Science.gov

Sample records for acute colitis induced

  1. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis.

    PubMed

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-04-05

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103(-)CD11c⁺ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103⁺CD11c⁺ cDCs and expansion of Foxp3⁺ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis.

  2. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis

    PubMed Central

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103−CD11c+ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103+CD11c+ cDCs and expansion of Foxp3+ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis. PMID:27058552

  3. Fucoidan Extracts Ameliorate Acute Colitis.

    PubMed

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  4. Monochloramine induces acute and protracted colitis in the rat: response to pharmacological treatment.

    PubMed

    Ballester, Isabel; González, Raquel; Nieto, Ana; Zarzuelo, Antonio; de Medina, Fermín Sánchez

    2005-05-06

    Monochloramine is a powerful oxidative molecule that is produced in inflammatory sites. We investigated the effect of intrarectally administered monochloramine (3.2 mg) in the rat. A single enema induced after 24 h an intense inflammatory reaction characterized by mucosal necrosis, submucosal edema, hemorrhage and colonic thickening, as well as induction of nitric oxide synthase and tumor necrosis factor and an increase in the interferon gamma/interleukin 4 ratio. The inflammatory response peaked 3-5 days after monochloramine administration and then followed a extended recovery phase. At 1 week there was substantial but incomplete mucosal repair, submucosal edema, neutrophil/macrophage infiltration and increased myeloperoxydase and alkaline phosphatase activities. Oxidative stress, as determined by malonyldialdehyde levels, was prominent only in the acute phase (3-5 days). Monochloramine colitis was amenable to pharmacological treatment with sulphasalazine or prednisolone, suggesting that it may be used as an experimental model of inflammatory bowel disease. In conclusion, monochloramine induces acute and protracted colonic inflammation in the rat. Locally produced monochloramine might contribute to the perpetuation of inflammatory bowel disease.

  5. Effects of dosmalfate, a new cytoprotective agent, on acute and chronic trinitrobenzene sulphonic acid-induced colitis in rats.

    PubMed

    Villegas, Isabel; La Casa, Carmen; Orjales, Aurelio; Alarcón de la Lastra, Catalina

    2003-01-24

    Activated neutrophils and proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) are clearly involved in the pathogenesis of bowel disease. Increased expression of epidermal growth factor-receptor (EGF receptor) has been reported for the colon mucosa surrounding areas of ulceration, suggesting a pivotal role in mucosal defence and repair. In this study, we examined the effects of dosmalfate, a new flavonoid derivative compound (diosmin heptakis) with antioxidant and cytoprotective properties, on acute and chronic experimental trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. The inflammation response was assessed by neutrophil infiltration as evaluated by histology and myeloperoxidase activity. Mucosal TNF-alpha production and histological analysis of the lesions was also carried out. In addition, we studied the expression of the EGF receptor inmunohistochemically during the healing of TNBS-induced chronic colitis. A 2-day treatment with 400 or 800 mg/kg of dosmalfate ameliorated the colon damage score and the incidence of adhesions. It also significantly (P<0.05) decreased myeloperoxidase activity and colonic mucosal production of TNF-alpha. Chronic treatment (14 days) with 800 mg/kg/day of dosmalfate also had significant protective effects on TNBS-induced colitis which were reflected by significant attenuation (P<0.05) of the damage score while the inflammatory indicators were not improved. The chronic beneficial effect of dosmalfate was apparently related to the enhancement of EGF receptor expression. These findings confirm the protective effects of dosmalfate in acute and chronic experimental colitis.

  6. Effect of acute and chronic DSS induced colitis on plasma eicosanoid and oxylipin levels in the rat.

    PubMed

    Willenberg, Ina; Ostermann, Annika I; Giovannini, Samoa; Kershaw, Olivia; von Keutz, Anne; Steinberg, Pablo; Schebb, Nils Helge

    2015-07-01

    Eicosanoids and oxylipins are potent lipid mediators involved in the regulation of inflammation. In order to evaluate their role and suitability as biomarkers in colitis, we analyzed their systemic levels in the acute and chronic phase of dextran sulfate sodium (DSS) induced colitis. Male Fischer 344 rats were treated in three cycles with 4% DSS in the drinking water (4 days followed by 10 days recovery) and blood was drawn 3 days prior to the first DSS treatment and on days 4, 11, 32 and 39. Histopathological evaluation of the colon tissue after 42 days showed that the animals developed a mild to severe chronic colitis. Consistently, prostaglandin levels were massively (twofold) elevated in the colonic tissue. LC-MS based targeted metabolomics was used to determine plasma oxylipin levels at the different time points. In the acute phase of inflammation directly after DSS treatment, epoxy-fatty acid (FA), dihydroxy-FA and hydroxy-FA plasma concentrations were uniformly elevated. With each treatment cycle the increase in these oxylipin levels was more pronounced. Our data suggest that in the acute phase of colitis release of polyunsaturated FAs from membranes in the inflamed tissue is reflected by a uniform increase of oylipins formed in different branches of the arachidonic acid cascade. However, during the recovery phases the systemic oxylipin pattern is not or only moderately altered and does not allow to evaluate the onset of chronic inflammation in the colon.

  7. Lubiprostone induced ischemic colitis.

    PubMed

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-14

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding.

  8. Th17 Responses Are Not Induced in Dextran Sodium Sulfate Model of Acute Colitis

    PubMed Central

    Kim, Yoon Suk; Lee, Min Ho; Ju, Ahn Seung

    2011-01-01

    Dextran sodium sulfate (DSS) is a widely used chemical model for inflammatory bowel disease (IBD). It is thought that imbalances in the T helper (Th) cell subsets contribute to IBD. Recent studies suggest that the acute DSS-colitis model is polarized toward a Th1/Th17 profile based on RT-PCR analysis of colonic tissues. In the current study we determined whether colonic Th cells from DSS-colitis mice were skewed toward the Th17 profile. Mice were treated with 5% DSS for 7 days and colonic T cells isolated and examined for production of IFN-γ (Th1 cell), IL-4 (Th2 cell) and IL-17 (Th17 cell) by intracellular flow cytometry. We found that the percentage of colonic Th17 cells were similar to non-treated controls but the percentage of Th1 cells were elevated in DSS-colitis mice. These results suggest that in the acute DSS-colitis model the colonic Th cells exhibit a Th1 profile and not a Th17 profile. PMID:22346784

  9. 5-Aminosalicylic Acid Inhibits Acute Clostridium difficile Toxin A-Induced Colitis in Rats

    PubMed Central

    Vigna, Steven R.

    2014-01-01

    We tested the hypothesis that 5-aminosalicylic acid (5-ASA) inhibits toxin A-induced generation of colonic leukotriene B4 (LTB4) and toxin A colitis in rats. Isolated colonic segments in anesthetized rats were treated intraluminally with toxin A for 3 hours with or without 30 minutes of pretreatment with either 5-ASA or sulfapyridine and then colonic tissue levels of LTB4 were measured and inflammation was assessed. Separately, sulfasalazine was administered to rats in their drinking water for 5 days, isolated colonic segments were then prepared, toxin A was administered, and inflammation was assessed as before. Pretreatment with 5-ASA inhibited toxin A-induced increased tissue LTB4 concentration in the colon. Sulfasalazine and 5-ASA but not sulfapyridine significantly inhibited toxin A colitis. However, pretreatment with 5-ASA did not protect against direct TRPV1-mediated colitis caused by capsaicin. Toxin A stimulated the release of substance P (SP), and this effect was also inhibited by sulfasalazine and 5-ASA but not by sulfapyridine. Thus, toxin A stimulates colonic LTB4 resulting in activation of TRPV1, release of SP, and colitis. Inhibition of 5-LO by 5-ASA disrupts this pathway and supports the concept that LTB4 activation of TRPV1 plays a role in toxin A colitis. PMID:25045574

  10. 5-Aminosalicylic Acid Inhibits Acute Clostridium difficile Toxin A-Induced Colitis in Rats.

    PubMed

    Vigna, Steven R

    2014-01-01

    We tested the hypothesis that 5-aminosalicylic acid (5-ASA) inhibits toxin A-induced generation of colonic leukotriene B4 (LTB4) and toxin A colitis in rats. Isolated colonic segments in anesthetized rats were treated intraluminally with toxin A for 3 hours with or without 30 minutes of pretreatment with either 5-ASA or sulfapyridine and then colonic tissue levels of LTB4 were measured and inflammation was assessed. Separately, sulfasalazine was administered to rats in their drinking water for 5 days, isolated colonic segments were then prepared, toxin A was administered, and inflammation was assessed as before. Pretreatment with 5-ASA inhibited toxin A-induced increased tissue LTB4 concentration in the colon. Sulfasalazine and 5-ASA but not sulfapyridine significantly inhibited toxin A colitis. However, pretreatment with 5-ASA did not protect against direct TRPV1-mediated colitis caused by capsaicin. Toxin A stimulated the release of substance P (SP), and this effect was also inhibited by sulfasalazine and 5-ASA but not by sulfapyridine. Thus, toxin A stimulates colonic LTB4 resulting in activation of TRPV1, release of SP, and colitis. Inhibition of 5-LO by 5-ASA disrupts this pathway and supports the concept that LTB4 activation of TRPV1 plays a role in toxin A colitis.

  11. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages.

    PubMed

    Meshkibaf, Shahab; Martins, Andrew J; Henry, Garth T; Kim, Sung Ouk

    2016-02-01

    Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR(-/-)) mice. Mice were administered with 1.5% DSS in drinking water for 5days, and the severity of colitis was measured for the next 5days. GCSFR(-/-) mice were more susceptible to DSS-induced colitis than G-CSFR(+/+) or G-CSFR(-/+) mice. G-CSFR(-/-) mice harbored less F4/80(+) macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-β, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-γ, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR(-/-) mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-α, IL-1β and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine.

  12. Telmisartan treatment targets inflammatory cytokines to suppress the pathogenesis of acute colitis induced by dextran sulphate sodium.

    PubMed

    Arumugam, Somasundaram; Sreedhar, Remya; Thandavarayan, Rajarajan A; Giridharan, Vijayasree V; Karuppagounder, Vengadeshprabhu; Pitchaimani, Vigneshwaran; Afrin, Mst Rejina; Miyashita, Shizuka; Nomoto, Mayumi; Harima, Meilei; Suzuki, Hiroshi; Nakamura, Takashi; Nakamura, Masahiko; Suzuki, Kenji; Watanabe, Kenichi

    2015-08-01

    The renin angiotensin system (RAS) is essential for the regulation of cardiovascular and renal functions to maintain the fluid and electrolyte homeostasis. Recent studies have demonstrated a locally expressed RAS in various tissues of mammals, which is having pathophysiological roles in those organ system. Interestingly, local RAS has important role during the inflammatory bowel disease pathogenesis. Further to delineate its role and also to identify the potential effects of telmisartan, an angiotensin receptor blocker, we have used a mouse model of acute colitis induced by dextran sulphate sodium. We have used 0.01 and 5mg/kg body weight doses of telmisartan and administered as enema to facilitate the on-site action and to reduce the systemic adverse effects. Telmisartan high dose treatment significantly reduced the disease activity index score when compared with the colitis control mice. In addition, oxidative stress and endoplasmic reticulum stress markers expression were also significantly reduced when compared with the colitis control mice. Subsequent experiments were carried out to investigate some of the mechanisms underlying its anti-inflammatory effects and identified that the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α, interleukin 1β, interleukin 6 and monocyte chemoattractant protein 1 as well as cellular DNA damage were significantly suppressed when compared with the colitis control mice. Similarly the apoptosis marker proteins such as cleaved caspase 3 and 7 levels were down-regulated and anti-apoptotic protein Bcl2 level was significantly upregulated by telmisartan treatment. These results indicate that blockade of RAS by telmisartan can be an effective therapeutic option against acute colitis.

  13. Anti-inflammatory effect of Helichrysum oligocephalum DC extract on acetic acid — Induced acute colitis in rats

    PubMed Central

    Minaiyan, Mohsen; Ghassemi-Dehkordi, Nasrollah; Mahzouni, Parvin; Ahmadi, Najme-Sadat

    2014-01-01

    Background: Helichrysum oligocephalum DC. from Asteraceae family is an endemic plant growing wild in Iran. This study was carried out to investigate the effect of H. oligocephalum hydroalcoholic extract (HOHE) on ulcerative colitis (UC) induced by acetic acid (AA) in rats. Materials and Methods: Rats were grouped (n = 6) and fasted for 24 h before colitis induction. Treatments were started 2 h before the induction of colitis and continued for two consecutive days with different doses of HOHE (100, 200, and 400 mg/kg) orally (p.o.) and intraperitoneally (i.p.). The colon tissue was removed and tissue damages were scored after macroscopic and histopathologic assessments. Results: Among the examined doses of HOHE, 100 mg/kg was the most effective dose that reduced the extent of UC lesions and resulted in significant alleviation. Weight/length ratio as an index of tissue inflammation and extravasation was also diminished in the treatment group administered HOHE at a dose of 100 mg/kg, and the results showed correlation with macroscopic and histopathologic evaluations. These data suggest that HOHE (100 mg/kg) administered either p.o. or i.p. was effective in diminishing inflammation and ulcer indices in this murine model of acute colitis in a non–dose-related manner. Conclusions: H. oligocephalum could be considered as a suitable anticolitis alternative; however, further studies are needed to support this hypothesis for clinical setting. PMID:24761395

  14. Apical leptin induces chloride secretion by intestinal epithelial cells and in a rat model of acute chemotherapy-induced colitis

    PubMed Central

    Hoda, Raschid M.; Scharl, Michael; Keely, Stephen J.; McCole, Declan F.

    2010-01-01

    The purpose of this study was to investigate whether luminal leptin alters ion transport properties of the intestinal epithelium under acute inflammatory conditions. Monolayers of human intestinal T84 epithelial cells and a rat model of chemotherapy-induced enterocolitis were used. Cells were treated with leptin and mounted in Ussing chambers to measure basal and secretagogue-induced changes in transepithelial short-circuit current (Isc). Furthermore, the role of MAPK and phosphatidylinositol 3-kinase (PI3K) signaling pathways in mediating responses to leptin was investigated. Acute colitis in Sprague-Dawley rats was induced by intraperitoneal injection of 40 mg/kg methotrexate. Leptin (100 ng/ml) induced a time-dependent increase in basal Isc in T84 intestinal epithelial cells (P < 0.01). Moreover, pretreatment of T84 cells with leptin for up to 1 h significantly potentiated carbachol- and forskolin-induced increases in Isc. Pretreatment with an inhibitor of MAPK abolished the effect of leptin on basal, carbachol- and forskolin-induced chloride secretion (P < 0.05). However, the PI3K inhibitor, wortmannin, only blunted the effect of leptin on forskolin-induced increases in Isc. Furthermore, leptin treatment evoked both ERK1/2 and Akt1 phosphorylation in T84 cells. In the rat model, luminal leptin induced significant increases in Isc across segments of proximal and, to a lesser extent, distal colon (P < 0.05). We conclude that luminal leptin is likely an intestinal chloride secretagogue, particularly when present at elevated concentrations and/or in the setting of inflammation. Our findings may provide a mechanistic explanation, at least in part, for the clinical condition of secretory diarrhea both in hyperleptinemic obese patients and in patients with chemotherapy-induced intestinal inflammation. PMID:20203064

  15. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages.

    PubMed

    Wong, Wing-Yan; Lee, Magnolia Muk-Lan; Chan, Brandon Dow; Kam, Richard Kin-Tin; Zhang, Ge; Lu, Ai-Ping; Tai, William Chi-Shing

    2016-04-01

    Macrophages are essential for the maintenance of intestinal homeostasis, and their activation has been proposed to be critical to the pathogenesis of inflammatory bowel disease (IBD). Although there are many recognized mediators of macrophage activation, increasing evidence suggests that macrophages respond to exosome stimulation. Exosomes are 40-150 nm microvesicles released from different cell types and are found in a variety of physiological fluids, including serum. As studies have shown that circulating exosomes participate in intercellular communication and can mediate the immune response, we hypothesized that exosomes may play a role in the pathogenesis of IBD though modulation of macrophage activity. In this study, we used the dextran sulfate sodium (DSS) induced acute colitis mice model to investigate the effect of serum exosomes on macrophages and identify exosome proteins potentially involved in macrophage activation. We treated RAW264.7 macrophages with serum exosomes isolated from dextran sulfate sodium induced mice and found that treatment induced phosphorylation of p38 and ERK and production of tumor necrosis factor α when compared to treatment with exosomes isolated from control mice. Subsequent proteomic analysis identified 56 differentially expressed proteins, a majority of which were acute-phase proteins and immunoglobulins. Bioinformatics analysis suggested these proteins were mainly involved in the complement and coagulation cascade, which has been implicated in macrophage activation. Our findings provide new insight into the role of circulating serum exosomes in acute colitis and contribute to the understanding of macrophage activation in the pathogenesis of IBD.

  16. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance.

    PubMed

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-09-26

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD.

  17. Nicotine suppresses acute colitis and colonic tumorigenesis associated with chronic colitis in mice.

    PubMed

    Hayashi, Shusaku; Hamada, Takayuki; Zaidi, Syed Faisal; Oshiro, Momoe; Lee, Jaemin; Yamamoto, Takeshi; Ishii, Yoko; Sasahara, Masakiyo; Kadowaki, Makoto

    2014-11-15

    Ulcerative colitis is a chronic inflammatory disease that frequently progresses to colon cancer. The tumor-promoting effect of inflammation is now widely recognized and understood. Recent studies have revealed that treatment with nicotine ameliorates colitis in humans and experimental murine models, whereas the effect of nicotine on colitis-associated colonic tumorigenesis remains unclear. In the present study, we examined the effect of nicotine on the development of acute colitis and colitis-associated cancer (CAC). The acute colitis model was induced by treatment with 3% dextran sulfate sodium (DSS) for 7 days, whereas the CAC model was induced by a combination of azoxymethane and repeated DSS treatment. Nicotine and a selective agonist of the α7-nicotinic acetylcholine receptor (α7-nAChR) reduced the severity of DSS-induced acute colonic inflammation. In addition, the suppressive effect of nicotine on acute colitis was attenuated by an antagonist of α7-nAChR. Furthermore, nicotine inhibited the IL-6 production of CD4 T cells in the DSS-induced inflamed colonic mucosa. We found that nicotine significantly reduced the number and size of colonic tumors in mice with CAC. Nicotine markedly inhibited the elevation of TNF-α and IL-6 mRNA as well as phosphorylated signal transducer and activator of transcription (Stat) 3 expression in the colons of the tumor model mice. These results demonstrate that nicotine suppresses acute colitis and colitis-associated tumorigenesis, and this effect may be associated with the activation of α7-nAChR. Furthermore, it is presumed that nicotine downregulates the expression of inflammatory mediators such as IL-6/Stat3 and TNF-α, thereby reducing the colonic tumorigenesis associated with chronic colitis.

  18. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary influences may affect microbiome composition and host immune responses, thereby modulating propensity toward inflammatory bowel diseases: Crohn disease and ulcerative colitis. Dietary n-6 fatty acids have been associated with ulcetative colitis in prospective studies. However, the critical d...

  19. An experimental model of colitis induced by dextran sulfate sodium from acute progresses to chronicity in C57BL/6: correlation between conditions of mice and the environment

    PubMed Central

    Taghipour, Niloofar; Molaei, Mahsa; Mosaffa, Nariman; Rostami-Nejad, Mohammad; Asadzadeh Aghdaei, Hamid; Anissian, Ali; Azimzadeh, Pedram; Zali, Mohammad Reza

    2016-01-01

    Aim: To induce acute colitis progresses to chronicity in C57BL/6 mice by dextran sulfate sodium. Background: Murine models are essential tools to understand IBD pathogenesis. Among different types of chemically induced colitis models, the dextran sulfate sodium (DSS)-induced colitis model is the most common model of IBD, due to its simplicity. Patients and methods: Male C57BL/6 mice 6–8 weeks old, were collected and matched by age with controls. C57BL/6 mice treated with 2 cycles of 3.5% DSS for 4 days and 4 days of pure water between each cycle. After that, mice were sacrificed and the entire colon was removed. Small sections of the colon were fixed in formaldehyde, embedded in paraffin and sectioned with a microtome. Sections were stained with hematoxylin eosin to analyses the degree of inflammation. Results: After the first cycle oral administration of DSS, mice with severe and visible rectal bleeding and diarrhea entered into the acute phase. After day 4-5, bleeding and diarrhea were improved and mice entered into the chronic phase with peak levels of weight loss. Macroscopically, the inflammation was predominantly located in the distal colon. Microscopically, examination of the distal colon sections showed a decrease number of goblet cells, loss of crypts, signs of surface epithelial regeneration and moderate to severe infiltration of inflammatory cells in the mucosa. Conclusion: In order to achieve an experimental colitis model, our protocol is recommended for future therapies in IBD experimental modeling. PMID:26744614

  20. The effect of menthol on acute experimental colitis in rats.

    PubMed

    Ghasemi-Pirbaluti, Masoumeh; Motaghi, Ehsan; Bozorgi, Homan

    2017-03-18

    Menthol is an aromatic compound with high antiinflammatory activity. The purpose of the current research is to investigate the effectiveness of menthol on acetic acid induced acute colitis in rats. Animals were injected with menthol (20 and 50 and 80mg/kg, i.p.) 24h prior to induction of colitis for 3 consecutive days. Menthol at medium and higher doses similar to dexamethasone as a reference drug significantly reduced body weight loss, macroscopic damage score, ulcer area, colon weight, colon length and improved hematocrit in rats with colitis. The histopathological examination also confirmed anti-colitic effects of menthol. Menthol also reduced significantly the colonic levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6) and myeloperoxidase (MPO) activity in inflamed colons. Thus, the findings of the current study provide evidence that menthol may be beneficial in patients suffering from acute ulcerative colitis.

  1. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis

    PubMed Central

    He, Xuexiu; Wei, Zhengkai; Wang, Jingjing; Kou, Jinhua; Liu, Weijian; Fu, Yunhe; Yang, Zhengtao

    2016-01-01

    Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment. PMID:27321991

  2. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    PubMed

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression.

  3. Mesalizine-Induced Acute Pancreatitis and Interstitial Pneumonitis in a Patient with Ulcerative Colitis

    PubMed Central

    Chung, Min Jae; Lee, Jae Hee

    2015-01-01

    Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease. Mesalizine for the first-line therapy of UC has adverse effects include pancreatitis, pneumonia and pericarditis. UC complicated by two coexisting conditions, however, is very rare. Moreover, drug-related pulmonary toxicity is particularly rare. An 11-year-old male patient was hospitalized for recurring upper abdominal pain after meals with vomiting, hematochezia and exertional dyspnea developing at 2 weeks of mesalizine therapy for UC. The serum level of lipase was elevated. Chest X-ray and thorax computed tomography showed interstitial pneumonitis. Mesalizine was discontinued and steroid therapy was initiated. Five days after admission, symptoms were resolved and mesalizine was resumed after a drop in amylase and lipase level. Symptoms returned the following day, however, accompanied by increased the serum levels of amylase and lipase. Mesalizine was discontinued again and recurring symptoms rapidly improved. PMID:26770905

  4. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  5. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats

    PubMed Central

    Heidari, Bahareh; Sajjadi, Seyed Ebrahim; Minaiyan, Mohsen

    2016-01-01

    Objective: The aim of this study was to determine the protective effects of Coriandrum sativum on acetic acid-inducedcolitis in rats. C. sativum (Coriander) has long been used in Iranian traditional medicine and its use as an anti-inflammatory agent is still common in some herbal formulations. Materials and Methods: Colitis was induced by intra-rectal administration of 2ml acetic acid 4% in fasted male Wistar rats. Treatment was carried out using three increasing doses of extract (250, 500, 1000 mg/kg) and essential oil (0.25, 0.5, 1 ml/kg) of coriander started 2 h before colitis induction and continued for a five-day period. Colon biopsies were taken for weighting, macroscopic scoring of injured tissue, histopathological examination and measuring myeloperoxidase (MPO) activity. Results: Colon weight was decreased in the groups treated with extract (500 and 1000 mg/kg) and essential oil (0.5 ml/kg) compared to the control group. Regarding MPO levels, ulcer severity and area as well as the total colitis index, same results indicating meaningful alleviation of colitis was achieved after treatment with oral extract and essential oil. Conclusion: Since the present experiment was made by oral fractions of coriander thus the resulting effects could be due to both the absorption of the active ingredients and/or the effect of non-absorbable materials on colitis after reaching the colon. In this regard, we propose more toxicological and clinical experiments to warranty its beneficial application in human inflammatory bowel diseases. PMID:27222834

  6. Effects of dietary virgin olive oil polyphenols: hydroxytyrosyl acetate and 3, 4-dihydroxyphenylglycol on DSS-induced acute colitis in mice.

    PubMed

    Sánchez-Fidalgo, Susana; Villegas, Isabel; Aparicio-Soto, Marina; Cárdeno, Ana; Rosillo, Ma Ángeles; González-Benjumea, Alejandro; Marset, Azucena; López, Óscar; Maya, Inés; Fernández-Bolaños, José G; Alarcón de la Lastra, Catalina

    2015-05-01

    Hydroxytyrosol, a polyphenolic compound from extra virgin olive oil (EVOO) has exhibited an improvement in a model of DSS-induced colitis. However, other phenolic compounds present such as hydroxytyrosyl acetate (HTy-Ac) and 3,4-dihydroxyphenylglycol (DHPG) need to be explored to complete the understanding of the overall effects of EVOO on inflammatory colon mucosa. This study was designed to evaluate the effect of both HTy-Ac and DHPG dietary supplementation in the inflammatory response associated to colitis model. Six-week-old mice were randomized in four dietary groups: sham and control groups received standard diet, and other two groups were fed with HTy-Ac and DHPG, respectively, at 0.1%. After 30 days, all groups except sham received 3% DSS in drinking water for 5 days followed by a regime of 5 days of water. Acute inflammation was evaluated by Disease Activity Index (DAI), histology and myeloperoxidase (MPO) activity. Colonic expression of iNOS, COX-2, MAPKs, NF-kB and FOXP3 were determined by western blotting. Only HTy-Ac-supplemented group showed a significant DAI reduction as well as an improvement of histological damage and MPO. COX-2 and iNOS protein expression were also significantly reduced. In addition, this dietary group down-regulated JNK phosphorylation and prevented the DSS-induced nuclear translocation level of p65. However, no significant differences were observed in the FOXP3 expression. These results demonstrated, for the first time, that HTy-Ac exerts an antiinflammatory effect on acute ulcerative colitis. We concluded that HTy-Ac supplement might provide a basis for developing a new dietary strategy for the prevention of ulcerative colitis.

  7. Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis

    PubMed Central

    Zheng, Zengjie; Jiang, Hailong; Huang, Yan; Wang, Jie; Qiu, Lei; Hu, Zhenlin; Ma, Xingyuan; Lu, Yiming

    2016-01-01

    Snake has been used for centuries as a traditional Chinese medicine, especially for therapeutic treatment for inflammatory diseases; however, its mechanisms of action and active constituents remain controversial. In our study, a tumor necrosis factor receptor 1 (TNFR1) selective binding peptide, Hydrostatin-SN1 (H-SN1), which was screened from a Hydrophis cyanocinctus venom gland T7 phage display library, was shown to exhibit significant anti-inflammatory activity in vitro and in vivo. As a TNFR1 antagonist, it reduced cytotoxicity mediated by TNF-α in L929 fibroblasts and effectively inhibited the combination between TNF-α with TNFR1 in surface plasmon resonance analysis. H-SN1 was also shown to suppress TNFR1–associated signaling pathways as it minimized TNF-α-induced NF-кB and MAPK activation in HEK293 embryonic kidney and HT29 adenocarcinoma cell lines. We next determined the effect of H-SN1 in vivo using a murine model of acute colitis induced by dextran sodium sulfate, demonstrating that H-SN1 lowered the clinical parameters of acute colitis including the disease activity index and histologic scores. H-SN1 also inhibited TNF/TNFR1 downstream targets at both mRNA and protein levels. These results indicate that H-SN1 might represent a suitable candidate for use in the treatment of TNF-α-associated inflammatory diseases such as inflammatory bowel diseases. PMID:27158082

  8. Ethanol Extract of Antrodia camphorata Grown on Germinated Brown Rice Suppresses Inflammatory Responses in Mice with Acute DSS-Induced Colitis

    PubMed Central

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The anti-inflammatory activity of Antrodia camphorata (AC) grown on germinated brown rice (CBR) extract was evaluated in vitro and in vivo. CBR suppressed the release of nitric oxide (NO) and prostaglandin (PG) E2 from lipopolysaccharide-(LPS-)stimulated RAW264.7 cells. CBR inhibited the level of inducible nitric oxide synthase (iNOS) and cyclooxygenase-(COX-)2 proteins, and it activated p38-MAPK, extracellular signal-related kinases (ERK), and NF-κB in LPS-stimulated RAW264.7 macrophages. LPS-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA expression was reduced in CBR-treated RAW264.7 cells. In concert with in vitro data, CBR suppressed the levels of dextran-sulfate-sodium-(DSS-)induced iNOS and COX-2 proteins in the colon tissue. CBR treatment inhibited activated p38-MAPK, ERK, and NF-κB proteins in the colon tissue of DSS-induced mice. TNF-α and IL-6 mRNA expression was reduced in DSS+CBR-treated mice. The disease activity index and histological scores were significantly lower in CBR-treated mice (500 mg/kg/day) than in DSS-treated mice (P < 0.05 versus DSS). This is the first report of anti-inflammatory activity of CBR in DSS-induced acute colitis. These results suggest that CBR is a promising, potential agent for preventing acute colitis through the inhibition of NF-κB signaling and its upstream signaling molecules, including MAPKs. PMID:23818935

  9. Rosiglitazone, a PPARgamma ligand, modulates signal transduction pathways during the development of acute TNBS-induced colitis in rats.

    PubMed

    Sánchez-Hidalgo, Marina; Martín, Antonio Ramon; Villegas, Isabel; de la Lastra, Catalina Alarcón

    2007-05-21

    Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARgamma), a highly nuclear receptor expressed in the colon, may participate in the control of inflammation, especially in regulating the production of immunomodulatory and inflammatory mediators, cellular proliferation and apoptosis. In order to delve into the anti-inflammatory mechanisms and signalling pathways of PPARgamma agonists, we have studied the effects of rosiglitazone, a PPARgamma agonist on the extent and severity of acute ulcerative colitis caused by intracolonic administration of 2,4,6-trinitribenzene sulfonic acid (TNBS) in rats. The inflammatory response was assessed by gross appearance, myeloperoxidase (MPO) activity, tumour necrosis factor alpha (TNF-alpha) levels and a histological study of the lesions. We determined prostaglandin E2 production as well as the cyclooxygenases (COX)-1 and -2 expressions by immunohistochemistry and Western blotting. The nuclear factor kappa (NF-kappaB) p65 and p38 mitogen-activated protein kinase (MAPK) expression levels were also measured by Western blotting. Finally, since PPARgamma agonists modulate apoptosis, we tried to clarify its effects under early acute inflammatory conditions. Inflammation following TNBS induction was characterized by increased colonic wall thickness, edema, diffuse inflammatory cells infiltration, necrosis reaching an ulcer index (UI) of 9.66+/-0.66 cm(2) and increased MPO activity and TNF-alpha colonic levels. Rosiglitazone treatment significantly reduced the morphological alteration associated with TNBS administration and the UI with the highest dose. In addition, the degree of neutrophil infiltration and the cytokine levels were significantly ameliorated. Rosiglitazone significantly reduced the rise in the prostaglandin (PG) E(2) generation compared with TNBS group. The COX-1 levels remained stable throughout the treatment in all groups. The COX-2 expression was elevated in TNBS group; however

  10. Angelica acutiloba Kitagawa Extract Attenuates DSS-Induced Murine Colitis

    PubMed Central

    Jang, Jong-Chan; Lee, Kang Min

    2016-01-01

    We examined the protective effects of Angelica acutiloba Kitagawa (AAK) extract on a murine model of acute experimental colitis. Colitis was induced by 4% dextran sulfate sodium (DSS) in the drinking water of male C57BL/6 mice, for 7 consecutive days. Oral administration of AAK extract (500 mg/kg/day) significantly alleviated DSS-induced symptoms such as anorexia, weight loss, events of diarrhea or bloody stools, and colon shortening. Histological damage was also ameliorated, as evidenced by the architectural preservation and suppression of inflammatory cell infiltration in colonic samples. Treatment improved the colonic mRNA expression of different inflammatory markers: cytokines, inducible enzymes, matrix metalloproteinases, and tight junction-related proteins. In the isolated serum, IgE levels were downregulated. Collectively, these findings indicate the therapeutic potentials of AAK as an effective complementary or alternative modality for the treatment of ulcerative colitis. PMID:27293323

  11. Differential Acute Effects of Selenomethionine and Sodium Selenite on the Severity of Colitis

    PubMed Central

    Hiller, Franziska; Oldorff, Lisa; Besselt, Karolin; Kipp, Anna Patricia

    2015-01-01

    The European population is only suboptimally supplied with the essential trace element selenium. Such a selenium status is supposed to worsen colitis while colitis-suppressive effects were observed with adequate or supplemented amounts of both organic selenomethionine (SeMet) and inorganic sodium selenite. In order to better understand the effect of these selenocompounds on colitis development we examined colonic phenotypes of mice fed supplemented diets before the onset of colitis or during the acute phase. Colitis was induced by treating mice with 1% dextran sulfate sodium (DSS) for seven days. The selenium-enriched diets were either provided directly after weaning (long-term) or were given to mice with a suboptimal selenium status after DSS withdrawal (short-term). While long-term selenium supplementation had no effect on colitis development, short-term selenite supplementation, however, resulted in a more severe colitis. Colonic selenoprotein expression was maximized in all selenium-supplemented groups independent of the selenocompound or intervention time. This indicates that the short-term selenite effect appears to be independent from colonic selenoprotein expression. In conclusion, a selenite supplementation during acute colitis has no health benefits but may even aggravate the course of disease. PMID:25867950

  12. Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis

    PubMed Central

    Bai, A; Lu, N; Guo, Y; Chen, J; Liu, Z

    2009-01-01

    Inflammatory bowel disease (IBD) is characterized by heavy production of proinflammatory cytokines such as tumour necrosis factor (TNF)-α and interleukin (IL)-1β. Interactions of the autonomic nervous system with local immune cells play an important role in the development of IBD, and the balance of autonomic nerve function is broken in IBD patients with sympathetic overactivity. However, the function of catecholamines in the progress of colitis is unclear. In this study, we examined the role of catecholamines via α2-adrenoreceptor in acute murine colitis. The expression of tyrosine hydroxylase (TH) and dopamine b-hydroxylase (DBH), two rate-limiting enzymes in catecholamine synthesis, was detected by immunohistochemistry in murine colitis. Murine colitis was induced by dextran sodium sulphate or trinitrobenzene sulphonic acid (TNBS), and the mice were administered RX821002 or UK14304, α2-adrenoceptor antagonists or agonists. Colitis was evaluated by clinical symptoms, myeloperoxidase assay, TNF-α and IL-1β production and histology. Lamina propria mononuclear cells (LPMCs) from mice with TNBS colitis were cultured in the absence or presence of RX821002 or UK14304, and stimulated further by lipopolysaccharide. TH and DBH are induced in LPMCs of inflamed colon, the evidence of catecholamine synthesis during the process of colitis. RX821002 down-regulates the production of proinflammatory cytokines from LPMCs, while UK14304 leads to exacerbation of colitis. Together, our data show a critical role of catecholamines via α2-adrenoreceptors in the progress of acute colitis, and suggest that use of the α2-adrenoceptor antagonist represents a novel therapeutic approach for the management of colitis. PMID:19250273

  13. Interleukin 19 reduces inflammation in chemically induced experimental colitis.

    PubMed

    Matsuo, Yukiko; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Kuramoto, Nobuyuki; Nishiyama, Kazuhiro; Yoshida, Natsuho; Ikeda, Yoshihito; Fujimoto, Yasuyuki; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2015-12-01

    Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. Interleukin (IL)-19, a member of the IL-10 family, functions as an anti-inflammatory cytokine. Here, we investigated the contribution of IL-19 to intestinal inflammation in a model of T cell-mediated colitis in mice. Inflammatory responses in IL-19-deficient mice were assessed using the 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of acute colitis. IL-19 deficiency aggravated TNBS-induced colitis and compromised intestinal recovery in mice. Additionally, the exacerbation of TNBS-induced colonic inflammation following genetic ablation of IL-19 was accompanied by increased production of interferon-gamma, IL-12 (p40), IL-17, IL-22, and IL-33, and decreased production of IL-4. Moreover, the exacerbation of colitis following IL-19 knockout was also accompanied by increased production of CXCL1, G-CSF and CCL5. Using this model of induced colitis, our results revealed the immunopathological relevance of IL-19 as an anti-inflammatory cytokine in intestinal inflammation in mice.

  14. Acute ischaemic colitis associated with oral phenylephrine decongestant use.

    PubMed

    Ward, Paul W; Shaneyfelt, Terrence M; Roan, Ronald M

    2014-06-03

    In this case, the authors have presented for the first time that ischaemic colitis may be associated with phenylephrine use. Since phenylephrine is the more common active ingredient in over-the-counter (OTC) cold medications, other presentations may follow this case. A MEDLINE search was performed for all case reports or case series of ischaemic colitis secondary to pseudoephedrine or phenylephrine use published between 1966 and 2013. The search resulted in four case reports and one case series describing patients with acute onset ischaemic colitis with exposure to pseudoephedrine immediately prior to onset. However, we found no case reports of ischaemic colitis associated with phenylephrine use. We present this case as an unexpected clinical outcome of phenylephrine, which has not been associated with ischaemic colitis in the literature. Also, this case serves as a reminder of the important clinical lesson to question all patients' use of OTC and prescribed medications.

  15. Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-κB signaling and protects intestinal epithelial barrier

    PubMed Central

    Seong, Myeong A; Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong Su; Choi, Seungho; Jang, Young Saeng; Lee, Taek Hwan; Jung, Kyung Hoon; Kang, Dong Kyu; Hurh, Byung Seok; Kim, Dae Eung; Kim, Sun Yeou; Oh, Seung Hyun

    2015-01-01

    Ginseng has been widely used for therapeutic and preventive purposes for thousands of years. However, orally administered ginseng has very low bioavailability and absorption in the intestine. Therefore, fermented ginseng was developed to enhance the beneficial effects of ginseng in the intestine. In this study, we investigated the molecular mechanisms underlying the anti-inflammatory activity of fermented wild ginseng (FWG). We found that FWG significantly alleviated the severity of colitis in a dextran sodium sulfate (DSS)-induced colitis mouse model, and decreased expression level of pro-inflammatory cytokines in colonic tissue. Moreover, we observed that FWG suppressed the infiltration of macrophages in DSS-induced colitis. FWG also attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB into the nucleus. Our data indicate that FWG contains anti-inflammatory activity via NF-κB inactivation and could be useful for treating colitis. [BMB Reports 2015; 48(7): 419-425] PMID:25936779

  16. Orally Administered Enoxaparin Ameliorates Acute Colitis by Reducing Macrophage-Associated Inflammatory Responses

    PubMed Central

    Lean, Qi Ying; Eri, Rajaraman D.; Randall-Demllo, Sarron; Sohal, Sukhwinder Singh; Stewart, Niall; Peterson, Gregory M.; Gueven, Nuri; Patel, Rahul P.

    2015-01-01

    Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis. PMID:26218284

  17. Jumihaidokuto effectively inhibits colon inflammation and apoptosis in mice with acute colitis.

    PubMed

    Sreedhar, Remya; Arumugam, Somasundaram; Karuppagounder, Vengadeshprabhu; Thandavarayan, Rajarajan A; Giridharan, Vijayasree V; Pitchaimani, Vigneshwaran; Afrin, Mst Rejina; Harima, Meilei; Nakamura, Takashi; Nakamura, Masahiko; Suzuki, Kenji; Watanabe, Kenichi

    2015-12-01

    Jumihaidokuto, a Japanese kampo medicine, is prescribed in Japan for its anti-inflammatory activity. Here we have examined its beneficial effects against acute colitis induced by dextran sulfate sodium (DSS) in mice. We have used C57BL/6 female mice, divided into two groups and received 3% DSS in drinking water during the experimental period (8days). Treatment group mice received 1g/kg/day dose of Jumihaidokuto orally whereas DSS control group received equal volume of distilled water. Normal control group mice received plain drinking water. Jumihaidokuto treatment attenuated the colitis symptoms along with suppression of various inflammatory marker proteins such as IL-1β, IL-2Rα, IL-4, CTGF and RAGE. It has also down-regulated the oxidative stress and apoptotic signaling in the colons of mice with colitis. The present study has confirmed the beneficial effects of Jumihaidokuto on DSS induced acute colitis in mice and suggests that it can be a potential agent for the treatment of colitis.

  18. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    SciTech Connect

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-05-15

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  19. Inflammatory Cytokine Gene Expression in Mesenteric Adipose Tissue during Acute Experimental Colitis

    PubMed Central

    Mustain, W. Conan; Starr, Marlene E.; Valentino, Joseph D.; Cohen, Donald A.; Okamura, Daiki; Wang, Chi; Evers, B. Mark; Saito, Hiroshi

    2013-01-01

    Background Production of inflammatory cytokines by mesenteric adipose tissue (MAT) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT. Methods Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water) for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF), and mesenteric lymph nodes. Results During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF. Conclusions Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes. PMID:24386254

  20. Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice

    PubMed Central

    Chassaing, Benoit; Aitken, Jesse D.; Malleshappa, Madhu; Vijay-Kumar, Matam

    2014-01-01

    Inflammatory bowel diseases (IBD) mainly comprised of Ulcerative Colitis and Crohn's Disease are complex and multifactorial disease with unknown etiology. For the past 20 years, to study human IBD mechanistically, number of murine models of colitis has been developed. These models are indispensable tools to decipher underlying mechanisms of IBD pathogenesis as well as to evaluate number potential therapeutics. Among various chemical induced colitis models, DSS-induced colitis model is widely used because of its simplicity and many similarities with human ulcerative colitis. This model has both advantages and disadvantages that need to be considered when employed. The current protocol aimed to extensively describe the DSS-induced colitis model, focusing on its detailed protocol as well as factors that could affect DSS-induced pathology. PMID:24510619

  1. Elevated IL-23R Expression and Foxp3+Rorgt+ Cells in Intestinal Mucosa During Acute and Chronic Colitis.

    PubMed

    Yang, Jiayin; Xu, Lili

    2016-08-08

    BACKGROUND IL-23/IL-23R signaling plays a pivotal role during the course of inflammatory bowel diseases (IBD). However, the underlying mechanisms are poorly characterized. Foxp3+ regulatory T cells are critical in the maintenance of gut immune homeostasis and therefore are important in preventing the development of IBD. This study was performed to clarify the association between IL-23/IL-23R signaling and Foxp3+ regulatory T cells in colitis. MATERIAL AND METHODS Acute and chronic mouse colitis models were established by administering mice DSS in drinking water. IL-23R, IL-23, IL-I7, and IFN-γ expression level, as well as regulatory T cell, Th17-, and Th1-related transcription factors Foxp3, RORgt, and T-bet were assayed by real-time PCR. The frequency of Foxp3+ RORγt+ cells in a Foxp3+ cell population in colon mucosa during acute and chronic colitis was evaluated through flow cytometry. The signaling pathway mediated by IL-23R in the colon mucosa from acute colitis mice and chronic colitis mice was monitored by Western blot analysis. RESULTS We detected elevated IL-23R, IL-23, and IFN-γ expression in colon mucosa during acute and chronic colitis and found increased IL-17 in acute colitis mice. Transcription factors Foxp3 and T-bet were elevated in colon mucosa during acute and chronic colitis. Phosphorylation of Stat3 was greatly enhanced, indicating the activation of IL-23R function in colitis mice. The percentage of Foxp3+ T cells in acute and chronic colitis mice was comparable to control mice, but there was a 2-fold increase of Foxp3+ RORγt+ cells among the Foxp3+ cell population in acute and chronic colitis mice compared to control mice. CONCLUSIONS These findings indicate that the induction of Foxp3+ RORgt+ T cells could be enhanced during inflammation in the intestine where IL-23R expression is greatly induced. Our study highlights the importance of IL-23R expression level and the instability of Foxp3+ regulatory T cells in the development of

  2. Endogenous prion protein attenuates experimentally induced colitis.

    PubMed

    Martin, Gary R; Keenan, Catherine M; Sharkey, Keith A; Jirik, Frank R

    2011-11-01

    Although the cellular prion protein (PrP(C)) is expressed in the enteric nervous system and lamina propria, its function(s) in the gut is unknown. Because PrP(C) may exert a cytoprotective effect in response to various physiologic stressors, we hypothesized that PrP(C) expression levels might modulate the severity of experimental colitis. We evaluated the course of dextran sodium sulfate (DSS)-induced colitis in hemizygous Tga20 transgenic mice (approximately sevenfold overexpression of PrP(C)), Prnp(-/-) mice, and wild-type mice. On day 7, colon length, disease severity, and histologic activity indices were determined. Unlike DSS-treated wild-type and Prnp(-/-) animals, PrP(C) overexpressing mice were resistant to colitis induction, exhibited much milder histopathologic features, and did not exhibit weight loss or colonic shortening. In keeping with these results, pro-survival molecule expression and/or phosphorylation levels were elevated in DSS-treated Tga20 mice, whereas pro-inflammatory cytokine production and pSTAT3 levels were reduced. In contrast, DSS-treated Prnp(-/-) mice exhibited increased BAD protein expression and a cytokine expression profile predicted to favor inflammation and differentiation. PrP(C) expression from both the endogenous Prnp locus or the Tga20 transgene was increased in the colons of DSS-treated mice. Considered together, these findings demonstrate that PrP(C) has a previously unrecognized cytoprotective and/or anti-inflammatory function within the murine colon.

  3. Acute experimental distal colitis alters colonic transit in rats.

    PubMed

    Myers, B S; Dempsey, D T; Yasar, S; Martin, J S; Parkman, H P; Ryan, J P

    1997-04-01

    Data from humans with active distal colitis suggest that the proximal colon exhibits increased contractile activity and delayed transit, whereas the distal colon shows decreased contractile activity and rapid transit. The present study used the acetic acid rat model of experimental colitis to determine the effect of distal colitis on total and regional colonic transit in vivo and on the in vitro contractility of circular smooth muscle from the proximal and distal colon. Distal colitis was induced in rats by intracolonic administration of 4% acetic acid; sham control rats received saline enemas. Control and colitic rats were studied 2 days postenemas. Total colon transit was determined by calculating the geometric center of distribution of a radiolabeled marker (51Cr) instilled into the proximal colon. Regional transit was assessed by expressing the radioactivity in the cecum, proximal and distal colon, and excreted stool as a percent of total radioactivity. Muscle strips from the proximal and distal colon were stimulated with 100 microM acetylcholine (ACh) and 60 mM KCl and the tension was expressed as kilograms per square centimeter. Distal colitis was characterized by decreased total colon transit, increased retention of marker in the cecum and proximal colon, and decreased retention of marker in the distal colon. In vitro contractility studies revealed that distal colitis increased proximal colon circular smooth muscle contractility and decreased distal colon circular smooth muscle contractility to both ACh and potassium. Distal colitis is associated with regional differences in colonic circular smooth muscle contractility, which may contribute to delayed transit in the proximal colon and rapid transit in the distal colon.

  4. Simultaneous acute appendicitis and pseudomembranous colitis in a pediatric patient.

    PubMed

    Vidrine, Steven R; Cortina, Chandler; Black, Marissa; Vidrine, Steven B

    2012-01-01

    Acute appendicitis is a common cause for pediatric surgery, with an increasing incidence as this population ages. Pseudomembranous colitis (PMC) from Clostridum difficle is being seen more frequently in pediatric patients, especially after treatment with antibiotics and in those with Hirschsprung's disease. Only three prior cases of appendicitis associated with PMC have been described in the literature, and all of them occurred in adult patients. Here, we describe the first documented pediatric case: a 16-year-old female who developed acute appendicitis while concomitantly being treated for suspected pseudomembranous colitis. We concur with previous authors that there may be an association between these two pathologies; furthermore, this association may not always be clinically apparent and may be both under-diagnosed and under-reported.

  5. Suppressive effect of berberine on experimental dextran sulfate sodium-induced colitis.

    PubMed

    Hong, Tie; Yang, Zhen; Lv, Chuan-Feng; Zhang, Yu

    2012-06-01

    The anti-inflammatory effect of berberine was evaluated in murine model of acute experimental colitis induced by dextran sulfate sodium (DSS). Berberine, given orally at 40, 20, 10 mg/kg for 10 days, ameliorated all the supposed inflammatory symptoms of the induced colitis, such as body weightloss, blood hemoglobin reduction, high myeloperoxidase levels, and malondialdehyde content-inflamed mucosa. Furthermore, the cytokine production of splenic lymphocytes was analyzed. The results showed the IFN-γ and IL-12 were increased, but IL-4 and IL-10 were decreased in DSS-induced colitis,when those were compared with the normal control. But the administration of berberine to DSS-induced colitis mice showed lower production of IFN-γ and IL-12 and higher production of IL-4 and IL-10 than the DSS-induced colitis mice. The results suggest that the protective effects of berberine against the DSS-induced colitis may be associated with the regulation of cytokine production.

  6. Le Carbone, a charcoal supplement, modulates DSS-induced acute colitis in mice through activation of AMPKα and downregulation of STAT3 and caspase 3 dependent apoptotic pathways.

    PubMed

    Afrin, Mst Rejina; Arumugam, Somasundaram; Rahman, Md Azizur; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Harima, Meilei; Suzuki, Hiroshi; Nakamura, Takashi; Miyashita, Shizuka; Suzuki, Kenji; Ueno, Kazuyuki; Watanabe, Kenichi

    2017-02-01

    Le Carbone (LC) is a charcoal supplement, which contains a large amount of dietary fibers. Several studies suggested that charcoal supplement may be beneficial for stomach disorders, diarrhea, gas and indigestion. But no studies address whether LC intake would suppress inflammation, cell proliferation or disease progression in colitis. In the present study, the effect of LC on experimental colitis induced by dextran sulfate sodium (DSS) in mice and its possible mechanism of action were examined. A study was designed for 8days, using C57BL/6 female mice that were administered with 3% DSS in drinking water for 7days followed by another 1day consumption of normal water with or without treatment. LC suspension was administered daily for 7days via oral gavage using 5mg/mouse in treatment group and normal group was supplied with drinking water. LC suspension significantly attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic changes were significantly reduced by LC treatment. The inflammatory mediators TNFα, IL-1β, p-STAT3 and p-NF-κB induced in the colon by DSS were markedly suppressed by LC. The increased activation of AMPKα in the colon was also detected in LC group. Furthermore, the apoptotic marker protein cleaved caspase 3 was down-regulated and anti-apoptotic proteins Bcl2 and Bcl-xL were significantly up-regulated by LC treatment. Taken together, our results demonstrate the ability of LC to inhibit inflammation, apoptosis and give some evidence for its potential use as adjuvant treatment of inflammatory bowel disease.

  7. MANAGEMENT OF ACUTE SEVERE ULCERATIVE COLITIS: A CLINICAL UPDATE

    PubMed Central

    SOBRADO, Carlos Walter; SOBRADO, Lucas Faraco

    2016-01-01

    ABSTRACT Introduction: Acute severe colitis is a potentially lethal medical emergency and, even today, its treatment remains a challenge for clinicians and surgeons. Intravenous corticoid therapy, which was introduced into the therapeutic arsenal in the 1950s, continues to be the first-line treatment and, for patients who are refractory to this, the rescue therapy may consist of clinical measures or emergency colectomy. Objective: To evaluate the indications for and results from drug rescue therapy (cyclosporine, infliximab and tacrolimus), and to suggest a practical guide for clinical approaches. Methods: The literature was reviewed using the Medline/PubMed, Cochrane library and SciELO databases, and additional information from institutional websites of interest, by cross-correlating the following keywords: acute severe colitis, fulminating colitis and treatment. Results: Treatments for acute severe colitis have avoided colectomy in 60-70% of the cases, provided that they have been started early on, with multidisciplinary follow-up. Despite the adverse effects of intravenous cyclosporine, this drug has been indicated in cases of greater severity with an imminent risk of colectomy, because of its fast action, short half-life and absence of increased risk of surgical complications. Therapy using infliximab has been reserved for less severe cases and those in which immunosuppressants are being or have been used (AZA/6-MP). Indication of biological agents has recently been favored because of their ease of therapeutic use, their good short and medium-term results, the possibility of maintenance therapy and also their action as a "bridge" for immunosuppressant action (AZA/6-MP). Colectomy has been reserved for cases in which there is still no response five to seven days after rescue therapy and in cases of complications (toxic megacolon, profuse hemorrhage and perforation). Conclusion: Patients with a good response to rescue therapy who do not undergo emergency

  8. Colitis

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001125.htm Colitis To use the sharing features on this page, please enable JavaScript. Colitis is swelling (inflammation) of the large intestine (colon). ...

  9. Ipilimumab-Induced Enteritis without Colitis: A New Challenge

    PubMed Central

    Messmer, Marcus; Upreti, Sunita; Tarabishy, Yaman; Mazumder, Nikhilesh; Chowdhury, Reezwana; Yarchoan, Mark; Holdhoff, Matthias

    2016-01-01

    Introduction Ipilimumab is an immune checkpoint inhibitor targeting cytotoxic T-lymphocyte associated antigen 4 (CTLA4), approved to treat metastatic melanoma. It was the first therapy shown to prolong survival in a large, randomized clinical trial. However, immune-related adverse events are common and can be severe. Enterocolitis is a common adverse event with ipilimumab, but enteritis without colitis has not been previously described. Case Report An 83-year-old man presented to our hospital with grade 3 diarrhea for 5 days. One month prior, he had started treatment with ipilimumab for metastatic melanoma. On presentation, he was found to have severe electrolyte disturbances, including hyponatremia, hypokalemia, and acute kidney injury. Causes of infectious diarrhea were excluded, and he was treated with corticosteroids for presumed ipilimumab-associated enterocolitis. However, colonoscopy revealed normal mucosa, both grossly and on pathology of random biopsies. Steroids were weaned but his symptoms recurred. He then underwent upper endoscopy with enteroscopy. Biopsy of the duodenum was notable for acute inflammation, villous blunting, and other changes consistent with ipilimumab-associated injury. He was restarted on high-dose steroids and his symptoms resolved. Discussion Ipilimumab-induced enteritis is a serious and potentially life-threatening immune related adverse event that warrants prompt recognition and aggressive management. As in cases of ipilimumab-associated enterocolitis, steroids are an effective therapy. Enteritis without colitis should be suspected in patients on ipilimumab who present with severe diarrhea but have a normal colonoscopy. PMID:27920706

  10. Deoxyschizandrin Suppresses DSS-Induced Ulcerative Colitis in Mice

    PubMed Central

    Zhang, Wen-feng; Yang, Yan; Su, Xin; Xu, Da-yan; Yan, Yu-li; Gao, Qiao; Duan, Ming-hua

    2016-01-01

    Background/Aims: Deoxyschizandrin as one of the most important component of Schisandra chinensis (Turcz.) Baill plays an immunomodulatory role in a variety of diseases, yet its role in ulcerative colitis remains to be elucidated. We aimed to investigate the role of deoxyschizandrin in DSS-induced ulcerative colitis in mice. Patients and Methods: In the present study, an inflammation model of cells was constructed to confirm the anti-inflammatory effect of deoxyschizandrin. Then a mouse model with Dextran sulfate sodium sulfate (DSS)-induced ulcerative colitis was constructed, and the effects of deoxyschizandrin on mouse colon inflammation, apoptosis, and CD4 T lymphocyte infiltration in ulcerative colitis were examined. Result: Deoxyschizandrin could improve the symptoms of ulcerative colitis, determined by hematoxylin-eosin (HE) staining and histopathological scores. Moreover, deoxyschizandrin reduced the levels of inflammatory cytokines, suppressed CD4 T cell infiltration, and effectively inhibited apoptosis in the colon of DSS-induced ulcerative colitis mice. Conclusion: In summary, deoxyschizandrin can effectively rescue the symptoms of DSS-induced ulcerative colitis in mice by inhibiting inflammation. T cell infiltration and apoptosis in the colon, suggesting that deoxyschizandrin could be a potential drug in treating ulcerative colitis. PMID:27976641

  11. Efficacy of Bifidobacterium breve NCC2950 against DSS-induced colitis is dependent on bacterial preparation and timing of administration.

    PubMed

    Hayes, C L; Natividad, J M M; Jury, J; Martin, R; Langella, P; Verdu, E F

    2014-03-01

    Probiotics have been proposed as a therapy for inflammatory bowel disease, but variations in strains, formulations, and protocols used in clinical trials have hindered the creation of guidelines for their use. Thus, preclinical insight into the mechanisms of specific probiotic strains and mode of administration would be useful to guide future clinical trial design. In this study, live, heat inactivated (HI), and spent culture medium preparations of the probiotic Bifidobacterium breve NCC2950 were administered to specific pathogen free C57BL/6 mice before or during colitis, as well as before colitis reactivation. Five days of 3.5% dextran sulphate sodium in drinking water was used to induce colitis. Pretreatment with live B. breve reduced disease severity, myeloperoxidase activity, microscopic damage, cytokine production, interleukin (IL)-12/IL-10 ratio, and lymphocyte infiltration in the colon. B. breve did not attenuate on-going colitis. After acute colitis, disease symptoms were normalised sooner with live and HI B. breve treatment; however, reactivation of colitis was not prevented. These findings indicate that the efficacy of a probiotic to modulate intestinal inflammation is dependent on the formulation as well as state of inflammation when administered. Overall, live B. breve was most efficacious in preventing acute colitis. Live and HI B. breve also promoted recovery from diarrhoea and colon bleeding after a bout of acute colitis.

  12. Preventive use of Lactobacillus plantarum LS/07 and inulin to relieve symptoms of acute colitis.

    PubMed

    Hijová, Emília; Šoltésová, Alena; Salaj, Rastislav; Kuzma, Jozef; Strojný, Ladislav; Bomba, Alojz; Gregová, Kristína

    2015-01-01

    The aim of presented study was to investigate the influence of Lactobacillus plantarum LS/07 and inulin on the activity of β-glucuronidase enzyme, and counts of coliform and lactobacilli in fresh caecal digesta, cytokine levels (IL-6, IL-8), and trancription nuclear factor kappa beta (NFκB) activities in colon tissue and blood samples of rats with dextran sulphate sodium (DSS) induced acute colitis. The rats were randomly divided into four groups - CG, AC, AC+PRE and AC+PRO. Colitis was induced using of 5% DSS in drinking water for 7d. DSS application increased activity of β-glucuronidase (P < 0.001), increased counts of coliforms, and decreased lactobacilli counts (P < 0.05) in comparison to control group. Serum and tissue levels of IL-6 and IL-8 as well as tissue NFκB activities showed increased expression in acute colitis group. Inulin diet modified counts of microorganims and decreased β-glucuronidase activity, suppressed NFκB activities (P < 0.001) and down regulate synthesis of IL-6 (P < 0.01) in serum and colon tissue and tissue IL-8 (P < 0.05). Lactobacillus plantarum LS/07 decreased β-glucuronidase activity (P < 0.05), levels of IL-6 and IL-8 (P < 0.001). These results were consistent with the addition of histological findings. Our results indicate that dietary intake of Lactobacillus plantarum LS/07 and inulin suppressed expression observed markers, which play an important role in the inflammatory process, which predisposes their use in prevention or treatment of acute colitis.

  13. Increased expression of transforming growth factor α precursors in acute experimental colitis in rats

    PubMed Central

    Hoffmann, P; Zeeh, J; Lakshmanan, J; Wu, V; Procaccino, F; Reinshagen, M; McRoberts, J; Eysselein, V

    1997-01-01

    Background and aim—Epidermal growth factor (EGF) and transforming growth factor α (TGF-α), members of the EGF family of growth factors, protect rat gastric and colonic mucosa against injury. Having shown previously that exogenously applied EGF protects rat colonic mucosa against injury, the aim of the present study was to evaluate the endogenously expressed ligand mediating the protective effect of EGF/TGF-α in vivo. 
Methods—In an experimental model of trinitrobenzene sulphonic acid (TNBS)/ ethanol induced colitis in rats EGF and TGF-α expression was evaluated using a ribonuclease protection assay, northern blot analysis, western blot analysis, and immunohistochemistry. 
Results—TGF-α mRNA increased 3-4 times at 4-8 hours after induction of colitis and returned to control levels within 24 hours. TGF-α immunoreactive protein with a molecular size of about 28kDa representing TGF-α precursors increased markedly after induction of colitis with a peak at 8-12 hours. No fully processed 5.6 kDa TGF-α protein was detected in normal or inflamed colon tissue. Only a weak signal for EGF mRNA expression was detected in the rat colon and no EGF protein was observed by immunohistochemistry or western blot analysis. 
Conclusions—TGF-α precursors are the main ligands for the EGF receptor in acute colitis. It is hypothesised that TGF-α precursors convey the biological activity of endogenous TGF-α peptides during mucosal defence and repair. 

 Keywords: transforming growth factor alpha (TGF-α); epidermal growth factor (EGF); precursor molecules; colitis; rat PMID:9301498

  14. Acute fulminant necrotizing amoebic colitis: a potentially fatal cause of diarrhoea on the Acute Medical Unit.

    PubMed

    Desai, Purav; Sivaramakrishnan, Nurani

    2011-01-01

    Diarrhoea is a common presenting complaint to the Acute Medical Unit. We report a case of acute fulminant necrotizing amebic colitis in a 73 year old man with no recent travel history preceding his admission. Such cases are often difficult to diagnose and hence associated with a high mortality, unless treated promptly and appropriately. This case report highlights the importance of early diagnosis and prompt initiation of treatment.

  15. Metabolite profiling of plasma and urine from rats with TNBS-induced acute colitis using UPLC-ESI-QTOF-MS-based metabonomics--a pilot study.

    PubMed

    Zhang, Xiaojun; Choi, Franky F K; Zhou, Yan; Leung, Feung P; Tan, Shun; Lin, Shuhai; Xu, Hongxi; Jia, Wei; Sung, Joseph J Y; Cai, Zongwei; Bian, Zhaoxiang

    2012-07-01

    The incidence of inflammatory bowel disease, a relapsing intestinal condition whose precise etiology is still unclear, has continually increased over recent years. Metabolic profiling is an effective method with high sample throughput that can detect and identify potential biomarkers, and thus may be useful in investigating the pathogenesis of inflammatory bowel disease. In this study, using a metabonomics approach, a pilot study based on ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was performed to characterize the metabolic profile of plasma and urine samples of rats with experimental colitis induced by 2,4,6-trinitrobenzene sulfonic acid. Acquired metabolic profile data were processed by multivariate data analysis for differentiation and screening of potential biomarkers. Five metabolites were identified in urine: two tryptophan metabolites [4-(2-aminophenyl)-2,4-dioxobutanoic acid and 4,6-cihydroxyquinoline], two gut microbial metabolites (phenyl-acetylglycine and p-cresol glucuronide), and the bile acid 12α-hydroxy-3-oxocholadienic acid. Seven metabolites were identified in plasma: three members of the bile acid/alcohol group (cholic acid, 12α-hydroxy-3-oxocholadienic acid and cholestane-3,7,12,24,25-pentol) and four lysophosphatidylcholines [LysoPC(20:4), LysoPC(16:0), LysoPC(18:1) and LysoPC(18:0)]. These metabolites are associated with damage of the intestinal barrier function, microbiota homeostasis, immune modulation and the inflammatory response, and play important roles in the pathogenesis of inflammatory bowel disease. Our results positively support application of the metabonomic approach in study of the pathophysiological mechanism of inflammatory bowel disease.

  16. The effect of chemically induced colitis, psychological stress and their combination on visceral pain in female Wistar rats.

    PubMed

    Deiteren, Annemie; Vermeulen, Wim; Moreels, Tom G; Pelckmans, Paul A; De Man, Joris G; De Winter, Benedicte Y

    2014-09-01

    Visceral sensitivity is of pathophysiological importance in abdominal pain disorders and can be modulated by inflammation and stress. However, it is unclear whether inflammation and stress alter visceral perception independently of each other or in conjunction through neuroendocrine interactions. Therefore, we compared the short- and long-term effects of experimental colitis and water avoidance stress (WAS), alone or in combination, on visceral sensitivity in female Wistar rats. Colitis was induced by trinitrobenzene sulfonic acid (TNBS) and colonoscopically confirmed. During WAS, rats were placed on a platform surrounded by water for 1 h. Visceral sensitivity was assessed by quantifying the visceromotor responses (VMRs) to colorectal distension. Activation of the hypothalamic-pituitary-adrenal axis was determined by measuring serum corticosterone in a separate protocol. TNBS instillation resulted in overt colitis, associated with significant visceral hypersensitivity during the acute inflammatory phase (3 days post-TNBS; n = 8/group); after colitis had subsided (28 days post-TNBS), hypersensitivity was resolved (n = 4-8/group). Single WAS was associated with increased VMRs of a magnitude comparable to acute TNBS-induced hypersensitivity (n = 8/group). However, after repetitive WAS no significant hypersensitivity was present (n = 8/group). No additive effect of colitis and stress was seen on visceral pain perception (n = 6-8/group). Corticosterone levels were only increased in acute TNBS-colitis, acute WAS and their combination. To conclude, both colitis and stress successfully induced short-term visceral hypersensitivity and activated the hypothalamic-pituitary-adrenal axis, but long-term effects were absent. In addition, our current findings do not support an additive effect of colitis and stress on visceral sensitivity in female Wistar rats.

