Sample records for acute demyelinating disease

  1. Therapeutic Approach to the Management of Pediatric Demyelinating Disease: Multiple Sclerosis and Acute Disseminated Encephalomyelitis.

    PubMed

    Brenton, J Nicholas; Banwell, Brenda L

    2016-01-01

    Acquired pediatric demyelinating diseases manifest acutely with optic neuritis, transverse myelitis, acute disseminated encephalomyelitis, or with various other acute deficits in focal or polyfocal areas of the central nervous system. Patients may experience a monophasic illness (as in the case of acute disseminated encephalomyelitis) or one that may manifest as a chronic, relapsing disease [e.g., multiple sclerosis (MS)]. The diagnosis of pediatric MS and other demyelinating disorders of childhood has been facilitated by consensus statements regarding diagnostic definitions. Treatment of pediatric MS has been modeled after data obtained from clinical trials in adult-onset MS. There are now an increasing number of new therapeutic agents for MS, and many will be formally studied for use in pediatric patients. There are important efficacy and safety concerns regarding the use of these therapies in children and young adults. This review will discuss acute management as well as chronic immunotherapies in acquired pediatric demyelination.

  2. Early identification of ‘acute-onset’ chronic inflammatory demyelinating polyneuropathy

    PubMed Central

    Sung, Jia-Ying; Tani, Jowy; Park, Susanna B.; Kiernan, Matthew C.

    2014-01-01

    Distinguishing patients with acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy prior to relapse is often challenging at the onset of their clinical presentation. In the present study, nerve excitability tests were used in conjunction with the clinical phenotype and disease staging, to differentiate between patients with acute-onset chronic inflammatory demyelinating polyneuropathy and patients with acute inflammatory demyelinating polyneuropathy at an early stage, with the aim to better guide treatment. Clinical assessment, staging and nerve excitability tests were undertaken on patients initially fulfilling the diagnostic criteria of acute inflammatory demyelinating polyneuropathy soon after symptom onset and their initial presentation. Patients were subsequently followed up for minimum of 12 months to determine if their clinical presentations were more consistent with acute-onset chronic inflammatory demyelinating polyneuropathy. Clinical severity as evaluated by Medical Research Council sum score and Hughes functional grading scale were not significantly different between the two cohorts. There was no difference between the time of onset of initial symptoms and nerve excitability test assessment between the two cohorts nor were there significant differences in conventional nerve conduction study parameters. However, nerve excitability test profiles obtained from patients with acute inflammatory demyelinating polyneuropathy demonstrated abnormalities in the recovery cycle of excitability, including significantly reduced superexcitability (P < 0.001) and prolonged relative refractory period (P < 0.01), without changes in threshold electrotonus. In contrast, in patients with acute-onset chronic inflammatory demyelinating polyneuropathy, a different pattern occurred with the recovery cycle shifted downward (increased superexcitability, P < 0.05; decreased subexcitability, P < 0.05) and increased threshold change in threshold electrotonus in both hyperpolarizing and depolarizing directions [depolarizing threshold electrotonus (90–100 ms) P < 0.005, hyperpolarizing threshold electrotonus (10–20 ms), P < 0.01, hyperpolarizing threshold electrotonus (90–100 ms), P < 0.05], perhaps suggesting early hyperpolarization. In addition, using excitability parameters superexcitability, subexcitability and hyperpolarizing threshold electrotonus (10–20 ms), the patients with acute inflammatory demyelinating polyneuropathy and acute-onset chronic inflammatory demyelinating polyneuropathy could be clearly separated into two non-overlapping groups. Studies of nerve excitability may be able to differentiate acute from acute-onset chronic inflammatory demyelinating polyneuropathy at an early stage. Characteristic nerve excitability parameter changes occur in early acute-onset chronic inflammatory demyelinating polyneuropathy, to match the clinical phenotype. Importantly, this pattern of change was strikingly different to that shown by patients with acute inflammatory demyelinating polyneuropathy, suggesting that nerve excitability techniques may be useful in distinguishing acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy at the initial stage. PMID:24983276

  3. Early identification of 'acute-onset' chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Sung, Jia-Ying; Tani, Jowy; Park, Susanna B; Kiernan, Matthew C; Lin, Cindy Shin-Yi

    2014-08-01

    Distinguishing patients with acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy prior to relapse is often challenging at the onset of their clinical presentation. In the present study, nerve excitability tests were used in conjunction with the clinical phenotype and disease staging, to differentiate between patients with acute-onset chronic inflammatory demyelinating polyneuropathy and patients with acute inflammatory demyelinating polyneuropathy at an early stage, with the aim to better guide treatment. Clinical assessment, staging and nerve excitability tests were undertaken on patients initially fulfilling the diagnostic criteria of acute inflammatory demyelinating polyneuropathy soon after symptom onset and their initial presentation. Patients were subsequently followed up for minimum of 12 months to determine if their clinical presentations were more consistent with acute-onset chronic inflammatory demyelinating polyneuropathy. Clinical severity as evaluated by Medical Research Council sum score and Hughes functional grading scale were not significantly different between the two cohorts. There was no difference between the time of onset of initial symptoms and nerve excitability test assessment between the two cohorts nor were there significant differences in conventional nerve conduction study parameters. However, nerve excitability test profiles obtained from patients with acute inflammatory demyelinating polyneuropathy demonstrated abnormalities in the recovery cycle of excitability, including significantly reduced superexcitability (P < 0.001) and prolonged relative refractory period (P < 0.01), without changes in threshold electrotonus. In contrast, in patients with acute-onset chronic inflammatory demyelinating polyneuropathy, a different pattern occurred with the recovery cycle shifted downward (increased superexcitability, P < 0.05; decreased subexcitability, P < 0.05) and increased threshold change in threshold electrotonus in both hyperpolarizing and depolarizing directions [depolarizing threshold electrotonus (90-100 ms) P < 0.005, hyperpolarizing threshold electrotonus (10-20 ms), P < 0.01, hyperpolarizing threshold electrotonus (90-100 ms), P < 0.05], perhaps suggesting early hyperpolarization. In addition, using excitability parameters superexcitability, subexcitability and hyperpolarizing threshold electrotonus (10-20 ms), the patients with acute inflammatory demyelinating polyneuropathy and acute-onset chronic inflammatory demyelinating polyneuropathy could be clearly separated into two non-overlapping groups. Studies of nerve excitability may be able to differentiate acute from acute-onset chronic inflammatory demyelinating polyneuropathy at an early stage. Characteristic nerve excitability parameter changes occur in early acute-onset chronic inflammatory demyelinating polyneuropathy, to match the clinical phenotype. Importantly, this pattern of change was strikingly different to that shown by patients with acute inflammatory demyelinating polyneuropathy, suggesting that nerve excitability techniques may be useful in distinguishing acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy at the initial stage. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Interleukin-10 Overexpression Promotes Fas-Ligand-Dependent Chronic Macrophage-Mediated Demyelinating Polyneuropathy

    PubMed Central

    Dace, Dru S.; Khan, Aslam A.; Stark, Jennifer L.; Kelly, Jennifer; Cross, Anne H.; Apte, Rajendra S.

    2009-01-01

    Background Demyelinating polyneuropathy is a debilitating, poorly understood disease that can exist in acute (Guillain-Barré syndrome) or chronic forms. Interleukin-10 (IL-10), although traditionally considered an anti-inflammatory cytokine, has also been implicated in promoting abnormal angiogenesis in the eye and in the pathobiology of autoimmune diseases such as lupus and encephalomyelitis. Principal Findings Overexpression of IL-10 in a transgenic mouse model leads to macrophage-mediated demyelinating polyneuropathy. IL-10 upregulates ICAM-1 within neural tissues, promoting massive macrophage influx, inflammation-induced demyelination, and subsequent loss of neural tissue resulting in muscle weakness and paralysis. The primary insult is to perineural myelin followed by secondary axonal loss. Infiltrating macrophages within the peripheral nerves demonstrate a highly pro-inflammatory signature. Macrophages are central players in the pathophysiology, as in vivo depletion of macrophages using clodronate liposomes reverses the phenotype, including progressive nerve loss and paralysis. Macrophage-mediate demyelination is dependent on Fas-ligand (FasL)-mediated Schwann cell death. Significance These findings mimic the human disease chronic idiopathic demyelinating polyneuropathy (CIDP) and may also promote further understanding of the pathobiology of related conditions such as acute idiopathic demyelinating polyneuropathy (AIDP) or Guillain-Barré syndrome. PMID:19771172

  5. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  6. Severe oxidative stress in an acute inflammatory demyelinating model in the rhesus monkey.

    PubMed

    Dunham, Jordon; van de Vis, Reinofke; Bauer, Jan; Wubben, Jacqueline; van Driel, Nikki; Laman, Jon D; 't Hart, Bert A; Kap, Yolanda S

    2017-01-01

    Oxidative stress is increasingly implicated as a co-factor of tissue injury in inflammatory/demyelinating disorders of the central nervous system (CNS), such as multiple sclerosis (MS). While rodent experimental autoimmune encephalomyelitis (EAE) models diverge from human demyelinating disorders with respect to limited oxidative injury, we observed that in a non-human primate (NHP) model for MS, namely EAE in the common marmoset, key pathological features of the disease were recapitulated, including oxidative tissue injury. Here, we investigated the presence of oxidative injury in another NHP EAE model, i.e. in rhesus macaques, which yields an acute demyelinating disease, which may more closely resemble acute disseminated encephalomyelitis (ADEM) than MS. Rhesus monkey EAE diverges from marmoset EAE by abundant neutrophil recruitment into the CNS and destructive injury to white matter. This difference prompted us to investigate to which extent the oxidative pathway features elicited in MS and marmoset EAE are reflected in the acute rhesus monkey EAE model. The rhesus EAE brain was characterized by widespread demyelination and active lesions containing numerous phagocytic cells and to a lesser extent T cells. We observed induction of the oxidative stress pathway, including injury, with a predilection of p22phox expression in neutrophils and macrophages/microglia. In addition, changes in iron were observed. These results indicate that pathogenic mechanisms in the rhesus EAE model may differ from the marmoset EAE and MS brain due to the neutrophil involvement, but may in the end lead to similar induction of oxidative stress and injury.

