypothermal (18°C) stress, hepatic Ccpygl mRNA expression of FW milkfish surged at 3 h, declined at 6 and 12 h, increased again at 24 h, and increased significantly after 96 h. Increases in GP protein, GP activity, and the phosphorylation state and the breakdown of glycogen were also found in FW milkfish livers after 12 h of exposure at 18°C. Conversely, the Ccpygl transcript levels in SW milkfish were downregulated after 1 h of exposure at 18°C, whereas the protein abundance of GP, GP activity, and glycogen content were not significantly altered. Taken together, under 18°C cold stress, FW milkfish exhibited an acute response with the breakdown of hepatic glycogen for maintaining energy homeostasis of the entire body, whereas no change was observed in the hepatic glycogen content and GP activity of SW milkfish because of their greater tolerance to cold conditions.

  19. Anxiogenic effects of brief swim stress are sensitive to stress history.

    PubMed

    Christianson, John P; Drugan, Robert C; Flyer, Johanna G; Watkins, Linda R; Maier, Steven F

    2013-07-01

    Stressors that are controllable not only protect an individual from the acute consequences of the stressor, but also the consequences of stressors that occur later. This phenomenon, termed "behavioral immunization", is studied in the rat by first administering tailshocks each of which can be terminated (escapable tailshock) by an instrumental wheel-turn response prior to exposure to a second stressor. Previous research has shown that exposure to escapable tailshock blocks the neurochemical and behavioral consequences of later inescapable tailshock or social defeat stress. Here we explored the generality of behavioral immunization by examining the impact of prior escapable tailshock on the behavioral consequences of cold swim stress. Exposure to a 5min cold-water (19°C) swim caused an anxiety-like reduction in social interaction that was dependent upon 5-HT2C receptor activation. Rats with prior exposure to escapable tailshock did not develop the swim-induced anxiety. Plasticity in the medial prefrontal cortex, a hypothetical neural mechanism underlying behavioral immunization, is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Brain metabolic alterations in mice subjected to postnatal traumatic stress and in their offspring.

    PubMed

    Gapp, Katharina; Corcoba, Alberto; van Steenwyk, Gretchen; Mansuy, Isabelle M; Duarte, João Mn

    2017-07-01

    Adverse environmental and social conditions early in life have a strong impact on health. They are major risk factors for mental diseases in adulthood and, in some cases, their effects can be transmitted across generations. The consequences of detrimental stress conditions on brain metabolism across generations are not well known. Using high-field (14.1 T) magnetic resonance spectroscopy, we investigated the neurochemical profile of adult male mice exposed to traumatic stress in early postnatal life and of their offspring, and of undisturbed control mice. We found that, relative to controls, early life stress-exposed mice have metabolic alterations consistent with neuronal dysfunction, including reduced concentration of N-acetylaspartate, glutamate and γ-aminobutyrate, in the prefrontal cortex in basal conditions. Their offspring have normal neurochemical profiles in basal conditions. Remarkably, when challenged by an acute cold swim stress, the offspring has attenuated metabolic responses in the prefrontal cortex, hippocampus and striatum. In particular, the expected stress-induced reduction in the concentration of N-acetylaspartate, a putative marker of neuronal health, was prevented in the cortex and hippocampus. These findings suggest that paternal trauma can confer beneficial brain metabolism adaptations to acute stress in the offspring.

  1. Using thermal stress to model aspects of disease states.

    PubMed

    Wilson, Thad E; Klabunde, Richard E; Monahan, Kevin D

    2014-07-01

    Exposure to acute heat or cold stress elicits numerous physiological responses aimed at maintaining body temperatures. Interestingly, many of the physiological responses, mediated by the cardiovascular and autonomic nervous systems, resemble aspects of, or responses to, certain disease states. The purpose of this Perspective is to highlight some of these areas in order to explore how they may help us better understand the pathophysiology underlying aspects of certain disease states. The benefits of using this human thermal stress approach are that (1) no adjustments for inherent comparative differences in animals are needed, (2) non-medicated healthy humans with no underlying co-morbidities can be studied in place of complex patients, and (3) more mechanistic perturbations can be safely employed without endangering potentially vulnerable populations. Cold stress can be used to induce stable elevations in blood pressure. Cold stress may also be used to model conditions where increases in myocardial oxygen demand are not met by anticipated increases in coronary blood flow, as occurs in older adults. Lower-body negative pressure has the capacity to model aspects of shock, and the further addition of heat stress improves and expands this model because passive-heat exposure lowers systemic vascular resistance at a time when central blood volume and left-ventricular filling pressure are reduced. Heat stress can model aspects of heat syncope and orthostatic intolerance as heat stress decreases cerebral blood flow and alters the Frank-Starling mechanism resulting in larger decreases in stroke volume for a given change in left-ventricular filling pressure. Combined, thermal perturbations may provide in vivo paradigms that can be employed to gain insights into pathophysiological aspects of certain disease states. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Metabonomics Approach to Assessing the Metabolism Variation and Endoexogenous Metabolic Interaction of Ginsenosides in Cold Stress Rats.

    PubMed

    Zhang, Zhihao; Wang, Xiaoyan; Wang, Jingcheng; Jia, Zhiying; Liu, Yumin; Xie, Xie; Wang, Chongchong; Jia, Wei

    2016-06-03

    Metabolic profiling technology, a massive information provider, has promoted the understanding of the metabolism of multicomponent medicines and its interactions with endogenous metabolites, which was previously a challenge in clarification. In this study, an untargeted GC/MS-based approach was employed to investigate the urinary metabolite profile in rats with oral administration of ginsenosides and the control group. Significant changes of urinary metabolites contents were observed in the total ginsenosides group, revealing the impact of ginsenosides as indicated by the up- or down-regulation of several pathways involving neurotransmitter-related metabolites, tricarboxylic acid (TCA) cycle, fatty acids β-oxidation, and intestinal microflora metabolites. Meanwhile, a targeted UPLC-QQQ/MS-based metabonomic approach was developed to investigate the changes of urinary ginsenoside metabolites during the process of acute cold stress. Metabolic analysis indicated that upstream ginsenosides (rg1, re, and rf) increased significantly, whereas downstream ginsenosides (ck, ppd, and ppt) decreased correspondingly after cold exposure. Finally, the relationships between ginsenosides and significantly changed metabolites were investigated by correlation analysis.

  3. Comparison of the effects of whole-body cooling during fatiguing exercise in males and females.

    PubMed

    Solianik, Rima; Skurvydas, Albertas; Pukėnas, Kazimieras; Brazaitis, Marius

    2015-08-01

    The effects of cold stress on exercise performance and fatigue have been thoroughly investigated only in males, and thus the general understanding of these effects relates only to males. The aim of this study was to determine whether whole-body cooling has different effects on performance during fatiguing exercise in males and females. Thirty-two subjects (18 males and 14 females) were exposed to acute cold stress by intermittent immersion in 14°C water until their rectal temperature reached 35.5°C or for a maximum of 170 min. Thermal responses and motor performance were monitored before and after whole-body cooling. Whole-body cooling decreased rectal, muscle and mean skin temperatures in all subjects (p<0.05), and these changes did not differ between males and females. Cold stress decreased the fatigue index (FI) of a sustained 2-min maximal voluntary contraction (MVC) only in males (p<0.05). There were no sex differences in central and peripheral fatigability, or muscle electromyographic activity. This observed sex difference (i.e., body cooling-induced decrease in the FI of a sustained MVC in males but not in females) supports the view of sex effects on performance during fatiguing exercise after whole-body cooling. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise

    PubMed Central

    Roberts, Llion A.; Figueiredo, Vandre C.; Egner, Ingrid; Krog, Simone; Aas, Sigve N.; Suzuki, Katsuhiko; Markworth, James F.; Coombes, Jeff S.; Cameron‐Smith, David; Raastad, Truls

    2016-01-01

    Key points Cold water immersion and active recovery are common post‐exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion.We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise‐trained men 2, 24 and 48 h during recovery after acute resistance exercise.Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro‐inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery.Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Abstract Cold water immersion and active recovery are common post‐exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro‐inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower‐body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB‐crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB‐crystallin and the percentage of type II fibres stained for αB‐crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. PMID:27704555

  5. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise.

    PubMed

    Peake, Jonathan M; Roberts, Llion A; Figueiredo, Vandre C; Egner, Ingrid; Krog, Simone; Aas, Sigve N; Suzuki, Katsuhiko; Markworth, James F; Coombes, Jeff S; Cameron-Smith, David; Raastad, Truls

    2017-02-01

    Cold water immersion and active recovery are common post-exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion. We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise-trained men 2, 24 and 48 h during recovery after acute resistance exercise. Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro-inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery. Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Cold water immersion and active recovery are common post-exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro-inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower-body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB-crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB-crystallin and the percentage of type II fibres stained for αB-crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Acute Sinusitis

    MedlinePlus

    ... headache. Acute sinusitis is mostly caused by the common cold. Unless a bacterial infection develops, most cases resolve ... Acute sinusitis is most often caused by the common cold, which is a viral infection. In some cases, ...

  7. Effects of Pre-Encoding Stress on Brain Correlates Associated with the Long-Term Memory for Emotional Scenes

    PubMed Central

    Wirkner, Janine; Weymar, Mathias; Löw, Andreas; Hamm, Alfons O.

    2013-01-01

    Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT) or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400–800 ms) during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant) pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant) scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes. PMID:24039697

  8. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.

  9. Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue.

    PubMed

    Gao, Y; Qimuge, N R; Qin, J; Cai, R; Li, X; Chu, G Y; Pang, W J; Yang, G S

    2018-07-01

    Piglets are characteristically cold intolerant and thus susceptible to high mortality. However, browning of white adipose tissue (WAT) can induce non-shivering thermogenesis as a potential strategy to facilitate the animal's response to cold. Whether cold exposure can induce browning of subcutaneous WAT (sWAT) in piglets in a similar manner as it can in humans remains largely unknown. In this study, piglets were exposed to acute cold (4°C, 10 h) or chronic cold exposure (8°C, 15 days), and the genes and proteins of uncoupling protein 1 (UCP1)-dependent and independent thermogenesis, mitochondrial biogenesis, lipogenic and lipolytic processes were analysed. Interestingly, acute cold exposure induced browning of porcine sWAT, smaller adipocytes and the upregulated expression of UCP1, PGC1α, PGC1β, C/EBPβ, Cidea, UCP3, CKMT1 and PM20D1. Conversely, chronic cold exposure impaired the browning process, reduced mitochondrial numbers and the expression of browning markers, including UCP1, PGC1α and PRDM16. The present study demonstrated that acute cold exposure (but not chronic cold exposure) induces porcine sWAT browning. Thus, browning of porcine sWAT could be a novel strategy to balance the body temperature of piglets, and thus could be protective against cold exposure.

  10. Report of cold agglutinins in a patient with acute ischemic stroke.

    PubMed

    Jin, Haiqiang; Sun, Wei; Sun, Yongan; Huang, Yining; Sun, Yunchuang

    2015-10-30

    Studies on the role of cold agglutinins in the pathogenesis of acute ischemic stroke are scarce. We present a case of an elderly man with acute cerebral infarction probably due to cold agglutinin disease. On a cold morning, a 71-year-old male of Han nationality with a complaint of sudden onset left-sided weakness and difficulty in speaking was brought to the emergency department. Diffusion weighted magnetic resonance imaging of the brain showed a high-intensity area in the right basal ganglia and corona radiata. Laboratory test showed the presence of high titers of cold agglutinins. There was no history of common risk factors of atherosclerosis, such as hypertension, diabetes mellitus, coronary artery disease or smoking. After being exposed to warm temperature, and with corticosteroid therapy and blood transfusion, the patient's symptoms relieved rapidly. We report here the first case of cerebral infarction probably due to the cold agglutinin disease. The underlying mechanism of cold agglutinins in the pathogenesis of acute ischemic stroke needs to be investigated further.

  11. Plasma renin and cardiovascular responses to the cold pressor test differ in black and white populations: The SABPA study.

    PubMed

    Gafane, L F; Schutte, R; Van Rooyen, J M; Schutte, A E

    2016-05-01

    Low plasma renin levels and augmented cardiovascular reactivity to stress are common in blacks and have been linked to the development of hypertension in this population. We (i) compared cardiovascular and plasma renin reactivity to a cold pressor test between a black and white population; and (ii) investigated the associations between cardiovascular and plasma renin reactivity within the black and white populations. Our population consisted of 153 black and 188 white men and women (age range, 20-65 years). We measured blood pressure (BP), heart rate (HR), stroke volume (SV), total peripheral resistance (TPR), Windkessel arterial compliance, and determined plasma renin levels at rest and during the cold pressor test. Reactivity was calculated for each participant as the percentage change from the resting value. We found lower renin and elevated BP in blacks compared with whites at rest and during stress (both, P<0.001). During stress, HR increased more in blacks (P<0.001), whereas SV (P<0.001) and arterial compliance (P=0.013) decreased more in blacks compared with whites. TPR reactivity was positively associated with renin reactivity in blacks only (β=0.17; P=0.041), while in whites diastolic BP reactivity was positively associated with renin reactivity (β=0.21; P=0.005). Although blacks had suppressed renin levels at rest and during acute stress, vascular resistance reactivity associated positively with renin reactivity only in the black population. These results suggest that low renin levels in blacks during rest and stress are linked to increased peripheral vascular responses to stress, which may contribute to elevated BP in blacks.

  12. Cold Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  13. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.

  14. mRNA Transcript Abundance during Plant Growth and the Influence of Li + Exposure

    DOE PAGES

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; ...

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li + concentration, exposure time, species and growth conditions. Most plant studies with Li + focus on short-term acute exposures. This study examines short- and long-term effects of Li + exposure in Arabidopsis with Li + uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li +-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li + resembled priormore » studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li + exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li + exposure increases expression signal transduction genes. The identification of new Li +-sensitive genes and a gene-based “response plan” for acute and chronic Li + exposure are delineated.« less

  15. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    PubMed

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Thermal acclimation and nutritional history affect the oxidation of different classes of exogenous nutrients in Siberian hamsters, Phodopus sungorus.

    PubMed

    McCue, Marshall D; Voigt, Christian C; Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-11-01

    During acclimatization to winter, changes in morphology and physiology combined with changes in diet may affect how animals use the nutrients they ingest. To study (a) how thermal acclimation and (b) nutritional history affect the rates at which Siberian hamsters (Phodopus sungorus) oxidize different classes of dietary nutrients, we conducted two trials in which we fed hamsters one of three (13) C-labeled compounds, that is, glucose, leucine, or palmitic acid. We predicted that under acute cold stress (3 hr at 2°C) hamsters previously acclimated to cold temperatures (10°C) for 3 weeks would have higher resting metabolic rate (RMR) and would oxidize a greater proportion of dietary fatty acids than animals acclimated to 21°C. We also investigated how chronic nutritional stress affects how hamsters use dietary nutrients. To examine this, hamsters were fed four different diets (control, low protein, low lipid, and low-glycemic index) for 2 weeks. During cold challenges, hamsters previously acclimated to cold exhibited higher thermal conductance and RMR, and also oxidized more exogenous palmitic acid during the postprandial phase than animals acclimated to 21°C. In the nutritional stress trial, hamsters fed the low protein diet oxidized more exogenous glucose, but not more exogenous palmitic acid than the control group. The use of (13) C-labeled metabolic tracers combined with breath testing demonstrated that both thermal and nutritional history results in significant changes in the extent to which animals oxidize dietary nutrients during the postprandial period. © 2014 Wiley Periodicals, Inc.

  17. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster)

    PubMed Central

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    Background The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. Principal Findings We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. Conclusions The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperaures below -8°C. PMID:26034990

  18. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).

    PubMed

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperatures below -8°C.

  19. Memantine effects on liver and adrenal gland of rats exposed to cold stress

    PubMed Central

    2011-01-01

    Background Memantine attenuates heart stress due cold stress, however, no study focused its effects on liver and adrenal gland. We evaluated its effects on lipid depletion in adrenal gland and glycogen depletion in liver of rats exposed to cold stress. Methods Male rats divided into 4 groups: 1)Control (CON); 2)Memantine (MEM); 3)Induced cold stress (IH) and; 4)Induced cold stress memantine (IHF). Memantine were administrated by gavage (20 mg/kg/day) during eight days. Cold stress were performed during 4 hours once at - 8°C. Lipid and glycogen depletion were presented as its intensity levels. Results Rats exposed to cold stress presented the highest glycogen (p < 0.001) and lipid depletion (p < 0.001) in liver and adrenal gland, respectively. We noted that memantine significantly reduced lipid depletion in adrenal gland and glycogen depletion in liver. Conclusion Memantine prevented glycogen depletion in liver and lipid depletion in adrenal gland of rats under a cold stress condition. PMID:21255456

  20. Habituation and acclimatization of sheep to cold following exposures of varying length and severity

    PubMed Central

    Slee, J.

    1972-01-01

    1. Male and female Scottish Blackface sheep were shorn and exposed for 2 weeks either to a thermoneutral temperature (+30° C), to chronic cold (+8° C) or to +30° C interrupted by daily short cold shocks (-10° C). During and at the end of these conditioning treatments, the sheep also received two acute cold exposures (-20° C, 4 m.p.h. wind for 2-8 hr) 1 week apart. Some of these sheep and a fourth (control) group, were subsequently re-shorn and slowly cooled to +8° C. 2. Resting metabolism and the metabolic response to cooling (both inferred from heart rates) were increased by previous chronic cold treatment. Resistance to body cooling (measured during acute cold exposure) was generally increased by both chronic and acute cold, and non-shivering thermogenesis was probably induced in the female sheep. These effects were defined as acclimatization. 3. In contrast, cold shocks reduced the subsequent metabolic response to cold and encouraged facultative body cooling. This pattern of response (defined as habituation) therefore caused greater thermolability. 4. Habituation and acclimatization were antagonistic. Habituation was removed by acute cold exposure and, conversely, acclimatization was inhibited by short cold shocks. 5. There were sex differences in response but these were confounded by probable differences in insulation and in body condition (males thinner). 6. It was concluded that the induction of different forms of adaptation depended on the length, severity and frequency of cold exposures. Habituation to whole body cold exposure apparently involved central nervous system centres normally receiving peripheral cold stimuli. PMID:4646585

  1. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance

    PubMed Central

    Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated japonica ssp. as indicated by the up/downregulation of various stress-responsive pathways identified from gene expression analysis. The cold-stress response is described in relation to the stress signaling pathways, showing complex adaptive mechanisms in different genotypes. PMID:26230579

  2. Two Strategies for Response to 14°C Cold-Water Immersion: Is there a Difference in the Response of Motor, Cognitive, Immune and Stress Markers?

    PubMed Central

    Brazaitis, Marius; Eimantas, Nerijus; Daniuseviciute, Laura; Mickeviciene, Dalia; Steponaviciute, Rasa; Skurvydas, Albertas

    2014-01-01

    Here, we address the question of why some people have a greater chance of surviving and/or better resistance to cold-related-injuries in prolonged exposure to acute cold environments than do others, despite similar physical characteristics. The main aim of this study was to compare physiological and psychological reactions between people who exhibited fast cooling (FC; n = 20) or slow cooling (SC; n = 20) responses to cold water immersion. Individuals in whom the Tre decreased to a set point of 35.5°C before the end of the 170-min cooling time were indicated as the FC group; individuals in whom the Tre did not decrease to the set point of 35.5°C before the end of the 170-min cooling time were classified as the SC group. Cold stress was induced using intermittent immersion in bath water at 14°C. Motor (spinal and supraspinal reflexes, voluntary and electrically induced skeletal muscle contraction force) and cognitive (executive function, short term memory, short term spatial recognition) performance, immune variables (neutrophils, leucocytes, lymphocytes, monocytes, IL-6, TNF-α), markers of hypothalamic–pituitary–adrenal axis activity (cortisol, corticosterone) and autonomic nervous system activity (epinephrine, norepinephrine) were monitored. The data obtained in this study suggest that the response of the FC group to cooling vs the SC group response was more likely an insulative–hypothermic response and that the SC vs the FC group displayed a metabolic–insulative response. The observations that an exposure time to 14°C cold water—which was nearly twice as short (96-min vs 170-min) with a greater rectal temperature decrease (35.5°C vs 36.2°C) in the FC group compared with the SC group—induces similar responses of motor, cognitive, and blood stress markers were novel. The most important finding is that subjects with a lower cold-strain-index (SC group) showed stimulation of some markers of innate immunity and suppression of markers of specific immunity. PMID:25275647

  3. Effects of stress on catecholamine stores in central and peripheral tissues of long-term socially isolated rats.

    PubMed

    Dronjak, S; Gavrilovic, L

    2006-06-01

    Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4 degrees C, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(3H-methyl)-methionine was used. The O-methylated derivatives were oxidized to 3H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.

  4. Clinical experimental stress studies: methods and assessment.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-01-01

    Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Stress induction methods are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these methods are also important for the development of novel pharmacological agents for stress management. The well-described methods to induce stress in humans include the cold pressor test, Trier Social Stress Test, Montreal Imaging Stress Task, Maastricht Acute Stress Test, CO2 challenge test, Stroop test, Paced Auditory Serial Addition Task, noise stress, and Mannheim Multicomponent Stress Test. Stress assessment in humans is done by measuring biochemical markers such as cortisol, cortisol awakening response, dexamethasone suppression test, salivary α-amylase, plasma/urinary norepinephrine, norepinephrine spillover rate, and interleukins. Physiological and behavioral changes such as galvanic skin response, heart rate variability, pupil size, and muscle and/or skin sympathetic nerve activity (microneurography) and cardiovascular parameters such as heart rate, blood pressure, and self-reported anxiety are also monitored to assess stress response. This present review describes these commonly employed methods to induce stress in humans along with stress assessment methods.

  5. Human thermal bioclimatic conditions associated with acute cardiovascular syndromes in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Bleta, Anastasia G.; Nastos, Panagiotis T.

    2013-04-01

    The aim of this study is to quantify the association between bioclimatic conditions and daily counts of admissions for non-fatal acute cardiovascular (acute coronary syndrome, arrhythmia, decompensation of heart failure) syndromes (ACS) registered by the two main hospitals in Heraklion, Crete Island, during a five-year period 2008-2012. The bioclimatic conditions analyzed are based on human thermal bioclimatic indices such as the Physiological Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI). Mean daily meteorological parameters, such as air temperature, relative humidity, wind speed and cloudiness, were acquired from the meteorological station of Heraklion (Hellenic National Meteorological Service). These parameters were used as input variables in modeling the aforementioned thermal indices, in order to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was performed by the use of the radiation and bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. Generalized linear models (GLM) were applied to time series of daily numbers of outpatients with ACS against bioclimatic variations, after controlling for possible confounders and adjustment for season and trends. The interpretation of the results of this analysis suggests a significant association between cold weather and increased coronary heart disease incidence, especially in the elderly and males. Additionally, heat stress plays an important role in the configuration of daily ACS outpatients, even in temperate climate, as that in Crete Island. In this point it is worth mentioning that Crete Island is frequently affected by Saharan outbreaks, which are associated in many cases with miscellaneous phenomena, such as Föhn winds - hot and dry winds - causing extreme bioclimatic conditions (strong heat stress). Taking into consideration the projected increased ambient temperature in the future, ACS exacerbation is very likely to happen during the warm period, against mitigation during the cold period of the year.

  6. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin.

    PubMed

    do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E

    2014-06-01

    We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.

  7. Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing.

    PubMed

    Milatz, Florian; Ketelhut, Sascha; Ketelhut, Sascha; Ketelhut, Reinhard G

    2015-07-01

    Increased central pulse wave velocity is a major risk factor for cardiovascular disease. The favorable influence of exercise on arterial stiffness (AS) and blood pressure (BP) has been reported exclusively at rest. The present study investigated the influence of a single bout of acute cycling on AS and BP during recovery and, moreover, during cold pressor stress testing. 32 healthy men (33.7 ± 8 years, BMI 24 ± 2.5 kg/m²) performed a 60 minute endurance exercise on a bicycle ergometer (45 % VO2max). Before and after exercise aortic pulse wave velocity (aPWV) as well as central and peripheral BP were measured non-invasively at rest and at the end of a 2 minute cold pressor test (CPT). Even after 60 minutes of recovery aPWV (- 0.22 ± 0.3 m / sec) was significantly reduced (p < 0.01). Exercise decreased peripheral (- 8 ± 7 mmHg) and central (- 7 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 5 mmHg) and central (- 4 ± 7 mmHg) diastolic BP (p < 0.01). In comparison to measurements during CPT pre-exercise, there was a significant reduction in aPWV (- 0.19 ± 0.3 m / sec), peripheral (- 6 ± 10 mmHg) and central (- 5 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 6 mmHg) and central (- 3 ± 6 mmHg) diastolic BP during CPT after exercise (p < 0.01). The present study suggests that acute endurance exercise leads not only to decreased BP but even more reduces aPWV as a measure of AS even after 60 minutes of recovery. In particular, the investigation provides evidence that acute moderate-intensity exercise has a favorable effect on BP and aPWV during stress testing.

  8. Acute cooling of the feet and the onset of common cold symptoms.

    PubMed

    Johnson, Claire; Eccles, Ronald

    2005-12-01

    There is a common folklore that chilling of the body surface causes the development of common cold symptoms, but previous clinical research has failed to demonstrate any effect of cold exposure on susceptibility to infection with common cold viruses. This study will test the hypothesis that acute cooling of the feet causes the onset of common cold symptoms. 180 healthy subjects were randomized to receive either a foot chill or control procedure. All subjects were asked to score common cold symptoms, before and immediately after the procedures, and twice a day for 4/5 days. 13/90 subjects who were chilled reported they were suffering from a cold in the 4/5 days after the procedure compared to 5/90 control subjects (P=0.047). There was no evidence that chilling caused any acute change in symptom scores (P=0.62). Mean total symptom score for days 1-4 following chilling was 5.16 (+/-5.63 s.d. n=87) compared to a score of 2.89 (+/-3.39 s.d. n=88) in the control group (P=0.013). The subjects who reported that they developed a cold (n=18) reported that they suffered from significantly more colds each year (P=0.007) compared to those subjects who did not develop a cold (n=162). Acute chilling of the feet causes the onset of common cold symptoms in around 10% of subjects who are chilled. Further studies are needed to determine the relationship of symptom generation to any respiratory infection.

  9. Studies on toxicity, anti-stress and hepato-protective properties of Kombucha tea.

    PubMed

    Pauline, T; Dipti, P; Anju, B; Kavimani, S; Sharma, S K; Kain, A K; Sarada, S K; Sairam, M; Ilavazhagan, G; Devendra, K; Selvamurthy, W

    2001-09-01

    The objective of the study was to evaluate toxicity, anti-stress activity and hepato-protective properties of Kombucha tea. Kombucha tea was fed orally for 15 days using three different doses i.e. normal dose, five and ten times the dose. Rats were then sacrificed and various biochemical, and histological parameters were estimated. Anti-stress activity was evaluated either by 1) by exposing animals to cold and hypoxia and estimating the levels of malondialdehyde and reduced glutathione in plasma/blood or 2) by subjecting the animals to restraint stress and recording faecal output. Hepato-toxicity was induced by challenging the animals to an acute dose of paracetamol (1 gm/kg) orally and determining the plasma levels of SGPT, SGOT and MDA. The effect of oral administration of different doses of K-tea to albino rats was examined and the results indicate that K-tea has no significant toxicity as revealed by various biochemical and histopathological parameters. K-tea has been found to prevent lipid peroxidation and fall in reduced glutathione level when rats were exposed to cold and hypoxia in simulated chamber. Further, K-tea has also been found to decrease the Wrap-restraint faecal pellet output in rats. K-tea has also been found to decrease paracetamol induced hepatotoxicity significantly. The study shows that K-tea has anti-stress and hepato-protective activities.

  10. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations

    PubMed Central

    Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian

    2015-01-01

    Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. PMID:26080903

  11. Comparative Transcriptome Analysis of Shoots and Roots of TNG67 and TCN1 Rice Seedlings under Cold Stress and Following Subsequent Recovery: Insights into Metabolic Pathways, Phytohormones, and Transcription Factors

    PubMed Central

    Yang, Yun-Wei; Chen, Hung-Chi; Jen, Wei-Fu; Liu, Li-Yu; Chang, Men-Chi

    2015-01-01

    Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive) in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA)-, polyamine-, auxin- and jasmonic acid (JA)-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice during cold stress and recovery. The cross-talk of hormones may play an essential role in the ability of rice plants to cope with cold stress. PMID:26133169

  12. A comparison of Frost expression among species and life stages of Drosophila.

    PubMed

    Bing, X; Zhang, J; Sinclair, Brent J

    2012-02-01

    Frost (Fst) is a gene associated with cold exposure in Drosophila melanogaster. We used real-time PCR to assess whether cold exposure induces expression of Fst in 10 different life stages of D. melanogaster, and adults of seven other Drosophila species. We exposed groups of individuals to 0 °C (2 h), followed by 1 h recovery (22 °C). Frost was significantly upregulated in response to cold in eggs, third instar larvae, and 2- and 5-day-old male and female adults in D. melanogaster. Life stages in which cold did not upregulate Fst had high constitutive expression. Frost is located on the opposite strand of an intron of Diuretic hormone (DH), but cold exposure did not upregulate DH. Frost orthologues were identified in six other species within the Melanogaster group (Drosophila sechellia, Drosophila simulans, Drosophila yakuba, Drosophila erecta, Drosophila ananassae and Drosophila mauritiana). Frost orthologues were upregulated in response to cold exposure in both sexes in adults of all of these species. The predicted structure of a putative Frost consensus protein shows highly conserved tandem repeats of motifs involved in cell signalling (PEST and TRAF2), suggesting that Fst might encode an adaptor protein involved in acute stress or apoptosis signalling in vivo. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  13. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster

    PubMed Central

    McCue, Marshall D.; Sunny, Nishanth E.; Szejner-Sigal, Andre; Morgan, Theodore J.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using 13C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  14. Hypohydration and Acute Thermal Stress Affect Mood State but not Cognition or Dynamic Postural

    DTIC Science & Technology

    2012-10-12

    of the feet and ankles . The LCD screen presented a cursor interfaced with the movement of the platform. Balance scores were given based on three...Vol- unteers were asked to rate their thermal sensation (TS) using an 8-point Likert scale with verbal anchors from 0 (unbearably cold) to 8...unbearably hot). Thirst was asses- sed using a similar 8-point Likert scale with verbal anchors from 1 (not thirst at all) to 9 (very, very thirsty) (Gagge

  15. Acute nonhypothermic exposure to cold impedes motor skill performance in video gaming compared to thermo-neutral and hot conditions.

    PubMed

    Edwards, Andrew M; Crowther, Robert G; Morton, R Hugh; Polman, Remco C

    2011-02-01

    The study examined whether or not acute exposure to unfamiliar hot or cold conditions impairs performance of highly skilled coordinative activities and whether prior physical self-efficacy beliefs were associated with task completion. Nineteen volunteers completed both Guitar Hero and Archery activities as a test battery using the Nintendo Wii console in cold (2 degrees C), neutral (20 degrees C), and hot (38 degrees C) conditions. Participants all completed physical self-efficacy questionnaires following experimental familiarization. Performances of both Guitar Hero and Archery significantly decreased in the cold compared with the neutral condition. The cold trial was also perceived as the condition requiring both greater concentration and effort. There was no association between performance and physical self-efficacy. Performance of these coordinative tasks was compromised by acute (nonhypothermic) exposure to cold; the most likely explanation is that the cold condition presented a greater challenge to attentional processes as a form of environmental distraction.

  16. Cold and desiccation stress induced changes in the accumulation and utilization of proline and trehalose in seasonal populations of Drosophila immigrans.

    PubMed

    Tamang, Aditya Moktan; Kalra, Bhawna; Parkash, Ravi

    2017-01-01

    Changes in the levels of energy metabolites can limit survival ability of Drosophila species under stressful conditions but this aspect has received less attention in wild populations collected in different seasons. We tested cold or desiccation triggered changes in the accumulation or utilization of two energy metabolites (trehalose and proline) in Drosophila immigrans flies reared under season specific environmental conditions. Such D.immigrans populations were subjected to different durations of cold (0°C) or desiccation stress (5% RH) or dual stress. We found stress induced effects of cold vs desiccation on the levels of trehalose as well as for proline. Different durations of cold stress led to accumulation of trehalose while desiccation stress durations revealed utilization of trehalose. In contrast, there was accumulation of proline under desiccation and utilization of proline with cold stress. Since accumulation levels were higher than utilization of each energy metabolite, the effects of dual stress showed additive effect. However, there was no utilization of total body lipids under cold or desiccation stress. We observed significant season specific differences in the amount of energy metabolites but the rate of metabolism did not vary across seasons. Stress triggered changes in trehalose and proline suggest possible link between desiccation and cold tolerance. Finally, stress specific (cold or desiccation) compensatory changes in the levels of trehalose and proline suggest possible energetic homeostasis in D.immigrans living under harsh climatic conditions of montane localities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network

    PubMed Central

    Gao, Jie; Zhang, Sheng; He, Wei-Di; Shao, Xiu-Hong; Li, Chun-Yu; Wei, Yue-Rong; Deng, Gui-Ming; Kuang, Rui-Bin; Hu, Chun-Hua; Yi, Gan-Jun; Yang, Qiao-Song

    2017-01-01

    Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism. PMID:28106078

  18. Two strategies for the acute response to cold exposure but one strategy for the response to heat stress.

    PubMed

    Brazaitis, Marius; Eimantas, Nerijus; Daniuseviciute, Laura; Vitkauskiene, Astra; Paulauskas, Henrikas; Skurvydas, Albertas

    2015-06-01

    The main aim of this study was to compare physiological and psychological reactions to heat stress between people who exhibited fast cooling (FC, n = 20) or slow cooling (SC; n = 20) responses to 14 °C cold water immersion. Forty healthy young men (19-25 years old) were recruited to this study based on their tolerance to cold exposure (FC versus SC). The heat stress was induced using immersion in bath water at 43-44 °C. Motor and cognitive performance, immune variables, markers of hypothalamic-pituitary-adrenal axis activity (i.e. stress hormone concentrations), and autonomic nervous system activity were monitored. In the FC group, time to warm the body from a resting rectal temperature (Tre) of 37.1 ± 0.2 °C before warming to 39.5 °C was 63.7 ± 22.4 min. In the SC group, the time to warm the body from a Tre 37.1 ± 0.3 °C before warming to 39.5 °C was 67.2 ± 13.8 min (p > 0.05 between groups). The physiological stress index (PSI) after warming was 8.0 ± 0.6 and 8.2 ± 1.0 in the FC and SC groups, respectively (p > 0.05 between groups). During warming, the changes in subjective indicators of heat stress did not differ significantly between the FC (7.4 ± 0.5) and SC (7.1 ± 1.1) groups, respectively. The increase in cortisol, epinephrine, norepinephrine, and corticosterone concentrations after passive body heating did not differ between the FC and SC groups. Heat stress did not change indicators of innate and specific immunity in the FC or the SC group. An interesting finding was that heat stress did not affect motor and cognitive function in either group, although central fatigue during 1-min maximal voluntary contraction increased after heat stress in both groups.

  19. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    PubMed

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hormonal control of cold stress responses in plants.

    PubMed

    Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte

    2016-02-01

    Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.

  1. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress.

    PubMed

    Chen, Liang; Zhong, Hui; Ren, Feng; Guo, Qian-Qian; Hu, Xu-Peng; Li, Xue-Bao

    2011-04-01

    Cold stress, which causes dehydration damage to the plant cell, is one of the most common abiotic stresses that adversely affect plant growth and crop productivity. To improve its cold-tolerance, plants often enhance expression of some cold-related genes. In this study, a cold-regulated gene encoding 25 KDa of protein was isolated from Brassica napus cDNA library using a macroarray analysis, and is consequently designated as BnCOR25. RT-PCR analysis demonstrated that BnCOR25 was expressed at high levels in hypocotyls, cotyledons, stems, and flowers, but its mRNA was found at low levels in roots and leaves. Northern blot analysis revealed that BnCOR25 transcripts were significantly induced by cold and osmotic stress treatment. The data also showed that BnCOR25 gene expression is mediated by ABA-dependent pathway. Overexpression of BnCOR25 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability under cold stress, and overexpression of BnCOR25 in Arabidopsis enhances plant tolerance to cold stress. These results suggested that the BnCOR25 gene may play an important role in conferring freezing/cold tolerance in plants.

  2. Dissecting cold tolerance in rice as revealed by association mapping

    USDA-ARS?s Scientific Manuscript database

    Cold stress is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yi...

  3. Body temperature responses to handling stress in wintering Black-capped Chickadees (Poecile atricapillus L.).

    PubMed

    Lewden, Agnès; Nord, Andreas; Petit, Magali; Vézina, François

    2017-10-01

    Body temperature variation in response to acute stress is typically characterized by peripheral vasoconstriction and a concomitant increase in core body temperature (stress-induced hyperthermia). It is poorly understood how this response differs between species and within individuals of the same species, and how it is affected by the environment. We therefore investigated stress-induced body temperature changes in a non-model species, the Black-capped Chickadee, in two environmental conditions: outdoors in low ambient temperature (mean: -6.6°C), and indoors, in milder ambient temperature close to thermoneutrality (mean: 18.7°C). Our results show that the change in body temperature in response to the same handling stressor differs in these conditions. In cold environments, we noted a significant decrease in core body temperature (-2.9°C), whereas the response in mild indoor conditions was weak and non-significant (-0.6°C). Heat loss in outdoor birds was exacerbated when birds were handled for longer time. This may highlight the role of behavioral thermoregulation and heat substitution from activity to body temperature maintenance in harsh condition. Importantly, our work also indicates that changes in the physical properties of the bird during handling (conductive cooling from cold hands, decreased insulation from compression of plumage and prevention of ptiloerection) may have large consequences for thermoregulation. This might explain why females, the smaller sex, lost more heat than males in the experiment. Because physiological and physical changes during handling may carry over to affect predation risk and maintenance of energy balance during short winter days, we advice caution when designing experimental protocols entailing prolonged handling of small birds in cold conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Transcriptomic characterization of cold acclimation in larval zebrafish

    PubMed Central

    2013-01-01

    Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969

  5. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass

    PubMed Central

    Fan, Jibiao; Hu, Zhengrong; Xie, Yan; Chan, Zhulong; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2015-01-01

    As a typical warm-season grass, Bermudagrass [Cynodon dactylon (L).Pers.] is widely applied in turf systems and animal husbandry. However, cold temperature is a key factor limiting resource utilization for Bermudagrass. Therefore, it is relevant to study the mechanisms by which Burmudagrass responds to cold. Melatonin is a crucial animal and plant hormone that is responsible for plant abiotic stress responses. The objective of this study was to investigate the role of melatonin in cold stress response of Bermudagrass. Wild Bermudagrass pre-treated with 100 μM melatonin was subjected to different cold stress treatments (−5°C for 8 h with or without cold acclimation). The results showed lower malondialdehyde (MDA) and electrolyte leakage (EL) values, higher levels of chlorophyll, and greater superoxide dismutase and peroxidase activities after melatonin treatment than those in non-melatonin treatment under cold stress. Analysis of chlorophyll a revealed that the chlorophyll fluorescence transient (OJIP) curves were higher after treatment with melatonin than that of non-melatonin treated plants under cold stress. The values of photosynthetic fluorescence parameters increased after treatment with melatonin under cold stress. The analysis of metabolism showed alterations in 46 metabolites in cold-stressed plants after melatonin treatment. Among the measured metabolites, five sugars (arabinose, mannose, glucopyranose, maltose, and turanose) and one organic acid (propanoic acid) were significantly increased. However, valine and threonic acid contents were reduced in melatonin-treated plants. In summary, melatonin maintained cell membrane stability, increased antioxidant enzymes activities, improved the process of photosystem II, and induced alterations in Bermudagrass metabolism under cold stress. PMID:26579171

  6. Evolution of Pre- and Post-Copulatory Traits in Male Drosophila melanogaster as a Correlated Response to Selection for Resistance to Cold Stress

    PubMed Central

    Singh, Karan; Samant, Manas Arun; Tom, Megha Treesa; Prasad, Nagaraj Guru

    2016-01-01

    Background In Drosophila melanogaster the fitness of males depends on a broad array of reproductive traits classified as pre- and post-copulatory traits. Exposure to cold stress, can reduce sperm number, male mating ability and courtship behavior. Therefore, it is expected that the adaptation to cold stress will involve changes in pre- and post-copulatory traits. Such evolution of reproductive traits in response to cold stress is not well studied. Methods We selected replicate populations of D. melanogaster for resistance to cold shock. Over 37–46 generations of selection, we investigated pre- and post-copulatory traits such as mating latency, copulation duration, mating frequency, male fertility, fitness (progeny production) and sperm competitive ability in male flies subjected to cold shock and those not subjected to cold shock. Results We found that post cold shock, the males from the selected populations had a significantly lower mating latency along with, higher mating frequency, fertility, sperm competitive ability and number of progeny relative to the control populations. Conclusion While most studies of experimental evolution of cold stress resistance have documented the evolution of survivorship in response to selection, our study clearly shows that adaptation to cold stress involves rapid changes in the pre- and post-copulatory traits. Additionally, improved performances under stressful conditions need not necessarily trade-off with performance under benign conditions. PMID:27093599

  7. Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system.