  17. Outbreak of acute colitis on a horse farm associated with tetracycline-contaminated sweet feed.

    PubMed Central

    Keir, A A; Stämpfli, H R; Crawford, J

    1999-01-01

    Exposure of a group of horses to tetracycline-contaminated feed resulted in acute colitis and subsequent death in one horse and milder diarrhea in 3 others. The most severely affected animal demonstrated clinical and pathological findings typical of colitis X. The other herdmates responded well to administration of zinc bacitracin. PMID:10572668

  18. Preventive effect of the microalga Chlamydomonas debaryana on the acute phase of experimental colitis in rats.

    PubMed

    Avila-Román, Javier; Talero, Elena; Alcaide, Antonio; Reyes, Carolina de Los; Zubía, Eva; García-Mauriño, Sofía; Motilva, Virginia

    2014-10-14

    Inflammatory bowel diseases (IBD) are characterised by chronic uncontrolled inflammation of intestinal mucosa. Diet and nutritional factors have emerged as possible interventions for IBD. Microalgae are rich sources of n-3 PUFA and derived oxylipins. Oxylipins are lipid mediators involved in the resolution of many inflammatory disorders. The aim of the present study was to investigate the effects of the oxylipin-containing biomass of the microalga Chlamydomonas debaryana and its major oxylipin constituent, (9Z,11E,13S,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid ((13S)-HOTE), on acute 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. Lyophilised microalgal biomass and (13S)-HOTE were administered by oral route 48, 24 and 1 h before the induction of colitis and 24 h later, and the rats were killed after 48 h. The treatment with the lyophilised microalga and (13S)-HOTE improved body-weight loss and colon shortening, as well as attenuated the extent of colonic damage and increased mucus production. Cellular neutrophil infiltration, with the subsequent increase in myeloperoxidase levels induced by TNBS, were also reduced after the administration of the lyophilised microalga or (13S)-HOTE. The anti-inflammatory effects of these treatments were confirmed by the inhibition of colonic TNF-α production. Moreover, lyophilised microalga or (13S)-HOTE down-regulated cyclo-oxygenase-2 and inducible nitric oxide synthase expression. The present study was the first to show the prophylactic effects of a lyophilised biomass sample of the microalga C. debaryana and the oxylipin (13S)-HOTE on TNBS-induced acute colitis in rats. Our findings suggest that the microalga C. debaryana or derived oxylipins could be used as nutraceuticals in the treatment of the active phase of IBD.

  19. The role of CXCR3 in DSS-induced colitis.

    PubMed

    Chami, Belal; Yeung, Amanda W S; van Vreden, Caryn; King, Nicholas J C; Bao, Shisan

    2014-01-01

    Inflammatory bowel disease (IBD) is a group of disorders that are characterized by chronic, uncontrolled inflammation in the intestinal mucosa. Although the aetiopathogenesis is poorly understood, it is widely believed that IBD stems from a dysregulated immune response towards otherwise harmless commensal bacteria. Chemokines induce and enhance inflammation through their involvement in cellular trafficking. Reducing or limiting the influx of these proinflammatory cells has previously been demonstrated to attenuate inflammation. CXCR3, a chemokine receptor in the CXC family that binds to CXCL9, CXCL10 and CXCL11, is strongly overexpressed in the intestinal mucosa of IBD patients. We hypothesised that CXCR3 KO mice would have impaired cellular trafficking, thereby reducing the inflammatory insult by proinflammatory cell and attenuating the course of colitis. To investigate the role of CXCR3 in the progression of colitis, the development of dextran sulfate sodium (DSS)-induced colitis was investigated in CXCR3-/- mice over 9 days. This study demonstrated attenuated DSS-induced colitis in CXCR3-/- mice at both the macroscopic and microscopic level. Reduced colitis correlated with lower recruitment of neutrophils (p = 0.0018), as well as decreased production of IL-6 (p<0.0001), TNF (p = 0.0038), and IFN-γ (p = 0.0478). Overall, our results suggest that CXCR3 plays an important role in recruiting proinflammatory cells to the colon during colitis and that CXCR3 may be a therapeutic target to reduce the influx of proinflammatory cells in the inflamed colon.

  20. Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice

    PubMed Central

    Hudcovic, T; Kolinska, J; Klepetar, J; Stepankova, R; Rezanka, T; Srutkova, D; Schwarzer, M; Erban, V; Du, Z; Wells, J M; Hrncir, T; Tlaskalova-Hogenova, H; Kozakova, H

    2012-01-01

    One of the promising approaches in the therapy of ulcerative colitis is administration of butyrate, an energy source for colonocytes, into the lumen of the colon. This study investigates the effect of butyrate producing bacterium Clostridium tyrobutyricum on dextran sodium sulphate (DSS)-induced colitis in mice. Immunocompetent BALB/c and immunodeficient severe combined immunodeficiency (SCID) mice reared in specific-pathogen-free (SPF) conditions were treated intrarectally with C. tyrobutyricum 1 week prior to the induction of DSS colitis and during oral DSS treatment. Administration of DSS without C. tyrobutyricum treatment led to an appearance of clinical symptoms – bleeding, rectal prolapses and colitis-induced increase in the antigen CD11b, a marker of infiltrating inflammatory cells in the lamina propria. The severity of colitis was similar in BALB/c and SCID mice as judged by the histological damage score and colon shortening after 7 days of DSS treatment. Both strains of mice also showed a similar reduction in tight junction (TJ) protein zonula occludens (ZO)-1 expression and of MUC-2 mucin depression. Highly elevated levels of cytokine tumour necrosis factor (TNF)-α in the colon of SCID mice and of interleukin (IL)-18 in BALB/c mice were observed. Intrarectal administration of C. tyrobutyricum prevented appearance of clinical symptoms of DSS-colitis, restored normal MUC-2 production, unaltered expression of TJ protein ZO-1 and decreased levels of TNF-α and IL-18 in the descending colon of SCID and BALB/c mice, respectively. Some of these features can be ascribed to the increased production of butyrate in the lumen of the colon and its role in protection of barrier functions and regulation of IL-18 expression. PMID:22236013

  1. BMP signaling in rats with TNBS-induced colitis following BMP7 therapy.

    PubMed

    Maric, Ivana; Kucic, Natalia; Turk Wensveen, Tamara; Smoljan, Ivana; Grahovac, Blazenka; Zoricic Cvek, Sanja; Celic, Tanja; Bobinac, Dragica; Vukicevic, Slobodan

    2012-05-15

    Beyond stimulating bone formation, bone morphogenetic proteins (BMPs) are important in development, inflammation, and malignancy of the gut. We have previously shown that BMP7 has a regenerative, anti-inflammatory, and antiproliferative effect on experimental inflammatory bowel disease (IBD) in rats. To further investigate the BMP signaling pathway we monitored the effect of BMP7 therapy on the BMP signaling components in the rat colon during different stages of experimentally induced colitis by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed a significantly decreased BMP7 expression in the acute phase, followed by a significantly increased BMP2 and decreased BMP6 expression during the chronic phase of colitis. BMP7 therapy influenced the expression of several BMPs with the most prominent effect on downregulation of BMP2 and upregulation of BMP4 in the chronic phase of colitis. Importantly, connective tissue growth factor and noggin expression were elevated in the acute stage and significantly decreased upon BMP7 therapy. BMP receptor I expression was unchanged, whereas BMP receptor II was decreased at day 2 and increased at days 14 and 30 of TNBS inflammation. However, an opposite pattern of expression following BMP7 therapy has been observed. BMP7 increased the expression of BR-Smad including Smad3 and Smad4. Inhibitory Smads were increased in colitis and significantly decreased following BMP7 therapy at later stages of the disease. We suggest that BMP signaling was altered during TNBS-induced colitis and was recovered with BMP7 administration, suggesting that IBD is a reversible process.

  2. Agaricus bisporus attenuates dextran sulfate sodium-induced colitis.

    PubMed

    Um, Min Young; Park, Jae Ho; Gwon, So Young; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2014-12-01

    Agaricus bisporus (white button mushroom, WBM) is widely consumed in most countries and is reported to have anti-inflammatory and antioxidant activities. However, little is known regarding its effects in dextran sulfate sodium (DSS)-induced colitis, which are related to dysfunction of intestinal immunity. The aim of the present study was to investigate the effects of WBMs in an animal model of DSS-induced colitis. Male, 4-week-old ICR mice (n=10 per group) were fed a normal diet with or without 10% WBM for 4 weeks, and colitis was induced by 3% DSS in drinking water for 7 days. WBMs prevented DSS-induced shortening of colon length (P=.033) and diminished diarrhea (P=.049) and gross bleeding (P=.001), resulting in a decreased disease activity index. Results of histological analysis showed that WBMs suppressed mucosal damage. In addition, WBMs attenuated the DSS-induced increase in myeloperoxidase activity (P=.012) and upregulation of proinflammatory cytokine tumor necrosis factor-α (P=.020) in the colon segment. Taken together, these findings suggest a possible role for the WBM as an immunomodulator that can prevent and/or treat ulcerative colitis.

  3. Ticlopidine induced colitis: a histopathological study including apoptosis.

    PubMed Central

    Berrebi, D; Sautet, A; Flejou, J F; Dauge, M C; Peuchmaur, M; Potet, F

    1998-01-01

    AIMS: To describe ticlopidine related microscopic colitis and to assess the occurrence of apoptosis in the colon epithelium. METHODS: A series of colorectal biopsy samples from nine patients with ticlopidine related chronic diarrhoea were analysed. Biopsies were also taken from five of these patients between two and four months after ticlopidine withdrawal. The number of apoptotic cells in the crypts/mm2 (apoptotic index) was calculated using in situ labelling by terminal deoxyribonucleotidyl transferase (TdT) mediated dUTP-biotin nick end labelling (TUNEL). All specimens were matched to normal colorectal specimens from a control group of comparable age and sex distribution. RESULTS: Histological examination of the colon biopsy specimens taken from all nine patients with ticlopidine related chronic diarrhoea showed characteristic features of microscopic colitis. The histology returned to normal when ticlopidine was withdrawn. Apoptotic cells were rarely found in controls, and the mean apoptotic index was 0.53. The apoptotic index was significantly higher (16.53) in ticlopidine related colitis, but decreased dramatically to control value when ticlopidine was withdrawn. CONCLUSION: Microscopic colitis can be induced by ticlopidine and is accompanied by an increase in epithelial apoptosis. Hence, increased apoptosis might be related to drug injury or might be part of microscopic colitis. Images PMID:9659239

  4. Alloferon Alleviates Dextran Sulfate Sodium-induced Colitis

    PubMed Central

    Kim, Hyemin; Im, Jong Pil; Kim, Joo Sung; Lee, Wang Jae

    2015-01-01

    Dysfunction of gut immune regulation is involved in mucosal damage in inflammatory bowel disease (IBD). However, there is still no efficacious immune-regulator for the treatment of IBD. Alloferon is a novel immune-modulatory peptide that was originally isolated from infected insects. It shows anti-inflammatory effects by the regulation of cytokine production by immune cells and their activities. Therefore, we investigated the effect of alloferon in a mouse model of colitis using dextran sulfate sodium (DSS). Colitis was induced by administration of DSS in drinking water for 7 consecutive days. It was confirmed by the presence of weight loss, diarrhea, hematochezia, and colon contraction. Alloferon was injected 4 days after DSS administration. We found that alloferon improved the pathogenesis of IBD based on the reduced disease activity index (DAI) and colon contraction. Edema, epithelial erosion, and immune cell infiltration were found in mice administered DSS, but the phenomena were reduced following alloferon treatment. The plasma level of IL-6, a classical pro-inflammatory cytokine in colitis, was also decreased by alloferon. Moreover, alloferon inhibited the TNF-α-induced degradation and phosphorylation of IκB in Colo205 colon cancer cells. Taken together, these results show that alloferon has anti-inflammatory effects and attenuates DSS-induced colitis. PMID:26140045

  5. Alloferon Alleviates Dextran Sulfate Sodium-induced Colitis.

    PubMed

    Kim, Hyemin; Im, Jong Pil; Kim, Joo Sung; Kang, Jae Seung; Lee, Wang Jae

    2015-06-01

    Dysfunction of gut immune regulation is involved in mucosal damage in inflammatory bowel disease (IBD). However, there is still no efficacious immune-regulator for the treatment of IBD. Alloferon is a novel immune-modulatory peptide that was originally isolated from infected insects. It shows anti-inflammatory effects by the regulation of cytokine production by immune cells and their activities. Therefore, we investigated the effect of alloferon in a mouse model of colitis using dextran sulfate sodium (DSS). Colitis was induced by administration of DSS in drinking water for 7 consecutive days. It was confirmed by the presence of weight loss, diarrhea, hematochezia, and colon contraction. Alloferon was injected 4 days after DSS administration. We found that alloferon improved the pathogenesis of IBD based on the reduced disease activity index (DAI) and colon contraction. Edema, epithelial erosion, and immune cell infiltration were found in mice administered DSS, but the phenomena were reduced following alloferon treatment. The plasma level of IL-6, a classical pro-inflammatory cytokine in colitis, was also decreased by alloferon. Moreover, alloferon inhibited the TNF-α-induced degradation and phosphorylation of IκB in Colo205 colon cancer cells. Taken together, these results show that alloferon has anti-inflammatory effects and attenuates DSS-induced colitis.

  6. Intercellular adhesion molecule-1 (ICAM-1) deficiency protects mice against severe forms of experimentally induced colitis

    PubMed Central

    Bendjelloul, F; Malý, P; Mandys, V; Jirkovská, M; Prokešová, L; Tučková, L; Tlaskalová-Hogenová, H

    2000-01-01

    ICAM-1 (CD54), the ligand for LFA-1 and Mac-1, is up-regulated during inflammatory reaction on the activated vascular endothelium. To determine its role in intestinal inflammation, we induced acute experimental colitis in mice with a deleted ICAM-1 gene, by feeding them with 3% dextran sodium sulphate (DSS) in drinking water for 7 days. Chronic colitis was elicited by DSS similarly, followed by 2 weeks with water. In the acute phase of inflammation, ICAM-1-deficient mice exhibited a significantly lower mortality rate (5%) than control C57Bl/6J mice (35%). Control animals, but not the ICAM-1-deficient mice, exhibited diarrhoea and rectal bleeding. Histological examination of large-bowel samples evaluated the intensity of inflammatory changes, and type and extent of mucosal lesions. In the acute phase, 33.3% of samples from ICAM-1-deficient mice exhibited mucosal defects (flat and fissural ulcers), predominantly mild to moderate inflammatory infiltrate within the lamina propria mucosae and lower grades of mucosal lesions. Much stronger inflammatory changes were present in control animals, flat ulcers (sometimes multiple) and fissural ulcers being observed in 62.5% of samples. Mucosal inflammatory infiltrate was moderate to severe, typically with higher grades of mucosal lesions. In chronic colitis, smaller inflammatory changes were found in the large bowel. The two mouse strains differed, the chronic colitis being accompanied by an increased serum level of anti-epithelial IgA autoantibodies in C57Bl/6 control mice but not in ICAM-1-deficient mice. These findings provide direct evidence of the participation of ICAM-1 molecule in the development of experimentally induced intestinal inflammation. PMID:10606964

  7. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    PubMed

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects.

  8. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  9. A recombinant cystatin from Ascaris lumbricoides attenuates inflammation of DSS-induced colitis.

    PubMed

    Coronado, S; Barrios, L; Zakzuk, J; Regino, R; Ahumada, V; Franco, L; Ocampo, Y; Caraballo, L

    2017-03-10

    Helminthiasis may ameliorate inflammatory diseases, such as inflammatory bowel disease and asthma. Information about immunomodulators from Ascaris lumbricoides is scarce, but could be important considering the co-evolutionary relationships between helminths and humans. We evaluated the immunomodulatory effects of a recombinant cystatin from A. lumbricoides on an acute model of dextran sodium sulphate (DSS)-induced colitis in mice. From an A. lumbricoides cDNA library, we obtained a recombinant cystatin (rAl-CPI). Protease activity inhibition was demonstrated on cathepsin B and papain. Immunomodulatory effects were evaluated at two intraperitoneal doses (0.5 and 0.25 μg/G) on mice with DSS-induced colitis. Body weight, colon length, Disease Activity Index (DAI), histological inflammation score, myeloperoxidase (MPO) activity, gene expression of cytokines and cytokines levels in colon tissue were analysed. Treatment with rAl-CPI significantly reduced DAI, MPO activity and inflammation score without toxic effects. Also, IL-10 and TGF-B gene overexpression was observed in rAl-CPI-treated group compared to DSS-exposed control and healthy mice. Furthermore, a reduction in IL-6 and TNF-A expression was found, and this was confirmed by the levels of these cytokines in colonic tissue. In conclusion, rAl-CPI reduces inflammation in a mouse model of DSS-induced colitis, probably by increasing the expression of anti-inflammatory cytokines and reducing pro-inflammatory ones.

  10. Light-emitting diodes at 940nm attenuate colitis-induced inflammatory process in mice.

    PubMed

    Belém, Mônica O; de Andrade, Giovana M M; Carlos, Thalita M; Guazelli, Carla F S; Fattori, Victor; Toginho Filho, Dari O; Dias, Ivan F L; Verri, Waldiceu A; Araújo, Eduardo J A

    2016-09-01

    Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1β, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation.

  11. Impact of colonic mucosal lipoxin A4 synthesis capacity on healing in rats with dextran sodium sulfate-induced colitis.

    PubMed

    Ağış, Erol R; Savaş, Berna; Melli, Mehmet

    2015-09-01

    Ulcerative colitis is a chronic inflammatory disease of the colon. This study evaluates the role of colonic mucosal lipoxin A4 (LXA4) synthesis in an experimental rat model of dextran sodium sulfate (DSS)-induced colitis. Wistar rats were randomly assigned to four groups: healthy controls, DSS-induced colitis with no or vehicle therapy, misoprostol or 5-aminosalicylic acid (5-ASA) therapy groups. Disease severity and colonic mucosal LXA4 synthesis was assessed specifically during the acute phase (day 5), chronic phase (day 15) and healing phases (day 19). Both misoprostol and 5-ASA reduced histopathologic score during the acute phase and reduced disease activity score at the healing phase. In addition, misoprostol reduced histopathologic score and colon weight/length ratio during the healing phase. Only misoprostol therapy increased colonic mucosal LXA4 synthesis. Furthermore, LXA4 levels correlated negatively with disease progression (R=-0.953). Collectively, our findings suggest that misoprostol-induced LXA4 synthesis may be favorable for the healing of ulcerative colitis.

  12. Protective effects of citicoline on TNBS-induced experimental colitis in rats.

    PubMed

    Ek, Rauf Onur; Serter, Mukadder; Ergin, Kemal; Cecen, Serpil; Unsal, Cengiz; Yildiz, Yuksel; Bilgin, Mehmet D

    2014-01-01

    The aim of this study was to investigate the effects of citicoline on the development of colitis and antioxidant parameters in rats subjected to tribenzene sulfonic acid (TNBS)-induced colitis. Twenty four Wistar Albino female rats were divided into four subgroups (n=6) (control, colitis control, colitis + 50 mg/kg citicoline, colitis + 250 mg/kg citicoline). Colitis was induced using an enema of TNBS and ethanol; following which citicoline was administrated for 3 days and effects of citicoline was subsequently evaluated. Based on microscopic damage scores, there was no difference between rats of the TNBS-colitis and 50 mg/kg citicoline treated groups, whereas treatment with 250 mg/kg citicoline, caused significant reduction in colon injury compared to that observed in rats of TNBS-colitis group. In terms of the biochemical analyses, myeloperoxidase (MPO), malondialdehyde (MDA), reduced glutathione (GSH), and IL-6 levels in rats from 250 mg/kg citicoline group were significantly different from that TNBS-colitis group. The levels of MPO, MDA, GSH and IL-6 in control rats were also significantly different those of rats in the TNBS-colitis group. Citicoline may have a positive protective effect on the inflammatory bowel disease treatment process and could, therefore, be used as an adjunct therapy in colitis. These effects of citicoline may exist through anti-inflammatory and antioxidant mechanism.

  13. Visceral and Somatic Hypersensitivity in TNBS induced Colitis in Rats

    PubMed Central

    Zhou, QiQi; Price, Donald D.; Caudle, Robert M.; Verne, G. Nicholas

    2010-01-01

    Inflammation of visceral structures in rats has been shown to produce visceral/somatic hyperalgesia. Our objectives were to determine if trinitrobenzene sulfonic acid (TNBS) induced colitis in rats leads to visceral/somatic hypersensitivity. Male Sprague-Dawley rats (200g–250g) were treated with 20 mg of TNBS in 50% ethanol (n=40) or an equivalent volume of ethanol (n=40) or saline (n=25) via the colon. Colonic distension, Von-Frey, Hargreaves, and tail reflex test were used to evaluate for visceral, mechanical, and thermal sensitivity. The rats demonstrated visceral hypersensitivity at 2–28 days following TNBS (p<0.0001). The ethanol treated rats also demonstrated visceral hypersensitivity that resolved after day 14. TNBS treated rats demonstrated somatic hypersensitivity at days 14–28 (p<0.0001) in response to somatic stimuli of the hind-paw. TNBS colitis is associated with visceral and somatic hypersensitivity in areas of somatotopic overlap. This model of colitis should allow further investigation into the mechanisms of visceral and somatic hypersensitivity. PMID:17703363

  14. Probiotic bacteria lactobacillus and bifidobacterium attenuate inflammation in dextran sulfate sodium-induced experimental colitis in mice.

    PubMed

    Toumi, R; Soufli, I; Rafa, H; Belkhelfa, M; Biad, A; Touil-Boukoffa, C

    2014-01-01

    It is widely accepted that inflammatory Bowel disease (IBD) arises from a dysregulated mucosal immune response to the enteric microbiota in the gut of a genetically susceptible individual. No definitive therapies are available for this inflammatory disorder. Therefore it became imperative to develop new strategies for treating this disease. Probiotics have emerged as a potential new therapeutic strategy for IBD, however their exact mechanisms of action is still poorly defined. In this study, we address the potential effect of a probiotic cocktail (Ultrabiotique®) composed of four live bacterial strains (L. acidophilus, L. plantarum, B. lactis and B.breve) to promote recovery from acute colitis. Probiotic was given to mice by oral gavage after the onset of colitis and the establishment of dextran sulfate sodium (DSS)-induced intestinal injury. Clinical parameters were monitored daily, histological scores of colitis and the production of nitric oxide (NO) and interferon-γ (IFN-γ) were determined. In addition, TLR4, NF-κB and iNOS colonic expression were examined. Probiotic treatment ameliorated clinical symptoms and histological scores. NO and IFN-γ production in plasma were decreased by probiotic. These results were associated with reduced TLR4, iNOS and NF-кB expression in colonic tissue. In conclusion, probiotic exerted anti-inflammatory effects and contributed to a rapid recovery of DSS-induced acute colitis.

  15. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis

    PubMed Central

    Itani, Shigehiro; Watanabe, Toshio; Nadatani, Yuji; Sugimura, Naoki; Shimada, Sunao; Takeda, Shogo; Otani, Koji; Hosomi, Shuhei; Nagami, Yasuaki; Tanaka, Fumio; Kamata, Noriko; Yamagami, Hirokazu; Tanigawa, Tetsuya; Shiba, Masatsugu; Tominaga, Kazunari; Fujiwara, Yasuhiro; Arakawa, Tetsuo

    2016-01-01

    The inflammasomes induce maturation of pro-interleukin-1β (IL-1β) and pro-IL-18. We investigated roles of the NLRP3 inflammasome in the pathogenesis of ulcerative colitis (UC). After induction of oxazolone-induced colitis, a mouse UC model, colonic tissues were assayed for inflammatory mediators. Histological studies were performed on inflamed colonic tissue from mice and UC patients. Histological severity of murine colitis peaked on day 1, accompanied by an increase in the expression of Th2 cytokines including IL-4 and IL-13. Oxazolone treatment stimulated maturation of pro-caspase-1 and pro-IL-1β, while it reduced IL-18 expression. Either exogenous IL-1β or IL-18 ameliorated the colitis with or without reduction in Th2 cytokine expression, respectively. Induction of colitis decreased MUC2 expression, which was reversed by administration of IL-18, but not IL-1β. Compared to wild-type mice, NLRP3−/− mice exhibited higher sensitivity to oxazolone treatment with enhancement of Th2 cytokine expression and reduction of mature IL-1β and IL-18 production; this phenotype was rescued by exogenous IL-1β or IL-18. Immunofluorescent studies revealed positive correlation of NLRP3 expression with disease severity in UC patients, and localization of the inflammasome-associated molecules in macrophages. The NLRP3 inflammasome-derived IL-1β and IL-18 may play a protective role against UC through different mechanisms. PMID:27966619

  16. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis.

    PubMed

    Itani, Shigehiro; Watanabe, Toshio; Nadatani, Yuji; Sugimura, Naoki; Shimada, Sunao; Takeda, Shogo; Otani, Koji; Hosomi, Shuhei; Nagami, Yasuaki; Tanaka, Fumio; Kamata, Noriko; Yamagami, Hirokazu; Tanigawa, Tetsuya; Shiba, Masatsugu; Tominaga, Kazunari; Fujiwara, Yasuhiro; Arakawa, Tetsuo

    2016-12-14

    The inflammasomes induce maturation of pro-interleukin-1β (IL-1β) and pro-IL-18. We investigated roles of the NLRP3 inflammasome in the pathogenesis of ulcerative colitis (UC). After induction of oxazolone-induced colitis, a mouse UC model, colonic tissues were assayed for inflammatory mediators. Histological studies were performed on inflamed colonic tissue from mice and UC patients. Histological severity of murine colitis peaked on day 1, accompanied by an increase in the expression of Th2 cytokines including IL-4 and IL-13. Oxazolone treatment stimulated maturation of pro-caspase-1 and pro-IL-1β, while it reduced IL-18 expression. Either exogenous IL-1β or IL-18 ameliorated the colitis with or without reduction in Th2 cytokine expression, respectively. Induction of colitis decreased MUC2 expression, which was reversed by administration of IL-18, but not IL-1β. Compared to wild-type mice, NLRP3(-/-) mice exhibited higher sensitivity to oxazolone treatment with enhancement of Th2 cytokine expression and reduction of mature IL-1β and IL-18 production; this phenotype was rescued by exogenous IL-1β or IL-18. Immunofluorescent studies revealed positive correlation of NLRP3 expression with disease severity in UC patients, and localization of the inflammasome-associated molecules in macrophages. The NLRP3 inflammasome-derived IL-1β and IL-18 may play a protective role against UC through different mechanisms.

  17. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis

    PubMed Central

    Wang, X.L.; Zhao, J.; Qin, L.; Qiao, M.

    2016-01-01

    Angiogenesis and lymphangiogenesis are thought to play a role in the pathogenesis of inflammatory bowel diseases (IBD). However, it is not understood if inflammatory lymphangiogenesis is a pathological consequence or a productive attempt to resolve the inflammation. This study investigated the effect of lymphangiogenesis on intestinal inflammation by overexpressing a lymphangiogenesis factor, vascular endothelial growth factor-C (VEGF-C), in a mouse model of acute colitis. Forty eight-week-old female C57BL/6 mice were treated with recombinant adenovirus overexpressing VEGF-C or with recombinant VEGF-C156S protein. Acute colitis was then established by exposing the mice to 5% dextran sodium sulfate (DSS) for 7 days. Mice were evaluated for disease activity index (DAI), colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), and VEGFR-3mRNA expression in colon tissue. When acute colitis was induced in mice overexpressing VEGF-C, there was a significant increase in colonic epithelial damage, inflammatory edema, microvessel density, and neutrophil infiltration compared to control mice. These mice also exhibited increased lymphatic vessel density (73.0±3.9 vs 38.2±1.9, P<0.001) and lymphatic vessel size (1974.6±104.3 vs 1639.0±91.5, P<0.001) compared to control mice. Additionally, the expression of VEGFR-3 mRNA was significantly upregulated in VEGF-C156S mice compared to DSS-treated mice after induction of colitis (42.0±1.4 vs 3.5±0.4, P<0.001). Stimulation of lymphangiogenesis by VEGF-C during acute colitis promoted inflammatory lymphangiogenesis in the colon and aggravated intestinal inflammation. Inflammatory lymphangiogenesis may have pleiotropic effects at different stages of IBD. PMID:27074165

  18. The effect of melatonin on TNBS-induced colitis.

    PubMed

    Necefli, Ahmet; Tulumoğlu, Burcu; Giriş, Murat; Barbaros, Umut; Gündüz, Mücteba; Olgaç, Vakur; Güloğlu, Recep; Toker, Gülçin

    2006-09-01

    Ulcerative colitis is a multifactorial inflammatory disease of the colon and rectum with an unknown etiology. The present study was undertaken to investigate the effect of melatonin administration on oxidative damage and apoptosis in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Rats were divided into four groups as follows: Group 1 (n=8)-T-NBS colitis; Group 2 (n=8)--melatonin, 10 mg/kg/day ip, for 15 days in addition to TNBS; Group 3 (n=8)--melatonin alone, 10 mg/kg/day ip, for 15 days; and Group 4 (n=8)-isotonic saline solution, 1 ml/rat ip, for 15 days (sham control group). Colonic myeloperoxidase (MPO) activities, malondialdehyde (MDA) levels, and glutathione (GSH) levels are indicators of oxidative damage, while caspase-3 activities reveal the degree of apoptosis of the colonic tissue. In all TNBS-treated rats, colonic MPO activity and MDA levels were found to be increased significantly compared to those in the sham group. Colonic MPO activity and MDA levels were significantly lower in the melatonin treatment group compared to TNBS-treated rats. GSH levels of colonic tissues were found to be significantly lower in TNBS-treated rats compared to the sham group. Treatment with melatonin significantly increased GSH levels compared to those in TNBS-treated rats. Caspas-3 activity of colonic tissues was found to be significantly higher in TNBS-treated rats compared to the sham group. Treatment with melatonin significantly decreased caspase-3 activity compared to that in TNBS-treated rats. These results imply a reduction in mucosal damage due to anti-inflammatory and anti-apoptotic effects of melatonin.

  19. Muscadine Grape (Vitis rotundifolia) or Wine Phytochemicals Reduce Intestinal Inflammation in Mice with Dextran Sulfate Sodium-Induced Colitis.

    PubMed

    Li, Ruiqi; Kim, Min-Hyun; Sandhu, Amandeep K; Gao, Chi; Gu, Liwei

    2017-02-01

    The objective of this study was to determine the anti-inflammatory effects of phytochemical extracts from muscadine grapes or wine on dextran sulfate sodium (DSS)-induced colitis in mice and to investigate cellular mechanisms. Two groups of C57BL/6J mice were gavaged with muscadine grape phytochemicals (MGP) or muscadine wine phytochemicals (MWP), respectively, for 14 days. Acute colitis was induced by 3% DSS in drinking water for 7 days. An additional two groups of mice served as healthy and disease controls. Results indicated that MGP or MWP significantly prevented weight loss, reduced disease activity index, and preserved colonic length compared to the colitis group (p ≤ 0.05). MGP or MWP significantly decreased myeloperoxidase activity as well as the levels of IL-1β, IL-6, and TNF-α in colon (p ≤ 0.05). MGP or MWP caused down-regulation of the NF-κB pathway by inhibiting the phosphorylation and degradation of IκB in a dose-dependent manner. These findings suggest that phytochemicals from muscadine grape or wine mitigate ulcerative colitis via attenuation of pro-inflammatory cytokine production and modulation of the NF-κB pathway.

  20. Vitamin D treatment attenuates 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis

    PubMed Central

    Liu, Tianjing; Shi, Yongyan; Du, Jie; Ge, Xin; Teng, Xu; Liu, Lu; Wang, Enbo; Zhao, Qun

    2016-01-01

    Crohn’s disease (CD) and ulcerative colitis (UC) have different immunological mechanisms, while both of them are potential targets of vitamin D treatment. In this study, we have tried to address the role of vitamin D in CD and UC using two mouse models. Mice of C57B6L were given vitamin D before the induction of colitis. Our results showed that vitamin D attenuated 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis. Vitamin D could preserve the local histology, alleviate inflammation, suppress apoptosis, maintain tight junction function and decrease permeability. Interestingly, it has more of an effect on local structure preservation and inflammation inhibition in CD than in UC mice. Vitamin D blocked the increase of helper T-cell type 1 (Th1)- and helper T-cell type 17 (Th17)-related cytokines in TNBS-induced colitis. But the increase of helper T-cell type 2 (Th2)- and regulatory T cells (Treg)-related cytokines was augmented at the same time in oxazolone-induced colitis which counteracted each other. Our study helps elucidate the differential protective effects of vitamin D on CD and UC patients, as reported in literature. PMID:27620138

  1. Acute experimental colitis decreases colonic circular smooth muscle contractility in rats.

    PubMed

    Myers, B S; Martin, J S; Dempsey, D T; Parkman, H P; Thomas, R M; Ryan, J P

    1997-10-01

    Distal colitis decreases the contractility of the underlying circular smooth muscle. We examined how time after injury and lesion severity contribute to the decreased contractility and how colitis alters the calcium-handling properties of the affected muscle. Distal colitis was induced in rats by intrarectal administration of 4% acetic acid. Contractile responses to acetylcholine, increased extracellular potassium, and the G protein activator NaF were determined for circular muscle strips from sham control and colitic rats at days 1, 2, 3, 7, and 14 postenemas. Acetylcholine stimulation of tissues from day 3 colitic rats was performed in a zero calcium buffer, in the presence of nifedipine, and after depletion of intracellular stores of calcium. The colitis was graded macroscopically as mild, moderate, or severe. Regardless of agonist, maximal decrease in force developed 2 to 3 days posttreatment, followed by a gradual return to control by day 14. The inhibitory effect of colitis on contractility increased with increasing severity of inflammation. Limiting extracellular calcium influx had a greater inhibitory effect on tissues from colitic rats; intracellular calcium depletion had a greater inhibitory effect on tissues from control animals. The data suggest that both lesion severity and time after injury affect the contractile response of circular smooth muscle from the inflamed distal colon. Impaired utilization of intracellular calcium may contribute to the decreased contractility.

  2. Peptide Receptor-Targeted Fluorescent Probe: Visualization and Discrimination between Chronic and Acute Ulcerative Colitis.

    PubMed

    Zeng, Meiying; Shao, Andong; Li, Hui; Tang, Yan; Li, Qiang; Guo, Zhiqian; Wu, Chungen; Cheng, Yingsheng; Tian, He; Zhu, Wei-Hong

    2017-03-28

    The inflammatory activity of ulcerative colitis plays an important role in the medical treatment. However, accurate and real-time monitoring of the colitis activity with noninvasive bioimaging method is still challenging, especially in distinguishing between chronic and acute colitis. As a good receptor, the oligopeptide transporter (PepT1) is over-expressed in colonic epithelial cells of chronic ulcerative colitis, which can deliver the tripeptide KPV (Lys-Pro-Val, the C-terminal sequence of α-MSH) into cytosol in the intestine. Herein, we report a PepT1 peptide receptor-targeted fluorescent probe DCM-KPV, with the strategy of conjugating the KPV into dicyanomethylene-4H-pyran (DCM) chromophore. The diagnostic fluorescent probe bestows a specific receptor-targeted interaction with PepT1 through the KPV moiety, possessing several beneficial characteristics, such as the efficient long emission, low photobleaching, negligible cytotoxicity and high cytocompatibility in living cells. We build the overexpressed PepT1 on the cytomembrane of ulcerative colitis model Caco-2 cell as the efficient receptor to accumulate the targeted tripeptide KPV in the cytoplasm and nucleus. With the co-localization of DCM-KPV and the DNA-specific fluorophore DAPI, the specifically long emission from chromophore DCM and efficient receptor-targeted peptide KPV, the fluorescent probe of DCM-KPV makes a breakthrough to the direct noninvasive observation to the accumulation in colon inflammation regions via intestinal mucosa, even successfully distinguishing the chronic, acute ulcerative colitis and normal groups. Compared with traditional unenhanced magnetic resonance imaging (MRI), and hematoxylin and eosin (H&E) staining, we make full use of exploiting the specific target-receptor interaction between the tripeptide unit KPV and oligopeptide transporter PepT1 for sensing selectivity. The desirable diagnostic ability of DCM-KPV can guarantee the real-time tracking and visualization of

  3. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa. PMID:26798415

  4. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  5. Acute ischemic colitis secondary to air embolism after diving

    PubMed Central

    Payor, Austin Daniel; Tucci, Veronica

    2011-01-01

    Ischemic colitis (IC) secondary to air embolism from decompression sickness or barotrauma during diving is an extremely rare condition. After extensive review of the available literature, we found that there has been only one reported case of IC secondary to air embolism from diving. Although air embolization from diving and the various medical complications that follow have been well documented, the clinical manifestation of IC from an air embolism during diving is very rare and thus far unstudied. Common symptoms of IC include abdominal pain, bloody or non-bloody diarrhea or nausea or vomiting or any combination. Emergency physicians and Critical Care specialists should consider IC as a potential diagnosis for a patient with the above-mentioned symptoms and a history of recent diving. We report a case of IC from air embolism after a routine dive to 75 feet below sea level in a 53-year-old White female who presented to a community Emergency Department complaining of a 2-day history of diffuse abdominal pain and nausea. She was diagnosed by colonoscopy with biopsies and treated conservatively with antibiotics, bowel rest, and a slow advancement in diet. PMID:22096777

  6. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Dagmara; Warzecha, Zygmunt; Ceranowicz, Piotr; Fyderek, Krzysztof; Gałązka, Krystyna; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Pihut, Małgorzata; Dembiński, Artur

    2015-01-01

    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin's anti-inflammatory and antioxidative properties.

  7. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Dagmara; Warzecha, Zygmunt; Ceranowicz, Piotr; Fyderek, Krzysztof; Gałązka, Krystyna; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Pihut, Małgorzata; Dembiński, Artur

    2015-01-01

    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin's anti-inflammatory and antioxidative properties. PMID:26713317

  8. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-09-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.

  9. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  10. A study of the effects of Cydonia oblonga Miller (Quince) on TNBS-induced ulcerative colitis in rats.

    PubMed

    Minaiyan, M; Ghannadi, A; Etemad, M; Mahzouni, P

    2012-04-01

    Cydonia oblonga Miller (Quince) from Rosaceae family is a fruit tree cultivated in many countries mainly in Iran. This study was carried out to investigate the effect of quince juice (QJ) and quince hydroalcoholic extract (QHE) on ulcerative colitis (UC) induced by TNBS (trinitrobenzene sulfonic acid) in rats. Rats were grouped (n=6) and fasted for 36 h before colitis induction. TNBS was instilled into the colon with a hydroalcoholic carrier and then treatments were made for 5 days starting 6 h after colitis induction with different doses of QJ (200, 400, 800 mg/kg), QHE (200, 500 & 800 mg/kg) orally, QJ (400 mg/kg) and QHE (200 and 500 mg/kg) intraperitoneally. The colon tissue was removed and tissue damages were scored after macroscopic and histopathologic assessments. Albeit the examined doses of QJ and QHE were apparently effective to reduce the extent of UC lesions, only the greatest doses (500 and 800 mg/kg) resulted in significant alleviation. Weight/Length ratio as an illustrative of tissue inflammation and extravasation was also diminished with quince treatments while the results correlated with macroscopic and histopathologic evaluations. These data suggest that QJ and QHE were effective to diminish inflammation and ulcer indices in this murine model of acute colitis. Although QHE with different doses was effective in induced colitis, the dose and/or route of administration dependency was not confirmed. So quince fractions could be considered as a suitable anticolitic alternative, however further studies are needed to support this hypothesis for clinical setting.

  11. The Flavonoid Luteolin Worsens Chemical-Induced Colitis in NF-κBEGFP Transgenic Mice through Blockade of NF-κB-Dependent Protective Molecules

    PubMed Central

    Karrasch, Thomas; Kim, Joo-Sung; Jang, Byung Ik; Jobin, Christian

    2007-01-01

    Background The flavonoid luteolin has anti-inflammatory properties both in vivo and in vitro. However, the impact of luteolin on experimental models of colitis is unknown. Methodology/Principal Findings To address the therapeutic impact of luteolin, NF-κBEGFP transgenic mice were fed a chow diet containing 2% luteolin- or isoflavone-free control chow (AIN-76), and acute colitis was induced using 3% dextran sodium sulfate (DSS). Additionally, development of spontaneous colitis was evaluated in IL-10−/−;NF-κBEGFP transgenic mice fed 2% luteolin chow diet or control chow diet. Interestingly, NF-κBEGFP transgenic mice exposed to luteolin showed worse DSS-induced colitis (weight loss, histological scores) compared to control-fed mice, whereas spontaneous colitis in IL-10−/−;NF-κBEGFP mice was significantly attenuated. Macroscopic imaging of live resected colon showed enhanced EGFP expression (NF-κB activity) in luteolin-fed mice as compared to control-fed animals after DSS exposure, while cecal EGFP expression was attenuated in luteolin-fed IL-10−/− mice. Interestingly, confocal microscopy showed that EGFP positive cells were mostly located in the lamina propria and not in the epithelium. Caspase 3 activation was significantly enhanced whereas COX-2 gene expression was reduced in luteolin-fed, DSS-exposed NF-κBEGFP transgenic mice as assessed by Western blot and immunohistochemical analysis. In vitro, luteolin sensitized colonic epithelial HT29 cells to TNFα-induced apoptosis, caspase 3 activation, DNA fragmentation and reduced TNFα-induced C-IAP1, C-IAP2 and COX-2 gene expression. Conclusions/Significance We conclude that while luteolin shows beneficial effects on spontaneous colitis, it aggravates DSS-induced experimental colitis by blocking NF-κB-dependent protective molecules in enterocytes. PMID:17611628

  12. Protective effects of Aegle marmelos fruit pulp on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis

    PubMed Central

    Ghatule, Rohit R.; Gautam, Manish K.; Goel, Shalini; Singh, Amit; Joshi, Vinod K.; Goel, Raj K.

    2014-01-01

    Background: Aegle marmelos (AM) fruit has been advocated in indigenous system of medicine for the treatment of various gastrointestinal disorders, fever, asthma, inflammations, febrile delirium, acute bronchitis, snakebite, epilepsy, leprosy, myalgia, smallpox, leucoderma, mental illnesses, sores, swelling, thirst, thyroid disorders, tumours and upper respiratory tract infections. Objective: The objective of this study was to study the curative effect of 50% ethanol extract of dried fruit pulp of AM (AME) against 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. Materials and Methods: AME (200 mg/kg) was administered orally, once daily for 14 days after TNBS-induced colitis. Rats were given intracolonic normal saline or TNBS alone or TNBS plus oral AME. AME was studied for its in vitro antibacterial activity against Gram-negative intestinal bacteria and on TNBS-induced changes in colonic damage, weight and adhesions (macroscopic and microscopic), diarrhea, body weight and colonic levels of free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and pro-inflammatory marker (myeloperoxidase [MPO]) in rats. Results: AME showed antibacterial activity against intestinal pathogens and decreased colonic mucosal damage and inflammation, diarrhea, colonic free radicals and MPO and enhanced body weight and colonic antioxidants level affected by TNBS. The effects of AME on the above parameters were comparable with sulfasalazine, a known colitis protective drug (100 mg/kg, oral). Conclusion: AME shows curative effects against TNBS-induced colitis by its antibacterial activity and promoting colonic antioxidants and reducing free radicals and MPO-induced colonic damage. PMID:24914296

  13. Controlled therapeutic trial of levamisole and sulphasalazine in acute ulcerative colitis.

    PubMed Central

    Hermanowicz, A; Nowak, A; Gajos, L

    1984-01-01

    Forty five patients with acute ulcerative colitis were randomly allocated to receive (a) sulphasalazine, (b) levamisole, or (c) a combination of sulphasalazine and levamisole. Each group contained 15 patients. The ulcerative colitis activity index (UCAI), the remission and relapse rates were compared at three monthly intervals for one year. The UCAI fell in each group. Detailed analysis of all clinical and biochemical parameters used for estimation of UCAI showed that the only difference was in patients receiving combined therapy who continued to have a raised ESR and platelet count. Fewer patients, however, went into remission on levamisole therapy (46.6%) compared with the other two groups (66.6%). The cumulative relapse rate was 20% for those receiving levamisole compared with 6.6% in the other groups. Side effects were observed in 20% of patients receiving levamisole, 26% receiving sulphasalazine, and 40% in those having combined therapy. The results indicate that levamisole is unlikely to have a major role in the management of patients with ulcerative colitis. PMID:6143709

  14. Loss of TLR2 Worsens Spontaneous Colitis in MDR1A Deficiency through Commensally Induced Pyroptosis

    PubMed Central

    Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H.; Göthert, Joachim R.; Rünzi, Michael; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.

    2013-01-01

    Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b+ myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b+Ly6C+-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b+ myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species–mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis. PMID:23636052

  15. Severe Thrombocytopenia and Acute Cytomegalovirus Colitis during Primary Human Immunodeficiency Virus Infection

    PubMed Central

    Furuhata, Masanori; Yanagisawa, Naoki; Nishiki, Shingo; Sasaki, Shugo; Suganuma, Akihiko; Imamura, Akifumi; Ajisawa, Atsushi

    2016-01-01

    We herein report the case of a 25-year-old man who was referred to our hospital due to acute cytomegalovirus (CMV) colitis. The initial blood tests showed that the patient had concurrent primary human immunodeficiency virus (HIV) infection and severe thrombocytopenia. Raltegravir-based antiretroviral therapy (ART) was initiated without the use of ganciclovir or corticosteroids and resulted in a rapid clinical improvement. Platelet transfusions were only necessary for a short period, and subsequent colonoscopy revealed a completely healed ulcer. This case implies that ART alone could be effective for treating severe thrombocytopenia during primary HIV and CMV coinfection. PMID:27980271

  16. Nerol alleviates pathologic markers in the oxazolone-induced colitis model.

    PubMed

    González-Ramírez, Adriana Estrella; González-Trujano, María Eva; Orozco-Suárez, Sandra A; Alvarado-Vásquez, Noé; López-Muñoz, Francisco Javier

    2016-04-05

    Nerol is a natural monoterpene with antinociceptive and anti-inflammatory properties. Its possible beneficial effects in ulcerative colitis and its corresponding mechanism of action have not been determined to date. The aim of this study was to investigate whether nerol prevents the appearance of pathological markers and hyperalgesia in oxazolone-induced colitis, and protects against gastric damage produced by ethanol. The experimental design included groups of oxazolone-treated mice receiving nerol at 10-300 mg/kg, p.o., or a reference drug (sulfasalazine, 100 mg/kg, p.o.) compared to sham and untreated groups. Gastric damage was evaluated in the absolute ethanol-induced ulcer model in rats. Variables measured in animals with oxazolone-induced colitis included weight loss, stool consistency and macroscopic colon damage; mechanical nociception was determined by the use of von Frey filaments, whereas levels of inflammatory cytokines were assessed by enzyme-linked immunosorbent assay. Nerol (30-300 mg/kg, p.o.) prevented or significantly decreased the pathological alterations observed in the oxazolone- induced colitis model. It also showed antinociceptive effects and reduced the increased levels of inflammatory cytokines (IL-13 and TNF-α). Gastric damage was also prevented starting at 10 mg/kg, p.o. In conclusion, our results provide evidence for a beneficial effect of nerol after colitis induction involving tissue protection, antinociception and modulation of the immunological system, suggesting the therapeutic potential of this monoterpene as a novel alternative in controlling ulcerative colitis.

  17. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  18. Oral Tolerance Induced by OVA Intake Ameliorates TNBS-Induced Colitis in Mice

    PubMed Central

    Paiatto, Lisiery N.; Silva, Fernanda G. D.; Bier, Julia; Brochetto-Braga, Márcia R.; Yamada, Áureo T.; Tamashiro, Wirla M. S. C.

    2017-01-01

    Introduction Literature data have shown that the consumption of dietary proteins may cause modulatory effects on the host immune system, process denominated oral tolerance by bystander suppression. It has been shown that the bystander suppression induced by dietary proteins can improve inflammatory diseases such as experimental arthritis. Here, we evaluated the effects of oral tolerance induced by ingestion of ovalbumin (OVA) on TNBS-induced colitis in mice, an experimental model for human Crohn’s disease. Methods and Results Colitis was induced in BALB/c mice by instilling a single dose of TNBS (100 mg/kg) in ethanol into the colon. Tolerized mice received OVA (4mg/mL) dissolved in the drinking water for seven consecutive days, prior to or concomitantly with the intrarectal instillation. Control groups received protein-free water and ethanol by intrarectal route. We observed that either the prior or concomitant induction of oral tolerance were able to reduce the severity of colitis as noted by recovery of body weight gain, improvement of clinical signs and reduction of histological abnormalities. The in vitro proliferation of spleen cells from tolerant colitic mice was lower than that of control mice, the same as the frequencies of CD4+ T cells secreting IL-17 and IFN-γ. The frequencies of regulatory T cells and T cells secreting IL-10 have increased significantly in mice orally treated with OVA. The levels of inflammatory cytokines (IL-17A, TNF-α, IL-6 and IFN-γ) were lower in supernatants of cells from tolerant colitic mice, whereas IL-10 levels were higher. Conclusion Our data show that the modulation of immune response induced by oral tolerance reduces the severity of experimental colitis. Such modulation may be partially attributed to the increase of Treg cells and reduction of pro-inflammatory cytokines in peripheral lymphoid organs of tolerant mice by bystander suppression. PMID:28099498

  19. Dinitrochlorobenzene-induced colitis in the guinea-pig: studies of colonic lamina propria lymphocytes.

    PubMed Central

    Glick, M E; Falchuk, Z M

    1981-01-01

    Dinitrochlorobenzene-induced colitis in guinea-pigs may be immunologically mediated: animals must be presensitised to dinitrochlorobenzene to develop colitis, sensitivity can be passively transferred by lymphocytes and the injury can be mitigated by immunosuppression. In this study, we examined lamina propria lymphocytes isolated from colons of animals with dinitrochlorobenzene-induced colitis, and appropriate controls. Lamina propria lymphocytes from colitis animals have a greater percentage of rabbit erythrocyte-rosetting cells (T cells) (20.1 +/- 3.0 vs 2.3 +/- 0.8, p less than .01) and a greater capacity to mediate mitogen-induced cellular cytotoxicity with phytohaemagglutinin than lamina propria lymphocytes from normal colon (% specific cytoxicity = 29.4 +/- 8.7 vs 5.0 +/- 4.5, P less than .005). There was no difference in the percentage of rosetting cells or cytotoxicity index of spleen or mesenteric lymph node lymphocytes between the colitis animals and controls. These data suggest that there are changes in the distribution and functional characteristics of lamina propria lymphocytes which correlate with mucosal cell injury in the dinitrochlorobenzene-colitis model. Images Figure PMID:6971239

  20. Early Detection of T cell Transfer-induced Autoimmune Colitis by In Vivo Imaging System

    PubMed Central

    Chen, Yu-Ling; Chen, Yi-Ting; Lo, Cheng-Feng; Hsieh, Ching-I; Chiu, Shang-Yi; Wu, Chang-Yen; Yeh, Yu-Shan; Hung, Shu-Hsuan; Cheng, Po-Hao; Su, Yu-Hsuan; Jiang, Si-Tse; Chin, Hsian-Jean; Su, Yu-Chia

    2016-01-01

    Inflammatory bowel disease is a chronic and progressive inflammatory intestinal disease that includes two major types, namely ulcerative colitis and Crohn’s disease (CD). CD is characterized by intestinal epithelial hyperplasia and inflammatory cell infiltration. Transfer of CD25−CD45RBhiCD4+ (naïve) T cells into immunodeficiency mice induces autoimmune colitis with pathological lesions similar to CD and loss of body weight 4 weeks after cell transfer. However, weight loss neither has sufficient sensitivity nor totally matches the pathological findings of CD. To establish an early and sensitive indicator of autoimmune colitis model, the transferred T cell-induced colitis mouse model was modified by transferring luciferase-expressing donor T cells and determining the colitis by in vivo imaging system (IVIS). Colitis was detected with IVIS 7–10 days before the onset of body weight loss and diarrhea. IVIS was also applied in the dexamethasone treatment trial, and was a more sensitive indicator than body weight changes. All IVIS signals were parallel to the pathological abnormalities of the gut and immunological analysis results. In summary, IVIS provides both sensitive and objective means to monitor the disease course of transferred T cell-induced CD and fulfills the 3Rs principle of humane care of laboratory animals. PMID:27762297

  1. Actions of Probiotics on Trinitrobenzenesulfonic Acid-Induced Colitis in Rats

    PubMed Central

    Shiina, Takahiko; Shima, Takeshi; Naitou, Kiyotada; Nakamori, Hiroyuki; Sano, Yuuki; Horii, Kazuhiro; Shimakawa, Masaki; Ohno, Hiroshi; Shimizu, Yasutake

    2015-01-01

    We investigated the actions of probiotics, Streptococcus faecalis 129 BIO 3B (SF3B), in a trinitrobenzenesulfonic acid- (TNBS-) induced colitis model in rats. After TNBS was administered into the colons of rats for induction of colitis, the rats were divided into two groups: one group was given a control diet and the other group was given a diet containing SF3B for 14 days. There were no apparent differences in body weight, diarrhea period, macroscopic colitis score, and colonic weight/length ratio between the control group and SF3B group, suggesting that induction of colitis was not prevented by SF3B. Next, we investigated whether SF3B-containing diet intake affects the restoration of enteric neurotransmissions being damaged during induction of colitis by TNBS using isolated colonic preparations. Recovery of the nitrergic component was greater in the SF3B group than in the control group. A compensatory appearance of nontachykininergic and noncholinergic excitatory components was less in the SF3B group than in the control group. In conclusion, the present study suggests that SF3B-containing diet intake can partially prevent disruptions of enteric neurotransmissions induced after onset of TNBS-induced colitis, suggesting that SF3B has therapeutic potential. PMID:26550572

  2. Clinicopathologic features and outcome of mycophenolate-induced colitis in renal transplant recipients.

    PubMed

    de Andrade, Luis Gustavo M; Rodrigues, Maria Aparecida M; Romeiro, Fernando G; Garcia, Paula D; Contti, Mariana M; de Carvalho, Maria Fernanda C

    2014-11-01

    Reports on the clinical course of mycophenolic acid (MPA)-related colitis in kidney transplant recipients are scarce. This study aimed at assessing MPA-related colitis incidence, risk factors, and progression after kidney transplantation. All kidney transplant patients taking MPA who had colonic biopsies for persistent chronic diarrhea, between 2000 and 2012, at the Kidney Transplantation Unit of Botucatu Medical School Hospital, Brazil, were included. Cytomegalovirus (CMV) immunohistochemistry was performed in all biopsy specimens. Data on presenting symptoms, medications, immunosuppressive drugs, colonoscopic findings, and follow-up were obtained. Of 580 kidney transplant patients on MPA, 34 underwent colonoscopy. Colonoscopic findings were associated with MPA usage in 16 patients. The most frequent histologic patterns were non-specific colitis (31.3%), inflammatory bowel disease (IBD)-like colitis (25%), normal/near normal (18.8%), graft-versus-host disease-like (18.8%), and ischemia-like colitis (12.5%). All patients had persistent acute diarrhea and weight loss. Six of the 16 MPA-related diarrhea patients (37.5%) showed acute dehydration requiring hospitalization. Diarrhea resolved when MPA was switched to sirolimus (50%), discontinued (18.75%), switched to azathioprine (12.5%), or reduced by 50% (18.75%). No graft loss occurred. Four patients died during the study period. Late-onset MPA was more frequent, and no correlation with MPA dose or formulation was found.

  3. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis

    PubMed Central

    Gupta, Ram; Chaudhary, Anita R; Shah, Binita N; Jadhav, Avinash V; Zambad, Shitalkumar P; Gupta, Ramesh Chandra; Deshpande, Shailesh; Chauthaiwale, Vijay; Dutt, Chaitanya

    2014-01-01

    Background and aim Mucosal healing in inflammatory bowel disease (IBD) can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF) has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn’s disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor ameliorates IBD in disease models. These findings highlight the potential of TRC160334 for its clinical application in the treatment of IBD. PMID:24493931

  4. Sensory and inflammatory colonic changes induced by vincristine in distinct rat models of colitis.

    PubMed

    Viana-Cardoso, K V; Silva, M T B; Peixoto-Junior, A A; Marinho, L S; Matias, N S; Soares, P M G; Santos, A A; Brito, G A C; Rola, F H; Gondim, F de A A

    2015-04-01

    Preclinical and clinical studies show that gastrointestinal (GI) inflammation can evoke sensory changes occasionally far from the original inflammatory site. Animal models of colitis with either trinitrobenzenesulphonic acid (TNBS) or mustard oil (MO) produce distinct patterns of somatic and visceral sensory changes. We evaluated the effects of four doses of i.v. vincristine 150 μg kg(-1) (total of 600 μg kg(-1) ) treatment on the somatic (thermal nociceptive threshold) and colonic (morphological) changes induced by TNBS or MO in rats. TNBS and MO groups were further submitted to vincristine or saline pretreatments. TNBS induced somatic hypersensitivity, while MO induced somatic hyposensitivity (P < 0.05) when compared to the saline and ethanol control groups. Vincristine per se induced somatic hypersensitivity (P < 0.05). This effect was enhanced by TNBS and reversed by MO treatments. Although vincristine increased the colitis area (colonic weight length(-1) ratio) and the Morris' score in TNBS-treated rats, it did not alter the colitis area and even lowered the Morris' score in MO-treated rats. Compared to the saline (control) group, vincristine did not alter the colonic microscopic pattern. However, such lesions scores are higher (P < 0.05) in colitis groups induced by TNBS and MO, pretreated or not with vincristine. In conclusion, the somatic changes induced by different models of experimental colitis are diverse and modulated differently by vincristine.

  5. Preventive effects of Goji berry on dextran-sulfate-sodium-induced colitis in mice.

    PubMed

    Kang, Yifei; Xue, Yansong; Du, Min; Zhu, Mei-Jun

    2017-02-01

    Goji berry (Lycium barbarum) exerts immune modulation and suppresses inflammation in vitro and in vivo. We hypothesized that Goji berry had beneficial effects on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice through suppressing inflammation. Six-week-old male C57BL/6 mice were supplemented with a standard AIN-93G diet with or without 1% (w/w) Goji berry for 4 weeks. Then, colitis was induced by supplementing 3% DSS in drinking water for 7 days, followed by 7 days of remission period to mimic ulcerative colitis symptoms. Goji berry supplementation ameliorated DSS-induced body weight loss, diminished diarrhea and gross bleeding, and resulted in a significantly decreased disease activity index, as well as DSS-associated colon shortening. Moreover, 30% mortality rate caused by DSS-induced colitis was avoided because of Goji berry supplementation. Histologically, Goji berry ameliorated colonic edema, mucosal damage and neutrophil infiltration into colonic intestinal tissue in response to DSS challenge, which was associated with decreased expression of chemokine (C-X-C motif) ligand 1 and monocyte chemoattractant protein-1, as well as inflammatory mediators interleukin-6 and cyclooxygenase-2. In conclusion, Goji supplementation confers protective effects against DSS-induced colitis, which is associated with decreased neutrophil infiltration and suppressed inflammation. Thus, dietary Goji is likely beneficial to inflammatory bowel disease patients as a complementary therapeutic strategy.

  6. Etanercept attenuates TNBS-induced experimental colitis: role of TNF-α expression.

    PubMed

    Paiotti, Ana Paula Ribeiro; Miszputen, Sender Jankiel; Oshima, Celina Tizuko Fujiyama; Artigiani Neto, Ricardo; Ribeiro, Daniel Araki; Franco, Marcello

    2011-10-01

    Crohn's disease (CD) is associated with gut barrier dysfunction. Tumour necrosis factor-α (TNF-α) plays an important role into the pathogenesis of several inflammatory diseases because its expression is increased in inflamed mucosa of CD patients. Anti-TNF therapy improves significantly mucosal inflammation. Thus, this study aimed to evaluate the effect of Etanercept (ETC), a tumour necrosis factor alpha (TNF-α) antagonist on the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. A total of 18 Wistar rats were randomized into four groups, as follows: (1) Sham: sham induced-colitis; (2) TNBS: non-treated induced-colitis; (3) ETC control; (4) ETC-treated induced-colitis. Rats from group 4 presented significant improvement either of macroscopic or of histopathological damage in the distal colon. The gene expression of TNF-α mRNA, decreased significantly in this group compared to the TNBS non-treated group. The treatment with etanercept attenuated the colonic damages and reduced the inflammation caused by TNBS. Taken together, our results suggest that ETC attenuates intestinal colitis induced by TNBS in Wistar rats by TNF-α downregulation.

  7. Effect of COX-2 inhibitor after TNBS-induced colitis in Wistar rats.

    PubMed

    Paiotti, Ana Paula Ribeiro; Miszputen, Sender Jankiel; Oshima, Celina Tizuko Fujiyama; de Oliveira Costa, Henrique; Ribeiro, Daniel Araki; Franco, Marcello

    2009-08-01

    Inflammatory bowel disease (IBD) is a common chronic gastrointestinal disorder characterized by alternating periods of remission and active intestinal inflammation. Some studies suggest that antiinflammatory drugs are a promising alternative for treatment of the disease. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. Wistar rats (n = 25) were randomized into four groups, as follows: Group (1) Sham group: sham induced-colitis rats; Group (2) TNBS group: nontreated induced-colitis rats; Group (3) Lumiracoxib control group; and Group (4) Lumiracoxib-treated induced-colitis rats. Our results showed that rats from groups 2 and 4 presented similar histopathological damage and macroscopic injury in the distal colon as depicted by significant statistically differences (P < 0.01; P < 0.05) compared to the other two groups. Weak expression of COX-2 mRNA was detected in normal colon cells, while higher levels of COX-2 mRNA were detected in group 2 and group 4. Therapy with lumiracoxib reduced COX-2 expression by 20-30%, but it was still higher and statistically significant compared to data obtained from the lumiracoxib control group. Treatment with the selective COX-2 inhibitor lumiracoxib did not reduce inflammation-associated colonic injury in TNBS-induced experimental colitis. Thus, the use of COX-2 inhibitors for treating IBD should be considered with caution and warrants further experimental investigation to elucidate their applicability.

  8. Experimental colitis in rats induces de novo synthesis of cytokines at distant intestinal sites: role of capsaicin-sensitive primary afferent fibers.

    PubMed

    Mourad, Fadi H; Hamdi, Tamim; Barada, Kassem A; Saadé, Nayef E

    2016-06-01

    Increased levels of pro- and anti-inflammatory cytokines were observed in various segments of histologically-intact small intestine in animal models of acute and chronic colitis. Whether these cytokines are produced locally or spread from the inflamed colon is not known. In addition, the role of gut innervation in this upregulation is not fully understood. To examine whether cytokines are produced de novo in the small intestine in two rat models of colitis; and to investigate the role of capsaicin-sensitive primary afferents in the synthesis of these inflammatory cytokines. Colitis was induced by rectal instillation of iodoacetamide (IA) or trinitrobenzene sulphonic acid (TNBS) in adult Sprague-Dawley rats. Using reverse transcriptase (RT) and real-time PCR, TNF-α, and IL-10 mRNA expression was measured in mucosal scrapings of the duodenum, jejunum, ileum and colon at different time intervals after induction of colitis. Capsaicin-sensitive primary afferents (CSPA) were ablated using subcutaneous injections of capsaicin at time 0, 8 and 32 h, and the experiment was repeated at specific time intervals to detect any effect on cytokines expression. TNF-α mRNA expression increased by 3-40 times in the different intestinal segments (p<0.05 to p<0.001), 48h after IA-induced colitis. CSPA ablation completely inhibited this upregulation in the small intestine, but not in the colon. Similar results were obtained in TNBS-induced colitis at 24 h. Intestinal IL-10 mRNA expression significantly decreased at 12 h and then increased by 6-43 times (p<0.05 to p<0.001) 48h after IA administration. This increase was abolished in rats subjected to CSPA ablation except in the colon, where IL-10 further increased by twice (p<0.05). In the TNBS group, there was 4-12- and 4-7-fold increases in small intestinal IL-10 mRNA expression at 1 and 21 days after colitis induction, respectively (both p<0.01). This increase was not observed in rats pretreated with capsaicin. Capsaicin-treated and

  9. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis.

    PubMed

    Linden, David R; Chen, Jing-Xian; Gershon, Michael D; Sharkey, Keith A; Mawe, Gary M

    2003-07-01

    5-HT released from enterochromaffin cells acts on enteric nerves to initiate motor reflexes. 5-HT's actions are terminated by a serotonin reuptake transporter (SERT). In this study, we tested the hypothesis that inflammation leads to altered mucosal 5-HT signaling. Colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and experiments were conducted on day 6. 5-HT content, number of 5-HT-immunoreactive cells, and the proportion of epithelial cells that were 5-HT-immunoreactive increased twofold in colitis. The amount of 5-HT released under basal and stimulated conditions was significantly increased in colitis. SERT inhibition increased the 5-HT concentration in media bathing-stimulated control tissue to a level comparable to that of the stimulated colitis tissue. mRNA encoding SERT and SERT immunoreactivity were reduced during inflammation. Slower propulsion and reduced sensitivity to 5-HT-receptor antagonism were observed in colitis. These data suggest that colitis alters 5-HT signaling by increasing 5-HT availability while decreasing 5-HT reuptake. Altered 5-HT availability may contribute to the dysmotility of inflammatory bowel disease, possibly due to desensitization of 5-HT receptors.

  10. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    PubMed

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-05-27

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis.

  11. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  12. Myristica fragrans seed extract protects against dextran sulfate sodium-induced colitis in mice.

    PubMed

    Kim, Hyojung; Bu, Youngmin; Lee, Beom-Joon; Bae, Jinhyun; Park, Sujin; Kim, Jinsung; Lee, Kyungjin; Cha, Jae-Myung; Ryu, Bongha; Ko, Seok-Jae; Han, Gajin; Min, Byungil; Park, Jae-Woo

    2013-10-01

    Nutmeg (seed of Myristica fragrans [MF]) is one of the most commonly used spices in the world and also a well-known herb for the treatment of various intestinal diseases, including colitis in traditional Korean medicine. The purpose of the current study was to investigate whether water extract of MF (MFE) can protect against dextran sulfate sodium (DSS) induced colitis in a mouse model. Colitis was induced by 5% DSS in balb/c mice. MFE (100, 300 or 1000 mg/kg) was orally administered to the mice twice a day for 7 days. Body weight, colon length, clinical score, and histological score were assessed to determine the effects on colitis. Proinflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) were measured to investigate the mechanisms of action. MFE dose dependently inhibited the colon shortening and histological damage to the colon. However, it did not prevent weight loss. MFE also inhibited proinflammatory cytokines. The current results suggest that MFE ameliorates DSS-induced colitis in mice by inhibiting inflammatory cytokines. Further investigation, including the exact mechanisms is needed.