  7. Peripheral nerve proteins as potential autoantigens in acute and chronic inflammatory demyelinating polyneuropathies.

    PubMed

    Lim, Jia Pei; Devaux, Jérôme; Yuki, Nobuhiro

    2014-10-01

    Guillain-Barré syndrome is classified into acute inflammatory demyelinating polyneuropathy and acute motor axonal neuropathy. Whereas autoantibodies to GM1 or GD1a induce the development of acute motor axonal neuropathy, pathogenic autoantibodies have yet to be identified in acute inflammatory demyelinating polyneuropathy and chronic inflammatory demyelinating polyneuropathy. This review highlights the importance of autoantibodies to peripheral nerve proteins in the physiopathology of acute and chronic inflammatory demyelinating polyneuropathies. Moreover, we listed up other potential antigens, which may become helpful biomarkers for acquired, dysimmune demyelinating neuropathies based on their critical functions during myelination and their implications in hereditary demyelinating neuropathies. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions

    PubMed Central

    Furusho, M; Roulois, A; Franklin, RJM; Bansal, R

    2015-01-01

    Remyelination is a potent regenerative process in demyelinating diseases, such as multiple sclerosis, the effective therapeutic promotion of which will fill an unmet clinical need. The development of pro-regenerative therapies requires the identification of key regulatory targets that are likely to be involved in the integration of multiple signaling mechanisms. Fibroblast growth factor (FGF) signaling system, which comprises multiple ligands and receptors, potentially provides one such target. Since the FGF/FGF receptor (FGFR) interactions are complex and regulate multiple diverse functions of oligodendrocyte lineage cells, it is difficult to predict their overall therapeutic potential in the regeneration of oligodendrocytes and myelin. Therefore, to assess the integrated effects of FGFR signaling on this process, we simultaneously inactivated both FGFR1 and FGFR2 in oligodendrocytes and their precursors using two Cre-driver mouse lines. Acute and chronic cuprizone-induced or lysolecithin-induced demyelination was established in Fgfr1/Fgfr2 double knockout mice (dKO). We found that in the acute cuprizone model, there was normal differentiation of oligodendrocytes and recovery of myelin in the corpus callosum of both control and dKO mice. Similarly, in the spinal cord, lysolecithin-induced demyelinated lesions regenerated similarly in the dKO and control mice. In contrast, in the chronic cuprizone model, fewer differentiated oligodendrocytes and less efficient myelin recovery were observed in the dKO compared to control mice. These data suggest that while cell-autonomous FGF signaling is redundant during recovery of acute demyelinated lesions, it facilitates regenerative processes in chronic demyelination. Thus, FGF-based therapies have potential value in stimulating oligodendrocyte and myelin regeneration in late-stage disease. PMID:25913734

  9. Demyelinating diseases.

    PubMed

    Love, S

    2006-11-01

    A diagnosis of demyelination carries important therapeutic and prognostic implications. In most cases the diagnosis is made clinically, and involvement of the histopathologist is largely confined to postmortem confirmation and clinicopathological correlation. However, every now and then, accurate diagnosis of the presence or cause of demyelination before death hinges on the histopathological assessment. Recognition of demyelination depends on an awareness of this as a diagnostic possibility, and on the use of appropriate tinctorial and immunohistochemical stains to identify myelin, axons and inflammatory cells. In biopsy specimens, the critical distinction is usually from ischaemic or neoplastic disease, and the types of demyelinating disease most likely to be encountered are multiple sclerosis, acute-disseminated encephalomyelitis, progressive multifocal leucoencephalopathy and extrapontine myelinolysis. Interpretation of the pathology has to be made in the context of the clinical, radiological and biochemical findings. Freezing of a small amount of fresh tissue allows for later virological studies, and electron microscopy is occasionally helpful for demonstration of viral particles.

  10. The protective role of nitric oxide in a neurotoxicant-induced demyelinating model.

    PubMed

    Arnett, Heather A; Hellendall, Ron P; Matsushima, Glenn K; Suzuki, Kinuko; Laubach, Victor E; Sherman, Paula; Ting, Jenny P-Y

    2002-01-01

    Demyelination is often associated with acute inflammatory events involving the recruitment-activation of microglia/macrophage, astrocytes, and leukocytes. The ultimate role of inflammatory products in demyelinating disease and in the survival of oligodendrocytes, the myelin forming cells, is unresolved. The current study examines the role of inducible NO synthase (iNOS)-derived NO in a neurotoxicant-induced model of demyelination. NO levels were greatly elevated in the midline corpus callosum during demyelination in genetically intact C57BL/6 mice, and this NO was due solely to the induction of iNOS, as the correlates of NO were not found in mice lacking iNOS. C57BL/6 mice lacking iNOS exhibited more demyelination, but did not display an increased overall cellularity in the corpus callosum, attributable to an unimpeded microglia/macrophage presence. An enhanced course of pathology was noted in mice lacking iNOS. This was associated with a greater depletion of mature oligodendrocytes, most likely due to apoptosis of oligodendrocytes. Microglia and astrocytes did not undergo apoptosis during treatment. Our results suggest a moderately protective role for NO during acute inflammation-association demyelination.

  11. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model.

    PubMed

    Berghoff, Stefan A; Düking, Tim; Spieth, Lena; Winchenbach, Jan; Stumpf, Sina K; Gerndt, Nina; Kusch, Kathrin; Ruhwedel, Torben; Möbius, Wiebke; Saher, Gesine

    2017-12-01

    In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease.

  12. [Demyelinating polyneuropathies in patients with diabetes mellitus and chronic alcoholic intoxication].

    PubMed

    Kovrazhkina, E A

    2012-01-01

    Frequency and nosological attribution of demyelinating polyneuropathies in patients with diabetes mellitus and alcoholism were determined. Eighty-six inpatients with alcoholic (n=46) and diabetic (n=40) polyneuropathy were examined clinically and using electroneuromyography (ENMG). A demyelinating pathogenetic variant was identified by clinical and ENMG data in 27 (31%) patients. Nine patients (33%) had dysimmune polyneuropathies (acute and chronic inflammatory demyelinating polyneuropathy). Polyneuropathies were specified as toxic/metabolic with the prevalence of a demyelinating component within the main disease in 18 (67%) patients. Clinical and ENMG-signs of the demyelinating variant of alcoholic and diabetic neuropathy are presented. The efficacy of the antioxidant berlition was shown for toxic/metabolic polyneuropathies while the addition of immune modulators was needed for treatment of dysimmune polyneuropathy.

  13. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain.

    PubMed

    Berghoff, Stefan A; Gerndt, Nina; Winchenbach, Jan; Stumpf, Sina K; Hosang, Leon; Odoardi, Francesca; Ruhwedel, Torben; Böhler, Carolin; Barrette, Benoit; Stassart, Ruth; Liebetanz, David; Dibaj, Payam; Möbius, Wiebke; Edgar, Julia M; Saher, Gesine

    2017-01-24

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes.

  14. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain

    PubMed Central

    Berghoff, Stefan A.; Gerndt, Nina; Winchenbach, Jan; Stumpf, Sina K.; Hosang, Leon; Odoardi, Francesca; Ruhwedel, Torben; Böhler, Carolin; Barrette, Benoit; Stassart, Ruth; Liebetanz, David; Dibaj, Payam; Möbius, Wiebke; Edgar, Julia M.; Saher, Gesine

    2017-01-01

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes. PMID:28117328

  15. Directional diffusivity as a magnetic resonance (MR) biomarker in demyelinating disease

    NASA Astrophysics Data System (ADS)

    Benzinger, Tammie L. S.; Cross, Anne H.; Xu, Junqian; Naismith, Robert; Sun, Shu-Wei; Song, Sheng-Kwei

    2007-09-01

    Directional diffusivities derived from diffusion tensor magnetic resonance imaging (DTI) measurements describe water movement parallel to (λ ||, axial diffusivity) and perpendicular to (λ⊥radial diffusivity) axonal tracts. λ || and λ⊥ have been shown to differentially detect axon and myelin abnormalities in several mouse models of central nervous system white matter pathology in our laboratory. These models include experimental autoimmune encephalomyelitis (EAE), (1) myelin basic protein mutant mice with dysmyelination and intact axons, (2) cuprizone-induced demyelination, and remyelination, with reversible axon injury (2, 3) and a model of retinal ischemia in which retinal ganglion cell death is followed by Wallerian degeneration of optic nerve, with axonal injury preceding demyelination. (4) Decreased λ|| correlates with acute axonal injury and increased λ⊥ indicates myelin damage. (4) More recently, we have translated this approach to human MR, investigating acute and chronic optic neuritis in adults with multiple sclerosis, brain lesions in adults with multiple sclerosis, and acute disseminated encephalomyelitis (ADEM) in children. We are also investigating the use of this technique to probe the underlying structural change of the cervical spinal cord in acute and chronic T2- hyperintense lesions in spinal stenosis, trauma, and transverse myelitis. In each of these demyelinating diseases, the discrimination between axonal and myelin injury which we can achieve has important prognostic and therapeutic implications. For those patients with myelin injury but intact axons, early, directed drug therapy has the potential to prevent progression to axonal loss and permanent disability.

  16. Evaluation of a patient with suspected chronic demyelinating polyneuropathy.

    PubMed

    Jani-Acsadi, Agnes; Lewis, Richard A

    2013-01-01

    Demyelinating neuropathies are typically characterized by physiological slowing of conduction velocity and pathologically by segmental loss of myelin and in some instances, evidence of remyelination. Clinically, patients with demyelinating neuropathy can be seen with inherited disorders (Charcot-Marie-Tooth disease) or acquired disorders, typically immune-mediated or inflammatory. The acquired disorders can be either acute or subacute as seen in the acute inflammatory demyelinating polyneuropathy (AIDP) form of Guillain-Barré syndrome or chronic progressive or relapsing disorders such as chronic inflammatory demyelinating polyneuropathy. It is important to develop a logical approach to diagnosing these disorders. This requires an understanding of the clinical, genetic, physiological, and pathological features of these neuropathies. Clinically, important features to consider are the temporal progression, degree of symmetry, and involvement of proximal as well as distal muscles. Genetically, recognizing the different inheritance patterns and age of onset allow for a coordinated approach to determining a specific genotype. Physiologically, besides nerve conduction slowing, other physiological hallmarks of demyelination include temporal dispersion of compound motor action potentials (CMAP) on proximal stimulation, conduction block, and distal CMAP duration prolongation with certain patterns of involvement pointing to specific disorders. This chapter focuses on these various aspects of the evaluation of patients with chronic acquired demyelinating neuropathies to develop a comprehensive and thoughtful diagnostic concept. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis.