    PubMed

    Wang, Qian; Wang, Manqi; Whim, Matthew D

    2013-07-31

    Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.

  8. Symptoms of anxiety and depression are related to cardiovascular responses to active, but not passive, coping tasks.

    PubMed

    Yuenyongchaiwat, Kornanong; Baker, Ian S; Sheffield, David

    2017-01-01

    Anxiety and depression have been linked to blunted blood pressure (BP) and heart rate (HR) reactions to mental stress tests; however, most studies have not included indices of underlying hemodynamics nor multiple stress tasks. This study sought to examine the relationships of anxiety and depression with hemodynamic responses to acute active and passive coping tasks. A total of 104 participants completed the Hospital Anxiety and Depression Scales and mental arithmetic, speech, and cold pressor tasks while BP, HR, total peripheral resistance, and cardiac output (CO) were assessed. After adjustment for traditional risk factors and baseline cardiovascular activity, depression scores were negatively associated with systolic BP, HR, and CO responses to the mental arithmetic task, while anxiety scores were inversely related to the systolic BP response to mental arithmetic. High anxiety or depression scores appear to be associated with blunted cardiac reactions to mental arithmetic (an active coping task), but not to the cold pressor test or speech tasks. Future research should further examine potential mechanisms and longitudinal pathways relating depression and anxiety to cardiovascular reactivity. TCTR20160208004.

  9. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    PubMed

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  11. Plasma cortisol levels in response to a cold pressor test did not predict appetite or ad libitum test meal intake in obese women.

    PubMed

    Geliebter, Allan; Gibson, Charlisa D; Hernandez, Dominica B; Atalayer, Deniz; Kwon, Anne; Lee, Michelle I; Mehta, Nandini; Phair, Donna; Gluck, Marci E

    2012-12-01

    Heightened cortisol response to stress due to hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis may stimulate appetite and food intake. In this study, we assessed cortisol responsivity to a cold pressor test (CPT) as well as appetite ratings and subsequent test meal intake (TMI) in obese women. Following an overnight fast on two counterbalanced days, 20 obese women immersed their non-dominant hand for 2min in ice water (CPT) or warm water (WW) as a control. Plasma cortisol (ng/ml), heart rate, and blood pressure, as well as ratings of stress, pain, and appetite, were serially acquired. An ad libitum liquid meal was offered at 45min and intake measured covertly. Fasting cortisol was higher at 15min (mean peak cortisol) following the CPT compared to WW. Higher stress was reported at 2 and 15min for the CPT compared to WW. Pain, an indirect marker of the acute stress, systolic and diastolic blood pressure increased following the CPT at 2min compared to WW. Hunger decreased after the CPT at 2 and 15min, and desire to eat ratings were lower following CPT compared to WW. Subjects did not have greater test meal intake (TMI) following CPT compared to WW. There was also no significant relationship between cortisol levels following stress and TMI, indicating that cortisol did not predict subsequent intake in obese women. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Plasma Cortisol Levels in Response to a Cold Pressor Test Did Not Predict Appetite or Ad Libitum Test Meal Intake in Obese Women

    PubMed Central

    Geliebter, Allan; Gibson, Charlisa D.; Hernandez, Dominica B.; Atalayer, Deniz; Kwon, Anne; Lee, Michelle I; Mehta, Nandini; Phair, Donna; Gluck, Marci E.

    2012-01-01

    Heightened cortisol response to stress due to hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis may stimulate appetite and food intake. In this study, we assessed cortisol responsivity to a cold pressor test (CPT) as well as appetite ratings and subsequent test meal intake (TMI) in obese women. Following an overnight fast on two counterbalanced days, 20 obese women immersed their non-dominant hand for 2 min in ice water (CPT) or warm water (WW) as a control. Plasma cortisol (ng/ml), heart rate, and blood pressure, as well as ratings of stress, pain, and appetite, were serially acquired. An ad libitum liquid meal was offered at 45 min and intake measured covertly. Fasting cortisol was higher at 15 min (mean peak cortisol) following the CPT compared to WW. Higher stress was reported at 2 and 15 min for the CPT compared to WW. Pain, an indirect marker of the acute stress, systolic and diastolic blood pressure increased following the CPT at 2 min compared to WW Hunger decreased after the CPT at 2 and 15 min, and desire to eat ratings were lower following CPT compared to WW . Subjects did not have greater test meal intake (TMI) following CPT compared to WW. There was also no significant relationship between cortisol levels following stress and TMI, indicating that cortisol did not predict subsequent intake in obese women. PMID:22983369

  13. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella.

    PubMed

    Xuan, Jiping; Song, Yufeng; Zhang, Hongxiao; Liu, Jianxiu; Guo, Zhongren; Hua, Yuelou

    2013-01-01

    Zoysiagrass, the most cold-tolerant grass among the warm-season turfgrasses, is often used as a model species for isolating cellular components related to cold stress. To understand the proteomic responses to cold stress in zoysiagrass stolons, we extracted stolon proteins from Zoysiajaponica, cv. Meyer (cold-tolerant) and Z. metrella, cv. Diamond (cold-sensitive), which were grown with or without cold treatment. Approximately 700 proteins were resolved on 2-DE gels, and 70 protein spots were differentially accumulated. We further observed that 45 of the identified proteins participate in 10 metabolic pathways and cellular processes. A significantly greater number of proteins accumulated in the Meyer than in the Diamond and 15 increased proteins were detected only in the Meyer cultivar under cold stress. Furthermore, we propose a cold stress-responsive protein network composed of several different functional components that exhibits a balance between reactive oxygen species (ROS) production and scavenging, accelerated protein biosynthesis and proteolysis, reduced protein folding, enhanced photosynthesis, abundant energy supply and enhanced biosynthesis of carbohydrates and nucleotides. Generally, the cold-tolerant Meyer cultivar showed a greater ROS scavenging ability, more abundant energy supply and increased photosynthesis and protein synthesis than did the cold-sensitive Diamond cultivar, which may partly explain why Meyer is more cold tolerant.

  14. The Discrepant and Similar Responses of Genome-Wide Transcriptional Profiles between Drought and Cold Stresses in Cassava.

    PubMed

    Zeng, Changying; Ding, Zehong; Zhou, Fang; Zhou, Yufei; Yang, Ruiju; Yang, Zi; Wang, Wenquan; Peng, Ming

    2017-12-12

    Background : Cassava, an important tropical crop, has remarkable drought tolerance, but is very sensitive to cold. The growth, development, and root productivity of cassava are all adversely affected under cold and drought. Methods : To profile the transcriptional response to cold and drought stresses, cassava seedlings were respectively subjected to 0, 6, 24, and 48 h of cold stress and 0, 4, 6, and 10 days of drought stress. Their folded leaves, fully extended leaves, and roots were respectively investigated using RNA-seq. Results : Many genes specifically and commonly responsive to cold and drought were revealed: genes related to basic cellular metabolism, tetrapyrrole synthesis, and brassinosteroid metabolism exclusively responded to cold; genes related to abiotic stress and ethylene metabolism exclusively responded to drought; and genes related to cell wall, photosynthesis, and carbohydrate metabolism, DNA synthesis/chromatic structure, abscisic acid and salicylic acid metabolism, and calcium signaling commonly responded to both cold and drought. Discussion : Combined with cold- and/or drought-responsive transcription factors, the regulatory networks responding to cold and drought in cassava were constructed. All these findings will improve our understanding of the specific and common responses to cold and drought in cassava, and shed light on genetic improvement of cold and drought tolerance in cassava.

  15. Changes in free amino acid levels in sour orange leaves in response to cold stress and during recovery from cold stress

    USDA-ARS?s Scientific Manuscript database

    In a previous study, we reported that potted sour orange trees recovering from cold stress attracted more Asian citrus psyllid than the control plants continuously kept under warm condition. In parallel studies, cold treated plants were shown to have relatively increased amounts of ninhydrin positi...

  16. Acute Stress and Chronic Stress Change Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Kinase-Coupled Receptor (TrkB) Expression in Both Young and Aged Rat Hippocampus

    PubMed Central

    Shi, Shou-Sen; Shao, Shu-hong; Yuan, Bang-ping; Pan, Fang

    2010-01-01

    Purpose The purpose of this study is to explore the dynamic change of brain-derived neurotrophic factor (BDNF) mRNA, protein, and tyrosine kinase-coupled receptor (TrkB) mRNA of the rat hippocampus under different stress conditions and to explore the influence of senescence on the productions expression. Materials and Methods By using forced-swimming in 4℃ cold ice water and 25℃ warm water, young and aged male rats were randomly divided into acute stress (AS) and chronic mild repeated stress (CMRS) subgroups, respectively. BDNF productions and TrkB mRNA in the hippocampus were detected by using Western-blotting and reverse transcription-polymerase chain reaction (RT-PCR), separately, at 15, 30, 60, 180, and 720 min after the last stress session. Results The short AS induced a significant increase in BDNF mRNA and protein in both age groups, but the changes in the young group were substantially greater than those of the aged group (p < 0.005). The CMRS resulted in a decrease in BDNF mRNA and protein, but a significant increase in TrkB mRNA in both young and age groups. The expression of BDNF mRNA and protein in the AS groups were higher than in the CMRS groups at 15, 30, and 60 min after stress. Conclusion The results indicated that the up/down-regulation of BDNF and TrkB were affected by aging and the stimulus paradigm, which might reflect important mechanisms by which the hippocampus copes with stressful stimuli. PMID:20635439

  17. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations.

    PubMed

    Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian

    2015-07-01

    Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  18. Acute stress impairs the retrieval of extinction memory in humans

    PubMed Central

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less extinction retrieval (i.e., greater fear recovery) than those in the control group (n = 25). Our results suggest that acute stress impairs extinction memory retrieval and offers insight into why treatment strategies used in the clinic may be challenging to recruit in daily life where stress is pervasive. PMID:24508065

  19. Comparison of UTCI with Other Thermal Indices in the Assessment of Heat and Cold Effects on Cardiovascular Mortality in the Czech Republic

    PubMed Central

    Urban, Aleš; Kyselý, Jan

    2014-01-01

    We compare the recently developed Universal Thermal Climate Index (UTCI) with other thermal indices in analysing heat- and cold-related effects on cardiovascular (CVD) mortality in two different (urban and rural) regions in the Czech Republic during the 16-year period from 1994–2009. Excess mortality is represented by the number of deaths above expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Air temperature, UTCI, Apparent Temperature (AT) and Physiologically Equivalent Temperature (PET) are applied to identify days with heat and cold stress. We found similar heat effects on CVD mortality for air temperature and the examined thermal indices. Responses of CVD mortality to cold effects as characterised by different indices were much more varied. Particularly important is the finding that air temperature provides a weak cold effect in comparison with the thermal indices in both regions, so its application—still widespread in epidemiological studies—may underestimate the magnitude of cold-related mortality. These findings are important when possible climate change effects on heat- and cold-related mortality are estimated. AT and PET appear to be more universal predictors of heat- and cold- related mortality than UTCI when both urban and rural environments are of concern. UTCI tends to select windy rather than freezing days in winter, though these show little effect on mortality in the urban population. By contrast, significant cold-related mortality in the rural region if UTCI is used shows potential for UTCI to become a useful tool in cold exposure assessments. PMID:24413706

  20. Reduced adiposity by compensatory WAT browning upon iBAT removal in mice.

    PubMed

    Piao, Zhengyu; Zhai, Baiqiang; Jiang, Xiaoxiao; Dong, Meng; Yan, Changguo; Lin, Jun; Jin, Wanzhu

    2018-06-27

    The strong effects of classic brown adipose tissue (BAT) and recruited beige adipocytes in treatment of obesity and metabolic syndrome have been attracting increasing research interest. Cold treatment is an effective, convenient approach to stimulate BAT activity and induce white adipose tissue (WAT) browning. Here, we utilized prolonged cold exposure (from 2 h to 2 weeks in a 4° cold chamber) to elucidate dynamic changes in BAT and in WAT browning during acute and chronic cold exposure in mice. BAT mass decreased quickly, with reduced lipid droplet sizes within 8 h of cold exposure owing to the utilization of BAT pre-storage triglycerides, and subsequently increased during prolonged cold exposure. These dynamic morphological changes in BAT were confirmed by gene expression changes in ADRB3 and PGC1α, while UCP1 and ELOVL3 expression was continuously up-regulated throughout the entire cold exposure period. Additionally, cold treatment increased BAT secretion of FGF21, which has been reported to activate beige adipocyte formation. Thus, to illustrate potential crosstalk between secreted BAT proteins (so-called BATokines) and beige adipogenesis during cold stress, we performed an interscapular BAT (iBAT) removal experiment in mice. Surprisingly, loss of classic iBAT enhanced WAT browning due to compensatorily increased sympathetic WAT input. Unexpectedly, we observed significantly reduced adiposity in the iBAT removal group compared with the control group. These results further suggest that WAT browning plays an important role in whole-body energy metabolism during cold acclimation, even without iBAT. Furthermore, our data imply that enhanced WAT browning may be an efficient therapeutic tool to combat obesity and related syndromes. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves

    PubMed Central

    Zhang, Xinhua; Teixeira da Silva, Jaime A.; Niu, Meiyun; Li, Mingzhi; He, Chunmei; Zhao, Jinhui; Zeng, Songjun; Duan, Jun; Ma, Guohua

    2017-01-01

    Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 °C for 0–48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance. PMID:28169358

  2. Comparative Proteomic Analysis of the Stolon Cold Stress Response between the C4 Perennial Grass Species Zoysia japonica and Zoysia metrella

    PubMed Central

    Xuan, Jiping; Song, Yufeng; Zhang, Hongxiao; Liu, Jianxiu; Guo, Zhongren; Hua, Yuelou

    2013-01-01

    Zoysiagrass, the most cold-tolerant grass among the warm-season turfgrasses, is often used as a model species for isolating cellular components related to cold stress. To understand the proteomic responses to cold stress in zoysiagrass stolons, we extracted stolon proteins from Zoysia japonica , cv. Meyer (cold-tolerant) and Z . metrella , cv. Diamond (cold-sensitive), which were grown with or without cold treatment. Approximately 700 proteins were resolved on 2-DE gels, and 70 protein spots were differentially accumulated. We further observed that 45 of the identified proteins participate in 10 metabolic pathways and cellular processes. A significantly greater number of proteins accumulated in the Meyer than in the Diamond and 15 increased proteins were detected only in the Meyer cultivar under cold stress. Furthermore, we propose a cold stress-responsive protein network composed of several different functional components that exhibits a balance between reactive oxygen species (ROS) production and scavenging, accelerated protein biosynthesis and proteolysis, reduced protein folding, enhanced photosynthesis, abundant energy supply and enhanced biosynthesis of carbohydrates and nucleotides. Generally, the cold-tolerant Meyer cultivar showed a greater ROS scavenging ability, more abundant energy supply and increased photosynthesis and protein synthesis than did the cold-sensitive Diamond cultivar, which may partly explain why Meyer is more cold tolerant. PMID:24086619

  3. Effect of thermal stresses on the mechanism of tooth pain.

    PubMed

    Oskui, Iman Z; Ashtiani, Mohammed N; Hashemi, Ata; Jafarzadeh, Hamid

    2014-11-01

    Daily hot and cold thermal loadings on teeth may result in structural deformation, mechanical stress, and pain signaling. The aim of this study was to compare the adverse effects of hot and cold beverages on an intact tooth and, then, to provide physical evidence to support the hydrodynamic theory of tooth pain sensation mechanism. Three-dimensional finite element analysis was performed on a premolar model subjected to hot and cold thermal loadings. Elapsed times for heat diffusion and stress detection at the pulp-dentin junction were calculated as measures of the pain sensation. Extreme tensile stress within the enamel resulted in damage in cold loadings. Also, extreme values of stress at the pulpal wall occurred 21.6 seconds earlier than extreme temperatures in hot and cold loadings. The intact tooth was remarkably vulnerable to cold loading. Earlier changes in mechanical stress rather than temperature at the pulp-dentin junction indicate that the dental pain caused by hot or cold beverages may be based on the hydrodynamic theory. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenbin; Chen, Yaomin; Yang, Qun

    2010-06-25

    Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0 {+-} 0.1 {sup o}C) for 2, 4, 8, or 12 h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4 h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. Withmore » silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.« less

  5. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris

    PubMed Central

    Noman, Ali; Kanwal, Hina; Khalid, Noreen; Sanaullah, Tayyaba; Tufail, Aasma; Masood, Atifa; Sabir, Sabeeh-ur-Rasool; Aqeel, Muhammad; He, Shuilin

    2017-01-01

    Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding. PMID:28855910

  6. [Clinical evaluation of Olbas oil effect on nasal mucosa in acute rhinitis patients during common cold].

    PubMed

    Zalewski, P; Olszewski, J; Olszewska-Ziaber, A; Zielińska-Bliźniewska, H; Pietkiewicz, P

    1997-01-01

    The aim of the study was the clinical evaluation of the effect of Olbas oil on nasal mucosa in patients with acute rhinitis during common cold. 15 patients with 2-3 days history of acute rhinitis during common cold, both sexes, in the age between 23-47 were investigated. All the examinations were done before using, after the first inhalation, and after 7 days of Olbas oil administration. The investigation before using Olbas oil was comprised of: history data, general and otorhinolaryngological examination with particular evaluation of nasal mucosa, anterior rhinomanometry, saccharin translocation time, olfactometry, microbiological cultures, histamine nasal provocation test. At the end, after 7 days of Olbas oil inhalation 3 times a day for 4 minutes 4 drops of Olbas oil applied into a handkerchief, all the test were done again, as at the beginning. The study showed a good of the effect of Olbas oil on nasal mucosa in patients with acute rhinitis during common cold.

  7. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

  8. Preadaptation to Cold Stress in Salmonella enterica Serovar Typhimurium Increases Survival during Subsequent Acid Stress Exposure

    PubMed Central

    Shah, Jigna; Desai, Prerak T.; Chen, Dong; Stevens, John R.

    2013-01-01

    Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation. PMID:24056458

  9. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.

    PubMed

    Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng

    2018-05-25

    Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.

  10. Acute stress-induced tissue injury in mice: differences between emotional and social stress

    PubMed Central

    Sánchez, Olga; Arnau, Anna; Pareja, Miguel; Poch, Enric; Ramírez, Ignasi; Soley, Maria

    2002-01-01

    Emotional stress affects cellular integrity in many tissues including the heart. Much less is known about the effects of social stress. We studied the effect of emotional (immobilization with or without cold exposure) or social (intermale confrontation) stress in mice. Tissue injury was measured by means of the release of enzyme activities to blood plasma: lactate dehydrogenase (LDH), creatine kinase (CK), aspartate transaminase (AST), and alanine transaminase (ALT). Tape-immobilization increased all these activities in the plasma. AST-ALT ratio was also increased in these animals. Electrophoretic analysis of CK isoenzymes showed the appearance of CK-MB. These results indicate that the heart was injured in immobilized mice. Analysis of LDH isoenzymes and measurement of α-hydroxybutyrate dehydrogenase (HBDH) activity suggests that other tissues, in addition to the heart, contribute to the increase in plasma LDH activity. Restraint in small cylinders increased plasma LDH, CK, AST, and ALT activities, but to lower levels than in tape immobilization. Because the decrease in liver glycogen and the increase in plasma epidermal growth factor (EGF) were also smaller in restraint than in the tape-immobilization model of emotional stress, we conclude that the former is a less intense stressor than the latter. Cold exposure during the restraint period altered the early responses to stress (it enhanced liver glycogen decrease, but abolished the increase in plasma EGF concentration). Cold exposure during restraint enhanced heart injury, as revealed by the greater increase in CK and AST activities. Intermale confrontation progressively decreased liver glycogen content. Plasma EGF concentration increased (to near 100 nM from a resting value of 0.1 nM) until 60 minutes, and decreased thereafter. Confrontation also affected cellular integrity in some tissues, as indicated by the rise in plasma LDH activity. However, in this type of stress, the heart appeared to be specifically protected because there was no increase in plasma CK activity, and both AST and ALT increased, but the AST-ALT ratio remained constant. Habituation to restraint (1 h/d, 4 days) made mice resistant to restraint-induced tissue injury as indicated by the lack of an increase in plasma LDH, CK, AST, or ALT activities. Similar general protection against homotypic stress-induced injury was observed in mice habituated to intermale confrontation. PMID:11892986

  11. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    PubMed Central

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  12. Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing.

    PubMed

    Song, Sooyeon; Bae, Dong-Won; Lim, Kwangsei; Griffiths, Mansel W; Oh, Sejong

    2014-11-17

    The stress resistance of bacteria is affected by the physiological status of the bacterial cell and environmental factors such as pH, salts and temperature. In this study, we report on the stress response of Lactobacillus plantarum L67 after four consecutive freeze-thaw cycles. The cold stress response of the cold-shock protein genes (cspC, cspL and cspP) and ATPase activities were then evaluated. The cold stress was adjusted to 5 °C when the bacteria were growing at the mid-exponential phase. A comparative proteomic analysis was performed with two-dimensional gel electrophoresis (2D SDS-PAGE) and a matrix assisted laser desorption/ionization-mass spectrometer. Only 56% of the L. plantarum L67 cells without prior exposure to cold stress survived after four consecutive freeze-thaw cycles. However, 78% of the L. plantarum L67 cells that were treated with cold stress at 5 °C for 6 h survived after freeze-thaw conditions. After applying cold stress to the culture for 6h, the cells were then stored for 60 days at 5 °C, 25 °C and 35 °C separately. The cold-stressed culture of L. plantarum L67 showed an 8% higher viability than the control culture. After applying cold stress for 6h, the transcript levels of two genes (cspP and cspL) were up-regulated 1.4 (cspP) and 1.2 (cspL) times compared to the control. However, cspC was not up-regulated. A proteomic analysis showed that the proteins increased after a reduction of the incubation temperature to 5 °C. The importance of the expression of 13 other relevant proteins was also determined through the study. The exposure of L. plantarum cells to low temperatures aids their ability to survive through subsequent freeze-thaw processes and lyophilization. Copyright © 2014. Published by Elsevier B.V.

  13. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress.

    PubMed

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l(-1)) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1-1 mg l(-1)) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5-25 mg l(-1)) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l(-1) ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•-) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect.

  14. Exogenous 5-Aminolevulenic Acid Promotes Seed Germination in Elymus nutans against Oxidative Damage Induced by Cold Stress

    PubMed Central

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2 •−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  15. Hematological variations at rest and during maximal and submaximal exercise in a cold (0°C) environment

    NASA Astrophysics Data System (ADS)

    Vogelaere, P.; Brasseur, M.; Quirion, A.; Leclercq, R.; Laurencelle, L.; Bekaert, S.

    1990-03-01

    The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased ( P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant ( P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume (Δ PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.

  16. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  17. Effects of Melatonin on Anti-oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings

    PubMed Central

    Han, Qiao-Hong; Huang, Bo; Ding, Chun-Bang; Zhang, Zhong-Wei; Chen, Yang-Er; Hu, Chao; Zhou, Li-Jun; Huang, Yan; Liao, Jin-Qiu; Yuan, Shu; Yuan, Ming

    2017-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) plays important role in multiple plant developmental processes and stress responses. We investigated the possible mediatory role of melatonin in growth, photosynthesis, and the response to cold stress in rice by using three different experiments: soaking seed; immersing roots, and spraying to leaves with 0, 20, or 100 μM melatonin. After 6 days of cold stress, the growth of rice seedlings was significantly inhibited, but this inhibition was alleviated by exogenous melatonin. Furthermore, exogenous melatonin pretreatment alleviated the accumulation of reactive oxygen species, malondialdehyde and cell death induced by cold stress. Melatonin pretreatment also relieved the stress-induced inhibitions to photosynthesis and photosystem II activities. Further investigations showed that, antioxidant enzyme activities and non-enzymatic antioxidant levels were increased by melatonin pretreatments. The treatment methods of seed soaking and root immersion were more effective in improving cold stress resistance than the spraying method. The results also indicated the dose-dependent response of melatonin on rice physiological, biochemical, and photosynthetic parameters. PMID:28553310

  18. Hypnotizability in acute stress disorder.

    PubMed

    Bryant, R A; Guthrie, R M; Moulds, M L

    2001-04-01

    This study investigated the relationship between acute dissociative reactions to trauma and hypnotizability. Acutely traumatized patients (N=61) with acute stress disorder, subclinical acute stress disorder (no dissociative symptoms), and no acute stress disorder were administered the Stanford Hypnotic Clinical Scale within 4 weeks of their trauma. Although patients with acute stress disorder and patients with subclinical acute stress disorder displayed comparable levels of nondissociative psychopathology, acute stress disorder patients had higher levels of hypnotizability and were more likely to display reversible posthypnotic amnesia than both patients with subclinical acute stress disorder and patients with no acute stress disorder. The findings may be interpreted in light of a diathesis-stress process mediating trauma-related dissociation. People who develop acute stress disorder in response to traumatic experience may have a stronger ability to experience dissociative phenomena than people who develop subclinical acute stress disorder or no acute stress disorder.

  19. Winter sports athletes: long-term effects of cold air exposure.

    PubMed

    Sue-Chu, Malcolm

    2012-05-01

    Athletes such as skaters and skiers inhale large volumes of cold air during exercise and shift from nasal to mouth breathing. Endurance athletes, like cross-country skiers, perform at 80% or more of their maximal oxygen consumption and have minute ventilations in excess of 100 l/min. Cold air is always dry, and endurance exercise results in loss of water and heat from the lower respiratory tract. In addition, athletes can be exposed to indoor and outdoor pollutants during the competitive season and during all-year training. Hyperpnoea with cold dry air represents a significant environmental stress to the airways. Winter athletes have a high prevalence of respiratory symptoms and airway hyper-responsiveness to methacholine and hyperpnoea. The acute effects of exercise in cold air are neutrophil influx as demonstrated in lavage fluid and airway epithelial damage as demonstrated by bronchoscopy. Upregulation of pro-inflammatory cytokines has been observed in horses. Chronic endurance training damages the epithelium of the small airways in mice. Airway inflammation has been observed on bronchoscopy of cross-country skiers and in dogs after a 1100-mile endurance race in Alaska. Neutrophilic and lymphocytic inflammation with remodelling is present in bronchial biopsies from skiers. Repeated peripheral airway hyperpnoea with dry air causes inflammation and remodelling in dogs. As it is currently unknown if these airway changes are reversible upon cessation of exposure, preventive measures to diminish exposure of the lower airways to cold air should be instituted by all winter sports athletes.

  20. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  1. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools.

    PubMed

    Madadkar Haghjou, Maryam; Colville, Louise; Smirnoff, Nicholas

    2014-11-01

    The effect of cold pretreatment on menadione tolerance was investigated in the cells of the marine microalga, Dunaliella viridis. In addition, the involvement of ascorbate and glutathione in the response to menadione stress was tested by treating cell suspensions with l-galactono-1,4-lactone, an ascorbate precursor, and buthionine sulfoximine, an inhibitor of glutathione synthesis. Menadione was highly toxic to non cold-pretreated cells, and caused a large decrease in cell number. Cold pretreatment alleviated menadione toxicity and cold pretreated cells accumulated lower levels of reactive oxygen species, and had enhanced antioxidant capacity due to increased levels of β-carotene, reduced ascorbate and total glutathione compared to non cold-pretreated cells. Cold pretreatment also altered the response to l-galactono-1,4-lactone and buthionine sulfoximine treatments. Combined l-galactono-1,4-lactone and menadione treatment was lethal in non-cold pretreated cells, but in cold-pretreated cells it had a positive effect on cell numbers compared to menadione alone. Overall, exposure of Dunaliella cells to cold stress enhanced tolerance to subsequent oxidative stress induced by menadione. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. A prospective study of work stressors and the common cold.

    PubMed

    Park, S-G; Kim, H-C; Min, J-Y; Hwang, S H; Park, Y-S; Min, K-B

    2011-01-01

    Psychological stress is a risk factor for infectious diseases. Although psychological stress at work is considered an important problem for many workers, there is little evidence for the effect of work-related stress on infectious diseases. To investigate whether work-related stress affected the occurrence of the common cold in South Korean workers in small- to medium-sized manufacturing companies. We conducted a prospective study, involving 1241 workers. At the outset, we collected information regarding sociodemographic and work characteristics. At follow-up after 6 months, we asked subjects whether they had experienced common cold symptoms during the preceding 4 months. Male subjects experiencing stress at the outset were more likely to report having experienced the common cold at follow-up (odds ratios: high job demand group 1.74; 95% CI: 1.28-2.36; insufficient job control 1.42; 95% CI: 1.05-1.93; inadequate social support 1.40; 95% CI: 1.03-1.91). For females, no significant association between work stress and occurrence of the common cold was detected. Males experiencing work stress in job demand, job control and social support reported an increased occurrence of the common cold at follow-up but this association was not seen in females.

  3. Evolution of Residual Stress and Distortion of Cold-Rolled Bearing Ring from Annealing to Quenched-Tempered Heat Treatment

    NASA Astrophysics Data System (ADS)

    Lu, Bohan; Lu, Xiaohui

    2018-02-01

    This study investigates the correlation between the residual stress and distortion behavior of a cold-rolled ring from the annealing to quenching-tempering (QT) process. Due to the cold-rolled process, the external periphery of the bearing ring experiences a compressive residual stress. To relieve the residual stress, cold-rolled rings are annealed at 700 °C which is higher than the starting temperature of recrystallization. When cold-rolled rings are annealed at 700 °C for 15 min, the compressive residual stress is reduced to zero and the outer diameter of the annealed ring becomes larger than that of a non-annealed sample, which is unrelated to annealing time. Simultaneously, the roundness and taper deviation do not obviously change compared with those of non-annealed sample. The stress relaxation during the annealing process was attributed to the recovery and recrystallization of ferrite. Annealing has a genetic influence on the following QT heat treatment, wherein the lowest residual stress is in the non-annealed cold-rolled ring. From the annealing to QT process, the deviation of the outer diameter, roundness, and taper increased with annealing time, a large extend than that of non-annealed samples.

  4. Experimental Psychological Stress on Quantitative Sensory Testing Response in Patients with Temporomandibular Disorders.

    PubMed

    Araújo Oliveira Ferreira, Dyna Mara; Costa, Yuri Martins; de Quevedo, Henrique Müller; Bonjardim, Leonardo Rigoldi; Rodrigues Conti, Paulo César

    2018-05-15

    To assess the modulatory effects of experimental psychological stress on the somatosensory evaluation of myofascial temporomandibular disorder (TMD) patients. A total of 20 women with myofascial TMD and 20 age-matched healthy women were assessed by means of a standardized battery of quantitative sensory testing. Cold detection threshold (CDT), warm detection threshold (WDT), cold pain threshold (CPT), heat pain threshold (HPT), mechanical pain threshold (MPT), wind-up ratio (WUR), and pressure pain threshold (PPT) were performed on the facial skin overlying the masseter muscle. The variables were measured in three sessions: before (baseline) and immediately after the Paced Auditory Serial Addition Task (PASAT) (stress) and then after a washout period of 20 to 30 minutes (poststress). Mixed analysis of variance (ANOVA) was applied to the data, and the significance level was set at P = .050. A significant main effect of the experimental session on all thermal tests was found (ANOVA: F > 4.10, P < .017), where detection tests presented an increase in thresholds in the poststress session compared to baseline (CDT, P = .012; WDT, P = .040) and pain thresholds were reduced in the stress (CPT, P < .001; HPT, P = .001) and poststress sessions (CPT, P = .005; HPT, P = .006) compared to baseline. In addition, a significant main effect of the study group on all mechanical tests (MPT, WUR, and PPT) was found (ANOVA: F > 4.65, P < .037), where TMD patients were more sensitive than healthy volunteers. Acute mental stress conditioning can modulate thermal sensitivity of the skin overlying the masseter in myofascial TMD patients and healthy volunteers. Therefore, psychological stress should be considered in order to perform an unbiased somatosensory assessment of TMD patients.

  5. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    USDA-ARS?s Scientific Manuscript database

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  6. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars.

    PubMed

    Tian, Xin; Liu, Ying; Huang, Zhigang; Duan, Huaping; Tong, Jianhua; He, Xiaoling; Gu, Weihong; Ma, Hao; Xiao, Langtao

    2015-03-01

    Cold stress adversely affects the growth and development of seedling of spring soybean. Revealing responses in seedling to cold stress at proteomic level will help us to breed cold-tolerant spring soybean cultivars. In this study, to understand the responses, a proteomic analysis on the leaves of seedlings of one cold-tolerant soybean cultivar and one cold-sensitive soybean cultivar at 5°C for different times (12 and 24 h) was performed, with some proteomic results being further validated by physiological and biochemical analysis. Our results showed that 57 protein spots were found to be significantly changed in abundance and identified by MALDI-TOF/TOF MS. All the identified proteins were found to be involved in 13 metabolic pathways and cellular processes, including photosynthesis, protein folding and assembly, cell rescue and defense, cytoskeletal proteins, transcription and translation regulation, amino acid and nitrogen metabolism, protein degradation, storage proteins, signal transduction, carbohydrate metabolism, lipid metabolism, energy metabolism, and unknown. Based on the majority of the identified cold-responsive proteins, the effect of cold stress on seedling leaves of the two spring soybean cultivars was discussed. The reason that soybean cv. Guliqing is more cold-tolerant than soybean cv. Nannong 513 was due to its more protein, lipid and polyamine biosynthesis, more effective sulfur-containing metabolite recycling, and higher photosynthetic rate, as well as less ROS production and lower protein proteolysis and energy depletion under cold stress. Such a result will provide more insights into cold stress responses and for further dissection of cold tolerance mechanisms in spring soybean.

  7. Genome-Wide Identification, Characterization, and Expression Profiling of Glutathione S-Transferase (GST) Family in Pumpkin Reveals Likely Role in Cold-Stress Tolerance

    PubMed Central

    Abdul Kayum, Md.; Nath, Ujjal Kumar; Park, Jong-In; Choi, Eung Kyoo; Song, Jae-Young; Kim, Hoy-Taek; Nou, Ill-Sup

    2018-01-01

    Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs. PMID:29439434

  8. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress.

    PubMed

    Dutilleul, Christelle; Chavarria, Heidy; Rézé, Nathalie; Sotta, Bruno; Baudouin, Emmanuel; Guillas, Isabelle

    2015-12-01

    Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long-chain base intermediates. The formation and function of ceramide phosphates (Cer-Ps) in chilled Arabidopsis were explored. Cer-Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold-stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer-P occurs in cold-stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer-P formation is independent of long-chain base phosphate (LCB-P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA-dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer-P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress. © 2015 John Wiley & Sons Ltd.

  9. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance.

    PubMed

    Chen, Liang; Fan, Jibiao; Hu, Longxing; Hu, Zhengrong; Xie, Yan; Zhang, Yingzi; Lou, Yanhong; Nevo, Eviatar; Fu, Jinmin

    2015-09-11

    Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.

  10. De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.)

    PubMed Central

    Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu

    2015-01-01

    Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea. PMID:26579175

  11. Thermoregulatory and Immune Responses During Cold Exposure: Effects of Repeated Cold Exposure and Acute Exercise

    DTIC Science & Technology

    2000-03-01

    shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were executed to determine if serial cold ...to cold exposure? The results of these studies suggest that 1) serial cold water blunts shivering leadmg™ower core temperatures, 2) thermoregulatory...fatigues (i.e., causes blunted shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were

  12. The cold driver: Cold stress while driving results in dangerous behavior.

    PubMed

    Morris, Drew M; Pilcher, June J

    2016-10-01

    Cool vehicle cabin temperatures can induce short-term non-hypothermic cold stress. The current study created a cold condition to examine the impact of cold stress on driving behavior. Forty-four participants drove a high-fidelity driving simulator during a thermal neutral or local torso cooled condition. Participants performed additional tasks to assess attention, psychomotor vigilance, and manual dexterity. Skin temperature was significantly lower in the cold condition while internal temperature was unaffected. Participants who had higher subjective ratings of cold followed lead vehicles closer and started to brake later. Participants in the cold condition followed the lead car 22% (0.82s) closer and started braking 20% (2.35s) later when approaching a stop sign during the car-following task. No change in attention, psychomotor vigilance, or dexterity was observed. The current results suggest that cold environmental conditions can contribute to dangerous driving behaviors. Measures of cold perception were also shown to predict changes in driving behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis

    PubMed Central

    Zheng, Chao; Wang, Yu; Ding, Zhaotang; Zhao, Lei

    2016-01-01

    In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed “similar” (26%) expression pattern and avoid antagonistic responses (lowest level of “prioritized” mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality. PMID:28018394

  14. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    PubMed

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  15. Differential Modulation of Photosynthesis, Signaling, and Transcriptional Regulation between Tolerant and Sensitive Tomato Genotypes under Cold Stress

    PubMed Central

    Zhang, Junhong; Wang, Taotao; Li, Hanxia; Zhang, Yuyang; Yu, Chuying; Ye, Zhibiao

    2012-01-01

    The wild species Solanum habrochaites is more cold tolerant than the cultivated tomato (S. lycopersicum). To explore the mechanisms underlying cold tolerance of S. habrochaites, seedlings of S. habrochaites LA1777 introgression lines (ILs), as well as the two parents, were evaluated under low temperature (4°C). The IL LA3969 and its donor parent LA1777 were found to be more cold tolerant than the recurrent parent S. lycopersicum LA4024. The differences in physiology and global gene expression between cold-tolerant (LA1777 and LA3969) and -sensitive (LA4024) genotypes under cold stress were further investigated. Comparative transcriptome analysis identified 1613, 1456, and 1523 cold-responsive genes in LA1777, LA3969, and LA4024, respectively. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of 92 genes with significant differential expression between tolerant and sensitive genotypes under cold stress were identified. Among these, many stress-related GO terms were significantly enriched, such as ‘response to stimulus’ and ‘response to stress’. Moreover, GO terms ‘response to hormone stimulus’, ‘response to reactive oxygen species (ROS)’, and ‘calcium-mediated signaling’ were also overrepresented. Several transcripts involved in hormone or ROS homeostasis were also differentially expressed. ROS, hormones, and calcium as signaling molecules may play important roles in regulating gene expression in response to cold stress. Moreover, the expression of various transcription factors, post-translational proteins, metabolic enzymes, and photosynthesis-related genes was also specifically modulated. These specific modifications may play pivotal roles in conferring cold tolerance in tomato. These results not only provide new insights into the molecular mechanisms of cold tolerance in tomato, but also provide potential candidate genes for genetic improvement. PMID:23226384

  16. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm.

    PubMed

    Jończyk, M; Sobkowiak, A; Trzcinska-Danielewicz, J; Skoneczny, M; Solecka, D; Fronk, J; Sowiński, P

    2017-10-01

    In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.

  17. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress.

    PubMed

    Xu, Weirong; Li, Ruimin; Zhang, Ningbo; Ma, Fuli; Jiao, Yuntong; Wang, Zhenping

    2014-11-01

    Vitis amurensis Rupr. is an exceptional wild-growing Vitis (grape) species that can safely survive a wide range of cold conditions, but the underlying cold-adaptive mechanism associated with gene regulation is poorly investigated. We have analyzed the physiochemical and transcriptomic changes caused by cold stress in a cold-tolerant accession, 'Heilongjiang seedling', of Chinese wild V. amurensis. We statistically determined that a total of 6,850 cold-regulated transcripts were involved in cold regulation, including 3,676 up-regulated and 3,174 down-regulated transcripts. A global survey of messenger RNA revealed that skipped exon is the most prevalent form of alternative spicing event. Importantly, we found that the total splicing events increased with the prolonged cold stress. We also identified thirty-eight major TF families that were involved in cold regulation, some of which were previously unknown. Moreover, a large number of candidate pathways for the metabolism or biosynthesis of secondary metabolites were found to be regulated by cold, which is of potential importance in coordinating cold tolerance with growth and development. Several heat shock proteins and heat shock factors were also detected to be intensively cold-regulated. Furthermore, we validated the expression profiles of 16 candidates using qRT-PCR to further confirm the accuracy of the RNA-seq data. Our results provide a genome-wide view of the dynamic changes in the transcriptome of V. amurensis, in which it is evident that various structural and regulatory genes are crucial for cold tolerance/adaptation. Moreover, our robust dataset advances our knowledge of the genes involved in the complex regulatory networks of cold stress and leads to a better understanding of cold tolerance mechanisms in this extremely cold-tolerant Vitis species.