  13. Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators.

    PubMed

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Ji-Hong; Lee, Yoon-Mi; Kim, Eun Ok; Um, Byung-Hun; Lim, Beong Ou

    2016-02-01

    Inflammatory bowel disease (IBD) is an inflammatory disorder caused by hyperactivation of effector immune cells that produce high levels of proinflammatory cytokines. The aims of our study were to determine whether orally administered blueberry extract (BE) could attenuate or prevent the development of experimental colitis in mice and to elucidate the mechanism of action. Female Balb/C mice (n=7) were randomized into groups differing in treatment conditions (prevention and treatment) and dose of BE (50 mg/kg body weight). Acute ulcerative colitis was induced by oral administration of 3% dextran sodium sulfate for 7 days in drinking water. Colonic mucosal injury was assessed by clinical, macroscopic, biochemical and histopathological examinations. BE significantly decreased disease activity index and improved the macroscopic and histological score of colons when compared to the colitis group (P<.05). BE markedly attenuated myeloperoxidase accumulation (colitis group 54.97±2.78 nmol/mg, treatment group 30.78±1.33 nmol/mg) and malondialdehyde in colon and prostaglandin E2 level in serum while increasing the levels of superoxide dismutase and catalase (colitis group 11.94±1.16 U/ml, BE treatment group 16.49±0.39 U/ml) compared with the colitis group (P<.05). mRNA levels of the cyclooxygenase (COX)-2, interferon-γ, interleukin (IL)-1β and inducible nitric oxide synthase cytokines were determined by reverse transcriptase polymerase chain reaction. Immunohistochemical analysis showed that BE attenuates the expression of COX-2 and IL-1β in colonic tissue. Moreover, BE reduced the nuclear translocation of nuclear transcription factor kappa B (NF-κB) by immunofluorescence analysis. Thus, the anti-inflammatory effect of BE at colorectal sites is a result of a number of mechanisms: antioxidation, down-regulation of the expression of inflammatory mediators and inhibition of the nuclear translocation of NF-κB.

  14. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  15. Histomorphometric evaluation of experimentally induced colitis with trinitrobenzene-sulphonic acid in rats

    PubMed Central

    RABAU, MICHA; EYAL, AMI; DAYAN, DAN

    1996-01-01

    Colitis was induced with trinitrobenzene-sulphonic acid (TNB) in rats and a histomorphometric study was performed as a possible scoring system for disease activity. The affected colon was examined 10, 20, 40 and 60 days after TNB administration. Quantitative microscopic analysis was performed on the following histologic parameters: necrosis, mucosal epithelium, muscularis fibres, inflammation, granulation tissue and fibrosis. Clinically, the rats were sick, especially on days 10 and 20 after TNB injection. Concomitantly, a peak necrosis score involving the full thickness of the colonic wall was recorded on day 10. The inflammatory reaction was most intense 20 days after TNB injection. After 60 days, marked epithelial regeneration was seen and most of the inflammatory reaction had subsided. A good correlation was found between clinical features and quantitative histomorphometric characteristics of colitis. The criteria described allow a precise description and quantification of the inflammatory and healing process of TNB-induced colitis in rats. PMID:8943736

  16. Effect of toll-like receptor 3 agonist poly I:C on intestinal mucosa and epithelial barrier function in mouse models of acute colitis

    PubMed Central

    Zhao, Hong-Wei; Yue, Yue-Hong; Han, Hua; Chen, Xiu-Li; Lu, Yong-Gang; Zheng, Ji-Min; Hou, Hong-Tao; Lang, Xiao-Meng; He, Li-Li; Hu, Qi-Lu; Dun, Zi-Qian

    2017-01-01

    AIM To investigate potential effects of poly I:C on mucosal injury and epithelial barrier disruption in dextran sulfate sodium (DSS)-induced acute colitis. METHODS Thirty C57BL/6 mice were given either regular drinking water (control group) or 2% (w/v) DSS drinking water (model and poly I:C groups) ad libitum for 7 d. Poly I:C was administrated subcutaneously (20 μg/mouse) 2 h prior to DSS induction in mice of the poly I:C group. Severity of colitis was evaluated by disease activity index, body weight, colon length, histology and myeloperoxidase (MPO) activity, as well as the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 17 (IL-17) and interferon-γ (IFN-γ). Intestinal permeability was analyzed by the fluorescein isothiocyanate labeled-dextran (FITC-D) method. Ultrastructural features of the colon tissue were observed under electron microscopy. Expressions of tight junction (TJ) proteins, including zo-1, occludin and claudin-1, were measured by immunohistochemistry/immunofluorescence, Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS DSS caused significant damage to the colon tissue in the model group. Administration of poly I:C dramatically protected against DSS-induced colitis, as demonstrated by less body weight loss, lower disease activity index score, longer colon length, colonic MPO activity, and improved macroscopic and histological scores. It also ameliorated DSS-induced ultrastructural changes of the colon epithelium, as observed under scanning electron microscopy, as well as FITC-D permeability. The mRNA and protein expressions of TJ protein, zo-1, occludin and claudin-1 were also found to be significantly enhanced in the poly I:C group, as determined by immunohistochemistry/immunofluorescence, Western blot and RT-qPCR. By contrast, poly I:C pretreatment markedly reversed the DSS-induced up-regulated expressions of the inflammatory cytokines TNF-α, IL-17 and IFN

  17. Huangqin-tang ameliorates dextran sodium sulphate-induced colitis by regulating intestinal epithelial cell homeostasis, inflammation and immune response.

    PubMed

    Zou, Ying; Lin, Jiantao; Li, Wenyang; Wu, Zhuguo; He, Zhiwei; Huang, Guoliang; Wang, Jian; Ye, Caiguo; Cheng, Xiaoyan; Ding, Congcong; Zheng, Xuebao; Chi, Honggang

    2016-12-16

    Huangqin-tang (HQT) is a traditional Chinese medicine (TCM) formula widely used for the treatment of inflammatory bowel disease in China. However, the molecular mechanisms by which HQT protects the colon are unclear. We studied the protective effects of HQT and the underlying mechanisms in an experimental mouse model and in vitro. In vivo, dextran sodium sulphate (DSS)-induced acute and chronic colitis were significantly ameliorated by HQT as gauged by phenotypic, histopathologic and inflammatory manifestations of the disease. Mechanistically, DSS-induced nuclear factor-κB (NF-κB) signalling was inhibited by HQT. Moreover, HQT-treated mice demonstrated significant changes in cell apoptosis, expression of apoptosis-associated genes such as caspase-3, bax, bcl-2, and intestinal permeability. HQT also increased occluding and zonula occludens-1 (ZO-1), inhibited cell proliferation (Ki67), and increased regulatory T cells numbers, protein expression of Foxp3 and IL-10 in the colonic tissue. In vitro, HQT down-regulated production of pro-inflammatory cytokines and supressed the NF-κB signalling pathway in lipopolysaccharides-induced RAW 264.7 macrophages. Our study suggests that HQT plays a critical role in regulating intestinal epithelial cell homeostasis, inflammation and immune response in colitis and offers novel therapeutic options in the management of inflammatory bowel disease.

  18. Huangqin-tang ameliorates dextran sodium sulphate-induced colitis by regulating intestinal epithelial cell homeostasis, inflammation and immune response

    PubMed Central

    Zou, Ying; Lin, Jiantao; Li, Wenyang; Wu, Zhuguo; He, Zhiwei; Huang, Guoliang; Wang, Jian; Ye, Caiguo; Cheng, Xiaoyan; Ding, Congcong; Zheng, Xuebao; Chi, Honggang

    2016-01-01

    Huangqin-tang (HQT) is a traditional Chinese medicine (TCM) formula widely used for the treatment of inflammatory bowel disease in China. However, the molecular mechanisms by which HQT protects the colon are unclear. We studied the protective effects of HQT and the underlying mechanisms in an experimental mouse model and in vitro. In vivo, dextran sodium sulphate (DSS)-induced acute and chronic colitis were significantly ameliorated by HQT as gauged by phenotypic, histopathologic and inflammatory manifestations of the disease. Mechanistically, DSS-induced nuclear factor-κB (NF-κB) signalling was inhibited by HQT. Moreover, HQT-treated mice demonstrated significant changes in cell apoptosis, expression of apoptosis-associated genes such as caspase-3, bax, bcl-2, and intestinal permeability. HQT also increased occluding and zonula occludens-1 (ZO-1), inhibited cell proliferation (Ki67), and increased regulatory T cells numbers, protein expression of Foxp3 and IL-10 in the colonic tissue. In vitro, HQT down-regulated production of pro-inflammatory cytokines and supressed the NF-κB signalling pathway in lipopolysaccharides-induced RAW 264.7 macrophages. Our study suggests that HQT plays a critical role in regulating intestinal epithelial cell homeostasis, inflammation and immune response in colitis and offers novel therapeutic options in the management of inflammatory bowel disease. PMID:27982094

  19. Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9

    PubMed Central

    Low, Daren; Subramaniam, Renuka; Lin, Li; Aomatsu, Tomoki; Mizoguchi, Atsushi; Ng, Aylwin; DeGruttola, Arianna K.; Lee, Chun Geun; Elias, Jack A.; Andoh, Akira; Mino-Kenudson, Mari; Mizoguchi, Emiko

    2015-01-01

    Many host-factors are inducibly expressed during the development of inflammatory bowel disease (IBD), each having their unique properties, such as immune activation, bacterial clearance, and tissue repair/remodeling. Dysregulation/imbalance of these factors may have pathogenic effects that can contribute to colitis-associated cancer (CAC). Previous reports showed that IBD patients inducibly express colonic chitinase 3-like 1 (CHI3L1) that is further upregulated during CAC development. However, little is known about the direct pathogenic involvement of CHI3L1 in vivo. Here we demonstrate that CHI3L1 (aka Brp39) knockout (KO) mice treated with azoxymethane (AOM)/dextran sulphate sodium (DSS) developed severe colitis but lesser incidence of CAC as compared to that in wild-type (WT) mice. Highest CHI3L1 expression was found during the chronic phase of colitis, rather than the acute phase, and is essential to promote intestinal epithelial cell (IEC) proliferation in vivo. This CHI3L1-mediated cell proliferation/survival involves partial downregulation of the pro-apoptotic S100A9 protein that is highly expressed during the acute phase of colitis, by binding to the S100A9 receptor, RAGE (Receptor for Advanced Glycation End products). This interaction disrupts the S100A9-associated expression positive feedback loop during early immune activation, creating a CHI3L1hi S100A9low colonic environment, especially in the later phase of colitis, which promotes cell proliferation/survival of both normal IECs and tumor cells. PMID:26431492

  20. IL-33 induces both regulatory B cells and regulatory T cells in dextran sulfate sodium-induced colitis.

    PubMed

    Zhu, Junfeng; Xu, Ying; Zhu, Chunyu; Zhao, Jian; Meng, Xinrui; Chen, Siyao; Wang, Tianqi; Li, Xue; Zhang, Li; Lu, Changlong; Liu, Hongsheng; Sun, Xun

    2017-05-01

    Interleukin (IL)-33 is a member of the IL-1 family. Serum levels of IL-33 are increased in inflammatory bowel diseases (IBD), suggesting that IL-33 is involved in the pathogenesis of IBD, although its role is not clear. In this study, we investigated the role of IL-33 in the regulation of T-helper (Th) cell and B cell responses in mesenteric lymph nodes (MLN) in mice with dextran sulfate sodium (DSS)-induced colitis. Here, we showed that IL-33-treated mice were susceptible to DSS-induced colitis as compared with PBS-treated mice. The production of spontaneous inflammatory cytokines production by macrophages or dendritic cells (DC) in MLN significantly increased, and the responses of Th2, regulatory T cells (Treg) and regulatory B cells (Breg) were markedly upregulated, while Th1 responses were significantly downregulated in MLN of IL-33-treated mice with DSS-induced colitis. Our results demonstrate that IL-33 contributes to the pathogenesis of DSS-induced colitis in mice by promoting Th2 responses, but suppressing Th1 responses, in MLN. Moreover, IL-33 treatment increased Breg and Treg responses in MLN in mice with DSS-induced colitis. Therefore, modulation of IL-33/ST2 signaling is implicated as a novel biological therapy for inflammatory diseases associated with Th1 responses.

  1. Anti-Inflammatory Effects of Inonotus obliquus in Colitis Induced by Dextran Sodium Sulfate

    PubMed Central

    Choi, Se Young; Hur, Sun Jin; An, Chi Sun; Jeon, Yun Hui; Jeoung, Young Jun; Bak, Jong Phil; Lim, Beong Ou

    2010-01-01

    A total of 28 male BALB/c mice (average weight 20.7 ± 1.6 g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-α and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-α, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells. PMID:20300439

  2. Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis.

    PubMed

    Lim, Su-Min; Jeong, Jin-Ju; Choi, Hyun Sik; Chang, Hwan Bong; Kim, Dong-Hyun

    2016-05-01

    In the previous study, 80% ethanol extract of the rhizome mixture of Anemarrhena asphodeloides and Coptidis chinensis (AC) and its main constituent mangiferin improved TNBS-induced colitis in mice by inhibiting macrophage activation related to the innate immunity. In the preliminary study, we found that AC could inhibit Th17 cell differentiation in mice with TNBS-induced colitis. Therefore, we investigated whether AC and it main constituent mangiferin are capable of inhibiting inflammation by regulating T cell differentiation related to the adaptive immunity in vitro and in vivo. AC and mangiferin potently suppressed colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis. They also suppressed TNBS-induced Th17 cell differentiation and IL-17 expression, but increased TNBS-suppressed Treg cell differentiation and IL-10 expression. Moreover, AC and mangiferin strongly inhibited the expression of TNF-α and IL-17, as well as the activation of NF-κB. Furthermore, mangiferin potently inhibited the differentiation of splenocytes into Th7 cells and increased the differentiation into Treg cells in vitro. Mangiferin also inhibited RORγt and IL-17 expression and STAT3 activation in splenocytes and induced Foxp3 and IL-10 expression and STAT5 activation. Based on these findings, mangiferin may ameliorate colitis by the restoration of disturbed Th17/Treg cells and inhibition of macrophage activation.

  3. Anti-Inflammatory Effect of Erythropoietin in the TNBS-induced Colitis.

    PubMed

    Mateus, Vanessa; Rocha, João; Alves, Paula; Mota-Filipe, Helder; Sepodes, Bruno; Pinto, Rui Manuel Amaro

    2017-02-01

    Erythropoietin is a potent stimulator of erythroid progenitor cells, which is able to inhibit NF-kB activation, due to its pleiotropic properties, thus promoting an anti-inflammatory effect. As inflammatory bowel disease is a chronic disease with reduced quality of life, and the current pharmacotherapy only induces or maintains the patient in remission, there is a crucial need of new pharmacological approaches. The main objective of this study was to evaluate the effect of erythropoietin in the TNBS-induced colitis model in mice with a normal intestinal flora. Mice with TNBS-induced colitis were treated with a daily dose of erythropoietin at 500 IU/kg bw/day and 1000 IU/Kg bw/day IP during 4 days. As to clinical symptoms/signs, erythropoietin attenuated the decreased body-weight and reduced diarrhoea and oedema of the anus registered in the non-treated mice group in a dose-dependent manner. The anti-inflammatory properties of erythropoietin in the TNBS-induced colitis were confirmed by suppression of pro-inflammatory mediators, such as TNF-α, IL-1β and MPO, as well as a significant increase in the anti-inflammatory cytokine, IL-10, was promoted. These treated mice also presented a reduction in haemoglobin faecal and ALP, suggesting a beneficial effect of erythropoietin in the haemorrhagic focus and destruction of the enterocyte associated with the colon injury induced by TNBS, respectively. The histopathological score was reduced after treatment with erythropoietin, decreasing the severity and extension of the colitis. Furthermore, renal and hepatic biomarkers, as well as haematocrit concentration, remained stabilized after treatment. In conclusion, erythropoietin reduces the inflammatory response associated with TNBS-induced colitis in mice.

  4. Ischemic colitis induced by the newly reformulated multicomponent weight-loss supplement Hydroxycut®

    PubMed Central

    Sherid, Muhammed; Samo, Salih; Sulaiman, Samian; Gaziano, Joseph H

    2013-01-01

    Ischemic colitis accounts for 6%-18% of causes of acute lower gastrointestinal bleeding. It is more often multifactorial and more common in elderly. Drugs are considered important causative agents of this disease with different mechanisms. In this paper, we describe a 37-year-old otherwise healthy female presented with sudden onset diffuse abdominal pain and bloody stool. Radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her only suspected factor was hydroxycut which she had been taking for a period of 1 mo prior to her presentation. Her condition improved uneventfully after cessation of hydroxycut, bowel rest, intravenous hydration, and antibiotics. This is a first case of ischemic colitis with clear relationship with hydroxycut use (Naranjo score of 7). Our case demonstrates the importance of questioning patients regarding the usage of dietary supplements; especially since many patients consider them safe and do not disclose their use voluntarily to their physicians. Hydroxycut has to be considered as a potential trigger for otherwise unexplained ischemic colitis. PMID:23596542

  5. Magnetic resonance imaging: A new tool for diagnosis of acute ischemic colitis?

    PubMed Central

    Iacobellis, Francesca; Berritto, Daniela; Somma, Francesco; Cavaliere, Carlo; Corona, Marco; Cozzolino, Santolo; Fulciniti, Franco; Cappabianca, Salvatore; Rotondo, Antonio; Grassi, Roberto

    2012-01-01

    AIM: To define the evolution of ischemic lesions with 7T magnetic resonance imaging (7T-MRI) in an animal model of acute colonic ischemia. METHODS: Adult Sprague-Dawley rats were divided into two groups. Group I underwent inferior mesenteric artery (IMA) ligation followed by macroscopic observations and histological analysis. In group II, 7T-MRI was performed before and after IMA ligation and followed by histological analysis. RESULTS: Morphological alterations started to develop 1 h after IMA ligation, when pale areas became evident in the splenic flexure mesentery and progressively worsened up to 8 h thereafter, when the mesentery was less pale, and the splenic flexure loop appeared very dark. The 7T-MRI results reflected these alterations, showing a hyperintense signal in both the intraperitoneal space and the colonic loop wall 1 h after IMA ligation; the latter progressively increased to demonstrate a reduction in the colonic loop lumen at 6 h. Eight hours after IMA ligation, MRI showed a persistent colonic mural hyperintensity associated with a reduction in peritoneal free fluid. The 7T-MRI findings were correlated with histological alterations, varying from an attenuated epithelium with glandular apex lesions at 1 h to coagulative necrosis and loss of the surface epithelium detected 8 h after IMA ligation. CONCLUSION: MRI may be used as a substitute for invasive procedures in diagnosing and grading acute ischemic colitis, allowing for the early identification of pathological findings. PMID:22509081

  6. Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis.

    PubMed

    Su, C; Su, L; Li, Y; Long, S R; Chang, J; Zhang, W; Walker, W A; Xavier, R J; Cherayil, B J; Shi, H N

    2017-03-29

    Infection with the intestinal helminth parasite Heligmosomoides polygyrus exacerbates the colitis caused by the bacterial enteropathogen Citrobacter rodentium. To clarify the underlying mechanism, we analyzed fecal microbiota composition of control and helminth-infected mice and evaluated the functional role of compositional differences by microbiota transplantation experiments. Our results showed that infection of Balb/c mice with H. polygyrus resulted in significant changes in the composition of the gut microbiota, characterized by a marked increase in the abundance of Bacteroidetes and decreases in Firmicutes and Lactobacillales. Recipients of the gut microbiota from helminth-infected wide-type, but not STAT6-deficient, Balb/c donors had increased fecal pathogen shedding and significant worsening of Citrobacter-induced colitis compared to recipients of microbiota from control donors. Recipients of helminth-altered microbiota also displayed increased regulatory T cells and IL-10 expression. Depletion of CD4(+)CD25(+) T cells and neutralization of IL-10 in recipients of helminth-altered microbiota led to reduced stool C. rodentium numbers and attenuated colitis. These results indicate that alteration of the gut microbiota is a significant contributor to the H. polygyrus-induced exacerbation of C. rodentium colitis. The helminth-induced alteration of the microbiota is Th2-dependent and acts by promoting regulatory T cells that suppress protective responses to bacterial enteropathogens.Mucosal Immunology advance online publication 29 March 2017 doi:10.1038/mi.2017.20.

  7. Nicotine Inhibits Clostridium difficile Toxin A-Induced Colitis but Not Ileitis in Rats

    PubMed Central

    Vigna, Steven R.

    2016-01-01

    Nicotine is protective in ulcerative colitis but not Crohn's disease of the small intestine, but little is known about the effects of nicotine on Clostridium difficile toxin A-induced enteritis. Isolated ileal or colonic segments in anesthetized rats were pretreated with nicotine bitartrate or other pharmacological agents before intraluminal injection of toxin A. After 3 hours, the treated segments were removed and inflammation was assessed. Nicotine biphasically inhibited toxin A colitis but not ileitis. Pretreatment with the nicotinic receptor antagonist, hexamethonium, blocked the effects of nicotine. Pretreating the colonic segments with hexamethonium before toxin A administration resulted in more inflammation than seen with toxin A alone, suggesting that a tonic nicotinic anti-inflammatory condition exists in the colon. Nicotine also inhibited toxin A-induced increased colonic concentrations of the TRPV1 (transient receptor potential vanilloid subtype 1) agonist, leukotriene B4 (LTB4), and release of the proinflammatory neuropeptide, substance P. Pretreatment with nicotine did not protect against direct TRPV1-mediated colitis caused by intraluminal capsaicin. Nicotinic cholinergic receptors tonically protect the colon against inflammation and nicotine inhibits toxin A colitis but not toxin A ileitis in rats in part by inhibition of toxin A-induced activation of TRPV1 by endogenous TRPV1 agonists such as LTB4. PMID:26881175

  8. Nicotine Inhibits Clostridium difficile Toxin A-Induced Colitis but Not Ileitis in Rats.

    PubMed

    Vigna, Steven R

    2016-01-01

    Nicotine is protective in ulcerative colitis but not Crohn's disease of the small intestine, but little is known about the effects of nicotine on Clostridium difficile toxin A-induced enteritis. Isolated ileal or colonic segments in anesthetized rats were pretreated with nicotine bitartrate or other pharmacological agents before intraluminal injection of toxin A. After 3 hours, the treated segments were removed and inflammation was assessed. Nicotine biphasically inhibited toxin A colitis but not ileitis. Pretreatment with the nicotinic receptor antagonist, hexamethonium, blocked the effects of nicotine. Pretreating the colonic segments with hexamethonium before toxin A administration resulted in more inflammation than seen with toxin A alone, suggesting that a tonic nicotinic anti-inflammatory condition exists in the colon. Nicotine also inhibited toxin A-induced increased colonic concentrations of the TRPV1 (transient receptor potential vanilloid subtype 1) agonist, leukotriene B4 (LTB4), and release of the proinflammatory neuropeptide, substance P. Pretreatment with nicotine did not protect against direct TRPV1-mediated colitis caused by intraluminal capsaicin. Nicotinic cholinergic receptors tonically protect the colon against inflammation and nicotine inhibits toxin A colitis but not toxin A ileitis in rats in part by inhibition of toxin A-induced activation of TRPV1 by endogenous TRPV1 agonists such as LTB4.

  9. Resveratrol abrogates adhesion molecules and protects against TNBS-induced ulcerative colitis in rats.

    PubMed

    Abdallah, Dalaal M; Ismael, Naglaa R

    2011-11-01

    Resveratrol, a polyphenol compound with anti-inflammatory properties, has been previously evaluated for its beneficial effects in several ulcerative colitis models. However, the current study elucidates the effect of resveratrol on adhesion molecules, as well as its antioxidant efficacy in a trinitrobenzene sulfonic acid (TNBS)-induced ulcerative-colitis model. Colitis was induced by rectal instillation of TNBS, followed by daily per os administration of either sulphasalazine (300 mg/kg) or resveratrol (2 and 10 mg/kg) for 7 days. Administration of resveratrol decreased the ulcerative area and colon mass index; these effects were further supported by the reduction in colon inflammation grades, as well as histolopathological changes, and reflected by the stalling of body mass loss. The anti-inflammatory effects of resveratrol were indicated by lowered myeloperoxidase activity, and by suppressing ICAM-1 and VCAM-1 levels in the colon and serum. In addition, it restored a reduced colonic nitric oxide level and reinstated its redox balance, as evidenced by the suppression of lipid peroxides and prevention of glutathione depletion. The anti-ulcerative effect of the higher dose of resveratrol was comparable with those of sulphasalazine. The study confirms the anti-ulcerative effect of resveratrol in TNBS-induced experimental colitis via reduction of neutrophil infiltration, inhibition of adhesive molecules, and restoration of the nitric oxide level, as well as the redox status.

  10. Alleviation of Antioxidant Defense System by Ozonized Olive Oil in DNBS-Induced Colitis in Rats

    PubMed Central

    Bayoumi, Fatehia A.; Ahmed, Naglaa G.

    2014-01-01

    The aim of the study was to evaluate the potential protective effect of ozonized olive oil (OZO) in 2,4-dinitrobenzene sulphuric acid (DNBS) induced colitis in rats and to elucidate the role of some antioxidant defense system (superoxide dismutase “SOD,” glutathione peroxidase “GSH-Px,” and catalase “CAT”) in these effects. The physicochemical parameters including viscosity, peroxide, and acid values of olive oil and OZO were evaluated. The animals were divided into several groups and the colitis was induced in the rats by intracolonic instillation of DNBS at dose of 15 mg/rat. Olive oil (OO) at dose of 6 mg/kg and OZO at doses of 3 and 6 mg/kg was administered orally for 7 days, starting the day before induction of colitis. Our results showed that macroscopic and microscopic damage scores were significantly reduced in a dose response manner in rats pretreated with OZO only. In contrast, CAT, GSH-Px, and SOD activities were significantly increased in the distal colon of inflamed animals pretreated with OZO with respect to control group dose dependently. Results demonstrate that OZO pretreatment exerts protective effects in DNBS induced colitis in rats and provide evidence that the protective effects of OZO are mediated by stimulation of some antioxidant enzymes. PMID:25276059

  11. Prophylactic effect of dietary glutamine supplementation on interleukin 8 and tumour necrosis factor α production in trinitrobenzene sulphonic acid induced colitis

    PubMed Central

    Ameho, C; Adjei, A; Harrison, E; Takeshita, K; Morioka, T; Arakaki, Y; Ito, E; Suzuki, I; Kulkarni, A; Kawajiri, A; Yamamoto, S

    1997-01-01

    Background—It is well established that glutamine supplemented elemental diets result in less severe intestinal damage in experimental colitis. However, few studies have examined the mode of action of glutamine in reducing intestinal damage. 
Aims—To examine the effects of glutamine supplemented elemental diets on the potent inflammatory cytokines interleukin 8 (IL-8) and tumour necrosis factor α (TNF-α) in trinitrobenzene sulphonic acid (TNBS) induced colitis which presents with both acute and chronic features of ulcerative colitis. 
Methods—Sprague-Dawley rats were randomised into three dietary groups and fed 20% casein (controls), or 20% casein supplemented with either 2% glutamine (2% Gln) or 4% glutamine (4% Gln). After two weeks they received intracolonic TNBS to induce colitis.
Results—Both Gln groups of rats gained more weight than the control group (p<0.05) which had progressive weight loss. Colon weight, macroscopic, and microscopic damage scores for the Gln groups were lower than in the control group (p<0.05). IL-8 and TNF-α concentrations in inflamed colonic tissues were lower in the Gln groups than in the control group (p<0.05), and correlated well with disease severity. Bacterial translocation was lower both in incidence (p<0.05) and in the number of colony forming units (p<0.05) for the Gln groups, than in the control group. With respect to all indices studied, the 4% Gln group performed better than did the 2% Gln group. 
Conclusion—Prophylactic glutamine supplementation modulates the inflammatory activities of IL-8 and TNF-α in TNBS induced colitis. 

 Keywords: glutamine; trinitrobenzene sulphonic acid; inflammatory bowel disease; rats; interleukin 8; tumour necrosis factor α PMID:9391247

  12. Healing Acceleration of Acetic Acid-induced Colitis by Marigold (Calendula officinalis) in Male Rats

    PubMed Central

    Tanideh, Nader; Jamshidzadeh, Akram; Sepehrimanesh, Masood; Hosseinzadeh, Masood; Koohi-Hosseinabadi, Omid; Najibi, Asma; Raam, Mozhdeh; Daneshi, Sajad; Asadi-Yousefabad, Seyedeh-Leili

    2016-01-01

    Background/Aim: Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Materials and Methods: Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and oral doses of C. officinalis extract, 1500 and 3000 mg/kg, and enema (gel 10% and 20%) were given. Two groups as positive controls were given asacol (enema) and oral mesalamine. Negative control groups were given normal saline and base gel. On days 3 and 7, intestinal histopathology and weight changes, plus oxidative stress indices including malondialdehyde (MDA) level and myeloperoxidase (MPO) activity were assayed. Results: A significant increase in the body weight of rats was seen in the group given C. officinalis extract 3000 mg/kg orally, oral mesalamine, and 20% intracolonic gel form of marigold extract compared with negative control and base gel groups during the experimental period. Acute inflammation and granular atrophy after UC induction were resolved completely completely by both 20% intracolonic gel and 3000 mg/kg orally. An increase in MPO activity and a decrease in MDA level in response to oral and intracolonic gel form of C. officinalis were observed 3 and and 7 days after treatment (P < 0.05). Conclusion: Our results indicate that oral and enema forms of hydroalcoholic extract of C. officinalis can be offered as are potential therapeutic agents for UC induced in rats. PMID:26831607

  13. BTZO-15, an ARE-activator, ameliorates DSS- and TNBS-induced colitis in rats.

    PubMed

    Yukitake, Hiroshi; Kimura, Haruhide; Suzuki, Hirobumi; Tajima, Yasukazu; Sato, Yoshimi; Imaeda, Toshihiro; Kajino, Masahiro; Takizawa, Masayuki

    2011-01-01

    Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that are primarily represented by ulcerative colitis and Crohn's disease. The etiology of IBD is not well understood; however, oxidative stress is considered a potential etiological and/or triggering factor for IBD. We have recently reported the identification of BTZO-1, an activator of antioxidant response element (ARE)-mediated gene expression, which protects cardiomyocytes from oxidative stress-induced insults. Here we describe the potential of BTZO-15, an active BTZO-1 derivative for ARE-activation with a favorable ADME-Tox profile, for the treatment of IBD. BTZO-15 induced expression of heme oxygenase-1 (HO-1), an ARE-regulated cytoprotective protein, and inhibited NO-induced cell death in IEC-18 cells. Large intestine shortening, rectum weight gain, diarrhea, intestinal bleeding, and an increase in rectal myeloperoxidase (MPO) activity were observed in a dextran sulfate sodium (DSS)-induced colitis rat model. Oral administration of BTZO-15 induced HO-1 expression in the rectum and attenuated DSS-induced changes. Furthermore BTZO-15 reduced the ulcerated area and rectal MPO activity in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rats without affecting rectal TNF-α levels. These results suggest that BTZO-15 is a promising compound for a novel IBD therapeutic drug with ARE activation properties.

  14. Nadroparin sodium activates Nrf2/HO-1 pathway in acetic acid-induced colitis in rats.

    PubMed

    Yalniz, Mehmet; Demirel, Ulvi; Orhan, Cemal; Bahcecioglu, Ibrahim Halil; Ozercan, Ibrahim Hanefi; Aygun, Cem; Tuzcu, Mehmet; Sahin, Kazim

    2012-06-01

    Effects of nadroparin sodium, a low molecular weight heparin, in colitis was investigated by analyzing proteins implicated in nuclear factor E2-related factor-2/heme oxygenase-1 (Nrf2/HO-1) and nuclear factor kappa B (NF-κB) pathways. Twenty-eight rats were used. Colitis was induced by acetic acid (AA). Nadroparin sodium was given to prevention and treatment groups in addition to AA. Colitis was assessed histologically and levels of proteins were analyzed with Western blot. Nadroparin not only prevented and ameliorated the AA-induced colitis histopathologically but also decreased expression of colon NF-κB, activator protein-1, cyclooxygenase-2, tumor necrosis factor-alpha, and IL-6, which were significantly increased in group AA compared to control. The accumulation of Nrf2 in nuclear fraction and HO-1 found low in group AA was increased with nadroparin (p < 0.05). The mean malondialdehyde level increased with AA and was decreased significantly with nadroparin prevention and treatment (p < 0.001). Nadroparin sodium has both protective and therapeutic effects against colonic inflammation via exerting anti-oxidative and anti-inflammatory effects by modulating Nrf2/HO-1 and NF-κB pathways.

  15. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission

    PubMed Central

    Rooks, Michelle G; Veiga, Patrick; Wardwell-Scott, Leslie H; Tickle, Timothy; Segata, Nicola; Michaud, Monia; Gallini, Carey Ann; Beal, Chloé; van Hylckama-Vlieg, Johan ET; Ballal, Sonia A; Morgan, Xochitl C; Glickman, Jonathan N; Gevers, Dirk; Huttenhower, Curtis; Garrett, Wendy S

    2014-01-01

    Dysregulated immune responses to gut microbes are central to inflammatory bowel disease (IBD), and gut microbial activity can fuel chronic inflammation. Examining how IBD-directed therapies influence gut microbiomes may identify microbial community features integral to mitigating disease and maintaining health. However, IBD patients often receive multiple treatments during disease flares, confounding such analyses. Preclinical models of IBD with well-defined disease courses and opportunities for controlled treatment exposures provide a valuable solution. Here, we surveyed the gut microbiome of the T-bet−/− Rag2−/− mouse model of colitis during active disease and treatment-induced remission. Microbial features modified among these conditions included altered potential for carbohydrate and energy metabolism and bacterial pathogenesis, specifically cell motility and signal transduction pathways. We also observed an increased capacity for xenobiotics metabolism, including benzoate degradation, a pathway linking host adrenergic stress with enhanced bacterial virulence, and found decreased levels of fecal dopamine in active colitis. When transferred to gnotobiotic mice, gut microbiomes from mice with active disease versus treatment-induced remission elicited varying degrees of colitis. Thus, our study provides insight into specific microbial clades and pathways associated with health, active disease and treatment interventions in a mouse model of colitis. PMID:24500617

  16. The anti-inflammatory potential of phenolic compounds in grape juice concentrate (G8000™) on 2,4,6-trinitrobenzene sulphonic acid-induced colitis.

    PubMed

    Paiotti, Ana Paula Ribeiro; Neto, Ricardo Artigiani; Marchi, Patrícia; Silva, Roseane Mendes; Pazine, Vanessa Lima; Noguti, Juliana; Pastrelo, Mauricio Mercaldi; Gollücke, Andréa Pittelli Boiago; Miszputen, Sender Jankiel; Ribeiro, Daniel Araki

    2013-09-28

    Chronic inflammatory bowel disease is characterised by an up-regulation of the synthesis and release of a variety of pro-inflammatory mediators leading to excessive tissue injury. Flavonoids are able to inhibit enzymes and/or due to their antioxidant properties regulate the immune response. The goal of the present study was to evaluate the mechanisms of action of phenolic compounds present in grape juice on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. A total of forty-one male Wistar rats were randomised into seven groups: negative control group; TNBS non-treated induced colitis; 2% grape juice control group; 1% grape juice 24 h after TNBS colitis induction; 1% grape juice on day 7 after colitis induction; 2% grape juice 24 h after colitis induction; 2% grape juice on day 7 after colitis induction. The 1% grape juice-treated induced colitis group showed marked clinical improvement when compared with the TNBS-induced colitis group. Rats that received 1% grape juice, on day 7 after colitis induction, presented reduced intensity of macroscopic and histological scores. Statistically significant differences (P,0·05) of TNF-a and inducible NO synthase mRNA expression were detected in the groups treated with grape juice at the 1% dose after inducing experimental colitis when compared with the TNBS group. Grape juice reduced the noxious effects induced by colitis caused by TNBS, especially at the 1% dose.

  17. Suppression of TNBS-induced colitis in rats by 4-methylesculetin, a natural coumarin: comparison with prednisolone and sulphasalazine.

    PubMed

    Witaicenis, Aline; Luchini, Ana C; Hiruma-Lima, Clélia A; Felisbino, Sérgio L; Garrido-Mesa, Natividad; Utrilla, Pilar; Gálvez, Julio; Di Stasi, Luiz C

    2012-01-05

    The aim of the present study was to compare the effects of the 4-methylesculetin with those produced by prednisolone and sulphasalazine and to elucidate the mechanisms involved in its action. Colitis was induced in rat by instillation of trinitrobenzenesulphonic acid (TNBS). The colon damage was evaluated using macroscopic, microscopic and biochemical analysis. In addition, in vitro studies were performed to evaluate cytokine production in cell cultures using the murine macrophage cell line RAW264.7, mouse splenocytes and the human colonic epithelial cell line Caco-2. 4-Methylesculetin produced a reduction of the macroscopic damage score and the recovery of the intestinal cytoarchitecture. These effects were associated with a prevention of the GSH depletion and an inhibition in AP activity. After colitis relapse, 4-methylesculetin improved the colonic inflammatory status as evidenced by histological findings, with a reduction in apoptosis, as well as biochemically by inhibition of colonic myeloperoxidase, alkaline phosphatase and metalloproteinase 9 activities. Paired with this inhibitive activity, there was a decrease in malondialdehyde content and in IL-1β levels. In vitro assays revealed that 4-methylesculetin promoted an inhibition in IL-1β, IL-8, IL-2 and IFN-γ production in cell cultures. In conclusion, 4-methylesculetin showed similar efficacy to that obtained with either prednisolone or sulphasalazine, both in the acute phase of colitis as well as following a curative protocol. The intestinal anti-inflammatory activity by 4-methylesculetin is likely related to its ability in reduce colonic oxidative stress and inhibit pro-inflammatory cytokine production.

  18. Bifidobacterium longum Alleviates Dextran Sulfate Sodium-Induced Colitis by Suppressing IL-17A Response: Involvement of Intestinal Epithelial Costimulatory Molecules

    PubMed Central

    Miyauchi, Eiji; Ogita, Tasuku; Miyamoto, Junki; Kawamoto, Seiji; Morita, Hidetoshi; Ohno, Hiroshi; Suzuki, Takuya; Tanabe, Soichi

    2013-01-01

    Although some bacterial strains show potential to prevent colitis, their mechanisms are not fully understood. Here, we investigated the anti-colitic mechanisms of Bifidobacterium longum subsp. infantis JCM 1222T, focusing on the relationship between interleukin (IL)-17A secreting CD4+ T cells and intestinal epithelial costimulatory molecules in mice. Oral administration of JCM 1222T to mice alleviated dextran sulfate sodium (DSS)-induced acute colitis. The expression of type 1 helper T (Th1)- and IL-17 producing helper T (Th17)-specific cytokines and transcriptional factors was suppressed by JCM 1222T treatment. Intestinal epithelial cells (IECs) from colitic mice induced IL-17A production from CD4+ T cells in a cell-cell contact-dependent manner, and this was suppressed by oral treatment with JCM 1222T. Using blocking antibodies for costimulatory molecules, we revealed that epithelial costimulatory molecules including CD80 and CD40, which were highly expressed in IECs from colitic mice, were involved in IEC-induced IL-17A response. Treatment of mice and intestinal epithelial cell line Colon-26 cells with JCM 1222T decreased the expression of CD80 and CD40. Collectively, these data indicate that JCM 1222T negatively regulate epithelial costimulatory molecules, and this effect might be attributed, at least in part, to suppression of IL-17A in DSS-induced colitis. PMID:24255712

  19. Anti-inflammatory Actions of (+)-3'α-Angeloxy-4'-keto-3',4'-dihydroseselin (Pd-Ib) against Dextran Sulfate Sodium-Induced Colitis in C57BL/6 Mice.

    PubMed

    Mu, Huai-Xue; Liu, Jing; Fatima, Sarwat; Lin, Cheng-Yuan; Shi, Xiao-Ke; Du, Bin; Xiao, Hai-Tao; Fan, Bao-Min; Bian, Zhao-Xiang

    2016-04-22

    The immunoregulatory protective properties of (+)-3'α-angeloxy-4'-keto-3',4'-dihydroseselin (Pd-Ib) isolated from Bupleurum malconense has not been reported. In the present study, the therapeutic effect of Pd-Ib (30, 60, and 120 mg/kg/day) was examined in a mouse model of dextran sulfate sodium (DSS)-induced acute colitis. Administration of Pd-Ib significantly reduced the disease activity index, inhibited the shortening of colon length, reduced colonic tissue damage, and suppressed colonic myeloperoxidase activity and nitric oxide levels in mice with DSS-induced colitis. Moreover, Pd-Ib greatly suppressed the secretion of pro-inflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-17A while enhancing the level of anti-inflammatory cytokine IL-4. The protein levels of phosphorylated STAT3 (p-STAT3) and phosphorylated p38 (p-p38) were down-regulated in the colonic tissues of DSS-treated mice. Importantly, the anti-inflammatory effect of Pd-Ib against acute colitis was comparable to the anti-inflammatory sulfa drug sulfasalazine (300 mg/kg). Furthermore, the in vitro study showed that the inhibitory effect of Pd-Ib on p-STAT3 and IL-6 protein levels was accompanied by the reduction of MAPKs (JNK and p38). In conclusion, this study suggested that Pd-Ib attenuated DSS-induced acute colitis via the regulation of interleukins principally through the STAT3 and MAPK pathways.

  20. Diffuse perforated necrotising amoebic colitis with histoplasmosis in an immunocompetent individual presenting as an acute abdomen

    PubMed Central

    Badyal, Rama Kumari; Gupta, Rajesh; Vaiphei, Kim

    2013-01-01

    Perforated necrotising amoebic colitis associated with intestinal histoplasmosis has rarely been reported in an immunocompetent individual. Radiology and preoperative features are non-specific and requires histopathological examination for a definitive diagnosis. Hence, this condition needs to be considered in the differential diagnosis of complicated infective colitis. PMID:23814195

  1. Healing Effect of Pistacia Atlantica Fruit Oil Extract in Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Tanideh, Nader; Masoumi, Samira; Hosseinzadeh, Massood; Safarpour, Ali Reza; Erjaee, Hoda; Koohi-Hosseinabadi, Omid; Rahimikazerooni, Salar

    2014-01-01

    Background: Considering the anti-oxidant properties of Pistacia atlantica and lack of data regarding its efficacy in the treatment of ulcerative colitis, this study aims at investigating the effect of the Pistacia atlantica fruit extract in treating experimentally induced colitis in a rat model. Methods: Seventy male Sprague-Dawley rats (weighing 220±20 g) were used. All rats fasted 24 hours before the experimental procedure. The rats were randomly divided into 7 groups, each containing 10 induced colitis with 2ml acetic acid (3%). Group 1 (Asacol), group 2 (base gel) and group 7 (without treatment) were assigned as control groups. Group 3 (300 mg/ml) and group 4 (600 mg/ml) received Pistacia atlantica fruit orally. Group 5 (10% gel) and group 6 (20% gel) received Pistacia atlantica in the form of gel as enema. Macroscopic, histopathological examination and MDA measurement were carried out. Results: All groups revealed significant macroscopic healing in comparison with group 7 (P<0.001). Regarding microscopic findings in the treatment groups compared with group 7, the latter group differed significantly with groups 1, 2, 4 and 6 (P<0.001). There was a significant statistical difference in MDA scores of the seven treatment groups (F(5,54)=76.61, P<0.001). Post-hoc comparisons indicated that the mean±SD score of Asacol treated group (1.57±0.045) was not significantly different from groups 4 (1.62±0.024) and 6 (1.58±0.028). Conclusion: Our study showed that a high dose of Pistacia atlantica fruit oil extract, administered orally and rectally can improve colitis physiologically and pathologically in a rat model, and may be efficient for ulcerative colitis. PMID:25429174

  2. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma

    PubMed Central

    Binder Gallimidi, Adi; Nussbaum, Gabriel; Hermano, Esther; Weizman, Barak; Meirovitz, Amichay; Vlodavsky, Israel; Götte, Martin; Elkin, Michael

    2017-01-01

    Syndecan-1 (Sdc1) is an important member of the cell surface heparan sulfate proteoglycan family, highly expressed by epithelial cells in adult organisms. Sdc1 is involved in the regulation of cell migration, cell-cell and cell-matrix interactions, growth-factor, chemokine and integrin activity, and implicated in inflammatory responses and tumorigenesis. Gastrointestinal tract represents an important anatomic site where loss of Sdc1 expression was reported both in inflammation and malignancy. However, the biological significance of Sdc1 in chronic colitis-associated tumorigenesis has not been elucidated. To the best of our knowledge, this study is the first to test the effects of Sdc1 loss on colorectal tumor development in inflammation-driven colon tumorigenesis. Utilizing a mouse model of colitis-related colon carcinoma induced by the carcinogen azoxymethane (AOM), followed by the inflammatory agent dextran sodium sulfate (DSS), we found that Sdc1 deficiency results in increased susceptibility to colitis-associated tumorigenesis. Importantly, colitis-associated tumors developed in Sdc1-defficient mice were characterized by increased local production of IL-6, activation of STAT3, as well as induction of several STAT3 target genes that act as important effectors of colonic tumorigenesis. Altogether, our results highlight a previously unknown effect of Sdc1 loss in progression of inflammation-associated cancer and suggest that decreased levels of Sdc1 may serve as an indicator of colon carcinoma progression in the setting of chronic inflammation. PMID:28350804

  3. Pseudomembranous colitis

    MedlinePlus

    Antibiotic-associated colitis; Colitis - pseudomembranous; Necrotizing colitis; C difficile - pseudomembranous ... of these bacteria may grow when you take antibiotics. The bacteria give off a strong toxin that ...

  4. The diverse actions of nicotine and different extracted fractions from tobacco smoke against hapten-induced colitis in rats.

    PubMed

    Ko, Joshua K S; Cho, Chi-Hin

    2005-09-01

    The etiology of ulcerative colitis (UC) remains unknown, although the risk of developing UC is apparently higher in non-smokers and ex-smokers. We have demonstrated in a colitis animal model that exposure to tobacco smoke could attenuate UC pathogenesis. The present study aimed to investigate and compare between the modes of action of nicotine and different fractions of tobacco smoke extract in the development of experimental colitis. The hapten 2,4-dinitrobenzene sulfonic acid (DNBS) was used to induce colitis in Sprague-Dawley rats. Results indicated that both tobacco smoke exposure and subcutaneous nicotine differentially reduced colonic lesion size, myeloperoxidase (MPO) activity, luminol-amplified free radical generation, and leukotriene B4 formation in the inflamed colon of colitis animals. These phenomena were accompanied by the downregulation of colonic interleukin (IL)-1beta and monocyte chemoattractant protein (MCP)-1 protein expression. By treating the colitis animals with various tobacco extracts, we further discovered that ethanol extract from filtered tobacco smoke could attenuate DNBS-evoked colonic damage and the elevated MPO activity, while at the same time it downregulated colonic IL-1beta and MCP-1 protein expression. In contrast, the highest dose of the chloroform extract from the cigarette filter caused aggravating effects and overexpression of the pro-inflammatory cytokines and chemokines. These data suggest that effective attenuation of DNBS-induced colitis by tobacco smoke could be due to its nicotine content and possibly other flavonoid components found in the ethanol smoke extract.

  5. Beneficial Effect of Shikonin on Experimental Colitis Induced by Dextran Sulfate Sodium in Balb/C Mice

    PubMed Central

    Andújar, Isabel; Ríos, José Luis; Giner, Rosa María; Miguel Cerdá, José; Recio, María del Carmen

    2012-01-01

    The naphthoquinone shikonin, a major component of the root of Lithospermum erythrorhizon, now is studied as an anti-inflammatory agent in the treatment of ulcerative colitis (UC). Acute UC was induced in Balb/C mice by oral administration of 5% dextran sodium sulfate (DSS). The disease activity index was evaluated, and a histologic study was carried out. Orally administered shikonin reduces induced UC in a dose-dependent manner, preventing the shortening of the colorectum and decreasing weight loss by 5% while improving the appearance of feces and preventing bloody stools. The disease activity index score was much lower in shikonin-treated mice than in the colitic group, as well as the myeloperoxidase activity. The expression of cyclooxygenase-2 was reduced by 75%, activation of NF-κB was reduced by 44%, and that of pSTAT-3 by 47%, as well as TNF-α, IL-1β, and IL-6 production. Similar results were obtained in primary macrophages culture. This is the first report of shikonin's ability to attenuate acute UC induced by DSS. Shikonin acts by blocking the activation of two major targets: NF-κB and STAT-3, and thus constitutes a promising potential therapeutic agent for the management of the inflammatory bowel disease. PMID:23346196

  6. Comparative Protective Effect of Hawthorn Berry Hydroalcoholic Extract, Atorvastatin, and Mesalamine on Experimentally Induced Colitis in Rats

    PubMed Central

    Shafie-Irannejad, Vahid; Hobbenaghi, Rahim; Tabatabaie, Seyed Hamed; Moshtaghion, Seyed-Mehdi

    2013-01-01

    Abstract The protective effect of hydroalcoholic extract of hawthorn berries (HBE) on acetic acid (AA)–induced colitis in rats was investigated. Forty-two Wistar rats were divided into seven groups, including control and test groups (n=6). The control animals received saline, and the test animals were treated with saline (sham group), mesalamine (50 mg/kg; M group), atorvastatin (20 mg/kg; A group), HBE (100 mg/kg; H group), mesalamine and HBE (HM group), or atorvastatin plus HBE (HA group), 3 days before and a week after colitis induction. Colitis was induced by administration of 1 mL AA (4%) via a polyethylene catheter intrarectally. High-performance liquid chromatography analyses showed that HBE contained 0.13% and 0.5% oleanolic acid and ursolic acid, respectively. Elevated myeloperoxidase activity and lipid peroxidation were attenuated in the HA group. The H and HM groups showed marked reductions in colitis-induced decreases in total thiol molecules and body weight. The histopathological studies revealed that HBE decreased colitis-induced edema and infiltration of neutrophils. Our data suggest the anti-inflammatory and antioxidant effects of HBE and atorvastatin protect against AA-induced colitis. The anti-inflammatory effect of HBE may be attributable to its ability to decrease myeloperoxidase activity as a biomarker of neutrophil infiltration. PMID:23875899

  7. Trametes versicolor Protein YZP Activates Regulatory B Lymphocytes – Gene Identification through De Novo Assembly and Function Analysis in a Murine Acute Colitis Model

    PubMed Central

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Background Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. Results We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d+ B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. Conclusions We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d+ Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models. PMID:24019869

  8. Metronidazole-induced encephalopathy after prolonged metronidazole course for treatment of C. difficile colitis

    PubMed Central

    Godfrey, Mark S; Finn, Arkadiy; Zainah, Hadeel; Dapaah-Afriyie, Kwame

    2015-01-01

    A 65-year-old woman with a diagnosis of Clostridium difficile colitis undergoing prolonged treatment with metronidazole was admitted to hospital for altered mentation, slurred speech and weakness. She was diagnosed with metronidazole-induced encephalopathy, confirmed with brain MRI and improved when the offending agent was removed. This case report highlights encephalopathy as a complication of prolonged metronidazole treatment, which has become more common in clinical practice for the treatment of C. difficile infection. PMID:25596288

  9. Metronidazole-induced encephalopathy after prolonged metronidazole course for treatment of C. difficile colitis.

    PubMed

    Godfrey, Mark S; Finn, Arkadiy; Zainah, Hadeel; Dapaah-Afriyie, Kwame

    2015-01-16

    A 65-year-old woman with a diagnosis of Clostridium difficile colitis undergoing prolonged treatment with metronidazole was admitted to hospital for altered mentation, slurred speech and weakness. She was diagnosed with metronidazole-induced encephalopathy, confirmed with brain MRI and improved when the offending agent was removed. This case report highlights encephalopathy as a complication of prolonged metronidazole treatment, which has become more common in clinical practice for the treatment of C. difficile infection.

  10. Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm.

    PubMed

    Zou, Ying; Dai, Shi-Xue; Chi, Hong-Gang; Li, Tao; He, Zhi-Wei; Wang, Jian; Ye, Cai-Guo; Huang, Guo-Liang; Zhao, Bing; Li, Wen-Yang; Wan, Zheng; Feng, Jin-Shan; Zheng, Xue-Bao

    2015-10-01

    Baicalin, a flavonoid, has a wide range of pharmacological properties, including immunomodulation. The objective of this study was to investigate the effect of baicalin on the balance of T helper 17 (Th17) and regulatory T (Treg) cells in a colitis model. The rat colitis model was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baicalin (10 ml/kg, each) or mesalazine (positive control) was then administered orally for 7 days. Inflammatory and immunological responses were evaluated by pathology, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blot analysis, and flow cytometry. Our study showed that baicalin not only significantly attenuated TNBS-induced colitis by reducing the disease activity index as well as macroscopic and microscopic scores, but it also improved the weight loss and shortening of the colon. Baicalin treatment also induced a significant decrease in the levels of inflammatory mediators, including the myeloperoxidase activity, the levels of tumor necrosis factor α, IL-1β, and Th1-related cytokines IL-12 and IFN-γ. Furthermore, the beneficial effects of baicalin seem to be associated with regulation of the Th17 and Treg paradigm. We found that administration of baicalin significantly downregulated the number of Th17 cells and the levels of Th17-related cytokines (IL-17 and IL-6) and retinoic acid receptor-related orphan receptor γt. In contrast, there was an increase in Treg cells numbers, Treg-related cytokines transforming growth factor-β and IL-10, and forkhead box P3. Our results suggest that the anti-inflammatory effect of baicalin may be linked to modulation of the balance between Th17 and Treg cells in TNBS-induced ulcerative colitis.

  11. Melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, attenuates TNBS-induced colitis in mice.

    PubMed

    Zielińska, Marta; Jarmuż, Agata; Sałaga, Maciej; Kordek, Radzisław; Laudon, Moshe; Storr, Martin; Fichna, Jakub

    2016-05-01

    Melatonin is known as a strong antioxidant and possesses anti-inflammatory properties. Recently, melatonin was shown to improve colitis in animal models of inflammatory bowel diseases. The aim of the present study was to characterize the role of melatonin receptors (MT) in the anti-inflammatory effect of melatonin and to assess the anti-inflammatory potential of two novel MT receptor agonists, Neu-P11 and Neu-P67, in the mouse model of trinitrobenzenesulfonic acid (TNBS)-induced colitis. Colitis was induced on day 1 by intracolonic (i.c.) administration of TNBS in 30 % ethanol in saline. Melatonin (4 mg/kg, per os (p.o.)), Neu-P11 (20 mg/kg, p.o.; 50 mg/kg, intraperitoneally (i.p.), 50 mg/kg, i.c.), and Neu-P67 (20 mg/kg, p.o.) were given twice daily for 3 days. Luzindole (5 mg/kg, i.p.) was injected 15 min prior to melatonin administration. On day 4, macroscopic and microscopic damage scores were assessed and myeloperoxidase (MPO) activity quantified using O-dianisidine-based assay. Melatonin significantly attenuated colitis in mice, as indicated by the macroscopic score (1.90 ± 0.34 vs. 3.82 ± 0.62 for melatonin- and TNBS-treated mice, respectively), ulcer score (0.87 ± 0.18 vs. 1.31 ± 0.19, respectively), and MPO activity (4.68 ± 0.70 vs.6.26 ± 0.94, respectively). Luzindole, a MT receptor antagonist, did not inhibit the anti-inflammatory effect of melatonin (macroscopic score 1.12 ± 0.22, ulcer score 0.50 ± 0.16); however, luzindole increased MPO activity (7.57 ± 1.05). MT receptor agonists Neu-P11 and Neu-P67 did not improve inflammation induced by TNBS. Melatonin, but not MT receptor agonists, exerts potent anti-inflammatory action in acute TNBS-induced colitis. Our data suggests that melatonin attenuates colitis by additional, MT receptor-independent pathways.

  12. Azadirachta indica Attenuates Colonic Mucosal Damage in Experimental Colitis Induced by Trinitrobenzene Sulfonic Acid

    PubMed Central

    Gautam, M. K.; Goel, Shalini; Ghatule, R. R.; Singh, A.; Joshi, V. K.; Goel, R. K.

    2013-01-01

    Azadirachta indica leaves indicated the presence of active principles with proven antioxidants, antiinflammatory, immunomodulatory, free radical scavenging and healing properties. In the present study we evaluated the healing effects of 50% ethanol extract of dried leaves of Azadirachta indica on trinitrobenzene sulfonic acid-induced colitis in rats. Azadirachta indica extract (500 mg/kg) was administered orally, once daily for 14 days and studied for its effects on diarrhoea, food and water intake, body weight changes, colonic damage and inflammation, histology, antibacterial activity and free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and myeloperoxidase activities in colonic tissue. Intracolonic trinitrobenzene sulfonic acid increased colonic mucosal damage and inflammation, diarrhea, but decreased body weight which were reversed by Azadirachta indica extract and sulfasalazine (positive control) treatments. Azadirachta indica extract showed antibacterial activity. Azadirachta indica extract and sulfasalazine enhanced the antioxidants but decreased free radicals and myeloperoxidase activities affected in trinitrobenzene sulfonic acid-induced colitis. Azadirachta indica extract, thus seemed to be effective in healing trinitrobenzene sulfonic acid-induced colitis in rats. PMID:24403663

  13. Protective Effect of Amphipterygium adstringens Extract on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice

    PubMed Central

    Rodriguez-Canales, Mario; Jimenez-Rivas, Ruben; Canales-Martinez, Maria Margarita; Garcia-Lopez, Ana Judith; Rivera-Yañez, Nelly; Nieto-Yañez, Oscar; Ledesma-Soto, Yadira; Sanchez-Torres, Luvia Enid; Rodriguez-Sosa, Miriam; Terrazas, Luis Ignacio

    2016-01-01

    Amphipterygium adstringens is an endemic species in Mexico commonly known as “cuachalalate.” Healers to treat gastritis, gastric ulcers, and gastrointestinal cancer have traditionally used the bark. We investigated the effects of alcoholic extract of A. adstringens (AaEE) in DSS-induced colitis in mice. The protective effect of AaEE was determined at 200 mg/kg by oral gavage for 10 days. We determine the effect of AaEE on clinical features (disease activity index), antioxidants, anti-inflammatory, and immunomodulatory activities in relation to the activity of SOD, CAT, and GPx, levels of proinflammatory cytokines, and changes both macroscopic and microscopic of the colonic mucosa. AaEE significantly reduced the inflammation of colon and significantly increased SOD and GPx activities. AaEE also significantly decreased TNF-α, IFN-γ, and IL-1β cytokine levels compared to DSS-treated mice and reduced both infiltration of inflammatory cells and the mucosal damage in colon. The results suggested the protective potential of AaEE in DSS-induced colitis and this might be attributed to its phytochemicals compounds that have been found to induce a wide spectrum of activities such as reduction in oxidative stress, suppression of inflammation, modulating numerous signal transduction pathways, and induction of apoptosis. The findings of this study suggest that AaEE has substantial potential for the treatment of inflammatory colitis. PMID:27635116

  14. Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma.

    PubMed

    Zhang, Ming; Deng, Changsheng; Zheng, Jiaju; Xia, Jian; Sheng, Dan

    2006-08-01

    Curcumin is a widely used spice with anti-inflammatory and anti-cancer properties. It has been reported that curcumin held therapeutic effects on experimental colitis by inhibition of nuclear factor kappa B (NF-kappaB). The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor with anti-tumor and anti-inflammatory effects and its activation may inhibit the nuclear translocation of NF-kappaB. Several studies have shown that PPARgamma ligands had an important therapeutic effect in colitis. However there is no report about the alteration of PPARgamma in trinitrobenzene sulphonic acid (TNBS)-induced colitis treated with curcumin. In this study, we administered curcumin (30 mg/kg/day) by intraperitoneal injection immediately after colitis was induced and the injection lasted for two weeks. have evaluated the effects of curcumin on the colitis induced by trinitrobenzene sulphonic acid (TNBS). Curcumin (30 mg/kg d) was administered by intraperitoneal just after colitis was induced and lasted for two weeks. Therapeutic effects of dexamethasone (Dex, 2 mg/kg d) alone and the combined effects of curcumin+Dex were also examined. We found that curcumin improved long-term survival rate of disease-bearing rats, promoted rat body weight recovery, and decreased macroscopic scores of the colitis. The expression levels of PPARgamma, 15-deoxy-D12,14-prostaglandin J(2) (15d-PGJ(2)) and prostaglandin E(2) (PGE(2)) were all increased, but the expression level of cyclooxygenase-2 (COX-2) was decreased in rats after administration of curcumin. Treatment with Dex improved PPARgamma expression and inhibited the expression of COX-2, 15d-PGJ(2) and PGE(2). Combined effects of curcumin+Dex were similar to that of Dex. In summary, curcumin showed therapeutic effects on TNBS-induced colitis and the mechanisms by which curcumin exerts its effects may involve activation of PPARgamma and its ligands.

  15. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    PubMed Central

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  16. The noncommensal bacterium Methylococcus capsulatus (Bath) ameliorates dextran sulfate (Sodium Salt)-Induced Ulcerative Colitis by influencing mechanisms essential for maintenance of the colonic barrier function.

    PubMed

    Kleiveland, Charlotte R; Hult, Lene T Olsen; Spetalen, Signe; Kaldhusdal, Magne; Christofferesen, Trine Eker; Bengtsson, Oskar; Romarheim, Odd Helge; Jacobsen, Morten; Lea, Tor

    2013-01-01

    Dietary inclusion of a bacterial meal has recently been shown to efficiently abolish soybean meal-induced enteritis in Atlantic salmon. The objective of this study was to investigate whether inclusion of this bacterial meal in the diet could abrogate disease development in a murine model of epithelial injury and colitis and thus possibly have therapeutic potential in human inflammatory bowel disease. C57BL/6N mice were fed ad libitum a control diet or an experimental diet containing 254 g/kg of body weight BioProtein, a bacterial meal consisting of Methylococcus capsulatus (Bath), together with the heterogenic bacteria Ralstonia sp., Brevibacillus agri, and Aneurinibacillus sp. At day 8, colitis was induced by 3.5% dextran sulfate sodium (DSS) ad libitum in the drinking water for 6 days. Symptoms of DSS treatment were less profound after prophylactic treatment with the diet containing the BioProtein. Colitis-associated parameters such as reduced body weight, colon shortening, and epithelial damage also showed significant improvement. Levels of acute-phase reactants, proteins whose plasma concentrations increase in response to inflammation, and neutrophil infiltration were reduced. On the other, increased epithelial cell proliferation and enhanced mucin 2 (Muc2) transcription indicated improved integrity of the colonic epithelial layer. BioProtein mainly consists of Methylococcus capsulatus (Bath) (88%). The results that we obtained when using a bacterial meal consisting of M. capsulatus (Bath) were similar to those obtained when using BioProtein in the DSS model. Our results show that a bacterial meal of the noncommensal bacterium M. capsulatus (Bath) has the potential to attenuate DSS-induced colitis in mice by enhancing colonic barrier function, as judged by increased epithelial proliferation and increased Muc2 transcription.

  17. Effects of Dietary Plant Sterols and Stanol Esters with Low- and High-Fat Diets in Chronic and Acute Models for Experimental Colitis.

    PubMed

    te Velde, Anje A; Brüll, Florence; Heinsbroek, Sigrid E M; Meijer, Sybren L; Lütjohann, Dieter; Vreugdenhil, Anita; Plat, Jogchum

    2015-10-15

    In this study, we evaluated the effects of dietary plant sterols and stanols as their fatty acid esters on the development of experimental colitis. The effects were studied both in high- and low-fat diet conditions in two models, one acute and another chronic model of experimental colitis that resembles gene expression in human inflammatory bowel disease (IBD). In the first experiments in the high fat diet (HFD), we did not observe a beneficial effect of the addition of plant sterols and stanols on the development of acute dextran sulphate sodium (DSS) colitis. In the chronic CD4CD45RB T cell transfer colitis model, we mainly observed an effect of the presence of high fat on the development of colitis. In this HFD condition, the presence of plant sterol or stanol did not result in any additional effect. In the second experiments with low fat, we could clearly observe a beneficial effect of the addition of plant sterols on colitis parameters in the T cell transfer model, but not in the DSS model. This positive effect was related to the gender of the mice and on Treg presence in the colon. This suggests that especially dietary plant sterol esters may improve intestinal inflammation in a T cell dependent manner.

  18. Psychological stress reactivates dextran sulfate sodium-induced chronic colitis in mice.

    PubMed

    Melgar, S; Engström, K; Jägervall, A; Martinez, V

    2008-09-01

    Inflammatory bowel disease (IBD) is a chronic condition with alternating active and quiescent phases of inflammation. Stress has been suggested as a factor triggering a relapse of IBD. We investigated the role of repetitive psychological stress [water avoidance stress (WAS)] in reactivating colonic inflammation in a murine model of dextran sulfate sodium (DSS)-induced chronic colitis. Colitis was induced in C57BL/6 female mice by exposure to 3% DSS (5 days). During chronic inflammation(day 34), mice underwent repetitive WAS (1 h/day/7 days) and were given a sub-threshold concentration of DSS (1%, 5 days)or normal water to drink. At euthanasia (day 40), inflammatory parameters were assessed (colon inflammatory score, levels of inflammatory markers and histology). Mice with chronic colitis exposed to WAS had higher macroscopic and microscopic colonic inflammatory scores and levels of inflammatory markers (mainly IL-1beta, IL12p40 and CCL5) than non-stressed mice. Inflammatory responses were further enhanced by the presence of a sub-threshold concentration of DSS (1%). In mice without chronic inflammation, neither WAS nor 1% DSS, individually or in combination, elicited any inflammation. Hence stress, per se, reactivates a quiescent chronic inflammation, but does not initiate inflammation in healthy mice. Stress should be regarded as an environmental factor triggering IBD relapses in humans.

  19. Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice.