    PubMed

    Singh, Shailender; Dallenga, Tobias; Winkler, Anne; Roemer, Shanu; Maruschak, Brigitte; Siebert, Heike; Brück, Wolfgang; Stadelmann, Christine

    2017-03-17

    Axonal damage and loss substantially contribute to the incremental accumulation of clinical disability in progressive multiple sclerosis. Here, we assessed the amount of Wallerian degeneration in brain tissue of multiple sclerosis patients in relation to demyelinating lesion activity and asked whether a transient blockade of Wallerian degeneration decreases axonal loss and clinical disability in a mouse model of inflammatory demyelination. Wallerian degeneration and acute axonal damage were determined immunohistochemically in the periplaque white matter of multiple sclerosis patients with early actively demyelinating lesions, chronic active lesions, and inactive lesions. Furthermore, we studied the effects of Wallerian degeneration blockage on clinical severity, inflammatory pathology, acute axonal damage, and long-term axonal loss in experimental autoimmune encephalomyelitis using Wallerian degeneration slow (Wld S ) mutant mice. The highest numbers of axons undergoing Wallerian degeneration were found in the perilesional white matter of multiple sclerosis patients early in the disease course and with actively demyelinating lesions. Furthermore, Wallerian degeneration was more abundant in patients harboring chronic active as compared to chronic inactive lesions. No co-localization of neuropeptide Y-Y1 receptor, a bona fide immunohistochemical marker of Wallerian degeneration, with amyloid precursor protein, frequently used as an indicator of acute axonal transport disturbance, was observed in human and mouse tissue, indicating distinct axon-degenerative processes. Experimentally, a delay of Wallerian degeneration, as observed in Wld S mice, did not result in a reduction of clinical disability or acute axonal damage in experimental autoimmune encephalomyelitis, further supporting that acute axonal damage as reflected by axonal transport disturbances does not share common molecular mechanisms with Wallerian degeneration. Furthermore, delaying Wallerian degeneration did not result in a net rescue of axons in late lesion stages of experimental autoimmune encephalomyelitis. Our data indicate that in multiple sclerosis, ongoing demyelination in focal lesions is associated with axonal degeneration in the perilesional white matter, supporting a role for focal pathology in diffuse white matter damage. Also, our results suggest that interfering with Wallerian degeneration in inflammatory demyelination does not suffice to prevent acute axonal damage and finally axonal loss.

  18. Demyelinating and ischemic brain diseases: detection algorithm through regular magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castillo, D.; Samaniego, René; Jiménez, Y.; Cuenca, L.; Vivanco, O.; Rodríguez-Álvarez, M. J.

    2017-09-01

    This work presents the advance to development of an algorithm for automatic detection of demyelinating lesions and cerebral ischemia through magnetic resonance images, which have contributed in paramount importance in the diagnosis of brain diseases. The sequences of images to be used are T1, T2, and FLAIR. Brain demyelination lesions occur due to damage of the myelin layer of nerve fibers; and therefore this deterioration is the cause of serious pathologies such as multiple sclerosis (MS), leukodystrophy, disseminated acute encephalomyelitis. Cerebral or cerebrovascular ischemia is the interruption of the blood supply to the brain, thus interrupting; the flow of oxygen and nutrients needed to maintain the functioning of brain cells. The algorithm allows the differentiation between these lesions.

  19. A Herpes Simplex Virus-Derived Replicative Vector Expressing LIF Limits Experimental Demyelinating Disease and Modulates Autoimmunity

    PubMed Central

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462

  20. [Importance of electromiographic examination in diagnostification and monitoring of chronic inflammatory demyelinating polyneuropathy].

    PubMed

    Damjan, Igor; Cvijanović, Milan; Erak, Marko

    2010-01-01

    Polyneuropathies or peripheral neuropathies present a dysfunction or disease of larger number of peripheral nerves or their dysfunction. Considering their morbidity - mortality characteristics they present an important aspect in daily clinical practice. One particular polyneuropathy that deserves special review is chronic inflammatory demyelinating polyneuropathy, which, due to its clinical-laboratory presentation, does not include the group of "simple" neuropathies, thus requiring further examinations. Neurophysiological testing should be performed using the protocol for neuropathy examinations. Neurophysiological examination, during the electroneurographic examination, shows neurographic parameters referring to polyneuropatic demyelinating type of lesion, while the electromyographic finding records the presence of neuropathic lesions (denervation activity, great action potentials with a reduced sample). A 54-year-old patient was diagnosed to have a "complicated" demyelinating polyneuropathy according to the clinical-laboratory findings and electromyographic examination. Exclusion criteria, targeted diagnostic examinations, considering the mentioned peripheral neuropathies, pointed to acute inflammatory demyelinating polyneuropathy. However, the chronic inflammatory demyelinating polyneuropathy was finally differentiated during the clinical and electromyographic monitoring.

  1. Cyclosporine in the Treatment of a Case of Fulminant and Refractory Acute Disseminated Encephalomyelitis

    PubMed Central

    Taghdiri, Mohammd-Mehdi; Amanati, Ali; Abdolkarimi, Babak

    2011-01-01

    Background Acute disseminated encephalomyelitis (ADEM) is a rare, monophasic, demyelinating disease of the CNS which sometimes could be refractory to traditional treatment. Case Presentation We present a case of fulminant ADEM which is treated with combination of corticosteroid, intravenous immunoglobulin and cyclosporine. Conclusion Immunosuppressive agents such as cyclosporine may be effective especially in fulminant form of the disease. PMID:23056845

  2. A case of seropositive Neuromyelitis Optica in a paediatric patient with co-existing acute nephrotic syndrome.

    PubMed

    Volkman, Thomas; Hemingway, Cheryl

    2017-11-01

    Neuromyelitis optica (NMO) and NMO spectrum disorder (NMOSD) is a rare relapsing autoimmune disease of the central nervous system constituting less than 1% of demyelinating diseases (Jeffery and Buncic, 1996). It preferentially affects the optic nerves and spinal cord, with the brain parenchyma generally spared. Demyelinating lesions are characterised by longitudinally extensive transverse myelitis (LETM) and often longitudinally extensive optic neuritis. Following the discovery of a novel pathogenic antibody, Aquaporin 4 in 2004 (Lennon et al., 2004) this disease has been seen as a separate entity from Multiple Sclerosis (MS). We report the case of a severe AQP4 IgG case of NMO in a 10 year old child. This case unusually had a coexisting diagnosis of acute nephrotic syndrome which has only been reported once previously in the literature 2 . This article will examine some of the treatment challenges and the spectrum of co-existing autoimmune disease in NMOSD. Copyright © 2017. Published by Elsevier B.V.

  3. [Osmotic demyelination syndrome in Addison crisis and severe hyponatremia].

    PubMed

    Andersen, Signe Elisabeth Bødker; Stausbøl-Grøn, Brian; Rasmussen, Torsten Bloch

    2008-12-08

    Acute adrenal insufficiency is a life threatening disease with dehydration, hypotension, cerebral dysfunction and gastrointestinal symptoms accompanied by low plasma sodium and high plasma potassium. Osmotic demyelination syndrome (ODS) can occur rarely following correction of plasma sodium. We describe a case with extremely low plasma sodium and subsequent development of ODS. Correction which is too slow may lead to cerebral oedema, brain stem herniation and low sodium encephalopathy. Correction which is too fast may cause ODS. The dilemma is accentuated by concomitant Addison crisis.

  4. Sonographic evaluation of peripheral nerves in subtypes of Guillain-Barré syndrome.

    PubMed

    Mori, Atsuko; Nodera, Hiroyuki; Takamatsu, Naoko; Maruyama-Saladini, Keiko; Osaki, Yusuke; Shimatani, Yoshimitsu; Kaji, Ryuji

    2016-05-15

    Sonography of peripheral nerves can depict alteration of nerve sizes that could reflect inflammation and edema in inflammatory and demyelinating neuropathies. Guillain-Barré syndrome (GBS). Information on sonographic comparison of an axonal subtype (acute motor [and sensory] axonal neuropathy [AMAN and AMSAN]) and a demyelinating subtype (acute inflammatory demyelinating polyneuropathy [AIDP]) has been sparse. Sonography of peripheral nerves and cervical nerve roots were prospectively recorded in patients with GBS who were within three weeks of disease onset. Five patients with AIDP and nine with AMAN (n=6)/AMSAN (n=3) were enrolled. The patients with AIDP showed evidence of greater degrees of demyelination (e.g., slower conduction velocities and increased distal latencies) than those with AMAN/AMSAN. The patients with AIDP tended to show enlarged nerves in the proximal segments and in the cervical roots, whereas the patients with AMAN/AMSAN had greater enlargement in the distal neve segment, especially in the median nerve (P = 0.03; Wrist-axilla cross-sectional ratio). In this small study, two subtypes of GBS showed different patterns of involvement that might reflect different pathomechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis.

    PubMed

    Denic, Aleksandar; Pirko, Istvan; Wootla, Bharath; Bieber, Allan; Macura, Slobodan; Rodriguez, Moses

    2012-09-01

    We used genetic deletion of β2-microglobulin to study the influence of CD8(+) T cells on spinal cord demyelination, remyelination, axonal loss and brainstem N-acetyl aspartate levels during the acute and chronic phases of Theiler's murine encephalomyelitis virus (TMEV) infection. We used β2m(-/-) and β2m(+/+) B10.Q mice (of H-2(q) background) normally susceptible to TMEV-induced demyelination. Over the disease course, β2m(+/+) mice had increasing levels of demyelination and minimal late-onset remyelination. In contrast, β2m(-/-) mice had steady levels of demyelination from 45-390 dpi and remyelination was extensive and more complete. Early in the disease, brainstem NAA levels drop in both strains, but accordingly with remyelination and axonal preservation, NAA recover in β2m(-/-) mice despite equivalent brainstem pathology. At 270 dpi, β2m(+/+) mice had significantly fewer spinal cord axons than β2m(-/-) mice (up to 28% less). In addition, β2m(+/+) mice lost axons of all calibers, whereas β2m(-/-) mice had a modest loss of only medium- and large-caliber axons. This study further supports the hypothesis that CD8(+) T cells are involved in demyelination, and axonal loss following Theiler's virus-induced demyelination. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  6. Guillain-Barré syndrome during adalimumab therapy for Crohn´s disease: coincidence or consequence?