  18. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress

    PubMed Central

    2012-01-01

    Background Cassava is an important tropical root crop adapted to a wide range of environmental stimuli such as drought and acid soils. Nevertheless, it is an extremely cold-sensitive tropical species. Thus far, there is limited information about gene regulation and signalling pathways related to the cold stress response in cassava. The development of microarray technology has accelerated the study of global transcription profiling under certain conditions. Results A 60-mer oligonucleotide microarray representing 20,840 genes was used to perform transcriptome profiling in apical shoots of cassava subjected to cold at 7°C for 0, 4 and 9 h. A total of 508 transcripts were identified as early cold-responsive genes in which 319 sequences had functional descriptions when aligned with Arabidopsis proteins. Gene ontology annotation analysis identified many cold-relevant categories, including 'Response to abiotic and biotic stimulus', 'Response to stress', 'Transcription factor activity', and 'Chloroplast'. Various stress-associated genes with a wide range of biological functions were found, such as signal transduction components (e.g., MAP kinase 4), transcription factors (TFs, e.g., RAP2.11), and reactive oxygen species (ROS) scavenging enzymes (e.g., catalase 2), as well as photosynthesis-related genes (e.g., PsaL). Seventeen major TF families including many well-studied members (e.g., AP2-EREBP) were also involved in the early response to cold stress. Meanwhile, KEGG pathway analysis uncovered many important pathways, such as 'Plant hormone signal transduction' and 'Starch and sucrose metabolism'. Furthermore, the expression changes of 32 genes under cold and other abiotic stress conditions were validated by real-time RT-PCR. Importantly, most of the tested stress-responsive genes were primarily expressed in mature leaves, stem cambia, and fibrous roots rather than apical buds and young leaves. As a response to cold stress in cassava, an increase in transcripts and enzyme activities of ROS scavenging genes and the accumulation of total soluble sugars (including sucrose and glucose) were also detected. Conclusions The dynamic expression changes reflect the integrative controlling and transcriptome regulation of the networks in the cold stress response of cassava. The biological processes involved in the signal perception and physiological response might shed light on the molecular mechanisms related to cold tolerance in tropical plants and provide useful candidate genes for genetic improvement. PMID:22321773

  19. Analysis of cold worked holes for structural life extension

    NASA Technical Reports Server (NTRS)

    Wieland, David H.; Cutshall, Jon T.; Burnside, O. Hal; Cardinal, Joseph W.

    1994-01-01

    Cold working holes for improved fatigue life of fastener holes are widely used on aircraft. This paper presents methods used by the authors to determine the percent of cold working to be applied and to analyze fatigue crack growth of cold worked fastener holes. An elastic, perfectly-plastic analysis of a thick-walled tube is used to determine the stress field during the cold working process and the residual stress field after the process is completed. The results of the elastic/plastic analysis are used to determine the amount of cold working to apply to a hole. The residual stress field is then used to perform damage tolerance analysis of a crack growing out of a cold worked fastener hole. This analysis method is easily implemented in existing crack growth computer codes so that the cold worked holes can be used to extend the structural life of aircraft. Analytical results are compared to test data where appropriate.

  20. Task-dependent cold stress during expeditions in Antarctic environments.

    PubMed

    Morris, Drew M; Pilcher, June J; Powell, Robert B

    2017-01-01

    This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries.

  1. Changes in ventricular function during emotional stress and cold exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiess, M.C.; Moore, R.A.; Dimsdale, J.

    1984-01-01

    Patients with cardiac disease frequently develop symptoms with emotional stress or cold exposure. To investigate the effects of these stresses in normal subjects, an ambulatory ventricular function monitor (VEST) (previously reported to measure EFs which correlate well with gamma camera measurements) was employed to record sequential 2 minute time activity curves from the left ventricles of 6 healthy men (ages 19-24) during a control period and during a 30 minute stress interview with a psychiatrist. Four of the subjects were also monitored in a cold room (1/sup 0/C) for 20 min. In addition to the left ventricular time-activity curve, heartmore » rate (HR), and BP (cuff) were recorded. All subjects had increases in HR, BP and EF during the stress interview. Cold, however, produced decreases in HR and EF and an increase in BP. The results (mean +- SD) are tabulated. End-systolic and end-diastolic counts and hence volume decreased during the interview and increased during cold exposure. The results suggest that (1) ambulatory changes in ventricular function can be measured with the VEST, and (2) significant changes in cardiovascular physiology are seen in normal subjects during a stress interview and exposure to cold.« less

  2. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  3. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup

    2014-10-15

    Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Brown adipose tissue (BAT) specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation.

    PubMed

    Weiner, Juliane; Rohde, Kerstin; Krause, Kerstin; Zieger, Konstanze; Klöting, Nora; Kralisch, Susan; Kovacs, Peter; Stumvoll, Michael; Blüher, Matthias; Böttcher, Yvonne; Heiker, John T

    2017-06-01

    Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin) and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT) biology. We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT) and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF) or high-sugar (HS) fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT) depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function.

  5. Lessons learned from a double-blind randomised placebo-controlled study with a iota-carrageenan nasal spray as medical device in children with acute symptoms of common cold.

    PubMed

    Fazekas, Tamas; Eickhoff, Philipp; Pruckner, Nathalie; Vollnhofer, Georg; Fischmeister, Gustav; Diakos, Christopher; Rauch, Margit; Verdianz, Maria; Zoubek, Andreas; Gadner, Helmut; Lion, Thomas

    2012-09-05

    Common cold is caused by a variety of respiratory viruses. The prevalence in children is high, and it potentially contributes to significant morbidity. Iota-carragenan, a polymer derived from red seaweed, has reduced viral load in nasal secretions and alleviated symptoms in adults with common cold. We have assessed the antiviral and therapeutic activity of a nasal spray containing iota-carrageenan in children with acute symptoms of common cold. A cohort of 153 children between 1-18 years (mean age 5 years), displaying acute symptoms of common cold were randomly assigned to treatment with a nasal spray containing iota-carrageenan (0.12%) as verum or 0.9% sodium chloride solution as placebo for seven days. Symptoms of common cold were recorded and the viral load of respiratory viruses in nasal secretions was determined at two consecutive visits. The results of the present study showed no significant difference between the iota carrageenan and the placebo group on the mean of TSS between study days 2-7. Secondary endpoints, such as reduced time to clearance of disease (7.6 vs 9.4 days; p = 0.038), reduction of viral load (p = 0.026), and lower incidence of secondary infections with other respiratory viruses (p = 0.046) indicated beneficial effects of iota-carrageenan in this population. The treatment was safe and well tolerated, with less side effects observed in the verum group compared to placebo. In this study iota-carrageenan did not alleviate symptoms in children with acute symptoms of common cold, but significantly reduced viral load in nasal secretions that may have important implications for future studies. ISRCTN52519535, http://www.controlled-trials.com/ISRCTN52519535/

  6. Impact of prenatal cold stress on placental physiology, inflammatory response, and apoptosis in rats.

    PubMed

    Lian, Shuai; Guo, Jingru; Wang, Lipeng; Li, Wenjie; Wang, Jianfa; Ji, Hong; Kong, Fanzhi; Xu, Bin; Li, Shize; Yang, Huanmin

    2017-12-29

    Prenatal cold stress is one of the earliest factors affecting mammalian health, and is associated with neonatal growth retardation and immune dysfunction, thus increasing disease susceptibility. The mechanisms underlying these observations remain unclear; hence, the objective of this study was to elucidate placental responses to cold stress. 60 maternal rats were randomly allocated to either stressed (n = 30) or non-stressed (control, n = 30) treatment conditions and 30 pubs (n=15) were used for the pups analysis. We found that maternal exposure to cold stress resulted in decreased body temperature, increased food intake without body weight gain, and a high level of plasma corticosterone (CORT) between gestational day (GD) 14 and GD21. In addition, gestation cold stress induced the placental expression of heat shock protein 70 (HSP70), IκBα, glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), interferon (IFN) regulatory factor 3 (IRF3), Caspase-3 proteins and altered the ratio of B-cell lymphoma-extra large (Bcl-xL) to Bcl-associated x (Bax) proteins on gestational GD15, GD17, GD19, and GD21, also resulted in the production of interleukin (IL)-1β. Next, gestational cold stress provoked a decrease in plasma GH levels of 21-day-old offspring, and the body weights of offspring were have no differences from postnatal day (PD) 1-21. Taken together, our results indicate that gestational cold stress induces placental apoptosis and the activation of NF-kB via HSP70/TLR4/NF-κB signaling pathways in the placenta, these changes may affect placental function and fetus development.

  7. Systematic identification of light-regulated cold-responsive proteome in a model cyanobacterium.

    PubMed

    Chen, Weiyang; Fang, Longfa; Huang, Xiahe; Ge, Haitao; Wang, Jinlong; Wang, Xiaorong; Zhang, Yuanya; Sui, Na; Xu, Wu; Wang, Yingchun

    2018-05-15

    Differential expression of cold-responsive proteins is necessary for cyanobacteria to acclimate to cold stress frequently occurring in their natural habitats. Accumulating evidence indicates that cold-induced expression of certain proteins is dependent on light illumination, but a systematic identification of light-dependent and/or light-independent cold-responsive proteins in cyanobacteria is still lacking. Herein, we comprehensively identified cold-responsive proteins in a model cyanobacterium Synechocystis sp. PCC 6803 (Hereafter Synechocystis) that was cold-stressed in light or in dark. In total, 72 proteins were identified as cold-responsive, including 19 and 17 proteins whose cold-responsiveness are light-dependent and light-independent, respectively. Bioinformatic analysis revealed that outer membrane proteins, proteins involved in translation, and proteins involved in divergent types of stress responses were highly enriched in the cold-responsive proteins. Moreover, a protein network responsible for nitrogen assimilation and amino acid biosynthesis, transcription, and translation were upregulated in response to the cold stress. The network contains both light-dependent and light-independent cold-responsive proteins, probably for fine tuning its activity to endow Synechocystis the flexibility necessary for cold adaptation in their natural habitats, where days and nights are alternating. Together, our results should serve as an important resource for future study toward understanding the mechanism of cold acclimation in cyanobacteria. Photosynthetic cyanobacteria need to acclimate to frequently occurring abiotic stresses such as cold in their natural habitats, and the acclimation process has to be coordinated with photosynthesis, the light-dependent process that provides carbon and energy for propagation of cyanobacteria. It is conceivable that cold-induced differential protein expression can also be regulated by light. Hence it is important to systematically identify cold responsive proteins that are regulated or not regulated by light to better understand the mechanism of cold acclimation in cyanobacteria. In this manuscript, we identified a network involved in protein synthesis that were upregulated by cold. The network contains both light-dependent and light-independent cold-inducible proteins, presumably for fine tuning the activity of the network in natural habitats of cyanobacteria where days and nights are alternating. This finding underscores the significance of proteome reprograming toward enhancing protein synthesis in cold adaptation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

    PubMed Central

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682

  9. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp.

    PubMed Central

    Rodrigues, Ana P.; Lidon, Fernando C.; Marques, Luís M. C.; Leitão, A. Eduardo; Fortunato, Ana S.; Pais, Isabel P.; Silva, Maria J.; Scotti-Campos, Paula; Lopes, António; Reboredo, F. H.; Ribeiro-Barros, Ana I.

    2018-01-01

    The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided. PMID:29870563

  10. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp.

    PubMed

    Ramalho, José C; Rodrigues, Ana P; Lidon, Fernando C; Marques, Luís M C; Leitão, A Eduardo; Fortunato, Ana S; Pais, Isabel P; Silva, Maria J; Scotti-Campos, Paula; Lopes, António; Reboredo, F H; Ribeiro-Barros, Ana I

    2018-01-01

    The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.

  11. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I).

    PubMed

    Huge, Volker; Lauchart, Meike; Förderreuther, Stefanie; Kaufhold, Wibke; Valet, Michael; Azad, Shahnaz Christina; Beyer, Antje; Magerl, Walter

    2008-07-23

    Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS). In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST) in comparison to an age and gender matched control group. 61 patients presenting with CRPS I of the upper extremity and 56 healthy subjects were prospectively assessed using QST. The patients' warm and cold detection thresholds (WDT; CDT), the heat and cold pain thresholds (HPT; CPT) and the occurrence of paradoxical heat sensation (PHS) were observed. In acute CRPS I, patients showed warm and cold hyperalgesia, indicated by significant changes in HPT and CPT. WDT and CDT were significantly increased as well, indicating warm and cold hypoaesthesia. In chronic CRPS, thermal hyperalgesia declined, but CDT as well as WDT further deteriorated. Solely patients with acute CRPS displayed PHS. To a minor degree, all QST changes were also present on the contralateral limb. We propose three pathomechanisms of CRPS I, which follow a distinct time course: Thermal hyperalgesia, observed in acute CRPS, indicates an ongoing aseptic peripheral inflammation. Thermal hypoaesthesia, as detected in acute and chronic CRPS, signals a degeneration of A-delta and C-fibres, which further deteriorates in chronic CRPS. PHS in acute CRPS I indicates that both inflammation and degeneration are present, whilst in chronic CRPS I, the pathomechanism of degeneration dominates, signalled by the absence of PHS. The contralateral changes observed strongly suggest the involvement of the central nervous system.

  12. ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosan; Li, Kongqing; Jin, Cong; Zhang, Shaoling

    2015-12-01

    ICE1 transcription factor plays an important role in plant cold stress via regulating the expression of stress-responsive genes. In this study, a PuICE1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. The expression levels of the PuICE1 were induced by cold, dehydration and salt, with the greatest induction under cold conditions. PuICE1 was localized in the nucleus and could bind specifically to the MYC element in the PuDREBa promoter. The PuICE1 fused to the GAL4 DNA-binding domain to have transcriptional activation activity. Ectopic expression of the PuICE1 in tomato conferred enhanced tolerance to cold stress at cold temperatures, less electrolyte leakage, less MDA content, higher chlorophyll content, higher survival rate, higher proline content, higher activities of enzymes. In additon, steady-state mRNA levels of six stress-responsive genes coding for either functional or regulatory genes were induced to higher levels in the transgenic lines by cold stress. Yeast two-hybrid, transient assay, split luciferase complementation and BiFC assays all revealed that PuHHP1 protein can physically interact with PuICE1. Taken together, these results demonstrated that PuICE1 plays a positive role in cold tolerance, which may be due to enhancement of PuDREBa transcriptional levels through interacting with the PuHHP1.

  13. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    PubMed

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.

  14. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae

    Treesearch

    Jacques Regniere; Barbara Bentz

    2007-01-01

    Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following...

  15. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

    PubMed

    Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin

    2015-08-28

    WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves

    PubMed Central

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-01-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  17. Intermittent whole-body cold immersion induces similar thermal stress but different motor and cognitive responses between males and females.

    PubMed

    Solianik, Rima; Skurvydas, Albertas; Mickevičienė, Dalia; Brazaitis, Marius

    2014-10-01

    The main aim of this study was to compare the thermal responses and the responses of cognitive and motor functions to intermittent cold stress between males and females. The intermittent cold stress continued until rectal temperature (TRE) reached 35.5°C or for a maximum of 170 min. Thermal response and motor and cognitive performance were monitored. During intermittent cold stress, body temperature variables decreased in all subjects (P < 0.001) and did not differ between sexes. The presence of fast and slow cooling types for participants with similar effect on physiological variables were observed; thus the different rate coolers were grouped together and were attributed only sex specific responses. Overall, TRE cooling rate and cold strain index did not differ between sexes. Maximal voluntary contraction (MVC) decreased after intermittent cold exposure only in males (P < 0.001), whereas changes in muscle electromyography (EMG) activity did not differ between sexes. The effects of intermittent cold stress on electrically evoked muscle properties, spinal (H-reflex), and supraspinal (V-waves) reflexes did not differ between sexes. Intermittent cold-induced cognitive perturbation of attention and memory task performance was greater in males (P < 0.05). Contrary to our expectations, the results of the present study indicated that males and females experience similar thermal stress induced by intermittent whole-body cold immersion. Although no sex-specific differences were observed in muscle EMG activity, involuntary muscle properties, spinal and supraspinal reflexes, some of the sex differences observed (e.g., lower isometric MVC and greater cognitive perturbation in males) support the view of sex-specific physiological responses to core temperature decrease. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    PubMed Central

    Zhang, Yingmei; Li, Linlin; Hua, Yinan; Nunn, Jennifer M.; Dong, Feng; Yanagisawa, Masashi; Ren, Jun

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function. PMID:22442497

  19. Translating Research from Animal Models: Does It Matter that Our Rodents are So Cold?

    EPA Science Inventory

    Does it matter that preclinical rodent models are routinely housed below their thermoneutral zone and are thereby cold-stressed? We compile evidence showing that rodents housed below their thermoneutral zone are cold-stressed, hypermetalbolic, hypertensive, sleep-deprived, obesi...

  20. Management update of acute bacterial rhinosinusitis and the use of cefdinir.

    PubMed

    Gwaltney, Jack M

    2002-12-01

    The pathogenesis, bacteriology, diagnosis, and antimicrobial treatment of acute bacterial rhinosinusitis (ABRS) is reviewed. Most cases of ABRS arise as complications of the rhinosinusitis of colds and other acute viral respiratory infections. Nose blowing during colds may be a risk factor for ABRS by propelling bacteria-laden nasal fluid into the sinus cavity. The bacterial causes of ABRS continue to be S pneumoniae. H influenzae, other streptococcal species, M catarrhalis, anaerobes, and S aureus. Clinical diagnosis of ABRS is based on obtaining a history of a cold or influenza-like illness that is no better or worse after >/=7 days. A 10-day course of treatment with an antimicrobial effective against resistant S pneumoniae and H influenzae is recommended. A clinical trial was reviewed in which cefdinir was effective in treating ABRS.

  1. Task-dependent cold stress during expeditions in Antarctic environments

    PubMed Central

    Morris, Drew M.; Pilcher, June J.; Powell, Robert B.

    2017-01-01

    ABSTRACT This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries. PMID:28990466

  2. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocationmore » mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.« less

  3. Characteristics of cold-induced dark, firm, dry broiler chicken breast meat.

    PubMed

    Dadgar, S; Lee, E S; Crowe, T G; Classen, H L; Shand, P J

    2012-01-01

    1. A study was designed to characterise dark, firm, dry (DFD) breast meat resulting from cold exposure of broilers and compare its properties with normal breast meat from cold-stressed and control birds. 2. A total of 140 broilers were selected from 5- and 6-week-old birds exposed to cold temperatures ranging from -18 to -4°C, or a control temperature of +20°C for 3 h in an environmental chamber. Half of these birds were slaughtered immediately following the cold exposure and the other half were given 2 h of lairage. 3. Breast meat samples were categorised based on ultimate pH (pH(u)) and colour L* (lightness) values into normal (5·7 ≤ pH(u)≤ 6·1; 46 ≤ L* ≤ 53) breast meat from control (control-normal) or cold-stressed (cold-normal) birds, and DFD (pH(u) > 6·1; L* < 46) breast meat, which only occurred in cold-stressed birds (cold-DFD). 4. Residual glycogen was not different between cold-DFD and control-normal breast meat. Lactate concentration was lower in cold-DFD compared with control-normal breast meat. Lactate concentration almost tripled for all the samples by 30 h post-mortem, which resulted in a drop in pH of normal meat, but did not have any effect on pH of DFD breast meat. Glycolytic potential at both 5 min and 30 h post-mortem was lower in DFD breast meat compared with the normal breast meat from both cold-stressed and control birds. 5. Cold-DFD breast meat was significantly darker, with higher pH(u), lower cook loss, higher water-binding capacity and processing cook yield than cold-normal and control-normal breast meat, which were not different from each other.

  4. Feasibility and validity of animal-based indicators for on-farm welfare assessment of thermal stress in dairy goats

    NASA Astrophysics Data System (ADS)

    Battini, Monica; Barbieri, Sara; Fioni, Luna; Mattiello, Silvana

    2016-02-01

    This investigation tested the feasibility and validity of indicators of cold and heat stress in dairy goats for on-farm welfare assessment protocols. The study was performed on two intensive dairy farms in Italy. Two different 3-point scale (0-2) scoring systems were applied to assess cold and heat stress. Cold and heat stress scores were visually assessed from outside the pen in the morning, afternoon and evening in January-February, April-May and July 2013 for a total of nine sessions of observations/farm. Temperature (°C), relative humidity (%) and wind speed (km/h) were recorded and Thermal Heat Index (THI) was calculated. The sessions were allocated to three climatic seasons, depending on THI ranges: cold (<50), neutral (50-65) and hot (>65). Score 2 was rarely assessed; therefore, scores 1 and 2 were aggregated for statistical analysis. The amount of goats suffering from cold stress was significantly higher in the cold season than in neutral ( P < 0.01) and hot ( P < 0.001) seasons. Signs of heat stress were recorded only in the hot season ( P < 0.001). The visual assessment from outside the pen confirms the on-farm feasibility of both indicators: No constraint was found and time required was less than 10 min. Our results show that cold and heat stress scores are valid indicators to detect thermal stress in intensively managed dairy goats. The use of a binary scoring system (presence/absence), merging scores 1 and 2, may be a further refinement to improve the feasibility. This study also allows the prediction of optimal ranges of THI for dairy goat breeds in intensive husbandry systems, setting a comfort zone included into 55 and 70.

  5. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    PubMed

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  6. Uncovering Small RNA-Mediated Responses to Cold Stress in a Wheat Thermosensitive Genic Male-Sterile Line by Deep Sequencing1[W][OA

    PubMed Central

    Tang, Zhonghui; Zhang, Liping; Xu, Chenguang; Yuan, Shaohua; Zhang, Fengting; Zheng, Yonglian; Zhao, Changping

    2012-01-01

    The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress. PMID:22508932

  7. Finite element analysis of residual stress in cold expanded plate with different thickness and expansion ratio

    NASA Astrophysics Data System (ADS)

    Arifin Shariffudin, Kamarul; Karuppanan, Saravanan; Patil, Santosh S.

    2017-10-01

    Cold expansion of fastener/rivet holes is a common way to generate beneficial compressive residual stress around the fastener hole. In this study, cold expansion process was simulated by finite-element method in order to determine the residual stress field around two cold expanded holes by varying the plate thickness and expansion ratio of the hole. The model was developed in ANSYS and assigned to aluminium alloy 7475-T61 material model. The results showed that the residual stress become more compressive as the plate thickness is increased up to t/d = 2.6 and decreased for further level of thickness. In addition, the residual stress at the edge of the hole become more compressive as the expansion ratio is increased up to 4.5% and decreased for further level of expansion. This study also found that the residual stresses near the entrance and the exit face of the plate are less compressive than the residual stresses on the mid-thickness of the plate.

  8. The 70 kDa Heat Shock Protein Assists during the Repair of Chilling Injury in the Insect, Pyrrhocoris apterus

    PubMed Central

    Koštál, Vladimír; Tollarová-Borovanská, Michaela

    2009-01-01

    Background The Pyrrhocoris apterus (Insecta: Heteroptera) adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps) and the role of Hsps during repair of heat- and cold-induced injury. Principal Findings The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and cognate forms (PaHsc70) were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR) and corresponding protein (Western blotting) were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. Conclusion Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus. PMID:19229329

  9. Towards a wearable sensor system for continuous occupational cold stress assessment

    PubMed Central

    AUSTAD, Hanne; WIGGEN, Øystein; FÆREVIK, Hilde; SEEBERG, Trine M.

    2018-01-01

    This study investigated the usefulness of continuous sensor data for improving occupational cold stress assessment. Eleven volunteer male subjects completed a 90–120-min protocol in cold environments, consisting of rest, moderate and hard work. Biomedical data were measured using a smart jacket with integrated temperature, humidity and activity sensors, in addition to a custom-made sensor belt worn around the chest. Other relevant sensor data were measured using commercially available sensors. The study aimed to improve decision support for workers in cold climates, by taking advantage of the information provided by data from the rapidly growing market of wearable sensors. Important findings were that the subjective thermal sensation did not correspond to the measured absolute skin temperature and that large differences were observed in both metabolic energy production and skin temperatures under identical exposure conditions. Temperature, humidity, activity and heart rate were found to be relevant parameters for cold stress assessment, and the locations of the sensors in the prototype jacket were adequate. The study reveals the need for cold stress assessment and indicates that a generalised approached is not sufficient to assess the stress on an individual level. PMID:29353859

  10. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis

    PubMed Central

    Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.

    2017-01-01

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA accessions. PMID:28282385

  11. Identification of a melatonin receptor type 1A gene ( AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress

    NASA Astrophysics Data System (ADS)

    Li, Guilin; Zhang, Yanming; Ni, Yong; Wang, Ying; Xu, Baohua; Guo, Xingqi

    2018-04-01

    It is known that melatonin plays an indispensable role in the defense against some environment-induced stresses. The melatonin receptor (MTNR) is also closely linked to the environmental stress response in mammals. However, little is known about the function of the MTNR in insects, including honeybees. In this study, we identified a MTNR from Apis cerana cerana named AccMTNR1A, which contained a typical seven-transmembrane domain common to this family of receptors. A subcellular localization analysis showed that AccMTNR1A was localized in the cytomembrane. Additionally, we found that cold stress apparently boosted AccMTNR1A transcription, indicating that AccMTNR1A possibly connects to the cold stress response. The knockdown of AccMTNR1A attenuated the expression level of some genes associated with the cold stress response, suggesting that AccMTNR1A likely plays an analogous role with these genes during low temperature stress response. Moreover, silencing of AccMTNR1A also suppressed the transcription of some antioxidant genes, prompting the possibility that the response of AccMTNR1A to cold stress response may be related to antioxidant signaling pathways. Collectively, the findings presented here provide evidence that AccMTNR1A may play essential roles in protecting Apis cerana cerana from cold stress.

  12. Antibiotics for the common cold and acute purulent rhinitis.

    PubMed

    Kenealy, Tim; Arroll, Bruce

    2013-06-04

    It has long been believed that antibiotics have no role in the treatment of common colds yet they are often prescribed in the belief that they may prevent secondary bacterial infections. To determine the efficacy of antibiotics compared with placebo for reducing general and specific nasopharyngeal symptoms of acute upper respiratory tract infections (URTIs) (common colds).To determine if antibiotics have any influence on the outcomes for acute purulent rhinitis and acute clear rhinitis lasting less than 10 days before the intervention.To determine whether there are significant adverse outcomes associated with antibiotic therapy for participants with a clinical diagnosis of acute URTI or acute purulent rhinitis. For this 2013 update we searched CENTRAL 2013, Issue 1, MEDLINE (March 2005 to February week 2, 2013), EMBASE (January 2010 to February 2013), CINAHL (2005 to February 2013), LILACS (2005 to February 2013) and Biosis Previews (2005 to February 2013). Randomised controlled trials (RCTs) comparing any antibiotic therapy against placebo in people with symptoms of acute upper respiratory tract infection for less than seven days, or acute purulent rhinitis less than 10 days in duration. Both review authors independently assessed trial quality and extracted data. This updated review included 11 studies. Six studies contributed to one or more analyses related to the common cold, with up to 1047 participants. Five studies contributed to one or more analyses relating to purulent rhinitis, with up to 791 participants. One study contributed only to data on adverse events and one met the inclusion criteria but reported only summary statistics without providing any numerical data that could be included in the meta-analyses. Interpretation of the combined data is limited because some studies included only children, or only adults, or only males; a wide range of antibiotics were used and outcomes were measured in different ways. There was a moderate risk of bias because of unreported methods details or because an unknown number of participants were likely to have chest or sinus infections.Participants receiving antibiotics for the common cold did no better in terms of lack of cure or persistence of symptoms than those on placebo (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.59 to 1.51, (random-effects)), based on a pooled analysis of six trials with a total of 1047 participants. The RR of adverse effects in the antibiotic group was 1.8, 95% CI 1.01 to 3.21, (random-effects). Adult participants had a significantly greater risk of adverse effects with antibiotics than with placebo (RR 2.62, 95% CI 1.32 to 5.18) (random-effects) while there was no greater risk in children (RR 0.91, 95% CI 0.51 to 1.63).The pooled RR for persisting acute purulent rhinitis with antibiotics compared to placebo was 0.73 (95% CI 0.47 to 1.13) (random-effects), based on four studies with 723 participants. There was an increase in adverse effects in the studies of antibiotics for acute purulent rhinitis (RR 1.46, 95% CI 1.10 to 1.94). There is no evidence of benefit from antibiotics for the common cold or for persisting acute purulent rhinitis in children or adults. There is evidence that antibiotics cause significant adverse effects in adults when given for the common cold and in all ages when given for acute purulent rhinitis. Routine use of antibiotics for these conditions is not recommended.

  13. Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure

    PubMed Central

    Tupone, Domenico

    2014-01-01

    SUMMARY Thermogenesis, the production of heat energy, is the specific, neurally-regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically-driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis. PMID:24630813

  14. Treatment of Acute Cough Due to the Common Cold: Multi-component, Multi-symptom Therapy is Preferable to Single-Component, Single-Symptom Therapy--A Pro/Con Debate.

    PubMed

    Eccles, Ronald; Turner, Ronald B; Dicpinigaitis, Peter V

    2016-02-01

    Acute viral upper respiratory tract infection, or, the common cold, affects essentially every human being, and cough is reported as its most frequent associated symptom. Billions of dollars are spent worldwide annually by individuals seeking relief from this multi-symptom syndrome. Thousands of non-prescription, over-the-counter products are available worldwide, aimed at relieving the various bothersome symptoms induced by the common cold. Differences of opinion exist as to whether optimal therapy for cough associated with the common cold consists of multi-component, multi-symptom cough/cold preparations, or, whether single-component medications, aimed at relief of specific symptoms, represent the optimal therapeutic approach. The 5th American Cough Conference, held in Washington, D.C. in June, 2015, provided an ideal forum for discussion and debate of this issue between two internationally recognized experts in the field of the common cold and its treatment.

  15. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves.

    PubMed

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-02-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. Acute and past subjective stress influence working memory and related neural substrates.

    PubMed

    Luettgau, Lennart; Schlagenhauf, Florian; Sjoerds, Zsuzsika

    2018-05-28

    Stress has been proposed to affect cognitive control capacities, including working memory (WM) maintenance. This effect may depend on variability in stress reactivity and past subjective stress. However, as most studies employed between-subjects designs, evidence for within-subject stress effects remains scarce. To understand the role of intra-individual stress effects on WM, we adopted a within-subject design to study how acute stress, variability in stress reactivity, and past subjective stress influence behavioral and neural WM mechanisms. Thirty-four healthy males performed a WM task during functional magnetic resonance imaging (fMRI) in a control versus acute stress condition following the Trier Social Stress Test, a validated psychosocial stressor method. We tested for stress effects on WM performance and related neural activation by associating them with individual acute stress responsivity and past subjective stress experience using retrospective self-report questionnaires. We found no evidence of an effect of acute stress or related stress-reactivity on intra-individual WM performance. However, past subjective stress negatively influenced acute stress-induced changes to WM. On the neural level, acute stress reduced WM-related activation in the dorsolateral prefrontal cortex (dlPFC). The observed negative influence of inter-individual variability in past subjective stress experience on changes in WM performance, suggests that past subjective stress might induce vulnerability for impairing effects of acute stress on cognitive functioning. Because acute stress reduced WM-related dlPFC activation while WM performance remained unaffected, acute stress might boost neural processing efficiency in this group of high performing healthy individuals. Our study suggests that measures of past subjective stress should be considered when studying and interpreting the effects of acute stress on cognition. Copyright © 2018. Published by Elsevier Ltd.

  17. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.).

    PubMed

    Herman, Derek J; Knowles, Lisa O; Knowles, N Richard

    2017-03-01

    Tolerance to heat stress for retention of low-temperature sweetening-resistant phenotype in potato is conferred by insensitivity of acid invertase activity to cold induction. Heat stress exacerbated cold sweetening (buildup of reducing sugars) of the LTS (low-temperature sweetening)-susceptible potato (Solanum tuberosum L.) cultivars, Ranger Russet and Russet Burbank, and completely abolished the resistance to cold sweetening in the LTS-resistant cultivars/clones, Sage Russet, GemStar Russet, POR06V12-3 and A02138-2. Payette Russet and EGA09702-2, however, demonstrated considerable tolerance to heat stress for retention of their LTS-resistant phenotype. Heat-primed Payette Russet and EGA09702-2 tubers accumulated fourfold more sucrose when subsequently stored at 4 °C, while reducing sugar concentrations also increased marginally but remained low relative to the non-heat-tolerant LTS-resistant clones, resulting in light-colored fries. By contrast, sucrose concentrations in heat-primed tubers of the non-heat-tolerant clones remained unchanged during LTS, but reducing sugars increased fivefold, resulting in darkening of processed fries. Acid invertase activity increased in the LTS-susceptible and non-heat-tolerant LTS-resistant cultivars/clones during cold storage. However, Payette Russet tubers maintained very low invertase activity regardless of heat stress and cold storage treatments, as was the case for Innate ® Russet Burbank (W8) tubers, where silenced invertase conferred robust tolerance to heat stress for retention of LTS-resistant phenotype. Importantly, heat-stressed tubers of Payette Russet, EGA09702-2 and Innate ® Russet Burbank (W8) demonstrated similar low reducing sugar and high sucrose-accumulating phenotypes when stored at 4 °C. Tolerance to heat stress for retention of LTS-resistant phenotype in Payette Russet and likely its maternal parent, EGA09702-2, is, therefore, conferred by the ability to maintain low invertase activity during cold storage of heat-stressed tubers.

  18. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica

    PubMed Central

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice. PMID:29774046

  19. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica.

    PubMed

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 ( DaCBF4 ), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4 -overexpressing transgenic rice plant ( Ubi:DaCBF4 ) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.

  20. Neuroendocrine and cardiovascular parameters during simulation of stress-induced rise in circulating oxytocin in the rat.

    PubMed

    Ondrejcakova, M; Bakos, J; Garafova, A; Kovacs, L; Kvetnansky, R; Jezova, D

    2010-07-01

    Physiological functions of oxytocin released during stress are not well understood. We have (1) investigated the release of oxytocin during chronic stress using two long-term stress models and (2) simulated stress-induced oxytocin secretion by chronic treatment with oxytocin via osmotic minipumps. Plasma oxytocin levels were significantly elevated in rats subjected to acute immobilization stress for 120 min, to repeated immobilization for 7 days and to combined chronic cold stress exposure for 28 days with 7 days immobilization. To simulate elevation of oxytocin during chronic stress, rats were implanted with osmotic minipumps subcutaneously and treated with oxytocin (3.6 microg/100 g body weight/day) or vehicle for 2 weeks. Chronic subcutaneous oxytocin infusion led to an increase in plasma oxytocin, adrenocorticotropic hormone, corticosterone, adrenal weights and heart/body weight ratio. Oxytocin treatment had no effect on the incorporation of 5-bromo-2-deoxyuridine into DNA in the heart ventricle. Mean arterial pressure response to intravenous phenylephrine was reduced in oxytocin-treated animals. Decrease in adrenal tyrosin hydroxylase mRNA following oxytocin treatment was not statistically significant. Oxytocin treatment failed to modify food intake and slightly increased water consumption. These data provide evidence on increased concentrations of oxytocin during chronic stress. It is possible that the role of oxytocin released during stress is in modulating hypothalamic-pituitary-adrenocortical axis and selected sympathetic functions.

  1. Stress-related alterations of acyl and desacyl ghrelin circulating levels: mechanisms and functional implications.

    PubMed

    Stengel, Andreas; Wang, Lixin; Taché, Yvette

    2011-11-01

    Ghrelin is the only known peripherally produced and centrally acting peptide hormone that stimulates food intake and digestive functions. Ghrelin circulates as acylated and desacylated forms and recently the acylating enzyme, ghrelin-O-acyltransferase (GOAT) and the de-acylating enzyme, thioesterase 1/lysophospholipase 1 have been identified adding new layers of complexity to the regulation of ghrelin. Stress is known to alter gastrointestinal motility and food intake and was recently shown to modify circulating ghrelin and GOAT levels with differential responses related to the type of stressors including a reduction induced by physical stressors (abdominal surgery and immunological/endotoxin injection, exercise) and elevation by metabolic (cold exposure, acute fasting and caloric restriction) and psychological stressors. However, the pathways underlying the alterations of ghrelin under these various stress conditions are still largely to be defined and may relate to stress-associated autonomic changes. There is evidence that alterations of circulating ghrelin may contribute to the neuroendocrine and behavioral responses along with sustaining the energetic requirement needed upon repeated exposure to stressors. A better understanding of these mechanisms will allow targeting components of ghrelin signaling that may improve food intake and gastric motility alterations induced by stress. Published by Elsevier Inc.

  2. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress.

    PubMed

    Liu, Jing-Yu; Chang, Ming-Chang; Meng, Jun-Long; Feng, Cui-Ping; Wang, Yu

    2018-04-11

    In some industrial processes, cold and light stresses are recognized as two important environmental triggers for the transformation of mycelia into fruit-bodies via intermediate primordia in Flammulina velutipes cultivation. To gain insights into the mechanism of regulation of F. velutipes mycelia in response to cold and light stress, proteins expressed abundantly and characteristically at particular stress states were investigated by using the isobaric tags for the relative and absolute quantitation labeling technique. Among the 1046 nonredundant proteins identified with a high degree of confidence, 264 proteins, which were detected as differentially expressed proteins, were associated with 176 specific KEGG pathways. In-depth data analysis revealed that the regulatory network underlying the cold and light response mechanisms of F. velutipes mycelia was complex and multifaceted, as it included varied functions such as rapid energy supply, the biosynthesis of lysine, phenylalanine, tyrosine, and γ-aminobutyric acid, the calcium signal transduction process, dynein-dependent actin and microtubule cytoskeleton formation, autolysis, oxidative stress adaptation, pigment secretion, tissue and organ morphogenesis, and other interesting stress-related processes. Insights into the proteins might shed light on an intuitive understanding of the cold and light stress response mechanism underlying the fruiting processes of F. velutipes. Furthermore, the data might also provide further insights into the stress response mechanism of macro-fungi and valuable information for scientific improvement of some mushroom cultivation techniques in practice.

  3. A new insight into cold stress in poultry production

    USDA-ARS?s Scientific Manuscript database

    Since growing animals are vulnerable to extreme temperature, climate changes become an important critical constraint to several species in the world. In poultry production, while heat stress has been a rising concern for producers and scientists, cold stress has also caused economic loss worldwide. ...

  4. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    PubMed

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*

    PubMed Central

    Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram

    2013-01-01

    Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and metabolites otherwise not detectable. Twenty percent of the proteins responsive to cold are uncharacterized proteins. This presents a considerable resource for new discoveries in cold stress biology in alga and plants. PMID:23564937

  6. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men

    PubMed Central

    Blondin, Denis P; Labbé, Sébastien M; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E; Richard, Denis; Carpentier, André C; Haman, François

    2015-01-01

    Cold exposure stimulates the sympathetic nervous system (SNS), triggering the activation of cold-defence responses and mobilizing substrates to fuel the thermogenic processes. Although these processes have been investigated independently, the physiological interaction and coordinated contribution of the tissues involved in producing heat or mobilizing substrates has never been investigated in humans. Using [U-13C]-palmitate and [3-3H]-glucose tracer methodologies coupled with positron emission tomography using 11C-acetate and 18F-fluorodeoxyglucose, we examined the relationship between whole body sympathetically induced white adipose tissue (WAT) lipolysis and brown adipose tissue (BAT) metabolism and mapped the skeletal muscle shivering and metabolic activation pattern during a mild, acute cold exposure designed to minimize shivering response in 12 lean healthy men. Cold-induced increase in whole-body oxygen consumption was not independently associated with BAT volume of activity, BAT oxidative metabolism, or muscle metabolism or shivering intensity, but depended on the sum of responses of these two metabolic tissues. Cold-induced increase in non-esterified fatty acid (NEFA) appearance rate was strongly associated with the volume of metabolically active BAT (r = 0.80, P = 0.005), total BAT oxidative metabolism (r = 0.70, P = 0.004) and BAT glucose uptake (r = 0.80, P = 0.005), but not muscle glucose metabolism. The total glucose uptake was more than one order of magnitude greater in skeletal muscles compared to BAT during cold exposure (674 ± 124 vs. 12 ± 8 μmol min−1, respectively, P < 0.001). Glucose uptake demonstrated that deeper, centrally located muscles of the neck, back and inner thigh were the greatest contributors of muscle glucose uptake during cold exposure due to their more important shivering response. In summary, these results demonstrate for the first time that the increase in plasma NEFA appearance from WAT lipolysis is closely associated with BAT metabolic activation upon acute cold exposure in healthy men. In humans, muscle glucose utilization during shivering contributes to a much greater extent than BAT to systemic glucose utilization during acute cold exposure. PMID:25384777

  7. Lessons learned from a double-blind randomised placebo-controlled study with a iota-carrageenan nasal spray as medical device in children with acute symptoms of common cold

    PubMed Central

    2012-01-01

    Background Common cold is caused by a variety of respiratory viruses. The prevalence in children is high, and it potentially contributes to significant morbidity. Iota-carragenan, a polymer derived from red seaweed, has reduced viral load in nasal secretions and alleviated symptoms in adults with common cold. Methods We have assessed the antiviral and therapeutic activity of a nasal spray containing iota-carrageenan in children with acute symptoms of common cold. A cohort of 153 children between 1–18 years (mean age 5 years), displaying acute symptoms of common cold were randomly assigned to treatment with a nasal spray containing iota-carrageenan (0.12%) as verum or 0.9% sodium chloride solution as placebo for seven days. Symptoms of common cold were recorded and the viral load of respiratory viruses in nasal secretions was determined at two consecutive visits. Results The results of the present study showed no significant difference between the iota carrageenan and the placebo group on the mean of TSS between study days 2–7. Secondary endpoints, such as reduced time to clearance of disease (7.6 vs 9.4 days; p = 0.038), reduction of viral load (p = 0.026), and lower incidence of secondary infections with other respiratory viruses (p = 0.046) indicated beneficial effects of iota-carrageenan in this population. The treatment was safe and well tolerated, with less side effects observed in the verum group compared to placebo. Conclusion In this study iota-carrageenan did not alleviate symptoms in children with acute symptoms of common cold, but significantly reduced viral load in nasal secretions that may have important implications for future studies. Trial registration ISRCTN52519535, http://www.controlled-trials.com/ISRCTN52519535/ PMID:22950667

  8. Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat.