    PubMed

    Taya, Sirinya; Kakehashi, Anna; Wongpoomchai, Rawiwan; Gi, Min; Ishii, Naomi; Wanibuchi, Hideki

    2016-01-01

    Ulcerative colitis (UC) results from colonic epithelial barrier defects and impaired mucosal immune responses. In this study, we aimed to investigate the modifying effects of a Spirogyra neglecta extract (SNE), a polysaccharide extract (PE) and a chloroform fraction (CF) on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the mechanisms. To induce colitis, ICR mice received 3% DSS in their drinking water for 7 days. Seven days preceding the DSS treatment, oral administration of SNE, PE and CF at doses of 50, 25 and 0.25 mg/kg body weight (low dose), 200, 100 and 1 mg/kg body weight (high dose) and vehicle was started and continued for 14 days. Histologic findings showed that DSS-induced damage of colonic epithelial structure and inflammation was attenuated in mice pre-treated with SNE, PE and CF. Furthermore, SNE and PE significantly protected colonic epithelial cells from DSS-induced cell cycle arrest, while SNE, PE and CF significantly diminished apoptosis. Proteome analysis demonstrated that SNE and PE might ameliorate DSS-induced colitis by inducing antioxidant enzymes, restoring impaired mitochondria function, and regulating inflammatory cytokines, proliferation and apoptosis. These results suggest that SNE and PE could prevent DSS-induced colitis in ICR mice by protection against and/or aiding recovery from damage to the colonic epithelium, reducing ROS and maintaining normal mitochondrial function and apoptosis.

  20. Effects of Boswellia serrata in mouse models of chemically induced colitis.

    PubMed

    Kiela, Pawel R; Midura, Anna J; Kuscuoglu, Nesrin; Jolad, Shivanand D; Sólyom, Anikó M; Besselsen, David G; Timmermann, Barbara N; Ghishan, Fayez K

    2005-04-01

    Extracts from Boswellia serrata have been reported to have anti-inflammatory activity, primarily via boswellic acid-mediated inhibition of leukotriene synthesis. In three small clinical trials, boswellia was shown to improve symptoms of ulcerative colitis and Crohn's disease, and because of its alleged safety, boswellia was considered superior over mesalazine in terms of a benefit-risk evaluation. The goal of this study was to evaluate the effectiveness of boswellia extracts in controlled settings of dextran sulfate- or trinitrobenzene sulfonic acid-induced colitis in mice. Our results suggest that boswellia is ineffective in ameliorating colitis in these models. Moreover, individual boswellic acids were demonstrated to increase the basal and IL-1beta-stimulated NF-kappaB activity in intestinal epithelial cells in vitro as well as reverse proliferative effects of IL-1beta. We also observed hepatotoxic effect of boswellia with pronounced hepatomegaly and steatosis. Hepatotoxity and increased lipid accumulation in response to boswellia were further confirmed in vitro in HepG2 cells with fluorescent Nile red binding/resazurin reduction assay and by confocal microscopy. Microarray analyses of hepatic gene expression demonstrated dysregulation of a number of genes, including a large group of lipid metabolism-related genes, and detoxifying enzymes, a response consistent with that to hepatotoxic xenobiotics. In summary, boswellia does not ameliorate symptoms of colitis in chemically induced murine models and, in higher doses, may become hepatotoxic. Potential implications of prolonged and uncontrolled intake of boswellia as an herbal supplement in inflammatory bowel disease and other inflammatory conditions should be considered in future clinical trials with this botanical.

  1. Salvia miltiorrhiza (dan shen) significantly ameliorates colon inflammation in dextran sulfate sodium induced colitis.

    PubMed

    Wen, Xiao-Dong; Wang, Chong-Zhi; Yu, Chunhao; Zhang, Zhiyu; Calway, Tyler; Wang, Yunwei; Li, Ping; Yuan, Chun-Su

    2013-01-01

    Inflammatory bowel disease increases the risks of human colorectal cancer. In this study, the effects of Salvia miltiorrhiza extract (SME) on chemically-induced colitis in a mouse model were evaluated. Chemical composition of SME was determined by HPLC analysis. A/J mice received a single injection of AOM 7.5 mg/kg. After one week, these mice received 2.5% DSS for eight days, or DSS plus SME (25 or 50 mg/kg). DSS-induced colitis was scored with the disease activity index (DAI). Body weight and colon length were also measured. The severity of inflammatory lesions was further evaluated by colon tissue histological assessment. HPLC assay showed that the major constituents in the tested SME were danshensu, protocatechuic aldehyde, salvianolic acid D, and salvianolic acid B. In the model group, the DAI score reached its highest level on Day 8, while the SME group on both doses showed a significantly reduced DAI score (both p < 0.01). As an objective index of the severity of inflammation, colon length was significantly shorter in the model group than the vehicle group. Treatment with 25 and 50 mg/kg of SME inhibited the shortening of colon in a dose-related manner (p < 0.05 and p < 0.01, respectively). SME groups also significantly reduced weight reduction (p < 0.05). Colitis histological data supported the pharmacological observations. Thus, Salvia miltiorrhiza could be a promising candidate in preventing and treating colitis and in reducing the risks of inflammation-associated colorectal cancer.

  2. Bacillus Coagulans GBI-30 (BC30) improves indices of Clostridium difficile-Induced colitis in mice

    PubMed Central

    2011-01-01

    Background Probiotics have beneficial effects in rodent models of Clostridium difficile (C. diffiicle)-induced colitis. The spore forming probiotic strain Bacillus Coagulans GBI-30, 6086 (BC30) has demonstrated anti-inflammatory and immune-modulating effects in vitro. Our goal was to determine if BC30 improved C. difficile-induced colitis in mice. Starting on study day 0, female C57BL/6 mice were dosed by oro-gastric gavage for 15 days with vehicle (saline) or BC30 (2 × 109 CFU per day). Mice in the C. difficile groups received an antibiotic mixture (study days 5 to 8 in the drinking water), and clindamycin (10 mg/kg, i.p., on study day 10). The C. difficile strain VPI 10463 was given by gavage at 104 CFU to induce colitis on day 11. On day 16, stools and colons were collected for further analyses. Results All mice treated with BC30 survived on study day 13, while two mice treated with vehicle did not survive. On day 12, a significant difference (p = 0.0002) in the percentage of mice with normal stools (66.7%) was found in the BC30/C. difficile group, as compared to the vehicle/C. diffcile group (13.0%). On study day 16, 23.8% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0187). On this day, the stool consistency score for the BC30/C. difficile group (1.1 ± 0.2) was significantly lower (p < 0.05) than for the vehicle/C. difficile cohort (1.9 ± 0.2). BC30 modestly attenuated the colonic pathology (crypt damage, edema, leukocyte influx) that was present following C. difficile infection. Colonic MIP-2 chemokine contents (pg/2 cm colon) were: 10.2 ± 0.5 (vehicle/no C. difficile), 24.6 ± 9.5 (vehicle/C. difficile) and 16.3 ± 4.3 (BC30/C. difficle). Conclusion The probiotic BC30 improved some parameters of C. difficile-induced colitis in mice. BC30 prolonged the survival of C. diffiicle infected mice. Particularly, this probiotic improved the stool consistency of mice, in this infectious colitis model. PMID

  3. SPECT-computed tomography in rats with TNBS-induced colitis: A first step toward functional imaging

    PubMed Central

    Marion-Letellier, Rachel; Bohn, Pierre; Modzelewski, Romain; Vera, Pierre; Aziz, Moutaz; Guérin, Charlène; Savoye, Guillaume; Savoye-Collet, Céline

    2017-01-01

    AIM To assess the feasibility of SPECT-computed tomography (CT) in rats with trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and confront it with model inflammatory characteristics. METHODS Colitis was induced in Sprague-Dawley rats by intrarectal injection of TNBS (n = 10) while controls received vehicle (n = 10). SPECT-CT with intravenous injection of 10 MBq of 67Ga-Citrate was performed at day 2. SPECT-CT criteria were colon wall thickness and maximal wall signal intensity. Laboratory parameters were assessed: colon weight:length ratio, colon cyclooxygenase-2 expression by western blot and histological inflammatory score. RESULTS Colon weight/length ratio, colon COX-2 expression and histological inflammatory score were significantly higher in the TNBS group than in the control group (P = 0.0296, P < 0.0001, P = 0.0007 respectively). Pixel max tend to be higher in the TNBS group than in the control group but did not reach statistical significance (P = 0.0662). Maximal thickness is significantly increased in the TNBS group compared to the control group (P = 0.0016) while colon diameter is not (P = 0.1904). Maximal thickness and colon diameter were correlated to colon COX-2 expression (P = 0.0093, P = 0.009 respectively) while pixel max was not (P = 0.22). Maximal thickness was significantly increased when inflammation was histologically observed (P = 0.0043) while pixel max and colon diameter did not (P = 0.2452, P = 0.3541, respectively). CONCLUSION SPECT-CT is feasible and easily distinguished control from colitic rats. PMID:28127195

  4. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κВ activation.

    PubMed

    Lv, Jun; Zhang, Yahong; Tian, Zhiqiang; Liu, Fang; Shi, Ying; Liu, Yao; Xia, Peiyuan

    2017-05-01

    Astragalus polysaccharide (APS) is a bioactive extract of Astragalus membranaceus (AM), which possess a wide range of medicinal benefits, including anti-inflammatory, anti-oxidative, anti-tumor and anti-diabetic effects. The present work evaluated the therapeutic effect of APS and its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. The APS treatment led to significant improvements in colitis disease activity index (DAI) and histological scores, as well as significantly increased weight and colon length in mice as compared to the control group. Mechanically, reduced NF-κВ DNA phosphorylation activity and downregulated TNF-α, IL-1β, IL-6, IL-17 expressions and myeloperoxidase (MPO) activity were associated with improvement in colitis observed in APS-treated mice. These findings suggest that APS may represent a natural therapeutic approach for treating inflammatory bowel disease, such as ulcerative colitis.

  5. Effects of dexpanthenol on acetic acid-induced colitis in rats

    PubMed Central

    Cagin, Yasir Furkan; Parlakpinar, Hakan; Vardi, Nigar; Polat, Alaadin; Atayan, Yahya; Erdogan, Mehmet Ali; Tanbek, Kevser

    2016-01-01

    While the pathogenesis of acetic acid (AA)-induced colitis is unclear, reactive oxygen species are considered to have a significant effect. The aim of the present study was to elucidate the therapeutic potential of dexpanthenol (Dxp) on the amelioration of colitis in rats. Group I (n=8; control group) was intrarectally administered 1 ml saline solution (0.9%); group II [n=8; AA] was administered 4% AA into the colon via the rectum as a single dose for three consecutive days; group III (n=8; AA + Dxp) was administered AA at the same dosage as group II from day 4, and a single dose of Dxp was administered intraperitoneally; and group IV (n=8; Dxp) was administered Dxp similarly to Group III. Oxidative stress and colonic damage were assessed via biochemical and histologic examination methods. AA treatment led to an increase in oxidative parameters and a decrease in antioxidant systems. Histopathological examination showed that AA treatment caused tissue injury and increased caspase-3 activity in the distal colon and triggered apoptosis. Dxp treatment caused biochemical and histopathological improvements, indicating that Dxp may have an anti-oxidant effect in colitis; therefore, Dxp may be a potential therapeutic agent for the amelioration of IBD. PMID:27882101

  6. Effects of dexpanthenol on acetic acid-induced colitis in rats.

    PubMed

    Cagin, Yasir Furkan; Parlakpinar, Hakan; Vardi, Nigar; Polat, Alaadin; Atayan, Yahya; Erdogan, Mehmet Ali; Tanbek, Kevser

    2016-11-01

    While the pathogenesis of acetic acid (AA)-induced colitis is unclear, reactive oxygen species are considered to have a significant effect. The aim of the present study was to elucidate the therapeutic potential of dexpanthenol (Dxp) on the amelioration of colitis in rats. Group I (n=8; control group) was intrarectally administered 1 ml saline solution (0.9%); group II [n=8; AA] was administered 4% AA into the colon via the rectum as a single dose for three consecutive days; group III (n=8; AA + Dxp) was administered AA at the same dosage as group II from day 4, and a single dose of Dxp was administered intraperitoneally; and group IV (n=8; Dxp) was administered Dxp similarly to Group III. Oxidative stress and colonic damage were assessed via biochemical and histologic examination methods. AA treatment led to an increase in oxidative parameters and a decrease in antioxidant systems. Histopathological examination showed that AA treatment caused tissue injury and increased caspase-3 activity in the distal colon and triggered apoptosis. Dxp treatment caused biochemical and histopathological improvements, indicating that Dxp may have an anti-oxidant effect in colitis; therefore, Dxp may be a potential therapeutic agent for the amelioration of IBD.

  7. Visceral and somatic hypersensitivity in TNBS-induced colitis in rats.

    PubMed

    Zhou, QiQi; Price, Donald D; Caudle, Robert M; Verne, G Nicholas

    2008-02-01

    Inflammation of visceral structures in rats has been shown to produce visceral/somatic hyperalgesia. Our objectives were to determine if trinitrobenzene sulfonic acid (TNBS) induced colitis in rats leads to visceral/somatic hypersensitivity. Male Sprague-Dawley rats (200-250 g) were treated with 20 mg of TNBS in 50% ethanol (n = 40) or an equivalent volume of ethanol (n = 40) or saline (n = 25) via the colon. Colonic distension, Von Frey, Hargreaves, and tail reflex tests were used to evaluate for visceral, mechanical, and thermal sensitivity. The rats demonstrated visceral hypersensitivity at 2-28 days following TNBS administration (P < 0.0001). The ethanol-treated rats also demonstrated visceral hypersensitivity that resolved after day 14. TNBS-treated rats demonstrated somatic hypersensitivity at days 14-28 (P < 0.0001) in response to somatic stimuli of the hind paw. TNBS colitis is associated with visceral and somatic hypersensitivity in areas of somatotopic overlap. This model of colitis should allow further investigation into the mechanisms of visceral and somatic hypersensitivity.

  8. Types of Ulcerative Colitis

    MedlinePlus

    ... total) Colitis Affects the entire colon. Symptoms include diarrhea, severe abdominal pain, cramps, and extensive weight loss. Potentially serious complications include massive bleeding and acute dilation of the colon (toxic megacolon), which may ...

  9. Prevention of Chronic Experimental Colitis Induced by Dextran Sulphate Sodium (DSS) in Mice Treated with FR91

    PubMed Central

    Lombardi, Valter R. M.; Etcheverría, Ignacio; Carrera, Iván; Cacabelos, Ramón; Chacón, Antonio R.

    2012-01-01

    One of the main treatments currently used in humans to fight cancer is chemotherapy. A huge number of compounds with antitumor activity are present in nature, and many of their derivatives are produced by microorganisms. However, the search for new drugs still represents a main objective for cancer therapy, due to drug toxicity and resistance to multiple chemotherapeutic drugs. In animal models, a short-time oral administration of dextran sulfate sodium (DSS) induces colitis, which exhibits several clinical and histological features similar to ulcerative colitis (UC). However, the pathogenic factors responsible for DSS-induced colitis and the subsequent colon cancer also remain unclear. We investigated the effect of FR91, a standardized lysate of microbial cells belonging to the Bacillus genus which has been previously shown to have significant immunomodulatory effects, against intestinal inflammation. Colitis was induced in mice during 5 weeks by oral administration 2% (DSS). Morphological changes in the colonic mucosa were evaluated by hematoxylin-eosin staining and immunohistochemistry methods. Adenocarcinoma and cryptal cells of the dysplastic epithelium showed cathenin-β, MLH1, APC, and p53 expression, together with increased production of IFN-γ. In our model, the optimal dose response was the 20% FR91 concentration, where no histological alterations or mild DSS-induced lesions were observed. These results indicate that FR91 may act as a chemopreventive agent against inflammation in mice DSS-induced colitis. PMID:22619498

  10. Effects of Guchang Capsule on Dextran Sulphate Sodium-Induced Experimental Ulcerative Colitis in Mice

    PubMed Central

    Liu, Baoshan; Liu, Tong; Wang, Xiaohong; Zheng, Xin; Wang, Hong; Ma, Lin

    2016-01-01

    Guchang capsule (GC) is a Chinese materia medica standardized product extracted from 15 Chinese traditional medical herbs and it has been clinically used in the treatment of intestinal disease. In this study, in order to extend the research of GC in intestinal disease, we were aiming to evaluate potential effects of GC on dextran sulphate sodium- (DSS-) induced murine experimental colitis and to elucidate the underlying mechanisms. GC treatment attenuated DSS-induced body weight loss and reduced the mortality. Moreover, GC treatment prevented DSS-induced colonic pathological damage; meanwhile it inhibited proinflammatory cytokines production in colon tissues. In vitro, GC significantly reduced LPS-induced proinflammatory cytokines production via inhibiting the activation of NF-κB in macrophage cells, and the expressions of several long noncoding RNAs (lncRNAs) which were reported in regulating NF-κB signaling pathway were obviously affected by adding GC into culture medium. In conclusion, our data suggested that administration of GC exhibits therapeutic effects on DSS-induced colitis partially through regulating the expression of NF-κB related lncRNAs in infiltrating immune cells. PMID:27313642

  11. Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model.

    PubMed

    Iraporda, Carolina; Romanin, David E; Bengoa, Ana A; Errea, Agustina J; Cayet, Delphine; Foligné, Benoit; Sirard, Jean-Claude; Garrote, Graciela L; Abraham, Analía G; Rumbo, Martín

    2016-01-01

    Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties.

  12. Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model

    PubMed Central

    Iraporda, Carolina; Romanin, David E.; Bengoa, Ana A.; Errea, Agustina J.; Cayet, Delphine; Foligné, Benoit; Sirard, Jean-Claude; Garrote, Graciela L.; Abraham, Analía G.; Rumbo, Martín

    2016-01-01

    Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties. PMID:28082985

  13. Plant-derived polysaccharide supplements inhibit dextran sulfate sodium-induced colitis in the rat.

    PubMed

    Koetzner, Lee; Grover, Gary; Boulet, Jamie; Jacoby, Henry I

    2010-05-01

    Several plant-derived polysaccharides have been shown to have anti-inflammatory activity in animal models. Ambrotose complex and Advanced Ambrotose are dietary supplements that include aloe vera gel, arabinogalactan, fucoidan, and rice starch, all of which have shown such activity. This study was designed to evaluate these formulations against dextran sulfate sodium (DSS)-induced colitis in rats and to confirm their short-term safety after 14 days of daily dosing. Rats were dosed daily orally with vehicle, Ambrotose or Advanced Ambrotose. On day six groups of rats received tap water or 5% Dextran Sulfate sodium. Ambrotose and Advanced Ambrotose significantly lowered the disease scores and partially prevented the shortening of colon length. An increase in monocyte count was induced by dextran sulfate sodium and inhibited by Ambrotose and Advanced Ambrotose. There were no observable adverse effects after 14-day daily doses. The mechanism of action of the formulations against DSS-induced colitis may be related to its effect on monocyte count.

  14. Plant-Derived Polysaccharide Supplements Inhibit Dextran Sulfate Sodium-Induced Colitis in the Rat

    PubMed Central

    Koetzner, Lee; Grover, Gary; Boulet, Jamie

    2009-01-01

    Several plant-derived polysaccharides have been shown to have anti-inflammatory activity in animal models. Ambrotose complex and Advanced Ambrotose are dietary supplements that include aloe vera gel, arabinogalactan, fucoidan, and rice starch, all of which have shown such activity. This study was designed to evaluate these formulations against dextran sulfate sodium (DSS)-induced colitis in rats and to confirm their short-term safety after 14 days of daily dosing. Rats were dosed daily orally with vehicle, Ambrotose or Advanced Ambrotose. On day six groups of rats received tap water or 5% Dextran Sulfate sodium. Ambrotose and Advanced Ambrotose significantly lowered the disease scores and partially prevented the shortening of colon length. An increase in monocyte count was induced by dextran sulfate sodium and inhibited by Ambrotose and Advanced Ambrotose. There were no observable adverse effects after 14-day daily doses. The mechanism of action of the formulations against DSS-induced colitis may be related to its effect on monocyte count. PMID:19513840

  15. The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner.

    PubMed

    Ryu, Seung-Hyun; Park, Jong-Hyung; Choi, Soo-Young; Jeon, Hee-Yeon; Park, Jin-Il; Kim, Jun-Young; Ham, Seung-Hoon; Choi, Yang-Kyu

    2016-07-28

    The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.

  16. Dietary medium-chain triglycerides prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ishii, Kenichi; Hosomura, Naohiro; Ogiku, Masahito

    2010-03-01

    The effects of dietary medium-chain triglycerides (MCTs) on experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) were investigated in rats. Male Wistar rats were given an intracolonic injection of TNBS and were then fed liquid diets containing MCTs or corn oil (AIN93) as controls. Serum and tissue samples were collected 1 week after TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase (MPO) activity was measured. Furthermore, messenger RNA (mRNA) and protein levels for inflammatory cytokines and a chemokine were assessed by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. In another set of experiments, the protein expression of Toll-like receptor (TLR)-4 in the colon was measured 1 week after feeding of liquid diets. To investigate the effects of MCTs on macrophages, RAW246.7 macrophages were incubated with media containing albumin conjugated with MCT or linoleic acid, which is the major component of corn oil. Then, the production of tumor necrosis factor-alpha (TNF-alpha) was measured. Dietary MCTs blunted significantly the protein levels of TLR-4 in the colon. Furthermore, the expression of TLR-4 was significantly blunted in RAW264.7 cells incubated with MCTs compared with cells incubated with linoleic acid. Induction of interleukin 1beta (IL-1beta), TNF-alpha, and macrophage inflammatory protein-2 (MIP-2) in the colon was attenuated by dietary MCT. Furthermore, MPO activities in the colonic tissue were significantly blunted in animals fed the MCT diets compared with those fed the control diets. As a result, dietary MCTs improved chemically induced colitis significantly. MCTs most likely are useful for the therapy of inflammatory bowel disease as an anti-inflammatory immunomodulating nutrient.

  17. Altered sympathovagal balance and pain hypersensitivity in TNBS-induced colitis

    PubMed Central

    Furgała, Agata; Dobrek, Łukasz; Juszczak, Kajetan; Thor, Piotr

    2016-01-01

    Introduction Pain hypersensitivity, abnormal motility and autonomic dysfunction contribute to functional symptoms of inflammatory bowel disease (IBD). Material and methods The aim of this study was to assess: nociceptive thresholds for mechanical allodynia (MA) and thermal hyperalgesia (TH), intestinal motility (distal colonic transit and emptying), and cardiac autonomic neuropathy (indices of heart rate variability – HRV) in male Wistar rats with experimental trinitrobenzene sulfonic acid (TNBS) induced colitis. To identify a potential vagal contribution the bilateral subdiaphragmatic vagotomy (SDV) was performed. Results Experimental colitis resulted in a significant decrease in pain threshold (MA 23.60 ±2.12, p < 0.001, TH 8.51 ±1.49, p < 0.001), reduced expulsion time (6.2 ±3.5, p < 0,01) and increase in the sympathetic autonomic activity (LFnu 32.54 ±21.16, p < 0.03). The animals with diminished vagal integrity presented with reduced gastrointestinal motility (39.8 ±25.1, p < 0.01) and a decrease in the parasympathetic high-frequency domain of HRV (HFnu 55.37 ±22.80, p < 0.002). The vagotomized rats with colitis showed the strongest nociceptive response (MA 22.46 ±3.02, p < 0.004; TH 7.99 ±1.12, p < 0.003) as well as significant changes in sympatho-vagal balance on HRV testing (LFnu 28.25 ±14.66, p < 0.04; HFnu 71.34 ±14.55, p < 0.04). Conclusions The relationship between the cardiovascular and gastrointestinal system is modulated by neural, hormonal and inflammatory factors. This leads to dysregulation of the brain-gut interactions in the course of IBD. Sensitization and visceral-somatic convergence trigger pain hypersensitivity and autonomic sympathovagal imbalance. While integral vagal innervation impacts analgesic mechanisms via modulation of the immune response, SDV raises sympathetic activity and induces excessive hyperalgesia. PMID:28144278

  18. Soluble Epoxide Hydrolase Deficiency Inhibits Dextran Sulfate Sodium-induced Colitis and Carcinogenesis in Mice

    PubMed Central

    DONG, HUA; LIAO, JIE; HAMMOCK, BRUCE D.; YANG, GUANG-YU

    2014-01-01

    Soluble epoxide hydrolase (sEH) hydrolyses/inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs) to their corresponding diols, and targeting sEH leads to strong anti-inflammatory effects. In the present study, using a tissue microarray and immunohistochemical approach, a significant increase of sEH expression was identified in ulcerative colitis (UC)-associated dysplasia and adenocarcinoma. The effects of deficiency in the sEH gene were determined on dextran sulfate sodium (DSS) colitis-induced carcinogenesis. The effects of EETs on lipopolysaccharide (LPS)-activated macrophages were analyzed in vitro. With extensive histopathological and immunohistochemical analyses, compared to wild-type mice, sEH−/− mice exhibited a significant decrease in tumor incidence (13/20 vs. 6/19, p<0.05) and a markedly reduced average tumor size (59.62±20.91 mm3 vs. 22.42±11.22 mm3), and a significant number of pre-cancerous dysplasia (3±1.18 vs. 2±0.83, p<0.01). The inflammatory activity, as measured by the extent/proportion of erosion/ulceration/dense lymphoplasmacytosis (called active colitis index) in the colon, was significantly lower in sEH−/− mice (44.7%±24.9% vs. 20.2%±16.2%, p<0.01). The quantitative polymerase chain reaction (qPCR) assays demonstrated significantly low levels of cytokines/chemokines including monocyte chemoattractant protein (MCP-1), inducible nitric oxide synthase (iNOS), vasopressin-activated calcium-mobilizing (VCAM-1), interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). In vitro, LPS-activated macrophages treated with 14,15-EET showed a significant reduction of LPS-triggered IL-1β and TNF-α expression. Eicosanoic acid metabolic profiling revealed a significant increase of the ratios of EETs/dihydroeicosatrienoic acids (DHETs) and epoxyoctadecennoic acid/dihydroxyoctadecenoic acid (EpOMEs/DiHOMEs). These results indicate that sEH plays an important role in the development of colitis and in inducing carcinogenesis

  19. Therapeutic and prophylactic thalidomide in TNBS-induced colitis: Synergistic effects on TNF-α, IL-12 and VEGF production

    PubMed Central

    Carvalho, Ana Teresa; Souza, Heitor; Carneiro, Antonio Jose; Castelo-Branco, Morgana; Madi, Kalil; Schanaider, Alberto; Silva, Flavia; Pereira Jứnior, Fernando Antonio; Pereira, Márcia G; Tortori, Cláudio; Dines, Ilana; Carvalho, Jane; Rocha, Eduardo; Elia, Celeste

    2007-01-01

    AIM: To evaluated the therapeutic and prophylactic effect of thalidomide on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thalidomide has been reported to downregulate the expression of tumor necrosis factor α (TNF-α), IL-12, and vascular endothelial growth factor (VEGF), hallmarks of intestinal inflammation in Crohn’s disease (CD). METHODS: Male Wistar rats were divided in five groups of ten animals each. Four groups received a rectal infusion of TNBS in ethanol. The first group was sacrificed 7 d after colitis induction. The second and third groups received either thalidomide or placebo by gavage and were sacrificed at 14 d. The fourth group received thalidomide 6 h before TNBS administration, and was sacrificed 7 d after induction. The fifth group acted as the control group and colitis was not induced. Histological inflammatory scores of the colon were performed and lamina propria CD4+ T cells, macrophages, and VEGF+ cells were detected by immunohistochemistry. TNF-α and IL-12 were quantified in the supernatant of organ cultures by ELISA. RESULTS: Significant reduction in the inflammatory score and in the percentage of VEGF+ cells was observed in the group treated with thalidomide compared with animals not treated with thalidomide. Both TNF-α and IL-12 levels were significantly reduced among TNBS induced colitis animals treated with thalidomide compared with animals that did not receive thalidomide. TNF-α levels were also significantly reduced among the animals receiving thalidomide prophylaxis compared with untreated animals with TNBS-induced colitis. Intestinal levels of TNF-α and IL-12 were significantly correlated with the inflammatory score and the number of VEGF+ cells. CONCLUSION: Thalidomide significantly attenuates TNBS-induced colitis by inhibiting the intestinal production of TNF-α, IL-12, and VEGF. This effect may support the use of thalidomide as an alternate approach in selected patients with CD. PMID:17465495

  20. TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice

    PubMed Central

    Vlantis, Katerina; Polykratis, Apostolos; Welz, Patrick-Simon; van Loo, Geert; Pasparakis, Manolis; Wullaert, Andy

    2016-01-01

    Objective The gut microbiota modulates host susceptibility to intestinal inflammation, but the cell types and the signalling pathways orchestrating this bacterial regulation of intestinal homeostasis remain poorly understood. Here, we investigated the function of intestinal epithelial toll-like receptor (TLR) responses in the dextran sodium sulfate (DSS)-induced mouse model of colitis. Design We applied an in vivo genetic approach allowing intestinal epithelial cell (IEC)-specific deletion of the critical TLR signalling adaptors, MyD88 and/or TIR-domain-containing adapter-inducing interferon-β (TRIF), as well as the downstream ubiquitin ligase TRAF6 in order to reveal the IEC-intrinsic function of these TLR signalling molecules during DSS colitis. Results Mice lacking TRAF6 in IECs showed exacerbated DSS-induced inflammatory responses that ensued in the development of chronic colon inflammation. Antibiotic pretreatment abolished the increased DSS susceptibility of these mice, showing that epithelial TRAF6 signalling pathways prevent the gut microbiota from driving excessive colitis. However, in contrast to epithelial TRAF6 deletion, blocking epithelial TLR signalling by simultaneous deletion of MyD88 and TRIF specifically in IECs did not affect DSS-induced colitis severity. This in vivo functional comparison between TRAF6 and MyD88/TRIF deletion in IECs shows that the colitis-protecting effects of epithelial TRAF6 signalling are not triggered by TLRs. Conclusions Intestinal epithelial TRAF6-dependent but MyD88/TRIF-independent and, thus, TLR-independent signalling pathways are critical for preventing propagation of DSS-induced colon inflammation by the gut microbiota. Moreover, our experiments using mice with dual MyD88/TRIF deletion in IECs unequivocally show that the gut microbiota trigger non-epithelial TLRs rather than epithelial TLRs to restrict DSS colitis severity. PMID:25761602

  1. Lack of Adrenomedullin Results in Microbiota Changes and Aggravates Azoxymethane and Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Martínez-Herrero, Sonia; Larrayoz, Ignacio M.; Narro-Íñiguez, Judit; Villanueva-Millán, María J.; Recio-Fernández, Emma; Pérez-Matute, Patricia; Oteo, José A.; Martínez, Alfredo

    2016-01-01

    The link between intestinal inflammation, microbiota, and colorectal cancer is intriguing and the potential underlying mechanisms remain unknown. Here we evaluate the influence of adrenomedullin (AM) in microbiota composition and its impact on colitis with an inducible knockout (KO) mouse model for AM. Microbiota composition was analyzed in KO and wild type (WT) mice by massive sequencing. Colitis was induced in mice by administration of azoxymethane (AOM) followed by dextran sulfate sodium (DSS) in the drinking water. Colitis was evaluated using a clinical symptoms index, histopathological analyses, and qRT-PCR. Abrogation of the adm gene in the whole body was confirmed by PCR and qRT-PCR. KO mice exhibit significant changes in colonic microbiota: higher proportion of δ-Proteobacteria class; of Coriobacteriales order; and of other families and genera was observed in KO feces. Meanwhile these mice had a lower proportion of beneficial bacteria, such as Lactobacillus gasseri and Bifidobacterium choerinum. TLR4 gene expression was higher (p < 0.05) in KO animals. AM deficient mice treated with DSS exhibited a significantly worse colitis with profound weight loss, severe diarrhea, rectal bleeding, colonic inflammation, edema, infiltration, crypt destruction, and higher levels of pro-inflammatory cytokines. No changes were observed in the expression levels of adhesion molecules. In conclusion, we have shown that lack of AM leads to changes in gut microbiota population and in a worsening of colitis conditions, suggesting that endogenous AM is a protective mediator in this pathology. PMID:27965594

  2. Impact of dextran sulphate sodium-induced colitis on the intestinal transport of the colon carcinogen PhIP.

    PubMed

    Nicken, Petra; von Keutz, Anne; Willenberg, Ina; Ostermann, Annika I; Schebb, Nils Helge; Giovannini, Samoa; Kershaw, Olivia; Breves, Gerhard; Steinberg, Pablo

    2016-05-01

    Colorectal cancer is one of the most frequent cancers in Western countries. Chronic intestinal diseases such as Crohn's disease and ulcerative colitis, in which the intestinal barrier is massively disturbed, significantly raise the risk of developing a colorectal tumour. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a genotoxic heterocyclic aromatic amine that is formed after strongly heating fish and meat. In this study, the hypothesis that PhIP uptake in the gut is increased during chronic colitis was tested. Chronic colitis was induced by oral administration of dextran sulphate sodium (DSS) to Fischer 344 rats. The transport of PhIP in eight different rat intestinal segments was examined in Ussing chambers. The tissues were incubated with 10 µM PhIP for 90 min, and the concentration of PhIP was determined in the mucosal and serosal compartments of the Ussing chambers as well as in the clamped tissues by LC-MS. Although chronic colitis was clearly induced in the rats, no differences in the intestinal transport of PhIP were observed between control and DSS-treated animals. The hypothesis that in the course of chronic colitis more PhIP is taken up by the intestinal epithelium, thereby increasing the risk of developing colorectal cancer, could not be confirmed in the present report.

  3. β7-Integrin exacerbates experimental DSS-induced colitis in mice by directing inflammatory monocytes into the colon.

    PubMed

    Schippers, A; Muschaweck, M; Clahsen, T; Tautorat, S; Grieb, L; Tenbrock, K; Gaßler, N; Wagner, N

    2016-03-01

    Leukocyte recruitment is pivotal for the initiation and perpetuation of inflammatory bowel disease (IBD) and controlled by the specificity and interactions of chemokines and adhesion molecules. Interactions of the adhesion molecules α4β7-integrin and mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) promote the accumulation of pathogenic T-cell populations in the inflamed intestine. We aimed to elucidate the significance of β7-integrin expression on innate immune cells for the pathogenesis of IBD. We demonstrate that β7-integrin deficiency protects recombination-activating gene-2 (RAG-2)-deficient mice from dextran sodium sulfate (DSS)-induced colitis and coincides with decreased numbers of colonic effector monocytes. We also show that β7-integrin is expressed on most CD11b(+)CD64(low)Ly6C(+) bone marrow progenitors and contributes to colonic recruitment of these proinflammatory monocytes. Importantly, adoptive transfer of CD115(+) wild-type (WT) monocytes partially restored the susceptibility of RAG-2/β7-integrin double-deficient mice to DSS-induced colitis, thereby demonstrating the functional importance of β7-integrin-expressing monocytes for the development of DSS colitis. We also reveal that genetic ablation of MAdCAM-1 ameliorates experimental colitis in RAG-2-deficient mice as well. In summary, we demonstrate a previously unknown role of α4β7-integrin-MAdCAM-1 interactions as drivers of colitis by directing inflammatory monocytes into the colon.

  4. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  5. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa |; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki |; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka; Murawaki, Yoshikazu; Shiota, Goshi . E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  6. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice

    PubMed Central

    Wei, Yingfeng; Lu, Chong; Chen, Jianing; Cui, Guangying; Wang, Lin; Yu, Tianming; Yang, Yue; Wu, Wei; Ding, Yulong; Li, Lanjuan; Uede, Toshimitsu; Chen, Zhi; Diao, Hongyan

    2017-01-01

    This study focuses on characterizing the effect of a high salt diet (HSD) on intestinal immunity and the risk of inflammatory bowel diseases (IBD). We found that mice on a HSD had an increased frequency of IL-17A producing cells in the intestinal lamina propria (LP) compared to mice on a normal diet (ND). Furthermore, most intestinal IL-17A producing cells were CD4+TCRβ+ cells. A HSD increased the LP T helper 17 (Th17) responses in both the small and large intestines but did not increase the Th17 response of other gut-associated lymphoid organ. Although, HSD did not change the percentage of regulatory T (Treg) cells, HSD significantly inhibit secretion of IL-10 and the suppressive function of Treg cells. Moreover, we found that HSD exacerbates trinitrobenzenesulfonic acid (TNBS) induced colitis, and Th17 response was significantly increased in the colonic LP of HSD TNBS-treated mice compared with the ND TNBS-treated mice. This study demonstrates that HSD stimulates the intestinal Th17 response but inhibits the function of Treg cells. Moreover, HSD exacerbates TNBS induced mice colitis, suggesting that HSD disrupts the intestinal immunity and increases the risk of IBD. PMID:27926535

  7. The effects of konjac oligosaccharide on TNBS-induced colitis in rats.

    PubMed

    Liu, Ruixue; Li, Yongchao; Zhang, Bo

    2016-11-01

    The purpose of the study was to assess the effects and the protective mechanism of konjac oligosaccharide (KOS) on the ulcerative colitis (UC) model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. KOS (1.0 and 4.0g/kg/day) was administered for 14days after the induction of colitis with TNBS. The status of the rats was assessed by morphological and biochemical methods. The effect of KOS on the colonic microflora was also assessed by studying the bacteria profile and short chain fatty acids (SCFAs) production in feces by standard culture techniques and gas chromatography, respectively. KOS administration improved rat weight, colonic length, damage score, structure of gut microbiota, production of SCFA, and reduced colon tissue levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Therefore, our results indicate that KOS is an anti-inflammatory and could be useful as a prebiotic to design functional foods for UC.

  8. Effect of royal jelly on experimental colitis induced by acetic acid and alteration of mast cell distribution in the colon of rats

    PubMed Central

    Karaca, T.; Bayiroglu, F.; Yoruk, M.; Kaya, M.S.; Uslu, S.; Comba, B.; Mis, L.

    2010-01-01

    This study investigated the effects of royal jelly (RJ) on acetic acid-induced colitis in rats. Twenty adult female Wistar albino rats were divided into four treatment groups of 5 animals each, including a control group (Group I); Group II was treated orally with RJ (150 mg kg−1 body weight); Group III had acetic acid-induced colitis; and Group IV had acetic acid-induced colitis treated orally with RJ (150 mg kg−1 body weight) for 4 weeks. Colitis was induced by intracolonic instillation of 4% acetic acid; the control group received physiological saline (10 mL kg−1). Colon samples were obtained under deep anaesthesia from animals in all groups. Tissues were fixed in 10% formalin neutral buffer solution for 24 h and embedded in paraffin. Six-micrometre-thick sections were stained with Mallory’s triple stain and toluidine blue in 1% aqueous solution at pH 1.0 for 5 min (for Mast Cells). RJ was shown to protect the colonic mucosa against the injurious effect of acetic acid. Colitis (colonic damage) was confirmed histomorphometrically as significant increases in the number of mast cells (MC) and colonic erosions in rats with acetic acid-induced colitis. The RJ treatment significantly decreased the number of MC and reduced the area of colonic erosion in the colon of RJ-treated rats compared with rats with untreated colitis. The results suggest that oral treatment with RJ could be used to treat colitis. PMID:21263740

  9. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation

    PubMed Central

    2011-01-01

    Background This study evaluated the relationship between ulcerative colitis and obesity, which are both chronic diseases characterized by inflammation and increases in immune cells and pro-inflammatory cytokines. Methods Mice with chronic ulcerative colitis induced by 2 cycles of dextran sodium sulfate (DSS) in the first and fourth week of the experiment were fed a high-fat diet (HFD) to induce obesity by 8 weeks. The animals were divided into 4 \\ groups (control, colitis, HFD and colitis + HFD). Results Obesity alone did not raise histopathology scores, but the combination of obesity and colitis worsened the scores in the colon compared to colitis group. Despite the reduction in weight gain, there was increased inflammatory infiltrate in both the colon and visceral adipose tissue of colitis + HFD mice due to increased infiltration of macrophages, neutrophils and lymphocytes. Intravital microscopy of VAT microvasculature showed an increase in leukocyte adhesion and rolling and overexpression of adhesion molecules compared to other groups. Moreover, circulating lymphocytes, monocytes and neutrophils in the spleen and cecal lymph nodes were increased in the colitis + HFD group. Conclusion Our results demonstrated the relationship between ulcerative colitis and obesity as aggravating factors for each disease, with increased inflammation in the colon and adipose tissue and systemic alterations observed in the spleen, lymph nodes and bloodstream. PMID:22073943

  10. Novel application of proton pump inhibitor for the prevention of colitis-induced colorectal carcinogenesis beyond acid suppression.

    PubMed

    Kim, Yoon Jae; Lee, Jeong Sang; Hong, Kyung Sook; Chung, Jun Won; Kim, Ju Hyun; Hahm, Ki Baik

    2010-08-01

    Colitis-associated cancers arise in the setting of chronic inflammation wherein an "inflammation-dysplasia-carcinoma" sequence prevails. Based on our previous findings in which the proton pump inhibitor could impose significant levels of anti-inflammatory, antiangiogenic, and selective apoptosis induction beyond gastric acid suppression, we investigated whether omeprazole could prevent the development of colitis-associated cancer in a mouse model induced by repeated bouts of colitis. Omeprazole, 10 mg/kg, was given i.p. all through the experimental periods for colitis-associated carcinogenesis. Molecular changes regarding inflammation and carcinogenesis were compared between control groups and colitis-associated cancer groups treated with omeprazole in addition to chemopreventive outcome. Nine of 12 (75.0%) mice in the control group developed multiple colorectal tumors, whereas tumors were noted in only 3 of 12 (25.0%) mice treated with daily injections of omeprazole. The cancer-preventive results of omeprazole treatment was based on significant decreases in the levels of nitric oxide, thiobarbituric acid-reactive substance, and interleukin-6 accompanied with attenuated expressions of tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2. The expressions of matrix metalloproteinase (MMP)-9, MMP-11, and MT1-MMMP were significantly decreased in mice treated with omeprazole in accordance with significant decreases in the number of beta-catenin-accumulated crypts. A significant induction of apoptosis was observed in tumor tissue treated with omeprazole. Omeprazole could block the trophic effect of gastrin in colon epithelial cells. The significant anti-inflammatory, antioxidative, and antimutagenic activities of omeprazole played a cancer-preventive role against colitis-induced carcinogenesis, and our novel in vivo evidence is suggestive of chemopreventive action independent of gastric acid suppression.

  11. Phentermine induced acute interstitial nephritis.

    PubMed

    Shao, Emily Ximin; Wilson, Gregory John; Ranganathan, Dwarakanathan

    2017-03-09

    Acute interstitial nephritis (AIN) has a number of medication-related aetiologies. Antibiotics, proton pump inhibitors and non-steroidal anti-inflammatory drugs are common causes; however, any medication has the potential to cause drug-induced AIN. We report the first case of phentermine-induced AIN. A Caucasian woman aged 43 years presented with a 5-week history of lethargy, left-sided lower abdominal pain, nausea and vomiting. She had been taking phentermine for weight loss for 9 months and had recently ceased the medication. The patient underwent a renal biopsy that showed a predominantly lymphohistiocytic interstitial infiltrate with a moderate number of eosinophils consistent with AIN. Phentermine is increasingly used for weight loss in obese patients. This is the first case implicating phentermine as the causative agent for drug-induced AIN. While rare, phentermine-induced AIN is a possible adverse reaction of phentermine. Physicians and patients need to be aware of this risk.

  12. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis.

    PubMed

    Crespo, Irene; San-Miguel, Beatriz; Prause, Carolina; Marroni, Norma; Cuevas, María J; González-Gallego, Javier; Tuñón, María J

    2012-01-01

    Endoplasmic reticulum (ER) stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD). We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Glutamine (25 mg/dL) was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio) and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression) increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM). The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine against damage

  13. Cytosolic phospholipase A2 α has a crucial role in the pathogenesis of DSS-induced colitis in mice.

    PubMed

    Rosengarten, Marina; Hadad, Nurit; Solomonov, Yulia; Lamprecht, Sergio; Levy, Rachel

    2016-02-01

    Colitis, an inflammation of the colon, is a well-characterized massive tissue injury. Cytosolic phospholipase A2 α (cPLA2 α) upregulation plays an important role in the development of several inflammatory diseases. The aim of the present study was to define the role of cPLA2 α upregulation in the development of colitis. We used a mouse model of dextran sulfate sodium induced colitis. Immunoblotting analysis showed that cPLA2 α and NF-κB were upregulated and activated in the colon from day 2 of colitis induction. This molecular event preceded the development of the disease, as determined by Disease Activity Index score, body weight, colon length, and the expression of colonic inflammatory markers, including neutrophil infiltration detected by myeloperoxidase and by NIMP-R14, ICAM-1, COX-2, iNOS upregulation and LTB4 and TNF-α secretion. Prevention of cPLA2 α upregulation and activity in the colon by i.v. administration of specific antisense oligonucleotides against cPLA2 α 1 day prior and every day of exposure to dextran sulfate sodium significantly impeded the development of the disease and prevented NF-κB activation, neutrophils infiltration into the colonic mucosa, and expression of proinflammatory proteins in the colon. Our results demonstrate a critical role of cPLA2 α upregulation in inflammation and development of murine colitis.

  14. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote Th2 while suppressing Th1 and Th17 cytokine responses. We investigated the contribution of endogenous IL-25 to DSS-induced colitis in mice. Mice were exposed to DSS in drinking water ad li...

  15. Anti-inflammatory Mechanisms of Enteric Heligmosomoides polygyrus Infection on TNBS-Induced Colitis in a Murine Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To model the protective mechanism of helminth infection on colitis-induced changes in immune and epithelial cell function, BALB/c mice received intra-rectal saline or TNBS (2 mg/mouse; 40% ETOH) and were studied 4 days (d) later. Separate groups of mice received oral Heligmosomoides polygyrus follow...

  16. Protective Effect of Daikenchuto on Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Matsunaga, Takaharu; Yamamoto, Naoki; Kawasato, Ryo; Shirasawa, Tomohiro; Goto, Atsushi; Fujisawa, Koichi; Takami, Taro; Okamoto, Takeshi; Nishikawa, Jun; Sakaida, Isao

    2017-01-01

    Aim. To investigate the effect of daikenchuto (TJ-100; DKT) for ulcerative colitis (UC) model mouse and assess its anti-inflammatory mechanisms. Methods. We evaluated the effects of DKT on dextran sulfate sodium- (DSS-) induced experimental colitis. First, we assessed the short-term effects of DKT using two groups: 5% DSS group and 5% DSS with DKT group. Colon length; histological scores; and interleukin- (IL-) 10, IL-1β, and tumor necrosis factor-α mRNA expression profiles were analyzed using real-time PCR. Second, we assessed the long-term effects of DKT, by comparing survival time between 2% DSS and 2% DSS with DKT groups. Results. After 7 days, the colon lengths of DSS + DKT group were longer than those of the DSS group (mean values: 6.11 versus 5.69 cm, p < 0.05). Furthermore, compared to DSS group, the DSS + DKT group maintained significantly higher levels of serum hemoglobin (13.1 versus 10.7 g/dL, p < 0.05) and exhibited significantly higher expression levels of IL-10 (p < 0.05). The 2% DSS + DKT group exhibited significantly longer survival time than the 2% DSS group (70 versus 44 days, p < 0.01). Conclusion. Our results indicate that DKT prevented inflammation in the colon, indicating its potential as a new therapeutic agent for UC. PMID:28210268

  17. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells.

    PubMed

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-11-13

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF-κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy.

  18. Immunological mechanisms involved in probiotic-mediated protection against Citrobacter rodentium-induced colitis.

    PubMed

    Jiang, Y; Yang, G; Meng, F; Yang, W; Hu, J; Ye, L; Shi, C; Wang, C

    2016-06-01

    Inflammatory bowel disease is a group of chronic, incurable inflammatory disorders of the gastrointestinal tract that cause severe diarrhoea, intestinal inflammation, pain, fatigue and weight loss. In this study, we first developed a model of Citrobacter rodentium-induced colitis and then evaluated the protective effects of selected probiotics on inflammation. The results showed that administration of a combination of probiotics including Lactobacillus rhamnosus ATCC 53103, Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum A significantly increased the production of CD11c(+) dendritic cells in the spleen (3.62% vs phosphate buffered saline (PBS)-treated control, P<0.01) and mesenteric lymph nodes (MLNs). In addition, the presence of probiotics significantly up-regulated the development of CD4(+)/CD25(+)/Foxp3(+) regulatory T cells in MLNs by approximately 2.07% compared to the effect observed in the PBS-treated control (P<0.01) and down-regulated the expression of inflammatory cytokines, including interleukin-17, tumour necrosis factor-α and interferon-γ, by 0.11, 0.11 and 0.15%, respectively, compared to the effect observed in the PBS-treated control (P<0.01).These effects conferred protection against colitis, as shown by histopathological analyses.

  19. Protective Effect of Daikenchuto on Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Matsunaga, Takaharu; Hashimoto, Shinichi; Yamamoto, Naoki; Kawasato, Ryo; Shirasawa, Tomohiro; Goto, Atsushi; Fujisawa, Koichi; Takami, Taro; Okamoto, Takeshi; Nishikawa, Jun; Sakaida, Isao

    2017-01-01

    Aim. To investigate the effect of daikenchuto (TJ-100; DKT) for ulcerative colitis (UC) model mouse and assess its anti-inflammatory mechanisms. Methods. We evaluated the effects of DKT on dextran sulfate sodium- (DSS-) induced experimental colitis. First, we assessed the short-term effects of DKT using two groups: 5% DSS group and 5% DSS with DKT group. Colon length; histological scores; and interleukin- (IL-) 10, IL-1β, and tumor necrosis factor-α mRNA expression profiles were analyzed using real-time PCR. Second, we assessed the long-term effects of DKT, by comparing survival time between 2% DSS and 2% DSS with DKT groups. Results. After 7 days, the colon lengths of DSS + DKT group were longer than those of the DSS group (mean values: 6.11 versus 5.69 cm, p < 0.05). Furthermore, compared to DSS group, the DSS + DKT group maintained significantly higher levels of serum hemoglobin (13.1 versus 10.7 g/dL, p < 0.05) and exhibited significantly higher expression levels of IL-10 (p < 0.05). The 2% DSS + DKT group exhibited significantly longer survival time than the 2% DSS group (70 versus 44 days, p < 0.01). Conclusion. Our results indicate that DKT prevented inflammation in the colon, indicating its potential as a new therapeutic agent for UC.

  20. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells

    PubMed Central

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-01-01

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF−κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy. PMID:26565726

  1. Bioefficacy of budesonide loaded crosslinked polyelectrolyte microparticles in rat model of induced colitis.

    PubMed

    Crcarevska, M Simonoska; Dodov, M Glavas; Petrusevska, G; Gjorgoski, I; Goracinova, K

    2009-12-01

    A targeted delivery system for inflammatory bowel diseases, chitosan-Ca-alginate microparticles efficiently loaded with budesonide (BDS), were designed using one-step spray-drying process. They were eudragit-coated and examined for in vivo efficacy. Experimental colitis was induced by rectal instillation of 2,4,6-trinitrobenzene sulphonic acid (TNBS) into male Wistar rats. Drugs were administered by oral gavage daily for 5 days. Colon/body weight ratio, gross morphological and histological evaluation, and clinical activity score were determined as inflammatory indices. Individual clinical and histological evaluation showed that colitis severity was suppressed the most greatly in order BDS < BDS/C-Ca-A < E-BDS/C-Ca-A. Clinical activity score decreased in the same order. Statistical analyses of total score points indicate that the incorporation of BDS in microparticles had significant differences in favor of efficacy of designed delivery system with mucoadhesive and controlled release properties (one-way ANOVA, P < 0.05). The results established the prediction by previous in vitro studies.

  2. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats

    PubMed Central

    2014-01-01

    Background Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Methods Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. Results In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited

  3. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress

    PubMed Central

    Tong, Ling-chang; Wang, Yue; Wang, Zhi-bin; Liu, Wei-ye; Sun, Sheng; Li, Ling; Su, Ding-feng; Zhang, Li-chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  4. Effects of mimic of manganese superoxide dismutase on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Wang, Yan-Hong; Dong, Jiao; Zhang, Jian-Xin; Zhai, Jing; Ge, Bin

    2016-09-01

    The mimic of manganese superoxide dismutase (MnSODm) has been synthesized and reported to have anti-inflammatory properties. However, whether MnSODm has anti-inflammatory effects on colitis and any underlying mechanisms are poorly understood. This study was to investigate therapeutic effects and mechanism of MnSODm on 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced colitis model in rats. Rats were intragastrically administered MnSODm (10, 20, and 40 mg/kg) per day for 7 days after colitis was induced by TNBS. After treated with MnSODm, the colonic macroscopic and microscopic damage scores and colonic weight/length ratios were significantly decreased compared with colitis model group. Myeloperoxidase (MPO) activity, malonyldialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 levels in colon tissues were also significantly decreased in MnSODm treatment groups. However, superoxide dismutase (SOD) activity significantly increased and phosphorylated inhibitory kappa B-alpha (IκBα), inhibitor kappa B kinase (IKKα/β), and nuclear factor-kappa Bp65 (NF-κBp65) as well as Toll-like receptor 4 (TLR4) and myeloid differentiation actor 88 (MyD88) in the colonic mucosa were significantly inhibited by MnSODm treatment. Thus, MnSODm was protective against colitis via antioxidant activity and by inhibiting inflammatory mediators by down-regulating TLR4/MyD88/NF-κB signaling pathways. These data suggest a potential therapeutic effect of MnSODm in colitis.

  5. Protective Effect of the Methanolic Extract of Malva parviflora L. leaves on Acetic Acid-induced Ulcerative Colitis in Rats

    PubMed Central

    Dugani, Aisha; Dakhil, Bushra; Treesh, Soad

    2016-01-01

    Background/Aims: Inflammatory bowel disease (IBD) is a general term describing chronic, idiopathic relapsing, inflammatory conditions of the gastrointestinal tract of unknown etiology. Previous studies have indicated that Malva parviflora leaf extract possesses anti-inflammatory, antioxidant, and antiulcerogenic activity. activity. This work aimed to investigatee the anti-inflammatory effect of the methanolic (MEMP) and aqueous (AEMP) extracts of M. parviflora leaves on acetic acid-induced colitis in rats. Materials and Methods: 42 male Wistar albino rats were divided into seven groups (n = 6). Group I: Normal saline control group with no colitis; Group II: Acetic acid colitis group; Group III: 100 mg/kg/5 d MEMP; Group IV: 200 mg/kg/5 d.MEMP; Group V: 100 mg/kg/5 d AEMP; Group VI: 200 mg/kg/5 d AEMP; Group VII: Prednisolone group (2 mg/kg/5 d). Treatments were followed by induction of colitis using intrarectal instillation of 2 mL of 4% acetic acid. Colon damage was evaluated macroscopically (spleen weight/body weight, colon weight/length ratio) and the histological changes were also recorded. Results: The results of this study showed that acetic acid caused severe inflammation of the colon and a significant increase in spleen weight/body weight, and an increase in colon weight/length ratio compared with normal control group. Pretreatment with MEMP and AEMP for 5 days followed by induction of colitis resulted in a significant attenuation of spleen weight and colon weight/length ratio compared with acetic acid control group. Methanolic extract provided better anticolitic effect than aqueous extract; the effect was prominent at the dose of 200 mg/kg. Histopathological findings confirmed the protective effect of the MEMP. Conclusion: In conclusion, MEMP could ameliorate mucosal damage in experimentally induced colitis when given orally. PMID:27184642

  6. Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis.

    PubMed

    Li, Xiao-Li; Cai, Yong-Qing; Qin, Hong; Wu, Yong-Jie

    2008-12-01

    The aim of the study was to investigate the therapeutic effect and mechanism of proanthocyanidins from grape seeds (GSPE) in the treatment of ulcerative colitis (UC). Rats were intragastrically administered different doses of GSPE (100, 200, and 400 mg/kg) per day for 7 days after UC was twice-induced by intracolonic injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS)dissolved in 50% ethanol. Sulfasalazine (SASP) at 200 mg/kg was used as a positive control drug. Macroscopic and microscopic damage scores and changes in weight/length ratio (mg/mm) of colon segments were analyzed. The levels of malonyldialdehyde (MDA), interleukin (IL)-1beta, IL-2, IL-4, and myeloperoxidase (MPO) activity in the colon tissues and MPO activity in the serum were all measured by biochemical methods or double antibody sandwich ELISA methods. Compared with the TNBS control group, GSPE treatment facilitated recovery of pathologic changes in the colon after insult with TNBS, as demonstrated by increased body weight (p < 0.01) and decreased colonic weight/length ratio (p < 0.01); GSPE also notably reduced the colonic macroscopic and microscopic damage scores (p < 0.01). The MPO activity in colon tissues and serum of rats treated with GSPE was significantly lower than that in the TNBS control group. The MDA and IL-1beta levels of colon tissues were also decreased in GSPE groups. The intestinal antiinflammatory effect of GSPE was accompanied by a significant improvement of IL-2 and IL-4 levels in the colon tissues of rats in the high-dose GSPE group (p < 0.05). Compared with the SASP group, GSPE groups had no significant difference in the therapeutic effect (p > 0.05). GSPE exerts a beneficial antiinflammatory effect in the acute phase of TNBS-induced colitis in rats by downregulating some of the mediators involved in the intestinal inflammatory response, inhibiting inflammatory cell infiltration and antioxidation damage, promoting damaged tissue repair to improve colonic oxidative stress

  7. Boswellia serrata has beneficial anti-inflammatory and antioxidant properties in a model of experimental colitis.

    PubMed

    Hartmann, Renata Minuzzo; Fillmann, Henrique Sarubbi; Martins, Maria Isabel Morgan; Meurer, Luise; Marroni, Norma Possa

    2014-09-01

    Ulcerative colitis is an inflammatory disease that involves only the colon and rectum, being characterized by leukocyte infiltrate and superficial ulcers in the intestinal mucosa. To evaluate the anti-inflammatory and antioxidant effects of extract from the Boswellia serrata plant in an experimental rat model of acute ulcerative colitis induced by the administration of acetic acid (AA). An extract of B. serrata (34.2 mg/kg/day) was administered by oral gavage for 2 days before and after the induction of colitis with 4 mL of 4% AA. The anal sphincter pressure in the colitis group showed a significant decrease compared to that of the control groups (p < 0.001). The analysis of the values of lipid peroxidation (LPO) obtained by substances that react with thiobarbituric acid (TBARS) showed a significantly increased LPO in the colitis group compared to the control groups (p < 0.001). The nitric oxide levels and the expression of inducible nitric oxide synthase (iNOS) showed a significant increase in the colitis group compared to control groups (p < 0.01). Both pretreatment and treatment with B. serrata exhibited significantly reduced lipid peroxidation, nitric oxide and iNOS and showed improvements in tissue injury and anal sphincter pressure in animals with ulcerative colitis. The B. serrata extract has protective anti-inflammatory and antioxidant effects that inhibit inflammatory mediators in acute experimental colitis.

  8. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function.

    PubMed

    Xu, Bin; Li, Yan-Li; Xu, Ming; Yu, Chang-Chun; Lian, Meng-Qiao; Tang, Ze-Yao; Li, Chuan-Xun; Lin, Yuan

    2017-03-06

    Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg(-1)·d(-1), ig) or with sulfasalazine (SASP, 100 mg·kg(-1)·d(-1), ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μmol/L) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway..

  9. Enteroendocrine cells, stem cells and differentiation progenitors in rats with TNBS-induced colitis

    PubMed Central

    El-Salhy, Magdy; Mazzawi, Tarek; Umezawa, Kazuo; Gilja, Odd Helge

    2016-01-01

    Patients with inflammatory bowel disease (IBD), as well as animal models of human IBD have abnormal enteroendocrine cells. The present study aimed to identify the possible mechanisms underlying these abnormalities. For this purpose, 40 male Wistar rats were divided into 4 groups as follows: the control group, the group with trinitrobenzene sulfonic acid (TNBS)-induced colitis with no treatment (TNBS group), the group with TNBS-induced colitis treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G; an activator protein-1 inhibitor) (DTCM-G group), and the group with TNBS-induced colitis treated with dehydroxymethylepoxyquinomicin (DHMEQ; a nuclear factor-κB inhibitor) treatment (DHMEQ group). Three days following the administration of TNBS, the rats were treated as follows: those in the control and TNBS groups received 0.5 ml of the vehicle [0.5% carboxymethyl cellulose (CMC)], those in the DTCM-G group received DTCM-G at 20 mg/kg body weight in 0.5% CMC, and those in the DHMEQ group received DHMEQ at 15 mg/kg body weight in 0.5% CMC. All injections were administered intraperitoneally twice daily for 5 days. The rats were then sacrificed, and tissue samples were taken from the colon. The tissue sections were stained with hemotoxylin-eosin and immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP), somatostatin, Musashi1 (Msi1), Math1, Neurogenin3 (Neurog3) and NeuroD1. The staining was quantified using image analysis software. The densities of CgA-, PYY-, PP-, Msi1-, Neurog3- and NeuroD1-positive cells were significantly lower in the TNBS group than those in the control group, while those of serotonin-, oxyntomodulin- and somatostatin-positive cells were significantly higher in the TNBS group than those in the control group. Treatment with either DTCM-G or DHMEQ restored the densities of enteroendocrine cells, stem cells and their progenitors to normal levels. It was thus concluded that the

  10. Enteroendocrine cells, stem cells and differentiation progenitors in rats with TNBS-induced colitis.

    PubMed

    El-Salhy, Magdy; Mazzawi, Tarek; Umezawa, Kazuo; Gilja, Odd Helge

    2016-12-01

    Patients with inflammatory bowel disease (IBD), as well as animal models of human IBD have abnormal enteroendocrine cells. The present study aimed to identify the possible mechanisms underlying these abnormalities. For this purpose, 40 male Wistar rats were divided into 4 groups as follows: the control group, the group with trinitrobenzene sulfonic acid (TNBS)-induced colitis with no treatment (TNBS group), the group with TNBS-induced colitis treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G; an activator protein-1 inhibitor) (DTCM-G group), and the group with TNBS-induced colitis treated with dehydroxymethylepoxyquinomicin (DHMEQ; a nuclear factor-κB inhibitor) treatment (DHMEQ group). Three days following the administration of TNBS, the rats were treated as follows: those in the control and TNBS groups received 0.5 ml of the vehicle [0.5% carboxymethyl cellulose (CMC)], those in the DTCM-G group received DTCM-G at 20 mg/kg body weight in 0.5% CMC, and those in the DHMEQ group received DHMEQ at 15 mg/kg body weight in 0.5% CMC. All injections were administered intraperitoneally twice daily for 5 days. The rats were then sacrificed, and tissue samples were taken from the colon. The tissue sections were stained with hemotoxylin-eosin and immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP), somatostatin, Musashi1 (Msi1), Math1, Neurogenin3 (Neurog3) and NeuroD1. The staining was quantified using image analysis software. The densities of CgA-, PYY-, PP-, Msi1-, Neurog3- and NeuroD1-positive cells were significantly lower in the TNBS group than those in the control group, while those of serotonin-, oxyntomodulin- and somatostatin-positive cells were significantly higher in the TNBS group than those in the control group. Treatment with either DTCM-G or DHMEQ restored the densities of enteroendocrine cells, stem cells and their progenitors to normal levels. It was thus

  11. A Picrorhiza kurroa Derivative, Picroliv, Attenuates the Development of Dextran-Sulfate-Sodium-Induced Colitis in Mice

    PubMed Central

    Zhang, De-Kui; Yu, Jian-Jie; Li, Yu-Min; Wei, Li-Na; Yu, Yi; Feng, Yan-Hu; Wang, Xiang

    2012-01-01

    Background. Free radicals and proinflammatory cytokines have been shown to play a critical role in the pathogenesis of ulcerative colitis (UC). Picroliv, a Picrorhiza kurroa derivative, has been demonstrated to have antioxidant and anti-inflammatory effect. The purpose of the study was to investigate the effects of picroliv on experimental model of UC in mice. Materials and Methods. Picroliv was administrated orally by gavage to mice with colitis induced by dextran sulfate sodium (DSS). Disease activity index (DAI), colon length, and histology score were observed. Myeloperoxidase (MPO) activity, and SOD, MDA concentrations were measured by enzyme-linked immunosorbent assay (ELISA) while the expression of cytokine mRNAs was studied by real-time-quantitative polymerase chain reaction and also ELISA. The expression of NF-κB p65 was observed by immunohistochemistry staining and western blotting. Results. A significant improvement was observed in DAI and histological score in mice treated with picroliv, and incerased MPO activity, MDA concentrations, and the expression of IL-1β, TNF-α, and NF-κB p65 in mice with DSS-induced colitis were significantly reduced while decreased SOD level increased following administration of picroliv. Conclusion. The administration of picroliv leads to an amelioration of DSS-induced colitis, suggesting administration of picroliv may provide a therapeutic approach for UC. PMID:23125487

  12. Dual effect of chronic nicotine administration: augmentation of jejunitis and amelioration of colitis induced by iodoacetamide in rats.

    PubMed

    Eliakim, R; Karmeli, F; Cohen, P; Heyman, S N; Rachmilewitz, D

    2001-02-01

    Smoking has a dichotomous effect on inflammatory bowel disease, ameliorating disease activity in ulcerative colitis but having a deleterious effect on Crohn's disease. This effect is thought to be due to nicotine. We investigated the effect of chronic nicotine administration on the small and large bowel in iodoacetamide-induced jejunitis and colitis. Jejunitis was induced in Sprague-Dawley rats by intrajejunal administration of 0.1 ml 2% iodoacetamide and colitis by intrarectal administration of 0.1 ml 3% iodoacetamide. Nicotine was dissolved in drinking water (12.5 or 250 micrograms/ml), rats drinking ad libitum. Nicotine administration started 10 days prior to damage induction and throughout the experiment and had no effect on weight gain or daily food intake of rats. Rats were killed 5 days after iodoacetamide-induced colitis and 7 days after induction of jejunitis. The jejunum and colon were resected, rinsed, weighed, damage assessed macroscopically and microscopically and tissue processed for myeloperoxidase and nitric oxide synthase (NOS) activities and prostaglandin E2 (PGE2) generation. Effects of nicotine on gut microcirculation were also assessed. Nicotine by itself caused no damage to the colon. Nicotine had a dichotomous effect on jejunitis and colitis. At a dose of 12.5 micrograms/ml nicotine improved the macroscopic damage of colitis from 252 +/- 66 to 70 +/- 31 mm2, and segmental weight also declined significantly in the colon (from 1.7 +/- 0.2 to 1.2 +/- 0.1 g/10 cm). In contrast, the same dose of nicotine had a deleterious effect on iodoacetamide-induced jejunitis, increasing the macroscopic damage from 368 +/- 38 to 460 +/- 97 mm2 in rats treated with injury escalating to 970 +/- 147 in rats treated with 250 micrograms/ml nicotine. Nicotine treatment also significantly increased jejunal segmental weight. By itself nicotine did not change NOS activity or PGE2 generation compared to control rats, but it enhanced microcirculation in the colon

  13. Wheat germ agglutinin anchored chitosan microspheres of reduced brominated derivative of noscapine ameliorated acute inflammation in experimental colitis.