    PubMed

    Cançado, Guilherme Grossi Lopes; Vilela, Eduardo Garcia

    2017-04-01

    We report the case of a 64-year-old patient diagnosed with extensive ileal Crohn´s disease who developed Guillain-Barré syndrome after starting biological therapy with adalimumab. Neurologic involvement associated with inflammatory bowel diseases is recognized as an extra-intestinal manifestation. After the breakthrough of antitumor necrosis factor alpha (anti-TNF-α) agents, an increasing number of cases of acute inflammatory demyelinating polyneuropathies have been reported; however, only one case has been described in a patient with Crohn´s disease. Although a causal relationship between Guillain-Barré syndrome and TNF-α antagonist therapy cannot be proven, this report emphasizes the need to monitor for neurologic signs and symptoms in patients with inflammatory bowel diseases, with or without biological therapy, to avoid severe and irreversible complications associated with demyelinating diseases.

  7. Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination

    PubMed Central

    Guglielmetti, C.; Veraart, J.; Roelant, E.; Mai, Z.; Daans, J.; Van Audekerke, J.; Naeyaert, M.; Vanhoutte, G.; Delgado y Palacios, R.; Praet, J.; Fieremans, E.; Ponsaerts, P.; Sijbers, J.; Van der Linden, A.; Verhoye, M.

    2016-01-01

    Although MRI is the gold standard for the diagnosis and monitoring of multiple sclerosis (MS), current conventional MRI techniques often fail to detect cortical alterations and provide little information about gliosis, axonal damage and myelin status of lesioned areas. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) provide sensitive and complementary measures of the neural tissue microstructure. Additionally, specific white matter tract integrity (WMTI) metrics modelling the diffusion in white matter were recently derived. In the current study we used the well-characterized cuprizone mouse model of central nervous system demyelination to assess the temporal evolution of diffusion tensor (DT), diffusion kurtosis tensor (DK) and WMTI-derived metrics following acute inflammatory demyelination and spontaneous remyelination. While DT-derived metrics were unable to detect cuprizone induced cortical alterations, the mean kurtosis (MK) and radial kurtosis (RK) were found decreased under cuprizone administration, as compared to age-matched controls, in both the motor and somatosensory cortices. The MK remained decreased in the motor cortices at the end of the recovery period, reflecting long lasting impairment of myelination. In white matter, DT, DK and WMTI-derived metrics enabled the detection of cuprizone induced changes differentially according to the stage and the severity of the lesion. More specifically, MK, RK and the axonal water fraction (AWF) were the most sensitive for the detection of cuprizone induced changes in the genu of the corpus callosum, a region less affected by cuprizone administration. Additionally, microgliosis was associated with an increase of MK and RK during the acute inflammatory demyelination phase. In regions undergoing severe demyelination, namely the body and splenium of the corpus callosum, DT-derived metrics, notably the mean diffusion (MD) and radial diffusion (RD), were among the best discriminators between cuprizone and control groups, hence highlighting their ability to detect both acute and long lasting changes. Interestingly, WMTI-derived metrics showed the aptitude to distinguish between the different stage of the disease. Both the intra-axonal diffusivity (Da) and the AWF were found to be decreased in the cuprizone treated group, Da specifically decreased during the acute inflammatory demyelinating phase whereas the AWF decrease was associated to the spontaneous remyelination and the recovery period. Altogether our results demonstrate that DKI is sensitive to alterations of cortical areas and provides, along with WMTI metrics, information that is complementary to DT-derived metrics for the characterization of demyelination in both white and grey matter and subsequent inflammatory processes associated with a demyelinating event. PMID:26525654

  8. [Axonopathy in the pathogenesis of multiple sclerosis, peripheral diffuse and local motor neuropathies and motor neuron disease].

    PubMed

    Merkulov, Iu A; Merkulova, D M; Iosifova, O A; Zavalishin, I A

    2010-01-01

    Two hundreds and seventy-six patients including 43 patients with multiple sclerosis, 24 - with acute inflammatory demyelinating polyneuropathy (AIDP), 144 - with chronic inflammatory demyelinating polyneuropathy (CIDP), 27 - with motor multifocal neuropathy (MMN), 38 - with lateral amyotrophic sclerosis (LAS) have been examined. Symptoms of axonal degeneration, manifested in denervation phenomena in both clinical and instrumental studies (electromyography, transcranial magnetic stimulation, MRT), were revealed in all groups of patients. The formation of excitation conduction blocks is an universal pathophysiological mechanism of the axonopathy development in AIDP, CIDP, MMN and LAS. Symptoms of axonopathy and peripheral demyelinization in patients with multiple sclerosis and LAS suggest the possibility of transformation of immunopathological process from the central nervous system to the peripheral one.

  9. Differences between Acute-onset Chronic Inflammatory Demyelinating Polyneuropathy (A-CIDP) and Acute Inflammatory Demyelinating Polyneuropathy (AIDP) in adult patients.

    PubMed

    Alessandro, Lucas; Pastor Rueda, José M; Wilken, Miguel; Querol Gutiérrez, Luis A; Marrodán, Mariano; Acosta, Julián N; Rivero, Alberto; Barroso, Fabio; Farez, Mauricio F

    2018-03-30

    Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Acute-onset Chronic Inflammatory Demyelinating Polyneuropathy (A-CIDP) are conditions presenting overlapping clinical features during early stages (first 4 weeks), although the latter may progress after 8 weeks. The aim of this study was to identify predictive factors contributing to their differential diagnosis. Clinical records of adult patients with AIDP or A-CIDP diagnosed at our institution between January-2006 and July-2017 were retrospectively reviewed. Demographic characteristics, clinical manifestations, cerebrospinal-fluid (CSF) findings, treatment and clinical evolution were analyzed. Nerve conduction studies were performed in all patients with at least 12 months follow-up. A total of 91 patients were included (AIDP, n=77; A-CIDP, n=14). The median age was 55.5 years in patients with A-CIDP vs. 43 years in AIDP (p=0.07). The history of diabetes mellitus was more frequent in A-CIDP (29% vs. 8%, p=0.04). No significant differences between groups were observed with respect to: HIV status, presence of autoimmune disorder or oncologic disease. Cranial, motor and autonomic nerve involvement rates were similar in both groups. Patients in the A-CIDP group showed higher frequency of proprioceptive disturbances (83% vs. 28%; p<0.001), sensory ataxia (46% vs. 16%; p=0.01) and the use of combined immunotherapy with corticoids (29% vs. 3%; p=0.005). There were no significant differences in CSF findings, ICU admission or mortality rates. During the first 8 weeks both entities are practically indistinguishable. Alterations in proprioception could suggest A-CIDP. Searching for markers that allow early differentiation could favor the onset of corticotherapy without delay. This article is protected by copyright. All rights reserved.

  10. Subacute sclerosing panencephalitis presenting as acute cerebellar ataxia and brain stem hyperintensities.

    PubMed

    Saini, Arushi Gahlot; Sankhyan, Naveen; Padmanabh, Hansashree; Sahu, Jitendra Kumar; Vyas, Sameer; Singhi, Pratibha

    2016-05-01

    Subacute sclerosing panencephalitis is a devastating neurodegenerative disease with a characteristic clinical course. Atypical presentations may be seen in 10% of the cases. To describe the atypical clinical and radiological features of SSPE in a child form endemic country. A 5-year-old boy presented with acute-onset cerebellar ataxia without associated encephalopathy, focal motor deficits, seizures or cognitive decline. He had varicella-like illness with vesicular, itchy truncal rash erupting one month prior to the onset of these symptoms. He underwent detailed neurological assessment, relevant laboratory and radiological investigations. Neuroimaging revealed peculiar brain stem lesions involving the pons and cerebellum suggestive of demyelination. With a presumptive diagnosis of clinically isolated syndrome of demyelination, he was administered pulse methylprednisolone (30 mg/kg/day for 5 days). Four weeks later he developed myoclonic jerks. Electroencephalogram showed characteristic periodic complexes time-locked with myoclonus. CSF and serum anti-measles antibody titres were elevated (1:625). Our report highlights that subacute sclerosing panencephalitis can present atypically as isolated acute cerebellar ataxia and peculiar involvement of longitudinal and sparing of transverse pontine fibres. The predominant brainstem abnormalities in the clinical setting may mimick acute demyelinating syndrome. Hence, it is important to recognize these features of subacute sclerosing panencephalitis in children, especially in the endemic countries. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  11. Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit.

    PubMed

    Wang, Hongkai; Li, Chengren; Wang, Hanzhi; Mei, Feng; Liu, Zhi; Shen, Hai-Ying; Xiao, Lan

    2013-04-01

    Schizophrenia is a mental disease that mainly affects young individuals (15 to 35 years old) but its etiology remains largely undefined. Recently, accumulating evidence indicated that demyelination and/or dysfunction of oligodendrocytes is an important feature of its pathogenesis. We hypothesized that the vulnerability of young individuals to demyelination may contribute to the onset of schizophrenia. In the present study, three different age cohorts of mice, i.e. juvenile (3 weeks), young-adult (6 weeks) and middle-aged (8 months), were subjected to a 6-week diet containing 0.2% cuprizone (CPZ) to create an animal model of acute demyelination. Then, age-related vulnerability to CPZ-induced demyelination, behavioral outcomes, and myelination-related molecular biological changes were assessed. We demonstrated: (1) CPZ treatment led to more severe demyelination in juvenile and young-adult mice than in middle-aged mice in the corpus callosum, a region closely associated with the pathophysiology of schizophrenia; (2) the higher levels of demyelination in juvenile and young-adult mice were correlated with a greater reduction of myelin basic protein, more loss of CC-1-positive mature oligodendrocytes, and higher levels of astrocyte activation; and (3) CPZ treatment resulted in a more prominent exploratory behavior deficit in juvenile and young-adult mice than in middle-aged mice. Together, our data demonstrate an age-related vulnerability to demyelination with a concurrent behavioral deficit, providing supporting evidence for better understanding the susceptibility of the young to the onset of schizophrenia.

  12. Lethal acute demyelinization with encephalo-myelitis as a complication of cured Cushing's disease.

    PubMed

    Chevalier, N; Hieronimus, S; Vandenbos, F; Delmont, E; Cua, E; Cherick, F; Paquis, P; Michiels, J-F; Fenichel, P; Brucker-Davis, F

    2010-12-01

    Cushing's disease is usually associated with higher mortality rate, especially from cardiovascular causes. Development or exacerbation of autoimmune or inflammatory diseases is known to occur in patients with hypercortisolism after cure. We report for the first time a 34-year old woman with a psychiatric background, who developed four months after the surgical cure of Cushing's disease an acute disseminated encephalomyelitis (ADEM) presenting initially as a psychiatric illness. We hypothesize that the recent correction of hypercortisolism triggered ADEM and that the atypical presentation, responsible for diagnosis delay, led to the death of this patient. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease.