    PubMed

    Li, Xiangnan; Hao, Chenglong; Zhong, Jianwen; Liu, Fulai; Cai, Jian; Wang, Xiao; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2015-09-11

    Mechanical wounding can cause morphological and developmental changes in plants, which may affect the responses to abiotic stresses. However, the mechano-stimulation triggered regulation network remains elusive. Here, the mechano-stimulation was applied at two different times during the growth period of wheat before exposing the plants to cold stress (5.6 °C lower temperature than the ambient temperature, viz., 5.0 °C) at the jointing stage. Results showed that mechano-stimulation at the Zadoks growth stage 26 activated the antioxidant system, and substantially, maintained the homeostasis of reactive oxygen species. In turn, the stimulation improved the electron transport and photosynthetic rate of wheat plants exposed to cold stress at the jointing stage. Proteomic and transcriptional analyses revealed that the oxidative stress defense, ATP synthesis, and photosynthesis-related proteins and genes were similarly modulated by mechano-stimulation and the cold stress. It was concluded that mechano-stimulated modifications of the chloroplast antioxidant system and proteome changes are related to cold tolerance in wheat. The findings might provide deeper insights into roles of reactive oxygen species in mechano-stimulated cold tolerance of photosynthetic apparatus, and be helpful to explore novel approaches to mitigate the impacts of low temperature occurring at critical developmental stages.

  9. Relationship between general intelligence, emotional intelligence, stress levels and stress reactivity.

    PubMed

    Singh, Yogesh; Sharma, Ratna

    2012-07-01

    Stressful life events and daily life stresses have both deleterious and cumulative effects on human body. In several studies, stress has been shown to affect various parameter of higher mental function like attention, concentration, learning and memory. Present study was designed to explore the relationship among GI level, EI level, psychological stress levels and acute stress reactivity in young normal healthy subjects. The study was conducted on thirty four healthy male student volunteers to study a) acute stress reactivity in subjects with varying levels of General Intelligence (GI) and Emotional Intelligence (EI) and b) correlation between GI, EI, acute stress and perceived stress. Baseline GI and EI and acute stress and perceived stress scores were measured by standard assessment scales. Using median value of GI and EI scores as cutoff values, subjects were categorized into four groups. Among different GI-EI groups, acute stress reactivity was similar but salivary Cortisol (especially post stressor level) and perceived stress level was a differentiating factor. High level of EI was associated inversely with acute and chronic perceived stress level. Significant correlation was found between acute and chronic perceived stress levels. Level of general intelligence showed no relation to acute or chronic stress levels as well as acute stress reactivity. The differences in various groups of GI and EI had no effect on the baseline and post stress performance on Sternberg memory test and all the three conditions of Stroop test. In conclusion emotional intelligence as an attribute is better suited to handle day to day acute stress and chronic perceived stress.

  10. An Overview of Signaling Regulons During Cold Stress Tolerance in Plants

    PubMed Central

    Pareek, Amit; Khurana, Ashima; Sharma, Arun K.; Kumar, Rahul

    2017-01-01

    Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants. PMID:29204079

  11. MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys.

    PubMed

    Parajuli, Nirmala; Campbell, Lia H; Marine, Akira; Brockbank, Kelvin G M; Macmillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation.

  12. MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys

    PubMed Central

    Parajuli, Nirmala; Campbell, Lia H.; Marine, Akira; Brockbank, Kelvin G. M.; MacMillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation. PMID:23139796

  13. Usefulness of ambulatory radionuclide monitoring of left ventricular function early after acute myocardial infarction for predicting residual myocardial ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breisblatt, W.M.; Weiland, F.L.; McLain, J.R.

    1988-11-15

    Ambulatory radionuclide monitoring of left ventricular function was performed with the nuclear Vest device in 35 patients early after acute myocardial infarction. Patients were evaluated during post-infarction treadmill, other activities that included mental stress and cold pressor challenge, and with stress thallium imaging and cardiac catheterization. Of the 35 patients evaluated, 14 had ischemic responses on treadmill testing and 21 had negative responses. By contrast, 20 had redistribution by thallium imaging suggesting ischemia. Vest studies demonstrated 56 responses suggestive of ischemia in 23 patients. Twenty-two occurred during exercise and 13 with mental stress. Seventy-five percent were silent and only 39%more » had associated electrocardiographic changes. Vest responses were compared in patients whose thallium scan was indicative of ischemia (thallium-positive) and those without ischemia (thallium-negative). Ejection fraction was higher in the thallium-positive group (0.52 +/- 0.11), as compared with thallium-negative patients (0.44 +/- 0.1). With exercise, ejection fraction decreased for the thallium-positive patients from 0.52 +/- 0.11 to 0.40 +/- 0.09 at peak exercise. For thallium-negative patients, ejection fraction changes were not significant. During mental stress, ejection fraction decreased from 0.51 +/- 0.11 to 0.45 +/- 0.12 for thallium-positive patients while thallium-negative patients were unchanged. Vest-measured decreases in ejection fraction of greater than or equal to 5 units during exercise were highly sensitive (90%), specific (73%) and predictive (82%) of a positive thallium scan. The same response for mental stress was specific (87%) and predictive (85%) of a positive scan result.« less

  14. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple

    PubMed Central

    2012-01-01

    Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381

  15. Coping with Rosacea: Tripwires

    MedlinePlus

    ... Weather Sun exposure, hot weather, humidity, cold and wind have all been known to aggravate rosacea for ... against the naturally drying effects of cold and wind. top Tripwires - Stress Stress ranks high on the ...

  16. Is the wide distribution of aspen a result of its stress tolerance?

    Treesearch

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  17. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    PubMed Central

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  18. Hypothermal stress induced differential expression profiles of the immune response gene, warm-temperature-acclimation associated 65-kDa protein (Wap65), in the liver of fresh water and seawater milkfish, Chanos chanos.

    PubMed

    Chang, Chia-Hao; Lin, Jing-Yun; Lo, Wan-Yu; Lee, Tsung-Han

    2017-11-01

    The milkfish (Chanos chanos), an important aquaculture species, is intolerant to cold environments. Temperature fluctuations in the environment affect the physiological response, behavior, and survival rate of the fish. The warm-temperature-acclimation associated 65-kDa protein (Wap65) of teleosts was identified after heat shock treatment and has two isoforms. Both the isoforms were involved in the induction of immune responses in fish. They showed high degree of sequence conservation with the mammalian hemopexin and had high affinity for heme, which helped in the neutralization of free-heme and its transport to the liver. In this study, we isolated and characterized the two isoforms of wap65 genes (Ccwap65-1 and Ccwap65-2) from the liver of milkfish. The Ccwap65-1 and Ccwap65-2 are mainly expressed in livers of milkfish. In hypothermal treatment, the expression levels of Ccwap65-2 in the livers of SW and FW milkfish were up-regulated after exposure to low temperature (18 °C) for 12 h and 96 h compared to those in the normal temperature (28 °C) group, respectively. After intraperitoneal injection of lipopolysaccharide (LPS), the expression of Ccwap65-2 was elevated in both SW and FW milkfish, whereas that of Ccwap65-1 was not affected in both the groups. Thus, Ccwap65-2 expressed in the milkfish liver under hypothermal stress was identified as a novel immune biomarker. In addition, according to the transcriptome database, up-regulation of the other immune-response genes indicated increased pathogen infection status under hypothermal stress. Acute increase in the expression of hepatic Ccwap65-2 in response to pathogen infection might lead to better cold tolerance of SW milkfish compared to that of the FW individuals upon cold challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A

    PubMed Central

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864

  20. Cold and Flu

    MedlinePlus

    ... Long-term Abdominal Pain (Stomach Pain), Short-term Ankle Problems Breast Problems in Men Breast Problems in Women Chest Pain in Infants and Children Chest Pain, Acute Chest Pain, Chronic Cold and Flu Cough Diarrhea ...

  1. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    PubMed Central

    2014-01-01

    Background WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. Results We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. Conclusions We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape. PMID:24755338

  2. Comparison of the effects of acute and chronic psychological stress on metabolic features in rats*

    PubMed Central

    Rostamkhani, Fatemeh; Zardooz, Homeira; Zahediasl, Saleh; Farrokhi, Babak

    2012-01-01

    This study was aimed to compare the effects of acute and chronic psychological stress on metabolic factors. Forty-two male Wistar rats were divided into control and stressed groups. Stress was applied by a communication box acutely (1 d) and chronically (15 and 30 d). Blood sampling was carried out by retro-orbital-puncture method. The plasma levels of glucose, cholesterol, triglyceride, insulin, and corticosterone were measured. In addition, feed and water intake, latency to eat and drink, adrenal and body weights were determined. Acute and chronic psychological stress did not significantly change basal plasma corticosterone levels. However, immediately (1 min) after acute exposure to stress, plasma corticosterone level increased compared to that before stress exposure. Acute stress increased plasma insulin levels significantly. Fifteen days of stress exposure resulted in plasma glucose increase. Chronic stress significantly increased feed intake, latency to eat, and adrenal weight compared to acute stress. The body weights of both control and stressed groups increased markedly during the experiment. Homeostasis model assessment of insulin resistance (HOMA-IR) index did not change significantly in the stressed group. In conclusion, application of acute and chronic psychological stress leads to different metabolic and/or behavioral changes but the metabolic changes resulting from acute exposure to stress seem to be more pronounced. PMID:23125083

  3. Design, rationale and feasibility of a multidimensional experimental protocol to study early life stress.

    PubMed

    Bartholomeusz, M Dillwyn; Bolton, Philip S; Callister, Robin; Skinner, Virginia; Hodgson, Deborah

    2017-09-01

    There is a rapidly accumulating body of evidence regarding the influential role of early life stress (ELS) upon medical and psychiatric conditions. While self-report instruments, with their intrinsic limitations of recall, remain the primary means of detecting ELS in humans, biological measures are generally limited to a single biological system. This paper describes the design, rationale and feasibility of a study to simultaneously measure neuroendocrine, immune and autonomic nervous system (ANS) responses to psychological and physiological stressors in relation to ELS. Five healthy university students were recruited by advertisement. Exclusion criteria included chronic medical conditions, psychotic disorders, needle phobia, inability to tolerate pain, and those using anti-inflammatory medications. They were clinically interviewed and physiological recordings made over a two-hour period pre, during and post two acute stressors: the cold pressor test and recalling a distressing memory. The Childhood Trauma Questionnaire and the Parental Bonding Index were utilised to measure ELS. Other psychological measures of mood and personality were also administered. Measurements of heart rate, blood pressure, respiratory rate, skin conductance, skin blood flow and temporal plasma samples were successfully obtained before, during and after acute stress. Participants reported the extensive psychological and multisystem physiological data collection and stress provocations were tolerable. Most (4/5) participants indicated a willingness to return to repeat the protocol, indicating acceptability. Our protocol is viable and safe in young physically healthy adults and allows us to assess simultaneously neuroendocrine, immune and autonomic nervous system responses to stressors in persons assessed for ELS.

  4. Genome wide association analysis for seedling response traits to thermal stress in sorghum germplasm

    USDA-ARS?s Scientific Manuscript database

    The sorghum association panel exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified thirty single nucleotide polymorphisms (SNPs) that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act a...

  5. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

    PubMed Central

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Carrasco, Pedro

    2011-01-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression. PMID:21330789

  6. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress.

    PubMed

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; Del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Ruiz, Oscar A; Carrasco, Pedro

    2011-02-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.

  7. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect

    PubMed Central

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-01-01

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips. PMID:29883387

  8. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect.

    PubMed

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-05-21

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.

  9. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress.

    PubMed

    Miladi, Hanene; Elabed, Hamouda; Ben Slama, Rihab; Rhim, Amel; Bakhrouf, Amina

    2017-03-01

    Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry. This ubiquity can be partly explained by the ability of the organism to grow and persist at very low temperatures, a consequence of its ability to accumulate cryoprotective compound called osmolytes. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the stress response genes opuCA and betL (encoding carnitine and betaine transporters, respectively) and the housekeeping gene 16S rRNA. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting cold and freezing stress, conditions usually used to preserve foods. We showed that expression of the two cold-adapted genes encoded the transporters of the cryoprotectants carnitine and betaine in ATCC 19115 and the food-isolated L. monocytogenes S1 is induced after cold and freezing stress exposure. Furthermore, transcriptional analysis of the genes encoding opuCA and betL revealed that each transporter is induced to different degrees upon cold shock of L. monocytogenes ATCC 19115 and S1. Our results confirm an increase in carnitine uptake at low temperatures more than in betaine after cold-shocked temperature compared to the non-stress control treatment. It was concluded the use of carnitine and betaine as cryoprotectants is essential for rapid induction of the tested stress response under conditions typically encountered during food preservation.

  10. Comparative Transcriptomic Analysis of the Response to Cold Acclimation in Eucalyptus dunnii

    PubMed Central

    Liu, Yiqing; Jiang, Yusong; Lan, Jianbin; Zou, Yong; Gao, Junping

    2014-01-01

    Eucalyptus dunnii is an important macrophanerophyte with high economic value. However, low temperature stress limits its productivity and distribution. To study the cold response mechanisms of E. dunnii, 5 cDNA libraries were constructed from mRNA extracted from leaves exposed to cold stress for varying lengths of time and were evaluated by RNA-Seq analysis. The assembly of the Illumina datasets was optimized using various assembly programs and parameters. The final optimized assembly generated 205,325 transcripts with an average length of 1,701 bp and N50 of 2,627 bp, representing 349.38 Mb of the E. dunnii transcriptome. Among these transcripts, 134,358 transcripts (65.4%) were annotated in the Nr database. According to the differential analysis results, most transcripts were up-regulated as the cold stress prolonging, suggesting that these transcripts may be involved in the response to cold stress. In addition, the cold-relevant GO categories, such as ‘response to stress’ and ‘translational initiation’, were the markedly enriched GO terms. The assembly of the E. dunnii gene index and the GO classification performed in this study will serve as useful genomic resources for the genetic improvement of E. dunnii and also provide insights into the molecular mechanisms of cold acclimation in E. dunnii. PMID:25412179

  11. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.

  12. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    PubMed Central

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p < 0.05, r = 0.536, r2= 0.190). After habituation immersions (i.e., cohort 2), anxiety rating predicted the fR component of the CSR when anxiety levels were lowered (CON2; p < 0.05, r = 0.566, r2= 0.320) but predicted the fc component of the CSR (p < 0.05, r = 0.518, r2= 0.197) when anxiety was increased suggesting different drivers of the CSR when anxiety levels were manipulated; correlation data supported these relationships. Discussion: Acute anxiety is integral to the CSR before and after habituation. We offer a new integrated model including neuroanatomical, perceptual and attentional components of the CSR to explain these data. PMID:29695988

  13. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    PubMed

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p < 0.05, r = 0.536, r 2 = 0.190). After habituation immersions (i.e., cohort 2), anxiety rating predicted the f R component of the CSR when anxiety levels were lowered (CON2; p < 0.05, r = 0.566, r 2 = 0.320) but predicted the f c component of the CSR ( p < 0.05, r = 0.518, r 2 = 0.197) when anxiety was increased suggesting different drivers of the CSR when anxiety levels were manipulated; correlation data supported these relationships. Discussion: Acute anxiety is integral to the CSR before and after habituation. We offer a new integrated model including neuroanatomical, perceptual and attentional components of the CSR to explain these data.

  14. Acute stress influences the discrimination of complex scenes and complex faces in young healthy men.

    PubMed

    Paul, M; Lech, R K; Scheil, J; Dierolf, A M; Suchan, B; Wolf, O T

    2016-04-01

    The stress-induced release of glucocorticoids has been demonstrated to influence hippocampal functions via the modulation of specific receptors. At the behavioral level stress is known to influence hippocampus dependent long-term memory. In recent years, studies have consistently associated the hippocampus with the non-mnemonic perception of scenes, while adjacent regions in the medial temporal lobe were associated with the perception of objects, and faces. So far it is not known whether and how stress influences non-mnemonic perceptual processes. In a behavioral study, fifty male participants were subjected either to the stressful socially evaluated cold-pressor test or to a non-stressful control procedure, before they completed a visual discrimination task, comprising scenes and faces. The complexity of the face and scene stimuli was manipulated in easy and difficult conditions. A significant three way interaction between stress, stimulus type and complexity was found. Stressed participants tended to commit more errors in the complex scenes condition. For complex faces a descriptive tendency in the opposite direction (fewer errors under stress) was observed. As a result the difference between the number of errors for scenes and errors for faces was significantly larger in the stress group. These results indicate that, beyond the effects of stress on long-term memory, stress influences the discrimination of spatial information, especially when the perception is characterized by a high complexity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Genome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress

    PubMed Central

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P.; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate transcripts may contribute to the excellent cold-hardiness of V. amurensis. PMID:23516547

  16. Compatible Transfusion Therapy for Paroxysmal Cold Hemoglobinuria

    ERIC Educational Resources Information Center

    Rausen, Aaron R.; And Others

    1975-01-01

    Presented are case histories of two children, ages 2 and 4 years, with paroxysmal cold hemoglobinuria (PCH, a syndrome characterized by acute intravascular hemoglobin dissolution and hemoglobin in the urine). (Author/CL)

  17. Selection of Reference Genes for Normalization of MicroRNA Expression by RT-qPCR in Sugarcane Buds under Cold Stress

    PubMed Central

    Yang, Yuting; Zhang, Xu; Chen, Yun; Guo, Jinlong; Ling, Hui; Gao, Shiwu; Su, Yachun; Que, Youxiong; Xu, Liping

    2016-01-01

    Sugarcane, accounting for 80% of world's sugar, originates in the tropics but is cultivated mainly in the subtropics. Therefore, chilling injury frequently occurs and results in serious losses. Recent studies in various plant species have established microRNAs as key elements in the post-transcriptional regulation of response to biotic and abiotic stresses including cold stress. Though, its accuracy is largely influenced by the use of reference gene for normalization, quantitative PCR is undoubtedly a popular method used for identification of microRNAs. For identifying the most suitable reference genes for normalizing miRNAs expression in sugarcane under cold stress, 13 candidates among 17 were investigated using four algorithms: geNorm, NormFinder, deltaCt, and Bestkeeper, and four candidates were excluded because of unsatisfactory efficiency and specificity. Verification was carried out using cold-related genes miR319 and miR393 in cold-tolerant and sensitive cultivars. The results suggested that miR171/18S rRNA and miR171/miR5059 were the best reference gene sets for normalization for miRNA RT-qPCR, followed by the single miR171 and 18S rRNA. These results can aid research on miRNA responses during sugarcane stress, and the development of sugarcane tolerant to cold stress. This study is the first report concerning the reference gene selection of miRNA RT-qPCR in sugarcane. PMID:26904058

  18. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response.

    PubMed

    Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei

    2017-01-01

    The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.

  19. Stress leads to aberrant hippocampal involvement when processing schema-related information.

    PubMed

    Vogel, Susanne; Kluen, Lisa Marieke; Fernández, Guillén; Schwabe, Lars

    2018-01-01

    Prior knowledge, represented as a mental schema, has critical impact on how we organize, interpret, and process incoming information. Recent findings indicate that the use of an existing schema is coordinated by the medial prefrontal cortex (mPFC), communicating with parietal areas. The hippocampus, however, is crucial for encoding schema-unrelated information but not for schema-related information. A recent study indicated that stress mediators may affect schema-related memory, but the underlying neural mechanisms are currently unknown. Here, we thus tested the impact of acute stress on neural processing of schema-related information. We exposed healthy participants to a stress or control manipulation before they processed, in the MRI scanner, words related or unrelated to a preexisting schema activated by a specific cue. Participants' memory for the presented material was tested 3-5 d after encoding. Overall, the processing of schema-related information activated the mPFC, the precuneus, and the angular gyrus. Stress resulted in aberrant hippocampal activity and connectivity while participants processed schema-related information. This aberrant engagement of the hippocampus was linked to altered subsequent memory. These findings suggest that stress may interfere with the efficient use of prior knowledge during encoding and may have important practical implications, in particular for educational settings. © 2018 Vogel et al.; Published by Cold Spring Harbor Laboratory Press.

  20. The Effects of Selected Hot and Cold Temperament Herbs Based on Iranian Traditional Medicine on Some Metabolic Parameters in Normal Rats

    PubMed Central

    Parvinroo, Shirin; Zahediasl, Saleh; Sabetkasaei, Masoumeh; Kamalinejad, Mohammad; Naghibi, Farzaneh

    2014-01-01

    This study was aimed to evaluate the effects of diets containing some hot and cold temperament herb seeds according to Iranian traditional medicine (ITM) on some metabolic parameters in acute (24 h) and sub-acute (7 day) experiments that were performed on rats. For each experiment, effects of diets containing 10% herb seeds in category of hot (anise, fennel, ajowan) and cold (cucumber, watermelon, pumpkin) temperaments were analyzed on body weight gain, food intake, water consumption, urine output, serum glucose (SG) and insulin levels of rats. In the acute experiment, anise or fennel fed groups showed a significant decrease in food intake and there were not any changes in other parameters. The hot temperament groups in comparison with the cold temperament ones showed a significant decrease in food intake and a significant increase in SG level. In the sub-acute experiment, anise and fennel fed groups had a significant decrease in body weight gain on the 4thday. On the 7th day, the anise fed group experienced a significant decrease in body weight gain and a significant increase in SG levels. The groups that were fed hot temperament diets compared to the ones that consumed cold temperament diets showed a significant decrease in body weight gain and food intake rates and a considerable increase in SG levels. Considering the findings of this study, one can conclude that it is possible that hot temperament herbs such as anise and fennel be useful for humans for certain conditions such as weight control. PMID:24711844

  1. Intra-individual psychological and physiological responses to acute laboratory stressors of different intensity.

    PubMed

    Skoluda, Nadine; Strahler, Jana; Schlotz, Wolff; Niederberger, Larissa; Marques, Sofia; Fischer, Susanne; Thoma, Myriam V; Spoerri, Corinne; Ehlert, Ulrike; Nater, Urs M

    2015-01-01

    The phenomenon of stress is understood as a multidimensional concept which can be captured by psychological and physiological measures. There are various laboratory stress protocols which enable stress to be investigated under controlled conditions. However, little is known about whether these protocols differ with regard to the induced psycho-physiological stress response pattern. In a within-subjects design, 20 healthy young men underwent four of the most common stress protocols (Stroop test [Stroop], cold pressor test [CPT], Trier Social Stress Test [TSST], and bicycle ergometer test [Ergometer]) and a no-stress control condition (rest) in a randomized order. For the multidimensional assessment of the stress response, perceived stress, endocrine and autonomic biomarkers (salivary cortisol, salivary alpha-amylase, and heart rate) were obtained during the experiments. All stress protocols evoked increases in perceived stress levels, with the highest levels in the TSST, followed by Ergometer, Stroop, and CPT. The highest HPA axis response was found in the TSST, followed by Ergometer, CPT, and Stroop, whilst the highest autonomic response was found in the Ergometer, followed by TSST, Stroop, and CPT. These findings suggest that different stress protocols differentially stimulate various aspects of the stress response. Physically demanding stress protocols such as the Ergometer test appear to be particularly suitable for evoking autonomic stress responses, whereas uncontrollable and social-evaluative threatening stressors (such as the TSST) are most likely to elicit HPA axis stress responses. The results of this study may help researchers in deciding which stress protocol to use, depending on the individual research question. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Increased infestation of Asian citrus psyllids on cold treated sour orange seedlings: Its possible relation to biochemical changes in leaves

    USDA-ARS?s Scientific Manuscript database

    Cold-stressed sour orange seedling (Citrus aurantium L.) attracted significantly more Asian citrus psyllid (ACP) (Diaphorina citri Kuwayama) during 5h and 24h recovery periods compared to control plants in choice test experiment. Cold stressed plants were held/ placed at 6 ± 1°C for 6 days and then ...

  3. Acute Stress Alters Auditory Selective Attention in Humans Independent of HPA: A Study of Evoked Potentials

    PubMed Central

    Elling, Ludger; Steinberg, Christian; Bröckelmann, Ann-Kathrin; Dobel, Christan; Bölte, Jens; Junghofer, Markus

    2011-01-01

    Background Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM). However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such “paracorticoidal” stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. Methodology/Principal Findings The stressor consisted of a single cold pressor test. Auditory negative difference (Nd) and mismatch negativity (MMN) were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occuring 4–7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8–11 minutes after onset when no further modulations in the event-related potentials (ERP) occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. Conclusions/Significance Prior studies have deliberately tracked the adrenocortical influence on cognition, as it has proven most influential with respect to LTM. However, current cortisol-optimized study designs would have failed to detect the present findings regarding attention. PMID:21483666

  4. Transcriptome Response Mediated by Cold Stress in Lotus japonicus.

    PubMed

    Calzadilla, Pablo I; Maiale, Santiago J; Ruiz, Oscar A; Escaray, Francisco J

    2016-01-01

    Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures.

  5. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa

    PubMed Central

    Chen, Jing; Han, Guiqing; Shang, Chen; Li, Jikai; Zhang, Hailing; Liu, Fengqi; Wang, Jianli; Liu, Huiying; Zhang, Yuexue

    2015-01-01

    Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa. PMID:25774161

  6. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-09-01

    Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including C-REPEAT-BINDING FACTORs (CBFs)/Drought Response Element Binding factors (DREBs), COR15a, and three transcription factors (CAMTA1, ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), and ZAT12). In this study, we quantified the endogenous melatonin level in Arabidopsis plant leaves and found the endogenous melatonin levels were significantly induced by cold stress (4 °C) treatment. In addition, we found one cysteine2/histidine2-type zinc finger transcription factor, ZAT6, was involved in melatonin-mediated freezing stress response in Arabidopsis. Interestingly, exogenous melatonin enhanced freezing stress resistance was largely alleviated in AtZAT6 knockdown plants, but was enhanced in AtZAT6 overexpressing plants. Moreover, the expression levels of AtZAT6 and AtCBFs were commonly upregulated by cold stress (4 °C) and exogenous melatonin treatments, and modulation of AtZAT6 expression significantly affected the induction AtCBFs transcripts by cold stress (4 °C) and exogenous melatonin treatments. Taken together, AtZAT6-activated CBF pathway might be essential for melatonin-mediated freezing stress response in Arabidopsis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. PRINS Long Noncoding RNA Involved in IP-10-Mediated Allograft Rejection in Rat Kidney Transplant.

    PubMed

    Zou, X-F; Song, B; Duan, J-H; Hu, Z-D; Cui, Z-L; Yang, T

    2018-06-01

    Previously, high levels of CXCR3+ T-cell recruitment was demonstrated in the prolonged ischemia-accelerated acute allograft rejection in rat kidney transplant. In the present study, the effect of chemokine IP-10 was investigated and the expression of chemokine-related PRINS (Psoriasis susceptibility-related RNA gene induced by stress) lncRNA determined in the allografts subjected to ischemia. F344-to-Lewis rat kidney transplantation was performed, and renal grafts were stored for 2 hours or 16 hours. Samples were removed at 24 hours and 7 days after operation. Cellular infiltration was determined with the use of immunohistochemistry, and messenger RNA expression was assessed with the use of real-time polymerase chain reaction. The 16-hour-ischemia kidney displayed acute tubule damage and up-regulation of PRINS lncRNA expression. On day 7, IP-10 expression and CD3-positive T cells were increased in allografts compared with control samples, which were inhibited by the IP-10 antibody treatment accompanied by reduced serum creatinine. These observations provide evidence for IP-10 in a regulatory role in cold ischemia-elicited acute allograft rejection and in PRINS lncRNA expression. Our data enhance the understanding of the mechanism underlying between prolonged ischemia and acute rejection. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Young Children's Acute Stress After a Burn Injury: Disentangling the Role of Injury Severity and Parental Acute Stress.

    PubMed

    Haag, Ann-Christin; Landolt, Markus A

    2017-09-01

    Although injury severity and parental stress are strong predictors of posttraumatic adjustment in young children after burns, little is known about the interplay of these variables. This study aimed at clarifying mediation processes between injury severity and mother's, father's, and young child's acute stress. Structural equation modeling was used to examine the relationships between injury severity and parental and child acute stress. Parents of 138 burn-injured children (ages 1-4 years) completed standardized questionnaires on average 19 days postinjury. Sixteen children (11.7%) met Diagnostic and Statistical Manual of Mental Disorders, 5th edition, preschool criteria for posttraumatic stress disorder (excluding time criterion). The model revealed a significant mediation of maternal acute stress, with the effect of injury severity on a child's acute stress mediated by maternal acute stress. Paternal acute stress failed to serve as a mediating variable. Our findings confirm mothers' crucial role in the posttraumatic adjustment of young children. Clinically, mothers' acute stress should be monitored. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    PubMed

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Comparative Analysis of Anther Transcriptome Profiles of Two Different Rice Male Sterile Lines Genotypes under Cold Stress.

    PubMed

    Bai, Bin; Wu, Jun; Sheng, Wen-Tao; Zhou, Bo; Zhou, Li-Jie; Zhuang, Wen; Yao, Dong-Ping; Deng, Qi-Yun

    2015-05-18

    Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Pei'ai64S) were analyzed at the fertility sensitive stage under cold stress. Approximately 243 million clean reads were obtained from four libraries and aligned against the oryza indica genome and 1497 and 5652 differentially expressed genes (DEGs) were identified in P64S and Y58S, respectively. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. Functional classification of DEGs was also carried out. The DEGs common to both genotypes were mainly involved in signal transduction, metabolism, transport, and transcriptional regulation. Most of the DEGs were unique for each comparison group. We observed that there were more differentially expressed MYB (Myeloblastosis) and zinc finger family transcription factors and signal transduction components such as calmodulin/calcium dependent protein kinases in the Y58S comparison group. It was also found that ribosome-related DEGs may play key roles in cold stress signal transduction. These results presented here would be particularly useful for further studies on investigating the molecular mechanisms of rice responses to cold stress.

  11. Comparative Analysis of Anther Transcriptome Profiles of Two Different Rice Male Sterile Lines Genotypes under Cold Stress

    PubMed Central

    Bai, Bin; Wu, Jun; Sheng, Wen-Tao; Zhou, Bo; Zhou, Li-Jie; Zhuang, Wen; Yao, Dong-Ping; Deng, Qi-Yun

    2015-01-01

    Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Pei’ai64S) were analyzed at the fertility sensitive stage under cold stress. Approximately 243 million clean reads were obtained from four libraries and aligned against the oryza indica genome and 1497 and 5652 differentially expressed genes (DEGs) were identified in P64S and Y58S, respectively. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. Functional classification of DEGs was also carried out. The DEGs common to both genotypes were mainly involved in signal transduction, metabolism, transport, and transcriptional regulation. Most of the DEGs were unique for each comparison group. We observed that there were more differentially expressed MYB (Myeloblastosis) and zinc finger family transcription factors and signal transduction components such as calmodulin/calcium dependent protein kinases in the Y58S comparison group. It was also found that ribosome-related DEGs may play key roles in cold stress signal transduction. These results presented here would be particularly useful for further studies on investigating the molecular mechanisms of rice responses to cold stress. PMID:25993302

  12. Biogenesis of mitochondria in cauliflower (Brassica oleracea var. botrytis) curds subjected to temperature stress and recovery involves regulation of the complexome, respiratory chain activity, organellar translation and ultrastructure.

    PubMed

    Rurek, Michal; Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2015-01-01

    The biogenesis of the cauliflower curd mitochondrial proteome was investigated under cold, heat and the recovery. For the first time, two dimensional fluorescence difference gel electrophoresis was used to study the plant mitochondrial complexome in heat and heat recovery. Particularly, changes in the complex I and complex III subunits and import proteins, and the partial disintegration of matrix complexes were observed. The presence of unassembled subunits of ATP synthase was accompanied by impairment in mitochondrial translation of its subunit. In cold and heat, the transcription profiles of mitochondrial genes were uncorrelated. The in-gel activities of respiratory complexes were particularly affected after stress recovery. Despite a general stability of respiratory chain complexes in heat, functional studies showed that their activity and the ATP synthesis yield were affected. Contrary to cold stress, heat stress resulted in a reduced efficiency of oxidative phosphorylation likely due to changes in alternative oxidase (AOX) activity. Stress and stress recovery differently modulated the protein level and activity of AOX. Heat stress induced an increase in AOX activity and protein level, and AOX1a and AOX1d transcript level, while heat recovery reversed the AOX protein and activity changes. Conversely, cold stress led to a decrease in AOX activity (and protein level), which was reversed after cold recovery. Thus, cauliflower AOX is only induced by heat stress. In heat, contrary to the AOX activity, the activity of rotenone-insensitive internal NADH dehydrogenase was diminished. The relevance of various steps of plant mitochondrial biogenesis to temperature stress response and recovery is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Protracted effects of chronic stress on serotonin-dependent thermoregulation.

    PubMed

    Natarajan, Reka; Northrop, Nicole A; Yamamoto, Bryan K

    2015-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. The body temperature is controlled in part, by the medial preoptic area (mPOA) of the hypothalamus. To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress (CUS) paradigm produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 d of CUS. Four days after the last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10 °C were recorded. The CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that the CUS induced changes to the 5HTergic system alter mPOA function in thermoregulation. These findings help us to explain the mechanisms underlying chronic stress-induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed.

  14. Protracted effects of chronic stress on serotonin dependent thermoregulation

    PubMed Central

    Natarajan, Reka; Northrop, Nicole A.; Yamamoto, Bryan K.

    2016-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. Body temperature is controlled in part, by the medial preoptic area of the hypothalamus (mPOA). To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress paradigm (CUS) produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 days of CUS. Four days after last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10°C were recorded. CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that CUS induced changes to the 5HTergic system alters mPOA function in thermoregulation. These findings help explain mechanisms underlying chronic stress induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed. PMID:26414686

  15. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    PubMed

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  16. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    NASA Astrophysics Data System (ADS)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  17. A Bulk Segregant Gene Expression Analysis of a Peach Population Reveals Components of the Underlying Mechanism of the Fruit Cold Response

    PubMed Central

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H.; Dandekar, Abhaya M.; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. PMID:24598973

  18. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    PubMed

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.

  19. A fluid response: Alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate.

    PubMed

    Nagy, Tamás; van Lien, René; Willemsen, Gonneke; Proctor, Gordon; Efting, Marieke; Fülöp, Márta; Bárdos, György; Veerman, Enno C I; Bosch, Jos A

    2015-07-01

    Salivary alpha-amylase (sAA) is used as a sympathetic (SNS) stress marker, though its release is likely co-determined by SNS and parasympathetic (PNS) activation. The SNS and PNS show asynchronous changes during acute stressors, and sAA responses may thus vary with sample timing. Thirty-four participants underwent an eight-minute memory task (MT) and cold pressor task (CPT). Cardiovascular SNS (pre-ejection period, blood pressure) and PNS (heart rate variability) activity were monitored continuously. Unstimulated saliva was collected repeatedly during and after each laboratory stressor, and sAA concentration (U/ml) and secretion (U/minute) determined. Both stressors increased anxiety. The MT caused an immediate and continued cardiac SNS activation, but sAA concentration increased at task cessation only (+54%); i.e., when there was SNS-PNS co-activation. During the MT sAA secretion even decreased (-35%) in conjunction with flow rate and vagal tone. The CPT robustly increased blood pressure but not sAA. In summary, sAA fluctuations did not parallel changes in cardiac SNS activity or anxiety. sAA responses seem contingent on sample timing and flow rate, likely involving both SNS and PNS influences. Verification using other stressors and contexts seems warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas.

    PubMed

    Zhu, Qihui; Zhang, Linlin; Li, Li; Que, Huayong; Zhang, Guofan

    2016-04-01

    As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.

  1. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    PubMed Central

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  2. Older Thinopyrum intermedium (Poaceae) plants exhibit superior photosynthetic tolerance to cold stress and greater increases in two photosynthetic enzymes under freezing stress compared with young plants

    PubMed Central

    Jaikumar, Nikhil S.; Snapp, Sieglinde S.; Sharkey, Thomas D.

    2016-01-01

    Effects of plant age on resource acquisition and stress tolerance processes is a largely unstudied subject in herbaceous perennials. In a field experiment, we compared rates of photosynthesis (A), ribulose-1,5-bisphosphate (RuBP) carboxylation capacity (V Cmax), maximum electron transport rate (J max), and triose phosphate utilization (TPU), as well as concentrations of Rubisco and sucrose-phosphate synthase (SPS) in 5-year-old and 2-year-old intermediate wheatgrass (Thinopyrum intermedium) under both optimal growing conditions and cold stress in early spring and autumn. This species is a relative of wheat undergoing domestication. An additional experiment compared photosynthetic rates in different cohorts at mid-season and under colder conditions. We hypothesized that photosynthetic capacity in older plants would be lower under favorable conditions but higher under cold stress. Our hypothesis was generally supported. Under cold stress, 5-year-old plants exhibited higher A, TPU, and temperature-adjusted V Cmax than younger plants, as well as 50% more SPS and 37% more Rubisco. In contrast, at mid-season, photosynthetic capacities in older plants were lower than in younger plants in one experiment, and similar in the other, independent of differences in water status. Both cohorts increased A, temperature-adjusted TPU and J max, [Rubisco], and [SPS] under cold stress, but changes were greater in older plants. Photosynthetic differences were largest at 1.2 ºC in very early spring, where older plants had 200% higher A and maintained up to 17% of their peak photosynthetic capacity. We find evidence of increased cold tolerance in older cohorts of wheatgrass, consistent with a growing body of research in woody perennials. PMID:27401911

  3. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants.

    PubMed

    Wang, Da-Zhi; Jin, Ya-Nan; Ding, Xi-Han; Wang, Wen-Jia; Zhai, Shan-Shan; Bai, Li-Ping; Guo, Zhi-Fu

    2017-10-01

    Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.

  4. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    PubMed Central

    2013-01-01

    Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature. Additionally, since the approach presented here is general, it could be adapted to study networks regulating biological process in any biological systems. PMID:24148294

  5. Dehydrin expression as a potential diagnostic tool for cold stress in white clover.

    PubMed

    Vaseva, Irina Ivanova; Anders, Iwona; Yuperlieva-Mateeva, Bistra; Nenkova, Rosa; Kostadinova, Anelia; Feller, Urs

    2014-05-01

    Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37-40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another 'cold-specific' band at position 52-55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37-40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Influence of Hot and Cold Environments on the Regulation of Energy Balance Following a Single Exercise Session: A Mini-Review.