    PubMed

    Kaur, Kamalpreet; Sodhi, Rupinder Kaur; Katyal, Anju; Aneja, Ritu; Jain, Upendra Kumar; Katare, Om Prakash; Madan, Jitender

    2015-08-01

    Reduced brominated derivative of noscapine (Red-Br-Nos, EM012), has potent anti-inflammatory property. However, physicochemical limitations of Red-Br-Nos like low aqueous solubility (0.43×10(-3) g/mL), high lipophilicity (logP∼2.94) and ionization at acidic pH greatly encumber the scale-up of oral drug delivery systems for the management of colitis. Therefore, in present investigation, chitosan microspheres bearing Red-Br-Nos (CTS-MS-Red-Br-Nos) were prepared by emulsion polymerization method and later coated with wheat germ agglutinin (WGA-CTS-MS-Red-Br-Nos) to boost the bioadhesive property. The mean particle size and zeta-potential of CTS-MS-Red-Br-Nos were measured to be 10.5±5.4 μm and 8.1±2.2 mV, significantly (P<0.05) lesser than, 30.2±3.2 μm and 19.2±2.3 mV of WGA-CTS-MS-Red-Br-Nos. Furthermore, various spectral techniques like SEM, FT-IR, DSC and PXRD substantiated that Red-Br-Nos was molecularly dispersed in tailored microspheres in amorphous state. Surface bioadhesive property of WGA-CTS-MS-Red-Br-Nos promoted the affinity toward colon mucin cells in simulated colonic fluid (SCF, pH∼7.2). In vitro release studies carried out on WGA-CTS-MS-Red-Br-Nos and CTS-MS-Red-Br-Nos indicated that SCF with colitis milieu (pH∼4.7) favored the controlled release of Red-Br-Nos, owing to solubilization at acidic pH. Consistently, in vivo investigation also demonstrated the utility of WGA-CTS-MS-Red-Br-Nos, which remarkably attenuated the DSS encouraged neutrophil infiltration, myeloperoxidase activity, and pro-inflammatory cytokine production in C57BL6J mice, as compared to CTS-MS-Red-Br-Nos and Red-Br-Nos suspension. The noteworthy anti-inflammatory activity of WGA-CTS-MS-Red-Br-Nos against acute colitis may be attributed to enhanced drug delivery, affinity and utmost drug exposure at inflamed mucosal layers of colon. In conclusion, WGA-CTS-MS-Red-Br-Nos warrants further in-depth in vitro and in vivo investigations to scale-up the technology for clinical

  14. TIR-domain-containing adapter-inducing interferon-β (TRIF) regulates Th17-mediated intestinal immunopathology in colitis

    PubMed Central

    Kanagavelu, S; Flores, C; Termini, J M; Riveron, R; Romero, L; Chung, K; Ruiz, J; Hyun, J; Yuan, X; Dagvadorj, J; Fukata, M

    2015-01-01

    Gastrointestinal mucosa reserves abundant Th17 cells where host response to commensal bacteria maintains Th17-cell generation. Although functional heterogeneity and dynamic plasticity of Th17 cells appear to be involved in chronic inflammatory disorders, how their plasticity is regulated in intestinal mucosa is unknown. Here we show that innate TRIF signaling regulates intestinal Th17-cell generation and plasticity during colitis. Absence of TRIF in mice resulted in increased severity of experimental colitis, which was associated with aberrant generation of Th17 cells especially of interferon (IFN)-γ-expressing Th17 cells in the lamina propria. The abnormal generation and plasticity of Th17 cells involved impaired expression of interleukin (IL)-27p28 by lamina propria macrophages but not dendritic cells. Treatment of TRIF-deficient mice with IL-27p28 during colitis reduced the number and IFN-γ expression of Th17 cells in the intestine. In vitro, TRIF-deficient macrophages induced more Th17 cells than wild-type (WT) macrophages during co-culture with WT naive T cells in response to cecal bacterial antigen. Many of Th17 cells induced by TRIF-deficient macrophages expressed IFN-γ due to impaired expression of IL-27p28 by macrophages and defective activation of STAT1 in T cells. These results outline TRIF-dependent regulatory mechanism by which host response to intestinal bacteria maintains Th17-cell-mediated pathology during colitis. PMID:25073675

  15. Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4(+) T Cells.

    PubMed

    Zou, Ying; Li, Wen-Yang; Wan, Zheng; Zhao, Bing; He, Zhi-Wei; Wu, Zhu-Guo; Huang, Guo-Liang; Wang, Jian; Li, Bin-Bin; Lu, Yang-Jia; Ding, Cong-Cong; Chi, Hong-Gang; Zheng, Xue-Bao

    2015-01-01

    Huangqin-Tang decoction (HQT) is a classic traditional Chinese herbal formulation that is widely used to ameliorate the symptoms of gastrointestinal disorders, including inflammatory bowel disease (IBD). This study was designed to investigate the therapeutic potential and immunological regulatory activity of HQT in experimental colitis in rats. Using an animal model of colitis by intrarectally administering 2,4,6-trinitrobenzenesulfonic acid (TNBS), we found that administration of HQT significantly inhibited the severity of TNBS-induced colitis in a dose-dependent manner. In addition, treatment with HQT produced better results than that with mesalazine, as shown by improvedweight loss bleeding and diarrhoea scores, colon length, and intestinal inflammation. As for potential immunological regulation of HQT action, the percentages of Th1 and Th17 cells were reduced, but those Th2 and Treg cells were enhanced in LPMCs after HQT treatment. Additionally, HQT lowered the levels of Th1/Th17-associated cytokines but increased production of Th2/Treg-associated cytokines in the colon and MLNs. Furthermore, we observed a remarkable suppression of the Th1/Th17-associated transcription factors T-bet and ROR-γt. However, expression levels of the Th2/Treg-associated transcription factors GATA-3 and Foxp3 were enhanced during treatment with HQT. Our results suggest that HQT has the therapeutic potential to ameliorate TNBS-induced colitis symptoms. This protective effect is possibly mediated by its effects on CD4(+) T cells subsets.

  16. Modified Pulsatilla decoction attenuates oxazolone-induced colitis in mice through suppression of inflammation and epithelial barrier disruption

    PubMed Central

    Wang, Xuewei; Fan, Fugang; Cao, Qin

    2016-01-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory gastrointestinal disorders caused by a dysregulated mucosal immune response and epithelial barrier disruption. Conventional treatment of IBD is currently limited to overcoming patient symptoms and is often associated with severe adverse effects from the drugs used. Modified Pulsatilla decoction has been used previously to treat ulcerative colitis (UC) in clinical practice in China, however, the underlying mechanism in the treatment of UC remains to be elucidated. In the present study, the efficiency and mechanisms of modified Pulsatilla decoction in the treatment of oxazolone-induced colitis were investigated. Assessment of clinical colitis and histological examination found that the administration of modified Pulsatilla decoction attenuated the severity of oxazolone-induced colitis in mice. Measurement of cytokine concentration, western blotting and reverse transcription-quantitative polymerase chain reaction demonstrated modified Pulsatilla decoction treatment significantly reduced the secretion of pro-inflammatory cytokines and restored alterations in tight junction proteins in the colon tissues. In addition, modified Pulsatilla decoction suppressed the activation of the nuclear factor-κB signaling pathway. Thus, the findings of the present study demonstrated that modified Pulsatilla decoction offers an effective therapeutic approach for the treatment of IBD and revealed the underlying mechanisms of action offered by modified Pulsatilla decoction. PMID:27278299

  17. The Attenuation of Scutellariae radix Extract on Oxidative Stress for Colon Injury in Lipopolysaccharide-induced RAW264.7 Cell and 2,4,6-trinitrobenzene Sulfonic Acid-induced Ulcerative Colitis Rats

    PubMed Central

    Jin, Yu; Yang, Jun; Lin, Lianjie; Lin, Yan; Zheng, Changqing

    2016-01-01

    Background: Oxidative stress (OS) has been regarded as one of the major pathogeneses of ulcerative colitis (UC) through damaging colon. It has been shown that Scutellariae radix (SR) extract has a beneficial effect for the prevention and treatment of UC. Objective: The aim of this study was to investigate whether SR had a potential capacity on oxidant damage for colon injury both in vivo and in vitro. Materials and Methods: The 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to induce UC rats model while 1 μg/ml lipopolysaccharide (LPS) was for RAW264.7 cell damage. Disease activity index (DAI) was determined to response the severity of colitis. The myeloperoxidase (MPO) activity in rat colon was also estimated. The 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid assay was performed to evaluate the total antioxidant capacity of SR. Furthermore, the activity of glutathione peroxidase (GSH-PX), catalase (CAT), superoxide dismutase (SOD), and lipid peroxidation malondialdehyde (MDA) in cell supernatant and rat serum were detected by appropriate kits. In addition, an immunohistochemical assay was applied to examine transforming growth factor beta 1 (TGF-β1) protein expression in colon tissue. Results: The treatment with SR could significantly increase the activity of GSH-PX, CAT, and SOD associated with OS in LPS-induced RAW264.7 cell damage and TNBS-induced UC rats. However, the level of MDA was markedly reduced both in vitro and in vivo. Furthermore, SR significantly decreased DAI and reversed the increased MPO activity. Thus, SR could decrease the severity of acute TNBS-induced colitis in rats. Immunohistochemical assay showed that SR significantly downregulated TGF-β1 protein expression in colon tissue. Conclusion: Our data provided evidence to support this fact that SR attenuated OS in LPS-induced RAW264.7 cell and also in TNBS-induced UC rats. Thus, SR may be an interesting candidate drug for the management of UC. SUMMARY Scutellariae radix (SR

  18. Long-term effects of a single course of nicotine treatment in acute ulcerative colitis: remission maintenance in a 12-month follow-up study.

    PubMed

    Guslandi, M

    1999-11-01

    Patients with mild to moderate active colitis who are treated with mesalazine plus transdermal nicotine reportedly suffer fewer relapses than patients treated with mesalazine plus oral prednisone. A long-term follow-up period was carried out to confirm this. Thirty patients with remission of distal colitis after therapy with the above treatment schedules were monitored for 12 months (Rachmilewitz' activity index plus endoscopy). Relapsed patients were retreated in a cross-over fashion. After 12 months recurrences were observed in 14 of 15 patients initially treated with steroids and in 7 of 15 subjects who were had received transdermal nicotine (P = 0.007, Fisher's test). A higher proportion of relapsed patients from the prednisone group, after successful retreatment with nicotine patches, remained in remission after 6 months (20%) than relapsed patients who switched to steroid treatment (57%). Our present results confirm the concept that nicotine-induced remission of ulcerative colitis lasts longer than that obtained by oral corticosteroids.

  19. Therapeutic effect of ginsenoside Rd in rats with TNBS-induced recurrent ulcerative colitis.

    PubMed

    Yang, Xiao-Lai; Guo, Tian-Kang; Wang, Yan-Hong; Gao, Ming-Tang; Qin, Hong; Wu, Yong-Jie

    2012-07-01

    Ulcerative colitis (UC) is characterized by oxidative and nitrosative stress and neutrophil infiltration. In the present study, we aimed to investigate the therapeutic effect of ginsenoside Rd (GRd) in rats with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced recurrent UC. After UC was twice-induced by intracolonic injection of TNBS, rats were intragastrically administered different doses of GRd per day for 7 days. The colonic lesions and inflammation were evaluated both histologically and biochemically. Compared with the TNBS group, GRd treatment facilitated recovery of pathologic changes in the colon after induction of recurrent UC, as evidenced by a significant reduction of colonic weight/length ratio and macroscopic and microscopic damage scores (p < 0.01). The myeloperoxidase and inducible nitric oxide synthase activities with malonyldialdehyde and nitric oxide levels in colonic tissues were significantly decreased in the GRd group compared with those in the TNBS group (p < 0.01). GRd treatment was associated with remarkably increased superoxide dismutase and glutathione peroxidase activities. Results showed a valuable effect of GRd against TNBS-induced recurrent UC by inhibiting neutrophil infiltration and promoting the antioxidant capacity of the damaged colonic tissue.

  20. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis

    PubMed Central

    Fatani, Amal Jamil; Alrojayee, Fatima Salih; Parmar, Mihir Yogeshkumar; Abuohashish, Hatem Mustafa; Ahmed, Mohammed Mahboobuddin; Al-Rejaie, Salim Salih

    2016-01-01

    The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities. PMID

  1. Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat

    PubMed Central

    González, Raquel; Sánchez de Medina, Fermin; Martínez-Augustin, Olga; Nieto, Ana; Gálvez, Julio; Risco, Severiano; Zarzuelo, Antonio

    2004-01-01

    Diosmectite is a natural silicate effectively used in the treatment of infectious diarrhoea. Its antidiarrhoeal properties involve adsorption of toxins and bacteria and modifications of the rheological characteristics of gastrointestinal mucus. Hence, the aim of this study was to test the intestinal anti-inflammatory activity of diosmectite. Diosmectite (500 mg kg−1 day−1, p.o.) was administered as a post-treatment to rats with chronic trinitrobenzene sulphonic acid colitis. Colonic status was checked 1 and 2 weeks after colitis induction by macroscopic, histological and biochemical examination. Diosmectite post-treatment resulted in amelioration of the morphological signs (intestinal weight, macroscopic damage, necrosed area, histology) and biochemical markers (myeloperoxidase activity, glutathione levels, MUC2 expression, inducible nitric oxide synthase and interleukin-1β (IL-1β) and leukotriene B4 synthesis), as well as in the reduction of the severity of diarrhoea. The effect of the clay was comparable to that of sulphasalazine (50 mg kg−1 day−1). Diosmectite exhibited a dose-dependent capacity to adsorb proteins in vitro as well as a dose-dependent inhibitory effect on the basolateral secretion of IL-8 by lipopolysaccharide (LPS)-stimulated HT29 cells. Diosmectite had a dose-dependent inhibitory effect on IL-1β production by LPS-stimulated THP-1 cells. The effect of diosmectite on MUC2 was post-transcriptional, since mRNA levels were unaffected. However, diosmectite is able to upregulate MUC2 mRNA levels in HT29-MTX cells. Diosmectite has anti-inflammatory activity administered as a post-treatment. Possible mechanisms include adsorption of luminal antigens, increase of colonic mucin levels and possibly a direct modulatory action of cytokine production by mucosal cells. PMID:14993105

  2. Hyaluronan Synthase 3 Null Mice Exhibit Decreased Intestinal Inflammation and Tissue Damage in the DSS-Induced Colitis Model

    PubMed Central

    Kessler, Sean P.; Obery, Dana R.; de la Motte, Carol

    2015-01-01

    Hyaluronan (HA) overproduction is a hallmark of multiple inflammatory diseases, including inflammatory bowel disease (IBD). Hyaluronan can act as a leukocyte recruitment molecule and in the most common mouse model of intestinal inflammation, the chemically induced dextran sodium sulfate (DSS) experimental colitis model, we previously determined that changes in colon distribution of HA occur before inflammation. Therefore, we hypothesized that, during a pathologic challenge, HA promotes inflammation. In this study, we tested the progression of inflammation in mice null for the hyaluronan synthase genes (HAS1, HAS3, or both HAS1 and HAS3) in the DSS-colitis model. Our data demonstrate that both the HAS1/HAS3 double and the HAS3 null mice are protected from colitis, compared to wild-type and HAS1 null mice, as determined by measurement of weight loss, disease activity, serum IL-6 levels, histologic scoring, and immunohistochemistry. Most notable is the dramatic increase in submucosal microvasculature, hyaluronan deposition, and leukocyte infiltration in the inflamed colon tissue of wild-type and HAS1 null mice. Our data suggest, HAS3 plays a crucial role in driving gut inflammation. Developing a temporary targeted therapeutic intervention of HAS3 expression or function in the microcirculation may emerge as a desirable strategy toward tempering colitis in patients undergoing flares of IBD. PMID:26448758

  3. Anti-inflammatory effect of Prunus armeniaca L. (Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats.

    PubMed

    Minaiyan, M; Ghannadi, A; Asadi, M; Etemad, M; Mahzouni, P

    2014-01-01

    Prunus armeniaca L. (Apricot) is a tree cultivated in different parts of the world. Apricot kernel as a good dietary supplement has shown antioxidant, anti-inflammatory and other pharmacologic properties which suggest that it may be functional as an anticolitis agent. In this study we evaluated the effects of apricot kernel extract and oil on ulcerative colitis in rats. Rats were fasted for 36 h before the experiment. Colitis was induced by intra-rectal instillation of 50 mg/kg trinitrobenzene sulfonic acid in male Wistar rats. Treatments were started 6 h after colitis induction and continued every 24 h for 5 days. Apricot kernel extract (100, 200, 400 mg/kg p.o. and 100, 400 mg/kg i.p.) and apricot kernel extract/oil (100, 200, 400 mg/kg p.o.) were used as experimental treatments and prednisolone (4 mg/kg p.o. or i.p.) was used as reference drug. On the day 6, colon tissue was removed and macroscopic and pathologic parameters were evaluated. Ulcer index and total colitis index as representative of macroscopic and histologic parameters respectively showed ameliorating effects in experimental groups especially those treated by intraperitoneal administration route. Results also demonstrated that oil fraction was not able to potentiate the effects of extract. These data suggest that apricot kernel extracts (with or without oil) can be introduced for further mechanistic and clinical studies as a complementary medicine for inflammatory bowel disorders.

  4. Anti-inflammatory effect of Prunus armeniaca L. (Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats

    PubMed Central

    Minaiyan, M.; Ghannadi, A.; Asadi, M.; Etemad, M.; Mahzouni, P.

    2014-01-01

    Prunus armeniaca L. (Apricot) is a tree cultivated in different parts of the world. Apricot kernel as a good dietary supplement has shown antioxidant, anti-inflammatory and other pharmacologic properties which suggest that it may be functional as an anticolitis agent. In this study we evaluated the effects of apricot kernel extract and oil on ulcerative colitis in rats. Rats were fasted for 36 h before the experiment. Colitis was induced by intra-rectal instillation of 50 mg/kg trinitrobenzene sulfonic acid in male Wistar rats. Treatments were started 6 h after colitis induction and continued every 24 h for 5 days. Apricot kernel extract (100, 200, 400 mg/kg p.o. and 100, 400 mg/kg i.p.) and apricot kernel extract/oil (100, 200, 400 mg/kg p.o.) were used as experimental treatments and prednisolone (4 mg/kg p.o. or i.p.) was used as reference drug. On the day 6, colon tissue was removed and macroscopic and pathologic parameters were evaluated. Ulcer index and total colitis index as representative of macroscopic and histologic parameters respectively showed ameliorating effects in experimental groups especially those treated by intraperitoneal administration route. Results also demonstrated that oil fraction was not able to potentiate the effects of extract. These data suggest that apricot kernel extracts (with or without oil) can be introduced for further mechanistic and clinical studies as a complementary medicine for inflammatory bowel disorders. PMID:25657793

  5. Ameliorating effects of short-chain inulin-like fructans on the healing stage of trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Hino, Shingo; Ito, Hiroyuki; Bito, Hiroyuki; Kawagishi, Hirokazu; Morita, Tatsuya

    2011-01-01

    We evaluated the ameliorating effects of short-chain inulin-like fructans (SIF) with different degrees of polymerization (DP) on the healing stage of trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. The rats were assigned to 3 groups 10 d after the colitis induction, and fed for 24 d on a control diet or diet including 60 g of DP4 or DP8/kg. The fecal myeloperoxidase (MPO) activity and IgA concentration were monitored every 7 d. The colonic MPO activities and cecal concentrations of organic acids, lactobacilli, bifidobacteria, mucin and IgA were measured at the end of the study. DP4, but not DP8, significantly reduced the colonic inflammation accompanied by higher cecal concentrations of short-chain fatty acids, propionate in particular, and lactic acid-producing bacteria. DP4 therefore accelerated the healing process of TNBS-induced colitis, even when the treatment was initiated after inducing colitis.

  6. Ulcerative Colitis Induces Changes on the Expression of the Endocannabinoid System in the Human Colonic Tissue

    PubMed Central

    Iglesias, Mar; Bermudez-Silva, Francisco Javier; Rodríguez de Fonseca, Fernando; Andreu, Montserrat

    2009-01-01

    Background Recent studies suggest potential roles of the endocannabinoid system in gastrointestinal inflammation. Although cannabinoid CB2 receptor expression is increased in inflammatory disorders, the presence and function of the remaining proteins of the endocannabinoid system in the colonic tissue is not well characterized. Methodology Cannabinoid CB1 and CB2 receptors, the enzymes for endocannabinoid biosynthesis DAGLα, DAGLβ and NAPE-PLD, and the endocannabinoid-degradating enzymes FAAH and MAGL were analysed in both acute untreated active ulcerative pancolitis and treated quiescent patients in comparison with healthy human colonic tissue by immunocytochemistry. Analyses were carried out according to clinical criteria, taking into account the severity at onset and treatment received. Principal Findings Western blot and immunocytochemistry indicated that the endocannabinoid system is present in the colonic tissue, but it shows a differential distribution in epithelium, lamina propria, smooth muscle and enteric plexi. Quantification of epithelial immunoreactivity showed an increase of CB2 receptor, DAGLα and MAGL expression, mainly in mild and moderate pancolitis patients. In contrast, NAPE-PLD expression decreased in moderate and severe pancolitis patients. During quiescent pancolitis, CB1, CB2 and DAGLα expression dropped, while NAPE-PLD expression rose, mainly in patients treated with 5-ASA or 5-ASA+corticosteroids. The number of immune cells containing MAGL and FAAH in the lamina propria increased in acute pancolitis patients, but dropped after treatment. Conclusions Endocannabinoids signaling pathway, through CB2 receptor, may reduce colitis-associated inflammation suggesting a potential drugable target for the treatment of inflammatory bowel diseases. PMID:19730730

  7. Phosphorylcholine-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: implications for the treatment of human inflammatory bowel disease.

    PubMed

    Ben-Ami Shor, Dana; Bashi, Tomer; Lachnish, Jordan; Fridkin, Mati; Bizzaro, Giorgia; Barshak, Iris; Blank, Miri; Shoenfeld, Yehuda

    2015-01-01

    Improved clinical findings of inflammatory bowel disease (IBD) upon treatment with helminthes and their ova were proven in animal models of IBD and in human clinical studies. The immunomodulatory properties of several helminthes were attributed to the phosphorylcholine (PC) molecule. We assessed the therapeutic potential of tuftsin-PC conjugate (TPC) to attenuate murine colitis. Colitis was induced by Dextransulfate-Sodium-Salt (DSS) in drinking water. TPC was given by daily oral ingestion (50 μg/0.1 ml/mouse or PBS) starting at day -2. Disease activity index (DAI) score was followed daily and histology of the colon was performed by H&E staining. Analysis of the cytokines profile in distal colon lysates was performed by immunoblot. Treatment of DSS induced colitis with TPC prevented the severity of colitis, including a reduction in the DAI score, less shortening of the colon and less inflammatory activity in histology. The immunoblot showed that the colitis preventive activity of TPC was associated with downregulation of colon pro-inflammatory IL-1β, TNFα and IL-17 cytokines expression, and enhancement of anti-inflammatory IL-10 cytokine expression. In the current study, we demonstrated that TPC treatment can prevent significantly experimental colitis induction in naïve mice. We propose the TPC as a novel potential small synthetic molecule to treat colitis.

  8. Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis

    PubMed Central

    Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L.

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  9. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis.

    PubMed

    Ghosh, Sanjoy; DeCoffe, Daniella; Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  10. IL-37b gene transfer enhances the therapeutic efficacy of mesenchumal stromal cells in DSS-induced colitis mice

    PubMed Central

    Wang, Wei-qiang; Dong, Kui; Zhou, Lu; Jiao, Guo-hui; Zhu, Cong-zhong; Li, Wen-wen; Yu, Gang; Wu, Wan-tong; Chen, Song; Sun, Zhi-na; Wang, Yu-ming; Liu, Wen-tian; Zhang, Jie; Wang, Bang-mao; Feng, Xiao-ming

    2015-01-01

    Aim: To investigate whether the transfer of the IL-37b gene, a newly identified inhibitor of both innate and adaptive immunity, could improve the therapeutic efficacy of mesenchumal stromal cells (MSCs) in inflammatory bowel disease (IBD). Methods: The expression of IL-37 in biopsied specimens of the patients with active ulcerative colitis (UC) was detected using RT-PCR and immunohistochemistry. Mice were treated with 3% dextran sulfate sodium (DSS) for 8 days to induce colitis. Before DSS treatment, the mice were injected with MSCs, MSC-eGFP or MSC-IL37b. Their body weight was measured each day, and the colons and spleens were harvested on d 10 for pathological and biochemical analyses. Results: In biopsied specimens of the patients with active UC, the expression of IL-37 was dramatically elevated in inflamed mucosa, mainly in epithelial cells and infiltrating immune cells. Compared to MSC-eGFP or MSCs, MSC-IL37b administration significantly attenuated the body weight and colon length reduction, and decreased the histological score in DSS-induced colitis mice. Furthermore, MSC-IL37b administration increased the percentage of myeloid-derived suppressor cells (MDSCs) among total splenic mononuclear cells as well as the percentage of regulatory T cells (Tregs) among splenic CD4+ T cells in the mice. Moreover, MSC-IL37b administration increased the IL-2+ cells and decreased the IFN-γ+ cells among splenic CD4+ T cells. Conclusion: IL-37 is involved in the pathophysiology of UC. IL-37b gene transfer enhances the therapeutic efficacy of MSCs in DSS-induced colitis mice by inducing Tregs and MDSCs and regulating cytokine production. PMID:26190499

  11. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis

    PubMed Central

    Aherne, CM; Saeedi, B; Collins, CB; Masterson, JC; McNamee, EN; Perrenoud, L; Rapp, CR; Curtis, VF; Bayless, A; Fletcher, A; Glover, LE; Evans, CM; Jedlicka, P; Furuta, GT; de Zoeten, EF; Colgan, SP; Eltzschig, HK

    2015-01-01

    Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b−/− mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre+) or intestinal epithelia (Adora2bfl/flVillinCre+) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses. PMID:25850656

  12. Listeria Rhombencephalitis Complicating Anti-TNF Treatment during an Acute Flare of Crohn's Colitis

    PubMed Central

    Caddy, G. R.

    2016-01-01

    Patients with Crohn's disease often require the use of immunosuppressant drugs to control disease activity. Such medication includes steroids, azathioprine, and biologic therapy. These suppress the immune response, and the patient is more susceptible to infection. We present a case of a 69-year-old gentleman with a history of Crohn's colitis who had ongoing symptoms of diarrhoea in spite of standard treatment. Biologic therapy was considered to be the next step, and screening for infection was undertaken prior to use. Three days following anti-TNF treatment, he became drowsy, and examination revealed pyrexia, slurred speech, and nystagmus. Investigation revealed presence of Listeria rhombencephalitis. He demonstrated poor neurological recovery. Listeria monocytogenes is an infection commonly associated with food sources. Some patients develop a self-limiting diarrhoeal illness, but in the immunosuppressed population, the clinical features may be more sinister. Cotrimoxazole prophylaxis is already recommended for those on triple immunosuppression. We propose the early initiation of this treatment, including where biologic use is anticipated. In those on multiple immunosuppressants, a diet similar to that followed in pregnancy may minimise risk of acquiring this infection. Clinicians must always have a high index of suspicion for opportunistic infection in such immunocompromised patients. PMID:27651962

  13. CD137 Facilitates the Resolution of Acute DSS-Induced Colonic Inflammation in Mice

    PubMed Central

    Martínez Gómez, Julia M.; Chen, Lieping; Schwarz, Herbert; Karrasch, Thomas

    2013-01-01

    Background CD137 and its ligand (CD137L) are potent immunoregulatory molecules that influence activation, proliferation, differentiation and cell death of leukocytes. Expression of CD137 is upregulated in the lamina propria cells of Crohn’s disease patients. Here, the role of CD137 in acute Dextran-Sodium-Sulfate (DSS)-induced colitis in mice was examined. Methods We induced acute large bowel inflammation (colitis) via DSS administration in CD137−/− and wild-type (WT) mice. Colitis severity was evaluated by clinical parameters (weight loss), cytokine secretion in colon segment cultures, and scoring of histological inflammatory parameters. Additionally, populations of lamina propria mononuclear cells (LPMNC) and intraepithelial lymphocytes (IEL) were characterized by flow cytometry. In a subset of mice, resolution of intestinal inflammation was evaluated 3 and 7 days after withdrawal of DSS. Results We found that both CD137−/− and WT mice demonstrated a similar degree of inflammation after 5 days of DSS exposure. However, the resolution of colonic inflammation was impaired in the absence of CD137. This was accompanied by a higher histological score of inflammation, and increased release of the pro-inflammatory mediators granulocyte macrophage colony-stimulating factor (GM-CSF), CXCL1, IL-17 and IFN-γ. Further, there were significantly more neutrophils among the LPMNC of CD137−/− mice, and reduced numbers of macrophages among the IEL. Conclusion We conclude that CD137 plays an essential role in the resolution of acute DSS-induced intestinal inflammation in mice. PMID:24023849

  14. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    May, Randal; Chandrakesan, Parthasarathy; Madhoun, Mohammad; Ali, Naushad; Sureban, Sripathi M.; An, Guangyu; Schlosser, Michael J.; Houchen, Courtney W.

    2015-01-01

    Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity. PMID:26285154

  15. Rhenium-coated glass beads for intracolonic administration attenuate TNBS-induced colitis in mice: Proof-of-Concept Study.

    PubMed

    Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub

    2015-01-01

    In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.

  16. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients.

  17. Abnormalities in endocrine and immune cells are correlated in dextran-sulfate-sodium-induced colitis in rats

    PubMed Central

    El-Salhy, Magdy; Hatlebakk, Jan Gunnar; Gilja, Odd Helge

    2016-01-01

    The interaction between the gut hormones and the immune system has been suggested to serve an important role in the pathophysiology of inflammatory bowel disease. The aims of the present study were to elucidate the possible abnormalities in the colonic endocrine cells in rats with dextran sodium sulfate (DSS)-induced colitis, and to determine whether they are correlated with alterations in the immune cells. A total of 24 male Wistar rats were divided into two groups: Control and DSS-induced colitis. Colonic tissues were harvested via postmortem laparotomy from all of the animals at the end of the experimental period, and fixed and sectioned for histology. The colonic endocrine and immune cells in those tissue samples were immunostained and their densities quantified by computerized image analysis. The densities of chromogranin A, serotonin, peptide YY and oxyntomodulin cells were significantly higher, and those of pancreatic peptide and somatostatin cells were lower in rats with DSS-induced colitis than in the controls. The densities of mucosal leukocytes, T and B lymphocytes, macrophages/monocytes, and mast cells were significantly higher than in the controls, and these changes were closely associated with the aforementioned changes in all endocrine cell types. These observations indicate an interaction between intestinal hormones and the immune system as represented by immune cells. PMID:27959399

  18. Deoxycholic Acid Triggers NLRP3 Inflammasome Activation and Aggravates DSS-Induced Colitis in Mice

    PubMed Central

    Zhao, Shengnan; Gong, Zizhen; Zhou, Jiefei; Tian, Chunyan; Gao, Yanhong; Xu, Congfeng; Chen, Yingwei; Cai, Wei; Wu, Jin

    2016-01-01

    A westernized high-fat diet (HFD) is associated with the development of inflammatory bowel disease (IBD). High-level fecal deoxycholic acid (DCA) caused by HFD contributes to the colonic inflammatory injury of IBD; however, the mechanism concerning the initiation of inflammatory response by DCA remains unclear. In this study, we sought to investigate the role and mechanism of DCA in the induction of inflammation via promoting NLRP3 inflammasome activation. Here, we, for the first time, showed that DCA dose-dependently induced NLRP3 inflammasome activation and highly pro-inflammatory cytokine-IL-1β production in macrophages. Mechanistically, DCA-triggered NLRP3 inflammasome activation by promoting cathepsin B release at least partially through sphingosine-1-phosphate receptor 2. Colorectal instillation of DCA significantly increased mature IL-1β level in colonic tissue and exacerbated DSS-induced colitis, while in vivo blockage of NLRP3 inflammasome or macrophage depletion dramatically reduced the mature IL-1β production and ameliorated the aggravated inflammatory injury imposed by DCA. Thus, our findings show that high-level fecal DCA may serve as an endogenous danger signal to activate NLRP3 inflammasome and contribute to HFD-related colonic inflammation. NLRP3 inflammasome may represent a new potential therapeutical target for treatment of IBD. PMID:27965665

  19. Social stress-enhanced severity of Citrobacter rodentium-induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri.

    PubMed

    Mackos, A R; Galley, J D; Eubank, T D; Easterling, R S; Parry, N M; Fox, J G; Lyte, M; Bailey, M T

    2016-03-01

    Psychological stressors are known to affect colonic diseases but the mechanisms by which this occurs, and whether probiotics can prevent stressor effects, are not understood. Because inflammatory monocytes that traffic into the colon can exacerbate colitis, we tested whether CCL2, a chemokine involved in monocyte recruitment, was necessary for stressor-induced exacerbation of infectious colitis. Mice were exposed to a social disruption stressor that entails repeated social defeat. During stressor exposure, mice were orally challenged with Citrobacter rodentium to induce a colonic inflammatory response. Exposure to the stressor during challenge resulted in significantly higher colonic pathogen levels, translocation to the spleen, increases in colonic macrophages, and increases in inflammatory cytokines and chemokines. The stressor-enhanced severity of C. rodentium-induced colitis was not evident in CCL2(-/-) mice, indicating the effects of the stressor are CCL2-dependent. In addition, we tested whether probiotic intervention could attenuate stressor-enhanced infectious colitis by reducing monocyte/macrophage accumulation. Treating mice with probiotic Lactobacillus reuteri reduced CCL2 mRNA levels in the colon and attenuated stressor-enhanced infectious colitis. These data demonstrate that probiotic L. reuteri can prevent the exacerbating effects of stressor exposure on pathogen-induced colitis, and suggest that one mechanism by which this occurs is through downregulation of the chemokine CCL2.

  20. Hydroalcoholic extract of Brazilian red propolis exerts protective effects on acetic acid-induced ulcerative colitis in a rodent model.

    PubMed

    Barbosa Bezerra, Gislaine; de Menezes de Souza, Luana; Dos Santos, Adailma Santana; de Almeida, Grace Kelly Melo; Souza, Marília Trindade Santana; Santos, Sandra Lauton; Aparecido Camargo, Enilton; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Cardoso, Juliana Cordeiro; Gomes, Silvana Vieira Floresta; Gomes, Margarete Zanardo; de Albuquerque, Ricardo Luiz Cavalcanti

    2017-01-01

    Ulcerative colitis (UC) is a common intestinal inflammatory disease with an etiology that is not well understood. Although the anti-inflammatory and anti-oxidant effects of the hydroalcoholic extract of Brazilian red propolis (HERP) have been reported in various experimental models, its protective effect in models of UC have not been evaluated. The purpose of this study was to investigate the chemopreventive effect of hydroalcoholic extract of Brazilian red propolis (HERP) in acetic acid-induced colitis (AAIC) using a rodent model. The HERP was chemically characterised by HPLC/DAD analyses. Male rats were randomly assigned into four groups: sham, vehicle (with AAIC, treated with vehicle), P10 (with AAIC, treated with 10mg/kg HERP), and P100 (with AAIC, treated with 100mg/kg HERP). Treatments were performed for 7days, and colitis was induced on day seven. Animals were euthanized 24h after colitis induction and body weight, colon length, gross and histological scores, malondialdehyde (MDA) and myeloperoxidase (MPO) concentrations in colon tissue, and the immunohistochemical expression of inducible nitric oxide synthase (iNOS) were assessed. The major compounds found in HERP were liquiritigenin (68.8mg/g), formononetin (54.29mg/g), biochanin A (30.97mg/g), and daidzein (19.90mg/g). Rats treated with 10mg/kg HERP demonstrated significant decreases in MPO concentrations, gross and histological scores of tissue damage, and iNOS expression (p<0.05). Similarly, rats treated with 100mg/kg HERP demonstrated significant decreases in MPO levels (p<0.05) and histological scores of tissue damage (p<0.05). The results of this study indicate that oral administration of HERP attenuates AAIC in rats, which may be due to anti-inflammatory effects related to iNOS inhibition.

  1. [Microscopic colitis].

    PubMed

    Bohr, Johan

    2002-02-11

    Microscopic colitis is an umbrella term for a newly described group of colitides, belonging to the inflammatory bowel diseases, which are only diagnosable by microscopic evaluation of a macroscopically normal colon mucosa. Collagenous colitis and lymphocytic colitis are the most common of these colitides. Microscopic colitis is characterised clinically by chronic non-bloody watery diarrhoea. Crampy abdominal pain, nocturnal diarrhoea, urgency, and initial weight loss are usual. Concomitant diseases of autoimmune origin and arthralgia are commonly seen. Treatment of microscopic colitis follows the guidelines for treatment of other inflammatory bowel diseases, but a substantial part of the patients with microscopic colitis enter spontaneous remission after some years. A minor part, however, have very troublesome symptoms and are almost refractory to treatment. Microscopic colitis has apparently no malignant potential.

  2. Targeted Colonic Claudin-2 Expression Renders Resistance to Epithelial Injury, Induces Immune Suppression and Protects from Colitis

    PubMed Central

    Ahmad, Rizwan; Chaturvedi, Rupesh; Olivares-Villagómez, Danyvid; Habib, Tanwir; Asim, Mohammad; Shivesh, Punit; Polk, Brent D.; Wilson, Keith T.; Washington, Mary K.; Van Kaer, Luc; Dhawan, Punita; Singh, Amar B.

    2014-01-01

    Expression of claudin-2, a tight junction protein, is highly upregulated during inflammatory bowel disease (IBD) and, due to its association with epithelial permeability, has been postulated to promote inflammation. Notably, claudin-2 has also been implicated in the regulation of intestinal epithelial proliferation. However, precise role of claudin-2 in regulating colonic homeostasis remains unclear. Here, we demonstrate, using Villin-Claudin-2 transgenic mice, that increased colonic claudin-2 expression augments mucosal permeability as well as colon and crypt length. Most notably, despite leaky colon, Cl-2TG mice were significantly protected against experimental colitis. Importantly, claudin-2 expression increased colonocyte proliferation and provided protection against colitis-induced colonocyte death in a PI-3Kinase/Bcl-2-dependent manner. However, Cl-2TG mice also demonstrated marked suppression of colitis-induced increases in immune activation and associated signaling, suggesting immune tolerance. Accordingly, colons from naïve Cl-2TG mice harbored significantly increased numbers of regulatory (CD4+Foxp3+) T-cells than WT-littermates. Furthermore, macrophages isolated from Cl-2TG mice colon exhibited immune anergy. Importantly, these immunosuppressive changes were associated with increased synthesis of the immunoregulatory cytokine TGF-β by colonic epithelial cells in Cl-2TG mice compared to WT-littermates. Taken together, our findings reveal a critical albeit complex role of claudin-2 in intestinal homeostasis by regulating epithelial permeability, inflammation and proliferation and suggest novel therapeutic opportunities. PMID:24670427

  3. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium

    PubMed Central

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn’t induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  4. Anti-inflammatory Effect of Amitriptyline on Ulcerative Colitis in Normal and Reserpine-Induced Depressed Rats

    PubMed Central

    Fattahian, Ehsan; Hajhashemi, Valiollah; Rabbani, Mohammad; Minaiyan, Mohsen; Mahzouni, Parvin

    2016-01-01

    Depressive disorders are more common among persons with chronic diseases such as inflammatory bowel disease and anti-inflammatory effect of some antidepressants such as amitriptyline has been reported. Acetic acid colitis was induced in both reserpinised (depressed) and non-reserpinised (normal) rats. Reserpinised groups received reserpine (6 mg/kg, i.p.) one hour prior to colitis induction. Then Amitriptyline (5, 10, 20 mg/kg, i.p.) was administered to separate groups of male Wistar rats. All treatments were carried out two hours after colitis induction and continued daily for four days. Dexamethasone (1 mg/kg) and normal saline (1 mL/kg) were used in reference and control groups, respectively. At day five, animals were euthanized and colonic tissue injuries were assessed macroscopically and pathologically. Myeloperoxidase activity as a marker of neutrophil infiltration was also measured in colonic tissues. Results showed that reserpine (6 mg/kg, i.p.) intensified colitic condition. Compared to control, amitriptyline (10, 20 mg/kg) and dexamethasone significantly decreased weight of colon and ulcer index in normal and reserpine-induced depressed rats. Myeloperoxidase activity and pathological assessments also proved anti-inflammatory effect of amitriptyline. Our results suggest that amitriptyline, a tricyclic antidepressant, could reduce inflammatory and ulcerative injuries of colon both in normal and depressed rats. So among the wide spread anti-depressant drugs, amitriptyline is a good choice to treat depression comorbidities in patients with IBD. PMID:28228811

  5. Oral Feeding of Probiotic Bifidobacterium infantis: Colonic Morphological Changes in Rat Model of TNBS-Induced Colitis

    PubMed Central

    Javed, Najma H.; Alsahly, Musaad B.; Khubchandani, Jagdish

    2016-01-01

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology. It has been proposed that modifying the bacterial flora in intestine with probiotics may decrease the inflammatory process and prevent relapses in UC. We investigated the possible protective and therapeutic effects of a single strand of probiotic, Bifidobacterium infantis (BI), on colonic inflammation, in rats with regular feedings. Two groups of Lewis rats were prepared (n = 8). The first group was the control, sham-fed group (n = 4). The other group was the experimental BI-fed group (n = 4). Colitis was induced in both groups by intrarectal administration of TNBS under light anesthesia. The sham-fed colitis induced groups received a daily oral gavage feeding of 1.0 mL distilled water, whereas the B. infantis-fed group received 0.205 g of B. infantis dissolved in 1.0 mL distilled water daily. The change in body weight and food and water intake was recorded over the course of each study and analyzed. The rats were euthanized and tissues from the descending colon were harvested and analyzed microscopically and histologically. Results of our study indicated significant reduction in inflammation, mucosal damage, and preservation of goblet cells, as compared to the control animals. Modulation of gastrointestinal (GI) flora suggests a promising field in developing strategies for prevention and treatment of inflammatory bowel diseases by dietary modifications. PMID:27127686

  6. LL202 protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting MAPK/AP-1 signaling

    PubMed Central

    Zhao, Yue; Hu, Yang; Li, Zhiyu; Guo, Qinglong; Zhao, Kai; Lu, Na

    2016-01-01

    LL202, a newly-synthesized flavonoid derivative, has been reported to inhibit inflammatory-induced angiogenesis. However, the exact role of LL202 in inflammation along with its mechanism has not been explored. In this study, we investigated the anti-inflammatory effect of LL202 on intestinal inflammation by establishing dextran sulfate sodium (DSS)-induced experimental colitis. LL202 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. The inflammatory cells infiltration, myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities were decreased by LL202 in a dose-dependent manner. LL202 reduced the production of pro-inflammatory cytokines in serum and colon of DSS-induced mice as well. Mechanically, LL202 could decrease the expression and nuclear translation of AP-1 to protect against DSS-induced colitis. In lipopolysaccharide (LPS)-induced THP-1 cells, LL202 markedly decreased the secretion, mRNA level and protein expression of IL-1β, IL-6 and TNF-α via inhibiting ERK/JNK/p38 MAPK pathways and the nuclear translocation of AP-1. Furthermore, these findings were confirmed in LPS-induced bone marrow derived macrophages (BMDM). In conclusion, our study demonstrated that LL202 could exert its anti-inflammatory effect via inhibiting MAPK/AP-1 signaling, which suggested that LL202 might be a potential effective drug for the treatment of inflammatory bowel diseases. PMID:27590510

  7. Effect of COX-2 inhibitor lumiracoxib and the TNF-α antagonist etanercept on TNBS-induced colitis in Wistar rats.

    PubMed

    Paiotti, Ana Paula Ribeiro; Ribeiro, Daniel Araki; Silva, Roseane Mendes; Marchi, Patrícia; Oshima, Celina Tizuko Fujiyama; Neto, Ricardo Artigiani; Miszputen, Sender Jankiel; Franco, Marcello

    2012-06-01

    Crohn's disease (CD) is associated with gut barrier dysfunction. Besides the baseline barrier defect, a subgroup of patients also expresses an intestinal barrier hyperresponsiveness to nonsteroidal anti-inflammatory drugs. On the other hand, the anti-tumour necrosis factor alpha (TNF-α) treatment has brought benefits to these patients. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, and Etanercept (ETC), a TNF-α antagonist on the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. A total of 47 Wistar rats were randomized into seven groups, as follows: (1) Sham: sham induced-colitis; (2) TNBS: nontreated induced-colitis; (3) Lumiracoxib control; (4) Lumiracoxib-treated induced-colitis; (5) ETC control; (6) ETC-treated induced-colitis; (7) Lumiracoxib-ETC-treated induced-colitis. Rats from groups 6 and 7 presented significant improvement of macroscopic and histopathological damages in the distal colon. The gene expression of COX-2 mRNA, as well of TNF-α mRNA, decreased significantly in groups 6 and 7 compared to the TNBS nontreated and lumiracoxib-treated groups. The treatment only with lumiracoxib did not reduce the inflammation on TNBS-induced experimental colitis. ETC attenuated the damage seen in the colon and reduced the inflammation caused by TNBS. Our results suggest that down-regulation of TNF-α and COX-2 resulted in a decrease in inflammation caused by TNBS and thus provided some protection from the colonic damage caused by TNBS.

  8. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis.

    PubMed

    Beloqui, Ana; Coco, Régis; Alhouayek, Mireille; Solinís, María Ángeles; Rodríguez-Gascón, Alicia; Muccioli, Giulio G; Préat, Véronique

    2013-10-01

    The challenge for the treatment of inflammatory bowel disease (IBD) is the delivery of the drug to the site of inflammation. Because nanoparticles have the ability to accumulate in inflamed regions, the aim of the present study was to evaluate nanostructured lipid carriers (NLCs) as nanoparticulate drug delivery systems for the treatment of IBD. Budesonide (BDS) was chosen as a candidate anti-inflammatory drug. BDS-loaded NLCs (BDS-NLC) produced by high-pressure homogenization had a size of 200 nm and a negative zeta potential. BDS-NLCs reduced the TNF-α secretion by activated macrophages (J774 cells). BDS-NLCs were more active in a murine model of dextran sulfate-induced colitis when compared with Blank-NLCs or a BDS suspension: BDS-NLCs decreased neutrophil infiltration, decreased the levels of the pro-inflammatory cytokines IL-1β and TNF-α in the colon and improved the histological scores of the colons. These data suggest that NLCs could be a promising alternative to polymeric nanoparticles as a targeted drug delivery system for IBD treatment.

  9. Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis.

    PubMed

    Zhao, Guangxi; Li, Jing; Wang, Jiyao; Shen, Xizhong; Sun, Jianyong

    2014-01-03

    Aquaporins (AQPs) plays an important role in transcellular water movement, but the AQPs expression profile has not been demonstrated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis which closely mimics human Crohn's disease (CD) histopathologically. To solve the problem, 30 female Sprague-Dawley (SD) rats were randomly divided into a model group (n=18), an ethanol control group (n=6) and a normal control group (n=6). On day 1, the rats in the model group received TNBS+50% ethanol via the rectum, while the ethanol control rats received an equal volume of 50% ethanol and the normal control rats did not receive any treatment. All rats were sacrificed on day 7, and ileum, proximal colon and distal colon specimens were obtained to examine the alteration in AQP3 and AQP8 using real-time polymerase chain reaction, Western blot analysis and immunohistochemistry. As a result, exposure to TNBS+ethanol resulted in a marked decrease in both the mRNA and protein expression of AQP3 and AQP8, with the exception of AQP8 protein which was negative in the distal colon in all three groups. These reductions in AQP3 and AQP8 were accompanied by an increase in intestinal inflammation and injury. The results obtained here implied that both AQP3 and AQP8 may be involved in the pathogenesis of inflammatory bowel disease.

  10. Nicotine-induced neurogenic relaxation in the mouse colon: changes with dextran sodium sulfate-induced colitis.

    PubMed

    Murakami, Ikuo; Hamada, Yuri; Yamane, Satoshi; Fujino, Hiromichi; Horie, Shunji; Murayama, Toshihiko

    2009-01-01

    Nicotine has been shown to reduce both tone and muscular activity in the human colon by releasing nitric oxide (NO) from nerves. To our knowledge, however, the effect of nicotine on mouse colon has not been elucidated, and the response in tissue from ulcerative colitis (UC) has not been investigated. We examined nicotine-induced responses in colon from control mice and mice with dextran sodium sulfate (DSS)-induced UC. In controls, bath application of nicotine caused a transient relaxation in longitudinal preparations from the transverse and distal colons but not from the rectum. The response was observed in the presence of bethanechol, abolished by treatment with tetrodotoxin and hexamethonium, and mediated partially (>50%) by the NO pathway. In longitudinal preparations of the distal colon from DSS-treated mice, spontaneous contractions decreased markedly, and nicotine caused contraction without relaxation in half of the preparations tested. Nicotine-induced relaxation in the presence of bethanechol was significantly decreased in the DSS-treated distal colon without changing bethanechol-induced contractions. These data suggest that 1) responses to nicotine differ dependent on colon regions, 2) DSS treatment predominantly caused nicotine-sensitive neurogenic changes in distal colon, and 3) DSS treatment may reverse the direction of nicotine-evoked responses in the colon, in mice.

  11. Stat3 Activation in Murine Colitis Induced by Enterotoxigenic Bacteroides fragilis

    PubMed Central

    Wick, Elizabeth C.; Rabizadeh, Shervin; Albesiano, Emilia; Wu, XinQun; Wu, Shaoguang; Chan, June; Rhee, Ki-Jong; Ortega, Guillermo; Huso, David L.; Pardoll, Drew; Housseau, Franck; Sears, Cynthia L.

    2014-01-01

    Background Enterotoxigenic Bacteroides fragilis (ETBF), a molecular subclass of the common human commensal, B. fragilis, has been associated with inflammatory bowel disease. ETBF colitis is characterized by the activation of Stat3 and a Th17 immune response in the colonic mucosa. This study was designed to investigate the time course and cellular distribution of Stat3 activation in ETBF-colonized mice. Methods C57BL/6 wild-type, C57BL/6Stat3ΔIEC, or Rag-1 mice were inoculated with saline, nontoxigenic B. fragilis or ETBF. Histologic diagnosis and mucosal Stat activation (immunohistochemistry, Western blot, and/or electrophorectic mobility shift assay) were evaluated over time (6–24 h, 1–7 d, and 1–18 mo after inoculation). Mucosal permeability was evaluated at 16 hours, 1 day, and 3 days. Mucosal immune responses were evaluated at 1 week, and 12 and 18 months. Results ETBF induced rapid-onset colitis that persisted for up to 1 year. Stat3 activation (pStat3) was noted in the mucosal immune cells within 16 hours, with colonic epithelial cell activation evident at 24 hours after inoculation. ETBF-induced increased mucosal permeability was first observed at 24 hours after inoculation, after which the initial immune cell pStat3 activation was noted. Immune cell pStat3 was present in the absence of epithelial pStat3 (C57BL/ 6Stat3ΔIEC). Epithelial pStat3 was present in the absence of T and B cells (Rag-1 mice). pStat3 persisted in the epithelial and immune cells for 1 year, characterized by isolated pStat3-positive cell clusters, with varying intensity distributed through the proximal and distal colon. Similarly, mucosal Th17 immune responses persisted for up to 1 year. Loss of fecal ETBF colonization was associated with the loss of mucosal pStat3 and Th17 immune responses. Conclusions ETBF rapidly induces immune cell pStat3, which is independent of epithelial pStat3. This occurs before ETBF-induced mucosal permeability, suggesting that ETBF, likely through B

  12. Ethanol extract of Cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate- (DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators.

    PubMed

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The effect of Cordyceps militaris (CM) grown on germinated soybeans (GSC) in the inflammatory bowel disease (IBD) model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS-) induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI) as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs) and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-) α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs.

  13. Ethanol Extract of Cordyceps militaris Grown on Germinated Soybeans Attenuates Dextran-Sodium-Sulfate- (DSS-) Induced Colitis by Suppressing the Expression of Matrix Metalloproteinases and Inflammatory Mediators

    PubMed Central

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The effect of Cordyceps militaris (CM) grown on germinated soybeans (GSC) in the inflammatory bowel disease (IBD) model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS-) induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI) as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs) and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-) α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs. PMID:23841050

  14. Acute provoked reflex seizures induced by thinking.

    PubMed

    Nevler, Naomi; Gandelman-Marton, Revital

    2012-11-01

    Thinking epilepsy is a rare form of reflex epilepsy that can be induced by specific cognitive tasks, and occurs mainly in idiopathic generalized epilepsies. We report a case of complex partial seizures triggered by thinking in a young man with acute bacterial meningitis and a remote head injury. This case illustrates that thinking-induced reflex seizures can be partial and can be provoked by an acute brain insult.

  15. Deficiency in Toll-interacting protein (Tollip) skews inflamed yet incompetent innate leukocytes in vivo during DSS-induced septic colitis

    PubMed Central

    Diao, Na; Zhang, Yao; Chen, Keqiang; Yuan, Ruoxi; Lee, Christina; Geng, Shuo; Kowalski, Elizabeth; Guo, Wen; Xiong, Huabao; Li, Mingsong; Li, Liwu

    2016-01-01

    Functionally compromised neutrophils contribute to adverse clinical outcomes in patients with severe inflammation and injury such as colitis and sepsis. However, the ontogeny of dysfunctional neutrophil during septic colitis remain poorly understood. We report that the dysfunctional neutrophil may be derived by the suppression of Toll-interacting-protein (Tollip). We observed that Tollip deficient neutrophils had compromised migratory capacity toward bacterial product fMLF due to reduced activity of AKT and reduction of FPR2, reduced potential to generate bacterial-killing neutrophil extra-cellular trap (NET), and compromised bacterial killing activity. On the other hand, Tollip deficient neutrophils had elevated levels of CCR5, responsible for their homing to sterile inflamed tissues. The inflamed and incompetent neutrophil phenotype was also observed in vivo in Tollip deficient mice subjected to DSS-induced colitis. We observed that TUDCA, a compound capable of restoring Tollip cellular function, can potently alleviate the severity of DSS-induced colitis. In humans, we observed significantly reduced Tollip levels in peripheral blood collected from human colitis patients as compared to blood samples from healthy donors. Collectively, our data reveal a novel mechanism in Tollip alteration that underlies the inflamed and incompetent polarization of neutrophils leading to severe outcomes of colitis. PMID:27703259

  16. RNAi-mediated silencing of TNF-α converting enzyme to down-regulate soluble TNF-α production for treatment of acute and chronic colitis.

    PubMed

    Song, Yoonsung; Kim, Ye-Ram; Kim, So Mi; Ul Ain, Qurrat; Jang, Kiseok; Yang, Chul-Su; Kim, Yong-Hee

    2016-10-10

    Elevated level of tumor necrosis factor-α (TNF-α), one of the inflammatory cytokines, is considered to be a potential target for the inflammatory bowel disease (IBD) therapy. Recently, TNF-α converting enzyme (TACE), a sheddase playing an important role in cleaving and releasing bioactive soluble TNF-α, has been challenged with inhibitors to treat inflammatory diseases. Here, we report a novel anti-TNF-α strategy using a short hairpin RNA silencing TACE (shTACE) to prevent and treat colitis. The shTACE formed stable complexes with nona-arginine-based bio-cleavable disulfide bond-linked poly (arginine) (PAs-s) for enhanced gene delivery. Systemically administered shTACE/PAs-s peptoplexes efficiently decreased TNF-α levels, increased survival and alleviated pathophysiological parameters representing colitis severity. Our results demonstrate effectiveness and safety of shTACE/PAs-s peptoplexes with the capacity of overcoming acute and chronic ulcerative colitis through modulation of excessive inflammatory responses in the colon, providing a strong potential as a therapeutic agent for a broad variety of inflammatory diseases.

  17. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer.

    PubMed

    Lowe, Emily L; Crother, Timothy R; Rabizadeh, Shervin; Hu, Bing; Wang, Hanlin; Chen, Shuang; Shimada, Kenichi; Wong, Michelle H; Michelsen, Kathrin S; Arditi, Moshe

    2010-09-27

    Inflammatory bowel disease (IBD) is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR) signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC) integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC) in wild type (WT) and TLR2(-/-) mice. Colons harvested from WT and TLR2(-/-) mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2(-/-) mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2(-/-) colons exhibited a significant increase in aberrant crypt foci (ACF), resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC.

  18. MAG-EPA reduces severity of DSS-induced colitis in rats.

    PubMed

    Morin, Caroline; Blier, Pierre U; Fortin, Samuel

    2016-05-15

    Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats.

  19. Effects of Rhizophora mangle on Experimental Colitis Induced by TNBS in Rats.

    PubMed

    de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Socca, Eduardo Augusto Rabelo; de Almeida, Ana Cristina Alves; Dunder, Ricardo José; Manzo, Luis Paulo; da Silva, Marcelo Aparecido; Vilegas, Wagner; Rozza, Ariane Leite; Pellizzon, Cláudia Helena; Dos Santos, Lourdes Campaner; Souza Brito, Alba Regina Monteiro

    2012-01-01

    Male Unib-WH rats were pretreated for two weeks with butanolic (BuOH) and ethyl acetate (EtOAc) fractions. Colitis was induced by rectal administration of TNBS, the treatment continued, and animals were sacrificed on day 7 after the TNBS administration. Phytochemical studies were performed in order to provide the characterization of the tannins present in the bark of R. mangle. Results showed that EtOAc fraction increased the levels of IL-10 (∗∗P < 0.01) and diminished the levels of TNF-α (∗∗∗P < 0.001) and IL-6 (∗∗P < 0.01). BuOH fraction reduced the MPO activity (∗∗P < 0.01) and levels of TBARS (∗∗∗P < 0.001); it also increased COX-1 expression, diminished the levels of TNF-α (∗∗∗P < 0.001), and increased the levels of IL-12 (∗∗∗P < 0.001). Besides, both treatments augmented the levels of GSH (∗P < 0.05), the activity of GSH-Px (∗∗P < 0.01 for BuOH fraction and ∗∗∗P < 0.001 for EtOAc fraction), and CAT (∗∗P < 0.01). In conclusion, both treatments ameliorated the injury induced by TNBS through different mechanisms, probably by their chemical composition which directed its activity into an antioxidant or anti-inflammatory response, leading to an immune modulation.

  20. Effects of Carum carvi L. (Caraway) extract and essential oil on TNBS-induced colitis in rats

    PubMed Central

    Keshavarz, A.; Minaiyan, M.; Ghannadi, A.; Mahzouni, P.

    2013-01-01

    Carum carvi L. (Apiaceae family) or caraway is a common household plant grown around the world including Iran. Caraway fruits are used as flavoring agent in foods and beverages, and have various traditional uses in ethnomedicine. Anti-inflammatory, spasmolytic, antimicrobial, antioxidant, carminative and immunomodulatory properties of caraway suggest that it might exert beneficial effects on inflammatory bowel disease (IBD). Therefore, this study was carried out to investigate the effects of caraway hydroalcoholic extract (CHE) and its essential oil (CEO) in an immunological model of colitis in rats induced by trinitrobenzene sulfonic acid (TNBS). Different doses of CHE (100, 200, 400 mg/kg) and CEO (100, 200, 400 μl/kg) were administered orally (p.o.) and also doses of CHE (100, 400 mg/kg) and CEO (100, 400 μl/kg) were given intraperitoneally (i.p.) to the separate groups of male Wistar rats (n=6). Administration of the doses started 6 h after induction of colitis and continued daily for 5 consecutive days. Wet colon weight/length ratio was measured and tissue damage scores as well as indices of colitis were evaluated both macroscopically and histopathologically. CHE and CEO at all doses tested were effective in reducing colon tissue lesions and colitis indices and the efficacy was nearly the same when different doses of plant fractions were administered p.o. or i.p. Administration of prednisolone (p.o., 4 mg/kg), Asacol® (mesalazine microgranules, p.o., 100 mg/kg) and hydrocortisone acetate (i.p., 20 mg/kg) as references were effective in reducing colon tissue injures as well. These data suggest that caraway fractions are both effective and possess anti-colitic activity irrespective of the dose and route of administration. PMID:24459470

  1. Effects of Carum carvi L. (Caraway) extract and essential oil on TNBS-induced colitis in rats.

    PubMed

    Keshavarz, A; Minaiyan, M; Ghannadi, A; Mahzouni, P

    2013-01-01

    Carum carvi L. (Apiaceae family) or caraway is a common household plant grown around the world including Iran. Caraway fruits are used as flavoring agent in foods and beverages, and have various traditional uses in ethnomedicine. Anti-inflammatory, spasmolytic, antimicrobial, antioxidant, carminative and immunomodulatory properties of caraway suggest that it might exert beneficial effects on inflammatory bowel disease (IBD). Therefore, this study was carried out to investigate the effects of caraway hydroalcoholic extract (CHE) and its essential oil (CEO) in an immunological model of colitis in rats induced by trinitrobenzene sulfonic acid (TNBS). Different doses of CHE (100, 200, 400 mg/kg) and CEO (100, 200, 400 μl/kg) were administered orally (p.o.) and also doses of CHE (100, 400 mg/kg) and CEO (100, 400 μl/kg) were given intraperitoneally (i.p.) to the separate groups of male Wistar rats (n=6). Administration of the doses started 6 h after induction of colitis and continued daily for 5 consecutive days. Wet colon weight/length ratio was measured and tissue damage scores as well as indices of colitis were evaluated both macroscopically and histopathologically. CHE and CEO at all doses tested were effective in reducing colon tissue lesions and colitis indices and the efficacy was nearly the same when different doses of plant fractions were administered p.o. or i.p. Administration of prednisolone (p.o., 4 mg/kg), Asacol® (mesalazine microgranules, p.o., 100 mg/kg) and hydrocortisone acetate (i.p., 20 mg/kg) as references were effective in reducing colon tissue injures as well. These data suggest that caraway fractions are both effective and possess anti-colitic activity irrespective of the dose and route of administration.

  2. L-arginine and aminoguanidine reduce colonic damage of acetic acid-induced colitis in rats: potential modulation of nuclear factor-κB/p65.

    PubMed

    Farghaly, Hanan S M; Thabit, Romany H

    2014-10-01

    The transcription factor, nuclear factor-κB (NF-κB) is a key inducer of inducible nitric oxide synthase (iNOS) gene expression. The aim of the present study was to investigate the potential protective effect of l-arginine (Arg; nitric oxide precursor) and aminoguanidine (inducible nitric oxide synthase inhibitor) against acetic acid (AA)-induced colitis in rats, and the potential role of NF-κB. Colitis was induced by intrarectal inoculation of rats with 4% acetic acid for three consecutive days. The effect of Arg and aminoguanidine on nitric oxide levels was assessed by Greiss assay and protein expression of NF-κB/p65, and inducible nitric oxide synthase was also investigated by immunohistochemistry. Slides were examined using ImageJ, and results reported as the percent area positive for each marker. Intrarectal AA caused a significant increase in bodyweight loss and colon weights. Arg at 100 mg/day for 7 days before induction of colitis diminished the changes in both bodyweight loss and colon weights. Furthermore, Arg attenuated the colonic tissues macroscopic and microscopic damage induced by acetic acid. In addition, i.p. AG 100 mg/kg given during and after induction of colitis recovered the colonic ulcerative lesion induced by AA. Arg can protect against colonic inflammation; an effect that probably be attributed to its nitric oxide-donating property, resulting in modulatory effects on the expression of NF-κB/p65 in the colon tissues. The results suggested that Arg might reduce the inflammation associated with colitis as confirmed by histopathological investigations. Arg might inhibit AA-induced colitis through the NF-κB/nitric oxide pathway.