    PubMed

    Menezes, Manoj P; Rahman, Shamima; Bhattacharya, Kaustuv; Clark, Damian; Christodoulou, John; Ellaway, Carolyn; Farrar, Michelle; Pitt, Matthew; Sampaio, Hugo; Ware, Tyson L; Wedatilake, Yehani; Thorburn, David R; Ryan, Monique M; Ouvrier, Robert

    2016-09-01

    Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions. Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Nerve conductions studies were also performed prospectively on children attending a tertiary metabolic disease service. Results were classified and analysed according to the underlying genetic cause. Nerve conduction studies from 27 children with mitochondrial disease were included in the study (mitochondrial DNA (mtDNA) - 7, POLG - 7, SURF1 - 10, PDHc deficiency - 3). Four children with mtDNA mutations had a normal study while three had mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute stroke-like episode that resolved over 12months. Five children with POLG mutations and disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the neuropathy associated with mitochondrial disease was not length-dependent. This is the largest study to date of peripheral neuropathy in genetically- classified childhood mitochondrial disease. Characterising the underlying neuropathy may assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the assessment of children with suspected mitochondrial disease. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  14. Magnetic resonance imaging findings in substance abuse: alcohol and alcoholism and syndromes associated with alcohol abuse.

    PubMed

    Spampinato, M Vittoria; Castillo, Mauricio; Rojas, Rafael; Palacios, Enrique; Frascheri, Laura; Descartes, Fernando

    2005-06-01

    Alcohol abuse is common among the population and results in significant diseases that shorten life span. Ethanol may result in chronic brain changes such as atrophy but may also result in neurologic disease that may be acute or chronic and sometimes life threatening. Accompanying vitamin deficiencies may lead to Wernicke's encephalopathy and changes in serum osmosis may lead to several acute demyelinating disorders. In addition, pregnant women who consume alcohol place their babies at high risk for the fetal alcohol syndrome. In this article we review these disorders and emphasize their imaging features.

  15. Apoptosis of oligodendrocytes in the CNS results in rapid focal demyelination

    PubMed Central

    Caprariello, Andrew; Mangla, Saisho; Miller, Robert H.; Selkirk, Stephen M.

    2012-01-01

    Objective Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that presents with variable pathologies that may reflect different disease-causing mechanisms. Existing animal models of MS induce pathology using either local injection of gliotoxins or stimulation of the immune system with myelin-related peptides. In none of these models is the primary cellular target well characterized and although demyelination is a hallmark pathological feature in MS, it is unclear to what extent this reflects local oligodendrocyte loss. To unambiguously identify the effects of oligodendrocyte death in the absence of inflammatory stimulation, we developed a method for experimentally inducing programmed cell death selectively in mature oligodendrocytes and assessed the effects on demyelination, immunological stimulation and gliosis. The resulting pathology is discussed relative to observed MS pathologies. Methods Oligodendrocyte apoptosis was induced in the adult rat brain using a lentivirus to express experimentally-inducible caspase 9 (iCP9) cDNA under transcriptional control of the promoter for myelin basic protein (MBP), which is oligodendrocyte-specific. Activation of iCP9 was achieved by distal injection of a small molecule dimerizer into the lateral ventricle resulting in localized, acute oligodendrocyte apoptosis. Results Induced oligodendrocyte apoptosis resulted in rapid demyelination and robust, localized microglial activation in the absence of peripheral immune cell infiltration. Lesion borders showed layers of preserved and degraded myelin, while lesion cores were demyelinated but only partially cleared of myelin debris. This resulted in local proliferation and mobilization of the oligodendrocyte progenitor pool. Interpretation This approach provides a novel model to understand the pathological changes that follow from localized apoptosis of myelinating oligodendrocytes. It provides the first direct proof that initiation of apoptosis in oligodendrocytes is sufficient to cause rapid demyelination, gliosis and microglia response that result in lesions that share some pathological characteristics with a subset of MS lesions. PMID:23034912

  16. Comparison of Cerebrospinal Fluid Opening Pressure in Children With Demyelinating Disease to Children With Primary Intracranial Hypertension.

    PubMed

    Morgan-Followell, Bethanie; Aylward, Shawn C

    2017-03-01

    The authors aimed to compare the opening pressures of children with demyelinating disease to children with primary intracranial hypertension. Medical records were reviewed for a primary diagnosis of demyelinating disease, or primary intracranial hypertension. Diagnosis of demyelinating disease was made according to either the 2007 or 2012 International Pediatric Multiple Sclerosis Study Group criteria. Primary intracranial hypertension diagnosis was confirmed by presence of elevated opening pressure, normal cerebrospinal fluid composition and neuroimaging. The authors compared 14 children with demyelinating disease to children with primary intracranial hypertension in 1:1 and 1:2 fashions. There was a statistically significant higher BMI in the primary intracranial hypertension group compared to the demyelinating group ( P = .0203). The mean cerebrospinal fluid white blood cell count was higher in the demyelinating disease group compared to primary intracranial hypertension ( P = .0002). Among both comparisons, the cerebrospinal fluid opening pressure, glucose, protein and red blood cell counts in children with demyelinating disease were comparable to age- and sex-matched controls with primary intracranial hypertension.

  17. Transcriptional Changes in Canine Distemper Virus-Induced Demyelinating Leukoencephalitis Favor a Biphasic Mode of Demyelination

    PubMed Central

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms “viral replication” and “humoral immune response” as well as down-regulated genes functionally related to “metabolite and energy generation”. PMID:24755553

  18. Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination.

    PubMed

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms "viral replication" and "humoral immune response" as well as down-regulated genes functionally related to "metabolite and energy generation".

  19. Elevated serum levels of endothelin-1 in patients with chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Chang, Chun-Wei; Wu, Hsiu-Chuan; Lyu, Rong-Kuo; Lo, Yen-Shi; Chen, Chiung-Mei; Ro, Long-Sun; Chang, Hong-Shiu; Huang, Ching-Chang; Liao, Ming-Feng; Wu, Yih-Ru; Kuo, Hung-Chou; Chu, Chun-Che; Weng, Yi-Ching; Wei, Pei-Tsi; Lo, Ai-Lun; Chang, Kuo-Hsuan

    2018-01-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired, or non-hereditary, chronic demyelinating neuropathy. Currently, there is no reliable molecular biomarker that can identify CIDP patients as well as monitor disease severity. We measured serum levels of endothelin-1 (ET-1), a factors involved in vasoconstrictive, inflammatory and nerve regenerative processes, in 20 CIDP, 21 acute inflammatory demyelinating polyneuropathy (AIDP), 37 multiple sclerosis (MS), and 10 Alzheimer's disease (AD) patients, as well as 26 healthy control (HC) subjects. Patients with CIDP demonstrated higher serum levels of ET-1 (2.07±1.07pg/mL) than those with AIDP (0.75±0.62ng/mL, P<0.001), AD (0.78±0.49pg/mL, P<0.001), as well as HCs (1.16±0.63pg/mL, P=0.002), while levels of ET-1 in patients with MS (2.10±0.81pg/mL) and CIDP were similar. Furthermore, the serum ET-1 levels significantly correlated with Inflammatory Neuropathy Cause And Treatment (INCAT) disability scale in CIDP patients. Receiver operating characteristic (ROC) curve showed good discrimination ability for ET-1 to distinguish CIDP patients from AIDP (AUC=0.883) or HCs (AUC=0.763). This study discloses the potential of serum ET-1 as a biomarker for CIDP. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Remote acute demyelination after focal proton radiation therapy for optic nerve meningioma.

    PubMed

    Redjal, Navid; Agarwalla, Pankaj K; Dietrich, Jorg; Dinevski, Nikolaj; Stemmer-Rachamimov, Anat; Nahed, Brian V; Loeffler, Jay S

    2015-08-01

    We present a unique patient with delayed onset, acute demyelination that occurred distant to the effective field of radiation after proton beam radiotherapy for an optic nerve sheath meningioma. The use of stereotactic radiotherapy as an effective treatment modality for some brain tumors is increasing, given technological advances which allow for improved targeting precision. Proton beam radiotherapy improves the precision further by reducing unnecessary radiation to surrounding tissues. A 42-year-old woman was diagnosed with an optic nerve sheath meningioma after initially presenting with vision loss. After biopsy of the lesion to establish diagnosis, the patient underwent stereotactic proton beam radiotherapy to a small area localized to the tumor. Subsequently, the patient developed a large enhancing mass-like lesion with edema in a region outside of the effective radiation field in the ipsilateral frontal lobe. Given imaging features suggestive of possible primary malignant brain tumor, biopsy of this new lesion was performed and revealed an acute demyelinating process. This patient illustrates the importance of considering delayed onset acute demyelination in the differential diagnosis of enhancing lesions in patients previously treated with radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [The possibility of using music therapy in neurology on the example of multiple sclerosis].

    PubMed

    Boiko, E A; Ivanchuk, E V; Gunchenko, M M; Batysheva, T T

    2016-01-01

    Currently music therapy plays an important role in the drug-free treatment and rehabilitation of children and adults with acute and chronic neurological and somatic diseases including demyelinating diseases. Existing studies show the effectiveness of music therapy in the improvement of social skills, cognitive function and sleep as well as in the reduction in the severity of depression, anxiety and pain in patients with multiple sclerosis.

  2. [Electrodiagnostic criteria for childhood Guillain-Barre syndrome. Eight years' experience].

    PubMed

    Lopez-Esteban, Pilar; Gallego, Isabel; Gil-Ferrer, Victoria

    2013-03-01

    INTRODUCTION. The Guillan-Barre syndrome is the most frequent case of acute flacid paralysis in children. The diagnostic criteria differ according to the demyelinating or axonal variant and the prevalence by geographical area. The electro-myographic study permits identifying variants, evaluating the prognosis and predicting the evolution, is in addition an objective tool for the monitoring. AIM. To describe the electromyographic characteristics of the Guillain-Barre syndrome evaluated in hospital and its classification by physiopathological pattern. PATIENTS AND METHODS. All the cases diagnosed between 2005 and 2012 are included. Studies of motor and sensitive nervous conduction and F waves in 14 girls and 11 boys between 1 and 13 years of age. RESULTS. 19 cases of acute inflammatory demyelinating polyneuropathy (AIDP) and five of acute motor axonal neuropathy (AMAN) were diagnosed. The electromyogram was performed between 1 and 30 days after the beginning of symptoms. In AIDP cases, multifocal demyelination, four of them with the preserved sural and 13 with alteration and absence of F wave were objectified. In the cases of AMAN, four had low amplitude potential and in one of them they were not evoked. CONCLUSIONS. The demyelinating form of the illness is the most frequent although the high number of AMAN cases stands out, probably related to the population object of study. The evolution was favorable in three cases of motor axonal neuropathy and in 15 accute demyelinating polyneuropathy. In four cases the symptoms became chronic; three of them with persistent demyelination a similar occurrence in other studies with children.