    PubMed

    Charlot, Keyne; Faure, Cécile; Antoine-Jonville, Sophie

    2017-06-10

    Understanding the regulation of human food intake in response to an acute exercise session is of importance for interventions with athletes and soldiers, as well as overweight individuals. However, the influence of hot and cold environments on this crucial function for the regulation of body mass and motor performance has not been summarized. The purpose of this review was to exhaustively search the literature on the effect of ambient temperature during an exercise session on the subsequent subjective feeling of appetite, energy intake (EI) and its regulation. In the absence of stress due to environmental temperature, exercise-induced energy expenditure is not compensated by EI during an ad libitum meal following the session, probably due to decreased acylated ghrelin and increased peptide tyrosine tyrosine (PYY), glucagon-like peptide 1 (GLP-1), and pancreatic polypeptide (PP) levels. No systematic analysis has been yet made for major alterations of relative EI in cold and hot environments. However, observed eating behaviors are altered (proportion of solid/liquid food, carbohydrate/fat) and physiological regulation appears also to be altered. Anorexigenic signals, particularly PYY, appear to further increase in hot environments than in those that are thermoneutral. Ghrelin and leptin may be involved in the observed increase in EI after exercise in the cold, in parallel with increased energy expenditure. The potential influence of ambient thermal environment on eating behaviors after an exercise session should not be neglected.

  7. Influence of Hot and Cold Environments on the Regulation of Energy Balance Following a Single Exercise Session: A Mini-Review

    PubMed Central

    Charlot, Keyne; Faure, Cécile; Antoine-Jonville, Sophie

    2017-01-01

    Understanding the regulation of human food intake in response to an acute exercise session is of importance for interventions with athletes and soldiers, as well as overweight individuals. However, the influence of hot and cold environments on this crucial function for the regulation of body mass and motor performance has not been summarized. The purpose of this review was to exhaustively search the literature on the effect of ambient temperature during an exercise session on the subsequent subjective feeling of appetite, energy intake (EI) and its regulation. In the absence of stress due to environmental temperature, exercise-induced energy expenditure is not compensated by EI during an ad libitum meal following the session, probably due to decreased acylated ghrelin and increased peptide tyrosine tyrosine (PYY), glucagon-like peptide 1 (GLP-1), and pancreatic polypeptide (PP) levels. No systematic analysis has been yet made for major alterations of relative EI in cold and hot environments. However, observed eating behaviors are altered (proportion of solid/liquid food, carbohydrate/fat) and physiological regulation appears also to be altered. Anorexigenic signals, particularly PYY, appear to further increase in hot environments than in those that are thermoneutral. Ghrelin and leptin may be involved in the observed increase in EI after exercise in the cold, in parallel with increased energy expenditure. The potential influence of ambient thermal environment on eating behaviors after an exercise session should not be neglected. PMID:28604591

  8. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    USGS Publications Warehouse

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  9. Cold Environment Exacerbates Brain Pathology and Oxidative Stress Following Traumatic Brain Injuries: Potential Therapeutic Effects of Nanowired Antioxidant Compound H-290/51.

    PubMed

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José Vicente; Sjöquist, Per-Ove; Patnaik, Ranjana; Ryan Tian, Z; Ozkizilcik, Asya; Sharma, Hari S

    2018-01-01

    The possibility that traumatic brain injury (TBI) occurring in a cold environment exacerbates brain pathology and oxidative stress was examined in our rat model. TBI was inflicted by making a longitudinal incision into the right parietal cerebral cortex (2 mm deep and 4 mm long) in cold-acclimatized rats (5 °C for 3 h daily for 5 weeks) or animals at room temperature under Equithesin anesthesia. TBI in cold-exposed rats exhibited pronounced increase in brain lucigenin (LCG), luminol (LUM), and malondialdehyde (MDA) and marked pronounced decrease in glutathione (GTH) as compared to identical TBI at room temperature. The magnitude and intensity of BBB breakdown to radioiodine and Evans blue albumin, edema formation, and neuronal injuries were also exacerbated in cold-exposed rats after injury as compared to room temperature. Nanowired delivery of H-290/51 (50 mg/kg) 6 and 8 h after injury in cold-exposed group significantly thwarted brain pathology and oxidative stress whereas normal delivery of H-290/51 was neuroprotective after TBI at room temperature only. These observations are the first to demonstrate that (i) cold aggravates the pathophysiology of TBI possibly due to an enhanced production of oxidative stress, (ii) and in such conditions, nanodelivery of antioxidant compound has superior neuroprotective effects, not reported earlier.

  10. Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation.

    PubMed

    Lee, Elaine C; Watson, Greig; Casa, Douglas; Armstrong, Lawrence E; Kraemer, William; Vingren, Jakob L; Spiering, Barry A; Maresh, Carl M

    2012-01-01

    Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Controlled laboratory study. Human performance laboratory Patients or Other Participants: Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg(-1) min(-1)). Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Whole-body cooling rates were greater in the cold water-bath condition for the first 6 minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (-69.76% ± 15.23%). We have provided seed evidence that cold-water immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies.

  11. THE ETIOLOGY OF ACUTE UPPER RESPIRATORY INFECTION (COMMON COLD)

    PubMed Central

    Long, Perrin H.; Doull, James A.; Bourn, Janet M.; McComb, Emily

    1931-01-01

    Experimental upper respiratory infections similar to "common colds" were transmitted singly and in series through two and four passages in nine out of fifteen persons, by intransal inoculations with bacteria-free filtrates of nasopharyngeal washings obtained from individuals ill with natural "colds." These observations conform with those reported by previous workers and lend further support to the view that the incitant of the "common cold" is a filtrable virus. PMID:19869857

  12. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  13. Quantitative assessment of relative roles of drivers of acute respiratory diseases

    PubMed Central

    Goswami, Prashant; Baruah, Jurismita

    2014-01-01

    Several thousands of people, including children, suffer from acute respiratory disease (ARD) every year worldwide. Pro-active planning and mitigation for these diseases require identification of the major drivers in a location-specific manner. While the importance of air pollutants in ARD has been extensively studied and emphasized, the role of weather variables has been less explored. With Delhi with its large population and pollution as a test case, we examine the relative roles of air pollution and weather (cold days) in ARD. It is shown that both the number of cold days and air pollution play important roles in ARD load; however, the number of cold days emerges as the major driver. These conclusions are consistent with analyses for several other states in India. The robust association between ARD load and cold days provides basis for estimating and predicting ARD load through dynamical model, as well as impact of climate change. PMID:25322687

  14. Differential Acetylation of Histone H3 at the Regulatory Region of OsDREB1b Promoter Facilitates Chromatin Remodelling and Transcription Activation during Cold Stress

    PubMed Central

    Roy, Dipan; Paul, Amit; Roy, Adrita; Ghosh, Ritesh; Ganguly, Payel; Chaudhuri, Shubho

    2014-01-01

    The rice ortholog of DREB1, OsDREB1b, is transcriptionally induced by cold stress and over-expression of OsDREB1b results in increase tolerance towards high salt and freezing stress. This spatio-temporal expression of OsDREB1b is preceded by the change in chromatin structure at the promoter and the upstream region for gene activation. The promoter and the upstream region of OsDREB1b genes appear to be arranged into a nucleosome array. Nucleosome mapping of ∼700bp upstream region of OsDREB1b shows two positioned nucleosomes between −610 to −258 and a weakly positioned nucleosome at the core promoter and the TSS. Upon cold stress, there is a significant change in the nucleosome arrangement at the upstream region with increase in DNaseI hypersensitivity or MNase digestion in the vicinity of cis elements and TATA box at the core promoter. ChIP assays shows hyper-acetylation of histone H3K9 throughout the locus whereas region specific increase was observed in H3K14ac and H3K27ac. Moreover, there is an enrichment of RNA PolII occupancy at the promoter region during transcription activation. There is no significant change in the H3 occupancy in OsDREB1b locus negating the possibility of nucleosome loss during cold stress. Interestingly, cold induced enhanced transcript level of OsDREB1b as well as histone H3 acetylation at the upstream region was found to diminish when stressed plants were returned to normal temperature. The result indicates absolute necessity of changes in chromatin conformation for the transcription up-regulation of OsDREB1b gene in response to cold stress. The combined results show the existence of closed chromatin conformation at the upstream and promoter region of OsDREB1b in the transcription “off” state. During cold stress, changes in region specific histone modification marks promote the alteration of chromatin structure to facilitate the binding of transcription machinery for proper gene expression. PMID:24940877

  15. CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.).

    PubMed

    Min, Hye Jo; Jung, Ye Jin; Kang, Bin Goo; Kim, Woo Taek

    2016-03-01

    Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature (4°C) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

  16. Strength through adversity: Moderate lifetime stress exposure is associated with psychological resilience in breast cancer survivors

    PubMed Central

    Dooley, Larissa N.; Slavich, George M.; Moreno, Patricia I.; Bower, Julienne E.

    2017-01-01

    Stress research typically emphasizes the toxic effects of stress, but recent evidence has suggested that stress exposure, in moderation, can facilitate resilience. To test whether moderate stress exposure promotes psychological resilience to cancer, we examined the relationship between lifetime stress exposure prior to cancer diagnosis and postdiagnosis psychological functioning among 122 breast cancer survivors. Lifetime acute and chronic stress was assessed using an interview-based measure, and psychological functioning was assessed using measures of cancer-related intrusive thoughts and positive and negative affect. Results indicated that acute stress exposure was associated with cancer-related intrusive thoughts in a quadratic fashion (p = .016), such that participants with moderate acute stress reported fewer intrusive thoughts compared to those with low or high acute stress. Similarly, a quadratic relationship emerged between acute stress exposure and positive affect (p = .009), such that individuals with moderate acute stress reported the highest levels of positive affect. In contrast, acute and chronic stress were related to negative affect in a positive, linear fashion (ps < .05). In conclusion, moderate stress exposure was associated with indicators of psychological resilience among breast cancer survivors, supporting stress exposure as a key factor influencing adjustment to breast cancer and providing evidence for stress-induced resilience in a novel population. PMID:28052491

  17. Global Analysis of Transcriptome Responses and Gene Expression Profiles to Cold Stress of Jatropha curcas L.

    PubMed Central

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas. PMID:24349370

  18. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    PubMed

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas.

  19. Numerical study of cold filling and tube deformation in the molten salt receiver

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Zhang, Gongchen; Peniguel, Christophe; Liao, Zhirong; Li, Xin; Lu, Jiahui; Wang, Zhifeng

    2017-06-01

    Molten salt tube cold filling is one way to accelerate the startup of molten salt Concentrated Solar Power (CSP) plant. This practical operation may induce salt solidification and large thermal stress due to tube's large temperature difference. This paper presents the cold filling study and the induced thermal stress quantitatively through simulation approaches. Physical mechanisms and safe working criteria are identified under certain conditions.

  20. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    PubMed

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  1. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    PubMed Central

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  2. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock.

    PubMed

    Moskalev, Alexey; Zhikrivetskaya, Svetlana; Krasnov, George; Shaposhnikov, Mikhail; Proshkina, Ekaterina; Borisoglebsky, Dmitry; Danilov, Anton; Peregudova, Darya; Sharapova, Irina; Dobrovolskaya, Eugenia; Solovev, Ilya; Zemskaya, Nadezhda; Shilova, Lyubov; Snezhkina, Anastasia; Kudryavtseva, Anna

    2015-01-01

    The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms.

  3. Effect of Turning and Ball Burnishing on the Microstructure and Residual Stress Distribution in Stainless Steel Cold Spray Deposits

    NASA Astrophysics Data System (ADS)

    Sova, A.; Courbon, C.; Valiorgue, F.; Rech, J.; Bertrand, Ph.

    2017-12-01

    In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.

  4. Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene.

    PubMed

    An, Dong; Ma, Qiuxiang; Yan, Wei; Zhou, Wenzhi; Liu, Guanghua; Zhang, Peng

    2016-01-01

    Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.

  5. MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple.

    PubMed

    An, Jian-Ping; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-11-01

    Cold stress is a major external stimulator that affects crop quality and productivity. The CBF cold regulatory pathway has been regarded as a master regulator in the response to cold stress. In this study, we found that the apple bZIP transcription factor, MdHY5, was responsive to cold treatment both at the transcriptional and at the post-translational levels. Moreover, overexpression of MdHY5 enhanced cold tolerance in apple calli and Arabidopsis. Subsequently, EMSA assay and transient expression assay demonstrated that MdHY5 positively regulated the transcript of MdCBF1 by binding to G-Box motif of its promoter. Furthermore, MdHY5 also regulated the expression of CBF-independent cold-regulated genes. Taken together, our data suggest that MdHY5 positively modulates plant cold tolerance through CBF-dependent and CBF-independent pathways, providing a deeper understanding of MdHY5-regulated cold tolerance in apple. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays . These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.

  7. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed Central

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays. These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize. PMID:28223998

  8. High-Resolution Characterizations of Grain Boundary Damage and Stress Corrosion Cracks in Cold-Rolled Alloy 690

    NASA Astrophysics Data System (ADS)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.

    Unidirectional cold rolling has been shown to promote intergranular stress corrosion cracking (IGSCC) in alloy 690 tested in PWR primary water. High-resolution scanning (SEM) and transmission electron microscopy (TEM) have been employed to investigate the microstructural reasons for this enhanced susceptibility in two stages, first examining grain boundary damage produced by cold rolling and second by characterization of stress corrosion crack tips. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG precipitate distribution. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. For the same degree of cold rolling, alloys with few IG carbides exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal no interaction between the preexisting voids and cracked carbides with the propagation. In many cases, these features appeared to blunt propagation of IGSCC cracks. High-resolution characterizations are described for cold-rolled alloy 690 CRDM tubing and plate materials to gain insights into IGSCC mechanisms.

  9. Time-Dependent Effects of Acute Exercise on University Students’ Cognitive Performance in Temperate and Cold Environments

    PubMed Central

    Ji, Ling-Yu; Li, Xiao-Ling; Liu, Yang; Sun, Xiu-Wen; Wang, Hui-Fen; Chen, Long; Gao, Liang

    2017-01-01

    Background: Few studies have examined the acute exercise-induced changes in cognitive performance in different thermal environments and the time course effects. Objective: Investigate the time-dependent effects of acute exercise on university students’ processing speed, working memory and cognitive flexibility in temperate and cold environments. Method: Twenty male university students (age 23.5 ± 2.0 years) with moderate physical activity level participated in a repeated-measures within-subjects design. Processing speed, working memory and cognitive flexibility were assessed using CogState test battery at baseline (BASE), followed by a 45-min rest (REST), immediately after (EX) and 30 min after (POST-EX) 30-min moderate-intensity treadmill running in both temperate (TEMP; 25°C) and cold (COLD; 10°C) environments. Mean skin temperature (MST) and thermal sensation (TS) were also recorded. Two-way repeated measures ANOVA was performed to analyze each variable. Spearman’s rho was used to identify the correlations between MST, TS and cognitive performance. Results: Reaction time (RT) of processing speed and working memory decreased immediately after exercise in both conditions (processing speed: p = 0.003; working memory: p = 0.007). The facilitating effects on processing speed disappeared within 30 min after exercise in TEMP (p = 0.163) and COLD (p = 0.667), while improvements on working memory remained 30 min after exercise in TEMP (p = 0.047), but not in COLD (p = 0.663). Though RT of cognitive flexibility reduced in both conditions (p = 0.003), no significance was found between EX and REST (p = 0.135). Increased MST and TS were significantly associated with reductions in processing speed RT (MST: r = -0.341, p < 0.001; TS: r = -0.262, p = 0.001) and working memory RT (MST: r = -0.282, p < 0.001; TS: r = -0.2229, p = 0.005), and improvements in working memory accuracy (MST: r = 0.249, p = 0.002; TS: r = 0.255, p = 0.001). Conclusion: The results demonstrate different time-dependent effects of acute exercise on cognition in TEMP and COLD. Our study reveals facilitating effects of exercise on university students’ processing speed and working memory in both environments. However, in contrast to TEMP, effects on working memory in COLD are transient. PMID:28747896

  10. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    PubMed

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  11. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    PubMed

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  12. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    PubMed

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse effects on psychological and physiological health, particularly if stress exposure continues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Impact of Hypothermic Stress During Special Operations Training of Chilean Military Forces.

    PubMed

    Nieto Jimenez, Claudio; Cajigal Vargas, Jorge; Triantafilo Vladilo, Vjera Sofia; Naranjo Orellana, Jose

    2018-02-07

    The Chilean Army considers processes that can optimize physical capacities for responding to the impact of situations and given stressors. The study of the effect of hypothermia as a stressor agent (HSA) and its relationship with cardiovascular, hematological, anthropometric, endocrine, and immunological parameters has not been fully addressed experimentally in military populations. To identify the endocrine, hematological, cardiovascular, and immunological changes caused by HSA and to associate these variables with body composition and physical fitness in the military special operation courses of the Chilean Army. Forty-two male subjects were exposed to remain in cold water (10.6 °C) in the context of regular military operations training, the longest time of exposure was determined by individual volitional limits. The measurements were taken in pre-hypothermia conditions, then 2 d later under acute hypothermia condition, and finally during the course period of lesser physical and psychological stressors where the baseline measurements were taken. The statistical analysis consisted of testing normality of the distribution through the Shapiro-Wilk test, assessing the equality of variances through the Levene test, and variance analysis by applying the ANOVA test (analysis of variance). The Bonferroni test was used for multiple comparison correction and the Pearson test for correlations between two variables. The level of significance was of p < 0.05. The main finding of this study is that HSA has a significant impact at the cardiovascular level and produces an increment in the cell population of the immune and hematologic systems. Significant hormonal changes were observed: ACTH (r = 0.50, p < 0.002), cortisol (r = 0.32, p < 0.03), free testosterone (r = 0.13, p < 0.002), total testosterone r = 0.31, p < 0.002), and anthropometrics (r= -0.51, p < 0.05). However, there is no significant correlation between physical fitness and HAS. All subjects experienced hypothermia stress elicited by immersion in cold water. This was evidenced by the decrease in core temperature as well as cardiovascular, endocrine, anthropometric, and immunological changes. Individual differences exist between subjects and their resistance to hypothermia in cold water. These differences are not explained by the physical fitness profile but rather respond to a greater body adiposity index and minor changes in the adrenocorticotropic hormone and cortisol hormone. An acute hypothermia stress condition also affects the anabolic/catabolic environment. Finally, HSA produces an increase in the cell population of the immune system. The authors believe that this study allows to standardize HSA exposure times during regular military operations training by identifying the physiological impacts under this extreme environment. At present, the availability of intra-abdominal temperature measurement apparatus with capsule thermometers raises the interest of corroborating the findings of the current study through the use of such measuring devices. Likewise, an interesting line of research for the future would be to compare the HSA against a psychological evaluation with the purpose of identifying the stress management mechanisms among subjects of these characteristics and include heart rate variability measurements as an indicator of sympathetic stress. © Association of Military Surgeons of the United States 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.

    PubMed

    Hossain, Mohammad Anwar; Li, Zhong-Guang; Hoque, Tahsina Sharmin; Burritt, David J; Fujita, Masayuki; Munné-Bosch, Sergi

    2018-01-01

    Plants growing under field conditions are constantly exposed, either simultaneously or sequentially, to more than one abiotic stress factor. Plants have evolved sophisticated sensory systems to perceive a number of stress signals that allow them to activate the most adequate response to grow and survive in a given environment. Recently, cross-stress tolerance (i.e. tolerance to a second, strong stress after a different type of mild primary stress) has gained attention as a potential means of producing stress-resistant crops to aid with global food security. Heat or cold priming-induced cross-tolerance is very common in plants and often results from the synergistic co-activation of multiple stress signalling pathways, which involve reactive nitrogen species (RNS), reactive oxygen species (ROS), reactive carbonyl species (RCS), plant hormones and transcription factors. Recent studies have shown that the signalling functions of ROS, RNS and RCS, most particularly hydrogen peroxide, nitric oxide (NO) and methylglyoxal (MG), provide resistance to abiotic stresses and underpin cross-stress tolerance in plants by modulating the expression of genes as well as the post-translational modification of proteins. The current review highlights the key regulators and mechanisms underlying heat or cold priming-induced cross-stress tolerance in plants, with a focus on ROS, MG and NO signalling, as well as on the role of antioxidant and glyoxalase systems, osmolytes, heat-shock proteins (HSPs) and hormones. Our aim is also to provide a comprehensive idea on the topic for researchers using heat or cold priming-induced cross-tolerance as a mechanism to improve crop yields under multiple abiotic stresses.

  15. Effect of cold air inhalation and isometric exercise on coronary blood flow and myocardial function in humans

    PubMed Central

    Muller, Matthew D.; Gao, Zhaohui; Drew, Rachel C.; Herr, Michael D.; Leuenberger, Urs A.

    2011-01-01

    The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O2 saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O2 demand, whereas CBV was used as an index of myocardial O2 supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow. PMID:21940852

  16. Evaluation of ability of reference toxicity tests to identify stress in laboratory populations of the amphipod Hyalella azteca

    USGS Publications Warehouse

    McNulty, E.W.; Dwyer, F.J.; Ellersieck, Mark R.; Greer, E.I.; Ingersoll, C.G.; Rabeni, C.F.

    1999-01-01

    Standard methods for conducting toxicity tests imply that the condition of test organisms can be established using reference toxicity tests. However, only a limited number of studies have evaluated whether reference toxicity tests can actually be used to determine if organisms are in good condition at the start of a test. We evaluated the ability of reference toxicants to identify stress associated with starvation in laboratory populations of the amphipod Hyalella azteca using acute toxicity tests and four reference toxicants: KCl, CdCl2, sodium pentachlorophenate (NaPCP), and carbaryl. Stress associated with severe starvation was observed with exposure of amphipods to carbaryl or NaPCP but not with exposure to KCl or CdCl2 (i.e., lower LC50 with severe starvation). Although the LC50s for NaPCP and carbaryl were statistically different between starved and fed amphipods, this difference may not be biologically significant given the variability expected in acute lethality tests. Stress associated with sieving, heat shock, or cold shock of amphipods before the start of a test was not evident with exposure to carbaryl or KCl as reference toxicants. The chemicals evaluated in this study provided minimal information about the condition of the organisms used to start a toxicity test. Laboratories should periodically perform reference toxicity tests to assess the sensitivity of life stages or strains of test organisms. However, use of other test acceptability criteria required in standard methods such as minimum survival, growth, or reproduction of organisms in the control treatment at the end of a test, provides more useful information about the condition of organisms used to start a test compared to data generated from reference toxicity tests.

  17. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less

  18. Causes of acute bronchitis (image)

    MedlinePlus

    ... of the bronchial tubes, the part of the respiratory system that leads into the lungs. Acute bronchitis has a sudden onset and usually appears after a respiratory infection, such as a cold, and can be ...

  19. Nitric oxide modulates Lycopersicon esculentum C-repeat binding factor 1 (LeCBF1) transcriptionally as well as post-translationally by nitrosylation.

    PubMed

    Kashyap, Prakriti; Sehrawat, Ankita; Deswal, Renu

    2015-11-01

    Nitric oxide (NO) production increases in the cold stress. This cold enhanced NO manifests its effect either by regulating the gene expression or by modulating proteins by NO based post-translational modifications (PTMs) including S-nitrosylation. CBF (C-repeat binding factor) dependent cold stress signaling is most studied cold stress-signaling pathway in plants. SNP (sodium nitroprusside, a NO donor) treatment to tomato seedlings showed four fold induction of LeCBF1 (a cold inducible CBF) transcript in cold stress. S-nitrosylation as PTM of CBF has not been analyzed till date. In silico analysis using GPS-SNO 1.0 software predicted Cys 68 as the probable site for nitrosylation in LeCBF1. The 3D structure and motif prediction showed it to be present in the beta hairpin loop and hence available for S-nitrosylation. LeCBF1 was cloned and expressed in Escherichia coli. LeCBF1 accumulated in the inclusion bodies, which were solubilized under denaturing conditions and purified after on column refolding by Ni-NTA His tag affinity chromatography. Purified LeCBF1 resolved as a 34 kDa spot with a slightly basic pI (8.3) on a 2-D gel. MALDI-TOF mass spectrometry identified it as LeCBF1 and western blotting using anti-LeCBF1 antibodies confirmed its purification. Biotin switch assay and neutravidin affinity chromatography showed LeCBF1 to be S-nitrosylated in presence of GSNO (NO donor) as well as endogenously (without donor) in cold stress treated tomato seedlings. Dual regulation of LeCBF1 by NO at both transcriptional as well as post-translational level (by S-nitrosylation) is shown for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold.

    PubMed

    Gimeno, Teresa E; Pías, Beatriz; Lemos-Filho, José P; Valladares, Fernando

    2009-01-01

    Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.

  1. Functional Evolution of Leptin of Ochotona curzoniae in Adaptive Thermogenesis Driven by Cold Environmental Stress

    PubMed Central

    Yang, Jie; Bromage, Timothy G.; Zhao, Qian; Xu, Bao Hong; Gao, Wei Li; Tian, Hui Fang; Tang, Hui Jun; Liu, Dian Wu; Zhao, Xin Quan

    2011-01-01

    Background Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae), an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. Methodology/Principal Findings To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C) and cold (5±1°C) acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. Conclusions/Significance These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau. PMID:21698227

  2. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    NASA Astrophysics Data System (ADS)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  3. Low-Grade Inflammation and Ambulatory Cortisol in Adolescents: Interaction Between Interviewer-Rated Versus Self-Rated Acute Stress and Chronic Stress.

    PubMed

    Schreier, Hannah M C; Chen, Edith

    To determine whether the association between self-rated or interviewer-rated recent acute stress exposures and low-grade inflammation and daily cortisol production in adolescents is moderated by chronic stress ratings. Acute and chronic stress exposures were assessed in 261 adolescents aged 13 to 16 years using a semistructured life stress interview. The negative impact of acute stressors was independently rated by both adolescents (self-rated) and interviewers (interviewer-rated). Markers of inflammation (interleukin (IL)-6, IL-1ra, C-reactive protein) were measured from peripheral blood samples obtained via antecubital venipuncture. Participants collected 4 saliva samples at home on each of 6 consecutive days for the analysis of diurnal salivary cortisol profiles. There were no main effects of acute stressors (self- and interviewer-rated) and chronic family or peer stress on adolescent inflammation markers and cortisol (p values > .10). However, the interaction between interviewer-rated acute stress and chronic family stress was significantly associated with adolescent inflammation markers (IL-6, IL-1ra). Specifically, as chronic family stress increased, the association between acute stressor impact (interviewer-rated) and inflammation markers became more positive (IL-6 (B = .054, SE = .023, p = .022); IL-1ra (B = .030, SE = .014, p = .034)). Interactions between self-rated acute stress and chronic family stress were not associated with any biological measures (p values > .10). Interactions between acute stressor impact (both self- and interviewer-rated) and chronic peer stress were also not significantly associated with any biological measures (p values > .05). Among adolescents, interviewer-based ratings of acute stressor impact may allow for better prediction of health-relevant inflammation markers than adolescents' own ratings.

  4. Low-Grade Inflammation and Ambulatory Cortisol in Adolescents: Interaction between Interviewer-rated versus Self-rated Acute Stress and Chronic Stress

    PubMed Central

    Schreier, Hannah M. C.; Chen, Edith

    2016-01-01

    Objective To determine whether the association between self-rated or interviewer-rated recent acute stress exposures and low-grade inflammation and daily cortisol production in adolescents is moderated by chronic stress ratings. Methods Acute and chronic stress exposures were assessed in 261 adolescents aged 13-16 using a semi-structured life stress interview. The negative impact of acute stressors was independently rated by both adolescents (self-rated) and interviewers (interviewer-rated). Markers of inflammation (IL-6, IL-1ra, CRP) were measured from peripheral blood samples obtained via antecubital venipuncture. Participants collected 4 saliva samples at home on each of six consecutive days for the analysis of diurnal salivary cortisol profiles. Results There were no main effects of acute stressors (self- and interviewer-rated) and chronic family or peer stress on adolescent inflammation markers and cortisol (ps > .10). However, the interaction between interviewer-rated acute stress and chronic family stress was significantly associated with adolescent inflammation markers (IL-6, IL-1ra). Specifically, as chronic family stress increased, the association between acute stressor impact (interviewer-rated) and inflammation markers became more positive (IL-6 (B = .054, SE = .023, p = .022); IL-1ra (B = .030, SE = .014, p = .034)). Interactions between self-rated acute stress and chronic family stress were not associated with any biological measures (ps > .10). Interactions between acute stressor impact (both self- and interviewer-rated) and chronic peer stress were also not significantly associated with any biological measures (ps > .05). Conclusions Among adolescents, interviewer-based ratings of acute stressor impact may allow for better prediction of health-relevant inflammation markers than adolescents’ own ratings. PMID:27490853

  5. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.

    PubMed

    Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek

    2015-07-01

    Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.

    PubMed

    Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili

    2018-03-01

    The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.

  7. Strength through adversity: Moderate lifetime stress exposure is associated with psychological resilience in breast cancer survivors.

    PubMed

    Dooley, Larissa N; Slavich, George M; Moreno, Patricia I; Bower, Julienne E

    2017-12-01

    Stress research typically emphasizes the toxic effects of stress, but recent evidence has suggested that stress exposure, in moderation, can facilitate resilience. To test whether moderate stress exposure promotes psychological resilience to cancer, we examined the relationship between lifetime stress exposure prior to cancer diagnosis and postdiagnosis psychological functioning among 122 breast cancer survivors. Lifetime acute and chronic stress was assessed using an interview-based measure, and psychological functioning was assessed using measures of cancer-related intrusive thoughts and positive and negative affect. Results indicated that acute stress exposure was associated with cancer-related intrusive thoughts in a quadratic fashion (p = .016), such that participants with moderate acute stress reported fewer intrusive thoughts compared to those with low or high acute stress. Similarly, a quadratic relationship emerged between acute stress exposure and positive affect (p = .009), such that individuals with moderate acute stress reported the highest levels of positive affect. In contrast, acute and chronic stress were related to negative affect in a positive, linear fashion (ps < .05). In conclusion, moderate stress exposure was associated with indicators of psychological resilience among breast cancer survivors, supporting stress exposure as a key factor influencing adjustment to breast cancer and providing evidence for stress-induced resilience in a novel population. Copyright © 2017 John Wiley & Sons, Ltd.

  8. DeepSAGE Based Differential Gene Expression Analysis under Cold and Freeze Stress in Seabuckthorn (Hippophae rhamnoides L.)

    PubMed Central

    Chaudhary, Saurabh; Sharma, Prakash C.

    2015-01-01

    Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants. PMID:25803684

  9. DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.).

    PubMed

    Chaudhary, Saurabh; Sharma, Prakash C

    2015-01-01

    Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants.

  10. Cold acclimation and cognitive performance: A review.

    PubMed

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of acute and chronic psychological stress on isolated islets' insulin release

    PubMed Central

    Zardooz, Homeira; Zahediasl, Saleh; Rostamkhani, Fatemeh; Farrokhi, Babak; Nasiraei, Shiva; Kazeminezhad, Behrang; Gholampour, Roohollah

    2012-01-01

    This study investigated the effects of acute and chronic psychological stress on glucose-stimulated insulin secretion from isolated pancreatic islets. Male Wistar rats were divided into two control and stressed groups; each further was allocated into fed and fasted groups. Stress was induced by communication box for one (acute), fifteen and thirty (chronic) days. After islet isolation, their number, size and insulin output were assessed. Plasma corticosterone level was determined. In fasted animals, acute stress increased basal and post stress plasma corticosterone level, while 30 days stress decreased it compared to day 1. In fed rats, acute stress increased only post stress plasma corticosterone concentration, however, after 15 days stress, it was decreased compared to day 1. Acute stress did not change insulin output; however, the insulin output was higher in the fed acutely stressed rats at 8.3 and 16.7 mM glucose than fasted ones. Chronic stress increased insulin output on day 15 in the fasted animals but decreased it on day 30 in the fed animals at 8.3 and 16.7 mM glucose. In the fasted control rats insulin output was lower than fed ones. In the chronic stressed rats insulin output at 8.3 and 16.7 mM glucose was higher in the fasted than fed rats. The number of islets increased in the fasted rats following 15 days stress. This study indicated that the response of the isolated islets from acute and chronically stressed rats are different and depends on the feeding status. PMID:27385956

  12. Impairments of spatial working memory and attention following acute psychosocial stress.

    PubMed

    Olver, James S; Pinney, Myra; Maruff, Paul; Norman, Trevor R

    2015-04-01

    Few studies have investigated the effect of an acute psychosocial stress paradigm on impaired attention and working memory in humans. Further, the duration of any stress-related cognitive impairment remains unclear. The aim of this study was to examine the effect of an acute psychosocial stress paradigm, the Trier Social Stress, on cognitive function in healthy volunteers. Twenty-three healthy male and female subjects were exposed to an acute psychosocial stress task. Physiological measures (salivary cortisol, heart rate and blood pressure) and subjective stress ratings were measured at baseline, in anticipation of stress, immediately post-stress and after a period of rest. A neuropsychological test battery including spatial working memory and verbal memory was administered at each time point. Acute psychosocial stress produced significant increases in cardiovascular and subjective measures in the anticipatory and post-stress period, which recovered to baseline after rest. Salivary cortisol steadily declined over the testing period. Acute psychosocial stress impaired delayed verbal recall, attention and spatial working memory. Attention remained impaired, and delayed verbal recall continued to decline after rest. Acute psychosocial stress is associated with an impairment of a broad range of cognitive functions in humans and with prolonged abnormalities in attention and memory. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Grain boundary damage evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Kruska, Karen

    Long-term grain boundary (GB) damage evolution and stress corrosion crack initiation in alloy 690 are being investigated by constant load tensile testing in high-temperature, simulated PWR primary water. Six commercial alloy 690 heats are being tested in various cold work conditions loaded at their yield stress. This paper reviews the basic test approach and detailed characterizations performed on selected specimens after an exposure time of ~1 year. Intergranular crack nucleation was observed under constant stress in certain highly cold-worked (CW) alloy 690 heats and was found to be associated with the formation of GB cavities. Somewhat surprisingly, the heats mostmore » susceptible to cavity formation and crack nucleation were thermally treated materials with most uniform coverage of small GB carbides. Microstructure, % cold work and applied stress comparisons are made among the alloy 690 heats to better understand the factors influencing GB cavity formation and crack initiation.« less

  14. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium.

    PubMed

    Shi, Haitao; Ye, Tiantian; Zhong, Bao; Liu, Xun; Chan, Zhulong

    2014-11-01

    As an important second messenger, calcium is involved in plant cold stress response, including chilling (<20 °C) and freezing (<0 °C). In this study, exogenous application of calcium chloride (CaCl2 ) improved both chilling and freezing stress tolerances, while ethylene glycol-bis-(β-aminoethyl) ether-N,N,N,N-tetraacetic acid (EGTA) reversed CaCl2 effects in bermudagrass (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non-enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. Chronic cold stress in mice induces a regulatory phenotype in macrophages: correlation with increased 11β-hydroxysteroid dehydrogenase expression.

    PubMed

    Sesti-Costa, R; Ignacchiti, M D C; Chedraoui-Silva, S; Marchi, L F; Mantovani, B

    2012-01-01

    Susceptibility to infections, autoimmune disorders and tumor progression is strongly influenced by the activity of the endocrine and nervous systems in response to a stressful stimulus. When the adaptive system is switched on and off efficiently, the body is able to recover from the stress imposed. However, when the system is activated repeatedly or the activity is sustained, as during chronic or excessive stress, an allostatic load is generated, which can lead to disease over long periods of time. We investigated the effects of chronic cold stress in BALB/c mice (4°C/4 h daily for 7 days) on functions of macrophages. We found that chronic cold stress induced a regulatory phenotype in macrophages, characterized by diminished phagocytic ability, decreased TNF-α and IL-6 and increased IL-10 production. In addition, resting macrophages from mice exposed to cold stress stimulated spleen cells to produce regulatory cytokines, and an immunosuppressive state that impaired stressed mice to control Trypanosoma cruzi proliferation. These regulatory effects correlated with an increase in macrophage expression of 11β-hydroxysteroid dehydrogenase, an enzyme that converts inactive glucocorticoid into its active form. As stress is a common aspect of modern life and plays a role in the etiology of many diseases, the results of this study are important for improving knowledge regarding the neuro-immune-endocrine interactions that occur during stress and to highlight the role of macrophages in the immunosuppression induced by chronic stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    PubMed

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis.

  17. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    PubMed Central

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis. PMID:22982374

  18. Blunted cortisol response to acute pre-learning stress prevents misinformation effect in a forced confabulation paradigm.

    PubMed

    Zoladz, Phillip R; Cadle, Chelsea E; Dailey, Alison M; Fiely, Miranda K; Peters, David M; Nagle, Hannah E; Mosley, Brianne E; Scharf, Amanda R; Brown, Callie M; Duffy, Tessa J; Earley, McKenna B; Rorabaugh, Boyd R; Payment, Kristie E

    2017-07-01

    Research examining the effects of stress on false memory formation has been equivocal, partly because of the complex nature of stress-memory interactions. A major factor influencing stress effects on learning is the timing of stress relative to encoding. Previous work has shown that brief stressors administered immediately before learning enhance long-term memory. Thus, we predicted that brief stress immediately before learning would decrease participants' susceptibility to subsequent misinformation and reduce false memory formation. Eighty-four male and female participants submerged their hand in ice cold (stress) or warm (no stress) water for 3min. Immediately afterwards, they viewed an 8-min excerpt from the Disney movie Looking for Miracles. The next day, participants were interviewed and asked several questions about the video, some of which forced them to confabulate responses. Three days and three weeks later, respectively, participants completed a recognition test in the lab and a free recall test via email. Our results revealed a robust misinformation effect, overall, as participants falsely recognized a significant amount of information that they had confabulated during the interview as having occurred in the original video. Stress, overall, did not significantly influence this misinformation effect. However, the misinformation effect was completely absent in stressed participants who exhibited a blunted cortisol response to the stress, for both recognition and recall tests. The complete absence of a misinformation effect in non-responders may lend insight into the interactive roles of autonomic arousal and corticosteroid levels in false memory development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Investigation of pajama properties on skin under mild cold conditions: the interaction between skin and clothing.

    PubMed

    Yao, Lei; Gohel, Mayur D I; Li, Yi; Chung, Waiyee J

    2011-07-01

    Clothing is considered the second skin of the human body. The aim of this study was to determine clothing-wearer interaction on skin physiology under mild cold conditions. Skin physiological parameters, subjective sensory response, stress level, and physical properties of clothing fabric from two longitude parallel-designed wear trials were studied. The wear trials involved four kinds of pajamas made from cotton or polyester material that had hydrophilic or hydrophobic treatment, conducted for three weeks under mild cold conditions. Statistical tools, factor analysis, hierarchical linear regression, and logistic regression were applied to analyze the strong predictors of skin physiological parameters, stress level, and sensory response. A framework was established to illustrate clothing-wearer interactions with clothing fabric properties, skin physiology, stress level, and sensory response under mild cold conditions. Fabric has various effects on the human body under mild cold conditions. A fabric's properties influence skin physiology, sensation, and psychological response. © 2011 The International Society of Dermatology.

  20. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2018-02-01

    Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Agmatine : metabolic pathway and spectrum of activity in brain.

    PubMed

    Halaris, Angelos; Plietz, John

    2007-01-01

    Agmatine is an endogenous neuromodulator that, based on animal studies, has the potential for new drug development. As an endogenous aminoguanidine compound (1-amino-4-guanidinobutane), it is structurally unique compared with other monoamines. Agmatine was long thought to be synthesised only in lower life forms, until its biosynthetic pathway (decarboxylation of arginine) was described in the mammalian brain in 1994. Human arginine decarboxylase has been cloned and shown to have 48% identity to ornithine decarboxylase. In neurons of the brain and spinal cord, agmatine is packaged into synaptic vesicles and released upon neuronal depolarisation. Other evidence of a neuromodulation role for agmatine is the presence of a specific cellular uptake mechanism and a specific metabolic enzyme (agmatinase; which forms putrescine).Initially, agmatine was conceptualised as an endogenous clonidine-displacing substance of imidazoline receptors; however, it has now been established to have affinity for several transmembrane receptors, such as alpha(2)-adrenergic, imidazoline I(1) and glutamatergic NMDA receptors. In addition to activity at these receptors, agmatine irreversibly inhibits neuronal nitric oxide synthase and downregulates inducible nitric oxide synthase. Endogenous agmatine is induced in response to stress and/or inflammation. Stressful conditions that induce agmatine include hypoxic-ischaemia and cold-restraint stress of ulcerogenic proportion. Induction of agmatine in the brain seems to occur in astrocytes, although neurons also synthesise agmatine. The effects of injected agmatine in animals include anticonvulsant-, antineurotoxic- and antidepressant-like actions. Intraperitoneal or intracerebroventricular injections of agmatine rapidly elicit antidepressant-like behavioural changes in the rodent forced swim test and tail suspension test. Intraperitoneal injections of agmatine into rats and mice also elicit acute anxiolytic-like behavioural changes in the elevated plus-maze stress test. In an animal model of acute stress disorder, intraperitoneal agmatine injections diminish contextual fear learning. Furthermore, intraperitoneal injections of agmatine reduce alcohol and opioid dependence by diminishing behaviour in a rat conditioned place preference paradigm. Based on these findings, agmatine appears to be an endogenous neuromodulator of mental stress. The possible roles and/or beneficial effects of agmatine in stress-related disorders, such as depression, anxiety and post-traumatic stress disorder, merit further investigation.