  3. Chrysin Ameliorates Chemically Induced Colitis in the Mouse through Modulation of a PXR/NF-κB Signaling Pathway

    PubMed Central

    Dou, Wei; Zhang, Jingjing; Zhang, Eryun; Sun, Aning; Ding, Lili; Chou, Guixin; Mani, Sridhar

    2013-01-01

    Targeted activation of pregnane X receptor (PXR) in recent years has become a therapeutic strategy for inflammatory bowel disease. Chrysin is a naturally occurring flavonoid with anti-inflammation activity. The current study investigated the role of chrysin as a putative mouse PXR agonist in preventing experimental colitis. Pre-administration of chrysin ameliorated inflammatory symptoms in mouse models of colitis (dextran sodium sulfate– and 2,4,6-trinitrobenzene sulfonic acid–induced) and resulted in down-regulation of nuclear transcription factor κB (NF-κB) target genes (inducible NO synthase, intercellular adhesion molecule-1, monocyte chemotactic protein-1, cyclooxygenase 2, tumor necrosis factor-α, and interleukin 6) in the colon mucosa. Chrysin inhibited the phosphorylation/degradation of inhibitor κBα (IκBα), which correlated with the decrease in the activity of myeloperoxidase and the levels of tumor necrosis factor–α and interleukin 6 in the colon. Consistent with the in vivo results, chrysin blocked lipopolysaccharide -stimulated nuclear translocation of NF-κB p65 in mouse macrophage RAW264.7. Furthermore, chrysin dose-dependently activated human/mouse PXR in reporter gene assays and up-regulated xenobiotic detoxification genes in the colon mucosa, but not in the liver. Silencing of PXR by RNA interference demonstrated necessity of PXR in mediating chrysin’s ability to induce xenobiotic detoxification genes and NF-κB inactivation. The repression of NF-κB transcription activity by chrysin was confirmed by in vitro PXR transduction. These findings suggest that the effect of chrysin in preventing chemically induced colitis is mediated in large part by a PXR/NF-κB pathway. The data also suggest that chrysin or chrysin-like flavonoids could be further developed as intestine-specific PXR activators. PMID:23536316

  4. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis

    PubMed Central

    Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas

    2015-01-01

    Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773

  5. Deficient Production of Reactive Oxygen Species Leads to Severe Chronic DSS-Induced Colitis in Ncf1/p47phox-Mutant Mice

    PubMed Central

    Rodrigues-Sousa, Tiago; Ladeirinha, Ana Filipa; Santiago, Ana Raquel; Carvalheiro, Helena; Raposo, Bruno; Alarcão, Ana; Cabrita, António; Holmdahl, Rikard; Carvalho, Lina; Souto-Carneiro, M. Margarida

    2014-01-01

    Background Colitis is a common clinical complication in chronic granulomatous disease (CGD), a primary immunodeficiency caused by impaired oxidative burst. Existing experimental data from NADPH-oxidase knockout mice propose contradictory roles for the involvement of reactive oxygen species in colitis chronicity and severity. Since genetically controlled mice with a point-mutation in the Ncf1 gene are susceptible to chronic inflammation and autoimmunity, we tested whether they presented increased predisposition to develop chronic colitis. Methods Colitis was induced in Ncf1-mutant and wild-type mice by a 1st 7-days cycle of dextran sulfate sodium (DSS), intercalated by a 7-days resting period followed by a 2nd 7-days DSS-cycle. Cytokines were quantified locally in the colon inflammatory infiltrates and in the serum. Leukocyte infiltration and morphological alterations of the colon mucosa were assessed by immunohistochemistry. Results Clinical scores demonstrated a more severe colitis in Ncf1-mutant mice than controls, with no recovery during the resting period and a severe chronic colitis after the 2nd cycle, confirmed by histopathology and presence of infiltrating neutrophils, macrophages, plasmocytes and lymphocytes in the colon. Severe colitis was mediated by increased local expression of cytokines (IL-6, IL-10, TNF-α, IFN-γ and IL-17A) and phosphorylation of Leucine-rich repeat kinase 2 (LRRK2). Serological cytokine titers of those inflammatory cytokines were more elevated in Ncf1-mutant than control mice, and were accompanied by systemic changes in functional subsets of monocytes, CD4+T and B cells. Conclusion This suggests that an ineffective oxidative burst leads to severe chronic colitis through local accumulation of peroxynitrites, pro-inflammatory cytokines and lymphocytes and systemic immune deregulation similar to CGD. PMID:24873968

  6. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  7. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate.

    PubMed

    Zarepoor, Leila; Lu, Jenifer T; Zhang, Claire; Wu, Wenqing; Lepp, Dion; Robinson, Lindsay; Wanasundara, Janitha; Cui, Steve; Villeneuve, Sébastien; Fofana, Bourlaye; Tsao, Rong; Wood, Geoffrey A; Power, Krista A

    2014-06-15

    Flaxseed (FS), a dietary oilseed, contains a variety of anti-inflammatory bioactives, including fermentable fiber, phenolic compounds (lignans), and the n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid. The objective of this study was to determine the effects of FS and its n-3 PUFA-rich kernel or lignan- and soluble fiber-rich hull on colitis severity in a mouse model of acute colonic inflammation. C57BL/6 male mice were fed a basal diet (negative control) or a basal diet supplemented with 10% FS, 6% kernel, or 4% hull for 3 wk prior to and during colitis induction via 5 days of 2% (wt/vol) dextran sodium sulfate (DSS) in their drinking water (n = 12/group). An increase in anti-inflammatory metabolites (hepatic n-3 PUFAs, serum mammalian lignans, and cecal short-chain fatty acids) was associated with consumption of all FS-based diets, but not with anti-inflammatory effects in DSS-exposed mice. Dietary FS exacerbated DSS-induced acute colitis, as indicated by a heightened disease activity index and an increase in colonic injury and inflammatory biomarkers [histological damage, apoptosis, myeloperoxidase, inflammatory cytokines (IL-6 and IL-1β), and NF-κB signaling-related genes (Nfkb1, Ccl5, Bcl2a1a, Egfr, Relb, Birc3, and Atf1)]. Additionally, the adverse effect of the FS diet was extended systemically, as serum cytokines (IL-6, IFNγ, and IL-1β) and hepatic cholesterol levels were increased. The adverse effects of FS were not associated with alterations in fecal microbial load or systemic bacterial translocation (endotoxemia). Collectively, this study demonstrates that although consumption of a 10% FS diet enhanced the levels of n-3 PUFAs, short-chain polyunsaturated fatty acids, and lignans in mice, it exacerbated DSS-induced colonic injury and inflammation.

  8. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Warzecha, Zygmunt; Ceranowicz, Piotr; Dembiński, Marcin; Cieszkowski, Jakub; Bulanda, Małgorzata; Kuśnierz-Cabala, Beata; Gałązka, Krystyna; Konturek, Peter Christopher

    2016-01-01

    Background. Inflammatory bowel disease results from the dysregulation of immune response to environmental and microbial agents in genetically susceptible individuals. The aim of the present study was to examine the effect of rifaximin and/or Mutaflor (Escherichia coli Nissle 1917, EcN) administration on the healing of acetic acid-induced colitis. Methods. Colitis was induced in male Wistar rats by rectal enema with 3.5% acetic acid solution. Rifaximin (50 mg/kg/dose) and/or Mutaflor (109 CFU/dose) were given intragastrically once a day. The severity of colitis was assessed at the 8th day after induction of inflammation. Results. Treatment with rifaximin significantly accelerated the healing of colonic damage. This effect was associated with significant reversion of the acetic acid-evoked decrease in mucosal blood flow and DNA synthesis. Moreover, administration of rifaximin significantly reduced concentration of proinflammatory TNF-α and activity of myeloperoxidase in colonic mucosa. Mutaflor given alone was without significant effect on activity of colitis. In contrast, Mutaflor given in combination with rifaximin significantly enhanced therapeutic effect of rifaximin. Moreover, Mutaflor led to settle of the colon by EcN and this effect was augmented by pretreatment with rifaximin. Conclusion. Rifaximin and Mutaflor exhibit synergic anti-inflammatory and therapeutic effect in acetic acid-induced colitis in rats. PMID:27433160

  9. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins.

    PubMed

    Ledesma-Soto, Yadira; Callejas, Blanca E; Terrazas, César A; Reyes, Jose L; Espinoza-Jiménez, Arlett; González, Marisol I; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R; Terrazas, Luis I

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins.

  10. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Dembiński, Artur; Warzecha, Zygmunt; Ceranowicz, Piotr; Dembiński, Marcin; Cieszkowski, Jakub; Gosiewski, Tomasz; Bulanda, Małgorzata; Kuśnierz-Cabala, Beata; Gałązka, Krystyna; Konturek, Peter Christopher

    2016-01-01

    Background. Inflammatory bowel disease results from the dysregulation of immune response to environmental and microbial agents in genetically susceptible individuals. The aim of the present study was to examine the effect of rifaximin and/or Mutaflor (Escherichia coli Nissle 1917, EcN) administration on the healing of acetic acid-induced colitis. Methods. Colitis was induced in male Wistar rats by rectal enema with 3.5% acetic acid solution. Rifaximin (50 mg/kg/dose) and/or Mutaflor (10(9) CFU/dose) were given intragastrically once a day. The severity of colitis was assessed at the 8th day after induction of inflammation. Results. Treatment with rifaximin significantly accelerated the healing of colonic damage. This effect was associated with significant reversion of the acetic acid-evoked decrease in mucosal blood flow and DNA synthesis. Moreover, administration of rifaximin significantly reduced concentration of proinflammatory TNF-α and activity of myeloperoxidase in colonic mucosa. Mutaflor given alone was without significant effect on activity of colitis. In contrast, Mutaflor given in combination with rifaximin significantly enhanced therapeutic effect of rifaximin. Moreover, Mutaflor led to settle of the colon by EcN and this effect was augmented by pretreatment with rifaximin. Conclusion. Rifaximin and Mutaflor exhibit synergic anti-inflammatory and therapeutic effect in acetic acid-induced colitis in rats.

  11. Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis.

    PubMed

    Yang, Xiao-Lai; Guo, Tian-Kang; Wang, Yan-Hong; Huang, Yan-Hui; Liu, Xia; Wang, Xiao-Xia; Li, Wan; Zhao, Xin; Wang, Li-Ping; Yan, Shuai; Wu, Di; Wu, Yong-Jie

    2012-02-01

    In this study, we investigated the effects and the protective mechanism of ginsenoside Rd (GRd) which has been identified as one of the effective compounds from ginseng on relapsing colitis model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. After inducing relapsing colitis in experimental rats on two occasions by intracolonic injection of TNBS, GRd (10, 20 and 40 mg/kg) was administered to experimental colitis rats for 7 days. The inflammatory degree was assessed by macroscopic score, histology and myeloperoxidase (MPO) activity. The levels of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 were determined by ELISA. Mitogen-activated protein kinase (MAPK) phosphorylation was analyzed by western blotting method. The results showed that GRd markedly attenuates the inflammatory response to TNBS-induced relapsing colitis, as evidenced by improved signs, increased body weight, decreased colonic weight/length ratio, reduced colonic macroscopic and microscopic damage scores, inhibited the activity of MPO, lowered proinflammatory cytokine levels and suppressed phosphorylation of p38 and JNK. The possible mechanism of protection on experimental colitis after GRd administration was that it could reduce the accumulation of leukocytes and down-regulate multiple proinflammatory cytokines through modulation of JNK and p38 activation.

  12. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins

    PubMed Central

    Ledesma-Soto, Yadira; Callejas, Blanca E.; Terrazas, César A.; Reyes, Jose L.; Espinoza-Jiménez, Arlett; González, Marisol I.; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E.; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R.; Terrazas, Luis I.

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins. PMID:26090422

  13. Effects of Sinomenine on the Expression of microRNA-155 in 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

    PubMed Central

    Yi, Fengming; Bing, Yuntao; Huang, Sha; Wang, Zixi; Wang, Chunyu; Xia, Bing

    2013-01-01

    Background Sinomenine, a pure alkaloid isolated in Chinese medicine from the root of Sinomenium acutum, has been demonstrated to have anti-inflammatory and immunosuppressive effects. MicroRNAs (miRNAs) are gradually being recognized as critical mediators of disease pathogenesis via coordinated regulation of molecular effector pathways. Methodology/Findings After colitis was induced in mice by instillation of 5% (w/v) 2,4,6-trinitrobenzenesulfonic acid (TNBS), sinomenine at a dose of 100 or 200 mg/kg was orally administered once daily for 7 days. We evaluated body weight, survival rate, diarrhea score, histological score and myeloperoxidase (MPO) activity. The mRNA and protein expression levels of miR-155, c-Maf, TNF-α and IFN-γ were determined by quantitative RT-PCR and immunohistochemistry, respectively. Sinomenine (100 or 200 mg/kg)-treated mice with TNBS-induced colitis were significantly improved in terms of body weight, survival rate, diarrhea score, histological score and MPO activity compared with untreated mice. Both dosages of sinomenine significantly decreased the mRNA and protein expression levels of c-Maf, TNF-α and IFN-γ, which elevated in TNBS-induced colitis. Furthermore, sinomenine at a dose of 200 mg/kg significantly decreased the level of miR-155 expression by 71% (p = 0.025) compared with untreated TNBS-induced colitis in mice. Conclusions/Significance Our study evaluated the effects and potential mechanisms of sinomenine in the anti-inflammatory response via miRNA-155 in mice with TNBS-induced colitis. Our findings suggest that sinomenine has anti-inflammatory effects on TNBS-induced colitis by down-regulating the levels of miR-155 and several related inflammatory cytokines. PMID:24066068

  14. Cyproheptadine-Induced Acute Liver Failure.

    PubMed

    Chertoff, Jason; Alam, Sabikha; Clark, Virginia

    2014-07-08

    We present the case of a 55-year-old white female with no history of liver or gastrointestinal disease, admitted with acute liver failure following a trial of cyproheptadine for appetite stimulation. The patient was managed with supportive care, symptomatic treatment, and discontinuation of cyproheptadine. To our knowledge, this is the first described case of cyproheptadine-induced acute liver failure in over 20 years.

  15. Computed tomography of neutropenic colitis

    SciTech Connect

    Frick, M.P.; Maile, C.W.; Crass, J.R.; Goldberg, M.E.; Delaney, J.P.

    1984-10-01

    Four patients developed neutropenic colitis as a complication of acute leukemia (three) or aplastic anemia (one). On computed tomography (CT), neutropenic colitis was characterized by cecal wall thickening (four) and pneumatosis (one). Intramural areas of lower density presumably reflected edema or hemorrhage. Clinical improvement and return of adequate numbers of functioning neutrophils coincided with decrease in cecal wall thickening on CT. Prompt radiologic recognition of this serious condition is crucial, since surgical intervention is probably best avoided.

  16. Role of metallothioneins as danger signals in the pathogenesis of colitis.

    PubMed

    Devisscher, Lindsey; Hindryckx, Pieter; Lynes, Michael A; Waeytens, Anouk; Cuvelier, Claude; De Vos, Filip; Vanhove, Christian; Vos, Martine De; Laukens, Debby

    2014-05-01

    Inflammatory bowel diseases (IBDs) are recurrent intestinal pathologies characterized by a compromised epithelial barrier and an exaggerated immune activation. Mediators of immune cell infiltration may represent new therapeutic opportunities. Metallothioneins (MTs) are stress-responsive proteins with immune-modulating functions. Metallothioneins have been linked to IBDs, but their role in intestinal inflammation is inconclusive. We investigated MT expression in colonic biopsies from IBDs and acute infectious colitis patients and healthy controls and evaluated MT's role in experimental colitis using MT knockout mice and anti-MT antibodies. Antibody potential to target extracellular MT and its mechanism was tested in vitro. Biopsies of patients with active colitis showed infiltration of MT-positive cells in a pattern that correlated with the grade of inflammation. MT knockout mice displayed less severe acute dextran sulphate sodium (DSS)-induced colitis compared to congenic wild-type mice based on survival, weight loss, colon length, histological inflammation and leukocyte infiltration. Chronic DSS-colitis confirmed that Mt1 and Mt2 gene disruption enhances clinical outcome. Blockade of extracellular MT with antibodies reduced F4/80-positive macrophage infiltration in DSS- and trinitrobenzene sulphonic acid-colitis, with a tendency towards a better outcome. Whole-body single-photon emission computer tomography of mice injected with radioactive anti-MT antibodies showed antibody accumulation in the colon during colitis and clearance during recovery. Necrotic and not apoptotic cell death resulted in western blot MT detection in HT29 cell supernatant. In a Boyden chamber migration assay, leukocyte attraction towards the necrotic cell supernatant could be abolished with anti-MT antibody, indicating the chemotactic potential of endogenous released MT. Our results show that human colitis is associated with infiltration of MT-positive inflammatory cells. Since antibody

  17. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells.

    PubMed

    Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson

    2017-03-07

    P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB(low). Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.

  18. Heligmosomoides induces tolerogenic dendritic cells that block colitis and prevent antigen-specific gut Tcell responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunological diseases like inflammatory bowel disease (IBD) are infrequent in less developed countries possibly because helminths provide protection by modulating host immunity. In IBD murine models, the helminth Heligmosomoides bakeri (Hb) prevents colitis. It was determined if Hb mediated IBD pro...

  19. Drug induced acute pancreatitis: incidence and severity.

    PubMed Central

    Lankisch, P G; Dröge, M; Gottesleben, F

    1995-01-01

    To determine the incidence and severity of drug induced acute pancreatitis, data from 45 German centres of gastroenterology were evaluated. Among 1613 patients treated for acute pancreatitis in 1993, drug induced acute pancreatitis was diagnosed in 22 patients (incidence 1.4%). Drugs held responsible were azathioprine, mesalazine/sulfasalazine, 2',3'-dideoxyinosine (ddI), oestrogens, frusemide, hydrochlorothiazide, and rifampicin. Pancreatic necrosis not exceeding 33% of the organ was found on ultrasonography or computed tomography, or both, in three patients (14%). Pancreatic pseudocysts did not occur. A decrease of arterial PO2 reflecting respiratory insufficiency, and an increase of serum creatinine, reflecting renal insufficiency as complications of acute pancreatitis were seen in two (9%) and four (18%) patients, respectively. Artificial ventilation was not needed, and dialysis was necessary in only one (5%) case. Two patients (9%) died of AIDS and tuberculosis, respectively; pancreatitis did not seem to have contributed materially to their death. In conclusion, drugs rarely cause acute pancreatitis, and drug induced acute pancreatitis usually runs a benign course. PMID:7489946

  20. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats.

    PubMed

    Rahimian, Reza; Fakhfouri, Gohar; Daneshmand, Ali; Mohammadi, Hamed; Bahremand, Arash; Rasouli, Mohammad Reza; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2010-12-15

    Inflammatory bowel disease comprises chronic recurrent inflammation of gastrointestinal tract. This study was conducted to investigate inosine, a potent immunomodulator, in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced chronic model of experimental colitis, and contribution of adenosine A(2A) receptors and the metabolite uric acid as possible underlying mechanisms. Experimental colitis was rendered in rats by a single colonic administration of 10 mg of TNBS. Inosine, potassium oxonate (a hepatic uricase inhibitor), SCH-442416 (a selective adenosine A(2A) receptor antagonist), inosine+potassium oxonate, or inosine+SCH-442416 were given twice daily for 7 successive days. At the end of experiment, macroscopic and histopathologic scores, colonic malondialdehyde (MDA), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-1beta (IL-1β) levels, and myeloperoxidase (MPO) activity were assessed. Plasma uric acid level was measured throughout the experiment. Both macroscopic and histological features of colonic injury were markedly ameliorated by either inosine, oxonate or inosine+oxonate. Likewise, the elevated amounts of MPO and MDA abated as well as those of TNF-α and IL-1β (P<0.05). SCH-442416 partially reversed the effect of inosine on theses markers, while inosine+oxonate showed a higher degree of protection than each treatment alone (P<.0.05). No significant difference was observed between TNBS and SCH-442416 groups. Uric acid levels were significantly higher in inosine or oxonate groups compared to control. Inosine+oxonate resulted in an even more elvelated uric acid level than each treatment alone (P<0.05). Inosine elicits notable anti-inflammatory effects on TNBS-induced colitis in rats. Uric acid and adenosine A(2A) receptors contribute to these salutary properties.

  1. Treatment of experimental colitis in mice with LMP-420, an inhibitor of TNF transcription

    PubMed Central

    Hale, Laura P; Cianciolo, George

    2008-01-01

    Background LMP-420 is a boronic acid-containing purine nucleoside analogue that transcriptionally inhibits TNF production but is non-cytotoxic to TNF-producing cells. Methods This study investigated the efficacy of LMP-420 as an anti-inflammatory agent in acute and chronic colitis induced by oral administration of dextran sulfate sodium (DSS) to mice and in chronic colitis following piroxicam administration to IL-10-deficient mice. The severity of colon inflammation was assessed histologically. TNF levels were measured by enzyme immunoassay. Results Administration of DSS for 7 days resulted in severe acute colitis that was associated with a marked increase in stool and colon tissue TNF levels. Initiation of therapy with intraperitoneal (i.p.) LMP-420 on day 4 of DSS exposure decreased colonic TNF to near normal levels on day 7. However, neither i.p. nor oral treatment with LMP-420 affected the development or severity of acute DSS colitis. Initiation of LMP-420 therapy after 3 cycles of DSS administration to establish chronic colitis also had no effect on the severity of chronic colitis. Analysis of colonic TNF combined with longitudinal analysis of TNF and TNF receptor (TNF-RII) levels in stool during the development of chronic DSS colitis demonstrated that the initially elevated colonic TNF levels returned to normal despite intense on-going inflammation in mice with chronic colitis. RAG-2-/- mice deficient in T and B cells also developed severe ongoing colitis in response to 3 cycles of DSS, but showed marked differences vs. wild type mice in stool TNF and TNF-RII in response to DSS exposure. Systemic and oral LMP-420 treatment for 16 days decreased colonic TNF levels in IL-10-deficient mice with chronic colitis, with a trend to decreased histologic inflammation for oral LMP-420. Conclusion These studies demonstrate that short-term treatment with a transcriptional inhibitor of TNF production can decrease systemic and local colonic levels of TNF but may not

  2. Beneficial role of the probiotic mixture Ultrabiotique on maintaining the integrity of intestinal mucosal barrier in DSS-induced experimental colitis.

    PubMed

    Toumi, Ryma; Abdelouhab, Katia; Rafa, Hayet; Soufli, Imene; Raissi-Kerboua, Djamila; Djeraba, Zineb; Touil-Boukoffa, Chafia

    2013-06-01

    The etiology of inflammatory bowel diseases which include ulcerative colitis (UC) and Crohn disease has not yet been clarified. Several hypotheses suggest a change in composition of gut microflora along with an impaired mucosal barrier that lead to excessive mucosal immunologic responses. Increased production of nitric oxide (NO) contributes greatly to the tissue injury caused by chronic inflammation. Evidence indicates that the mucus layer covering the epithelium is altered during UC and experimental colitis. Our aim in this study was to investigate the potential therapeutic effect of probiotic during DSS-induced colitis by modulating the immune system and colonic mucus production. For that purpose, the probiotic formulation Ultrabiotique(®) (Lactobacillus acidophilus, Bifidobacterium lactis, Lactobacillus plantarum and Bifidobacterium breve) was administered daily for 7 d to mice with colitis. Probiotic supplementation improved clinical symptoms and histological alterations observed during DSS induced colitis. Ultrabiotique(®) treatment down regulated the NO production by peritoneal macrophages of DSS-treated mice and enhanced mucus production in both DSS-treated and healthy mice. In conclusion, the modification of microflora by the Ultrabiotique(®) played a beneficial role in maintaining the integrity of the intestinal mucosal barrier and promoted tissue repair.

  3. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis.

    PubMed

    Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2016-01-01

    Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine.

  4. CD103+CD11b+ Dendritic Cells Induce Th17 T Cells in Muc2-Deficient Mice with Extensively Spread Colitis

    PubMed Central

    Wenzel, Ulf A.; Jonstrand, Caroline; Hansson, Gunnar C.; Wick, Mary Jo

    2015-01-01

    Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease. Using Muc2-/- mice, which lack a functional mucus barrier and develop spontaneous colitis, we show that colitic animals have reduced colon CD103+CD11b- DCs and increased CD103-CD11b+ phagocytes. Moreover, changes in colonic DC subsets and distinct cytokine patterns distinguish mice with distally localized colitis from mice with colitis spread proximally. Specifically, mice with proximally spread, but not distally contained, colitis have increased IL-1β, IL-6, IL-17, TNFα, and IFNγ combined with decreased IL-10 in the distal colon. These individuals also have increased numbers of CD103+CD11b+ DCs in the distal colon. CD103+CD11b+ DCs isolated from colitic but not noncolitic mice induced robust differentiation of Th17 cells but not Th1 cells ex vivo. In contrast, CD103-CD11b+ DCs from colitic Muc2-/- mice induced Th17 as well as Th1 differentiation. Thus, the local environment influences the capacity of intestinal DC subsets to induce T cell proliferation and differentiation, with CD103+CD11b+ DCs inducing IL-17-producing T cells being a key feature of extensively spread colitis. PMID:26121642

  5. Evaluation of the usefulness of colonoscopy with mucosal biopsies in the follow-up of TNBS-induced colitis in rats.

    PubMed

    El-Salhy, Magdy; Wendelbo, Ingvild Haukaas; Gundersen, Doris; Hatlebakk, Jan Gunnar; Hausken, Trygve

    2013-08-01

    Animal models are required for research regarding the pathogenesis and efficacy of anti-inflammatory agents in inflammatory bowel disease (IBD). Trinitrobenzene sulfonic acid (TNBS)-induced colitis closely mimics Crohn's disease. The present study was undertaken in order to determine the reliability of following the inflammatory course of TNBS-induced colitis using colonoscopy together with biopsy samples obtained during the examination. In this study we used 20 adult male Wistar rats, with a mean weight of 201.9 g. The rats were divided into two groups, control and TNBS, with ten rats in each group. Following the induction of TNBS colitis, the rats underwent colonoscopy with mucosal biopsies. At the end of the experiment, the rats were sacrificed and whole-wall colonic samples were obtained. The degree of inflammation was assessed endoscopically, macroscopically and microscopically. There was no significant change in the body weight of the control group but significant weight loss was observed in the TNBS group. Examination of the control group did not reveal any inflammation. Severe colitis was observed in the TNBS-induced colitis rats, as assessed endoscopically, macroscopically and microscopically. The endoscopic inflammation score obtained through colonoscopy examinations correlated with that obtained macroscopically, and those obtained microscopically from the whole-wall colon and biopsy samples collected during the colonoscopy. Moreover, the inflammation scores obtained from the whole-wall colon and biopsy samples collected during colonoscopy correlated markedly. In conclusion, colonoscopy is a reliable method for following up the course of inflammation in experimentally induced colitis. Although biopsy samples collected during colonoscopies may be used to assess the degree of inflammation, whole-wall samples are superior in this regard.

  6. Protective effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats

    PubMed Central

    Mannasaheb, Basheerahmed A.A.; Kulkarni, Preeti V.; Sangreskopp, Mashood Ahmed; Savant, Chetan; Mohan, Anjana

    2015-01-01

    Introduction: Natural plants always provide core compounds for new drug development. In the present life and food style, inflammatory bowel disease has become common and needs a lead compound for its drug development. Aim: To evaluate the effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats based on its traditional anti-inflammatory use. Materials and Methods: Male Wistar rats were pretreated with A. americana leaf extract in the dose of 200 and 400 mg/kg p.o. daily for 7 days. On 8th day, 2 ml of 4% v/v acetic acid in saline was instilled into rats’ rectum. Prednisolone was used as standard drug and it was administered on the day of acetic acid instillation and continued for 3 days. Extract treatment was continued till 11th day. Body weight, ulcer score, colonic muscle contraction, antioxidant activity and histopathology were studied. Statistical analysis was performed using Parametric one-way analysis of variance followed by Tukey's posttest. Results: A. americana have retained total body weight significantly (P < 0.01) and decreased colon weight/length ratio. Extract have shown a significant decrease (P < 0.001) in ulcer scores, myeloperoxidase, lipid peroxidase activity. Further, extract have shown significant improvement in colonic muscle contraction, histopathology of colon etc., which is comparable with standard drug. Conclusion: A. americana possess protective effect against acetic acid-induced colitis in rats. PMID:26730148

  7. Expression Levels of Proinflammatory Cytokines and NLRP3 Inflammasome in an Experimental Model of Oxazolone-induced Colitis.

    PubMed

    Zherebiatiev, Aleksandr; Kamyshnyi, Aleksandr

    2016-02-01

    IL-1β and IL-17A are two cytokines with strong proinflammatory activities and are now known to be involved in a number of chronic inflammatory disorders. High-mobility group box 1 (HMGB1) is a nuclear protein regulating the expression of these proinflammatory cytokines. The NLRP3 inflammasome promotes the maturation of the IL-1β and its activation has been shown as a critical mechanism in the pathogenesis of inflammatory bowel disease (IBD). However, underlying mechanisms to modulate their production in IBD are still unclear. The aim of this study was to investigate the expression levels of mRNA for the NLRP3 inflammasome, HMGB1 and proinflammatory cytokines, IL-1β, IL-17A in the inflamed colon of rats with experimental oxazolone-induced colitis. Experiments were carried out on male wistar rats. IL-1β, IL-17A, HMGB1 and NLRP3 inflammasome mRNA expression were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our results indicated that the expression levels of IL-1β, IL-17A, NLRP3 and HMGB1 were elevated in the inflamed colon of rats with oxazolone-induced colitis.

  8. The Algal Meroterpene 11-Hydroxy-1′-O-Methylamentadione Ameloriates Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Zbakh, Hanaa; Talero, Elena; Avila, Javier; Alcaide, Antonio; de los Reyes, Carolina; Zubía, Eva; Motilva, Virginia

    2016-01-01

    Inflammatory bowel disease (IBD) is a complex class of immune disorders. Unfortunately, a treatment for total remission has not yet been found, while the use of natural product-based therapies has emerged as a promising intervention. The present study was aimed to investigate the anti-inflammatory effects of the algal meroterpene 11-hydroxy-1′-O-methylamentadione (AMT-E) in a murine model of dextran sodium sulphate (DSS)-induced colitis. AMT-E was orally administered daily (1, 10, and 20 mg/kg animal) to DSS treated mice (3% w/v) for 7 days. AMT-E prevented body weight loss and colon shortening and effectively attenuated the extent of the colonic damage. Similarly, AMT-E increased mucus production and reduced myeloperoxidase activity (marker for anti-inflammatory activity). Moreover, the algal meroterpene decreased the tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 levels, and caused a significant reduction of the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Our results demonstrate the protective effects of AMT-E on experimental colitis, provide an insight of the underlying mechanisms of this compound, and suggest that this class of marine natural products might be an interesting candidate for further studies on the prevention/treatment of IBD. PMID:27527191

  9. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism.

    PubMed

    Jiang, Xu-Guang; Sun, Kai; Liu, Yu-Ying; Yan, Li; Wang, Ming-Xia; Fan, Jing-Yu; Mu, Hong-Na; Li, Chong; Chen, Yuan-Yuan; Wang, Chuan-She; Han, Jing-Yan

    2017-02-02

    Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and β-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit β expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism.

  10. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism

    PubMed Central

    Jiang, Xu-Guang; Sun, Kai; Liu, Yu-Ying; Yan, Li; Wang, Ming-Xia; Fan, Jing-Yu; Mu, Hong-Na; Li, Chong; Chen, Yuan-Yuan; Wang, Chuan-She; Han, Jing-Yan

    2017-01-01

    Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and β-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit β expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism. PMID:28150820

  11. Acute stress may induce ovulation in women

    PubMed Central

    2010-01-01

    Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating) the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment. PMID:20504303

  12. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses

    PubMed Central

    Chen, Qian-Qian; Yan, Li; Wang, Chang-Zheng; Wang, Wei-Hua; Shi, Hui; Su, Bin-Bin; Zeng, Qing-Huan; Du, Hai-Tao; Wan, Jun

    2013-01-01

    AIM: To investigate the potential therapeutic effects of mesenchymal stem cells (MSCs) in inflammatory bowel disease (IBD), we transplanted MSCs into an experimental model of IBD. METHODS: A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg body weight) was administered to female BALB/c mice. Bone marrow mesenchymal stem cells (BMSCs) were derived from male green fluorescent protein (GFP) transgenic mice and were transplanted intravenously into the experimental animals after disease onset. Clinical activity scores and histological changes were evaluated. GFP and Sex determining region Y gene (SRY) expression were used for cell tracking. Ki67 positive cells and Lgr5-expressing cells were determined to measure proliferative activity. Inflammatory response was determined by measuring the levels of different inflammatory mediators in the colon and serum. The inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-6, IL-17, IL-4, IL-10, and transforming growth factor (TGF-β). Master regulators of Th1 cells (T-box expressed in T cells, T-bet), Th17 cells (retinoid related orphan receptor gamma(t), RORγt), Th2 cells (GATA family of transcription factors 3, GATA3) and regulatory T cells (forkhead box P3, Foxp3) were also determined. RESULTS: Systemic infusion of GFP-BMSCs ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea and inflammation, and increased survival (P < 0.05). The cell tracking study showed that MSCs homed to the injured colon. MSCs promoted proliferation of intestinal epithelial cells and differentiation of intestinal stem cells (P < 0.01). This therapeutic effect was mainly mediated by down-regulation of both Th1-Th17-driven autoimmune and inflammatory responses (IL-2, TNF-α, IFN-γ, T-bet; IL-6, IL-17, RORγt), and by up-regulation of Th2 activities (IL-4, IL-10, GATA-3) (P < 0.05). MSCs also induced activated CD4+CD25+Foxp3

  13. A practical guide to the management of distal ulcerative colitis.

    PubMed

    Ardizzone, S; Bianchi Porro, G

    1998-04-01

    This article reviews the role of corticosteroids, sulfasalazine and mesalazine (5-aminosalicylic acid, mesalamine), immunosuppressive agents and alternative novel drugs for the treatment of distal ulcerative colitis. Short cycles of traditional, rectally administered corticosteroids (methylprednisolone, betamethasone, hydrocortisone) are effective for the treatment of mild to moderately active distal ulcerative colitis. In this context, their systemic administration is limited to patients who are refractory to either oral 5-amino-salicylates, topical mesalazine or topical corticosteroids. Of no value in maintaining remission, the long term use of either or topical corticosteroids may be hazardous. A new class of topically acting corticosteroids [budesonide, fluticasone, beclomethasone dipropionate, prednisolone-21-methasulphobenzoate, tixocortol (tixocortol pivalate)] represents a valid alternative for the treatment of active ulcerative colitis, and may be useful in the treatment of refractory distal ulcerative colitis. Although there is controversy concerning dosage or duration of therapy, oral and topical mesalazine is effective in the treatment of mild to moderately active distal ulcerative colitis. Sulfasalazine and mesalazine remain the first-choice drugs for the maintenance therapy of distal ulcerative colitis. Evidence exists showing a trend to a higher remission rate with higher doses of oral mesalazine. Topical mesalazine (suppositories or enemas) also is effective in maintenance treatment. For patients with chronically active or corticosteroid-dependent disease, azathioprine and mercaptopurine are effective in reducing either the need for corticosteroids or clinical relapses. Moreover, they are effective for long term maintenance remission. Cyclosporin may be useful in inducing remission in patients with acutely severe disease who do not achieve remission with an intensive intravenous regimen. Existing data suggest that azathioprine and mercaptopurine may

  14. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages

    PubMed Central

    Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages. PMID:27611972

  15. Antimicrobial Peptides and Colitis

    PubMed Central

    Ho, Samantha; Pothoulakis, Charalabos; Koon, Hon Wai

    2013-01-01

    Antimicrobial peptides (AMPs) are important components of innate immunity. They are often expressed in response to colonic inflammation and infection. Over the last several years, the roles of several antimicrobial peptides have been explored. Gene expression of many AMPs (beta defensin HBD2-4 and cathelicidin) is induced in response to invasion of gut microbes into the mucosal barrier. Some AMPs are expressed in a constitutive manner (alpha defensin HD 5-6 and beta defensin HBD1), while others (defensin and bactericidal/permeability increasing protein BPI) are particularly associated with Inflammatory Bowel Disease (IBD) due to altered defensin expression or development of autoantibodies against Bactericidal/permeability increasing protein (BPI). Various AMPs have different spectrum and strength of antimicrobial effects. Some may play important roles in modulating the colitis (cathelicidin) while others (lactoferrin, hepcidin) may represent biomarkers of disease activity. The use of AMPs for therapeutic purposes is still at an early stage of development. A few natural AMPs were shown to be able to modulate colitis when delivered intravenously or intracolonically (cathelicidin, elafin and SLPI) in mouse colitis models. New AMPs (synthetic or artificial non-human peptides) are being developed and may represent new therapeutic approaches against colitis. This review discusses the latest research developments in the AMP field with emphasis in innate immunity and pathophysiology of colitis. PMID:22950497

  16. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system

    PubMed Central

    Garrett, Wendy S.; Lord, Graham M.; Punit, Shivesh; Lugo-Villarino, Geanncarlo; Mazmanian, Sarkis; Ito, Susumu; Glickman, Jonathan N.; Glimcher, Laurie H.

    2007-01-01

    SUMMARY Inflammatory bowel disease (IBD) has been attributed to over-exuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-α production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD. PMID:17923086

  17. [Cytomegalovirus-induced colitis in HIV infection. Considerations on its diagnosis, treatment and complications].

    PubMed

    Sousa, A E; Lucas, M; Palhano, M J; de Deus, J; Damião, J; Victorino, R M

    1995-04-01

    The diagnosis of cytomegalovirus intestinal disease in patients with HIV (human immunodeficiency virus) infection frequently raises diagnostic problems in view of the absence of definite pathological, serological or virological markers of active CMV infection. We describe the case of a 47-year-old man with a CMV colitis which illustrates several diagnostic and therapeutic problems and that was complicated by an intestinal perforation. We emphasize that in HIV+ patients with chronic diarrhea, the presence of abdominal pain should suggest the possibility of a CMV colitis and that in such cases a colonoscopy with biopsies of the right colon should be performed, in view of the higher frequency of the typical histopathological changes at this level. On the other hand, this case presented a marked thickening of the colon wall, simulating pseudotumoral images on CAT scans, as recently described in literature. The therapeutic possibilities as well as the complications of CMV colitis are discussed in the context of the occurrence of an ileal perforation, which represents the first report of this complication in Portuguese literature and which had the particularity of having a long survival after surgery in comparison with the previous cases described in international literature.

  18. Ulcerative colitis

    MedlinePlus

    ... proctocolectomy - discharge Types of ileostomy Ulcerative colitis - discharge Review Date 8/14/2015 Updated by: Subodh K. ... gastroenterologist at Gastrointestinal Specialists of Georgia, Austell, GA. Review provided by VeriMed Healthcare Network. Internal review and ...

  19. Short-chain inulin-like fructans reduce endotoxin and bacterial translocations and attenuate development of TNBS-induced colitis in rats.

    PubMed

    Ito, Hiroyuki; Tanabe, Hiroki; Kawagishi, Hirokazu; Tadashi, Wada; Yasuhiko, Tomono; Sugiyama, Kimio; Kiriyama, Shuhachi; Morita, Tatsuya

    2009-10-01

    Anti-inflammatory effects of short-chain inulin-like fructans (SCF) on trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated in rats, focusing specifically on endotoxin and bacterial translocations. SCF with degrees of polymerization (DP) of 4 and 8 were used. Rats were fed either control diet or diets including 60 g DP4 or DP8 per kilogram for 7 days, and then received intracolonic TNBS and were fed the respective diets for a further 10 days. DP4 and DP8 significantly reduced colonic injuries as assessed by damage score, but the reduction of colonic myeloperoxidase activity was manifest solely with DP8. At 3 days after colitis induction, bacterial translocation to the mesenteric lymph node was significantly lower in the DP4 and DP8 groups, but significant reduction in the portal endotoxin concentration was achieved solely in the DP8 group. Immediately prior to colitis induction, cecal immunoglobulin A and mucin concentrations were higher in the DP4 and DP8 groups, but these changes were abolished at 10 days post colitis induction. The data suggest that SCF exert prophylactic effects against TNBS colitis, presumably as a result of inhibitory effects on endotoxin and bacterial translocations.

  20. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice.

    PubMed

    Jo, Sung-Gang; Noh, Eui-Jeong; Lee, Jun-Young; Kim, Green; Choi, Joo-Hee; Lee, Mo-Eun; Song, Jung-Hee; Chang, Ji-Yoon; Park, Jong-Hwan

    2016-07-01

    Probiotics such as lactobacilli and bifidobacteria have healthpromoting effects by immune modulation. In the present study, we examined the immunomodulatory properties of Lactobacillus curvatus WiKim38, which was newly isolated from baechu (Chinese cabbage) kimchi. The ability of L. curvatus WiKim38 to induce cytokine production in bone marrow-derived dendritic cells (BMDCs) was determined by enzyme-linked immunosorbent assay. To evaluate the molecular mechanisms underlying L. curvatus Wikim38-mediated IL-10 production, Western blot analyses and inhibitor assays were performed. Moreover, the in vivo anti-inflammatory effects of L. curvatus WiKim38 were examined in a dextran sodium sulfate (DSS)-induced colitis mouse model. L. curvatus WiKim38 induced significantly higher levels of IL-10 in BMDCs compared with that induced by LPS. NF-κB and ERK were activated by L. curvatus WiKim38, and an inhibitor assay revealed that these pathways were required for L. curvatus WiKim38-induced production of IL-10 in BMDCs. An in vivo experiment showed that oral administration of L. curvatus WiKim38 increased the survival rate of mice with DSS-induced colitis and improved clinical signs and histopathological severity in colon tissues. Taken together, these results indicate that L. curvatus Wikim38 may have health-promoting effects via immune modulation, and may thus be applicable for therapy of various inflammatory diseases.

  1. Microscopic colitis

    PubMed Central

    Ianiro, Gianluca; Cammarota, Giovanni; Valerio, Luca; Annicchiarico, Brigida Eleonora; Milani, Alessandro; Siciliano, Massimo; Gasbarrini, Antonio

    2012-01-01

    Microscopic colitis may be defined as a clinical syndrome, of unknown etiology, consisting of chronic watery diarrhea, with no alterations in the large bowel at the endoscopic and radiologic evaluation. Therefore, a definitive diagnosis is only possible by histological analysis. The epidemiological impact of this disease has become increasingly clear in the last years, with most data coming from Western countries. Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management. Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC. The main feature of LC is an increase of the density of intra-epithelial lymphocytes in the surface epithelium. A number of pathogenetic theories have been proposed over the years, involving the role of luminal agents, autoimmunity, eosinophils, genetics (human leukocyte antigen), biliary acids, infections, alterations of pericryptal fibroblasts, and drug intake; drugs like ticlopidine, carbamazepine or ranitidine are especially associated with the development of LC, while CC is more frequently linked to cimetidine, non-steroidal antiinflammatory drugs and lansoprazole. Microscopic colitis typically presents as chronic or intermittent watery diarrhea, that may be accompanied by symptoms such as abdominal pain, weight loss and incontinence. Recent evidence has added new pharmacological options for the treatment of microscopic colitis: the role of steroidal therapy, especially oral budesonide, has gained relevance, as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine. The use of anti-tumor necrosis factor-α agents, infliximab and adalimumab, constitutes a new, interesting tool for the treatment of microscopic colitis, but larger, adequately designed studies are needed to confirm existing data. PMID:23180940

  2. Camel's milk ameliorates TNBS-induced colitis in rats via downregulation of inflammatory cytokines and oxidative stress.

    PubMed

    Arab, Hany H; Salama, Samir A; Eid, Ahmed H; Omar, Hany A; Arafa, El-Shaimaa A; Maghrabi, Ibrahim A

    2014-07-01

    Current treatment strategies for inflammatory bowel diseases (IBD) are associated with several adverse effects, and thus, the search for effective agents with minimal side effects merits attention. Camel's milk (CM) is endowed with antioxidant/anti-inflammatory features and has been reported to protect against diabetes and hepatic injury, however, its effects on IBD have not been previously explored. In the current study, we aimed to investigate the potential alleviating effects of CM against TNBS-induced colitis in rats. CM (10 ml/kg b.i.d. by oral gavage) effectively suppressed the severity of colon injury as evidenced by amelioration of macroscopic damage, colon weight/length ratio, histopathological alterations, leukocyte influx and myeloperoxidase activity. Administration of CM mitigated the colonic levels of TNF-α and IL-10 cytokines. The attenuation of CM to colon injury was also associated with suppression of oxidative stress via reduction of lipid peroxides and nitric oxide along with boosting the antioxidant defenses through restoration of colon glutathione and total anti-oxidant capacity. In addition, caspases-3 activity, an apoptotic marker, was inhibited. Together, our study highlights evidences for the promising alleviating effects of CM in colitis. Thus, CM may be an interesting complementary approach for the management of IBD.

  3. Glutamine enema regulates colonic ubiquitinated proteins but not proteasome activities during TNBS-induced colitis leading to increased mitochondrial activity.

    PubMed

    Bertrand, Julien; Marion-Letellier, Rachel; Azhar, Saïda; Chan, Philippe; Legrand, Romain; Goichon, Alexis; Ghouzali, Ibtissem; Aziz, Moutaz; Vaudry, David; Savoye, Guillaume; Déchelotte, Pierre; Coëffier, Moïse

    2015-07-01

    Ubiquitin proteasome system contributes to the regulation of intestinal inflammatory response as its inhibition is associated with tissue damage improvement. We aimed to evaluate whether glutamine is able to limit inflammation by targeting ubiquitin proteasome system in experimental colitis. Colitis was induced in male rats by intrarectal instillation of 2-4-6-trinitrobenzen sulfonic acid (TNBS) at day 1. From day 2 to day 6, rats daily received either an intrarectal instillation of PBS (TNBS/PBS group) or glutamine (TNBS/Gln). Rats were euthanized at day 7 and colonic samples were taken to evaluate ubiqutinated proteins by proteomic approach combining 2D electrophoresis and immunoblots directed against ubiquitin. Results were then confirmed by evaluating total expression of proteins and mRNA levels. Survival rate, TNFα, and IL-1β mRNA were improved in TNBS/Gln compared with TNBS/PBS (p < 0.05). Proteasome activities were affected by TNBS but not by glutamine. We identified eight proteins that were less ubiquitinated in TNBS/PBS compared with controls with no effect of glutamine. Four proteins were more ubiquitinated in TNBS/PBS group and restored in TNBS/Gln group. Finally, 12 ubiquitinated proteins were only affected by glutamine. Among proteins affected by glutamine, eight proteins (GFPT1, Gapdh, Pkm2, LDH, Bcat2, ATP5a1, Vdac1, and Vdac2) were involved in metabolic pathways. In conclusion, glutamine may regulate ubiquitination process during intestinal inflammation.

  4. Pseudomembranous Colitis

    PubMed Central

    Farooq, Priya D.; Urrunaga, Nathalie H.; Tang, Derek M.; von Rosenvinge, Erik C.

    2015-01-01

    Pseudomembranous colitis is an inflammatory condition of the colon characterized by elevated yellow-white plaques that coalesce to form pseudomembranes on the mucosa. Patients with the condition commonly present with abdominal pain, diarrhea, fever, and leukocytosis. Because pseudomembranous colitis is often associated with C. difficile infection, stool testing and empiric antibiotic treatment should be initiated when suspected. When results of C. difficile testing are negative and symptoms persist despite escalating empiric treatment, early gastroenterology consultation and lower endoscopy would be the next step in the appropriate clinical setting. If pseudomembranous colitis is confirmed endoscopically, colonic biopsies should be obtained, as histology can offer helpful clues to the underlying diagnosis. The less common non-C. difficile causes of pseudomembranous colitis should be entertained, as a number of etiologies can result in this condition. Examples include Behcet’s disease, collagenous colitis, inflammatory bowel disease, ischemic colitis, other infections organisms (e.g. bacteria, parasites, viruses), and a handful of drugs and toxins. Pinpointing the correct underlying etiology would better direct patient care and disease management. Surgical specialists would be most helpful in colonic perforation, gangrenous colon, or severe disease. PMID:25769243

  5. Sarcodon aspratus Extract Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mouse Colon and Mesenteric Lymph Nodes.

    PubMed

    Chung, Min-Yu; Hwang, Jin-Taek; Kim, Jin Hee; Shon, Dong-Hwa; Kim, Hyun-Ku

    2016-05-01

    Mushrooms have been previously investigated for their immune-modulating and anti-inflammatory properties. We examined whether the anti-inflammatory properties of Sarcodon aspratus ethanol extract (SAE) could elicit protective effects against dextran sulfate sodium (DSS)-induced colitis in vivo. Male C57/BL6 mice were randomly assigned to 1 of 4 treatment groups: control (CON; n = 8), DSS-treated (DSS; n = 9), DSS+SAE at 50 mg/kg BW (SAE50; n = 8), and DSS+SAE at 200 mg/kg BW groups (SAE200; n = 9). DSS treatment induced significant weight loss, which was significantly recovered by SAE200. Although SAE did not affect DSS-mediated reductions in colon length, it improved diarrhea and rectal bleeding induced by DSS. SAE at 200 mg/kg BW significantly attenuated IL-6 and enhanced IL-10 expression in mesenteric lymph nodes (MLN), and significantly reduced IL-6 levels in splenocytes. SAE200 also significantly attenuated DSS-induced increase in IL-6 and IL-1β, and reductions in IL-10 in colon tissue. High levels of SAE were also observed to significantly decrease inflammatory COX-2 expression that was upregulated by DSS in mice colon. These findings may have relevance for novel therapeutic strategies to mitigate inflammatory bowel disease-relevant inflammatory responses, via the direct and indirect anti-inflammatory activity of SAE. We also found that SAE harbors significant quantities of total fiber and β-glucan, suggesting a possible role for these components in protection against DSS-mediated colitis.

  6. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-10-01

    Dry skin has been clinically associated with visceral diseases, including liver disease, as well as for our previously reported small intestinal injury mouse model, which have abnormalities in skin barrier function. To clarify this disease-induced skin disruption, we used a dextran sulphate sodium (DSS)-induced colitis mouse model. Following treatment with DSS, damage to the colon and skin was monitored using histological and protein analysis methods as well as the detection of inflammatory mediators in the plasma. Notably, transepidermal water loss was higher, and skin hydration was lower in DSS-treated mice compared to controls. Tumor necrosis factor-alpha (TNF-α), interleukin 6 and NO2-/NO3- levels were also upregulated in the plasma, and a decrease in body weight and colon length was observed in DSS-treated mice. However, when administered TNF-α antibody or an iNOS inhibitor, no change in skin condition was observed, indicating that another signalling mechanism is utilized. Interestingly, the number of tryptase-expressing mast cells, known for their role in immune function via cholinergic signal transduction, was elevated. To evaluate the function of cholinergic signalling in this context, atropine (a muscarinic cholinoceptor antagonist) or hexamethonium (a nicotinic cholinergic ganglion-blocking agent) was administered to DSS-treated mice. Our data indicate that muscarinic acetylcholine receptors (mAChRs) are the primary receptors functioning in colon-to-skin signal transduction, as DSS-induced skin disruption was suppressed by atropine. Thus, skin disruption is likely associated with DSS-induced colitis, and the activation of mast cells via mAChRs is critical to this association.

  7. Ginsenoside Metabolite Compound K Promotes Recovery of Dextran Sulfate Sodium-Induced Colitis and Inhibits Inflammatory Responses by Suppressing NF-κB Activation

    PubMed Central

    Li, Juan; Zhong, Wei; Wang, Weiwei; Hu, Shaoping; Yuan, Jiahui; Zhang, Bing; Hu, Tianhui; Song, Gang

    2014-01-01

    Phytogenic compounds with anti-oxidant and anti-inflammatory properties, such as ginsenoside metabolite compound K (CK) or berberine (BBR), are currently discussed as promising complementary agents in the prevention and treatment of cancer and inflammation. The latest study showed that ginsenoside Rb1 and its metabolites could inhibit TNBS-induced colitis injury. However, the functional mechanisms of anti-inflammation effects of ginsenoside, particularly its metabolite CK are still not clear. Here, using dextran sulfate sodium (DSS)-induced colitis in mice, clinical parameters, intestinal integrity, pro-inflammatory cytokines production, and signaling pathways in colonic tissues were determined. In mild and sever colitis mice, CK and BBR (as a positive agent) alleviated colitis histopathology injury, ameliorated myeloperoxidase (MPO) activity, reduced pro-inflammatory cytokines production, such as, IL-6, IL-1β, TNF-α, and increased anti-inflammatory cytokine IL-10 production in both mice colon tissues and blood. Nevertheless, the results revealed that CK and BBR inhibited NF-κB p65 nuclear translocation, downregulated p-IκBα and upregulated IκBα, indicating that CK, as well as BBR, suppressed the activation of the NF-κB pathway in the progression of colitis with immunofluorescence, immunohistochemical and western blotting analysis. Furthermore, CK inhibited pro-inflammatory cytokines production in LPS-activated macrophages via down-regulation of NF-κB signaling pathway. Taken together, our results not only reveal that CK promotes the recovery of the progression of colitis and inhibits the inflammatory responses by suppressing NF-κB activation, but also suggest that CK downregulates intestinal inflammation through regulating the activation of macrophages and pro-inflammatory cytokines production. PMID:24504372

  8. What's new about inflammatory bowel diseases in Ischemic colitis induced by the newly reformulated multicomponent weight-loss supplement Hydroxycut(®).

    PubMed

    Sherid, Muhammed; Samo, Salih; Sulaiman, Samian; Gaziano, Joseph H

    2013-04-16

    Ischemic colitis accounts for 6%-18% of causes of acute lower gastrointestinal bleeding. It is more often multifactorial and more common in elderly. Drugs are considered important causative agents of this disease with different mechanisms. In this paper, we describe a 37-year-old otherwise healthy female presented with sudden onset diffuse abdominal pain and bloody stool. Radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her only suspected factor was hydroxycut which she had been taking for a period of 1 mo prior to her presentation. Her condition improved uneventfully after cessation of hydroxycut, bowel rest, intravenous hydration, and antibiotics. This is a first case of ischemic colitis with clear relationship with hydroxycut use (Naranjo score of 7). Our case demonstrates the importance of questioning patients regarding the usage of dietary supplements; especially since many patients consider them safe and do not disclose their use voluntarily to their physicians. Hydroxycut has to be considered as a potential trigger for otherwise unexplained ischemic colitis.

  9. Endogenous IGF-I and alpha v beta3 integrin ligands regulate increased smooth muscle growth in TNBS-induced colitis.

    PubMed

    Hazelgrove, Krystina B; Flynn, Robert S; Qiao, Li-Ya; Grider, John R; Kuemmerle, John F

    2009-06-01

    Endogenous insulin-like growth factor-I (IGF-I) regulates intestinal smooth muscle growth by concomitantly stimulating proliferation and inhibiting apoptosis. IGF-I-stimulated growth is augmented by the alpha(v)beta(3) integrin ligands vitronectin and fibronectin. IGF-I expression in smooth muscle is increased in both TNBS-induced colitis and Crohn's disease. We hypothesized that intestinal inflammation increased vitronectin and fibronectin expression by smooth muscle and, along with IGF-I upregulation, increased intestinal muscle growth. Intestinal smooth muscle cells were examined 7 days following the induction of TNBS-induced colitis. Although alpha(v)beta(3) integrin expression was not altered by TNBS-induced colitis, vitronectin and fibronectin levels were increased by 80 +/- 10% and 90 +/- 15%, above control levels, respectively. Basal IGF-I receptor phosphorylation in inflamed muscle from TNBS-treated rats was increased by 86 +/- 8% over vehicle-treated controls. Basal ERK1/2, p70S6 kinase, and GSK-3beta phosphorylation in muscle cells of TNBS-treated rats were also increased by 140-180%. TNBS treatment increased basal muscle cell proliferation by 130 +/- 15% and decreased apoptosis by 20 +/- 2% compared with that in vehicle-treated controls. The changes in proliferation and apoptosis were reversed by an IGF-I receptor tyrosine kinase inhibitor or an alpha(v)beta(3) integrin antagonist. The results suggest that smooth muscle hyperplasia in TNBS-induced colitis partly results from the upregulation of endogenous IGF-I and ligands of alpha(v)beta(3) integrin that mediate increased smooth muscle cell proliferation and decreased apoptosis. This paper has identified one mechanism regulating smooth muscle hyperplasia, a feature of stricture formation that occurs in the chronically inflamed intestine of TNBS-induced colitis and potentially Crohn's disease.

  10. Therapeutic effects of human amnion-derived mesenchymal stem cell transplantation and conditioned medium enema in rats with trinitrobenzene sulfonic acid-induced colitis

    PubMed Central

    Miyamoto, Shuichi; Ohnishi, Shunsuke; Onishi, Reizo; Tsuchiya, Ikuki; Hosono, Hidetaka; Katsurada, Takehiko; Yamahara, Kenichi; Takeda, Hiroshi; Sakamoto, Naoya

    2017-01-01

    Cell therapy with mesenchymal stem cells (MSCs) is expected to provide a new strategy for the treatment of inflammatory bowel disease (IBD). Large amounts of MSCs can be obtained from human amnion. Therefore, we investigated the effect of transplantation of human amnion-derived MSCs (hAMSCs) or enema of conditioned medium (CM) from hAMSCs into rats with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. In the first experiment, 10-week-old male Sprague-Dawley rats were intravenously injected with hAMSCs (1 × 106 cells) 3 h after rectal administration of TNBS (45 mg/kg). In the second experiment, rats with TNBS-induced colitis received CM by enema into the colon for 3 days. Colitis was investigated by endoscopy, histology, immunohistochemistry, and by measuring mRNA expression of inflammatory mediators. Administration of hAMSCs or CM enema significantly improved the endoscopic score. In addition, these two interventions resulted in significantly decreased infiltration of neutrophils and monocytes/macrophages and decreased expression levels of TNF-α, CXCL1, and CCL2. In conclusion, transplantation of hAMSCs and CM enema provided significant improvement in rats with TNBS-induced colitis. CM from hAMSCs and hAMSCs may be new strategies for the treatment of IBD. PMID:28386323

  11. Netrin-1 regulates colon-kidney cross talk through suppression of IL-6 function in a mouse model of DSS-colitis.

    PubMed

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Santhakumar, Manicassamy; Ramesh, Ganesan

    2013-05-01

    Organ cross talk is increasingly appreciated in human disease, and inflammatory mediators are shown to mediate distant organ injury in many disease models. Colitis and intestinal injury are known to be mediated by infiltrating immune cells and their secreted cytokines. However, its effect on other organs, such as the kidney, has never been studied. In the current study, we examined the effect of dextran sulfate sodium (DSS)-colitis on kidney injury and inflammation. In addition, we hypothesized that netrin-1 could modulate colon-kidney cross talk through regulation of inflammation and apoptosis. Consistent with our hypothesis, DSS-colitis induced acute kidney injury in mice. Epithelial-specific overexpression of netrin-1 suppressed both colitis and colitis-induced acute kidney injury, which was associated with reduced weight loss, neutrophil infiltration into colon mucosa, intestinal permeability, epithelial cell apoptosis, and cytokine and chemokine production in netrin-1 transgenic mice colon and kidney. To determine whether netrin-1-protective effects were mediated through suppression of IL-6, IL-6 knockout mice were treated with DSS and acute kidney injury was determined. IL-6 knockout was resistant to colitis and acute kidney injury. Moreover, administration of IL-6 to netrin-1 transgenic mice did not affect the netrin-1-protective effects on the colon and kidney, suggesting that netrin-1 may reduce both IL-6 production and its activity. The present study identifies previously unrecognized cross talk between the colon and kidney, and netrin-1 may limit distant organ injury by suppressing inflammatory mediators and apoptosis.

  12. Multifunctional activity of a small tellurium redox immunomodulator compound, AS101, on dextran sodium sulfate-induced murine colitis.

    PubMed

    Halpert, Gilad; Eitan, Tom; Voronov, Elena; Apte, Ron N; Rath-Wolfson, Lea; Albeck, Michael; Kalechman, Yona; Sredni, Benjamin

    2014-06-13

    Inflammatory bowel diseases (IBDs) are a group of idiopathic, chronic immune-mediated diseases characterized by an aberrant immune response, including imbalances of inflammatory cytokine production and activated innate and adaptive immunity. Selective blockade of leukocyte migration into the gut is a promising strategy for the treatment of IBD. This study explored the effect of the immunomodulating tellurium compound ammonium trichloro (dioxoethylene-o,o') tellurate (AS101) on dextran sodium sulfate (DSS)-induced murine colitis. Both oral and intraperitoneal administration of AS101 significantly reduced clinical manifestations of IBD. Colonic inflammatory cytokine levels (IL-17 and IL-1β) were significantly down-regulated by AS101 treatment, whereas IFN-γ was not affected. Neutrophil and α4β7(+) macrophage migration into the tissue was inhibited by AS101 treatment. Adhesion of mesenteric lymph node cells to mucosal addressin cell adhesion molecule (MAdCAM-1), the ligand for α4β7 integrin, was blocked by AS101 treatment both in vitro and in vivo. DSS-induced destruction of colonic epithelial barrier/integrity was prevented by AS101, via up-regulation of colonic glial-derived neurotrophic factor, which was found previously to regulate the intestinal epithelial barrier through activation of the PI3K/AKT pathway. Indeed, the up-regulation of glial-derived neurotrophic factor by AS101 was associated with increased levels of colonic pAKT and BCL-2 and decreased levels of BAX. Furthermore, AS101 treatment reduced colonic permeability to Evans blue and decreased colonic TUNEL(+) cells. Our data revealed multifunctional activities of AS101 in the DSS-induced colitis model via anti-inflammatory and anti-apoptotic properties. We suggest that treatment with the small, nontoxic molecule AS101 may be an effective early therapeutic approach for controlling human IBD.

  13. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats

    PubMed Central

    Sadar, Smeeta S.; Vyawahare, Niraj S.; Bodhankar, Subhash L.

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis. Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  14. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats.

    PubMed

    Sadar, Smeeta S; Vyawahare, Niraj S; Bodhankar, Subhash L

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis.Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  15. Inhibition of Interleukin-10 Signaling Induces Microbiota-Dependent Chronic Colitis in Apolipoprotein E Deficient Mice

    PubMed Central

    Singh, Vishal; Kumar, Manish; Yeoh, Beng San; Xiao, Xia; Saha, Piu; Kennett, Mary J.; Vijay-Kumar, Matam

    2015-01-01

    Background Apolipoprotein E (ApoE) mediates potent anti-inflammatory and immunomodulatory properties in addition to its roles in regulating cholesterol transport and metabolism. However, its role in the intestine, specifically during inflammation is largely unknown. Methods Mice [C57BL/6 or ApoE deficient (ApoE-KO) mice] were administered either single or four injections (weekly) of anti-interleukin (IL)-10 receptor monoclonal antibody (1.0 mg/mouse; intraperitoneally) and euthanized one week after the last injection. 16S rRNA sequencing was performed in fecal samples to analyze the gut bacterial load and its composition. Microbiota was ablated by administration of broad-spectrum antibiotics in drinking water. IL-10KO mice were cohoused with ApoE-KO mice or their WT littermates to monitor the colitogenic potential of gut microbiota harbored in ApoE-KO mice. Results ApoE-KO mice developed severe colitis upon neutralization of IL-10 signaling as assessed by every parameter analyzed. 16S rRNA sequencing revealed that the ApoE-KO mice display elevated and altered gut microbiota that were accompanied with impaired production of intestinal antimicrobial peptides. Interestingly, microbiota ablation ameliorates the colitis development in ApoE-KO mice. Exacerbated and accelerated colitis was observed in IL-10KO mice when cohoused with ApoE-KO mice. Conclusions Our study highlights a novel interplay between ApoE and IL-10 in maintaining gut homeostasis and that such cross-talk may play a critical role in inflammatory bowel disease (IBD) pathogenesis. Gut sterilization and cohousing experiment suggests that microbiota play pivotal role in the development of IBD in mice lacking ApoE. PMID:26891260

  16. Fecal microbiota transplantation inducing remission in Crohn's colitis and the associated changes in fecal microbial profile.

    PubMed

    Kao, Dina; Hotte, Naomi; Gillevet, Patrick; Madsen, Karen

    2014-08-01

    Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the intestine of unclear etiology. Increasing evidence has pointed to intestinal dysbiosis as a potential factor in a genetically susceptible individual. Fecal microbiota transplantation (FMT) has been used to treat inflammatory bowel disease with variable degrees of success. Herein, we report a patient with Crohn's colitis, previously failing an immunosuppressant, who achieved clinical, endoscopic, and histologic remission after a single fecal microbiota transplantation infusion. We have further characterized the changes in the fecal microbiota associated with this observation.

  17. Minimally invasive screening for colitis using attenuated total internal reflectance fourier transform infrared spectroscopy.

    PubMed

    Titus, Jitto; Viennois, Emilie; Merlin, Didier; Unil Perera, A G

    2017-03-01

    This article describes a rapid, simple and cost-effective technique that could lead to a screening method for colitis without the need for biopsies or in vivo measurements. This screening technique includes the testing of serum using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy for the colitis-induced increased presence of mannose. Chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models for colitis are tested using the ATR-FTIR technique. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject's previous sample spectrum. This shows the potential of having individualized route maps of disease status, leading to personalized diagnosis and drug management.

  18. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells.

    PubMed

    Di Giacinto, Claudia; Marinaro, Mariarosaria; Sanchez, Massimo; Strober, Warren; Boirivant, Monica

    2005-03-15

    Recent studies of murine models of mucosal inflammation suggest that, whereas some kinds of bacterial microflora are inducers of disease, others, known as probiotics, prevent disease. In the present study, we analyzed the regulatory cytokine and cell response to probiotic (VSL#3) administration in the context of the Th1 T cell colitis induced by trinitrobenzene sulfonic acid treatment of SJL/J mice. Daily administration of probiotics for 3 wk to mice during a remission period between a first and second course of colitis induced by trinitrobenzene sulfonic acid, resulted in a milder form of recurrent colitis than observed in mice administered PBS during this same period. This protective effect was attributable to effects on the lamina propria mononuclear cell (LPMC) population, because it could be transferred by LPMC from probiotic-treated mice to naive mice. Probiotic administration was associated with an early increase in the production of IL-10 and an increased number of regulatory CD4+ T cells bearing surface TGF-beta in the form of latency-associated protein (LAP) (LAP+ T cells). The latter were dependent on the IL-10 production because administration of anti-IL-10R mAb blocked their appearance. Finally, the LAP+ T cells were essential to the protective effect of probiotics because administration of anti-IL-10R or anti-TGF-beta at the initiation of recurrent colitis induction or depletion of LAP+ T cells from LPMC abolished the latter's capacity to transfer protection to naive recipients. These studies show that probiotic (VSL#3) administration during a remission period ameliorates the severity of recurrent colitis by inducing an immunoregulatory response involving TGF-beta-bearing regulatory cells.