  3. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination.

    PubMed

    Schultz, Verena; van der Meer, Franziska; Wrzos, Claudia; Scheidt, Uta; Bahn, Erik; Stadelmann, Christine; Brück, Wolfgang; Junker, Andreas

    2017-08-01

    Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  4. Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes

    PubMed Central

    Deb, Chandra; Howe, Charles L

    2011-01-01

    Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler’s virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8+ lymphocytes that are CD45hiCD44loCD62L− and a population of spinal cord infiltrating target effector memory CD8+ lymphocytes that are CD45hiCD44hiCD62L−. These cells respond robustly to ex vivo stimulation by producing interferon γ but do not exhibit specificity for Theiler’s virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities. PMID:19596449

  5. Isolated brain stem lesion in children: is it acute disseminated encephalomyelitis or not?

    PubMed

    Alper, G; Sreedher, G; Zuccoli, G

    2013-01-01

    Isolated brain stem lesions presenting with acute neurologic findings create a major diagnostic dilemma in children. Although the brain stem is frequently involved in ADEM, solitary brain stem lesions are unusual. We performed a retrospective review in 6 children who presented with an inflammatory lesion confined to the brain stem. Two children were diagnosed with connective tissue disorder, CNS lupus, and localized scleroderma. The etiology could not be determined in 1, and clinical features suggested monophasic demyelination in 3. In these 3 children, initial lesions demonstrated vasogenic edema; all showed dramatic response to high-dose corticosteroids and made a full clinical recovery. Follow-up MRI showed complete resolution of lesions, and none had relapses at >2 years of follow-up. In retrospect, these cases are best regarded as a localized form of ADEM. We conclude that though ADEM is typically a disseminated disease with multifocal lesions, it rarely presents with monofocal demyelination confined to the brain stem.

  6. Diffusion Tensor Imaging as a Biomarker to Differentiate Acute Disseminated Encephalomyelitis From Multiple Sclerosis at First Demyelination.

    PubMed

    Aung, Wint Yan; Massoumzadeh, Parinaz; Najmi, Safa; Salter, Amber; Heaps, Jodi; Benzinger, Tammie L S; Mar, Soe

    2018-01-01

    There are no clinical features or biomarkers that can reliably differentiate acute disseminated encephalomyelitis from multiple sclerosis at the first demyelination attack. Consequently, a final diagnosis is sometimes delayed by months and years of follow-up. Early treatment for multiple sclerosis is recommended to reduce long-term disability. Therefore, we intend to explore neuroimaging biomarkers that can reliably distinguish between the two diagnoses. We reviewed prospectively collected clinical, standard MRI and diffusion tensor imaging data from 12 pediatric patients who presented with acute demyelination with and without encephalopathy. Patients were followed for an average of 6.5 years to determine the accuracy of final diagnosis. Final diagnosis was determined using 2013 International Pediatric MS Study Group criteria. Control subjects consisted of four age-matched healthy individuals for each patient. The study population consisted of six patients with central nervous system demyelination with encephalopathy with a presumed diagnosis of acute disseminated encephalomyelitis and six without encephalopathy with a presumed diagnosis of multiple sclerosis or clinically isolated syndrome at high risk for multiple sclerosis. During follow-up, two patients with initial diagnosis of acute disseminated encephalomyelitis were later diagnosed with multiple sclerosis. Diffusion tensor imaging region of interest analysis of baseline scans showed differences between final diagnosis of multiple sclerosis and acute disseminated encephalomyelitis patients, whereby low fractional anisotropy and high radial diffusivity occurred in multiple sclerosis patients compared with acute disseminated encephalomyelitis patients and the age-matched controls. Fractional anisotropy and radial diffusivity measures may have the potential to serve as biomarkers for distinguishing acute disseminated encephalomyelitis from multiple sclerosis at the onset. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Acute Transverse Myelitis in Children, Literature Review.

    PubMed

    Tavasoli, Azita; Tabrizi, Aidin

    2018-01-01

    Acute transverse myelitis (ATM) is a rare inflammatory demyelinating disorder characterized by relatively acute onset of motor, sensory, and autonomic dysfunction. Children comprise 20% of total cases of ATM. In this review, we described the current literature on childhood ATM, focusing on the epidemiology, pathogenesis, clinical presentation, approach to diagnosis, differential diagnosis, treatment and outcome in the pediatric population. We searched the related articles in electronic databases such as Scopus, EMBASE, Google Scholar, and PubMed. All study designs were included and the essential key words for searching were myelitis, acute transverse myelitis, childhood transverse myelitis, and acquired demyelinating syndromes. The related data focusing on the epidemiology, pathogenesis, clinical presentation, diagnostic approach and differential diagnosis, treatment and outcome of pediatric ATM were gathered and described. ATM is a heterogeneous disorder in children with a broad spectrum of clinical presentation, etiology, and outcome. It may be the first presentation of relapsing acquired demyelinating syndromes and also must be distinguished from compressive and noninflamatory myelopathies. Correct diagnosis is crucial for treatment and prognosis.

  8. The pathogenic relevance of αM-integrin in Guillain-Barré syndrome.

    PubMed

    Dong, Chaoling; Palladino, Steven P; Helton, Eric Scott; Ubogu, Eroboghene E

    2016-11-01

    The molecular determinants and mechanisms involved in leukocyte trafficking across the blood-nerve barrier (BNB) in the acute inflammatory demyelinating polyradiculoneuropathy (AIDP) variant of Guillain-Barré syndrome are incompletely understood. Prior work using a flow-dependent in vitro human BNB model demonstrated a crucial role for α M -integrin (CD11b)-intercellular adhesion molecule-1 interactions in AIDP patient leukocyte trafficking. The aim of this study is to directly investigate the biological relevance of CD11b in AIDP pathogenesis. Immunohistochemistry was performed on three AIDP patient sural nerve biopsies to evaluate endoneurial leukocyte CD11b expression. A severe murine experimental autoimmune neuritis (sm-EAN) model was utilized to determine the functional role of CD11b in leukocyte trafficking in vivo and determine its effect on neurobehavioral measures of disease severity, electrophysiological assessments of axonal integrity and myelination and histopathological measures of peripheral nerve inflammatory demyelination. Time-lapse video microscopy and electron microscopy were employed to observe structural alterations at the BNB during AIDP patient leukocyte trafficking in vitro and in situ, respectively. Large clusters of endoneurial CD11b+ leukocytes associated with demyelinating axons were observed in AIDP patient sural nerves. Leukocyte CD11b expression was upregulated during sm-EAN. 5 mg/kg of a function-neutralizing monoclonal rat anti-mouse CD11b antibody administered after sm-EAN disease onset significantly ameliorated disease severity, as well as electrophysiological and histopathological parameters of inflammatory demyelination compared to vehicle- and isotype antibody-treated mice. Consistent with in vitro observations of leukocyte trafficking at the BNB, electron micrographs of AIDP patient sural nerves demonstrated intact electron-dense endoneurial microvascular intercellular junctions during paracellular mononuclear leukocyte transmigration. Our data support a crucial pathogenic role of CD11b in AIDP leukocyte trafficking, providing a potential therapeutic target for demyelinating variants of Guillain-Barré syndrome.

  9. Concurrency of Guillain-Barre syndrome and acute transverse myelitis: a case report and review of literature.

    PubMed

    Tolunay, Orkun; Çelik, Tamer; Çelik, Ümit; Kömür, Mustafa; Tanyeli, Zeynep; Sönmezler, Abdurrahman

    2016-11-01

    Guillain-Barré syndrome and acute transverse myelitis manifest as demyelinating diseases of the peripheral and central nervous system. Concurrency of these two disorders is rarely documented in literature. A 4-year-old girl presenting with cough, fever, and an impaired walking ability was admitted to hospital. She had no previous complaints in her medical history. A physical examination revealed lack of muscle strength of the lower extremities and deep tendon reflexes. MRI could not be carried out due to technical problems; therefore, both Guillain-Barré syndrome and acute transverse myelitis were considered for the diagnosis. Intravenous immunoglobulin treatment was started as first line therapy. Because this treatment did not relieve the patient's symptoms, spinal MRI was carried out on the fourth day of admission and demyelinating areas were identified. Based on the new findings, the patient was diagnosed with acute transverse myelitis, and high dose intravenous methylprednisolone therapy was started. Electromyography findings were consistent with acute polyneuropathy affecting both motor and sensory fibers. Therefore, the patient was diagnosed with concurrency of Guillain-Barré syndrome and acute transverse myelitis. Interestingly, while concurrency of these 2 disorders is rare, this association has been demonstrated in various recent publications. Progress in diagnostic tests (magnetic resonance imaging and electrophysiological examination studies) has enabled clinicians to establish the right diagnosis. The possibility of concurrent Guillain-Barré syndrome and acute transverse myelitis should be considered if recovery takes longer than anticipated.

  10. Re-evaluating the treatment of acute optic neuritis

    PubMed Central

    Bennett, Jeffrey L; Nickerson, Molly; Costello, Fiona; Sergott, Robert C; Calkwood, Jonathan C; Galetta, Steven L; Balcer, Laura J; Markowitz, Clyde E; Vartanian, Timothy; Morrow, Mark; Moster, Mark L; Taylor, Andrew W; Pace, Thaddeus W W; Frohman, Teresa; Frohman, Elliot M

    2015-01-01

    Clinical case reports and prospective trials have demonstrated a reproducible benefit of hypothalamic-pituitary-adrenal (HPA) axis modulation on the rate of recovery from acute inflammatory central nervous system (CNS) demyelination. As a result, corticosteroid preparations and adrenocorticotrophic hormones are the current mainstays of therapy for the treatment of acute optic neuritis (AON) and acute demyelination in multiple sclerosis. Despite facilitating the pace of recovery, HPA axis modulation and corticosteroids have failed to demonstrate long-term benefit on functional recovery. After AON, patients frequently report visual problems, motion perception difficulties and abnormal depth perception despite ‘normal’ (20/20) vision. In light of this disparity, the efficacy of these and other therapies for acute demyelination require re-evaluation using modern, high-precision paraclinical tools capable of monitoring tissue injury. In no arena is this more amenable than AON, where a new array of tools in retinal imaging and electrophysiology has advanced our ability to measure the anatomic and functional consequences of optic nerve injury. As a result, AON provides a unique clinical model for evaluating the treatment response of the derivative elements of acute inflammatory CNS injury: demyelination, axonal injury and neuronal degeneration. In this article, we examine current thinking on the mechanisms of immune injury in AON, discuss novel technologies for the assessment of optic nerve structure and function, and assess current and future treatment modalities. The primary aim is to develop a framework for rigorously evaluating interventions in AON and to assess their ability to preserve tissue architecture, re-establish normal physiology and restore optimal neurological function. PMID:25355373

  11. POEMS syndrome with Guillan-Barre syndrome-like acute onset: a case report and review of neurological progression in 30 cases.