  2. Acute stress disorder in hospitalised victims of 26/11-terror attack on Mumbai, India.

    PubMed

    Balasinorwala, Vanshree Patil; Shah, Nilesh

    2010-11-01

    The 26/11 terror attacks on Mumbai have been internationally denounced. Acute stress disorder is common in victims of terror. To find out the prevalence and to correlate acute stress disorder, 70 hospitalised victims of terror were assessed for presence of the same using DSM-IV TR criteria. Demographic data and clinical variables were also collected. Acute stress disorder was found in 30% patients. On demographic profile and severity of injury, there were some interesting observations and differences between the victims who developed acute stress disorder and those who did not; though none of the differences reached the level of statistical significance. This study documents the occurrence of acute stress disorder in the victims of 26/11 terror attack.

  3. Hot Mix Asphalt for Intersections in Hot Climates

    DOT National Transportation Integrated Search

    1998-03-01

    Rutting of hot mix asphalt (HMA) pavement at or near intersections is very common both in cold and hot climates. Obviously, the problem is more acute in hot climates compared to cold climates because the stiffness of HMA decreases with increase in pa...

  4. Response of microRNAs to cold treatment in the young spikes of common wheat.

    PubMed

    Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying

    2017-02-28

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.

  5. Older Thinopyrum intermedium (Poaceae) plants exhibit superior photosynthetic tolerance to cold stress and greater increases in two photosynthetic enzymes under freezing stress compared with young plants.

    PubMed

    Jaikumar, Nikhil S; Snapp, Sieglinde S; Sharkey, Thomas D

    2016-08-01

    Effects of plant age on resource acquisition and stress tolerance processes is a largely unstudied subject in herbaceous perennials. In a field experiment, we compared rates of photosynthesis (A), ribulose-1,5-bisphosphate (RuBP) carboxylation capacity (V Cmax), maximum electron transport rate (J max), and triose phosphate utilization (TPU), as well as concentrations of Rubisco and sucrose-phosphate synthase (SPS) in 5-year-old and 2-year-old intermediate wheatgrass (Thinopyrum intermedium) under both optimal growing conditions and cold stress in early spring and autumn. This species is a relative of wheat undergoing domestication. An additional experiment compared photosynthetic rates in different cohorts at mid-season and under colder conditions. We hypothesized that photosynthetic capacity in older plants would be lower under favorable conditions but higher under cold stress. Our hypothesis was generally supported. Under cold stress, 5-year-old plants exhibited higher A, TPU, and temperature-adjusted V Cmax than younger plants, as well as 50% more SPS and 37% more Rubisco. In contrast, at mid-season, photosynthetic capacities in older plants were lower than in younger plants in one experiment, and similar in the other, independent of differences in water status. Both cohorts increased A, temperature-adjusted TPU and J max, [Rubisco], and [SPS] under cold stress, but changes were greater in older plants. Photosynthetic differences were largest at 1.2 ºC in very early spring, where older plants had 200% higher A and maintained up to 17% of their peak photosynthetic capacity. We find evidence of increased cold tolerance in older cohorts of wheatgrass, consistent with a growing body of research in woody perennials. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii

    PubMed Central

    Alford, Lucy; Yeoh, Joseph GC; Marley, Richard; Dornan, Anthony J; Dow, Julian AT; Davies, Shireen A

    2017-01-01

    Abstract BACKGROUND Neuropeptides are central to the regulation of physiological and behavioural processes in insects, directly impacting cold and desiccation survival. However, little is known about the control mechanisms governing these responses in Drosophila suzukii. The close phylogenetic relationship of D. suzukii with Drosophila melanogaster allows, through genomic and functional studies, an insight into the mechanisms directing stress tolerance in D. suzukii. RESULTS Capability (Capa), leucokinin (LK), diuretic hormone 44 (DH44) and DH31 neuropeptides demonstrated a high level of conservation between D. suzukii and D. melanogaster with respect to peptide sequences, neuronal expression, receptor localisation, and diuretic function in the Malpighian tubules. Despite D. suzukii's ability to populate cold environments, it proved sensitive to both cold and desiccation. Furthermore, in D. suzukii, Capa acts as a desiccation‐ and cold stress‐responsive gene, while DH 44 gene expression is increased only after desiccation exposure, and the LK gene after nonlethal cold stress recovery. CONCLUSION This study provides a comparative investigation into stress tolerance mediation by neuroendocrine signalling in two Drosophila species, providing evidence that similar signalling pathways control fluid secretion in the Malpighian tubules. Identifying processes governing specific environmental stresses affecting D. suzukii could lead to the development of targeted integrated management strategies to control insect pest populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28714258

  7. Transcriptomic characterization of temperature stress responses in larval zebrafish.

    PubMed

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28 °C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16 °C) or heat (34 °C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish.

  8. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    PubMed Central

    Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth

    2017-01-01

    The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response. PMID:28662112

  9. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes.

    PubMed

    Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response.

  10. Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study

    PubMed Central

    Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko

    2016-01-01

    This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making. PMID:27679566

  11. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum

    NASA Astrophysics Data System (ADS)

    Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai

    2016-04-01

    The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.

  12. Jasmonate Regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis[W

    PubMed Central

    Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu

    2013-01-01

    The INDUCER OF CBF EXPRESSION (ICE)–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance. PMID:23933884

  13. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis.

    PubMed

    Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu

    2013-08-01

    The inducer of cbf expression (ICE)-C-repeat binding factor/DRE binding factor1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several jasmonate ZIM-domain (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.

  14. Transcriptional and translational regulation by RNA thermometers, riboswitches and the sRNA DsrA in Escherichia coli O157:H7 Sakai under combined cold and osmotic stress adaptation.

    PubMed

    Hücker, Sarah Maria; Simon, Svenja; Scherer, Siegfried; Neuhaus, Klaus

    2017-01-01

    The enteric pathogen Escherichia coli O157:H7 Sakai (EHEC) is able to grow at lower temperatures compared to commensal E. coli Growth at environmental conditions displays complex challenges different to those in a host. EHEC was grown at 37°C and at 14°C with 4% NaCl, a combination of cold and osmotic stress as present in the food chain. Comparison of RNAseq and RIBOseq data provided a snap shot of ongoing transcription and translation, differentiating transcriptional and post-transcriptional gene regulation, respectively. Indeed, cold and osmotic stress related genes are simultaneously regulated at both levels, but translational regulation clearly dominates. Special emphasis was given to genes regulated by RNA secondary structures in their 5 ' UTRs, such as RNA thermometers and riboswitches, or genes controlled by small RNAs encoded in trans The results reveal large differences in gene expression between short-time shock compared to adaptation in combined cold and osmotic stress. Whereas the majority of cold shock proteins, such as CspA, are translationally downregulated after adaptation, many osmotic stress genes are still significantly upregulated mainly translationally, but several also transcriptionally. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Common Cold - an Umbrella Term for Acute Infections of Nose, Throat, Larynx and Bronchi.

    PubMed

    Kardos, P; Malek, F A

    2017-04-01

    Acute respiratory tract infections, i. e. rhinitis, sinusitis, pharyngitis, laryngitis, bronchitis, belong to the most common medical conditions with a high economic burden. Nonetheless, there is little agreement concerning their differential diagnosis.This paper will discuss to what extent different anatomical sites of acute respiratory tract infections can be uniquely identified or whether the overlap and consecutive development in signs and symptoms renders these distinctions meaningless.Acute respiratory tract infections are variable but definition of diagnostic categories based on the anatomical sites of the dominant complaints shows that signs and symptoms both overlap to a great extent and/or emerge successively. Thus, in common cold distinguishing between acute symptom-based diagnoses arising from different anatomical sites of the aerodigestive system remains elusive. Therefore, preferred symptomatic treatments should foster a resolution of all possible symptoms as opposed to an isolated treatment of a single symptom (e. g. mucus hypersecretion) according to the presumed anatomical site (i. e. acute bronchitis). © Georg Thieme Verlag KG Stuttgart · New York.

  16. Cold-stress response during the stationary-growth phase of Antarctic and temperate-climate Penicillium strains.

    PubMed

    Miteva-Staleva, Jeni G; Krumova, Ekaterina T; Vassilev, Spassen V; Angelova, Maria B

    2017-07-01

    Cold-induced oxidative stress during the aging of three Penicillium strains (two Antarctic and one from a temperate region) in stationary culture was documented and demonstrated a significant increase in the protein carbonyl content, the accumulation of glycogen and trehalose, and an increase in the activities of antioxidant enzymes (superoxide dismutase and catalase). The cell response to a temperature downshift depends on the degree of stress and the temperature characteristics of the strains. Our data give further support for the role of oxidative stress in the aging of fungi in stationary cultures. Comparing the present results for the stationary growth phase with our previous results for the exponential growth phase was informative concerning the relationship between the cold-stress response and age-related changes in the tested strains. Unlike the young cells, stationary-phase cultures demonstrated a more pronounced level of oxidative damage, as well as decreased antioxidant defence.

  17. Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress.

    PubMed

    Kirakosyan, Ara; Seymour, Elisabeth; Kaufman, Peter B; Warber, Sara; Bolling, Steven; Chang, Soo Chul

    2003-07-02

    Crataegus laevigata and Crataegus monogyna (hawthorn) were subjected to drought and cold stress treatments, and polyphenolic extracts from control and stress-treated plants were assayed for antioxidant capacities using a modified version of the Total Antioxidant Status Assay (Randox, San Francisco, CA). In addition, these plants were analyzed for levels of flavanol-type substance [(-)-epicatechin] and flavonoid (vitexin 2' '-O-rhamnoside, acetylvitexin 2' '-O-rhamnoside, and hyperoside) constituents that are important metabolites in hawthorn herbal preparations used to treat patients with heart disease. Drought and cold stress treatments caused increases in levels of (-)-epicatechin and hyperoside in both Crataegus species. Such treatments also enhanced the antioxidant capacity of the extracts. The results from this study thus indicate that these kinds of stress treatments can enhance the levels of important secondary metabolites and their total antioxidant capacities in leaves of Crataegus.

  18. Cold-induced retrotransposition of fish LINEs.

    PubMed

    Chen, Shue; Yu, Mengchao; Chu, Xu; Li, Wenhao; Yin, Xiujuan; Chen, Liangbiao

    2017-08-20

    Classes of retrotransposons constitute a large portion of metazoan genome. There have been cases reported that genomic abundance of retrotransposons is correlated with the severity of low environmental temperatures. However, the molecular mechanisms underlying such correlation are unknown. We show here by cell transfection assays that retrotransposition (RTP) of a long interspersed nuclear element (LINE) from an Antarctic notothenioid fish Dissostichus mawsoni (dmL1) could be activated by low temperature exposure, causing increased dmL1 copies in the host cell genome. The cold-induced dmL1 propagation was demonstrated to be mediated by the mitogen-activated protein kinases (MAPK)/p38 signaling pathway, which is activated by accumulation of reactive oxygen species (ROS) in cold-stressed conditions. Surprisingly, dmL1 transfected cells showed an increase in the number of viable cells after prolonged cold exposures than non-transfected cells. Features of cold inducibility of dmL1 were recapitulated in LINEs of zebrafish origin both in cultured cell lines and tissues, suggesting existence of a common cold-induced LINE amplification in fishes. The findings reveal an important function of LINEs in temperature adaptation and provid insights into the MAPK/p38 stress responsive pathway that shapes LINE composition in fishes facing cold stresses. Copyright © 2017. Published by Elsevier Ltd.

  19. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress.

    PubMed

    Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim

    2013-07-01

    Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.

  20. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    PubMed

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transcriptome Sequencing of Dianthus spiculifolius and Analysis of the Genes Involved in Responses to Combined Cold and Drought Stress.

    PubMed

    Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2017-04-17

    Dianthus spiculifolius , a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation.

  2. Transcriptome Sequencing of Dianthus spiculifolius and Analysis of the Genes Involved in Responses to Combined Cold and Drought Stress

    PubMed Central

    Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2017-01-01

    Dianthus spiculifolius, a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation. PMID:28420173

  3. The potential use of physical resilience to predict healthy aging.

    PubMed

    Schorr, Anna; Carter, Christy; Ladiges, Warren

    2018-01-01

    Physical resilience is the ability of an organism to respond to stressors that acutely disrupt normal physiological homeostasis. By definition, resilience decreases with increasing age, while frailty, defined as a decline in tissue function, increases with increasing age. Assessment of resilience could therefore be an informative early paradigm to predict healthy aging compared to frailty, which measures late life dysfunction. Parameters for resilience in the laboratory mouse are not yet well defined, and no single standardized stress test exists. Since aging involves multiple genetic pathways, integrative responses involving multiple tissues, organs, and activities need to be measured to reveal the overall resilience status, suggesting a battery of stress tests, rather than a single all-encompassing one, would be most informative. Three simple, reliable, and inexpensive stressors are described in this review that could be used as a panel to determine levels of resilience. Brief cold water immersion allows a recovery time to normothermia as an indicator of resilience to hypothermia, i.e. the quicker the return to normal body temperature, the more robust the resilience. Sleep deprivation (SD) impairs remote memory in aged mice, and has detrimental effects on glucose metabolism. Cyclophosphamide (CYP) targets white blood cells, especially myeloid cells resulting in neutropenia with a rebound neutrophilia in an age-dependent manner. Thus a strong neutrophilic response indicates resilience. In conclusion, resilience promises to be an especially useful measurement of biological age, i.e. how fast a particular organ or tissue ages. The three stressors, cold, SD, and CYP, are applicable to human medicine and aging because they represent clinically relevant stress conditions that have effects in an age-dependent manner. They are thus an attractive perturbation for resilience testing in mice to measure the effectiveness of interventions that target basic aging processes.

  4. Dispositional Affect Moderates the Stress-Buffering Effect of Social Support on Risk for Developing the Common Cold.

    PubMed

    Janicki Deverts, Denise; Cohen, Sheldon; Doyle, William J

    2017-10-01

    The aim was to examine whether trait positive and negative affect (PA, NA) moderate the stress-buffering effect of perceived social support on risk for developing a cold subsequent to being exposed to a virus that causes mild upper respiratory illness. Analyses were based on archival data from 694 healthy adults (M age  = 31.0 years, SD = 10.7 years; 49.0% female; 64.6% Caucasian). Perceived social support and perceived stress were assessed by self-report questionnaire and trait affect by aggregating responses to daily mood items administered by telephone interview across several days. Subsequently, participants were exposed to a virus that causes the common cold and monitored for 5 days for clinical illness (infection + objective signs of illness). Two 3-way interactions emerged-Support × Stress × PA and Support × Stress × NA. The nature of these effects was such that among persons with high trait PA or low trait NA, greater social support attenuated the risk of developing a cold when under high but not low perceived stress; this stress-buffering effect did not emerge among persons with low trait PA or high trait NA. Dispositional affect might be used to identify individuals who may be most responsive to social support and support-based interventions. © 2016 Wiley Periodicals, Inc.

  5. Influence of temperature on the corticosterone stress-response: an experiment in the Children's python (Antaresia childreni).

    PubMed

    Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier; Angelier, Frédéric

    2013-11-01

    To cope with environmental challenges, organisms have to adjust their behaviours and their physiology to the environmental conditions they face (i.e. allostasis). In vertebrates, such adjustments are often mediated through the secretion of glucocorticoids (GCs) that are well-known to activate and/or inhibit specific physiological and behavioural traits. In ectothermic species, most processes are temperature-dependent and according to previous studies, low external temperatures should be associated with low GC concentrations (both baseline and stress-induced concentrations). In this study, we experimentally tested this hypothesis by investigating the short term influence of temperature on the GC stress response in a squamate reptile, the Children's python (Antaresia childreni). Snakes were maintained in contrasting conditions (warm and cold groups), and their corticosterone (CORT) stress response was measured (baseline and stress-induced CORT concentrations), within 48h of treatment. Contrary to our prediction, baseline and stress-induced CORT concentrations were higher in the cold versus the warm treatment. In addition, we found a strong negative relationship between CORT concentrations (baseline and stress-induced) and temperature within the cold treatment. Although it remains unclear how cold temperatures can mechanistically result in increased CORT concentrations, we suggest that, at suboptimal temperature, high CORT concentrations may help the organism to maintain an alert state. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    PubMed

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock

    PubMed Central

    2015-01-01

    Background The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. Results We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Conclusions Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms. PMID:26694630

  8. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    PubMed

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system, photosystem II, as well as the CBF transcriptional regulatory cascade.

  9. The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy

    NASA Astrophysics Data System (ADS)

    Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.

    2018-01-01

    In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.

  10. Abscisic acid enhances cold tolerance in honeybee larvae

    PubMed Central

    Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-01-01

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619

  11. Effect of cold water-induced stress on immune response, pathology and fertility in mice during Chlamydia muridarum genital infection

    PubMed Central

    Belay, Tesfaye; Woart, Anthony; Graffeo, Vincent

    2017-01-01

    Abstract Genital infection by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. It causes serious reproductive health complications, including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on chlamydia genital infection is unknown. We previously showed that repeated exposure of mice to cold water results in increased severity of chlamydia genital infection. In this study, cold water-induced stress resulted in (i) elevated levels of norepinephrine (NE) and epinephrine in the spleen and genital tract of stressed mice; (ii) elevated IL-1β, TNF-α, IL-6 and nitric oxide production in macrophage-rich peritoneal cells of mice; (iii) supplement of NE in vitro exerts an immunosuppressive effect on splenic T-cell production of cytokines; (iv) decreased C. muridarum shedding in the genital tract of β1Adr/β2Adr receptor KO mice; and (v) a higher rate of infertility in infected mice. These results suggest that cold water stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased intensity of C. muridarum genital infection. PMID:28431099

  12. Abscisic acid enhances cold tolerance in honeybee larvae.

    PubMed

    Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-04-12

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).

  13. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can bemore » hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.« less

  14. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.

    PubMed

    Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-02-01

    Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Physiological ecology of overwintering in the hatchling painted turtle: multiple-scale variation in response to environmental stress.

    PubMed

    Costanzo, Jon P; Dinkelacker, Stephen A; Iverson, John B; Lee, Richard E

    2004-01-01

    We integrated field and laboratory studies in an investigation of water balance, energy use, and mechanisms of cold-hardiness in hatchling painted turtles (Chrysemys picta) indigenous to west-central Nebraska (Chrysemys picta bellii) and northern Indiana (Chrysemys picta marginata) during the winters of 1999-2000 and 2000-2001. We examined 184 nests, 80 of which provided the hatchlings (n=580) and/or samples of soil used in laboratory analyses. Whereas winter 1999-2000 was relatively dry and mild, the following winter was wet and cold; serendipitously, the contrast illuminated a marked plasticity in physiological response to environmental stress. Physiological and cold-hardiness responses of turtles also varied between study locales, largely owing to differences in precipitation and edaphics and the lower prevailing and minimum nest temperatures (to -13.2 degrees C) encountered by Nebraska turtles. In Nebraska, winter mortality occurred within 12.5% (1999-2000) and 42.3% (2000-2001) of the sampled nests; no turtles died in the Indiana nests. Laboratory studies of the mechanisms of cold-hardiness used by hatchling C. picta showed that resistance to inoculative freezing and capacity for freeze tolerance increased as winter approached. However, the level of inoculation resistance strongly depended on the physical characteristics of nest soil, as well as its moisture content, which varied seasonally. Risk of inoculative freezing (and mortality) was greatest in midwinter when nest temperatures were lowest and soil moisture and activity of constituent organic ice nuclei were highest. Water balance in overwintering hatchlings was closely linked to dynamics of precipitation and soil moisture, whereas energy use and the size of the energy reserve available to hatchlings in spring depended on the winter thermal regime. Acute chilling resulted in hyperglycemia and hyperlactemia, which persisted throughout winter; this response may be cryoprotective. Some physiological characteristics and cold-hardiness attributes varied between years, between study sites, among nests at the same site, and among siblings sharing nests. Such variation may reflect adaptive phenotypic plasticity, maternal or paternal influence on an individual's response to environmental challenge, or a combination of these factors. Some evidence suggests that life-history traits, such as clutch size and body size, have been shaped by constraints imposed by the harsh winter environment.

  16. Vulnerabilities to Temperature Effects on Acute Myocardial Infarction Hospital Admissions in South Korea

    PubMed Central

    Kwon, Bo Yeon; Lee, Eunil; Lee, Suji; Heo, Seulkee; Jo, Kyunghee; Kim, Jinsun; Park, Man Sik

    2015-01-01

    Most previous studies have focused on the association between acute myocardial function (AMI) and temperature by gender and age. Recently, however, concern has also arisen about those most susceptible to the effects of temperature according to socioeconomic status (SES). The objective of this study was to determine the effect of heat and cold on hospital admissions for AMI by subpopulations (gender, age, living area, and individual SES) in South Korea. The Korea National Health Insurance (KNHI) database was used to examine the effect of heat and cold on hospital admissions for AMI during 2004–2012. We analyzed the increase in AMI hospital admissions both above and below a threshold temperature using Poisson generalized additive models (GAMs) for hot, cold, and warm weather. The Medicaid group, the lowest SES group, had a significantly higher RR of 1.37 (95% CI: 1.07–1.76) for heat and 1.11 (95% CI: 1.04–1.20) for cold among subgroups, while also showing distinctly higher risk curves than NHI for both hot and cold weather. In additions, females, older age group, and those living in urban areas had higher risks from hot and cold temperatures than males, younger age group, and those living in rural areas. PMID:26580643

  17. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    PubMed

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  18. Cold habituation does not improve manual dexterity during rest and exercise in 5 °C

    NASA Astrophysics Data System (ADS)

    Muller, Matthew D.; Seo, Yongsuk; Kim, Chul-Ho; Ryan, Edward J.; Pollock, Brandon S.; Burns, Keith J.; Glickman, Ellen L.

    2014-04-01

    When exposed to a cold environment, a barehanded person experiences pain, cold sensation, and reduced manual dexterity. Both acute (e.g. exercise) and chronic (e.g. cold acclimatization or habituation) processes might lessen these negative effects. The purpose of this experiment was to determine the effect of cold habituation on physiology, perception, and manual dexterity during rest, exercise, and recovery in 5 °C. Six cold weather athletes (CWA) and eight non habituated men (NON) volunteered to participate in a repeated measures cross-over design. The protocol was conducted in 5 °C and was 90 min of resting cold exposure, 30 min of cycle ergometry exercise (50 % VO2 peak), and 60 min of seated recovery. Core and finger skin temperature, metabolic rate, Purdue Pegboard dexterity performance, hand pain, thermal sensation, and mood were quantified. Exercise-induced finger rewarming (EIFRW) was calculated for each hand. During 90 min of resting exposure to 5 °C, the CWA had a smaller reduction in finger temperature, a lower metabolic rate, less hand pain, and less negative mood. Despite this cold habituation, dexterity performance was not different between groups. In response to cycle ergometry, EIFRW was greater in CWA (~12 versus 7 °C) and occurred at lower core temperatures (37.02 versus 37.31 °C) relative to NON but dexterity was not greater during post-exercise recovery. The current data indicate that cold habituated men (i.e., CWA) do not perform better on the Purdue Pegboard during acute cold exposure. Furthermore, despite augmented EIFRW in CWA, dexterity during post-exercise recovery was similar between groups.

  19. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance.

    PubMed

    Zwack, Paul J; Compton, Margaret A; Adams, Cami I; Rashotte, Aaron M

    2016-03-01

    Cytokinin response factor 4 (CRF4) shows a short-term induction by cold (4 °C) that appears to play a role in non-acclimated freezing tolerance as seen in mutant and overexpression lines. Responses to abiotic stresses, such as cold stress, are critical to plant growth and optimal production. Examination of Arabidopsis cytokinin response factors (CRFs) showed transcriptional induction after exposure to cold (4 °C). In particular, CRF4 was strongly induced in both root and shoot tissues. As CRF4 is one of several CRFs not transcriptionally regulated by cytokinin, we further investigated its response to cold. Peak CRF4 induction occurred 6 h post cold exposure, after which expression was maintained at moderately elevated levels during extended cold and subsequent treatment recovery. Examination of CRF4 mutant and overexpression lines under standard (non-cold) conditions revealed little difference from WT. One exception was a small, but significant increase in primary root growth of overexpression plants (CRF4OX). Under cold conditions, the only phenotype observed was a reduction in the rate of germination of CRF4OX seeds. The pattern of CRF4 expression along with the lack of strong phenotype at 4 °C led us to hypothesize that cold induction of CRF4 could play a role in short-term cold acclimation leading to increased freeze tolerance. Examination of CRF4OX and crf4 plants exposed to freezing temperatures revealed mutants lacking expression of CRF4 were more sensitive to freezing, while CRF4OXs with increased levels CRF4 levels were more tolerant. Altered transcript expression of CBF and COR15a cold signaling pathway genes in crf4 mutant and overexpression lines suggest that CRF4 may be potentially connected to this pathway. Overall this indicates that CRF4 plays an important role in both cold response and freezing stress.

  20. Understanding the effects of process parameters on the properties of cold gas dynamic sprayed pure titanium coatings

    NASA Astrophysics Data System (ADS)

    Wong, Wilson

    The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to their corresponding coatings. For all feedstock powder morphologies, it was observed that the larger the particle size, the higher the temperature generated on impact. For the spherical powders, the higher the temperature generated on impact, the lower the stress needed to deform the particle. In addition, as the kinetic energy of the impacting particle increased, the flow peak stress decreased while the final strain increased. Furthermore, higher final flow strains were associated with higher coating DeltaHV 10 (between the coatings and the feedstock powders). Similar relationships are expected to exist for the sponge and irregular feedstock powders. Based on porosity, the spherical medium powder was found to have the best cold sprayability. The final part of the investigation focussed on the effect of substrate surface roughness and coating thickness on the adhesion strength of commercially pure titanium cold sprayed coatings onto Steel 1020, Al 6061, and Ti substrates. Adhesion strength was measured by tensile/pull tests according to ASTM C-633-01 standard. Through-thickness residual stresses of selected coatings were measured using the modified layer removal method (MLRM). In addition, mean coating residual stresses were calculated from MLRM results. It was found that adhesion strength increases with increasing substrate surface roughness and decreases with increasing coating thickness. Furthermore, mean coating residual stresses were correlated with adhesion strength and it was suggested that higher adhesion strengths are associated with higher mean compressive stresses and a higher probability for adiabatic shear instability to occur due to the higher particle impact velocities. In general, it was found that under similar cold spray conditions and substrate surface preparation method, adhesion strength was strongest for commercially pure titanium coatings deposited onto Al 6061, followed by Ti, then Steel 1020.

  1. CRACK GROWTH RESPONSE OF ALLOY 690 IN SIMULATED PWR PRIMARY WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2009-12-01

    The stress corrosion crack growth response of three extruded alloy 690 CRDM tube heats was investigated in several thermomechanical conditions. Extremely low propagation rates (< 1 x 10{sup -9} mm/s) were observed under constant stress intensity factor (K) loading at 325-350 C in the as-received, thermally treated (TT) materials despite using a variety of transitioning techniques. Post-test observation of the crack-growth surfaces revealed only isolated intergranular (IG) cracking. One-dimensional cold rolling to 17% reduction and testing in the S-L orientation did not promote enhanced stress corrosion rates. However, somewhat higher propagation rates were observed in a 30% cold-rolled alloy 690TTmore » specimen tested in the T-L orientation. Cracking of the cold-rolled material was promoted on grain boundaries oriented parallel to the rolling plane with the % IG increasing with the amount of cold rolling.« less

  2. Temperature stress and plant sexual reproduction: uncovering the weakest links.

    PubMed

    Zinn, Kelly E; Tunc-Ozdemir, Meral; Harper, Jeffrey F

    2010-04-01

    The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the most sensitive reproductive stage. Transcriptome and proteomic studies on several plant species are beginning to identify stress response pathways that function during pollen development. An example is provided here of genotypic differences in the reproductive stress tolerance between two ecotypes of Arabidopsis thaliana Columbia (Col) and Hilversum (Hi-0), when reproducing under conditions of hot days and cold nights. Hi-0 exhibited a more severe reduction in seed set, correlated with a reduction in pollen tube growth potential and tropism defects. Hi-0 thus provides an Arabidopsis model to investigate strategies for improved stress tolerance in pollen. Understanding how different plants cope with stress during reproductive development offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.

  3. Prefrontal Cortex Corticotropin-Releasing Factor Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction.

    PubMed

    Uribe-Mariño, Andrés; Gassen, Nils C; Wiesbeck, Maximilian F; Balsevich, Georgia; Santarelli, Sara; Solfrank, Beate; Dournes, Carine; Fries, Gabriel R; Masana, Merce; Labermeier, Christiana; Wang, Xiao-Dong; Hafner, Kathrin; Schmid, Bianca; Rein, Theo; Chen, Alon; Deussing, Jan M; Schmidt, Mathias V

    2016-11-15

    The medial prefrontal cortex (mPFC) subserves complex cognition and is impaired by stress. Corticotropin-releasing factor (CRF), through CRF receptor 1 (CRFR1), constitutes a key element of the stress response. However, its contribution to the effects of stress in the mPFC remains unclear. Mice were exposed to acute social defeat stress and subsequently to either the temporal order memory (n = 11-12) or reversal learning (n = 9-11) behavioral test. Changes in mPFC Crhr1 messenger RNA levels were measured in acutely stressed mice (n = 12). Crhr1 loxP/loxP mice received either intra-mPFC adeno-associated virus-Cre or empty microinjections (n = 17-20) and then were submitted to acute stress and later to the behavioral tests. Co-immunoprecipitation was used to detect activation of the protein kinase A (PKA) signaling pathway in the mPFC of acutely stressed mice (n = 8) or intra-mPFC CRF injected mice (n = 7). Finally, mice received intra-mPFC CRF (n = 11) and/or Rp-isomer cyclic adenosine 3',5' monophosphorothioate (Rp-cAMPS) (n = 12) microinjections and underwent behavioral testing. We report acute stress-induced effects on mPFC-mediated cognition, identify CRF-CRFR1-containing microcircuits within the mPFC, and demonstrate stress-induced changes in Crhr1 messenger RNA expression. Importantly, intra-mPFC CRFR1 deletion abolishes acute stress-induced executive dysfunction, whereas intra-mPFC CRF mimics acute stress-induced mPFC dysfunction. Acute stress and intra-mPFC CRF activate the PKA signaling pathway in the mPFC, leading to cyclic AMP response element binding protein phosphorylation in intra-mPFC CRFR1-expressing neurons. Finally, PKA blockade reverses the intra-mPFC CRF-induced executive dysfunction. Taken together, these results unravel a molecular mechanism linking acute stress to executive dysfunction via CRFR1. This will aid in the development of novel therapeutic targets for stress-induced cognitive dysfunction. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review

    PubMed Central

    Taylor, Lee; Watkins, Samuel L.; Marshall, Hannah; Dascombe, Ben J.; Foster, Josh

    2016-01-01

    Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions. PMID:26779029

  5. Cold and carbon dioxide used as multi-hurdle preservation do not induce appearance of viable but non-culturable Listeria monocytogenes.

    PubMed

    Li, J; Kolling, G L; Matthews, K R; Chikindas, M L

    2003-01-01

    To study whether the exposure to cold (4 degrees C) and carbon dioxide which results in the elongation of Listeria cells, induces a viable but nonculturable (VBNC) state. When cold and CO2 stressed L. monocytogenes were observed under a fluorescence microscope, using the LIVE/DEAD BacLight bacteria viability kit (Molecular Probes, Eugene, OR, USA), the healthy, mildly injured, and the putative VBNC cells accounted for 31.0% of the stressed cell population. By using the selective plate count, 31.4% of the same stressed cell population was found to be healthy and mildly injured (putative VBNC cells not included). If there were VBNC state cells present, we should have observed a significant difference between the above two numbers. In fact, there was no significant difference between the results obtained from those two methods. There were no VBNC state cells observed in the stressed cell population. We conclude that cold and CO2 do not induce L. monocytogenes to enter a VBNC state. Cold and modified atmospheres are widely used in fresh muscle food and fruit preservation. Whether they would induce L. monocytogenes into a VBNC state is of a great concern for microbial food safety.

  6. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana

    PubMed Central

    Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2 .- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  7. From the Lab Bench: Why the heat and cold stresses on tall fescue pasture

    USDA-ARS?s Scientific Manuscript database

    A column is written to provide information on why cattle that graze toxic endophyte infected tall fescue are vulnerable to both heat and cold stress. Peer reviewed research conducted by scientists at the USDA-ARS Forage-Animal Production Research Unit demonstrated that ergot alkaloids produced by t...

  8. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood

    PubMed Central

    Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich

    2016-01-01

    Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic–pituitary–adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850

  9. Chronic Desipramine Prevents Acute Stress-Induced Reorganization of Medial Prefrontal Cortex Architecture by Blocking Glutamate Vesicle Accumulation and Excitatory Synapse Increase

    PubMed Central

    Treccani, Giulia; Liebenberg, Nico; Chen, Fenghua; Popoli, Maurizio; Wegener, Gregers; Nyengaard, Jens Randel

    2015-01-01

    Background: Although a clear negative influence of chronic exposure to stressful experiences has been repeatedly demonstrated, the outcome of acute stress on key brain regions has only just started to be elucidated. Although it has been proposed that acute stress may produce enhancement of brain plasticity and that antidepressants may prevent such changes, we still lack ultrastructural evidence that acute stress-induced changes in neurotransmitter physiology are coupled with structural synaptic modifications. Methods: Rats were pretreated chronically (14 days) with desipramine (10mg/kg) and then subjected to acute foot-shock stress. By means of serial section electron microscopy, the structural remodeling of medial prefrontal cortex glutamate synapses was assessed soon after acute stressor cessation and stress hormone levels were measured. Results: Foot-shock stress induced a remarkable increase in the number of docked vesicles and small excitatory synapses, partially and strongly prevented by desipramine pretreatment, respectively. Acute stress-induced corticosterone elevation was not affected by drug treatment. Conclusions: Since desipramine pretreatment prevented the stress-induced structural plasticity but not the hormone level increase, we hypothesize that the preventing action of desipramine is located on pathways downstream of this process and/or other pathways. Moreover, because enhancement of glutamate system remodeling may contribute to overexcitation dysfunctions, this aspect could represent a crucial component in the pathophysiology of stress-related disorders. PMID:25522419

  10. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  11. Seedling phenology and cold hardiness: Moving targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Phenology is the annual cycle of plant development as influenced by seasonal variations. Dormancy and cold hardiness are two aspects of the annual cycle. In temperate plants, the development of cold hardiness results in the ability to withstand subfreezing winter temperatures. Cold hardiness is also a reflection of overall stress resistance. In addition to describing...

  12. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis

    PubMed Central

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2017-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: −6°C for 2 h with prior 4°C for 7 d, cold shock group: −6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which enhanced connectedness in adh1 network under cold chock. When considered collectively, the results showed that adh1 possessed a metabolic response to freezing stress and ADH1 played an important role in the cold stress response of a plant. These results expands our understanding of the short-term freeze response of ADH1 in plants. PMID:28123394

  13. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.

    PubMed

    Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P

    2016-07-01

    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  14. The Prosodic Evolution of West Slavic in the Context of the Neo-Acute Stress

    ERIC Educational Resources Information Center

    Feldstein, Ronald F.

    1975-01-01

    Because of neo-acute stress--or transferred acute stress--long vowel prosody in West Slavic had a special evolution. Two kinds of long vowel evolution are examined. The nature of transitionality across Slavic territory from tonal opposition to distinctive stress placement is pointed out. (SC)

  15. Cognitive reappraisal increases neuroendocrine reactivity to acute social stress and physical pain.

    PubMed

    Denson, Thomas F; Creswell, J David; Terides, Matthew D; Blundell, Kate

    2014-11-01

    Cognitive reappraisal can foster emotion regulation, yet less is known about whether cognitive reappraisal alters neuroendocrine stress reactivity. Some initial evidence suggests that although long-term training in cognitive behavioral therapy techniques (which include reappraisal as a primary training component) can reduce cortisol reactivity to stress, some studies also suggest that reappraisal is associated with heightened cortisol stress reactivity. To address this mixed evidence, the present report describes two experimental studies that randomly assigned young adult volunteers to use cognitive reappraisal while undergoing laboratory stressors. Relative to the control condition, participants in the reappraisal conditions showed greater peak cortisol reactivity in response to a socially evaluative speech task (Experiment 1, N=90) and to a physical pain cold pressor task (Experiment 2, N=94). Participants in the cognitive reappraisal group also reported enhanced anticipatory psychological appraisals of self-efficacy and control in Experiment 2 and greater post-stressor self-efficacy. There were no effects of the reappraisal manipulation on positive and negative subjective affect, pain, or heart rate in either experiment. These findings suggest that although cognitive reappraisal fosters psychological perceptions of self-efficacy and control under stress, this effortful emotion regulation strategy in the short-term may increase cortisol reactivity. Discussion focuses on promising psychological mechanisms for these cognitive reappraisal effects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): Environmental and genetic considerations

    Treesearch

    Sheel Bansal; Bradley J. St. Clair; Constance A. Harrington; Peter J. Gould

    2015-01-01

    The success of conifers over much of the world’s terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold...

  17. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    PubMed

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  18. Toxicity of Cold Lake Blend and Western Canadian Select dilbits to standard aquatic test species

    EPA Science Inventory

    Dilbits are blends of bitumen and natural gas condensates or crude oils with only limited toxicity data. Two dilbits, Cold Lake Blend and Western Canadian Select, were tested as either unweathered or weathered oils for acute and chronic toxicity to standard freshwater and estuari...

  19. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Lillo Gallardo, Patricio Andres

    Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the fatigue damage at room temperature. This is caused solely by the temperature dependence of the fatigue coefficient b which requires further experimental verification to validate the numerical results of the current study.

  20. Microbiological quality assessment and validation of antimicrobials against unstressed or cold-stress adapted Salmonella and surrogate Enterococcus faecium on broiler carcasses and wings.

    PubMed

    Lemonakis, Lacey; Li, KaWang; Adler, Jeremy M; Shen, Cangliang

    2017-09-01

    This study aims to evaluate the microbiological quality and efficacy of antimicrobials to inactivate unstressed or cold-stress adapted Salmonella and Enterococcus on broiler carcasses and wings processed at a small USDA-inspected slaughter facility in West Virginia. The first part of the study included 42 carcasses that were pre- and secondarily-enriched in bacterial media followed by streak-plating onto XLT-4 and HardyCHROM™-agar Salmonella and confirmation using an API20E-kit. The aerobic plate counts (APC), Escherichia coli (ECC), total coliforms (TCC), and yeast/molds were analyzed on petri-films. The second part of the study included fresh broiler carcasses and wings that were inoculated with unstressed and cold-stress-adapted (4 °C, 7-day) Salmonella Typhimurium and Tennessee, and Enterococcus faecium ATCC 8459 (5.5 to 6.0 log10CFU/mL) and later dipped into peroxyacetic acid (PAA; 1,000 ppm), lactic acid (LA; 5%), lactic and citric acid blend (LCA; 2.5%), and sodium hypochlorite (SH; 70 ppm) for 30 s without (carcasses) or with 2-min drainage (wings). The surviving bacteria were recovered onto non-selective and selective agar to analyze the total microbial population, Salmonella and Enterococcus. APC, TCC, and Yeast/Molds were 2.62, 1.08, and 2.37 log10CFU/mL on broiler carcasses, respectively. A total of 30 and 40% of the carcasses tested positive for Salmonella spp. and E. coli (0.48 to 1.70 log10CFU/mL), respectively. For carcasses, antimicrobial reductions of cold-stress-adapted cells of Salmonella and Enterococcus were greater (P < 0.05) than the unstressed cells. For wings, cold-stress-adapted Salmonella were more (P < 0.05) sensitive to antimicrobials than unstressed cells; however, unstressed and cold-stress-adapted Enterococcus behaved similarly (P > 0.05). The reduction of Salmonella and Enterococcus on carcasses and wings increased in the order of SH ≤ LCA < LA < PAA and irrespective of unstressed or cold-stress-adapted cells. Applying post-chilling antimicrobial dipping treatments could be an intervention approach to control Salmonella on locally processed broilers. In addition, Enterococcus faecium could be a Salmonella surrogate for in-plant validation studies. © 2017 Poultry Science Association Inc.