  19. Curcumin improves TNBS-induced colitis in rats by inhibiting IL-27 expression via the TLR4/NF-κB signaling pathway.

    PubMed

    Zeng, Zhaojing; Zhan, Lingling; Liao, Hui; Chen, Lan; Lv, Xiaoping

    2013-01-01

    Curcumin is a widely used spice with anti-inflammatory and anticancer properties. It has been reported to have beneficial effects in experimental colitis. This study explored whether curcumin improves colonic inflammation in a rat colitis model through inhibition of the TLR4/NF-κB signaling pathway and IL-27 expression. After induction of colitis with 2,4,6-trinitrobenzene sulfonic acid, rats were intragastrically administered with curcumin or sulfasalazine daily for one week. Rat intestinal mucosa was collected for evaluation of the disease activity index, colonic mucosa damage index, and histological score. Myeloperoxidase activity was detected by immunohistochemistry, and mRNA and protein expression levels of TLR4, NF-κB, and IL-27 in colonic mucosa were detected by RT-PCR and Western blot. Compared with the untreated colitis group, the curcumin-treated group showed significant decreases in the disease activity index, colonic mucosa damage index, histological score, myeloperoxidase activity, and expressions of NF-κB mRNA, IL-27 mRNA, TLR4 protein, NF-κB p65 protein, and IL-27 p28 protein (p < 0.05). TLR4 mRNA expression did not differ between groups. Disease activity index decreased more rapidly in the curcumin-treated group than in the sulfasalazine-treated group (p < 0.05). There was no significant difference in TLR4, NF-κB, and IL-27 mRNA and proteins between curcumin-treated and sulfasalazine-treated groups. Curcumin shows significant therapeutic effects on 2,4,6-trinitrobenzene sulfonic acid-induced colitis that are comparable to sulfasalazine. The anti-inflammatory actions of curcumin on colitis may involve inhibition of the TLR4/NF-κB signaling pathway and of IL-27 expression.

  20. Investigating the potential of Tamarindus indica pectin-chitosan conjugate for reducing recovery period in TNBS induced colitis.

    PubMed

    Sethi, Sheshank; Khurana, Rajneet Kaur; Kamboj, Sunil; Sharma, Radhika; Singh, Akashdeep; Rana, Vikas

    2017-05-01

    The present study was aimed at exploiting the wound healing applications and tablet coating potential of Tamarindus indica pectin-chitosan (PCH) conjugate for reducing recovery period from TNBS induced colitis. The PCH (60:40, 3% w/v) solution when spray coated followed by drying at 50°C created hydrophobic surface, that may be due to interaction of pectin with chitosan as evident from temperature ramping rheological investigations. Further, the 15% w/v coating was sufficient to prevent Mesalamine (Ma) release in pH 1.2. The AUC and AUMC of PCH coated tablets were 1.98 and 17.69 fold increased as compared to uncoated tablets. A synergistic therapeutic effect of PCH conjugate with Ma was evident from the colon/body weight ratio, clinical activity and damage score. Overall, the findings suggested PCH and Ma (20mg) reduces the recovery period from 5 to 4days with reduction in dose.

  1. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis

    PubMed Central

    2014-01-01

    Background Many probiotic bacteria have been described as promising tools for the treatment and prevention of inflammatory bowel diseases (IBDs). Most of these bacteria are lactic acid bacteria, which are part of the healthy human microbiota. However, little is known about the effects of transient bacteria present in normal diets, including Lactococcus lactis. Methods In the present study, we analysed the immunomodulatory effects of three L. lactis strains in vitro using intestinal epithelial cells. L. lactis NCDO 2118 was administered for 4 days to C57BL/6 mice during the remission period of colitis induced by dextran sodium sulphate (DSS). Results Only one strain, L. lactis NCDO 2118, was able to reduce IL-1β-induced IL-8 secretion in Caco-2 cells, suggesting a potential anti-inflammatory effect. Oral treatment using L. lactis NCDO 2118 resulted in a milder form of recurrent colitis than that observed in control diseased mice. This protective effect was not attributable to changes in secretory IgA (sIgA); however, NCDO 2118 administration was associated with an early increase in IL-6 production and sustained IL-10 production in colonic tissue. Mice fed L. lactis NCDO 2118 had an increased number of regulatory CD4+ T cells (Tregs) bearing surface TGF-β in its latent form (Latency-associated peptide-LAP) in the mesenteric lymph nodes and spleen. Conclusions Here, we identified a new probiotic strain with a potential role in the treatment of IBD, and we elucidated some of the mechanisms underlying its anti-inflammatory effect. PMID:25110521

  2. [Colitis induced by a food allergen. A report of 20 cases].

    PubMed

    Armisén Pedrejón, A; Sancho Madrid, B; Almaraz Garzón, E; Prieto Bozano, G; Polanco Allué, I

    1996-01-01

    In the last years, we have appreciated a descending number of classic enteral food-protein intolerance and cases of colitis related to food proteins are increasing. In this study, 20 cases of food protein colitis (mainly related to cow's milk) are reviewed and clinical, endoscopic and histological aspects are analyzed. We found that the age at the time of the first consultation was approximately 1.5 months, with males predominating. The main symptom was bloody diarrhoea. Other causes such as perianal fissure or infectious gastroenteritis were excluded. The infants were fed breast milk and/or cow's milk formula. Some patients had low hemoglobin, but low serum albumin was infrequent. The colonoscopy showed erythema and, in some cases, loss of vascular pattern, ulcerations or bleeding. The main histological finding was an increased number of eosinophils. There was a favorable response to the dietary change. After 6 months, all of the provocations done were negative. We conclude that food-protein intolerance is one of the most probable causes of bloody stools in a young infant. Colonoscopy and a histopathological study of at least three biopsy pieces are necessary for the diagnosis. The treatment is the exclusion of the offending protein from the diet.

  3. Induction of ulcerative colitis in mice influences the course of infection with the nematode Trichuris muris.

    PubMed

    Vegas-Sánchez, M C; Rollán-Landeras, E; García-Rodríguez, J J; Bolás-Fernández, F

    2015-09-01

    The aim of this study was to assess the effect of infection with the nematode whipworm Trichuris muris on the course of chemically induced acute ulcerative colitis in CBA/J mice, a strain proven to be highly resistant to infection with T. muris. Each mouse was infected with 50 embryonated eggs of T. muris by oral gavage. Acute colitis was triggered by administering 4% dextran sulphate sodium (DSS) in the drinking water for nine consecutive days at different times after infection. Concurrent infection and DSS administration exacerbate the severity of the colitis while favouring the permanence of parasites in the intestine. The induction of ulcerative colitis from days 54 to 62 post-infection (p.i.), when all worms had been expelled, ameliorated the course of the inflammatory disease. When ulcerative colitis was triggered earlier on, from days 27 to 35 p.i., the beneficial effects on inflammatory events were clearly shown with signs of mucosal epithelization and regeneration as early as day 1 after DSS administration. Previous infections by T. muris therefore accelerate recovery from subsequently induced inflammatory bowel disease and such an effect assists the nematode to persist in the intestinal niche.

  4. N-nitroso compounds in the gastrointestinal tract of rats and in the feces of mice with induced colitis or fed hot dogs or beef.

    PubMed

    Mirvish, Sidney S; Haorah, James; Zhou, Lin; Hartman, Melissa; Morris, Chantey R; Clapper, Marge L

    2003-03-01

    Because colonic N-nitroso compounds (NOC) may be a cause of colon cancer, we determined total NOC levels by Walters' method in the gastrointestinal tract and feces of rodents: (i) feces of C57BL mice fed chow and semi-purified diets contained 3.2 +/- 0.4 and 0.46 +/- 0.06 NOC/g, respectively (P < 0.01, mean +/- SD). (ii) NOC levels for gastrointestinal contents of three groups of Sprague-Dawley rats fed chow diet were 0.9 +/- 0.05 (diet), 0.2 +/- 0 (stomach), 0.3-0.4 (small intestine), 0.7-1.6 (cecum and colon) and 2.6 +/- 0.6 (feces) nmol/g. NOC precursor (NOCP) levels (measured as NOC after mild nitrosation) for two rat groups fed chow diet showed a 16-fold increase from stomach to proximal small intestine (mean, 6.2 micromol/g), and a 1.7-fold increase from distal colon to feces (mean, 11.6 micromol/g). (iii) Eight Min and five C57BL/6J mice received 4% dextran sulfate sodium in drinking water on days 1-4 to induce acute colitis. This increased fecal NOC levels 1.9-fold on day 5 in both strains (P < or = 0.04), probably due to NO synthase-derived nitrosating agents in the colon. (iv) Following studies on humans fed beef [Hughes et al. (2001) Carcinogenesis, 22, 199], Swiss mice received semi-purified diets mixed with 18% of beef plus pork hot dogs or sautéed beef for 7 days. On day 7, individual 24-h fecal NOC outputs were determined. In three hot dog and two beef groups with 5 mice/group, mean fecal NOC output/day was 3.7-5.0 (hot dog) and 2.0-2.9 (beef) times that for control groups fed semi-purified diet alone (P < 0.002 for each of combined groups). These groups showed little change in fecal NOCP output. (v) Initial purification of rat fecal NOCP by adsorption-desorption and HPLC is described. Results should help evaluate the view that colonic NOC causes colon cancer associated with colitis and ingestion of red and nitrite-preserved meat.

  5. Proanthocyanidins from grape seeds modulates the nuclear factor-kappa B signal transduction pathways in rats with TNBS-induced recurrent ulcerative colitis.

    PubMed

    Wang, Yan-Hong; Ge, Bin; Yang, Xiao-Lai; Zhai, Jing; Yang, Li-Ning; Wang, Xiao-Xia; Liu, Xia; Shi, Jin-Cheng; Wu, Yong-Jie

    2011-10-01

    The aim of this study was to elucidate the molecular mechanisms involved in the therapeutic effects of proanthocyanidins from grape seeds (GSPE) on recurrent ulcerative colitis (UC) in rats. GSPE in doses of 100, 200, and 400mg/kg were intragastrically administered per day for 7 days after recurrent colitis was twice-induced by TNBS. The levels of GSH, as well as the activity of GSH-Px and SOD in colon tissues were measured by biochemical methods. The expression levels of tumor necrosis factor-α (TNF-α) and the nuclear translocation levels of nuclear factor-kappa B (NF-κB) in the colon tissues were measured by enzyme-linked immunosorbent assay methods. Western blotting analysis was used to determine the protein expression levels of inhibitory kappa B-alpha (IκBα), inhibitor kappa B kinase (IKKα/β), phosphorylated IκBα and phosphorylated IKKα/β. GSPE treatment was associated with a remarkable increased the activity of GSH-Px and SOD with GSH levels in TNBS-induced recurrent colitis rats as compared to the model group. GSPE also significantly reduced the expression levels of TNF-α, p-IKKα/β, p-IκBα and the translocation of NF-κB in the colon mucosa. GSPE exerted a protective effect on recurrent colitis in rats by modifying the inflammatory response and promoting damaged tissue repair to improve colonic oxidative stress. Moreover, GSPE inhibited the TNBS-induced inflammatory of recurrent colitis though blocking NF-κB signaling pathways.

  6. Matrine ameliorates spontaneously developed colitis in interleukin-10-deficient mice.

    PubMed

    Wu, Cong; Xu, Zheng; Gai, Renhua; Huang, Kehe

    2016-07-01

    Interleukin-10 (IL-10)-deficient mice spontaneously develop T cell-mediated colitis. Previous reports have shown that Matrine may reduce the symptoms of acute colitis induced by trinitrobenzene sulfonic acid (TNBS). However, whether Matrine impacts chronic colitis remains unknown. In this study, we investigated whether Matrine could limit the symptoms of spontaneously developed colitis and its potential molecular mechanisms. IL-10 deficient mice were given Matrine or a PBS control by oral gavage daily for 4weeks and were euthanized at week 2 or week 4. We measured body weight, colon length and weight, and histological scores. We also evaluated the spontaneous secretion of IL-12/23p40, IFN-γ and IL-17 in colon explant cultures as well as IFN-γ and IL-17 secretion in unseparated mesenteric lymph node (MLN) cells, and assessed IFN-γ, IL-17, IL-1β and IL-6 mRNA expression in colon tissue. In addition, we analyzed the proportions of CD4-positive and CD8-positive cells in unseparated MLN cells. Our results show that Matrine-treated mice exhibited better body weight recovery than controls and that histological scores and spontaneously secreted IL-12/23p40, IFN-γ and IL-17 in colon tissue were significantly decreased in treated mice compared with controls. The proportion of CD4-positive cells of MLNs in treated mice was significantly smaller than that in controls at week 4. Both cytokine production and mRNA expression of IFN-γ and IL-17 were significantly reduced in treated mice compared with controls. Taken together, our results indicate that Matrine may ameliorate spontaneously developed chronic colitis and could be considered as a therapeutic alternative for chronic colitis.

  7. [Acute interstitial nephritis induced by loratadine].

    PubMed

    Alvarez Navascués, R; Bastardo, Z; Fernández Díaz, M; Guerediaga, J; Quiñones, L; Pinto, J

    2003-01-01

    Loratadine is a second generation histamine H1 receptor antagonist, that has high potency antiallergic properties and is associated with low adverse effects compared with other antihistamines. Acute interstitial nephritis is a cause of acute renal failure that is most often induced by drugs or, less frequently, infection or sarcoidosis. Although the number of drugs associated with acute intersticial nephritis is too large, the antihistaminic loratadine have never been reported before. We report a case of an interstitial nephritis with acute renal failure that suggesting hypersensitivity reaction in a 77 old man who had received loratadine (10 mg/day) during ten days before his assessment to our hospital by disseminated pruritic syndrome. The initial suspect was rapidly progressive glomerulonephitis and renal biopsy was practice and treatment with corticosteroids were initiated (prednisone bolus of 500 mg three days and 1 mg/kg/day/later). The loratadine therapy was cessation. He exhibiting a slow and progressive improvement on renal function and one month later, urea and creatinine levels was normal and hematuria and proteinuria had disappeared. The corticosteroids therapy were progressive decreased until withdrawal. We think that this is an interesting case, basing in its clinical presentation and that it had never been reported before.

  8. Refractory Ulcerative Colitis Treatment

    PubMed Central

    Green, Jesse A.

    2007-01-01

    Treatment of refractory ulcerative colitis (UC) is a common clinical challenge. In either acute or chronic refractory UC, the disease may continue to remain active, even though the patient is on appropriate therapy. It is important to reassess and characterize the patient's disease before adding new medications to the current medical regimen. After determining the current extent and severity of the UC—ruling out other causes of bloody diarrhea and determining what complications are present—new treatment approaches can then be started. It is critical to first optimize oral 5-aminosalicylic acid (5-ASA) therapy combined with rectal 5-ASA or corticosteroid suppositories, plus corticosteroid or 5-ASA enemas or foam preparations. Oral or intravenous corticosteroids are appropriate to use if needed, but alternative approaches must be used for long-term maintenance. 6-Mercaptopurine (6-MP) or azathioprine can be very helpful for severe chronic refractory UC. In those patients who do not respond to 5-ASA medications, corticosteroids, and 6-MP or azathioprine, infliximab offers an important approach for induction and maintenance of remission for refractory chronic ulcerative colitis as well as for select cases of refractory acute UC. Cyclosporine use is an alternative medical approach for the refractory acute UC patient. Colectomy with ileal pouch-anal anastomosis remains a valuable option for the refractory chronic or acute UC patient, because it can provide both a “cure” for the disease, as well as eliminate ineffective medications with their associated side effects. PMID:21960779

  9. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice.

    PubMed

    Li, Yan-hong; Zhang, Man; Xiao, Hai-tao; Fu, Hai-bo; Ho, Alan; Lin, Cheng-yuan; Huang, Yu; Lin, Ge; Bian, Zhao-xiang

    2015-01-01

    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy.

  10. Citrobacter rodentium-induced colitis: A robust model to study mucosal immune responses in the gut.

    PubMed

    Koroleva, Ekaterina P; Halperin, Sydney; Gubernatorova, Ekaterina O; Macho-Fernandez, Elise; Spencer, Cody M; Tumanov, Alexei V

    2015-06-01

    Citrobacter rodentium is a natural mouse pathogen which reproducibly infects mice and causes intestinal disease. The C. rodentium model of infection is very useful for investigating host-pathogen immune interactions in the gut, and can also be used to understand the pathogenesis of several important human intestinal disorders, including Crohn's disease, ulcerative colitis, dysbiosis and colon tumorigenesis. Both innate and adaptive immune responses play a critical role in protection against C. rodentium. Here, we summarize the role of immune components in protection against C. rodentium and describe techniques for the analysis of innate and adaptive mucosal immune responses, including setting up the infection, analysis of colonic hyperplasia and bacterial dissemination, evaluation of antibody responses, and purification and analysis of intestinal epithelial and lymphoid cells.

  11. Herpes simplex induced necrotizing tonsillitis in an immunocompromised patient with ulcerative colitis

    PubMed Central

    Jansen, Laura; Vos, Xander G; Löwenberg, Mark

    2016-01-01

    We here present the case of a 22-year-old female of Suriname ethnicity with ulcerative colitis who received treatment with mercaptopurine and infliximab. She presented herself with a severe necrotizing tonsillitis due to herpes simplex virus type-1 (HSV-1). Combination therapy consisting of immunomodulators and anti-tumor necrosis factor (TNF) agents is increasingly being used. Anti-TNF therapy is associated with an increased risk of developing serious infections, and especially patients receiving combination treatment with thiopurines are at an increased risk. We here show that HSV infections can cause a severe tonsillitis in immunocompromised patients. Early recognition is essential when there is no improvement with initial antibiotic therapy within the first 24 to 72 h. HSV infections should be in the differential diagnosis of immunocompromised patients presenting with a necrotizing tonsillitis and can be confirmed by polymerase chain reaction. Early treatment with antiviral agents should be considered especially if antibiotic treatment fails in such patients. PMID:26881193

  12. Anti-inflammatory effect of volatile oil and hydroalcoholic extract of Rosa damascena Mill. on acetic acid-induced colitis in rats.

    PubMed

    Latifi, Ghazal; Ghannadi, Alireza; Minaiyan, Mohsen

    2015-01-01

    Rosa damascena is a small plant belonging to Rosaceae family which has been used for the treatment of some inflammatory diseases and digestive disorders in the Iranian folk medicine. This study was performed to investigate the effect of R. damascena hydroalcoholic extract (RDHE) and R. damascena volatile oil (RDVO) on ulcerative colitis induced by acetic acid in rats. Different doses of RDHE (250, 500, 1000 mg/kg) and RDVO (100, 200, 400 µl/kg) were given orally (p.o.) and doses of RDHE (125, 250, 500 mg/kg) were administrated intraperitoneally (i.p.) to the male Wistar rats (n=6) 2 h before induction of colitis which continued daily for 4 successive days. Prednisolone (4 mg/kg p.o.) and dexamethasone (1 mg/kg i.p.) were used in the reference groups. Weight/length ratios of wet colon were measured and the tissues were assessed macroscopically, histopathologically, and biochemically via measuring the myeloperoxidase (MPO) activity. Oral RDHE at all doses examined, and the lowest dose of RDVO given p.o. or RDHE administered i.p. reduced all indices of colitis measured in different assays as well as the MPO activity. These results provide encouraging support for the use of hydroalcoholic extract of R. damascena in relieving alimentary inflammatory conditions and reinforce the use of this plant to develop new agents for treating ulcerative colitis.

  13. Anti-inflammatory effect of volatile oil and hydroalcoholic extract of Rosa damascena Mill. on acetic acid-induced colitis in rats

    PubMed Central

    Latifi, Ghazal; Ghannadi, Alireza; Minaiyan, Mohsen

    2015-01-01

    Rosa damascena is a small plant belonging to Rosaceae family which has been used for the treatment of some inflammatory diseases and digestive disorders in the Iranian folk medicine. This study was performed to investigate the effect of R. damascena hydroalcoholic extract (RDHE) and R. damascena volatile oil (RDVO) on ulcerative colitis induced by acetic acid in rats. Different doses of RDHE (250, 500, 1000 mg/kg) and RDVO (100, 200, 400 µl/kg) were given orally (p.o.) and doses of RDHE (125, 250, 500 mg/kg) were administrated intraperitoneally (i.p.) to the male Wistar rats (n=6) 2 h before induction of colitis which continued daily for 4 successive days. Prednisolone (4 mg/kg p.o.) and dexamethasone (1 mg/kg i.p.) were used in the reference groups. Weight/length ratios of wet colon were measured and the tissues were assessed macroscopically, histopathologically, and biochemically via measuring the myeloperoxidase (MPO) activity. Oral RDHE at all doses examined, and the lowest dose of RDVO given p.o. or RDHE administered i.p. reduced all indices of colitis measured in different assays as well as the MPO activity. These results provide encouraging support for the use of hydroalcoholic extract of R. damascena in relieving alimentary inflammatory conditions and reinforce the use of this plant to develop new agents for treating ulcerative colitis. PMID:26779271

  14. Sodium hypochlorite-induced acute kidney injury.

    PubMed

    Peck, Brandon W; Workeneh, Biruh; Kadikoy, Huseyin; Abdellatif, Abdul

    2014-03-01

    Sodium hypochlorite (bleach) is commonly used as an irrigant during dental procedures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI). In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis.

  15. Collagenous colitis.

    PubMed Central

    Kingham, J G; Levison, D A; Morson, B C; Dawson, A M

    1986-01-01

    Clinical and pathological aspects of six patients with collagenous colitis are presented. These patients have been observed for between four and 15 years and the evolution of the condition is documented in three (cases 1, 3 and 5). Management and possible pathogenetic mechanisms of this enigmatic condition are discussed. Images Fig. 1 Fig. 2 PMID:3699567

  16. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor–induced toxicity and experimental colitis

    PubMed Central

    Vereecke, Lars; Sze, Mozes; Guire, Conor Mc; Rogiers, Brecht; Chu, Yuanyuan; Schmidt-Supprian, Marc; Pasparakis, Manolis

    2010-01-01

    A20 is a nuclear factor κB (NF-κB) target gene that encodes a ubiquitin-editing enzyme that is essential for the termination of NF-κB activation after tumor necrosis factor (TNF) or microbial product stimulation and for the prevention of TNF-induced apoptosis. Mice lacking A20 succumb to inflammation in several organs, including the intestine, and A20 mutations have been associated with Crohn’s disease. However, ablation of NF-κB activity, specifically in intestinal epithelial cells (IECs), promotes intestinal inflammation. As A20 deficiency sensitizes cells to TNF-induced apoptosis yet also promotes NF-κB activity, it is not clear if A20 deficiency in IECs would exacerbate or ameliorate intestinal inflammation. We generated mice lacking A20 specifically in IECs. These mice did not show spontaneous intestinal inflammation but exhibited increased susceptibility to experimental colitis, and their IECs were hypersensitive to TNF-induced apoptosis. The resulting TNF-driven breakdown of the intestinal barrier permitted commensal bacterial infiltration and led to systemic inflammation. These studies define A20 as a major antiapoptotic protein in the intestinal epithelium and further indicate that defects in A20 might contribute to inflammatory bowel disease in humans. PMID:20530205

  17. Protective effects of Pogostemon cablin Bentham water extract on inflammatory cytokine expression in TNBS-induced colitis in rats.

    PubMed

    Park, Su-Young; Neupane, Ganesh Prasad; Lee, Sung Ok; Lee, Jong Suk; Kim, Mi-Young; Kim, Sun Yeou; Park, Byung Chul; Park, Young-Joon; Kim, Jung-Ae

    2014-02-01

    In inflammatory bowel disease (IBD), colon epithelial cells express a variety of inflammatory mediators, including chemokines, which perpetuate inflammatory response. In the current study, we report that water extract of Pogostemon cablin Bentham aerial parts (PCW), which has traditionally been used for treatment of the common cold and infectious disease, suppressed colon inflammation. Treatment with PCW resulted in effective inhibition of tumor necrosis factor (TNF)-α-induced adhesion of monocytes to HT-29 human colonic epithelial cells. In a trinitrobenzene sulfonic acid (TNBS)-induced rat model of IBD, PCW suppressed clinical signs of colitis, including weight loss, colon tissue myeloperoxidase activity, a marker for inflammatory cell infiltration, and cyclooxygenase-2 expression in a dose-dependent manner. In addition, PCW suppressed TNBS-induced mRNA expression of IL-8, MCP-1, and IL-6 in rat colon. The nuclear level of NF-κB in TNBS-treated rat colon and NF-κB luciferase reporter gene activity in TNF-α-treated HT-29 cells were significantly inhibited by PCW. Taken together, the results of this study suggest that PCW suppressed colon inflammation via suppression of NF-κB-dependent expression of pro-inflammatory cytokines.

  18. Acute Generalized Exanthematous Pustulosis Induced by Fexofenadine

    PubMed Central

    Gupta, Tanvi; Garg, Vijay K; Sarkar, Rashmi; Madan, Anjali

    2016-01-01

    Acute generalized exanthematous pustulosis (AGEP) is a skin eruption, frequently drug induced and characterized by the acute development of multiple sterile minute pustules on an erythematous base. There is no case of fexofenadine-induced AGEP in literature (PubMed search). A 40-year-old female presented to us with fever and sudden onset development of multiple discrete to coalescent 1–2 mm nonfollicular pustules on an erythematous base present mainly on her trunk and upper extremities for past 2 days. She had a history of use of fexofenadine 180 mg OD for rhinitis for 2 days. Gram's stain showed no organism and pus culture showed no growth. Histopathological examination revealed subcorneal pustules with epidermal spongiosis. Scattered neutrophils and eosinophils were noted in the dermis. During this period, she took fexofenadine 180 mg unknowingly once following which she developed similar episode within 24–48 h. After withdrawal of the drug, the lesions subsided with scaling in 8–10 days. To the best of our knowledge, this is the first reported case of AGEP induced by fexofenadine. Recognition of such a rare entity is important given the frequent usage of fexofenadine for allergic disorders. PMID:27057044

  19. Tamoxifen-induced hypertriglyceridemia causing acute pancreatitis

    PubMed Central

    Singh, Hemant Kumar; Prasad, Mahendranath S.; Kandasamy, Arun K.; Dharanipragada, Kadambari

    2016-01-01

    Tamoxifen has both antagonistic and agonistic tissue-specific actions. It can have a paradoxical estrogenic effect on lipid metabolism resulting in elevated triglyceride and chylomicron levels. This can cause life-threatening complications like acute pancreatitis. To our knowledge, very few cases of tamoxifen-induced pancreatitis have been reported in the literature. We report a case of severe hypertriglyceridemia and acute pancreatitis following tamoxifen use. A 50-year-old diabetic lady was on tamoxifen (20mg/day) hormonal therapy for breast cancer. Within 3 months of starting therapy, she developed hypertriglyceridemia and acute pancreatitis. Laboratory values include: Serum amylase 778 IU/L, total cholesterol 785 mg/dL, triglycerides 4568 mg/dL and high-density lipoproteins (HDL) 12 mg/dL. Tamoxifen was substituted with letrozole and atorvastatin started. There was a prompt reversal of the adverse effects. Effects on lipid profile must be considered while initiating tamoxifen in predisposed individuals as the consequences are life threatening. PMID:27127396

  20. CMV - gastroenteritis/colitis

    MedlinePlus

    Colitis - cytomegalovirus; Gastroenteritis - cytomegalovirus; Gastrointestinal CMV disease ... or after bone marrow or organ transplant Ulcerative colitis or Crohn disease Rarely, serious CMV infection involving ...

  1. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis.

    PubMed

    Ryz, Natasha R; Lochner, Arion; Bhullar, Kirandeep; Ma, Caixia; Huang, Tina; Bhinder, Ganive; Bosman, Else; Wu, Xiujuan; Innis, Sheila M; Jacobson, Kevan; Vallance, Bruce A

    2015-11-01

    Vitamin D deficiency affects more that 1 billion people worldwide. Although thought to increase risk of bacterial infections, the importance of vitamin D on host defense against intestinal bacterial pathogens is currently unclear since injection of the active form of vitamin D, 1,25(OH)2D3, increased susceptibility to the enteric bacterial pathogen Citrobacter rodentium by suppressing key immune/inflammatory factors. To further characterize the role of vitamin D during bacteria-induced colitis, we fed weanling mice either vitamin D3-deficient or vitamin D3-sufficient diets for 5 wk and then challenged them with C. rodentium. Vitamin D3-deficient mice lost significantly more body weight, carried higher C. rodentium burdens, and developed worsened histological damage. Vitamin D3-deficient mice also suffered greater bacterial translocation to extra-intestinal tissues, including mesenteric lymph nodes, spleen, and liver. Intestinal tissues of infected vitamin D3-deficient mice displayed increased inflammatory cell infiltrates as well as significantly higher gene transcript levels of inflammatory mediators TNF-α, IL-1β, IL-6, TGF-β, IL-17A, and IL-17F as well as the antimicrobial peptide REG3γ. Notably, these exaggerated inflammatory responses accelerated the loss of commensal microbes and were associated with an impaired ability to detoxify bacterial lipopolysaccharide. Overall, these studies show that dietary-induced vitamin D deficiency exacerbates intestinal inflammatory responses to infection, also impairing host defense.

  2. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis

    PubMed Central

    Ryz, Natasha R.; Lochner, Arion; Bhullar, Kirandeep; Ma, Caixia; Huang, Tina; Bhinder, Ganive; Bosman, Else; Wu, Xiujuan; Innis, Sheila M.; Jacobson, Kevan

    2015-01-01

    Vitamin D deficiency affects more that 1 billion people worldwide. Although thought to increase risk of bacterial infections, the importance of vitamin D on host defense against intestinal bacterial pathogens is currently unclear since injection of the active form of vitamin D, 1,25(OH)2D3, increased susceptibility to the enteric bacterial pathogen Citrobacter rodentium by suppressing key immune/inflammatory factors. To further characterize the role of vitamin D during bacteria-induced colitis, we fed weanling mice either vitamin D3-deficient or vitamin D3-sufficient diets for 5 wk and then challenged them with C. rodentium. Vitamin D3-deficient mice lost significantly more body weight, carried higher C. rodentium burdens, and developed worsened histological damage. Vitamin D3-deficient mice also suffered greater bacterial translocation to extra-intestinal tissues, including mesenteric lymph nodes, spleen, and liver. Intestinal tissues of infected vitamin D3-deficient mice displayed increased inflammatory cell infiltrates as well as significantly higher gene transcript levels of inflammatory mediators TNF-α, IL-1β, IL-6, TGF-β, IL-17A, and IL-17F as well as the antimicrobial peptide REG3γ. Notably, these exaggerated inflammatory responses accelerated the loss of commensal microbes and were associated with an impaired ability to detoxify bacterial lipopolysaccharide. Overall, these studies show that dietary-induced vitamin D deficiency exacerbates intestinal inflammatory responses to infection, also impairing host defense. PMID:26336925

  3. Huang Qi Jian Zhong Pellet Attenuates TNBS-Induced Colitis in Rats via Mechanisms Involving Improvement of Energy Metabolism.

    PubMed

    Liu, Duan-Yong; Pan, Chun-Shui; Liu, Yu-Ying; Wei, Xiao-Hong; Zhou, Chang-Man; Sun, Kai; He, Ke; Li, Chong; Yan, Li; Fan, Jing-Yu; Wang, Chuan-She; Hibi, Toshifumi; Liu, Hong-Ning; Han, Jing-Yan

    2013-01-01

    Huang Qi Jian Zhong Pellet (HQJZ) is a famous Chinese medicine formula for treatment of various gastrointestinal tract diseases. This study investigated the role of HQJZ in 2,4,6-trinitrobenzene sulfonic acid- (TNBS-) induced colitis and its underlying mechanism. Colonic mucosal injury was induced by TNBS in the Sprague-Dawley rats. In the HQJZ treatment group, HQJZ was administered (2 g/kg) for 14 days starting from day 1 after TNBS infusion. Colonic mucosal injury occurred obviously 1 day after TNBS challenge and did not recover distinctively until day 15, including an increase in macro- and microscopic scores, a colonic weight index, a decrease in colonic length, a number of functional capillaries, and blood flow. Inverted intravital microscopy and ELISA showed colonic microcirculatory disturbances and inflammatory responses after TNBS stimulation, respectively. TNBS decreased occludin, RhoA, and ROCK-I, while increasing Rac-1, PAK-1, and phosphorylated myosin light chain. In addition, ATP content and ATP5D expression in colonic mucosa decreased after TNBS challenge. Impressively, treatment with HQJZ significantly attenuated all of the alterations evoked by TNBS, promoting the recovery of colonic injury. The present study demonstrated HQJZ as a multitargeting management for colonic mucosal injury, which set in motion mechanisms involving improvement of energy metabolism.

  4. The cell surface receptor Slamf6 modulates innate immune responses during Citrobacter rodentium-induced colitis.

    PubMed

    van Driel, Boaz; Wang, Guoxing; Liao, Gongxian; Halibozek, Peter J; Keszei, Marton; O'Keeffe, Michael S; Bhan, Atul K; Wang, Ninghai; Terhorst, Cox

    2015-09-01

    The homophilic cell surface receptors CD150 (Slamf1) and CD352 (Slamf6) are known to modulate adaptive immune responses. Although the Th17 response was enhanced in Slamf6(-/-) C57BL/6 mice upon oral infection with Citrobacter rodentium, the pathologic consequences are indistinguishable from an infection of wild-type C57BL/6 mice. Using a reporter-based binding assay, we show that Slamf6 can engage structures on the outer cell membrane of several Gram(-) bacteria. Therefore, we examined whether Slamf6, like Slamf1, is also involved in innate responses to bacteria and regulates peripheral inflammation by assessing the outcome of C. rodentium infections in Rag(-/-) mice. Surprisingly, the pathology and immune responses in the lamina propria of C. rodentium-infected Slamf6(-/-) Rag(-/-) mice were markedly reduced as compared with those of Rag(-/-) mice. Infiltration of inflammatory phagocytes into the lamina propria was consistently lower in Slamf6(-/-) Rag(-/-) mice than in Rag(-/-) animals. Concomitant with the reduced systemic translocation of the bacteria was an enhanced production of IL-22, suggesting that Slamf6 suppresses a mucosal protective program. Furthermore, administering a mAb (330) that inhibits bacterial interactions with Slamf6 to Rag(-/-) mice ameliorated the infection compared with a control antibody. We conclude that Slamf6-mediated interactions of colonic innate immune cells with specific Gram(-) bacteria reduce mucosal protection and enhance inflammation, contributing to lethal colitis that is caused by C. rodentium infections in Rag(-/-) mice.

  5. Colitis induced by sodium polystyrene sulfonate in sorbitol: A report of six cases.

    PubMed

    Jacob, Sheba S K; Parameswaran, Ashok; Parameswaran, Sarojini Ashok; Dhus, Ubal

    2016-03-01

    Drug-related injury has been noted in virtually all organ systems, and recognition of the patterns of injury associated with medication enables modification of treatment and reduces the morbidity associated with the side effects of drugs. With the large number of new drugs being developed, documentation of the morphology of the changes seen as an adverse effect becomes important to characterize the pattern of injury. The pathologist is often the first to identify these abnormalities and correlate them with a particular drug. Kayexalate or sodium polystyrene sulfonate (SPS), a linear polymer derived from polystyrene containing sulfonic acid and sulfonate functional groups is used to treat hyperkalemia. It is usually administered with an osmotic laxative sorbitol orally or as retention enema. This combination has been implicated in causing damage to different parts of the gastrointestinal (GI) tract especially the colon and causes an established pattern of injury, recognizable by the presence of characteristic crystals, is presented to create a greater awareness of the Kayexalate colitis. This entity should be included in the differential diagnosis of lower GI mucosal injury in a setting of uremia and hyperkalemia.

  6. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation.

    PubMed

    Liu, Wen; Guo, Wenjie; Hang, Nan; Yang, Yuanyuan; Wu, Xuefeng; Shen, Yan; Cao, Jingsong; Sun, Yang; Xu, Qiang

    2016-05-24

    Mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1), a paracaspase and essential regulator for nuclear factor kB (NF-κB) activation, plays an important role in innate and adaptive immunity. Suppression of MALT1 protease activity with small molecule inhibitors showed promising efficacies in subtypes of B cell lymphoma and improvement in experimental autoimmune encephalomyelitis model. However, whether MALT1 inhibitors could ameliorate colitis remains unclear. In the present study, we examined the pharmacological effect of two specific MALT1 inhibitors MI-2 and mepazine on the dextran sulfate sodium (DSS)-induced experimental colitis in mice, followed by mechanistic analysis on NF-κB and NLRP3 inflammasome activation. Treatment with MI-2 and mepazine dose-dependently attenuated symptoms of colitis in mice, evidenced by reduction in the elevated disease activity index, the shortening of colon length as well as the histopathologic improvement. Moreover, protein and mRNA levels of DSS-induced proinflammatory cytokines in colon, including TNF, IL-1β, IL-6, IL-18, IL-17A and IFN-γ, were markedly suppressed by MALT1 inhibitors. The underlying mechanisms for the protective effect of MALT1 inhibitors in DSS-induced colitis may be attributed to its inhibition on NF-κB and NLRP3 inflammasome activation in macrophages. The in vitro study showed that MALT1 inhibitors decreased production of IL-1β/IL-18 in phorbol myristate acetate-differentiated THP-1 cells and bone marrow derived macrophage via suppressing the activation of NF-κB and NLRP3 inflammasome. Taken together, our results demonstrated that inhibition of the protease activity of MALT1 might be a viable strategy to treat inflammatory bowel disease and the NLRP3 inflammasome and NF-κB activation are critical components in MALT1 signaling cascades in this disease model.

  7. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation

    PubMed Central

    Liu, Wen; Guo, Wenjie; Hang, Nan; Yang, Yuanyuan; Wu, Xuefeng; Shen, Yan; Cao, Jingsong; Sun, Yang; Xu, Qiang

    2016-01-01

    Mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1), a paracaspase and essential regulator for nuclear factor kB (NF-κB) activation, plays an important role in innate and adaptive immunity. Suppression of MALT1 protease activity with small molecule inhibitors showed promising efficacies in subtypes of B cell lymphoma and improvement in experimental autoimmune encephalomyelitis model. However, whether MALT1 inhibitors could ameliorate colitis remains unclear. In the present study, we examined the pharmacological effect of two specific MALT1 inhibitors MI-2 and mepazine on the dextran sulfate sodium (DSS)-induced experimental colitis in mice, followed by mechanistic analysis on NF-κB and NLRP3 inflammasome activation. Treatment with MI-2 and mepazine dose-dependently attenuated symptoms of colitis in mice, evidenced by reduction in the elevated disease activity index, the shortening of colon length as well as the histopathologic improvement. Moreover, protein and mRNA levels of DSS-induced proinflammatory cytokines in colon, including TNF, IL-1β, IL-6, IL-18, IL-17A and IFN-γ, were markedly suppressed by MALT1 inhibitors. The underlying mechanisms for the protective effect of MALT1 inhibitors in DSS-induced colitis may be attributed to its inhibition on NF-κB and NLRP3 inflammasome activation in macrophages. The in vitro study showed that MALT1 inhibitors decreased production of IL-1β/IL-18 in phorbol myristate acetate-differentiated THP-1 cells and bone marrow derived macrophage via suppressing the activation of NF-κB and NLRP3 inflammasome. Taken together, our results demonstrated that inhibition of the protease activity of MALT1 might be a viable strategy to treat inflammatory bowel disease and the NLRP3 inflammasome and NF-κB activation are critical components in MALT1 signaling cascades in this disease model. PMID:27105502

  8. Ischemic Colitis

    PubMed Central

    FitzGerald, James F.; Hernandez III, Luis O.

    2015-01-01

    Most clinicians associate ischemic colitis with elderly patients who have underlying cardiovascular comorbidities. While the majority of cases probably occur in this population, the disease can present in younger patients as a result of different risk factors, making the diagnosis challenging. While a majority of patients respond to medical management, surgery is required in approximately 20% of the cases and is associated with high morbidity and mortality. PMID:26034405

  9. Appropriateness of reference genes for normalizing messenger RNA in mouse 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis using quantitative real time PCR

    PubMed Central

    Eissa, Nour; Kermarrec, Laëtitia; Hussein, Hayam; Bernstein, Charles N.; Ghia, Jean-Eric

    2017-01-01

    2,4-Dinitrobenzene sulfonic acid (DNBS)-induced colitis is an experimental model that mimics Crohn’s disease. Appropriateness of reference genes is crucial for RT-qPCR. This is the first study to determine the stability of reference gene expression (RGE) in mice treated with DNBS. DNBS experimental Colitis was induced in male C57BL/6 mice. RNA was extracted from colon tissue and comprehensive analysis of 13 RGE was performed according to predefined criteria. Relative colonic TNF-α and IL-1β mRNA levels were calculated. Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh), β-actin (Actb), or β2-microglobulin (β2m) showed the highest fluctuation within the inflamed and control groups. Conversely, ribosomal protein large P0 (Rplp0), non-POU domain containing (Nono), TATA-box-binding protein (Tbp) and eukaryotic translation elongation factor 2 (Eef2) were not affected by inflammation and were the most stable genes. TNF-α and IL-1β mRNA levels was dependent on the reference gene used and varied from significant when the most stable genes were used to non-significant when the least stable genes were used. The appropriate choice of RGE is critical to guarantee satisfactory normalization of RT-qPCR data when using DNBS-Model. We recommend using Rplp0, Nono, Tbp, Hprt and Eef2 instead of common reference genes. PMID:28186172

  10. Blocking TNF-α by combination of TNF-α- and TNFR-binding cyclic peptide ameliorates the severity of TNBS-induced colitis in rats.

    PubMed

    Yin, Bingjiao; Hu, Xin; Wang, Jing; Liang, Huifang; Li, Xiaoyan; Niu, Nin; Li, Baihua; Jiang, Xiaodan; Li, Zhuoya

    2011-04-10

    Tumor necrosis factor alpha (TNF-α) has been implicated in the pathogenesis of Crohn's disease. TNF antagonists are effectively used to treat these patients, although the efficiency of different antagonists varies. In the present study we combined TNF-α binding cyclic peptide (TBCP) and TNFR1 binding cyclic peptide (TRBCP) to treat TNBS-induced colitis in rats for one week. The symptoms of colitis including bloody diarrhea, rectal prolapse, and a profound and sustained weight loss were significantly ameliorated and the colon inflammatory damage, both macroscopic and histological scores, MPO activity, and NO production were markedly decreased in rats by neutralization of TNF-α and blocking TNFR1, as compared with those in rats treated with irrelevant peptide or normal saline (P<0.05). The transcripts of IL-1β and IL-8, and the protein expression of TNF-α in rats treated with both TBCP and TRBCP were also down-regulated (P<0.05), while these proinflammatory cytokines remained unchanged in rats treated with irrelevant peptide or normal saline. These findings suggest that the combination of TNF-α- and TNFR1-binding peptide effectively improves the symptoms of TNBS-induced colitis and alleviates colonic pathological damages in rats. This combination may be a potent candidate for clinical treatment of the inflammatory bowel disease.

  11. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis

    PubMed Central

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-01-01

    AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα-/-) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα-/- mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is

  12. Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation.

    PubMed

    Wang, Xiaoping; Sun, Yang; Zhao, Yue; Ding, Youxiang; Zhang, Xiaobo; Kong, Lingyi; Li, Zhiyu; Guo, Qinglong; Zhao, Li

    2016-04-15

    Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cell infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD).

  13. Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice.

    PubMed

    Burns, Patricia; Alard, Jeanne; Hrdỳ, Jiri; Boutillier, Denise; Páez, Roxana; Reinheimer, Jorge; Pot, Bruno; Vinderola, Gabriel; Grangette, Corinne

    2017-02-24

    Gut microbiota dysbiosis plays a central role in the development and perpetuation of chronic inflammation in inflammatory bowel disease (IBD) and therefore is key target for interventions with high quality and functional probiotics. The local production of stable probiotic formulations at limited cost is considered an advantage as it reduces transportation cost and time, thereby increasing the effective period at the consumer side. In the present study, we compared the anti-inflammatory capacities of the Bifidobacterium animalis subsp. lactis (B. lactis) INL1, a probiotic strain isolated in Argentina from human breast milk, with the commercial strain B. animalis subsp. lactis BB12. The impact of spray-drying, a low-cost alternative of bacterial dehydration, on the functionality of both bifidobacteria was also investigated. We showed for both bacteria that the spray-drying process did not impact on bacterial survival nor on their protective capacities against acute and chronic colitis in mice, opening future perspectives for the use of strain INL1 in populations with IBD.

  14. Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice

    PubMed Central

    Burns, Patricia; Alard, Jeanne; Hrdỳ, Jiri; Boutillier, Denise; Páez, Roxana; Reinheimer, Jorge; Pot, Bruno; Vinderola, Gabriel; Grangette, Corinne

    2017-01-01

    Gut microbiota dysbiosis plays a central role in the development and perpetuation of chronic inflammation in inflammatory bowel disease (IBD) and therefore is key target for interventions with high quality and functional probiotics. The local production of stable probiotic formulations at limited cost is considered an advantage as it reduces transportation cost and time, thereby increasing the effective period at the consumer side. In the present study, we compared the anti-inflammatory capacities of the Bifidobacterium animalis subsp. lactis (B. lactis) INL1, a probiotic strain isolated in Argentina from human breast milk, with the commercial strain B. animalis subsp. lactis BB12. The impact of spray-drying, a low-cost alternative of bacterial dehydration, on the functionality of both bifidobacteria was also investigated. We showed for both bacteria that the spray-drying process did not impact on bacterial survival nor on their protective capacities against acute and chronic colitis in mice, opening future perspectives for the use of strain INL1 in populations with IBD. PMID:28233848

  15. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis.

    PubMed

    Zong, Shi-Yu; Pu, Yi-Qiong; Xu, Ben-Liang; Zhang, Tong; Wang, Bing

    2017-01-01

    Paeonol, an active component from Paeonia suffruticosa Andr., has a variety of biological activities, such as vascular endothelial cell protection, anti-oxidation, and anti-inflammation. The aim of this study was to investigate the basic physicochemical properties of paeonol, including solubility, oil-water partition coefficient, and permeability. Then evaluated the anti-inflammatory effects of paeonol were evaluated on 2,4,6-trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. The rats were divided randomly into 6 groups, namely, normal, model, paeonol-treated (100, 200, and 400mg/kg), and positive. Each group had 10 rats. Inhibition effects were evaluated by the disease activity index (DAI), colon weight/length ratio, as well as macroscopical and histological evaluations. Serum interleukin (IL)-17, IL-6 and transforming growth factor beta 1 (TGF-β1) levels were determined by enzyme-linked immunosorbent assay. The solubility and oil-water partition coefficient of paeonol in different phosphate buffer solutions were 284.06-598.23 and 461.97-981.17μg/mL, respectively. The effective passive permeability value Pe was 23.49×10(-6)cm/s. In terms of anti-inflammatory results, compared with the model group, treatment with 200 and 400mg/kg doses of paeonol had significantly decreased DAI, colon weight/length ratio, and macroscopic and histopathological scores. Furthermore, the serum levels of IL-17 and IL-6 were significantly reduced, whereas the TGF-β1 level was increased in the two paeonol-treated groups (medium- and high-dose group). Therefore, paeonol had poor water solubility, but oral absorption was good. In addition, paeonol had therapeutic effects on ulcerative colitis, and the therapeutic efficacy was dose dependent. The results presented in this study provide evidence for the development of a novel therapeutic agent in the treatment of UC. However, whether this agent could have therapeutic benefit or adverse effects in human IBD remains to be

  16. mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile

    PubMed Central

    Wang, Yilin; Wang, Zhengting; Pei, Yaofei; Fan, Rong; Liu, Xiqiang; Wang, Lei; Zhou, Jie; Zheng, Sichang; Zhang, Tianyu; Lin, Yun; Zhang, Maochen; Tao, Ran; Zhong, Jie

    2016-01-01

    It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation. PMID:27128484

  17. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis.

    PubMed

    Kang, Chil-Sung; Ban, Mingi; Choi, Eun-Jeong; Moon, Hyung-Geun; Jeon, Jun-Sung; Kim, Dae-Kyum; Park, Soo-Kyung; Jeon, Seong Gyu; Roh, Tae-Young; Myung, Seung-Jae; Gho, Yong Song; Kim, Jae Gyu; Kim, Yoon-Keun

    2013-01-01

    Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidifaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis.

  18. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  19. Paternal chronic colitis causes epigenetic inheritance of susceptibility to colitis

    PubMed Central

    Tschurtschenthaler, Markus; Kachroo, Priyadarshini; Heinsen, Femke-Anouska; Adolph, Timon Erik; Rühlemann, Malte Christoph; Klughammer, Johanna; Offner, Felix Albert; Ammerpohl, Ole; Krueger, Felix; Smallwood, Sébastien; Szymczak, Silke; Kaser, Arthur; Franke, Andre

    2016-01-01

    Inflammatory bowel disease (IBD) arises by unknown environmental triggers in genetically susceptible individuals. Epigenetic regulation of gene expression may integrate internal and external influences and may thereby modulate disease susceptibility. Epigenetic modification may also affect the germ-line and in certain contexts can be inherited to offspring. This study investigates epigenetic alterations consequent to experimental murine colitis induced by dextran sodium sulphate (DSS), and their paternal transmission to offspring. Genome-wide methylome- and transcriptome-profiling of intestinal epithelial cells (IECs) and sperm cells of males of the F0 generation, which received either DSS and consequently developed colitis (F0DSS), or non-supplemented tap water (F0Ctrl) and hence remained healthy, and of their F1 offspring was performed using reduced representation bisulfite sequencing (RRBS) and RNA-sequencing (RNA-Seq), respectively. Offspring of F0DSS males exhibited aberrant methylation and expression patterns of multiple genes, including Igf1r and Nr4a2, which are involved in energy metabolism. Importantly, DSS colitis in F0DSS mice was associated with decreased body weight at baseline of their F1 offspring, and these F1 mice exhibited increased susceptibility to DSS-induced colitis compared to offspring from F0Ctrl males. This study hence demonstrates epigenetic transmissibility of metabolic and inflammatory traits resulting from experimental colitis. PMID:27538787

  20. Acute parotitis induced by trimethoprim/sulfamethoxazole.

    PubMed

    Patel, Jayna S; Scheiner, Edward D

    2011-02-01

    Adverse drug reactions to the sulfonamide antibiotics are uncommon. When they do occur, they usually manifest as a rash or urticaria. Our review of the recent literature found that while sialadenitis is listed as a possible side effect of sulfonamide use, no actual case has ever been reported until now. We describe a case of acute bilateral parotitis that arose as a side effect of sulfonamide antibiotic treatment. We also examine the relevance of such pathology to the proposed mechanisms of sialadenitis, and we briefly discuss sulfonamide-induced pancreatitis. Lastly, we review the controversy over the possibility that some adverse drug reactions may be caused by cross-reactivity among different classes of sulfonamides.

  1. Westernized high-fat diet accelerates weight loss in dextran sulfate sodium-induced colitis in mice, which is further aggravated by supplementation of heme.

    PubMed

    van der Logt, Elise M J; Blokzijl, Tjasso; van der Meer, Roelof; Faber, Klaas Nico; Dijkstra, Gerard

    2013-06-01

    The Western diet, rich in fat and red meat, predisposes for inflammatory bowel disease (IBD); however, little is known about mechanisms involved. Red meat contains high levels of heme, a well-known inducer of the cytoprotective enzyme heme oxygenase-1 (HO-1). Pharmacological induction of HO-1 ameliorates experimental colitis. We analyzed the effect of a westernized high-fat (HF) diet supplemented with heme on intestinal HO-1 expression and dextran sulfate sodium (DSS)-induced colitis. Mice were fed chow or HF diets for 2 weeks. In the second week, the HF diet was supplemented with or without 0.5 μmol/g heme. Subsequently, the 3 diet groups were given drinking water with or without 4% DSS to induce colitis. Significant body weight reduction was first observed after 4 days in the chow/DSS mice (-5±3%), whereas this was evident already after 2 days (-6±2%) in HF/DSS mice, showing increased weight loss compared to chow/DSS mice in the following days. Heme supplementation further aggravated DSS-induced weight loss in HF mice (-18±4% vs. -7±5% for HF+heme/DSS vs. HF/DSS, P<.01). Heme increased HO-1 expression in the colon epithelium but decreased villin messenger RNA levels, indicating epithelial damage. In contrast, heme did not affect DSS-induced colon shortening and histological scores of epithelial damage and inflammation. A westernized diet accelerates DSS-induced weight loss in mice, which is further aggravated by heme, despite the induction of HO-1 in the colon epithelium. Our data warrant a detailed analysis of the association of (red) meat-containing diets and the development of IBD.

  2. Treatment with novel AP-1 and NF-κB inhibitors restores the colonic endocrine cells to normal levels in rats with DSS-induced colitis

    PubMed Central

    EL-SALHY, MAGDY; UMEZAWA, KAZUO

    2016-01-01

    The aim of this study was to determine the effects of two anti-inflammatory agents on the abnormalities in colonic endocrine cells in dextran sodium sulfate (DSS)-induced colitis. Colitis was induced in male Wistar rats (n=45) using DSS; a further 15 rats without colitis were included in a healthy control group. The animals with DSS-induced colitis were randomly divided into 3 treatment groups as follows: i) DSS group, rats were treated with 0.5 ml of 0.5% carboxymethyl cellulose (CMC); ii) DSS-G group, rats were treated with 3-[(dodecyl thiocarbonyl)-methyl]-glutarimide (DTCM-G), a novel activator protein 1 (AP-1) inhibitor, 20 mg/kg in CMC; and iii) DSS-Q group, rats were treated with dehydroxymethylepoxyquinomicin, a nuclear factor κB (NF-κB) inhibitor, 15 mg/kg in CMC. The treatments were administered intraperitoneally, twice daily for 5 days, after which the animals were sacrificed and tissue samples from the colon were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), enteroglucagon, pancreatic polypeptide (PP), somatostatin, leukocytes, B/T lymphocytes, B lymphocytes, T lymphocytes, macrophages/monocytes and mast cells. The densities of these endocrine and immune cells were quantified by computer-aided image analysis. The densities of CgA-, serotonin-, PYY- and enteroglucagon-producing cells were significantly higher, and those of PP- and somatostatin-producing cells were significantly lower in the DSS-G, DSS-Q and control groups than in the DSS group. The densities of all the immune cells were lower in the DSS-G, DSS-Q and control groups than in the DSS group. The densities of all endocrine cell types and immune cells in both the DSS groups treated with anti-inflammatory agents were restored to control levels. In conclusion, our data demonstrate that there is an interaction between endocrine and immune cells during inflammation. This interaction with subsequent changes in endocrine cells is responsible for the clinical manifestation of

  3. Treatment with novel AP-1 and NF-κB inhibitors restores the colonic endocrine cells to normal levels in rats with DSS-induced colitis.

    PubMed

    El-Salhy, Magdy; Umezawa, Kazuo

    2016-03-01

    The aim of this study was to determine the effects of two anti-inflammatory agents on the abnormalities in colonic endocrine cells in dextran sodium sulfate (DSS)-induced colitis. Colitis was induced in male Wistar rats (n=45) using DSS; a further 15 rats without colitis were included in a healthy control group. The animals with DSS-induced colitis were randomly divided into 3 treatment groups as follows: i) DSS group, rats were treated with 0.5 ml of 0.5% carboxymethyl cellulose (CMC); ii) DSS‑G group, rats were treated with 3-[(dodecylthiocarbonyl)‑methyl]‑glutarimide (DTCM‑G), a novel activator protein 1 (AP-1) inhibitor, 20 mg/kg in CMC; and iii) DSS‑Q group, rats were treated with dehydroxymethylepoxyquinomicin, a nuclear factor κB (NF-κB) inhibitor, 15 mg/kg in CMC. The treatments were administered intraperitoneally, twice daily for 5 days, after which the animals were sacrificed and tissue samples from the colon were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), enteroglucagon, pancreatic polypeptide (PP), somatostatin, leukocytes, B/T lymphocytes, B lymphocytes, T lymphocytes, macrophages/monocytes and mast cells. The densities of these endocrine and immune cells were quantified by computer‑aided image analysis. The densities of CgA-, serotonin-, PYY- and enteroglucagon-producing cells were significantly higher, and those of PP- and somatostatin-producing cells were significantly lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all the immune cells were lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all endocrine cell types and immune cells in both the DSS groups treated with anti‑inflammatory agents were restored to control levels. In conclusion, our data demonstrate that there is an interaction between endocrine and immune cells during inflammation. This interaction with subsequent changes in endocrine cells is responsible for the

  4. Acute hereditary coproporphyria induced by the androgenic/anabolic steroid methandrostenolone (Dianabol).

    PubMed

    Lane, P R; Massey, K L; Worobetz, L J; Jutras, M N; Hull, P R

    1994-02-01

    Acute attacks of porphyria can be induced by certain drugs. We report a case of acute coproporphyria induced by methandrostenolone. This is the first report of acute porphyria induced by an androgenic, anabolic steroid.

  5. Anti-inflammatory effects of novel AP-1 and NF-κB inhibitors in dextran-sulfate-sodium-induced colitis in rats.

    PubMed

    El-Salhy, Magdy; Umezawa, Kazuo

    2016-06-01

    The aim of the present study was to elucidate the anti-inflammatory effects of the two novel anti-inflammatory substances, 3-[(dodecylthiocarbonyl)‑methyl]-glutarimide (DTCM-G) and dehydroxymethylepoxyquinomicin (DHMEQ), on DSS-induced colitis in rats. For this purpose, rats with dextran sulfate sodium (DSS)-induced colitis were randomly divided into 3 groups with 10 animals in each group as follows: i) the control group, which received 0.5 ml of 0.5% carboxymethyl cellulose (CMC; vehicle), ii) rats that received DTCM-G (20 mg/kg body weight in 0.5% CMC; the DTCM-G group), and iii) rats that received DHMEQ (15 mg/kg body weight in 0.5% CMC; the DHMEQ group). The animals were sacrificed after the 5-day treatment period, and tissue samples were taken from their colons and sectioned for histological evaluation. The tissue sections were stained with hematoxylin and eosin, and immunostained for leukocytes, lymphocytes, macrophages/monocytes and mast cells. The disease activity index (DAI), histological grading of colitis, and densities of several types of submucosal immune cells were compared between the controls, and the DTCM-G and DHMEQ groups. The DAI values were significantly lower in both the DTCM-G and DHMEQ groups than in the control group. The total scores for the histological grading of colitis were also significantly lower in the DTCM-G and DHMEQ groups than in the control group. The submucosal densities of leucocytes, lymphocytes, macrophages/monocytes and mast cells were significantly lower in the DTCM-G and DHMEQ groups than in the control group. Our findings indicate that the anti-inflammatory and anticancer effects of DTCM-G and DHMEQ, and the absence of any associated toxicity render them excellent therapeutic candidates for clinical use in the treatment of colitis.

  6. Anti-colitic effects of kanjangs (fermented soy sauce and sesame sauce) in dextran sulfate sodium-induced colitis in mice.

    PubMed

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee; Park, Kun-Young

    2014-09-01

    This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-17α. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4 mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8 mL/kg) of the sauces.

  7. Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-κB in rats with TNBS-induced colitis.

    PubMed

    Mbodji, Khaly; Charpentier, Cloé; Guérin, Charlène; Querec, Coraline; Bole-Feysot, Christine; Aziz, Moutaz; Savoye, Guillaume; Déchelotte, Pierre; Marion-Letellier, Rachel

    2013-04-01

    5-aminosalicylic acid (5-ASA) is widely used for the treatment of inflammatory bowel disease (IBD). Recent studies have evaluated the potential of nutritional intervention as adjunct therapy to 5-ASA in IBD. N-3 polyunsaturated fatty acids (PUFA) have shown potent anti-inflammatory properties in gut inflammation. Therefore, we aimed to evaluate the efficacy of the dual therapy (n-3 PUFA plus 5-ASA) in rats with 2, 4, 6-trinitrobenzen sulfonic acid (TNBS)-induced colitis. Colitis was induced by intrarectal injection of TNBS while control rats received the vehicle. Rats received by gavage a fish oil-rich formula (n-3 groups) or an isocaloric and isolipidic oil formula supplemented with 5-ASA for 14 days. A dose response of 5-ASA (5-75 mg. suppression mg kg(-1) d(-1)) was tested. Colitis was evaluated and several inflammatory markers were quantified in the colon. COX-2 expression (P<.05) and pro-inflammatory eicosanoids production of prostaglandin E2 (P<.001) and leukotriene B4 (P<.001) were significantly inhibited by n-3 PUFA or 5-ASA therapy. 5-ASA also reduces mRNA levels of tumor necrosis factor α (P<.05). n-3 PUFA or 5-ASA significantly inhibits nuclear factor κB (NF-κB) activation (P<.01 and P<.05, respectively). The dual therapy n-3 PUFA plus 5-ASA also inhibited inflammatory response by lowering NF-κB activation (P<.01) or inducing peroxisome proliferator-activated receptor-γ (PPARγ) expression (P<.05). These results indicate that 5-ASA plus n-3 PUFAs are more effective than a higher dose of 5-ASA alone to reduce NF-κB activation and to induce PPARγ. By contrast, the dual therapy did not improve the effects of individual treatments on eicosanoids or cytokine production. Use of n-3 PUFA in addition to 5-ASA may reduce dose of standard therapy.

  8. Effects of AP-1 and NF-κB inhibitors on colonic endocrine cells in rats with TNBS-induced colitis

    PubMed Central

    El-Salhy, Magdy; Umezawa, Kazuo

    2016-01-01

    Interactions between intestinal neuroendocrine peptides/amines and the immune system appear to have an important role in the pathophysiology of inflammatory bowel disease (IBD). The present study investigated the effects of activator protein (AP)-1 and nuclear factor (NF)-κB inhibitors on inflammation-induced alterations in enteroendocrine cells. A total of 48 male Wistar rats were divided into the following four groups (n=12 rats/group): Control, trinitrobenzene sulfonic acid (TNBS)-induced colitis only (TNBS group), TNBS-induced colitis with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G) treatment (DTCM-G group), and TNBS-induced colitis with dehydroxymethylepoxyquinomicin (DHMEQ) treatment (DHMEQ group). A total of 3 days following administration of TNBS, the rats were treated as follows: The control and TNBS groups received 0.5 ml vehicle (0.5% carboxymethyl cellulose; CMC), respectively; the DTCM-G group received DTCM-G (20 mg/kg body weight) in 0.5% CMC; and the DHMEQ group received DHMEQ (15 mg/kg body weight) in 0.5% CMC. All injections were performed intraperitoneally twice daily for 5 days. The rats were sacrificed, and tissue samples obtained from the colon were examined histopathologically and immunohistochemically. Inflammation was evaluated using a scoring system. In addition, the sections were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP) and somatostatin, and immunostaining was quantified using image-analysis software. The density of cells expressing CgA, PYY and PP was significantly lower in the TNBS group compared with in the control group, whereas the density of cells expressing serotonin, oxyntomodulin and somatostatin was significantly higher in the TNBS group compared with in the control group. None of the endocrine cell types differed significantly between the control group and either the DTCM-G or DHMEQ groups. All of the colonic endocrine cell types were affected in

  9. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats

    PubMed Central

    Kumar, Venkatashivam Shiva; Rajmane, Anuchandra Ramchandra; Adil, Mohammad; Kandhare, Amit Dattatraya; Ghosh, Pinaki; Bodhankar, Subhash Laxman

    2014-01-01

    The aim of this study was to evaluate the effect of naringin on experimentally induced inflammatory bowel disease in rats. Naringin (20, 40 and 80 mg/kg) was given orally for 7 days to Wistar rats before induction of colitis by intrarectal instillation of 2 mL of 4% (v/v) acetic acid solution. The degree of colonic mucosal damage was analyzed by examining mucosal damage, ulcer area, ulcer index and stool consistency. Intrarectal administration of 4% acetic acid resulted in significant modulation of serum alkaline phosphatase, lactate dehydrogenase, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and myeloperoxidase (MPO) content along with colonic nitric oxide (NO), xanthine oxidase (XO) level and protein carbonyl content in the colonic tissue as well as in blood. Naringin (40 and 80 mg/kg) exerted a dose dependent (P < 0.05) ameliorative effect, as it significantly increased hematological parameter as well as colonic SOD and GSH. There was a significant (P < 0.05) and dose dependant inhibition of macroscopical score, ulcer area along with colonic MDA, MPO activity by the 7 days of pretreatment of naringin (40 and 80 mg/kg). Biochemical studies revealed a significant (P < 0.05) dose dependant inhibition in serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels by pretreatment of naringin. Increased levels of colonic NO, XO, protein carbonyl content and DNA damage were also significantly decreased by naringin pretreatment. The findings of the present investigation propose that naringin has an anti-inflammatory, anti-oxidant and anti-apoptotic potential effect at colorectal sites as it modulates the production and expression of oxidative mediators such as MDA, MPO, NO and XO, thus reducing DNA damage. PMID:24683411

  10. The Healing Effect of Teucrium polium in Acetic Acid-Induced Ulcerative Colitis in the Dog as an Animal Model

    PubMed Central

    Mehrabani, Davood; Bahrami, Faranak; Hosseini, Seyed Vahid; Ashraf, Mohammad Javad; Tanideh, Nader; Rezaianzadeh, Abbas; Amini, Masoud; Amini, Afshin

    2012-01-01

    BACKGROUND Inflammatory bowel diseases (IBD), which include ulcerative colitis (UC) and Crohn’s disease (CD), are debilitating and chronic disorders with unpredictable courses and complicated treatment measures. Therefore, an efficient treatment protocol seems necessary as therapeutic prophylaxis for these disorders. This study aims to determine the healing effect of Teucrium polium (T. polium) in acetic acid-induced UC in an experimental dog model. METHODS From September to December 2010, eight male (20-25 kg) crossbred dogs were used for induction of UC by 6% acetic acid, transrectally. After one week, three biopsies (10, 20 and 30 cm proximal to the anal verge) were taken from the colon of each animal for histological studies. In the presence of UC, 400 mg/kg/day of T. polium extract was administered orally and transrectally (via enema) for 30 days in six of the dogs. The remaining two dogs were used as controls and did not receive T. polium. Multiple biopsies were taken 7, 14, and 30 days after discontinuation of T. polium in the same manner as before treatment. RESULTS After administration of acetic acid, we noted the presence of multiple ulcers, diffuse inflammation, PMN infiltration in the lamina propria, glandular destruction and goblet cell depletion. Treatment with T. polium restored the colonic architecture with an increased number of healthy cells and a reduction in inflammatory cells. Damage of the surface epithelial cells and mucosal layer of the lumen were reversed, which lead to faster ulcer healing. CONCLUSION T. polium may be a treatment choice for UC and can broaden the current therapy options for UC. PMID:24829634

  11. Amelioration of severe TNBS induced colitis by novel AP-1 and NF- κ B inhibitors in rats.

    PubMed

    El-Salhy, Magdy; Umezawa, Kazuo; Gilja, Odd Helge; Hatlebakk, Jan G; Gundersen, Doris; Hausken, Trygve

    2014-01-01

    AP-1 and NF-κ B inhibitors, namely, DTCM-G and DHMEQ, were investigated in male Wistar rats with severe colitis, induced by TNBS. The animals were randomized into 3 groups. The control group received 0.5 mL of 0.5% of the vehicle i.p., the DTCM-G group received 22.5 mg/kg body weight DTCM-G in 0.5% i.p., and the DHMEQ group received 15 mg/kg body weight DHMEQ i.p., all twice daily for 5 days. The body weight losses and mortality rates were significantly higher in the control group than those in DTCM-G-treated and DHMEQ-treated groups. The endoscopic inflammation scores in the control, DTCM-G-treated, and DHMEQ-treated groups were 6.3 ± 0.7, 1.0 ± 0.3, and 0.7 ± 0.3, respectively (P = 0.004 and 0.02, resp.). The inflammation scores as assessed by the macroscopic appearance were 4.3 ± 0.8, 0.7 ± 0.3, and 1.2 ± 0.4 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.01 and 0.009, resp.). The histopathological inflammation scores were 6.4 ± 0.7, 2.0 ± 1.0, and 2.2 ± 0.6 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.03 and 0.01, resp.). It was concluded that DTCM-G and DHMEQ exhibit strong anti-inflammatory and anticancer activities with no apparent toxicity, which make them excellent drug candidates for clinical use in inflammatory bowel diseases.