    PubMed

    Isose, S; Misawa, S; Kanai, K; Shibuya, K; Sekiguchi, Y; Nasu, S; Fujimaki, Y; Noto, Y; Nakaseko, C; Kuwabara, S

    2011-06-01

    POEMS (polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes) syndrome is a rare cause of demyelinating neuropathy with monoclonal plasma cell proliferation, and POEMS neuropathy is usually chronically progressive. Herein, the authors report a 34-year-old woman with POEMS syndrome presenting as acute polyneuropathy. Within 2 weeks of disease onset, she became unable to walk with electrodiagnostic features of demyelination and was initially diagnosed as having Guillan-Barré syndrome. Other systemic features (oedema and skin changes) developed later, and an elevated serum level of vascular endothelial growth factor led to the diagnosis of POEMS syndrome. She received high-dose chemotherapy with autologous peripheral blood stem cell transplantation, resulting in good recovery. The authors also reviewed patterns and speed of progression of neuropathy in the 30 patients with POEMS syndrome; 22 (73%) of them were unable to walk independently with the median period of 9.5 months from POEMS onset (range 0.5-51 months). Whereas the speed of neuropathy progression varies considerably among patients, some POEMS patients can show acute or subacute polyneuropathy. The early diagnosis and treatment could result in rapid improvement as shown in the present patient.

  12. G-Protein-Coupled Receptor Gpr17 Expression in Two Multiple Sclerosis Remyelination Models.

    PubMed

    Nyamoya, Stella; Leopold, Patrizia; Becker, Birte; Beyer, Cordian; Hustadt, Fabian; Schmitz, Christoph; Michel, Anne; Kipp, Markus

    2018-06-05

    In multiple sclerosis patients, demyelination is prominent in both the white and gray matter. Chronic clinical deficits are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination. The underlying molecular mechanisms of remyelination and its failure remain currently unclear. Recent studies have recognized G protein-coupled receptor 17 (GPR17) as an important regulator of oligodendrocyte development and remyelination. So far, the relevance of GPR17 for myelin repair was mainly tested in remyelinating white matter lesions. The relevance of GPR17 for gray matter remyelination as well as remyelination of chronic white matter lesions was not addressed so far. Here, we provide a detailed characterization of GPR17 expression during experimental de- and remyelination. Experimental lesions with robust and limited endogenous remyelination capacity were established by either acute or chronic cuprizone-induced demyelination. Furthermore, remyelinating lesions were induced by the focal injection of lysophosphatidylcholine (LPC) into the corpus callosum. GPR17 expression was analyzed by complementary techniques including immunohistochemistry, in situ hybridization, and real-time PCR. In control animals, GPR17 + cells were evenly distributed in the corpus callosum and cortex and displayed a highly ramified morphology. Virtually all GPR17 + cells also expressed the oligodendrocyte-specific transcription factor OLIG2. After acute cuprizone-induced demyelination, robust endogenous remyelination was evident in the white matter corpus callosum but not in the gray matter cortex. Endogenous callosal remyelination was paralleled by a robust induction of GPR17 expression which was absent in the gray matter cortex. Higher numbers of GPR17 + cells were as well observed after LPC-induced focal white matter demyelination. In contrast, densities of GPR17 + cells were comparable to control animals after chronic cuprizone-induced demyelination indicating quiescence of this cell population. Our findings demonstrate that GPR17 expression induction correlates with acute demyelination and sufficient endogenous remyelination. This strengthens the view that manipulation of this receptor might be a therapeutic opportunity to support endogenous remyelination.

  13. Clinical Significance of A Waves in Acute Inflammatory Demyelinating Polyradiculoneuropathy.

    PubMed

    Lakshminarasimhan, Sindhuja; Venkatraman, Chandramouleeswaran; Vellaichamy, Kannan; Ranganathan, Lakshminarasimhan

    2018-05-25

    A wave is a late response recognized during recording of F waves. Though they might be seen in healthy subjects, their presence assumes significance in a patient presenting with polyradiculoneuropathy. In this prospective study, 75 patients with acute inflammatory demyelinating polyradiculoneuropathy (AIDP) were enrolled. They were divided into two groups based on the presence or absence of A waves. Clinical features, electrophysiological parameters and extent of clinical recovery in short-term follow-up were analyzed. A waves were present in 49 out of 75 patients (65%). Most common pattern observed was multiple A waves. Prevalence of A waves was more in lower limb nerves than upper limb nerves. Occurrence of A waves correlated with the presence of conduction block. Patients with A waves had higher Hughes grade (P = 0.003) and lower Medical Research Council sum score at 6 weeks of follow-up (P = 0.04) as compared to patients without A waves. A waves are common in acute inflammatory demyelinating polyradiculoneuropathy form of Guillain Barre syndrome and are considered as a marker of demyelination. Long-term follow-up studies are required to ascertain their significance in prognostication and assessing recovery.

  14. A case of chronic inflammatory demyelinating polyneuropathy presented with unilateral ptosis.

    PubMed

    Izadi, Sadegh; Karamimagham, Sina; Poursadeghfard, Maryam

    2014-01-01

    Chronic Inflammatory Demyelinating Polyneuropathy is an autoimmune disease with progressive and relapsing courses. The main clinical presentations are diffuse deep tendon hyporeflexia or areflexia and symmetric proximal-distal muscles weakness. Myasthenia gravis is also an immune mediated disease with fluctuating ocular and bulbar symptoms and sometimes weakness. Although both myasthenia gravis and chronic inflammatory demyelinating polyneuropathy are immune mediated disorders, clinical presentations are obviously different in the two diseases. Herein, we will report a case of chronic inflammatory demyelinating polyneuropathy who presented with isolated unilateral ptosis. Initially, the patient was managed as ocular type of myasthenia gravis, but after progression to general limb weakness and areflexia, the diagnosis of chronic inflammatory demyelinating polyneuropathy was made. Although unilateral ptosis is a typical feature of myasthenia gravis, it may be seen as the first presentation of chronic inflammatory demyelinating polyneuropathy as well which mimics myasthenia gravis disease.

  15. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis.

    PubMed

    Colpitts, Sara L; Kasper, Eli J; Keever, Abigail; Liljenberg, Caleb; Kirby, Trevor; Magori, Krisztian; Kasper, Lloyd H; Ochoa-Repáraz, Javier

    2017-11-02

    The gut microbiome plays an important role in the development of inflammatory disease as shown using experimental models of central nervous system (CNS) demyelination. Gut microbes influence the response of regulatory immune cell populations in the gut-associated lymphoid tissue (GALT), which drive protection in acute and chronic experimental autoimmune encephalomyelitis (EAE). Recent observations suggest that communication between the host and the gut microbiome is bidirectional. We hypothesized that the gut microbiota differs between the acute inflammatory and chronic progressive stages of a murine model of secondary-progressive multiple sclerosis (SP-MS). This non-obese diabetic (NOD) model of EAE develops a biphasic pattern of disease that more closely resembles the human condition when transitioning from relapsing-remitting (RR)-MS to SP-MS. We compared the gut microbiome of NOD mice with either mild or severe disease to that of non-immunized control mice. We found that the mice which developed a severe secondary form of EAE harbored a dysbiotic gut microbiome when compared with the healthy control mice. Furthermore, we evaluated whether treatment with a cocktail of broad-spectrum antibiotics would modify the outcome of the progressive stage of EAE in the NOD model. Our results indicated reduced mortality and clinical disease severity in mice treated with antibiotics compared with untreated mice. Our findings support the hypothesis that there are reciprocal effects between experimental CNS inflammatory demyelination and modification of the microbiome providing a foundation for the establishment of early therapeutic interventions targeting the gut microbiome that could potentially limit disease progression.

  16. Dynamic changes of Foxp3(+) regulatory T cells in spleen and brain of canine distemper virus-infected dogs.

    PubMed

    Qeska, V; Barthel, Y; Iseringhausen, M; Tipold, A; Stein, V M; Khan, M A; Baumgärtner, W; Beineke, A

    2013-12-15

    Canine distemper virus (CDV) infection causes immunosuppression and demyelinating leukoencephalitis in dogs. In viral diseases, an ambiguous function of regulatory T cells (Treg), with both beneficial effects by reducing immunopathology and detrimental effects by inhibiting antiviral immunity, has been described. However, the role of Treg in the pathogenesis of canine distemper remains unknown. In order to determine the effect of CDV upon immune homeostasis, the amount of Foxp3(+) Treg in spleen and brain of naturally infected dogs has been determined by immunohistochemistry. In addition, splenic cytokine expression has been quantified by reverse transcriptase polymerase chain reaction. Splenic depletion of Foxp3(+) Treg was associated with an increased mRNA-expression of tumor necrosis factor and decreased transcription of interleukin-2 in the acute disease phase, indicative of disturbed immunological counter regulation in peripheral lymphoid organs. In the brain, a lack of Foxp3(+) Treg in predemyelinating and early demyelinating lesions and significantly increased infiltrations of Foxp3(+) Treg in chronic demyelinating lesions were observed. In conclusion, disturbed peripheral and CNS immune regulation associated with a reduction of Treg represents a potential prerequisite for excessive neuroinflammation and early lesion development in canine distemper leukoencephalitis. © 2013 Elsevier B.V. All rights reserved.

  17. Analysis of neural crest cells from Charcot-Marie-Tooth disease patients demonstrates disease-relevant molecular signature.