  1. Repeated Exposure to Conditioned Fear Stress Increases Anxiety and Delays Sleep Recovery Following Exposure to an Acute Traumatic Stressor

    PubMed Central

    Greenwood, Benjamin N.; Thompson, Robert S.; Opp, Mark R.; Fleshner, Monika

    2014-01-01

    Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep–wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by human beings, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to no, mild (10), or severe (100) acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced rapid eye movement (REM) and non-REM (NREM) sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep/wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep/wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders. PMID:25368585

  2. Phytoremediation of azoxystrobin and its degradation products in soil by P. major L. under cold and salinity stress.

    PubMed

    Romeh, Ahmed Ali Ali

    2017-10-01

    Azoxystrobin is a broad-spectrum, systemic and soil-applied fungicide used for crop protection against the four major classes of pathogenic fungi. The use of azoxystrobin use has induced water pollution and ecotoxicological effects upon aquatic organisms, long half-life in soils, as well as heath issues. Such issues may be solved by phytoremediation. Here, we tested the uptake and translocation of azoxystrobin and its degradation products by Plantago major, under cold stress and salt stress. The result demonstrated that azoxystrobin significantly accumulated in P. major roots under salinity conditions more than that in the P. major roots under cold conditions and natural condition within two days of experimental period. In P. major roots and leaves, the chromatograms of HPLC for azoxystrobin and metabolites under natural condition (control) and stressed samples (cold stress and salt stress) show different patterns of metabolism pathways reflecting changes in the degradation products. Azoxystrobin carboxylic acid (AZ-acid) formed by methyl ester hydrolysis was an important route in the roots and the leaves. AZ-pyOH and AZ-benzoic were detected in P. major roots under cold and salt stress, while did not detected in P. major roots under natural condition. In the leaves, AZ-pyOH and AZ-benzoic were detected in all treatments between 4 and 12days of exposure. Shoots of the stressed plants had greater H 2 O 2 and proline contents than was observed in the control plants. The level of 100mM NaCl treatment induced significantly higher peroxidase (POD) activity than the non-treated control group. Leaf Chlorophyll contents in the plants at 80 and 100mM NaCl were significantly reduced than was observed in the control plants. I concluded that P. major had a high potential to contribute to remediation of saline-soil contaminated with azoxystrobin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    PubMed

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  4. Interleukin-6 Responses to Water Immersion Therapy After Acute Exercise Heat Stress: A Pilot Investigation

    PubMed Central

    Lee, Elaine C.; Watson, Greig; Casa, Douglas; Armstrong, Lawrence E.; Kraemer, William; Vingren, Jakob L.; Spiering, Barry A.; Maresh, Carl M.

    2012-01-01

    Context Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. Objective To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Design Controlled laboratory study. Setting Human performance laboratory Patients or Other Participants Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg−1·min−1). Main Outcome Measures Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Results Whole-body cooling rates were greater in the cold water-bath condition for the first 6 minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (−69.76% ± 15.23%). Conclusions We have provided seed evidence that cold-water immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies. PMID:23182014

  5. Nicotinic Acetylcholine Receptors Mediate the Suppressive Effect of an Injection of Diluted Bee Venom into the GV3 Acupoint on Oxaliplatin-Induced Neuropathic Cold Allodynia in Rats.

    PubMed

    Yoon, Heera; Kim, Min Joon; Yoon, Insoo; Li, Dong Xing; Bae, Hyunsu; Kim, Sun Kwang

    2015-01-01

    Oxaliplatin, a platinum-based chemotherapy drug, often induces acute neuropathic pain, especially cold allodynia, even after a single administration. Subcutaneous injection of diluted bee venom (BV) into acupoints has been used to treat various pain symptoms in traditional oriental medicine. Although we previously demonstrated the suppressive effect of BV injection on oxaliplatin-induced cold allodynia in rats, its neurochemical mechanism remained unclear. This study investigates whether and how the cholinergic system mediates the relieving effect of BV injection on cold allodynia in oxaliplatin-administered rats. The behavioral signs of cold allodynia induced by an oxaliplatin administration (6 mg/kg, intraperitoneally (i.p.)) were evaluated by a tail immersion test in cold water (4°C). BV (0.25 mg/kg, subcutaneously (s.c.)) injection into the Yaoyangguan acupoint, located between the spinous processes of the fourth and fifth lumbar vertebrae, significantly alleviated the cold allodynia. This relieving effect of BV injection on oxaliplatin-induced cold allodynia was blocked by a pretreatment with mecamylamine (a non-selective nicotinic receptor antagonist, 2 mg/kg, i.p.), but not by atropine (a non-selective muscarinic receptor antagonist, 1 mg/kg, i.p.). Further, dihydro-β-erythroidinehydrobromide (DHβE, an α4β2 nicotinic antagonist, 5 mg/kg, i.p.) prevented the anti-allodynic effect of BV, whereas methyllycaconitine (an α7 nicotinic antagonist, 6 mg/kg, i.p.) did not. Finally, intrathecal administration of DHβE (10 nM) blocked the BV-induced anti-allodynic effect. These results suggest that nicotinic acetylcholine receptors, especially spinal α4β2 receptors, but not muscarinic receptors, mediate the suppressive effect of BV injection on oxaliplatin-induced acute cold allodynia in rats.

  6. Peritraumatic dissociation, acute stress, and early posttraumatic stress disorder in victims of general crime.

    PubMed

    Birmes, P; Carreras, D; Ducassé, J L; Charlet, J P; Warner, B A; Lauque, D; Schmitt, L

    2001-09-01

    To compare the relation between peritraumatic dissociation and acute stress and the early development of posttraumatic stress disorder (PTSD) in victims of general crime. A total of 48 subjects were assessed within 24 hours of the trauma, using the Peritraumatic Dissociative Experiences Questionnaire Self-Report Version (PDEQ-SRV). They were followed longitudinally to assess acute stress (2 weeks after the assault,) using the Standford Acute Stress Reaction Questionnaire (SASRQ), and posttraumatic stress (at 5 weeks), using the Clinician-Administered PTSD Scale (CAPS) and the Impact of Event Scale (IES). Among PTSD subjects mean PDEQ scores were significantly higher (mean 3, SD 0.9) than in those without PTSD (mean 2.3, SD 0.7) (t = 2.78, df 46, P = 0.007). Among PTSD subjects, mean SASRQ scores were significantly higher (mean 97.9, SD 29.2) than in those without PTSD (mean 54.8, SD 28.2) (t = 4.9, df 46, P = 0.00007). High levels of peritraumatic dissociation and acute stress following violent assault are risk factors for early PTSD. Identifying acute reexperiencing can help the clinician identify subjects at highest risk.

  7. Thermo-mechanical treatment effects on stress relaxation and hydrogen embrittlement of cold-drawn eutectoid steels

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Atienza, J. M.; Elices, M.

    2011-12-01

    The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement tests.

  8. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis.

    PubMed

    Chen, Jian; Chen, Xuehui; Zhang, Qingfeng; Zhang, Yidan; Ou, Xiangli; An, Lizhe; Feng, Huyuan; Zhao, Zhiguang

    2018-03-01

    Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Effect of dexmedetomidine and cold stress in a rat model of neuropathic pain: Role of interleukin-6 and tumor necrosis factor-α.

    PubMed

    Farghaly, Hanan Sayed M; Mahmoud, Ahmed Mostafa; Abdel-Sater, Khaled A

    2016-04-05

    Dexmedetomidine (Dex) is a novel Alpha 2-adrenoceptor agonist. It decreases sympathetic tone and attenuates the stress responses to anesthesia and surgery. People exposed to cold suffer unpleasant thermal pain, which is experienced as stress and causes the release of noradrenaline from the sympathetic terminals. The present study investigated the effects of cold stress and dexmedetomidine on chronic constriction injury (CCI) model of the sciatic nerve in rats. Sixty four male Wistar rats were divided into seven groups of eight rats each: repeated cold stress (RCS) group, sham RCS group, CCI group, sham CCI group, Dex-treated group received a single dose of Dex (5 μg/kg), CCI+Dex group, CCI+RCS group. Interleukin-6 (IL-6) and tumor necrosis factor- alpha (TNF-α) levels in the serum were measured by enzyme-linked immunosorbent assay. The mean body weight of CCI, RCS, CCI+RCS, CCI+Dex and RCS+Dex groups decreased significantly compared with pre-values. Dexmedetomidine and CCI caused significant changes of the systolic, diastolic and mean blood pressure. Both RCS and CCI groups showed significant decreased of reaction time in the hot plate test. The RCS and CCI groups demonstrated a significant mechanical hyperalgesia, while pain threshold was increased in the RCS+Dex group. A significant decrease of serum IL-6 and TNF-α was demonstrated in CCI+RCS and CCI+Dex groups. The therapeutic effectiveness of dexmedetomidine in neuropathic pain may be through inhibition of proinflammatory cytokines, primarily IL-6 and TNF-α. Moreover, cold stress may result in increased resistance to neuropathic pain. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of Mycoplasma anatis and cold stress on hatching success and growth of mallard ducklings

    USGS Publications Warehouse

    Samuel, M.D.; Goldberg, Diana R.; Thomas, C.B.; Sharp, P.

    1995-01-01

    We inoculated game-farm mallard (Anas platyrhynchos) eggs and 1-day-old birds with Mycoplasma anatis to determine its effect on hatching success and growth rates of ducklings. Inoculations of eggs reduced hatching success, hatchling size, and duckling growth rates, compared to controls. Intratracheal inoculations of 1-day-old birds did not affect growth rates. Hatchlings and 1-day-old ducklings grew much slower for the first 7 to 10 days when raised at 17 to 19 C, compared to controls raised at 30 to 35 C. The effect of cold stress on growth was greater than the effect of M. anatis infection; we found no synergistic effects between cold stress and M. anatis infection.

  11. Reduced incidence of stress ulcer in germ-free Sprague Dawley rats.

    PubMed

    Paré, W P; Burken, M I; Allen, E D; Kluczynski, J M

    1993-01-01

    Recent findings with respect to the role of spiral gram-negative bacteria in peptic ulcer disease have stimulated interest in discerning the role of these agents in stress ulcer disease. We tested the hypothesis that a standard restraint-cold ulcerogenic procedure would fail to produce ulcers in axenic rats. Axenic, as well as normal Sprague Dawley rats, were exposed to a cold-restraint procedure. The germ-free condition was maintained throughout the study in the axenic rats. Axenic rats had significantly fewer ulcers as compared to normal rats exposed to the standard cold-restraint procedure, as well as handling control rats. The data represent the first report suggesting a microbiologic component in the development of stress ulcer using the rat model.

  12. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress.

    PubMed

    Huang, Wen; Ren, Chunhua; Li, Hongmei; Huo, Da; Wang, Yanhong; Jiang, Xiao; Tian, Yushun; Luo, Peng; Chen, Ting; Hu, Chaoqun

    2017-01-01

    The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.

  13. Effect of cold water-induced stress on immune response, pathology and fertility in mice during Chlamydia muridarum genital infection.

    PubMed

    Belay, Tesfaye; Woart, Anthony; Graffeo, Vincent

    2017-07-31

    Genital infection by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. It causes serious reproductive health complications, including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on chlamydia genital infection is unknown. We previously showed that repeated exposure of mice to cold water results in increased severity of chlamydia genital infection. In this study, cold water-induced stress resulted in (i) elevated levels of norepinephrine (NE) and epinephrine in the spleen and genital tract of stressed mice; (ii) elevated IL-1β, TNF-α, IL-6 and nitric oxide production in macrophage-rich peritoneal cells of mice; (iii) supplement of NE in vitro exerts an immunosuppressive effect on splenic T-cell production of cytokines; (iv) decreased C. muridarum shedding in the genital tract of β1Adr/β2Adr receptor KO mice; and (v) a higher rate of infertility in infected mice. These results suggest that cold water stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased intensity of C. muridarum genital infection. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress

    PubMed Central

    Huang, Wen; Ren, Chunhua; Li, Hongmei; Huo, Da; Wang, Yanhong; Jiang, Xiao; Tian, Yushun; Luo, Peng; Hu, Chaoqun

    2017-01-01

    The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress. PMID:28575089

  15. The role of maladaptive appraisals in child acute stress reactions.

    PubMed

    Salmon, Karen; Sinclair, Emma; Bryant, Richard A

    2007-06-01

    To test the prediction of cognitive models of trauma that negative, catastrophic appraisals central to the development of psychopathological stress reactions. A cross-sectional, concurrent design was used. Sixty-six children (aged 7-13 years), who were hospitalized after traumatic injury were assessed within 4 weeks of their trauma for acute stress disorder, depression, and administered the Child Post-traumatic Cognitions Inventory (cPTCI). Parental acute stress was also assessed. Children's negative appraisals of their ongoing vulnerability accounted for 44% of the variance of acute stress reactions in children. Injury severity, depression, age, and parental acute stress levels did not account for significant additional variance. The findings provide support for cognitive models of trauma adaptation and highlight the importance of assessing children's appraisals of their traumatic experience in order to develop effective interventions.

  16. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.

    PubMed

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe

    2018-04-15

    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  18. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    PubMed

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  19. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  20. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    PubMed

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  2. Respiratory symptoms and acute painful episodes in sickle cell disease.

    PubMed

    Jacob, Eufemia; Sockrider, Marianna M; Dinu, Marlen; Acosta, Monica; Mueller, Brigitta U

    2010-01-01

    The authors examined the prevalence of respiratory symptoms and determined whether respiratory symptoms were associated with prevalence of chest pain and number of acute painful episodes in children and adolescents with sickle cell disease. Participants (N = 93; 44 females, 49 males; mean age 9.8 +/- 4.3 years) reported coughing in the morning (21.5%), at night (31.2%), and during exercise (30.1%). Wheezing occurred both when they had a cold or infection (29.0%) and when they did not have (23.7%) a cold or infection. Sleep was disturbed by wheezing in 20.4%. Among the 76 patients who were school-age (>5 years), 19.7% of patients missed more than 4 days of school because of respiratory symptoms. The majority of patients reported having acute painful episodes (82.8%), and most (66.7%) reported having chest pain during acute painful episodes in the previous 12 months. Participants with acute pain episodes greater than 3 during the previous 12 months had significantly higher reports of breathing difficulties (P = .01) and chest pain (P = .002). The high number of respiratory symptoms (cough and wheeze) among patients with sickle cell disease may trigger acute painful episodes. Early screening and recognition, ongoing monitoring, and proactive management of respiratory symptoms may minimize the number of acute painful episodes.

  3. Adaptogenic potential of royal jelly in liver of rats exposed to chronic stress

    PubMed Central

    Peixoto, Leonardo Gomes; Machado, Helen Lara; Baptista, Nathalia Belele; de Souza, Adriele Vieira; Vilela, Danielle Diniz; Franci, Celso Rodrigues

    2018-01-01

    Restraint and cold stress increase both corticosterone and glycemia, which lead to oxidative damages in hepatic tissue. This study assessed the effect of royal jelly (RJ) supplementation on the corticosterone level, glycemia, plasma enzymes and hepatic antioxidant system in restraint and cold stressed rats. Wistar rats were allocated into no-stress, stress, no-stress supplemented with RJ and stress supplemented with RJ groups. Initially, RJ (200mg/Kg) was administered for fourteen days and stressed groups were submitted to chronic stress from the seventh day. The results showed that RJ supplementation decreases corticosterone levels and improves glycemia control after stress induction. RJ supplementation also decreased the body weight, AST, ALP and GGT. Moreover, RJ improved total antioxidant capacity, SOD activity and reduced GSH, GR and lipoperoxidation in the liver. Thus, RJ supplementation reestablished the corticosterone levels and the hepatic antioxidant system in stressed rats, indicating an adaptogenic and hepatoprotective potential of RJ. PMID:29377921

  4. Surgeons' and surgical trainees' acute stress in real operations or simulation: A systematic review.

    PubMed

    Georgiou, Konstantinos; Larentzakis, Andreas; Papavassiliou, Athanasios G

    2017-12-01

    Acute stress in surgery is ubiquitous and has an immediate impact on surgical performance and patient safety. Surgeons react with several coping strategies; however, they recognise the necessity of formal stress management training. Thus, stress assessment is a direct need. Surgical simulation is a validated standardised training milieu designed to replicate real-life situations. It replicates stress, prevents biases, and provides objective metrics. The complexity of stress mechanisms makes stress measurement difficult to quantify and interpret. This systematic review aims to identify studies that have used acute stress estimation measurements in surgeons or surgical trainees during real operations or surgical simulation, and to collectively present the rationale of these tools, with special emphasis in salivary markers. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases. The 738 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Thirty-three studies were included in this systematic review. The methods for acute stress assessment varied greatly among studies with the non-invasive techniques being the most commonly used. Subjective and objective tests for surgeons' acute stress assessment are being presented. There is a broad spectrum of acute mental stress assessment tools in the surgical field and simulation and salivary biomarkers have recently gained popularity. There is a need to maintain a consistent methodology in future research, towards a deeper understanding of acute stress in the surgical field. Copyright © 2017 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  5. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.

    PubMed

    Teigen, Laura E; Orczewska, Julieanna I; McLaughlin, Jessica; O'Brien, Kristin M

    2015-10-01

    Molecular chaperones [heat shock proteins (HSPs)] increase in response to rapid changes in temperatures, but long-term acclimation to cold temperature may also warrant elevations in HSPs. In fishes, cold acclimation increases mitochondrial density and oxidative stress in some tissues, which may increase demand for HSPs. We hypothesized that levels of HSPs, as well as sirtuins (SIRTs), NAD-dependent deacetylases that mediate changes in metabolism and responses to oxidative stress (including increases in HSPs), would increase during cold acclimation of threespine stickleback (Gasterosteus aculeatus). Transcript levels of hsp70, hsc70, hsp60 and hsp90-α, sirts1-4, as well as protein levels of HSP60, HSP90 and HSC70 were quantified in liver and pectoral adductor muscle of stickleback during cold acclimation from 20 °C to 8 °C. In liver, cold acclimation stimulated a transient increase in mRNA levels of hsp60 and hsc70. Transcript levels of sirt1 and sirt2 also increased in response to cold acclimation and remained elevated. In pectoral muscle, mRNA levels of hsp60, hsp90-α, hsc70 and sirt1 all transiently increased in response to cold acclimation, while levels of sirts2-4 remained constant or declined. Similar to transcript levels, protein levels of HSC70 increased in both liver and pectoral muscle. Levels of HSP90 also increased in liver after 4 weeks at 8 °C. HSP60 remained unchanged in both tissues, as did HSP90 in pectoral muscle. Our results indicate that while both HSPs and SIRTs increase in response to cold acclimation in stickleback, the response is tissue and isoform specific, likely reflecting differences in metabolism and oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants.

    PubMed

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-09-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. A Basic Helix-Loop-Helix Transcription Factor, PtrbHLH, of Poncirus trifoliata Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide1[C][W

    PubMed Central

    Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong

    2013-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854

  8. Acute allograft failure in thoracic organ transplantation.

    PubMed

    Jahania, M S; Mullett, T W; Sanchez, J A; Narayan, P; Lasley, R D; Mentzer, R M

    2000-01-01

    Thoracic organ transplantation is an effective form of treatment for end-stage heart and lung disease. Despite major advances in the field, transplant patients remain at risk for acute allograft dysfunction, a major cause of early and late mortality. The most common causes of allograft failure include primary graft failure secondary to inadequate heart and lung preservation during cold storage, cellular rejection, and various donor-recipient-related factors. During cold storage and early reperfusion, heart and lung allografts are vulnerable to intracellular calcium overload, acidosis, cell swelling, injury mediated by reactive oxygen species, and the inflammatory response. Brain death itself is associated with a reduction in myocardial contractility, and recipient-related factors such as preexisting pulmonary hypertension can lead to acute right heart failure and the pulmonary reimplantation response. The development of new methods to prevent or treat these various causes of acute graft failure could lead to a marked improvement in short- and long-term survival of patients undergoing thoracic organ transplantation.

  9. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.

    PubMed

    Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu

    2017-01-01

    Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

  10. Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum.

    PubMed

    Ma, Yue; Wang, Qiyao; Gao, Xiating; Zhang, Yuanxing

    2017-01-01

    Fish pathogen Vibrio anguillarum, a mesophile bacterium, is usually found in estuarine and marine coastal ecosystems worldwide that pose a constant stress to local organism by its fluctuation in salinity as well as notable temperature change. Though V. anguillarum is able to proliferate while maintain its pathogenicity under low temperature (5-18°C), so far, coldadaption molecular mechanism of the bacteria is unknown. In this study, V. anguillarum was found possessing a putative glycine betaine synthesis system, which is encoded by betABI and synthesizes glycine betaine from its precursor choline. Furthermore, significant up-regulation of the bet gene at the transcriptional level was noted in log phase in response to cold-stress. Moreover, the accumulation of betaine glycine was only found appearing at low growth temperatures, suggesting that response regulation of both synthesis system and transporter system are cold-dependent. Furthermore, in-frame deletion mutation in the two putative ABC transporters and three putative BCCT family transporters associated with glycine betaine uptake could not block cellular accumulation of betaine glycine in V. anguillarum under coldstress, suggesting the redundant feature in V. anguillarum betaine transporter system. These findings confirmed that glycine betaine serves as an effective cold stress protectant and highlighted an underappreciated facet of the acclimatization of V. anguillarum to cold environments.

  11. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    PubMed

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.

  12. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    PubMed

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa).

    PubMed

    Yoon, Dae Hwa; Lee, Sang Sook; Park, Hyun Ji; Lyu, Jae Il; Chong, Won Seog; Liu, Jang Ryol; Kim, Beom-Gi; Ahn, Jun Cheul; Cho, Hye Sun

    2016-01-01

    AtCYP19-4 (also known as CYP5) was previously identified as interacting in vitro with GNOM, a member of a large family of ARF guanine nucleotide exchange factors that is required for proper polar localization of the auxin efflux carrier PIN1. The present study demonstrated that OsCYP19-4, a gene encoding a putative homologue of AtCYP19-4, was up-regulated by several stresses and showed over 10-fold up-regulation in response to cold. The study further demonstrated that the promoter of OsCYP19-4 was activated in response to cold stress. An OsCYP19-4-GFP fusion protein was targeted to the outside of the plasma membrane via the endoplasmic reticulum as determined using brefeldin A, a vesicle trafficking inhibitor. An in vitro assay with a synthetic substrate oligomer confirmed that OsCYP19-4 had peptidyl-prolyl cis-trans isomerase activity, as was previously reported for AtCYP19-4. Rice plants overexpressing OsCYP19-4 showed cold-resistance phenotypes with significantly increased tiller and spike numbers, and consequently enhanced grain weight, compared with wild-type plants. Based on these results, the authors suggest that OsCYP19-4 is required for developmental acclimation to environmental stresses, especially cold. Furthermore, the results point to the potential of manipulating OsCYP19-4 expression to enhance cold tolerance or to increase biomass. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments

    PubMed Central

    Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng

    2017-01-01

    Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase (CIPKs), receptor-like protein kinases, and protein kinases. The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata. These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata. In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance. PMID:28590406

  15. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    PubMed

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  16. Protective role of vitamins E and C against oxidative stress caused by intermittent cold exposure in aging rat's frontoparietal cortex.

    PubMed

    Asha Devi, S; Manjula, K R; Subramanyam, M V V

    2012-11-07

    This study examined the role of vitamins E and C in combating oxidative stress (OS) caused by intermittent cold exposure (ICE) in the frontoparietal cortex (FPC) of adult (3 months), late-adult (12 months), middle-aged (18 months) and old (24 months) male Wistar rats. Each age group was divided into sub-groups, control (CON), cold-exposed at 5°C (C5), control supplementees (CON+S) and cold-exposed supplementees (C5+S). The supplement was a daily dose of 400mg vitamin C and 50I.U.of vitamin E/kg body weight. Cold exposure lasted 2h/day for 4 weeks. All age groups except the old showed an increase in the final body mass in the cold-exposed. The feeding efficiency was higher in the cold-exposed irrespective of age. OS as reflected in age-related increased levels of hydrogen peroxide, protein carbonyl, advanced oxidation protein products and malondialdehyde showed further increase with ICE in the FPC. However, vitamins E and C supplementation attenuated the ICE-induced OS. ICE depleted the levels of tissue vitamins E and C while supplementation resulted in increased levels. Further age emerged as a significant factor in ICE-induced stress and also the response to vitamins E and C supplementation. Behavioral studies are underway to examine the findings on ICE-induced oxidative injury in the FPC, and the prospects for using vitamins E and C in cold exposures in the aged. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  18. Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress

    PubMed Central

    Sivankalyani, Velu; Sela, Noa; Feygenberg, Oleg; Zemach, Hanita; Maurer, Dalia; Alkan, Noam

    2016-01-01

    Cold storage is considered the most effective method for prolonging fresh produce storage. However, subtropical fruit is sensitive to cold. Symptoms of chilling injury (CI) in mango include red and black spots that start from discolored lenticels and develop into pitting. The response of ‘Keitt’ mango fruit to chilling stress was monitored by transcriptomic, physiological, and microscopic analyses. Transcriptomic changes in the mango fruit peel were evaluated during optimal (12°C) and suboptimal (5°C) cold storage. Two days of chilling stress upregulated genes involved in the plant stress response, including those encoding transmembrane receptors, calcium-mediated signal transduction, NADPH oxidase, MAP kinases, and WRKYs, which can lead to cell death. Indeed, cell death was observed around the discolored lenticels after 19 days of cold storage at 5°C. Localized cell death and cuticular opening in the lumen of discolored lenticels were correlated with increased general decay during shelf-life storage, possibly due to fungal penetration. We also observed increased phenolics accumulation around the discolored lenticels, which was correlated with the biosynthesis of phenylpropanoids that were probably transported from the resin ducts. Increased lipid peroxidation was observed during CI by both the biochemical malondialdehyde method and a new non-destructive luminescent technology, correlated to upregulation of the α-linolenic acid oxidation pathway. Genes involved in sugar metabolism were also induced, possibly to maintain osmotic balance. This analysis provides an in-depth characterization of mango fruit response to chilling stress and could lead to the development of new tools, treatments and strategies to prolong cold storage of subtropical fruit. PMID:27812364

  19. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    PubMed

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Management of Heat and Cold Stress - Guidance to NATO Medical Personnel

    DTIC Science & Technology

    2012-12-01

    preventing cold injuries . An important aspect of this is recognizing changes in weather conditions so that troops can be alerted to potential...maintain the skin integrity and prevent non- freezing cold injuries . If boots are worn or placed inside a sleeping bag they will not dry, but will...instances, appropriate preventive measures that could resolve the problem are not taken, and then a cold injury develops. 2.9 NONFREEZING COLD INJURY

  1. Acute stress shifts the balance between controlled and automatic processes in prospective memory.

    PubMed

    Möschl, Marcus; Walser, Moritz; Plessow, Franziska; Goschke, Thomas; Fischer, Rico

    2017-10-01

    In everyday life we frequently rely on our abilities to postpone intentions until later occasions (prospective memory; PM) and to deactivate completed intentions even in stressful situations. Yet, little is known about the effects of acute stress on these abilities. In the present work we investigated the impact of acute stress on PM functioning under high task demands. (1) Different from previous studies, in which intention deactivation required mostly low processing demands, we used salient focal PM cues to induce high processing demands during intention-deactivation phases. (2) We systematically manipulated PM-monitoring demands in a nonfocal PM task that required participants to monitor for either one or six specific syllables that could occur in ongoing-task words. Eighty participants underwent the Trier Social Stress Test, a standardized stress induction protocol, or a standardized control situation, before performing a computerized PM task. Our primary interests were whether PM performance, PM-monitoring costs, aftereffects of completed intentions and/or commission-error risk would differ between stressed and non-stressed individuals and whether these effects would differ under varying task demands. Results revealed that PM performance and aftereffects of completed intentions during subsequent performance were not affected by acute stress induction, replicating previous findings. Under high demands on intention deactivation (focal condition), however, acute stress produced a nominal increase in erroneous PM responses after intention completion (commission errors). Most importantly, under high demands on PM monitoring (nonfocal condition), acute stress led to a substantial reduction in PM-monitoring costs. These findings support ideas of selective and demand-dependent effects of acute stress on cognitive functioning. Under high task demands, acute stress might induce a shift in processing strategy towards resource-saving behavior, which seems to increase the efficiency of PM performance (reduced monitoring costs), but might increase initial susceptibility to automatic response activation after intention completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Thyroid Allostasis–Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming

    PubMed Central

    Chatzitomaris, Apostolos; Hoermann, Rudolf; Midgley, John E.; Hering, Steffen; Urban, Aline; Dietrich, Barbara; Abood, Assjana; Klein, Harald H.; Dietrich, Johannes W.

    2017-01-01

    The hypothalamus–pituitary–thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions. PMID:28775711

  3. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    PubMed

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis1

    PubMed Central

    Haake, Volker; Cook, Daniel; Riechmann, José Luis; Pineda, Omaira; Thomashow, Michael F.; Zhang, James Z.

    2002-01-01

    In plants, low temperature and dehydration activate a set of genes containing C-repeat/dehydration-responsive elements in their promoter. It has been shown previously that the Arabidopsis CBF/DREB1 transcription activators are critical regulators of gene expression in the signal transduction of cold acclimation. Here, we report the isolation of an apparent homolog of the CBF/DREB1 proteins (CBF4) that plays the equivalent role during drought adaptation. In contrast to the three already identified CBF/DREB1 homologs, which are induced under cold stress, CBF4 gene expression is up-regulated by drought stress, but not by low temperature. Overexpression of CBF4 in transgenic Arabidopsis plants results in the activation of C-repeat/dehydration-responsive element containing downstream genes that are involved in cold acclimation and drought adaptation. As a result, the transgenic plants are more tolerant to freezing and drought stress. Because of the physiological similarity between freezing and drought stress, and the sequence and structural similarity of the CBF/DREB1 and the CBF4 proteins, we propose that the plant's response to cold and drought evolved from a common CBF-like transcription factor, first through gene duplication and then through promoter evolution. PMID:12376631

  5. Cannabinoids & Stress: impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

    PubMed

    Kinden, Renee; Zhang, Xia

    2015-05-01

    Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles. Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs. This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioral testing. Exogenous cannabinoid administration induced distinct behavioral phenotypes in stressed and unstressed mice. While low doses of HU-210 were anxiolytic in unstressed subjects, this effect was abolished when mice were exposed to an acute stressor. The administration of higher HU-210 doses in combination with acute stress exposure led to severe locomotor deficits that were not previously observed at the same dose in unstressed subjects. These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner. This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  7. Histologic evaluation of post-implantation immediate C4d deposition in 13 intestinal grafts: correlation with cell-based crossmatching, cold ischemia time, and preservation injury.

    PubMed

    López-García, P; Calvo Pulido, J; Colina, F; Ballestin Carcavilla, C; Jiménez-Romero, C; Martinez González, M A; Ibarrola de Andrés, C; López-Alonso, G; Cambra Molero, F; Justo Alonso, I; Moreno-González, E

    2014-01-01

    C4d deposits are predictive of humoral rejection in kidney and heart transplantation. The aim of this study was to identify C4d deposit patterns in intestinal mucosa of the grafts on biopsy specimens obtained immediately after implantation and to detect if it could be a valuable tool to predict humoral or acute rejection. A second objective was to search for a statistically significant relationship between positive C4d deposition and other collected variables. Thirteen immediately post-transplantation mucosal graft biopsy specimens, formalin fixed, underwent immunohistochemical stain for C4d deposits. Diffuse intense staining of capillary endothelium was considered positive and absent, focal or weak stains as negative. Preservation injury grade and cold ischemia times were registered for each case. Donor-specific preformed antibodies were detected by complement dependent cytotoxicity serologic technique (crossmatching). Another 19 endoscopic follow-up biopsy specimens from days 2 to 6 were also evaluated. Statistical studies were made using the index of correlation ρ (Spearman's test). Diffuse intense C4d deposits were observed in 2 grafts, focal and weak in 5, and completely negative in 6. The mean cold ischemia time was 327 ± 101 minutes. Two cases showed diffuse positive deposits, 1 had a positive crossmatch and the cold ischemia time was 360 minutes whereas the other had not preformed antibodies and its cold ischemia time was 475 minutes. Humoral or acute rejection was not observed in follow-up mucosal biopsy specimens. There was no statistically significant relationship between the C4d deposition, cold ischemia time, crossmatching results, and preservation injury degree. In conclusion, C4d deposition was not a helpful tool for diagnosis of humoral rejection and prediction of acute rejection during the early post-transplantation period. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  9. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices.

    PubMed

    Torres, I L; Gamaro, G D; Silveira-Cucco, S N; Michalowski, M B; Corrêa, J B; Perry, M L; Dalmaz, C

    2001-01-01

    It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 microCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  10. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats.

    PubMed

    Maniscalco, James W; Zheng, Huiyuan; Gordon, Patrick J; Rinaman, Linda

    2015-07-29

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast "silences" GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. The results from this study reveal a potential central mechanism for the "metabolic tuning" of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats, reduces or blocks the ability of acute stress to activate hindbrain neurons that are immunoreactive for either prolactin-releasing peptide or glucagon-like peptide 1, and attenuates the activation of their stress-sensitive projection targets in the limbic forebrain. In nonfasted rats, central antagonism of glucagon-like peptide 1 receptors partially mimics the effect of an overnight fast by blocking the ability of acute stress to inhibit food intake, and by attenuating stress-induced activation of hindbrain and limbic forebrain neurons. We propose that caloric restriction attenuates behavioral and physiological responses to acute stress by "silencing" central glucagon-like peptide 1 signaling pathways. Copyright © 2015 the authors 0270-6474/15/3510701-14$15.00/0.

  11. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats

    PubMed Central

    Maniscalco, James W.; Zheng, Huiyuan; Gordon, Patrick J.

    2015-01-01

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast “silences” GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. SIGNIFICANCE STATEMENT The results from this study reveal a potential central mechanism for the “metabolic tuning” of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats, reduces or blocks the ability of acute stress to activate hindbrain neurons that are immunoreactive for either prolactin-releasing peptide or glucagon-like peptide 1, and attenuates the activation of their stress-sensitive projection targets in the limbic forebrain. In nonfasted rats, central antagonism of glucagon-like peptide 1 receptors partially mimics the effect of an overnight fast by blocking the ability of acute stress to inhibit food intake, and by attenuating stress-induced activation of hindbrain and limbic forebrain neurons. We propose that caloric restriction attenuates behavioral and physiological responses to acute stress by “silencing” central glucagon-like peptide 1 signaling pathways. PMID:26224855

  12. Stressful Presentations: Mild Cold Stress in Laboratory Mice Influences Phenotype of Dendritic Cells in Naïve and Tumor-Bearing Mice

    PubMed Central

    Kokolus, Kathleen M.; Spangler, Haley M.; Povinelli, Benjamin J.; Farren, Matthew R.; Lee, Kelvin P.; Repasky, Elizabeth A.

    2013-01-01

    The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8+ T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function. PMID:24575090

  13. Stressful presentations: mild cold stress in laboratory mice influences phenotype of dendritic cells in naïve and tumor-bearing mice.

    PubMed

    Kokolus, Kathleen M; Spangler, Haley M; Povinelli, Benjamin J; Farren, Matthew R; Lee, Kelvin P; Repasky, Elizabeth A

    2014-01-01

    The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8(+) T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8(+) T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.

  14. The role of chronic psychosocial stress in explaining racial differences in stress reactivity and pain sensitivity

    PubMed Central

    Gordon, Jennifer L.; Johnson, Jacqueline; Nau, Samantha; Mechlin, Beth; Girdler, Susan S.

    2016-01-01

    Objective To examine the role of psychosocial factors in mediating the relationship between African American (AA) race and both increased pain sensitivity and blunted stress reactivity. Methods Participants included 133 AA and non-Hispanic White (nHW) individuals (mean (SD) age = 37 (9)) matched for age, sex and socioeconomic status. Participants underwent mental stress testing (Trier Social Stress Test) while cardiovascular, hemodynamic, and neuroendocrine reactivity were measured. Participants completed questionnaires assessing potential sources of psychosocial stress and were tested for pain responses to cold pain and the temporal summation of heat pulses. Mediation analyses were used to determine the extent to which exposure to psychosocial stress accounted for the observed racial differences in stress reactivity and pain. Results Chronic stress exposure and reactivity to mental stress was largely similar among AAs and nHWs; however, AAs exhibited heightened pain to both cold (p = .012) and heat (p = .004). Racial differences in the relationship between stress reactivity and pain were also observed: while greater stress reactivity was associated with decreased pain among nHWs, reactivity was either unrelated to or even positively associated with pain among AAs (e.g. r = −.21 among nHWs and r = .41 among AAs for stroke volume reactivity and cold pressor intensity). Adjusting for minor racial differences in chronic psychosocial stress did not change these findings. Conclusion Accounting for psychosocial factors eliminated racial differences in stress reactivity but not racial differences in sensitivity to experimental pain tasks. Increased exposure to chronic stress may not explain AAs’ increased pain sensitivity in laboratory settings. PMID:27669431

  15. The Role of Chronic Psychosocial Stress in Explaining Racial Differences in Stress Reactivity and Pain Sensitivity.

    PubMed

    Gordon, Jennifer L; Johnson, Jacqueline; Nau, Samantha; Mechlin, Beth; Girdler, Susan S

    To examine the role of psychosocial factors in mediating the relationship between African American (AA) race and both increased pain sensitivity and blunted stress reactivity. Participants included 133 AA and non-Hispanic white (nHW) individuals (mean [SD] age, 37 [9]) matched for age, sex, and socioeconomic status. Participants underwent mental stress testing (Trier Social Stress Test) while cardiovascular, hemodynamic, and neuroendocrine reactivity were measured. Participants completed questionnaires assessing potential sources of psychosocial stress and were tested for pain responses to cold pain and the temporal summation of heat pulses. Mediation analyses were used to determine the extent to which exposure to psychosocial stress accounted for the observed racial differences in stress reactivity and pain. Chronic stress exposure and reactivity to mental stress was largely similar among AAs and nHWs; however, AAs exhibited heightened pain to both cold (p = .012) and heat (p = .004). Racial differences in the relationship between stress reactivity and pain were also observed: while greater stress reactivity was associated with decreased pain among nHWs, reactivity was either unrelated to or even positively associated with pain among AAs (e.g., r = -.21 among nHWs and r = .41 among AAs for stroke volume reactivity and cold pressor intensity). Adjusting for minor racial differences in chronic psychosocial stress did not change these findings. Accounting for psychosocial factors eliminated racial differences in stress reactivity but not racial differences in sensitivity to experimental pain tasks. Increased exposure to chronic stress may not explain AAs' increased pain sensitivity in laboratory settings.

  16. Having your cake and eating it too: a habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    PubMed

    Tryon, M S; DeCant, Rashel; Laugero, K D

    2013-04-10

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases visceral fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of chronic stress on eating behavior in humans is less understood, but it may be linked to HPA responsivity. The purpose of this study was to investigate the influence of chronic social stress and acute stress reactivity on food choice and food intake. Forty-one women (BMI=25.9±5.1 kg/m(2), age range=41 to 52 years) were subjected to the Trier Social Stress Test or a control task (nature movie) to examine HPA responses to an acute laboratory stressor and then invited to eat from a buffet containing low- and high-calorie snacks. Women were also categorized as high chronic stress or low chronic stress based on Wheaton Chronic Stress Inventory scores. Women reporting higher chronic stress and exhibiting low cortisol reactivity to the acute stress task consumed significantly more calories from chocolate cake on both stress and control visits. Chronic stress in the low cortisol reactor group was also positively related to total fat mass, body fat percentage, and stress-induced negative mood. Further, women reporting high chronic stress consumed significantly less vegetables, but only in those aged 45 years and older. Chronic stress in women within the higher age category was positively related to total calories consumed at the buffet, stress-induced negative mood and food craving. Our results suggest an increased risk for stress eating in persons with a specific chronic stress signature and imply that a habit of comfort food may link chronic social stress and acute stress-induced cortisol hyporesponsiveness. Published by Elsevier Inc.

  17. Acute stress negatively affects object recognition early memory consolidation and memory retrieval unrelated to state-dependency.

    PubMed

    Nelissen, Ellis; Prickaerts, Jos; Blokland, Arjan

    2018-06-01

    It is well known that stress affects memory performance. However, there still appears to be inconstancy in literature about how acute stress affects the different stages of memory: acquisition, consolidation and retrieval. In this study, we exposed rats to acute stress and measured the effect on memory performance in the object recognition task as a measure for episodic memory. Stress was induced 30 min prior to the learning phase to affect acquisition, directly after the learning phase to affect consolidation, or 30 min before the retrieval phase to affect retrieval. Additionally, we induced stress both 30 min prior to the learning phase and 30 min prior to the retrieval phase to test whether the effects were related to state-dependency. As expected, we found that acute stress did not affect acquisition but had a negative impact on retrieval. To our knowledge, we are the first to show that early consolidation was negatively affected by acute stress. We also show that stress does not have a state-dependent effect on memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2

    PubMed Central

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-01-01

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI: http://dx.doi.org/10.7554/eLife.00362.001 PMID:23599891

  19. Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults

    PubMed Central

    Mangner, Tom J.; Leonard, William R.; Kumar, Ajay; Granneman, James G.