  12. Review article: the long-term management of ulcerative colitis.

    PubMed

    Hanauer, S B

    2004-10-01

    After the induction of remission, the second priority of therapy for ulcerative colitis is sustained clinical remission, defined as the absence of inflammatory symptoms (diarrhoea, bleeding, rectal urgency) and the maintenance of an intact mucosa, with the absence of ulcers, friability or significant granularity at endoscopy. The 'optimal' maintenance strategy will depend on the therapy needed to induce remission. Thus, the transition from induction to maintenance therapy will be determined by the intensity of acute therapy necessary to induce remission and the duration of therapy required to complete the resolution of clinical symptoms. There are few controlled clinical trials pertaining to maintenance after each induction regimen. However, experience dictates that aminosalicylates are efficacious after aminosalicylate-induced remissions, that steroids should be tapered according to the time required to induce remission, that patients requiring ciclosporin will benefit from the addition of long-term immunomodulation with azathioprine or mercaptopurine, and that many patients with distal colitis who require topical mesalazine (mesalamine) will continue to need topical therapy to maintain remission, albeit at reduced frequency. The expectations for maintenance therapy require patient adherence to the prescribed treatment regimen. Patients require education with regard to the long-term goals of maintenance therapy (e.g. prevention of relapse, reduction of long-term complications of disease activity or risks of acute therapy with steroids), and should be warned against the use of nonsteroidal anti-inflammatory drugs and cautioned about the cessation of smoking, when applicable, due to potential risks of relapse or chronic activity.

  13. First report of Entamoeba histolytica infection from Timor-Leste--acute amoebic colitis and concurrent late development of amoebic liver abscess in returned travellers to Australia.

    PubMed

    Nourse, Clare B; Robson, Jennifer M; Whitby, Michael R; Francis, Josh R

    2016-02-01

    This communication reports invasive amoebic colitis and late onset amoebic liver abscess in three members of a group of 12 Australian travellers to Timor-Leste (TL). This is the first report of Entamoeba histolytica infection from TL. Clinicians in Australia need to consider amoebiasis in the differential diagnosis in travellers returning with colitis, abdominal pain and fever. Presentation with amoebic liver abscess months after exposure is rare but should be suspected in symptomatic individuals with a relevant history of travel.

  14. An α-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-κB in rats with TNBS-induced colitis.

    PubMed

    Hassan, Aktham; Ibrahim, Ayman; Mbodji, Khaly; Coëffier, Moïse; Ziegler, Frédéric; Bounoure, Frédéric; Chardigny, Jean-Michel; Skiba, Mohamed; Savoye, Guillaume; Déchelotte, Pierre; Marion-Letellier, Rachel

    2010-10-01

    We have previously shown that α-linolenic acid (ALA), a (n-3) PUFA exerts in vitro antiinflammatory effects in the intestine. In this study, we aimed to evaluate its effect on inflammatory and oxidative stress in a colitis model. Colitis was induced in 2 groups at d 0 by intrarectal injection of 2-4-6-trinitrobenzen sulfonic acid (TNBS), whereas the control group received the vehicle. Rats we fed 450 mg . kg(-1) . d(-1) of ALA (TNBS+ALA) while the other colitic group (TNBS) and the control group were fed an isocaloric corn oil formula for 14 d (from d -7 to d 7). RBC fatty acid composition was assessed. Oxidative stress was studied by measuring urinary 8-isoprostanes (8-IP) and colon glutathione (GSH) concentration and inducible nitric oxide synthase (iNOS) expression. Colitis was assessed histologically, by production of proinflammatory mediators, including cytokines, leukotrienes B(4) (LTB(4)), and cyclooxygenase-2 (COX-2) and by nuclear factor-κB (NF-κB) activation. The ALA-rich diet significantly increased the RBC levels of ALA, eicosapentaenoic acid, and docosapentaenoic acid (n-3) compared with the TNBS group (P < 0.01 for all). The beneficial effect of ALA supplementation on oxidative stress was reflected by lower urinary 8-IP levels (P < 0.05), a normalized colon GSH concentration (P < 0.01), and reduced colon iNOS expression (P < 0.05) compared with the TNBS group. ALA also protected against colon inflammation as assessed by lower tumor necrosis factor-α secretion and mRNA level (P < 0.05), reduced NF-κB activation (P = 0.01), and lower colon lipid mediator concentrations such as LTB(4) and COX-2 (P < 0.05) compared with the TNBS group. These findings show that an ALA-rich formula is beneficial to TNBS-induced colitic rats via inhibition of oxidative and inflammatory stress.

  15. Healthcare professionals’ views of the use and administration of two salvage therapy drugs for acute ulcerative colitis: a nested qualitative study within the CONSTRUCT trial

    PubMed Central

    Clement, Clare; Rapport, Frances; Seagrove, Anne; Alrubaiy, Laith; Williams, John

    2017-01-01

    Objectives Insight into healthcare professionals’ views and experiences of the use of ciclosporin and infliximab as salvage therapies for acute ulcerative colitis (UC) and how this may affect participation in a comparison trial is lacking. The study aimed to capture views and opinions of healthcare professionals about the two drugs within the CONSTRUCT trial. Design An interview-based qualitative study using Framework Analysis embedded within an open-label, pragmatic randomised trial. Setting National Health Service Health Boards and Trusts, including large teaching and district hospitals in England, Scotland and Wales. Participants Principal Investigators (PIs) for trial sites (who were all consultant gastroenterologists) and nurses responsible for administering and monitoring the salvage therapy drugs across trial sites. 15 PIs and 8 nurses recruited from a range of sites stratified by site recruitment rates were interviewed. Results Interviews revealed that professionals made judgements regarding the salvage therapies largely based on experience of giving the two drugs and perceptions of effectiveness and adverse side effects. A clear preference for infliximab among nurses was revealed, largely based on experiences of administration and drug handling, with some doctors strongly favouring infliximab based on experience of prescribing the drug as well as patient views and the existing evidence base. Most doctors were more equivocal, and all were prepared to suspend preferences and wait for evidence of effectiveness and safety from the CONSTRUCT trial. PIs also questioned guidelines around drug use and restrictions placed on personal autonomy in delivering best patient care. Conclusions Findings highlight healthcare professionals’ preference for the salvage treatment, infliximab in treating steroid-resistant UC, largely based on resource intensive nursing requirements of intravenous administration of ciclosporin. Not all doctors expressed this preference, being

  16. 3-(2-Oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one (compound 1), a novel potent Nrf2/ARE inducer, protects against DSS-induced colitis via inhibiting NLRP3 inflammasome.

    PubMed

    Wang, Yajing; Wang, Hong; Qian, Chen; Tang, Jingjing; Zhou, Wei; Liu, Xiuting; You, Qidong; Hu, Rong

    2016-02-01

    NLRP3 inflammasome is a key component of the inflammatory process and its dysregulation contributes to IBD for its ability to induce IL-1β release. Previously, we reported that a novel small molecular activator of Nrf2, 3-(2-oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino-[2,1-a]isoquinolin-4(11bH)-one (compound 1) can prevent the development of colorectal adenomas in AOM-DSS models. Here we further investigated the anti-inflammatory effect of compound 1 in DSS-induced colitis in C57BL/6 and NLRP3(-/-) mice, and revealed the possible modulation by compound 1 of NLRP3 inflammasome-mediated IL-1β release from macrophages. In C57BL/6 mice, oral administration of compound 1 significantly attenuated DSS-induced colonic pathological damage, remarkably inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and IL-1β secretion in colons. In contrast, mice deficient for NLRP3 were less sensitive to DSS-induced acute colitis, and compound 1 treatment exerted no protective effect on DSS-induced intestinal inflammation in NLRP3(-/-) mice. The protective effect of compound 1 may be attributed to its inhibition of NLRP3 inflammasome and Nrf2 activation in colons. Furthermore, compound 1, as a small molecular activator of Nrf2, significantly inhibited NLRP3 inflammasome activation in both THP-1 derived macrophages and bone-marrow derived macrophages, as indicated by reduced expression of NLRP3 and cleaved caspase-1, and lowered IL-1β secretion. Finally, compound 1-induced NLRP3 inflammasome inhibition is through blocking NLRP3 priming step and dependent on Nrf2 activation. Taken together, our findings demonstrate that compound 1 might be a potential agent for the treatment of IBD by targeting Nrf2 and NLRP3 inflammasome.

  17. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.

    PubMed

    Kawano, Masaaki; Takagi, Rie; Kaneko, Atsushi; Matsushita, Sho

    2015-12-15

    Berberine is an herbal alkaloid with various biological activities, including anti-inflammatory and antidepressant effects. Here, we examined the effects of berberine on dopamine receptors and the ensuing anti-inflammatory responses. Berberine was found to be an antagonist at both dopamine D1- and D2-like receptors and ameliorates the development of experimentally induced colitis in mice. In lipopolysaccharide-stimulated immune cells, berberine treatment modified cytokine levels, consistent with the effects of the dopamine receptor specific antagonists SCH23390 and L750667. Our findings indicate that dopamine receptor antagonists suppress innate and adaptive immune responses, providing a foundation for their use in combatting inflammatory diseases.

  18. Induction of Indoleamine 2,3-dioxygenase by Pre-treatment with Poly(I:C) May Enhance the Efficacy of MSC Treatment in DSS-induced Colitis

    PubMed Central

    Ryu, Da-Bin; Lim, Ji-Young; Lee, Sung-Eun; Park, Gyeongsin

    2016-01-01

    Mesenchymal stem cells (MSCs) have been used experimentally for treating inflammatory disorders, partly owing to their immunosuppressive properties. The goal of the study was to determine whether TLR ligands can enhance the therapeutic efficacy of bone marrow-derived MSCs for the treatment of inflammatory bowel disease. Mice (C57BL6) were administered with 4% dextran sulfate sodium (DSS) in drinking water for 7 days and injected with MSCs on days 1 and 3 following DSS ingestion. Our results demonstrated that among various TLR ligands, MSCs treated with polyinosinic-polycytidylic acid [poly(I:C)], which is a TLR3 ligand, more profoundly induced IDO, which is a therapeutically relevant immunosuppressive factor, without any observable phenotype change in vitro. The poly(I:C)-treated MSCs attenuated the pathologic severity of DSS-induced murine colitis when injected i.p. but not i.v. In summary, preconditioning MSCs with poly(I:C) might improve their efficacy in treating DSS-induced colitis, and this effect at least partly depends on the enhancement of their immunosuppressive activity through increasing their production of IDO. PMID:28035211

  19. Acute liver injury induced by weight-loss herbal supplements

    PubMed Central

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-01-01

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss. PMID:21173910

  20. Acute liver injury induced by weight-loss herbal supplements.

    PubMed

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  1. EP4 Receptor–Associated Protein in Macrophages Ameliorates Colitis and Colitis-Associated Tumorigenesis

    PubMed Central

    Nakatsuji, Masato; Yasui, Mika; Komekado, Hideyuki; Higuchi, Sei; Fujikawa, Risako; Nakanishi, Yuki; Fukuda, Akihisa; Kawada, Kenji; Sakai, Yoshiharu; Kita, Toru; Libby, Peter; Ikeuchi, Hiroki; Yokode, Masayuki; Chiba, Tsutomu

    2015-01-01

    Prostaglandin E2 plays important roles in the maintenance of colonic homeostasis. The recently identified prostaglandin E receptor (EP) 4–associated protein (EPRAP) is essential for an anti-inflammatory function of EP4 signaling in macrophages in vitro. To investigate the in vivo roles of EPRAP, we examined the effects of EPRAP on colitis and colitis-associated tumorigenesis. In mice, EPRAP deficiency exacerbated colitis induced by dextran sodium sulfate (DSS) treatment. Wild-type (WT) or EPRAP-deficient recipients transplanted with EPRAP-deficient bone marrow developed more severe DSS-induced colitis than WT or EPRAP-deficient recipients of WT bone marrow. In the context of colitis-associated tumorigenesis, both systemic EPRAP null mutation and EPRAP-deficiency in the bone marrow enhanced intestinal polyp formation induced by azoxymethane (AOM)/DSS treatment. Administration of an EP4-selective agonist, ONO-AE1-329, ameliorated DSS-induced colitis in WT, but not in EPRAP-deficient mice. EPRAP deficiency increased the levels of the phosphorylated forms of p105, MEK, and ERK, resulting in activation of stromal macrophages in DSS-induced colitis. Macrophages of DSS-treated EPRAP-deficient mice exhibited a marked increase in the expression of pro-inflammatory genes, relative to WT mice. By contrast, forced expression of EPRAP in macrophages ameliorated DSS-induced colitis and AOM/DSS-induced intestinal polyp formation. These data suggest that EPRAP in macrophages functions crucially in suppressing colonic inflammation. Consistently, EPRAP-positive macrophages were also accumulated in the colonic stroma of ulcerative colitis patients. Thus, EPRAP may be a potential therapeutic target for inflammatory bowel disease and associated intestinal tumorigenesis. PMID:26439841

  2. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling

    PubMed Central

    Li, Jinquan; Chen, Hanqing; Wang, Bing; Cai, Chengxu; Yang, Xu; Chai, Zhifang; Feng, Weiyue

    2017-01-01

    Inflammatory bowel diseases (IBD) are widespread inflammatory diseases that cause debilitating health problems including cancer. In this study, we show that ZnO nanoparticle (ZnONP) treatment has markedly dose-dependent effects on the remission of dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. We demonstrate the mechanism involves the antioxidant and anti-inflammatory abilities of ZnONPs to suppress ROS and malondialdehyde (MDA) production; increase GSH level; suppress proinflammatory cytokines IL-1β and TNF-α and myeloperoxidase (MPO). The ZnONP treatment is able to activate the Nrf2 pathway in the cellular antioxidant defense system. The novel finding is that ZnONP combined with mesalazine (5-ASA) can enhance the therapeutic efficacy of 5-ASA in the treatment of DSS-induced colitis. Lastly, we found that ZnONP treatment can restore the changes in special colonic bacteria of DSS-mice while the drug 5-ASA cannot. These results indicate that ZnONPs can act as a medical additive for the therapy of IBD. PMID:28233796

  3. Oral administration of the anti-proliferative substance taurolidine has no impact on dextran sulfate sodium induced colitis-associated carcinogenesis in mice

    PubMed Central

    Huss, Sebastian; Osseili, Hayssam; Daigeler, Adrien; Kersting, Sabine; Sülberg, Dominique; Mittelkötter, Ulrich; Herdegen, Thomas; Uhl, Waldemar; Müller, Annette M.

    2010-01-01

    Background: New chemopreventive strategies for ulcerative colitis (UC)-associated dysplasia and cancer have to be evaluated. Taurolidine (TRD) has anti-inflammatory, anti-proliferative and anti-neoplastic properties with almost absent toxicity. The aim of the study was to determine whether TRD decreases dysplasia in the well-characterized Dextran Sulfate Sodium – Azoxymethane (DSS-AOM) animal model for UC-associated carcinogenesis. Material and Methods: The DSS-AOM model of carcinogenesis was induced in female inbred C57BL/6 mice. Half of the mice were treated with TRD, the other served as control. After 100 days macroscopic, histological and immunhistochemical (β-Catenin, E-Cadherin, SOX9, Ki-67, Cyclin-D1) examination of the colon was performed. Results: Incidence, multiplicity, grading and growth pattern of adenomas did not differ significantly between TRD and control group. In all animals, inflammatory changes were absent. Immunhistochemistry revealed increased expression of Ki-67, β-catenin, SOX9 and Cyclin-D1 in adenomas compared to normal mucosa – without significant difference between TRD and control treatment. Conclusion: Oral administration of TRD has no impact on DSS-induced colitis-associated carcinogenesis. However, SOX9 and Cyclin-D1 representing key members of the Wnt pathway have not yet been described in the DSS-AOM model of carcinogenesis – underlining the importance of this oncogenic pathway in this setting. PMID:20442801

  4. Anti-inflammatory effect of recreational exercise in TNBS-induced colitis in rats: role of NOS/HO/MPO system.

    PubMed

    Szalai, Zita; Szász, András; Nagy, István; Puskás, László G; Kupai, Krisztina; Király, Adél; Berkó, Anikó Magyariné; Pósa, Anikó; Strifler, Gerda; Baráth, Zoltán; Nagy, Lajos I; Szabó, Renáta; Pávó, Imre; Murlasits, Zsolt; Gyöngyösi, Mariann; Varga, Csaba

    2014-01-01

    There are opposite views in the available literature: Whether physical exercise has a protective effect or not on the onset of inflammatory bowel disease (IBD). Therefore, we investigated the effects of recreational physical exercise before the induction of colitis. After 6 weeks of voluntary physical activity (running wheel), male Wistar rats were treated with TNBS (10 mg). 72 hrs after trinitrobenzene sulphonic acid (TNBS) challenge we measured colonic gene (TNF-α, IL-1β, CXCL1 and IL-10) and protein (TNF-α) expressions of various inflammatory mediators and enzyme activities of heme oxygenase (HO), nitric oxide synthase (NOS), and myeloperoxidase (MPO) enzymes. Wheel running significantly increased the activities of HO, constitutive NOS (cNOS) isoform. Furthermore, 6 weeks of running significantly decreased TNBS-induced inflammatory markers, including extent of lesions, severity of mucosal damage, and gene expression of IL-1β, CXCL1, and MPO activity, while IL-10 gene expression and cNOS activity were increased. iNOS activity decreased and the activity of HO enzyme increased, but not significantly, compared to the sedentary TNBS-treated group. In conclusion, recreational physical exercise can play an anti-inflammatory role by downregulating the gene expression of proinflammatory mediators, inducing anti-inflammatory mediators, and modulating the activities of HO and NOS enzymes in a rat model of colitis.

  5. Proanthocyanidins from Grape Seeds Modulate the NF-κB Signal Transduction Pathways in Rats with TNBS-Induced Ulcerative Colitis.

    PubMed

    Li, Xiaoli; Yang, Xiaolai; Cai, Yongqing; Qin, Hong; Wang, Li; Wang, Yanhong; Huang, Yanhui; Wang, Xiaoxia; Yan, Shuai; Wang, Liping; Zhao, Xin; Li, Wan; Li, Sijia; Chen, Jiajia; Wu, Yongjie

    2011-08-08

    To elucidate the molecular mechanisms involved in the therapeutic effects of proanthocyanidins from grape seeds (GSPE), we explore whether GSPE regulates the inflammatory response of TNBS-induced colitis in rats at the levels of NF-κB signal transduction pathway. Rats were intragastrically administered of different doses of GSPE (100, 200 and 400 mg·kg-1) per day for seven days after ulcerative colitis (UC) was induced by intracolonic injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Sulfasalazine (SASP) at 400 mg/kg was used as a positive control drug. The expression of nuclear factor-kappa B (NF-κB), phospho-I kappaB-alpha (pIκBα), inhibitor kappa B kinase (IκK) in the colon tissues were all measured by enzyme-linked immunosorbent assay (ELISA) methods. Treatment with GSPE reduced the expression of NF-κB, pIκBα and IκK in the colon. The results of this study show that GSPE exerts beneficial effects in inflammatory bowel disease by inhibition of NF-κB signal transduction pathways.

  6. N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: in vivo study with TNBS-induced colitis model in rats.

    PubMed

    Mura, C; Nácher, A; Merino, V; Merino-Sanjuan, M; Carda, C; Ruiz, A; Manconi, M; Loy, G; Fadda, A M; Diez-Sales, O

    2011-09-15

    5-Aminosalicylic acid (5-ASA) loaded N-Succinyl-chitosan (SucCH) microparticle and freeze-dried system were prepared as potential delivery systems to the colon. Physicochemical characterization and in vitro release and swelling studies were previously assessed and showed that the two formulations appeared to be good candidates to deliver the drug to the colon. In this work the effectiveness of these two systems in the treatment of inflammatory bowel disease was evaluated. In vitro mucoadhesive studies showed excellent mucoadhesive properties of both the systems to the inflamed colonic mucosa. Experimental colitis was induced by rectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into male Wistar rats. Colon/body weight ratio, clinical activity score system, myeloperoxidase activity and histological evaluation were determined as inflammatory indices. The two formulations were compared with drug suspension and SucCH suspension. The results showed that the loading of 5-ASA into SucCH polymer markedly improved efficacy in the healing of induced colitis in rats.

  7. Andrographolide derivative AL-1 ameliorates TNBS-induced colitis in mice: involvement of NF-кB and PPAR-γ signaling pathways

    PubMed Central

    Yang, Yali; Yan, Hui; Jing, Mei; Zhang, Zaijun; Zhang, Gaoxiao; Sun, Yewei; Shan, Luchen; Yu, Pei; Wang, Yuqiang; Xu, Lipeng

    2016-01-01

    Andrographolide is a traditional herb medicine, widely used in Asia for conditions involving inflammation. The andrographlide-lipoic acid conjugate, AL-1, has been found being able to alleviate inflammation in our previous reports. Although the anti-inflammatory activity of AL-1 contributes to its cytoprotective effects, whether AL-1 can improve inflammatory bowel disease (IBD) and the underlying mechanisms of its action remain largely unknown. In this study, we investigated the anti-inflammatory effects of AL-1 in C57BL/6 mice with trinitrobenzenesulfonic acid (TNBS)-induced colitis. The body weight loss and length change of colon after TNBS instillation were more severe than those in normal mice. AL-1 treatment led to significant reductions in disease activity index (DAI), macroscopic score and colon mucosa damage index (CMDI) associated with TNBS administration. AL-1 inhibited the inflammatory response via lowering the level of inflammatory cytokines and myeloperoxidase (MPO) activity. AL-1 attenuated the expression of p-p65, p-IκBα and COX-2 in the colitis mice. The alleviation of colon injury by AL-1 treatment was also evidenced by the increased expression of PPAR-γ. These results indicated that AL-1 could protect intestinal tract from the injury induced by TNBS in mice, suggesting that AL-1 may have potential in treatment for IBD. PMID:27435110

  8. Distinct effects of Lactobacillus plantarum KL30B and Escherichia coli 3A1 on the induction and development of acute and chronic inflammation

    PubMed Central

    Strus, Magdalena; Okoń, Krzysztof; Nowak, Bernadeta; Pilarczyk-Zurek, Magdalena; Heczko, Piotr; Gawda, Anna; Ciszek-Lenda, Marta; Skowron, Beata; Baranowska, Agnieszka

    2016-01-01

    Objective Enteric bacteria are involved in the pathogenesis of ulcerative colitis. In experimental colitis, a breakdown of the intestinal epithelial barrier results in inflow of various gut bacteria, induction of acute inflammation and finally, progression to chronic colitis. Material and methods In the present study we compared pro-inflammatory properties of two bacterial strains isolated from human microbiome, Escherichia coli 3A1 and Lactobacillus plantarum KL30B. The study was performed using two experimental models of acute inflammation: peritonitis in mice and trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. Results Both bacterial strains induced massive neutrophil infiltration upon injection into sterile peritoneal cavity. However, peritoneal exudate cells stimulated in vitro with E. coli 3A1, produced far more nitric oxide, than those stimulated with L. plantarum KL30B. Interestingly, distinct effect on the development of TNBS-induced colitis was observed after oral administration of the tested bacteria. Lactobacillus plantarum KL30B evoked strong acute colitis. On the contrary, the administration of E. coli 3A1 resulted in a progression of colitis to chronicity. Conclusions Our results show that distinct effects of bacterial administration on the development of ongoing inflammation is strain specific and depends on the final effect of cross-talk between bacteria and cells of the innate immune system. PMID:26862305

  9. Phenytoin-induced acute hypersensitivity pneumonitis.

    PubMed

    Periwal, Pallavi; Joshi, Sharad; Gothi, Rajesh; Talwar, Deepak

    2015-01-01

    Lungs are target organs for toxic effects of various drugs due to many reasons. Diphenylhydantoin (DPH) is reported to have many extrapulmonary side effects. We are presenting a case of acute hypersensitivity pneumonitis (HP) secondary to DPH, presenting with respiratory failure. Acute HP with respiratory failure is an uncommon drug side effect of the DPH therapy and is a diagnosis of exclusion. It requires detailed workup and exclusion of other causes along with evidence of improvement in the patient's condition after withholding DPH.

  10. 1,3-Diphenylpropenone ameliorates TNBS-induced rat colitis through suppression of NF-κB activation and IL-8 induction.

    PubMed

    Park, Su-Young; Ku, Sae Kwang; Lee, Eung Seok; Kim, Jung-Ae

    2012-03-05

    In the present study, we examined whether newly synthesized phenylpropenone derivatives, by inhibiting NF-κB activity, would inhibit IL-8 expression, inflammation and abnormal angiogenesis, resulting in amelioration of disease conditions. The phenylpropenone derivatives inhibited NF-κB transcriptional activity, which correlated with their suppressive activity against TNF-α-induced adhesion of U937 human monocytic cells to HT-29 human colonic epithelial cells, an in vitro model of IBD. Among the derivatives, 1,3-diphenylpropenone (DPhP) was most efficacious, and it significantly suppressed TNF-α-induced production of IL-8 which is a proinflammatory and proangiogenic cytokine. The anti-inflammatory activity of DPhP was also confirmed in the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model. DPhP was protective against the TNBS-induced inflammatory responses, which included weight loss, increased myeloperoxidase activity and mucosal damage. In the colon tissue, DPhP inhibited TNBS-induced NF-κB nuclear translocation, IL-8 and TNF-α expressions, and abnormal angiogenesis. In addition, DPhP also suppressed IL-8-induced angiogenesis, which was revealed by an in vivo assay using chick chorioallantoic membrane. Furthermore, the level of IL-6, a pleiotropic cytokine which is implicated in the pathogenesis of IBD and colitis-associated cancer, was suppressed by DPhP in rat colon tissue and serum. In conclusion, the results suggest that DPhP is a potential dual-acting IBD drug candidate targeting both inflammation and abnormal angiogenesis, possibly through the NF-κB and IL-8 signaling pathway.

  11. Oxazolone and ethanol induce colitis in non-obese diabetic-severe combined immunodeficiency interleukin-2Rγnull mice engrafted with human peripheral blood mononuclear cells

    PubMed Central

    Nolte, T; Zadeh-Khorasani, M; Safarov, O; Rueff, F; Gülberg, V; Herbach, N; Wollenberg, A; Mueller, T; Siebeck, M; Wolf, E; Gropp, R

    2013-01-01

    Oxazolone-induced colitis in mice has become a recognized model to study the efficacy of therapeutics targeting the immunological response underlying the development of inflammatory bowel disease. However, this model cannot be used when therapeutics designed to address human targets do not interact with the respective murine counterpart. In this study, we examined the induction of oxazolone mediated colitis in non-obese diabetic-severe combined immunodeficiency interleukin-2Rγnull (NOD-SCID IL2Rγnull) mice engrafted with human peripheral blood mononuclear cells (hPBMC) derived from patients suffering from ulcerative colitis (UC), atopic dermatitis (AD) and healthy volunteers. NOD-SCID IL2Rγ null mice were engrafted with hPBMC followed by challenge with oxazolone or ethanol vehicle. Mice developed the same symptoms as observed previously in immunocompetent mice. The clinical activity score increased and the colon architecture was characterized by the development of oedema, fibrosis, crypt loss and dense infiltration of predominantly T cells into the lamina propria. Fluorescence activated cell sorter (FACS) analysis of lymphocytes in the colon identified natural killer (NK) T cells as a major constituent. In contrast to studies with immunocompetent mice, we observed the same phenotype in the group challenged with ethanol vehicle. The phenotype was most pronounced in mice engrafted with PBMC derived from a patient suffering from UC, suggesting that the immunological history of the donors predisposes the engrafted mice to react to ethanol. The model described here has the potential to study the efficacy of therapeutics targeting human lymphocytes in a model which is more reflective of the human disease. In addition, it might be developed to elucidate molecular mechanisms underlying the disease. PMID:23574330

  12. Oxazolone and ethanol induce colitis in non-obese diabetic-severe combined immunodeficiency interleukin-2Rγ(null) mice engrafted with human peripheral blood mononuclear cells.

    PubMed

    Nolte, T; Zadeh-Khorasani, M; Safarov, O; Rueff, F; Gülberg, V; Herbach, N; Wollenberg, A; Mueller, T; Siebeck, M; Wolf, E; Gropp, R

    2013-05-01

    Oxazolone-induced colitis in mice has become a recognized model to study the efficacy of therapeutics targeting the immunological response underlying the development of inflammatory bowel disease. However, this model cannot be used when therapeutics designed to address human targets do not interact with the respective murine counterpart. In this study, we examined the induction of oxazolone mediated colitis in non-obese diabetic-severe combined immunodeficiency interleukin-2Rγ(null) (NOD-SCID IL2Rγ(null)) mice engrafted with human peripheral blood mononuclear cells (hPBMC) derived from patients suffering from ulcerative colitis (UC), atopic dermatitis (AD) and healthy volunteers. NOD-SCID IL2Rγ (null) mice were engrafted with hPBMC followed by challenge with oxazolone or ethanol vehicle. Mice developed the same symptoms as observed previously in immunocompetent mice. The clinical activity score increased and the colon architecture was characterized by the development of oedema, fibrosis, crypt loss and dense infiltration of predominantly T cells into the lamina propria. Fluorescence activated cell sorter (FACS) analysis of lymphocytes in the colon identified natural killer (NK) T cells as a major constituent. In contrast to studies with immunocompetent mice, we observed the same phenotype in the group challenged with ethanol vehicle. The phenotype was most pronounced in mice engrafted with PBMC derived from a patient suffering from UC, suggesting that the immunological history of the donors predisposes the engrafted mice to react to ethanol. The model described here has the potential to study the efficacy of therapeutics targeting human lymphocytes in a model which is more reflective of the human disease. In addition, it might be developed to elucidate molecular mechanisms underlying the disease.

  13. Efficacy of use of colonoscopy in dextran sulfate sodium induced ulcerative colitis in rats: the evaluation of the effects of antioxidant by colonoscopy.

    PubMed

    Ahn, B O; Ko, K H; Oh, T Y; Cho, H; Kim, W B; Lee, K J; Cho, S W; Hahm, K B

    2001-06-01

    The goals in developing animal models of inflammatory bowel disease (IBD) are to determine the underlying mechanisms and the action of currently available drugs and to evaluate the value of new therapeutic approaches. Because of the difficulty in determining the severity of colitis in living animals, it has been necessary to kill the experimental animals at varying stages in the studies. If colonoscopic evaluation or endoscopic biopsy is feasible in these experimental animals, continuous observations could be possible, thus avoiding the need to kill them. The aims of the current study were to assess the efficacy of endoscopic examination as a monitoring tool for the severity of colitis in rats and to the efficacy of DA-9601, an extract from Artemisia asiatica which has both antioxidative and cytoprotective actions, on dextran sulfate sodium induced ulcerative colitis in rats endoscopically. Sprague-Dawley rats received 4% DSS in drinking water for 5 consecutive days. Either DA-9601 or sulfasalazine was administered twice a day for 8 days, starting 3 days before DSS administration. After the colonoscopic evaluations on days 2, 4, and 5 after DSS administration the rats were also killed for gross and histopathological evaluations. Simultaneous measurements of malondialdehyde (MDA) and myeloperoxidase (MPO) activities were performed. There was a statistically significant correlation between the scores evaluated by the gross examination and colonoscopic scores, between the colonoscopic scores and the levels of MDA or mucosal MPO activities, and between colonoscopic scores and histopathological activity index. DA-9601 showed excellent improvement in gross lesion scores, decreased MDA amounts and MPO activities compared to sulfasalazine. In conclusion, the introduction of appropriate colonoscopic examination in animal models of IBD could avoid the sacrifice of experimental animals for interim evaluation and provide the valuable information on the course and efficacy of

  14. Role of TRPV1 and TRPA1 in visceral hypersensitivity to colorectal distension during experimental colitis in rats.

    PubMed

    Vermeulen, Wim; De Man, Joris G; De Schepper, Heiko U; Bult, Hidde; Moreels, Tom G; Pelckmans, Paul A; De Winter, Benedicte Y

    2013-01-05

    The aim of the present study is to investigate the effects of TRPV1 and TRPA1 receptor antagonists and their synergism on the visceromotor responses during experimental colitis in rats. Colitis was induced in rats by a TNBS/ethanol enema at day 0 and was assessed at day 3 using endoscopy, histology and a myeloperoxidase assay. The visceromotor response to colorectal distension (10-80 mmHg) was evaluated in conscious rats before (control condition) and 3 days after 2,4,6-trinitrobenzene sulfonic acid (TNBS) administration (colitis condition). At day 3, visceromotor responses were assessed before and after treatment with a TRPV1 (BCTC) or TRPA1 (TCS-5861528) receptor antagonist either alone or in combination and either after intraperitoneal or intrathecal administration. Endoscopy, microscopy and myeloperoxidase activity indicated severe colonic tissue damage 3 days after TNBS administration. Colorectal distension-evoked visceromotor responses demonstrated a 2.9-fold increase during acute colitis (day 3) compared to control conditions. Intraperitoneal and intrathecal administration of BCTC or TCS-5861528 partially reversed the colitis-induced increase in visceromotor responses compared to control conditions (P<0.05). Intraperitoneal blockade of TRPA1 plus TRPV1 further decreased the enhanced visceromotor responses at high distension pressures (40-80 mmHg) compared to blockade of either TRPV1 or TRPA1 alone. This synergistic effect was not seen after combined intrathecal blockade of TRPA1 plus TRPV1. The present study demonstrates that in the rat, TRPV1 and TRPA1 play a pivotal role in visceral hypersensitivity at the peripheral and spinal cord level during acute TNBS colitis. Target interaction, however, is presumably mediated via a peripheral site of action.

  15. Preventive and Therapeutic Euphol Treatment Attenuates Experimental Colitis in Mice

    PubMed Central

    Bento, Allisson F.; Marcon, Rodrigo; Schmidt, Éder C.; Bouzon, Zenilda L.; Pianowski, Luiz F.; Calixto, João B.

    2011-01-01

    Background The tetracyclic triterpene euphol is the main constituent found in the sap of Euphorbia tirucalli. This plant is widely known in Brazilian traditional medicine for its use in the treatment of several kinds of cancer, including leukaemia, prostate and breast cancers. Here, we investigated the effect of euphol on experimental models of colitis and the underlying mechanisms involved in its action. Methodology/Principal Findings Colitis was induced in mice either with dextran sulfate sodium (DSS) or with 2,4,6-trinitrobenzene sulfonic acid (TNBS), and the effect of euphol (3, 10 and 30 mg/kg) on colonic injury was assessed. Pro-inflammatory mediators and cytokines were measured by immunohistochemistry, enzyme-Linked immunoabsorbent assay (ELISA), real time-polymerase chain reaction (RT-PCR) and flow cytometry. Preventive and therapeutic oral administration of euphol attenuated both DSS- and TNBS-induced acute colitis as observed by a significant reduction of the disease activity index (DAI), histological/microscopic damage score and myeloperoxidase (MPO) activity in colonic tissue. Likewise, euphol treatment also inhibited colon tissue levels and expression of IL-1β, CXCL1/KC, MCP-1, MIP-2, TNF-α and IL-6, while reducing NOS2, VEGF and Ki67 expression in colonic tissue. This action seems to be likely associated with inhibition of activation of nuclear factor-κB (NF-κB). In addition, euphol decreased LPS-induced MCP-1, TNF-α, IL-6 and IFN-γ, but increased IL-10 secretion from bone marrow-derived macrophages in vitro. Of note, euphol, at the same schedule of treatment, markedly inhibited both selectin (P- and E-selectin) and integrin (ICAM-1, VCAM-1 and LFA-1) expression in colonic tissue. Conclusions/Significance Together, these results clearly demonstrated that orally-administered euphol, both preventive or therapeutic treatment were effective in reducing the severity of colitis in two models of chemically-induced mouse colitis and suggest this plant

  16. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis*

    PubMed Central

    Rajendran, Vazhaikkurichi M.; Nanda Kumar, Navalpur S.; Tse, Chung M.; Binder, Henry J.

    2015-01-01

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na+ absorption. Although colonic Na+ absorption is mediated by both epithelial Na+ channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na+ absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na+ absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na+ fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3−-dependent and butyrate-dependent Na+ absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3−-dependent Na+ absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3−-dependent and butyrate-dependent Na+ absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3−-dependent) Na+ absorption. In in vivo loop studies HCO3−-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3−-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na+ absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea. PMID:26350456

  17. Anti-Colitic Effects of Kanjangs (Fermented Soy Sauce and Sesame Sauce) in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee

    2014-01-01

    Abstract This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-17α. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4 mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8 mL/kg) of the sauces. PMID:25188463

  18. Levetiracetam-induced acute psychosis in a child.

    PubMed

    Zaki, Syed Ahmed; Gupta, Saurabh

    2014-01-01

    Levetiracetam is well-tolerated and commonly used as a broad spectrum antiepileptic in both partial and generalized seizures. Few cases of levetiracetam-induced psychosis in children are reported in the literature. The present case of levetiracetam-induced acute psychosis highlights the adverse effect of this drug and also emphasizes the need for close monitoring of children on levetiracetam.

  19. A new therapeutic association to manage relapsing experimental colitis: Doxycycline plus Saccharomyces boulardii.

    PubMed

    Garrido-Mesa, José; Algieri, Francesca; Rodriguez-Nogales, Alba; Utrilla, Maria Pilar; Rodriguez-Cabezas, Maria Elena; Zarzuelo, Antonio; Ocete, Maria Angeles; Garrido-Mesa, Natividad; Galvez, Julio

    2015-07-01

    Immunomodulatory antibiotics have been proposed for the treatment of multifactorial conditions such as inflammatory bowel disease. Probiotics are able to attenuate intestinal inflammation, being considered as safe when chronically administered. The aim of the study was to evaluate the anti-inflammatory effects of doxycycline, a tetracycline with immunomodulatory properties, alone and in association with the probiotic Saccharomyces boulardii CNCMI-745. Doxycycline was assayed both in vitro (Caco-2 epithelial cells and RAW 264.7 macrophages) and in vivo, in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis and the dextran sodium sulfate (DSS) model of mouse colitis. In addition, the anti-inflammatory effect of the association of doxycycline and the probiotic was evaluated in vitro and in vivo in a DSS model of reactivated colitis in mice. Doxycycline displayed immunomodulatory activity in vitro, reducing IL-8 production by intestinal epithelial cells and nitric oxide by macrophages. Doxycycline administration to TNBS-colitic rats (5, 10 and 25 mg/kg) ameliorated the intestinal inflammatory process, being its efficacy comparable to that previously showed by minocycline. Doxycycline treatment was also effective in reducing acute intestinal inflammation in the DSS model of mouse colitis. The association of doxycycline and S. boulardii helped managing colitis in a reactivated model of colitis, by reducing intestinal inflammation and accelerating the recovery and attenuating the relapse. This was evidenced by a reduced disease activity index, colonic tissue damage and expression of inflammatory mediators. This study confirms the intestinal anti-inflammatory activity of doxycycline and supports the potential use of its therapeutic association with S. boulardii for the treatment of inflammatory bowel diseases, in which doxycycline is used to induce remission and long term probiotic administration helps to prevent the relapses.

  20. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway

    PubMed Central

    Breyner, Natalia M.; Michon, Cristophe; de Sousa, Cassiana S.; Vilas Boas, Priscilla B.; Chain, Florian; Azevedo, Vasco A.; Langella, Philippe; Chatel, Jean M.

    2017-01-01

    Faecalibacterium prausnitzii and its supernatant showed protective effects in different chemically-induced colitis models in mice. Recently, we described 7 peptides found in the F. prausnitzii supernatant, all belonging to a protein called Microbial Anti-inflammatory Molecule (MAM). These peptides were able to inhibit NF-κB pathway in vitro and showed anti-inflammatory properties in vivo in a DiNitroBenzene Sulfate (DNBS)-induced colitis model. In this current proof we tested MAM effect on NF-κB pathway in vivo, using a transgenic model of mice producing luciferase under the control of NF-κB promoter. Moreover, we tested this protein on Dextran Sodium Sulfate (DSS)-induced colitis in mice. To study the effect of MAM we orally administered to the mice a Lactococcus lactis strain carrying a plasmid containing the cDNA of MAM under the control of a eukaryotic promoter. L. lactis delivered plasmids in epithelial cells of the intestinal membrane allowing thus the production of MAM directly by host. We showed that MAM administration inhibits NF-κB pathway in vivo. We confirmed the anti-inflammatory properties of MAM in DNBS-induced colitis but also in DSS model. In DSS model MAM was able to inhibit Th1 and Th17 immune response while in DNBS model MAM reduced Th1, Th2, and Th17 immune response and increased TGFβ production. PMID:28203226

  1. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway.

    PubMed

    Breyner, Natalia M; Michon, Cristophe; de Sousa, Cassiana S; Vilas Boas, Priscilla B; Chain, Florian; Azevedo, Vasco A; Langella, Philippe; Chatel, Jean M

    2017-01-01

    Faecalibacterium prausnitzii and its supernatant showed protective effects in different chemically-induced colitis models in mice. Recently, we described 7 peptides found in the F. prausnitzii supernatant, all belonging to a protein called Microbial Anti-inflammatory Molecule (MAM). These peptides were able to inhibit NF-κB pathway in vitro and showed anti-inflammatory properties in vivo in a DiNitroBenzene Sulfate (DNBS)-induced colitis model. In this current proof we tested MAM effect on NF-κB pathway in vivo, using a transgenic model of mice producing luciferase under the control of NF-κB promoter. Moreover, we tested this protein on Dextran Sodium Sulfate (DSS)-induced colitis in mice. To study the effect of MAM we orally administered to the mice a Lactococcus lactis strain carrying a plasmid containing the cDNA of MAM under the control of a eukaryotic promoter. L. lactis delivered plasmids in epithelial cells of the intestinal membrane allowing thus the production of MAM directly by host. We showed that MAM administration inhibits NF-κB pathway in vivo. We confirmed the anti-inflammatory properties of MAM in DNBS-induced colitis but also in DSS model. In DSS model MAM was able to inhibit Th1 and Th17 immune response while in DNBS model MAM reduced Th1, Th2, and Th17 immune response and increased TGFβ production.

  2. Hydroalcoholic Extract from Inflorescences of Achyrocline satureioides (Compositae) Ameliorates Dextran Sulphate Sodium-Induced Colitis in Mice by Attenuation in the Production of Inflammatory Cytokines and Oxidative Mediators.

    PubMed

    da Silva, Luisa Mota; Farias, Jaime Antonio Machado; Boeing, Thaise; Somensi, Lincon Bordignon; Beber, Ana Paula; Cury, Benhur Judah; Santin, José Roberto; Faloni de Andrade, Sérgio

    2016-01-01

    Achyrocline satureioides is a South American herb used to treat inflammatory and gastrointestinal diseases. This study evaluated intestinal anti-inflammatory effects of the hydroalcoholic extract of inflorescences of satureioides (HEAS) in dextran sulfate sodium (DSS) induced colitis in mice. Mice were orally treated with vehicle, 5-aminosalicylic acid (100 mg/kg), or HEAS (1-100 mg/kg). Clinical signs of colitis and colonic histopathological parameters were evaluated, along with the determination of levels of reduced glutathione and lipid hydroperoxide (LOOH), the superoxide dismutase (SOD), and myeloperoxidase (MPO) activity in colon. The colonic content of cytokines (TNF, IL-4, IL-6, and IL-10) was measured. Additionally, the effects of the extract on nitric oxide (NO) release by lipopolysaccharide (LPS) stimulated macrophages and diphenylpicrylhydrazyl levels were determined. Mucin levels and SOD activity, as well as the LOOH, MPO, TNF, and IL-6 accumulation in colon tissues, were normalized by the HEAS administration. In addition, the extract elicited an increase in IL-4 and IL-10 levels in colon. NO release by macrophages was inhibited by HEAS and its scavenger activity was confirmed. Together these results suggest that preparations obtained from inflorescences from A. satureioides could be used in treatment for IBD. Besides, this work corroborates the popular use of A. satureioides in inflammatory disorders.

  3. Colonic and Hepatic Modulation by Lipoic Acid and/or N-Acetylcysteine Supplementation in Mild Ulcerative Colitis Induced by Dextran Sodium Sulfate in Rats

    PubMed Central

    Moura, Fabiana Andréa; de Andrade, Kívia Queiroz; de Araújo, Orlando Roberto Pimentel; Santos, Juliana Célia de Farias

    2016-01-01

    Lipoic acid (LA) and N-acetylcysteine (NAC) are antioxidant and anti-inflammatory agents that have not yet been tested on mild ulcerative colitis (UC). This study aims to evaluate the action of LA and/or NAC, on oxidative stress and inflammation markers in colonic and hepatic rat tissues with mild UC, induced by dextran sodium sulfate (DSS) (2% w/v). LA and/or NAC (100 mg·kg·day−1, each) were given, once a day, in the diet, in a pretreatment phase (7 days) and during UC induction (5 days). Colitis induction was confirmed by histological and biochemical analyses (high performance liquid chromatography, spectrophotometry, and Multiplex®). A redox imbalance occurred before an immunological disruption in the colon. NAC led to a decrease in hydrogen peroxide (H2O2), malondialdehyde (MDA) levels, and myeloperoxidase activity. In the liver, DSS did not cause damage but treatments with both antioxidants were potentially harmful, with LA increasing MDA and LA + NAC increasing H2O2, tumor necrosis factor alpha, interferon gamma, and transaminases. In summary, NAC exhibited the highest colonic antioxidant and anti-inflammatory activity, while LA + NAC caused hepatic damage. PMID:27957238

  4. Hydroalcoholic Extract from Inflorescences of Achyrocline satureioides (Compositae) Ameliorates Dextran Sulphate Sodium-Induced Colitis in Mice by Attenuation in the Production of Inflammatory Cytokines and Oxidative Mediators

    PubMed Central

    da Silva, Luisa Mota; Farias, Jaime Antonio Machado; Boeing, Thaise; Somensi, Lincon Bordignon; Beber, Ana Paula; Cury, Benhur Judah

    2016-01-01

    Achyrocline satureioides is a South American herb used to treat inflammatory and gastrointestinal diseases. This study evaluated intestinal anti-inflammatory effects of the hydroalcoholic extract of inflorescences of satureioides (HEAS) in dextran sulfate sodium (DSS) induced colitis in mice. Mice were orally treated with vehicle, 5-aminosalicylic acid (100 mg/kg), or HEAS (1–100 mg/kg). Clinical signs of colitis and colonic histopathological parameters were evaluated, along with the determination of levels of reduced glutathione and lipid hydroperoxide (LOOH), the superoxide dismutase (SOD), and myeloperoxidase (MPO) activity in colon. The colonic content of cytokines (TNF, IL-4, IL-6, and IL-10) was measured. Additionally, the effects of the extract on nitric oxide (NO) release by lipopolysaccharide (LPS) stimulated macrophages and diphenylpicrylhydrazyl levels were determined. Mucin levels and SOD activity, as well as the LOOH, MPO, TNF, and IL-6 accumulation in colon tissues, were normalized by the HEAS administration. In addition, the extract elicited an increase in IL-4 and IL-10 levels in colon. NO release by macrophages was inhibited by HEAS and its scavenger activity was confirmed. Together these results suggest that preparations obtained from inflorescences from A. satureioides could be used in treatment for IBD. Besides, this work corroborates the popular use of A. satureioides in inflammatory disorders. PMID:27847525

  5. Ischaemic colitis in the experimental animal. II. Role of hypovolaemia in the production of the disease.

    PubMed Central

    Matthews, J G; Parks, T G

    1976-01-01

    Hypovolaemia alone did not lead to ischaemic colitis but when venesection was induced immediately after the acute ligation of the common colic artery large bowel ischaemia ensued. Similarly, hypovolaemia induced one month after two major blood vessels had been occluded led to ischaemic colitis. These findings suggest that states of low blood flow in the presence of previous arterial constriction or blockage may lead to enough reduction in mesenteric perfusion for intestinal ischaemia to develop. Using an electromagnetic flowmeter placed in the cranial mesenteric artery of the dog, it was shown that hypovolaemia may lead to 50-75% reduction in mesenteric blood flow without producing any significant change in the systemic blood pressure. Images Fig. 5 Fig. 6 Fig. 7 Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:976807

  6. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice.

    PubMed

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Zhao, Zhaohui; Ogiwara, Haru; Totsuka, Mamoru; Shimizu, Makoto

    2015-02-01

    Chlorogenic acid (CHA) is an antioxidant polyphenol prevalent in human diet, with coffee, fruits, and vegetables being its main source. Effects of CHA and CHA metabolites were evaluated on the IL-8 production in human intestinal Caco-2 cells induced by combined stimulation with tumour necrosis factor alpha (TNFα) and H2O2. CHA and caffeic acid (CA) inhibited TNFα- and H2O2-induced IL-8 production. We also examined the in vivo effects of CHA and CA using dextran sulphate sodium (DSS)-induced colitis in mice. CHA attenuated DSS-induced body weight loss, diarrhea, fecal blood, and shortening of colon and dramatically improved colitis histological scores. Furthermore, increases in the mRNA expression of colonic macrophage inflammatory protein 2 and IL-1β, which were induced by DSS, were significantly suppressed by CHA supplementation. These results suggest that dietary CHA use may aid in the prevention of intestinal inflammatory conditions.

  7. The effect of pentoxifylline and its metabolite-1 on inflammation and fibrosis in the TNBS model of colitis.

    PubMed

    Peterson, Theresa C; Peterson, Marc R; Raoul, Jennifer M

    2011-07-15

    TNBS-induced colitis has characteristics resembling human Crohn's disease including transmural inflammation, ulceration, and fibrosis. Current treatments target acute symptoms but do not necessarily prevent fibrotic complications of the disease. The aim of this study was to determine the effect of pentoxifylline and its primary metabolite (M-1) on fibrosis in the TNBS-induced colitis model. Myeloperoxidase activity and interleukin-18 are indicators of inflammation and were elevated in the TNBS model. The morphology damage score assesses colon damage and was also elevated in the TNBS model. Collagen as the indicator of fibrosis was quantified and visualized by the Sirius Red/Fast Green staining technique and collagen type I was assessed by Western analysis. Collagen was elevated in the TNBS-induced model. Pentoxifylline and M-1 treatment significantly attenuated colon damage and inflammation in TNBS-colitis (P<0.05). M-1 treatment significantly reduced the TNBS-induced increase in colon weight, colon thickness and total collagen content (P<0.05). Results suggest that pentoxifylline and M-1 inhibit intestinal fibrosis in this experimental model and may prove beneficial in the treatment of intestinal fibrosis associated with human Crohn's disease with the added benefit of inhibiting inflammation and ulceration. This is the first study to examine the effects of racemic M-1 in vivo and one of the few studies to examine the effect of drugs on both inflammation and fibrosis in an experimental model of colitis.

  8. Afatinib-Induced Acute Fatal Pneumonitis in Metastatic Lung Adenocarcinoma

    PubMed Central

    Yoo, Sang Hoon; Ryu, Jin Ah; Kim, Seo Ree; Oh, Su Yun; Jung, Gu Sung; Lee, Dong Jae; Kwak, Bong Gyu; Nam, Yu Hyun; Kim, Kyung Hyun

    2016-01-01

    Afatinib is an oral tyrosine kinase inhibitor (TKI) that inhibit Endothelial Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), and HER4. The common side effects of EGFR TKI are rash, acne, diarrhea, stomatitis, pruritus, nausea, and loss of appetite. Drug induced pneumonitis is the less common adverse effects of EGFR TKI. Afatinib, 2nd generation EGFR TKI is anticipated to overcome drug resistance from 1st generation EGFR TKI according to preclinical study, and several studies are being conducted to compare clinical efficacy between 1st and 2nd EGFR TKI. Several cases of rug induced acute fatal pneumonitis were reported after use of erlotinib or gefitinib. However, a case of acute fatal pneumonitis associated with afatinib was note reported except drug induced pneumonitis in other clinical study. Here, we present a cases of acute severe pneumonitis related with afatinib in metastatic lung adenocarcinoma with literature review. PMID:27900074

  9. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities.

    PubMed

    Liu, Yen-Wenn; Su, Yu-Wen; Ong, Wei-Kee; Cheng, Tzu-Hao; Tsai, Ying-Chieh

    2011-12-01

    Many different kinds of fermented food are consumed daily in Taiwan, such as stinky tofu, suan-tsai, and fu-tsai. We have previously reported the diversity of lactic acid bacteria (LAB) at different stages of fermentation in the production of suan-tsai and fu-tsai. In this study, the anti-inflammatory and immunomodulatory activities of Lactobacillus plantarum K68 (K68) isolated from fu-tsai were evaluated. K68 significantly inhibited the production of tumor necrosis factor-α (TNF-α) and prostaglandin E(2) (PGE(2)) in lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells and stimulated interferon-γ (IFN-γ) production in human peripheral blood mononuclear cells (hPBMCs). Additionally, orally administered K68 ameliorated dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in BALB/c mice. Both the disease activity index (DAI) and histological scores (HIS) showed that the severity of UC was significantly reduced by oral administration of K68. Furthermore, the production of pro inflammatory cytokines TNF-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6) was significantly reduced in K68-administered group. Colonic mRNA expression levels of TNF-α, cyclooxygenase-2 (COX-2), forkhead box P3 (Foxp3), suppressors of cytokine signaling 3 (SOCS3), and toll like receptor 4 (TLR4), were also reduced in the K68-administered group. These results suggest that K68 exhibits anti-inflammatory and immunomodulatory activities that ameliorate DSS-induced experimental colitis.

  10. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats

    PubMed Central

    Rodriguez-Nogales, Alba; Algieri, Francesca; De Matteis, Laura; Lozano-Perez, A. Abel; Garrido-Mesa, Jose; Vezza, Teresa; de la Fuente, J M.; Cenis, Jose Luis; Gálvez, Julio; Rodriguez-Cabezas, Maria Elena

    2016-01-01

    Background Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Materials and methods SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. Results The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). Conclusion SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats

  11. Crohn's & Colitis Foundation of America

    MedlinePlus

    ... Events Search: What are Crohn's & Colitis? What is Crohn's Disease What is Ulcerative Colitis Types of Medications What’s ... Our Mission Learn about our mission: to cure Crohn's disease and ulcerative colitis, and to improve the quality ...

  12. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  13. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis.

    PubMed

    Mencarelli, Andrea; Cipriani, Sabrina; Francisci, Daniela; Santucci, Luca; Baldelli, Franco; Distrutti, Eleonora; Fiorucci, Stefano

    2016-08-05

    Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5(-/-) mice or adoptive transfer of splenic naïve CD4(+) T-cells from wild type or CCR5(-/-) mice into RAG-1(-/-). CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4(+) and CD11b(+) leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs.

  14. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis

    PubMed Central

    Mencarelli, Andrea; Cipriani, Sabrina; Francisci, Daniela; Santucci, Luca; Baldelli, Franco; Distrutti, Eleonora; Fiorucci, Stefano

    2016-01-01

    Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5−/− mice or adoptive transfer of splenic naïve CD4+ T-cells from wild type or CCR5−/− mice into RAG-1−/−. CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4+ and CD11b+ leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs. PMID:27492684

  15. Acute kidney injury caused by zonisamide-induced hypersensitivity syndrome.

    PubMed

    Fujita, Yoshiro; Hasegawa, Midori; Nabeshima, Kuihiro; Tomita, Makoto; Murakami, Kazutaka; Nakai, Shigeru; Yamakita, Takashi; Matsunaga, Kayoko

    2010-01-01

    Drug rash with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome (DIHS), is a severe adverse drug reaction affecting multiple organs caused by drug treatment. The current report describes a man who was prescribed zonisamide for epilepsy and subsequently developed widespread skin rash, acute kidney injury, high-grade fever, eosinophilia, liver dysfunction, lymphadenopathy and an increase in antihuman herpesvirus-6 immunoglobulin G titer. Hypersensitivity to zonisamide was confirmed by the skin patch test. Based on these findings, the patient was diagnosed with DRESS/DIHS caused by zonisamide. This is the first report of acute kidney injury due to zonisamide-induced DRESS/DIHS.

  16. Melatonin modulates adiponectin expression on murine colitis with sleep deprivation

    PubMed Central

    Kim, Tae Kyun; Park, Young Sook; Baik, Haing-Woon; Jun, Jin Hyun; Kim, Eun Kyung; Sull, Jae Woong; Sung, Ho Joong; Choi, Jin Woo; Chung, Sook Hee; Gye, Myung Chan; Lim, Ju Yeon; Kim, Jun Bong; Kim, Seong Hwan

    2016-01-01

    AIM To determine adiponectin expression in colonic tissue of murine colitis and systemic cytokine expression after melatonin treatments and sleep deprivation. METHODS The following five groups of C57BL/6 mice were used in this study: (1) group I, control; (2) group II, 2% DSS induced colitis for 7 d; (3) group III, 2% DSS induced colitis and melatonin treatment; (4) group IV, 2% DSS induced colitis with sleep deprivation (SD) using specially designed and modified multiple platform water baths; and (5) group V, 2% DSS induced colitis with SD and melatonin treatment. Melatonin (10 mg/kg) or saline was intraperitoneally injected daily to mice for 4 d. The body weight was monitored daily. The degree of colitis was evaluated histologically after sacrificing the mice. Immunohistochemical staining and Western blot analysis was performed using anti-adiponectin antibody. After sampling by intracardiac punctures, levels of serum cytokines were measured by ELISA. RESULTS Sleep deprivation in water bath exacerbated DSS induced colitis and worsened weight loss. Melatonin injection not only alleviated the severity of mucosal injury, but also helped survival during stressful condition. The expression level of adiponectin in mucosa was decreased in colitis, with the lowest level observed in colitis combined with sleep deprivation. Melatonin injection significantly (P < 0.05) recovered the expression of adiponectin. The expression levels of IL-6 and IL-17 were increased in the serum of mice with DSS colitis but decreased after melatonin injection. CONCLUSION This study suggested that melatonin modulated adiponectin expression in colonic tissue and melatonin and adiponectin synergistically potentiated anti-inflammatory effects on colitis with sleep deprivation. PMID:27672276

  17. Protective effects of Huangqin Decoction against ulcerative colitis and associated cancer in mice

    PubMed Central

    Hu, Chunping; Cheng, Xiaolan; Xu, Yuehua; Cai, Xueting; Wang, Min; Yang, Chung S.; Cao, Peng

    2016-01-01

    Individuals with ulcerative colitis (UC) are at a high risk for developing colorectal cancer (CRC). Huangqin Decoction (HQD), a traditional Chinese medicinal formula chronicled in the Shang Han Lun, is commonly used to treat gastrointestinal symptoms. However, experimental evidence for supporting the clinical practice is lacking. This study used modern biomedical approaches to investigate the protective/preventive effects of HQD in dextran sulfate sodium (DSS)-induced acute/chronic UC and azoxymethane (AOM)/DSS-induced CRC in mice. HQDs were prepared in 4 different ways: HQD-1 and HQD-2 were prepared in boiling water, whereas HQD-3 and HQD-4 were prepared in heated ethanol (70%). For HQD-1 and HQD-3, the 4 constituent herbs were processed together, whereas for HQD-2 and HQD4, these herbs were processed individually and then combined. The mice were administered 9.1 g/kg HQD via oral gavage daily. HQD-1 significantly inhibited DSS-induced acute UC, whereas HQD-3 and HQD-4 exhibited mild ameliorative effects; but HQD-2 had no protective effect and resulted in a higher mortality rate. This higher mortality rate may be due to the greater abundance of baicalein and wogonin in HQD-2 than HQD-1. Furthermore, HQD-1 protected against DSS-induced chronic UC and significantly inhibited AOM/DSS-induced CRC in mice. HQD-1 also inhibited the production of inflammatory cytokines and increased antioxidant capacity both in chronic DSS and AOM/DSS treated mice. Overall, HQD-1 inhibits the development of acute/chronic colitis and prevents colitis-associated CRC, possibly by inhibiting inflammation and preventing oxidative stress induced cellular damage. PMID:27557503

  18. Danaparoid sodium prevents cerulein-induced acute pancreatitis in rats.

    PubMed

    Hagiwara, Satoshi; Iwasaka, Hideo; Uchida, Tomohisa; Hasegawa, Akira; Asai, Nobuhiko; Noguchi, Takayuki

    2009-07-01

    Systemic inflammatory mediators, including the protein high-mobility group box 1 (HMGB1), play an important role in the development of acute pancreatitis. Anticoagulants such as danaparoid sodium (DA) may be able to inhibit sepsis-induced inflammation, but the mechanism of action is not well understood. We hypothesized that DA would act as an inhibitor of inflammation and prevent cerulein-induced acute pancreatitis. Male Wistar rats were used as subjects in this study. Each received a bolus of 50 U/kg of DA or saline-injected into the tail vein, followed by 4 injections of 50 mg/kg cerulean (i.p.) at 1-h intervals. Cytokine (IL-6), NO, and HMGB1 levels in serum and pancreatic tissue were measured after the cerulein injection. Pancreas histopathology and wet-dry ratio significantly improved in the DA-injected (50 U/kg) animals compared with saline-injected rats. Serum and pancreatic HMGB1 levels decreased over time in DA-treated animals. Danaparoid sodium also decreased cytokine, NO, and HMGB1 levels during cerulein-induced inflammation. As a result, DA ameliorated pancreas pathology in the rat model of cerulein-induced acute pancreatitis. This study demonstrates that DA treatment prevents cerulein-induced acute pancreatitis in a rat model. This effect may be mediated through inhibition of cytokines, NO, and HMGB1.

  19. Chemically induced mouse models of intestinal inflammation.

    PubMed

    Wirtz, Stefan; Neufert, Clemens; Weigmann, Benno; Neurath, Markus F

    2007-01-01

    Animal models of intestinal inflammation are indispensable for our understanding of the pathogenesis of Crohn disease and ulcerative colitis, the two major forms of inflammatory bowel disease in humans. Here, we provide protocols for establishing murine 2,4,6-trinitro benzene sulfonic acid (TNBS)-, oxazolone- and both acute and chronic dextran sodium sulfate (DSS) colitis, the most widely used chemically induced models of intestinal inflammation. In the former two models, colitis is induced by intrarectal administration of the covalently reactive reagents TNBS/oxazolone, which are believed to induce a T-cell-mediated response against hapten-modified autologous proteins/luminal antigens. In the DSS model, mice are subjected several days to drinking water supplemented with DSS, which seems to be directly toxic to colonic epithelial cells of the basal crypts. The procedures for the hapten models of colitis and acute DSS colitis can be accomplished in about 2 weeks but the protocol for chronic DSS colitis takes about 2 months.

  20. [Methylphenidate induced ST elevation acute myocardial infarction].

    PubMed

    Ruwald, Martin Huth; Ruwald, Anne-Christine Huth; Tønder, Niels

    2012-03-05

    Adult attention deficit and hyperkinetic disorder (ADHD) is increasingly diagnosed and treated with methylphenidate. We present the case of an 20 year-old man, who was diagnosed with ADHD and suffered a ST elevation acute myocardial infarction due to coronary vasospasm related to an overdose, and subsequent episodes of myocardial injury due to the use and misuse of methylphenidate over a period of two years. We recommend an increased attention to the subscription of methylphenidate to patients, who are at risk of misuse and patients, who have a cardiovascular history.

  1. Acute psychological stress-induced water intoxication.

    PubMed

    Mukherjee, Sagarika; Antonarakis, Emmanuel S; Asaduzzaman, S; Peters, John R

    2005-01-01

    Excessive water drinking is a recognised feature of schizophrenia. We present here a case of excessive water drinking precipitated by acute psychological stress. A 52-year-old woman, with no previous mental health problems, was found in a state of altered consciousness and was profoundly hyponatraemic. She had consumed excess amount of water due to severe mental stress. She was treated with hypertonic saline followed by fluid restrictions. The water intoxication had caused brain damage which led to behavioural changes and impaired cognition. We describe the pathophysiology of water intoxication.

  2. Expression of catalase in Lactobacillus fermentum and evaluation of its anti-oxidative properties in a dextran sodium sulfate induced mouse colitis model.

    PubMed

    Zhang, Jiang; Liu, Hong; Wang, Qingwei; Hou, Chengli; Thacker, Philip; Qiao, Shiyan

    2013-12-01

    Lactic acid bacteria are generally sensitive to hydrogen peroxide (H₂O₂). Lactobacillus plantarum ATCC14431 is one of the few lactic acid bacteria able to degrade H₂O₂ through the action of a manganese-dependent catalase (containing the katA gene). However, it is not a natural inhabitant of the intestinal tract and its bio-efficacy and survival in the gastrointestinal tract have never been tested. In this study, we successfully expressed the katA gene from L. plantarum ATCC14431 in L. fermentum I5007 and the recombinant L. fermentum exhibited almost 20-fold higher catalase activity than the empty vector control. The anti-oxidative properties of this catalase-producing L. fermentum were evaluated using a dextr