    2017-01-01

    Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m2) underwent 11C-meta-hydroxyephedrin (11C-HED) and 15O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18F-FDG tracer uptake. Blood flow and 11C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO2) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results: 18F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11C-HED RI under thermoneutral conditions significantly predicted 18F-FDG uptake during cold stress (R2 = 0.68, P < 0.01). In contrast to the significant increase of 11C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11C-HED RI and 18F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat. PMID:27789721

  20. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    PubMed

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  1. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato.

    PubMed

    Xu, Xiao-Xia; Hu, Qin; Yang, Wan-Nian; Jin, Ye

    2017-11-09

    Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.

  2. Changes in the levels of p-ERK, p-CREB, and c-fos in rat mesocorticolimbic dopaminergic system after morphine-induced conditioned place preference: the role of acute and subchronic stress.

    PubMed

    Haghparast, Abbas; Fatahi, Zahra; Alamdary, Shabnam Zeighamy; Reisi, Zahra; Khodagholi, Fariba

    2014-03-01

    ERK pathway plays a critical role in the cellular adaptive responses to environmental changes. Stressful conditions can induce the activation of activate ERK, and its downstream targets, CREB and c-fos, in neural cells. Exposure to opioids has the same effect. In this study, we investigated the effects of morphine-induced conditioned place preference (CPP) on p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the mesocorticolimbic dopaminergic system including the nucleus accumbens (NAc), amygdala (AMY), striatum (Str), and prefrontal cortex (PFC).Our aim was to determine if acute and subchronic stress would affect these alterations. Male Wistar rats were divided into two saline- and morphine-treated groups. Each group contained of control, acute stress, and subchronic stress subgroups. The CPP procedure was performed for all of the rats. We dissected out the NAc, AMY, Str, and PFC regions and measured the mentioned ratios and c-fos level by Western blot analysis. The results revealed that in saline-treated animals, all factors enhanced significantly after performing acute and subchronic stress while there was an exception in p-ERK/ERK ratio in the Str and PFC; the changes were not significant during acute stress. Conditioning score decreased after applying the subchronic but not acute stress. In morphine-treated animals, all factors were increased after application of acute and subchronic stress, and conditioning scores also decreased after stress. Our findings suggest that in saline- or morphine-treated animals, acute and subchronic stress increases p-ERK, p-CREB, and c-fos levels in the mesocorticolimbic system. It has been shown that morphine induces the enhancement of the mentioned factors; on the other hand, our result demonstrates that stress can amplify these changes.

  3. Blood pressure and endocrine responses of healthy subjects in cold pressor test after acutely increased dietary sodium intake.

    PubMed

    Arjamaa, O; Mäkinen, T; Turunen, L; Huttunen, P; Leppäluoto, J; Vuolteenaho, O; Rintamäki, H

    2001-05-01

    The objective of the study was to compare blood pressure and endocrine responses in a cold pressure test in young healthy subjects who had shown increased blood pressure during an acutely increased sodium intake. Subjects (n = 53) added 121 mmol sodium into their normal diet for one week. If the mean arterial pressure had increased by a minimum of 5 mmHg compared to the control measure, they were selected for the experiments. The selected subjects (n = 8) were given 121 mmol supplemental sodium d-1 for 14 days after which they immersed the right hand into a cold (+10 degrees C) water bath for 5 min. The blood pressure increased (P < 0.05) during the test and was independent of the sodium intake. The plasma noradrenaline increased from 2.41 +/- 0.38 nmol l-1 to 2.82 +/- 0.42 nmol l-1 (P < 0.05) with normal diet and from 1.85 +/- 0.29 nmol l-1 to 2.40 +/- 0.37 nmol l-1 (P < 0.05) with high sodium diet. The starting concentrations and the endpoint concentrations were statistically similar. The plasma levels of natriuretic peptides (NT-proANP, ANP and BNP) did not change during the test, and the concentrations were independent of the sodium diet. To conclude, acutely increased sodium intake does not change blood pressure or hormonal responses in a cold pressor test in young healthy subjects.

  4. Stress disorders following prolonged critical illness in survivors of severe sepsis.

    PubMed

    Wintermann, Gloria-Beatrice; Brunkhorst, Frank Martin; Petrowski, Katja; Strauss, Bernhard; Oehmichen, Frank; Pohl, Marcus; Rosendahl, Jenny

    2015-06-01

    To examine the frequency of acute stress disorder and posttraumatic stress disorder in chronically critically ill patients with a specific focus on severe sepsis, to classify different courses of stress disorders from 4 weeks to 6 months after transfer from acute care hospital to postacute rehabilitation, and to identify patients at risk by examining the relationship between clinical, demographic, and psychological variables and stress disorder symptoms. Prospective longitudinal cohort study, three assessment times within 4 weeks, 3 months, and 6 months after transfer to postacute rehabilitation. Patients were consecutively enrolled in a large rehabilitation hospital (Clinic Bavaria, Kreischa, Germany) admitted for ventilator weaning from acute care hospitals. We included 90 patients with admission diagnosis critical illness polyneuropathy or critical illness myopathy with or without severe sepsis, age between 18 and 70 years with a length of ICU stay greater than 5 days. None. Acute stress disorder and posttraumatic stress disorder were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, criteria by a trained and experienced clinical psychologist using a semistructured clinical interview for Diagnostic and Statistical Manual of Mental Disorders. We further administered the Acute Stress Disorder Scale and the Posttraumatic Symptom Scale-10 to assess symptoms of acute stress disorder and posttraumatic stress disorder. Three percent of the patients had an acute stress disorder diagnosis 4 weeks after transfer to postacute rehabilitation. Posttraumatic stress disorder was found in 7% of the patients at 3-month follow-up and in 12% after 6 months, respectively. Eighteen percent of the patients showed a delayed onset of posttraumatic stress disorder. Sepsis turned out to be a significant predictor of posttraumatic stress disorder symptoms at 3-month follow-up. A regular screening of post-ICU patients after discharge from hospital should be an integral part of aftercare management. The underlying mechanisms of severe sepsis in the development of posttraumatic stress disorder need further examination.

  5. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress.

    PubMed

    Tan, Huaqiang; Huang, Haitao; Tie, Manman; Tang, Yi; Lai, Yunsong; Li, Huanxiu

    2016-01-01

    Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and advance our knowledge of the genes involved in the complex regulatory networks of this plant under cold stress.

  6. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03-7971-2013 about Cold formed steel.

  7. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971- 2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03- 7971-2013 about Cold formed steel.

  8. Acute stress reactions after submarine accidents.

    PubMed

    Eid, Jarle; Johnsen, Bjørn Helge

    2002-05-01

    The aim of the present study was to explore contextual and individual factors associated with acute stress reactions in three Norwegian submarine crews exposed to different significant peacetime maneuver accidents. Approximately 2 to 3 weeks after the accidents, crew members completed the Coping Style Questionnaire, the General Health Questionnaire, the Impact of Event Scale, and the Post-Traumatic Symptom Scale. Although exposed subjects (N = 47) revealed more posttraumatic stress symptoms than nonexposed crew members on shore leave (N = 7), they showed less acute stress reactions than survivors from a surface ship accident in the Norwegian Navy. Inspection of individual cases revealed that 4% of the exposed submariners showed high loads of acute stress symptoms. Unit cohesion and habitual coping styles emerged as resilience factors, whereas previous exposure to critical incidents and personal experience of not coping in the accident situation emerged as vulnerability factors, explaining 32% of the acute stress reactions reported by submarine crew members.

  9. Acute stress affects prospective memory functions via associative memory processes.

    PubMed

    Szőllősi, Ágnes; Pajkossy, Péter; Demeter, Gyula; Kéri, Szabolcs; Racsmány, Mihály

    2018-01-01

    Recent findings suggest that acute stress can improve the execution of delayed intentions (prospective memory, PM). However, it is unclear whether this improvement can be explained by altered executive control processes or by altered associative memory functioning. To investigate this issue, we used physical-psychosocial stressors to induce acute stress in laboratory settings. Then participants completed event- and time-based PM tasks requiring the different contribution of control processes and a control task (letter fluency) frequently used to measure executive functions. According to our results, acute stress had no impact on ongoing task performance, time-based PM, and verbal fluency, whereas it enhanced event-based PM as measured by response speed for the prospective cues. Our findings indicate that, here, acute stress did not affect executive control processes. We suggest that stress affected event-based PM via associative memory processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing β-Amylase Expression.

    PubMed

    Lv, Yan; Yang, Mei; Hu, Dan; Yang, Zeyu; Ma, Siqi; Li, Xianghua; Xiong, Lizhong

    2017-02-01

    Cold stress is one of the major limiting factors for rice (Oryza sativa) productivity. Several MYB transcriptional factors have been reported as important regulators in the cold stress response, but the molecular mechanisms are largely unknown. In this study, we characterized a cold-responsive R2R3-type MYB gene, OsMYB30, for its regulatory function in cold tolerance in rice. Functional analysis revealed that overexpression of OsMYB30 in rice resulted in increased cold sensitivity, while the osmyb30 knockout mutant showed increased cold tolerance. Microarray and quantitative real-time polymerase chain reaction analyses revealed that a few β-amylase (BMY) genes were down-regulated by OsMYB30. The BMY activity and maltose content, which were decreased and increased in the OsMYB30 overexpression and osmyb30 knockout mutant, respectively, were correlated with the expression patterns of the BMY genes. OsMYB30 was shown to bind to the promoters of the BMY genes. These results suggested that OsMYB30 exhibited a regulatory effect on the breakdown of starch through the regulation of the BMY genes. In addition, application of maltose had a protective effect for cell membranes under cold stress conditions. Furthermore, we identified an OsMYB30-interacting protein, OsJAZ9, that had a significant effect in suppressing the transcriptional activation of OsMYB30 and in the repression of BMY genes mediated by OsMYB30. These results together suggested that OsMYB30 might be a novel regulator of cold tolerance through the negative regulation of the BMY genes by interacting with OsJAZ9 to fine-tune the starch breakdown and the content of maltose, which might contribute to the cold tolerance as a compatible solute. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Acute Stress Symptoms in Children: Results From an International Data Archive

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Palmieri, Patrick A.; Rork, Kristine; Delahanty, Douglas L.; Kenardy, Justin; Kohser, Kristen L.; Landolt, Markus A.; Le Brocque, Robyne; Marsac, Meghan L.; Meiser-Stedman, Richard; Nixon, Reginald D.V.; Bui, Eric; McGrath, Caitlin

    2012-01-01

    Objective: To describe the prevalence of acute stress disorder (ASD) symptoms and to examine proposed "DSM-5" symptom criteria in relation to concurrent functional impairment in children and adolescents. Method: From an international archive, datasets were identified that included assessment of acute traumatic stress reactions and…

  13. Heterotrimeric G-Protein γ Subunit CsGG3.2 Positively Regulates the Expression of CBF Genes and Chilling Tolerance in Cucumber

    PubMed Central

    Bai, Longqiang; Liu, Yumei; Mu, Ying; Anwar, Ali; He, Chaoxing; Yan, Yan; Li, Yansu; Yu, Xianchang

    2018-01-01

    Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of alpha (Gα), beta (Gβ), and gamma (Gγ) subunits are central signal transducers mediating the cellular response to multiple stimuli, such as cold, in eukaryotes. Plant Gγ subunits, divided into A, B, and C three structurally distinct types, provide proper cellular localization and functional specificity to the heterotrimer complex. Here, we demonstrate that a type C Gγ subunit CsGG3.2 is involved in the regulation of the CBF regulon and plant tolerance to cold stresses in cucumber (Cucumis sativus L.). We showed that CsGG3.2 transcript abundance was positively induced by cold treatments. Transgenic cucumber plants (T1) constitutively over-expressing CsGG3.2 exhibits tolerance to chilling conditions and increased expression of CBF genes and their regulon. Antioxidative enzymes, i.e., superoxide dismutase, catalase, peroxidase, and glutathione reductase activities increased in cold-stressed transgenic plants. The reactive oxygen species, oxygen free radical and H2O2, production, as well as membrane lipid peroxidation (MDA) production decreased in transgenic plants, suggesting a better antioxidant system to cope the oxidative-damages caused by cold stress. These findings provide evidence for a critical role of CsGG3.2 in mediating cold signal transduction in plant cells. PMID:29719547

  14. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  15. Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco.

    PubMed

    Deng, Long-Qun; Yu, Hao-Qiang; Liu, Yan-Ping; Jiao, Pei-Pei; Zhou, Shu-Feng; Zhang, Su-Zhi; Li, Wan-Chen; Fu, Feng-Ling

    2014-04-10

    Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from -30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of -3 °C cold stress and thawing for 1h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes' Activities.

    PubMed

    Zhang, Rong-Xiang; Qin, Li-Jun; Zhao, De-Gang

    2017-07-20

    Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l- myo -inositol monophosphatase (IMPase) is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice ( Oryza sativa L.) remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP . Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha , while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA) treatment. Meanwhile, we cloned the 5' flanking promoter sequence of the OsIMP gene and identified several important cis -acting elements, such as LTR (low-temperature responsiveness), TCA-element (salicylic acid responsiveness), ABRE-element (abscisic acid responsiveness), GARE-motif (gibberellin responsive), MBS (MYB Binding Site) and other cis -acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), when compared to wild type (WT) tobacco plants under normal and cold stress conditions.

  17. Effect of stressors on the viability of Listeria during an in vitro cold-smoking process

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a dangerous food-borne pathogen and is a frequent contaminant of the cold-smoked fish industry. Elimination of this bacterium from the cold-smoking processing environment requires an understanding of how this microbe tolerates the stressful conditions encountered. Therefo...

  18. Exposure to acute stress enhances decision-making competence: Evidence for the role of DHEA.

    PubMed

    Shields, Grant S; Lam, Jovian C W; Trainor, Brian C; Yonelinas, Andrew P

    2016-05-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Exposure to Acute Stress Enhances Decision-Making Competence: Evidence for the Role of DHEA

    PubMed Central

    Shields, Grant S.; Lam, Jovian C. W.; Trainor, Brian C.; Yonelinas, Andrew P.

    2016-01-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. PMID:26874561

  20. Management of Stress in Army Operations

    DTIC Science & Technology

    1981-04-01

    culture with strange customs and manners. Even duty in a friendly foreign country, under such circum- stances, may intensify feelings of isolation...few or none. Normal combat stress signs include: • rapid heartbeat and palpitations * pounding heart * muscular tension ("tightening up") * sinking...perspiration and cold sweat • feeling too hot, too cold, or both, alternately * shaking and trembling * feeling faint or giddy * nausea . vomiting

  1. TRPA1 Contributes to Cold Hypersensitivity

    PubMed Central

    Camino, Donato del; Murphy, Sarah; Heiry, Melissa; Barrett, Lee B.; Earley, Taryn J.; Cook, Colby A.; Petrus, Matt J.; Zhao, Michael; D'Amours, Marc; Deering, Nate; Brenner, Gary J.; Costigan, Michael; Hayward, Neil J.; Chong, Jayhong A.; Fanger, Christopher M.; Woolf, Clifford J.; Patapoutian, Ardem; Moran, Magdalene M.

    2010-01-01

    TRPA1 is a non-selective cation channel expressed by nociceptors. While it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions where reactive oxygen species and pro-inflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1-/- mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain. PMID:21068322

  2. A stress-free model for residual stress assessment using thermoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Howell, Geoffrey; Dulieu-Barton, Janice M.; Achintha, Mithila; Robinson, Andrew F.

    2015-03-01

    Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ΔT/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ΔT/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA.

  3. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis.

    PubMed

    Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus

    2015-12-01

    Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.

  4. The Effects of Acute Stress on Core Executive Functions: A Meta-Analysis and Comparison with Cortisol

    PubMed Central

    Shields, Grant S.; Sazma, Matthew A.; Yonelinas, Andrew P.

    2016-01-01

    Core executive functions such as working memory, inhibition, and cognitive flexibility are integral to daily life. A growing body of research has suggested that acute stress may impair core executive functions. However, there are a number of inconsistencies in the literature, leading to uncertainty about how or even if acute stress influences core executive functions. We addressed this by conducting a meta-analysis of acute stress effects on working memory, inhibition, and cognitive flexibility. We found that stress impaired working memory and cognitive flexibility, whereas it had nuanced effects on inhibition. Many of these effects were moderated by other variables, such as sex. In addition, we compared effects of acute stress on core executive functions to effects of cortisol administration and found some striking differences. Our findings indicate that stress works through mechanisms aside from or in addition to cortisol to produce a state characterized by more reactive processing of salient stimuli but greater control over actions. We conclude by highlighting some important future directions for stress and executive function research. PMID:27371161

  5. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  6. Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes.

    PubMed

    Seveso, Davide; Montano, Simone; Strona, Giovanni; Orlandi, Ivan; Galli, Paolo; Vai, Marina

    2016-08-01

    Climate changes have increased the intensity/frequency of extreme thermal events, which represent serious threats to the health of reef-building corals. Since the vulnerability of corals exposed to thermal stresses are related to their ability to regulate Heat shock proteins (Hsps), we have analyzed together the time related expression profiles of the mitochondrial Hsp60 and the associated changes in tissue pigmentation in Seriatopora caliendrum subjected to 48 h of heat and cold treatments characterized by moderate (±2 °C) and severe (±6 °C) shocks. For the first time, an Hsp60 response was observed in a scleractinian coral exposed to cold stresses. Furthermore, the Hsp60 modulations and the changes in the tissue coloration were found to be specific for each treatment. A strong down-regulation at the end of the treatments was observed following both the severe shocks, but only the severe heat stress led to bleaching in concert with the lowest levels of Hsp60, suggesting that a severe heat shock can be more deleterious than an exposure to a severe cold temperature. On the contrary, a moderate cold stress seems to be more harmful than a moderate temperature increase, which could allow coral acclimation. Our results can provide a potential framework for understanding the physiological tolerance of corals under possible future climate changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Blood differential test

    MedlinePlus

    ... 3% What Abnormal Results Mean Any infection or acute stress increases your number of white blood cells. ... increased percentage of neutrophils may be due to: Acute infection Acute stress Eclampsia (seizures or coma in ...

  8. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.

  9. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    PubMed

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  10. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress

    PubMed Central

    Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370

  11. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  12. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  13. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chan, Hong-Lin; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2018-03-19

    Heat stress leads to decreased fertility in roosters. This study investigated the global protein expression in response to acute heat stress in the testes of a broiler-type strain of Taiwan country chickens (TCCs). Twelve 45-week-old roosters were randomly allocated to the control group maintained at 25°C, and three groups subjected to acute heat stress at 38°C for 4 h, with 0, 2, and 6 h of recovery, respectively. Testis samples were collected for hematoxylin and eosin staining, apoptosis assay, and protein analysis. The results revealed 101 protein spots that differed significantly from the control following exposure to acute heat stress. The proteins that were differentially expressed participated mainly in protein metabolism and other metabolic processes, responses to stimuli, apoptosis, cellular organization, and spermatogenesis. Proteins that negatively regulate apoptosis were downregulated and proteins involved in autophagy and major heat shock proteins (HSP90α, HSPA5, and HSPA8) were upregulated in the testes of heat-stressed chickens. In conclusion, acute heat stress causes a change in protein expression in the testes of broiler-type B strain TCCs and may thus impair cell morphology, spermatogenesis, and apoptosis. The expression of heat shock proteins increased to attenuate the testicular injury induced by acute heat stress.

  14. Basal tolerance to heat and cold exposure of the spotted wing drosophila, Drosophila suzukii

    PubMed Central

    Enriquez, Thomas

    2017-01-01

    The spotted wing Drosophila, Drosophila suzukii, is a new pest in Europe and America which causes severe damages, mostly to stone fruit crops. Temperature and humidity are among the most important abiotic factors governing insect development and fitness. In many situations, temperature can become stressful thus compromising survival. The ability to cope with thermal stress depends on basal level of thermal tolerance. Basic knowledge on temperature-dependent mortality of D. suzukii is essential to facilitate management of this pest. The objective of the present study was to investigate D. suzukii basal cold and heat tolerance. Adults and pupae were subjected to six low temperatures (−5–7.5 °C) and seven high temperatures (30–37 °C) for various durations, and survival-time-temperature relationships were investigated. Data showed that males were globally more cold tolerant than females. At temperature above 5 °C, adult cold mortality became minor even after prolonged exposures (e.g., only 20% mortality after one month at 7.5 °C). Heat tolerance of males was lower than that of females at the highest tested temperatures (34, 35 and 37 °C). Pupae appeared much less cold tolerant than adults at all temperatures (e.g., Lt50 at 5° C: 4–5 d for adults vs. 21 h for pupae). Pupae were more heat tolerant than adults at the most extreme high temperatures (e.g., Lt50 at 37 °C: 30 min for adults vs. 4 h for pupae). The pupal thermal tolerance was further investigated under low vs. high humidity. Low relative humidity did not affect pupal cold survival, but it reduced survival under heat stress. Overall, this study shows that survival of D. suzukii under heat and cold conditions can vary with stress intensity, duration, humidity, sex and stage, and the methodological approach used here, which was based on thermal tolerance landscapes, provides a comprehensive description of D. suzukiithermal tolerance and limits. PMID:28348931

  15. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway.

    PubMed

    Kashyap, Prakriti; Deswal, Renu

    2017-06-01

    Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco.

    PubMed

    Wang, Feng; Hou, Xilin; Tang, Jun; Wang, Zhen; Wang, Shuming; Jiang, Fangling; Li, Ying

    2012-04-01

    WRKY TFs belong to one of the largest families of transcriptional regulators in plants and form integral parts of signaling webs that modulate many plant processes. BcWRKY46, a cDNA clone encoding a polypeptide of 284 amino acids and exhibited the structural features of group III of WRKY protein family, was isolated from the cold-treated leaves of Pak-choi (Brassica campestris ssp. chinensis Makino, syn. B. rapa ssp. chinensis) using the cDNA-AFLP technique. Expression of this gene was induced quickly and strongly in response to various environmental stresses, including low temperatures, ABA, salt and dehydration. Constitutive expression of BcWRKY46 in tobacco under the control of the CaMV35S promoter reduced the susceptibility of transgenic tobacco to freezing, ABA, salt and dehydration stresses. Our studies suggest that BcWRKY46 plays an important role in responding to ABA and abiotic stress.

  17. Effect of Schizandra chinensis lignans on cell division in the corneal epithelium and tongue of albino rats exposed to chronic cold stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mel'nik, E.I.; Lupandin, A.V.; Timoshin, S.S.

    The authors study the possibility of correcting cellular manifestations of disadaptation following chronic exposure to cold stress by means of preparations of Sch. chinensis. The model of chronic stress was cooling male albino rats daily for 1.5 h to a temperature of 28-30 C for 28 days. Since differences between levels of proliferation in intact animals and in the rats receiving 1.9% ethanol solution were absent, values obtained in the group of intact animals are presented in a table as the control. The animals underwent euthanasia 48 hours after the final exposure to the cold. The rats received an injectionmore » of tritium-thymidine one hour before sacrifice. It is shown that the results confirm those in previous studies of stimulation of DNA synthesis and mitotic activity in the corneal and lingual epithelium of albino rats during chronic exposure to stress.« less

  18. Traumatic Memories in Acute Stress Disorder: An Analysis of Narratives before and after Treatment

    ERIC Educational Resources Information Center

    Moulds, Michelle L.; Bryant, Richard A.

    2005-01-01

    The dissociative reactions in acute stress disorder purportedly impede encoding and organization of traumatic memories and consequently impair the individual's ability to retrieve trauma-related details. A qualitative examination was conducted on trauma narratives of individuals with acute stress disorder (N = 15) prior to cognitive behavior…

  19. Relationship of Stress, Leukocyte Functions and Acute Ulcerative Gingivitis.

    DTIC Science & Technology

    1982-10-22

    IONAL 1jjl (I Y AN[)AAU> I,)(, 4 •. . . . .i -AD (Report Number 3 , Lf) RELATIONSHIP OF STRESS, LEUKOCYTE FUNCTION AND ACUTE ULCERATIVE GINGIVITIS...AIk £It. KEY WORDS (C~mntm. a reers old. A *1acoa and Identit by block number) Acute Necrotic Ulcerative Gingivitis (ANUG)), Stress 4 Leukocyte

  20. Endoplasmic Reticulum Stress in Ischemic and Nephrotoxic Acute Kidney Injury.

    PubMed

    Yan, Mingjuan; Shu, Shaoqun; Guo, Chunyuan; Tang, Chengyuan; Dong, Zheng

    2018-06-12

    Acute kidney injury is a medical condition characterized by kidney damage with a rapid decline of renal function, which is associated with high mortality and morbidity. Recent research has further established an intimate relationship between acute kidney injury and chronic kidney disease. Perturbations of kidney cells in acute kidney injury result in the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, leading to unfolded protein response or endoplasmic reticulum stress. In this review, we analyze the role and regulation of endoplasmic reticulum stress in acute kidney injury triggered by renal ischemia-reperfusion and cisplatin nephrotoxicity. The balance between the two major components of unfolded protein response, the adaptive pathway and the apoptotic pathway, plays a critical role in determining the cell fate in endoplasmic reticulum stress. The adaptive pathway is evoked to attenuate translation, induce chaperones, maintain protein homeostasis, and promote cell survival. Prolonged endoplasmic reticulum stress activates the apoptotic pathway, resulting in the elimination of dysfunctional cells. Therefore, regulating ER stress in kidney cells may provide a therapeutic target in acute kidney injury.

  1. Effect of acute acoustic stress on anorectal function sensation in healthy human.

    PubMed

    Gonlachanvit, S; Rhee, J; Sun, W M; Chey, W D

    2005-04-01

    Little is known about the effects of acute acoustic stress on anorectal function. To determine the effects of acute acoustic stress on anorectal function and sensation in healthy volunteers. Ten healthy volunteers (7 M, 3 F, mean age 34 +/- 3 years) underwent anorectal manometry, testing of rectal compliance and sensation using a barostat with and without acute noise stress on separate days. Rectal perception was assessed using an ascending method of limits protocol and a 5-point Likert scale. Arousal and anxiety status were evaluated using a visual analogue scale. Acoustic stress significantly increased anxiety score (P < 0.05). Rectal compliance was significantly decreased with acoustic stress compared with control P (P < 0.000001). In addition, less intraballoon volume was needed to induce the sensation of severe urgency with acoustic stress (P < 0.05). Acoustic stress had no effect on hemodynamic parameters, anal sphincter pressure, threshold for first sensation, sensation of stool, or pain. Acute acoustic stimulation increased anxiety scores, decreased rectal compliance, and enhanced perception of severe urgency to balloon distention but did not affect anal sphincter pressure in healthy volunteers. These results may offer insight into the pathogenesis of stress-in-induced diarrhoea and faecal urgency.

  2. Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion

    NASA Astrophysics Data System (ADS)

    Plančak, M.; Barišić, B.; Car, Z.; Movrin, D.

    2011-01-01

    In cold extrusion of steel tools make direct contact with the metal to be extruded. Those tools are exposed to high contact stresses which, in certain cases, may be limiting factors in applying this technology. The present paper was bound to the influence of punch head design on radial stress at the container wall in the process of cold backward extrusion. Five different punch head geometries were investigated. Radial stress on the container wall was measured by pin load cell technique. Special tooling for the experimental investigation was designed and made. Process has been analyzed also by FE method. 2D models of tools were obtained by UGS NX and for FE analysis Simufact Forming GP software was used. Obtained results (experimental and obtained by FE) were compared and analyzed. Optimal punch head geometry has been suggested.

  3. Evaluation of cold workplaces: an overview of standards for assessment of cold stress.

    PubMed

    Holmér, Ingvar

    2009-07-01

    Many persons world wide are exposed to cold environments, either indoors for example in cold stores, or outdoors. Cold is a hazard to health and may affect safety and performance of work. Basis for the creation of safe and optimal working conditions may be obtained by the application of relevant international standards. ISO 11079 presents a method for evaluation of whole body heat balance. On the basis of climate and activity a required clothing insulation (IREQ) for heat balance is determined. For clothing with known insulation value an exposure time limited is calculated. ISO 11079 also includes criteria for assessment of local cooling. Finger temperatures should not be below 24 degrees C during prolonged exposures or 15 degrees C occasionally. Wind chill temperature indicates the risk of bare skin to freeze for combinations of wind and low temperatures. Special protection of airways is recommended at temperatures below -20 degrees C, in particular during heavy work. Additional standards are available describing evaluation strategies, work place observation checklists and checklist for medical screening. Risks associated with contact with cold surfaces can be evaluated with ISO 13732. The strategy and principles for assessment and prevention of cold stress are reviewed in this paper.

  4. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulaganathan, Jaganathan, E-mail: jagan.ulaganathan@mail.utoronto.ca; Newman, Roger C., E-mail: roger.newman@utoronto.ca

    2014-06-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously withinmore » the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.« less

  5. Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress.

    PubMed

    Vighi, I L; Benitez, L C; do Amaral, M N; Auler, P A; Moraes, G P; Rodrigues, G S; da Maia, L C; Pinto, L S; Braga, E J B

    2016-11-03

    Different rice (Oryza sativa L.) genotypes were subjected to high salinity and low temperature (150 mM NaCl and 13°C, respectively) for 0, 6, 24, 48, or 72 h. We evaluated the simultaneous expression of the genes OsCATA, OsCATB, and OsCATC, correlated gene expression with enzyme activity, and verified the regulation of these genes through identification of cis-elements in the promoter region. The hydrogen peroxide content increased in a tolerant genotype and decreased in a sensitive genotype under both stress conditions. Lipid peroxidation increased in the tolerant genotype when exposed to cold, and in the sensitive genotype when exposed to high salinity. Catalase activity significantly increased in both genotypes when subjected to 13°C. In the tolerant genotype, OsCATA and OsCATB were the most responsive to high salinity and cold, while in the sensitive genotype, OsCATA and OsCATC responded positively to saline stress, as did OsCATA and OsCATB to low temperature. Cis-element analysis identified different regulatory sequences in the catalase promoter region of each genotype. The sensitive genotype maintained a better balance between hydrogen oxyacid levels, catalase activity, and lipid peroxidation under low temperature than the resistant genotype. OsCATA and OsCATB were the most responsive in the salt-tolerant genotype to cold, OsCATA and OsCATC were the most responsive to saline stress, and OsCATA and OsCATB were the most responsive to chilling stress in the sensitive genotype. There were positive correlations between catalase activity and OsCATB expression in the tolerant genotype under saline stress and in the sensitive genotype under cold stress.

  6. Media's role in broadcasting acute stress following the Boston Marathon bombings.

    PubMed

    Holman, E Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-07

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -2.36, 3.23], but lower nationwide when compared with Boston (b = -2.21; SE = 1.07; 95% CI, -4.31, -0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities.

  7. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    PubMed

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-07

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation

    PubMed Central

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2018-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the responses more specifically to chilling. These findings add to the understanding of plants' molecular responses to cold acclimation. PMID:29403505

  9. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    PubMed

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the responses more specifically to chilling. These findings add to the understanding of plants' molecular responses to cold acclimation.

  10. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given

    PubMed Central

    2010-01-01

    Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE) and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry. PMID:21047428

  11. SlCOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco.

    PubMed

    Ma, Xiaocui; Wang, Guodong; Zhao, Weiyang; Yang, Minmin; Ma, Nana; Kong, Fanying; Dong, Xinchun; Meng, Qingwei

    2017-09-01

    Drought stress adversely affects plant growth, development, and productivity. Genes functioning in plant response to drought stress are essential for drought tolerance. In this study, SlCOR413IM1, a cold-regulated gene isolated from Solanum lycopersium, was transferred to Nicotiana tabacum to investigate its function under drought stress. The subcellular localisation of SlCOR413IM1-GFP fusion protein in Arabidopsis protoplasts suggested that SlCOR413IM1 is a chloroplast protein. Expression analyses revealed that SlCOR413IM1 responded to drought and cold stresses. Under drought stress, transgenic plants maintained the high maximum photochemical efficiency, net photosynthetic rate (Pn) and D1 protein content of photosystem II (PSII). Compared with wild-type (WT) plants, transgenic plants showed higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline and soluble sugar content, which reduced reactive oxygen species (ROS) generation. However, the high SOD and APX activities in transgenic plants were independent of their transcription levels. Moreover, the transgenic plants exhibited better seed germination, water status and survival, as well as lower malondialdehyde (MDA) content and relative electrical conductivity (REC) than WT plants under drought stress. Taken together, these data demonstrated that overexpression of SlCOR413IM1 enhanced drought stress tolerance in transgenic tobacco. Copyright © 2017. Published by Elsevier GmbH.

  12. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta).

    PubMed

    Ruan, Meng-Bin; Guo, Xin; Wang, Bin; Yang, Yi-Ling; Li, Wen-Qi; Yu, Xiao-Ling; Zhang, Peng; Peng, Ming

    2017-06-15

    The myeloblastosis (MYB) transcription factor superfamily is the largest transcription factor family in plants, playing different roles during stress response. However, abiotic stress-responsive MYB transcription factors have not been systematically studied in cassava (Manihot esculenta), an important tropical tuber root crop. In this study, we used a genome-wide transcriptome analysis to predict 299 putative MeMYB genes in the cassava genome. Under drought and cold stresses, many MeMYB genes exhibited different expression patterns in cassava leaves, indicating that these genes might play a role in abiotic stress responses. We found that several stress-responsive MeMYB genes responded to abscisic acid (ABA) in cassava leaves. We characterize four MeMYBs, namely MeMYB1, MeMYB2, MeMYB4, and MeMYB9, as R2R3-MYB transcription factors. Furthermore, RNAi-driven repression of MeMYB2 resulted in drought and cold tolerance in transgenic cassava. Gene expression assays in wild-type and MeMYB2-RNAi cassava plants revealed that MeMYB2 may affect other MeMYBs as well as MeWRKYs under drought and cold stress, suggesting crosstalk between MYB and WRKY family genes under stress conditions in cassava. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. What is the best clothing to prevent heat and cold stress? Experiences with thermal manikin.

    PubMed

    Magyar, Z; Tamas, R

    2013-02-01

    The present study summarizes the current knowledge of the heat and cold stress which might significantly affect military activities and might also occur among travellers who are not well adapted to weather variations during their journey. The selection of the best clothing is a very important factor in preserving thermal comfort. Our experiences with thermal manikin are also represented in this paper.

  14. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2013-01-15

    Acute heat stress affects genes involved in spermatogenesis in mammals. However, there is apparently no elaborate research on the effects of acute heat stress on gene expression in avian testes. The purpose of this study was to investigate global gene expression in testes of the L2 strain of Taiwan country chicken after acute heat stress. Twelve roosters, 45 weeks old, were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2-hour recovery, and with 6-hour recovery, respectively. Testis samples were collected for RNA isolation and microarray analysis. Based on gene expression profiles, 169 genes were upregulated and 140 genes were downregulated after heat stress using a cutoff value of twofold or greater change. Based on gene ontology analysis, differentially expressed genes were mainly related to response to stress, transport, signal transduction, and metabolism. A functional network analysis displayed that heat shock protein genes and related chaperones were the major upregulated groups in chicken testes after acute heat stress. A quantitative real-time polymerase chain reaction analysis of mRNA expressions of HSP70, HSP90AA1, BAG3, SERPINB2, HSP25, DNAJA4, CYP3A80, CIRBP, and TAGLN confirmed the results of the microarray analysis. Because the HSP genes (HSP25, HSP70, and HSP90AA1) and the antiapoptotic BAG3 gene were dramatically altered in heat-stressed chicken testes, we concluded that these genes were important factors in the avian testes under acute heat stress. Whether these genes could be candidate genes for thermotolerance in roosters requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Effect of acute psychological stress on response inhibition: An event-related potential study.

    PubMed

    Qi, Mingming; Gao, Heming; Liu, Guangyuan

    2017-04-14

    This study aimed to investigate the effect of acute psychological stress on response inhibition and its electrophysiological correlates using a dual-task paradigm. Acute stress was induced by a primary task (mental arithmetic task), which consisted of a stress block and a control block. Response inhibition was measured using a secondary task (Go/NoGo task). In each trial, a Go/NoGo stimulus was presented immediately after the mental arithmetic task. The results revealed increased subjective stress and negative affect for the stress relative to control block, suggesting that the mental arithmetic task triggered a reliable stress response. ERPs locked to the Go/NoGo stimuli revealed that decreased P2 and increased N2 components were evoked for the stress block compared to the control block. These results demonstrated that acute psychological stress alters the response inhibition process by reducing the early selective attention process and enhancing the cognitive control process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. One Dimensional Cold Rolling Effects on Stress Corrosion Crack Growth in Alloy 690 Tubing and Plate Materials

    NASA Astrophysics Data System (ADS)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.

    Stress corrosion crack-growth experiments have been performed on cold-rolled alloy 690 materials in simulated PWR primary water at 360°C. Extruded alloy 690 CRDM tubing in two conditions, thermally treated (TT) and solution annealed (SA), was cold rolled (CR) in one direction to several reductions reaching a maximum of 31% and tested in the S-L orientation. High stress corrosion cracking (SCC) propagation rates ( 8x10-8 mm/s) were observed for the 31%CR alloy 690TT material, while the 31%CR alloy 690SA exhibited 10X lower rates. The difference in intergranular SCC susceptibility appears to be related to grain boundary carbide distribution before cold rolling. SCC growth rates were found to depend on test temperature and hydrogen concentration. Tests were also performed on two alloy 690 plate heats, one CR to a reduction of 26% and the other to 20%. SCC growth rates at 360°C were similar to that measured for the 31%CR alloy 690TT CRDM tubing. Comparisons will be made to other results on CR alloy 690 materials.

  17. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.

  18. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    PubMed

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Occupational role stress is associated with higher cortisol reactivity to acute stress.

    PubMed

    Wirtz, Petra H; Ehlert, Ulrike; Kottwitz, Maria U; La Marca, Roberto; Semmer, Norbert K

    2013-04-01

    We investigated whether occupational role stress is associated with differential levels of the stress hormone cortisol in response to acute psychosocial stress. Forty-three medication-free nonsmoking men aged between 22 and 65 years (mean ± SEM: 44.5 ± 2) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We assessed occupational role stress in terms of role conflict and role ambiguity (combined into a measure of role uncertainty) as well as further work characteristics and psychological control variables including time pressure, overcommitment, perfectionism, and stress appraisal. Moreover, we repeatedly measured salivary cortisol and blood pressure levels before and after stress exposure, and several times up to 60 min thereafter. Higher role uncertainty was associated with a more pronounced cortisol stress reactivity (p = .016), even when controlling for the full set of potential confounders (p < .001). Blood pressure stress reactivity was not associated with role uncertainty. Our findings suggest that occupational role stress in terms of role uncertainty acts as a background stressor that is associated with increased HPA-axis reactivity to acute stress. This finding may represent a potential mechanism regarding how occupational role stress may precipitate adverse health outcomes.

  20. Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild fish.

    PubMed

    Quinn, Nicole L; McGowan, Colin R; Cooper, Glenn A; Koop, Ben F; Davidson, William S

    2011-09-22

    Arctic charr thrive at high densities and can live in freshwater year round, making this species especially suitable for inland, closed containment aquaculture. However, it is a cold-water salmonid, which both limits where the species can be farmed and places wild populations at particular risk to climate change. Previously, we identified genes associated with tolerance and intolerance to acute, lethal temperature stress in Arctic charr. However, there remained a need to examine the genes involved in the stress response to more realistic temperatures that could be experienced during a summer heat wave in grow-out tanks that are not artificially cooled, or under natural conditions. Here, we exposed Arctic charr to sublethal heat stress of 15-18°C for 72 h, and gill tissues extracted before, during (i.e., at 72 h), immediately after cooling and after 72 h of recovery at ambient temperature (6°C) were used for gene expression profiling by microarray and qPCR analyses. The results revealed an expected pattern for heat shock protein expression, which was highest during heat exposure, with significantly reduced expression (approaching control levels) quickly thereafter. We also found that the expression of numerous ribosomal proteins was significantly elevated immediately and 72 h after cooling, suggesting that the gill tissues were undergoing ribosome biogenesis while recovering from damage caused by heat stress. We suggest that these are candidate gene targets for the future development of genetic markers for broodstock development or for monitoring temperature stress and recovery in wild or cultured conditions.

Top