    PubMed

    Kitani-Morii, Fukiko; Imamura, Keiko; Kondo, Takayuki; Ohara, Ryo; Enami, Takako; Shibukawa, Ran; Yamamoto, Takuya; Sekiguchi, Kazuya; Toguchida, Junya; Mizuno, Toshiki; Nakagawa, Masanori; Inoue, Haruhisa

    2017-09-06

    Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy. The majority of CMT is demyelinating type (demyelinating CMT) caused by Schwann cell involvement. Although a large number of genes responsible for demyelinating CMT have been found, the common molecular target of the pathophysiology caused by these different genes in demyelinating CMT is still unknown. We generated induced pluripotent stem cells (iPSCs) from healthy controls and patients with demyelinating CMT caused by duplication in peripheral myelin protein 22 kDa (PMP22) or point mutations in myelin protein zero (MPZ) or early growth response 2 (EGR2). iPSCs were differentiated into neural crest cells, progenitors of Schwann cells, followed by purification using the neural crest cell markers p75 and human natural killer-1. To identify a disease-relevant molecular signature at the early stage of demyelinating CMT, we conducted global gene expression analysis of iPSC-derived neural crest cells and found that a glutathione-mediated detoxification pathway was one of the related pathways in demyelinating CMT. mRNA expression of glutathione S-transferase theta 2 (GSTT2), encoding an important enzyme for glutathione-mediated detoxification, and production of reactive oxygen species were increased in demyelinating CMT. Our study suggested that patient-iPSC-derived neural crest cells could be a cellular model for investigating genetically heterogeneous disease CMT and might provide a therapeutic target for the disease.

  18. Re-evaluating the treatment of acute optic neuritis.

    PubMed

    Bennett, Jeffrey L; Nickerson, Molly; Costello, Fiona; Sergott, Robert C; Calkwood, Jonathan C; Galetta, Steven L; Balcer, Laura J; Markowitz, Clyde E; Vartanian, Timothy; Morrow, Mark; Moster, Mark L; Taylor, Andrew W; Pace, Thaddeus W W; Frohman, Teresa; Frohman, Elliot M

    2015-07-01

    Clinical case reports and prospective trials have demonstrated a reproducible benefit of hypothalamic-pituitary-adrenal (HPA) axis modulation on the rate of recovery from acute inflammatory central nervous system (CNS) demyelination. As a result, corticosteroid preparations and adrenocorticotrophic hormones are the current mainstays of therapy for the treatment of acute optic neuritis (AON) and acute demyelination in multiple sclerosis.Despite facilitating the pace of recovery, HPA axis modulation and corticosteroids have failed to demonstrate long-term benefit on functional recovery. After AON, patients frequently report visual problems, motion perception difficulties and abnormal depth perception despite 'normal' (20/20) vision. In light of this disparity, the efficacy of these and other therapies for acute demyelination require re-evaluation using modern, high-precision paraclinical tools capable of monitoring tissue injury.In no arena is this more amenable than AON, where a new array of tools in retinal imaging and electrophysiology has advanced our ability to measure the anatomic and functional consequences of optic nerve injury. As a result, AON provides a unique clinical model for evaluating the treatment response of the derivative elements of acute inflammatory CNS injury: demyelination, axonal injury and neuronal degeneration.In this article, we examine current thinking on the mechanisms of immune injury in AON, discuss novel technologies for the assessment of optic nerve structure and function, and assess current and future treatment modalities. The primary aim is to develop a framework for rigorously evaluating interventions in AON and to assess their ability to preserve tissue architecture, re-establish normal physiology and restore optimal neurological function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Upper Extremity Function in Multiple Sclerosis Patients With Advanced Disability Treated With Ocrevus

    ClinicalTrials.gov

    2018-06-18

    Multiple Sclerosis; Pathologic Processes; Demyelinating Diseases; Demyelinating Autoimmune Diseases; Nervous System Diseases; Autoimmune Diseases; Immune System Diseases; Primary Progressive Multiple Sclerosis; Relapsing Remitting Multiple Sclerosis

  20. Transcranial Magnetic Stimulation as an Additional Diagnostic Tool in Children with Acute Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Voitenkov, Voitenkov Vladislav; Andrey, Klimkin; Natalia, Skripchenko; Anastasia, Aksenova

    2017-01-01

    The diagnosis of polyneuropathy may be challenging at the early stages of the disease. Despite electromyography (EMG) efficacy in the establishment of polyneuropathy diagnosis, in some cases, results are dubious and neurophysiologists may implement additional techniques to ensure that conduction is affected. The aim of the study was to evaluate motor-evoked potential (MEP) characteristics in children with acute inflammatory demyelinating polyneuropathy (AIDP). The study was conducted at a pediatric research and clinical center for infectious diseases. Twenty healthy children (7-14 years old) without signs of neurological disorders were enrolled as controls. Thirty-seven patients (8-13 years old) with AIDP were enrolled as the main group. EMG and transcranial magnetic stimulation (TMS) were performed on the 3 rd -7 th days from the onset of the first symptoms. Descriptive statistics and Student's t -test were used. Bonferroni method was applied to implement appropriate corrections for multiple comparisons. Significant differences between children with AIDP and controls on latencies of both cortical and lumbar MEPs were registered. Cortical MEP shapes were disperse in 100% of the cases and lumbar MEPs were disperse in 57% of the cases. Diagnostic TMS on the early stage of the AIDP in children may be implemented as the additional tool. The main finding in this population is lengthening of the latency of cortical and lumbar MEPs. Disperse shape of the lumbar MEPs may be used as the early sign of the acute demyelization.

  1. Treatment decisions in a man with Hodgkin lymphoma and Guillian-Barré syndrome: a case report.

    PubMed

    Hughes, Caren L; Yorio, Jeffrey T; Kovitz, Craig; Oki, Yasuhiro

    2014-12-21

    Guillain-Barre syndrome, or acute inflammatory demyelinating polyneuropathy, has been described in the presence of malignancies such as lymphoma. Guillain-Barre syndrome/acute inflammatory demyelinating polyneuropathy causes paresthesias and weakness, which can make the treatment of lymphoma with chemotherapy challenging. Given the rarity of this co-presentation it is not known if the effects of Guillain-Barre syndrome should be considered when selecting a treatment regimen for Hodgkin lymphoma. To the best of our knowledge, the impact of these treatment modifications has not been previously reported. We report the case of a 37-year-old Caucasian man with a diagnosis of stage IIB classical Hodgkin lymphoma with concomitant Guillain-Barre syndrome. Our patient originally presented with an enlarged cervical lymph node and quickly developed distal paresthesia and progressive weakness of all four extremities. He was diagnosed with Hodgkin's lymphoma and initiated on treatment with doxorubicin, bleomycin, vinblastine, and dacarbazine. Doses of bleomycin and vinblastine were held or dose-reduced throughout his initial treatment course due to underlying neuropathy and dyspnea. He continued to have persistent disease after five cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine and went on to receive salvage treatments including more chemotherapy, radiation, autologous stem cell transplant and is currently preparing for an allogeneic stem cell transplant. Paraneoplastic syndromes such as Guillain-Barre syndrome/acute inflammatory demyelinating polyneuropathy can make the treatment of patients with Hodgkin lymphoma more challenging and can interfere with delivering full-dose chemotherapy. Further case series are needed to evaluate the effect that paraneoplastic syndromes, or adjustments made in therapy due to these syndromes, negatively affect the prognosis of patients with Hodgkin lymphoma.

  2. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    NASA Astrophysics Data System (ADS)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  3. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    PubMed Central

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-01-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination. PMID:26932543

  4. Quantifying Demyelination in NK venom treated nerve using its electric circuit model.

    PubMed

    Das, H K; Das, D; Doley, R; Sahu, P P

    2016-03-02

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  5. Natural History Study of Children With Metachromatic Leukodystrophy

    ClinicalTrials.gov

    2016-04-19

    Lipid Metabolism Disorders; Metachromatic Leukodystrophy (MLD); Nervous System Diseases; Brain Diseases; Central Nervous System Diseases; Demyelinating Diseases; Metabolism, Inborn Errors; Genetic Diseases, Inborn; Sphingolipidoses; Hereditary Central Nervous System Demyelinating Diseases; Metabolic Inborn Brain Diseases; Lysosomal Storage Diseases; Metabolic Diseases; Sulfatidosis

  6. Oligodendrocytes and Progenitors Become Progressively Depleted within Chronically Demyelinated Lesions

    PubMed Central

    Mason, Jeffrey L.; Toews, Arrel; Hostettler, Janell D.; Morell, Pierre; Suzuki, Kinuko; Goldman, James E.; Matsushima, Glenn K.

    2004-01-01

    To understand mechanisms that may underlie the progression of a demyelinated lesion to a chronic state, we have used the cuprizone model of chronic demyelination. In this study, we investigated the fate of oligodendrocytes during the progression of a demyelinating lesion to a chronic state and determined whether transplanted adult oligodendrocyte progenitors could remyelinate the chronically demyelinated axons. Although there is rapid regeneration of the oligodendrocyte population following an acute lesion, most of these newly regenerated cells undergo apoptosis if mice remain on a cuprizone diet. Furthermore, the oligodendrocyte progenitors also become progressively depleted within the lesion, which appears to contribute to the chronic demyelination. Interestingly, even if the mice are returned to a normal diet following 12 weeks of exposure to cuprizone, remyelination and oligodendrocyte regeneration does not occur. However, if adult O4+ progenitors are transplanted into the chronically demyelinated lesion of mice treated with cuprizone for 12 weeks, mature oligodendrocyte regeneration and remyelination occurs after the mice are returned to a normal diet. Thus, the formation of chronically demyelinated lesions induced by cuprizone appears to be the result of oligodendrocyte depletion within the lesion and not due to the inability of the chronically demyelinated axons to be remyelinated. PMID:15111314

  7. Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease

    PubMed Central

    Lee, Samuel M.; Chin, Lih-Shen; Li, Lian

    2016-01-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy. PMID:26732592

  8. Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease.

    PubMed

    Lee, Samuel M; Chin, Lih-Shen; Li, Lian

    2017-01-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.

  9. Demyelinating disease in patients treated with TNF antagonists in rheumatology: data from BIOBADASER, a pharmacovigilance database, and a systematic review.

    PubMed

    Cruz Fernández-Espartero, María; Pérez-Zafrilla, Beatriz; Naranjo, Antonio; Esteban, Carmen; Ortiz, Ana M; Gómez-Reino, Juan J; Carmona, Loreto

    2011-12-01

    To estimate the rate of demyelinating diseases in patients with rheumatic diseases treated with tumor necrosis factor (TNF) antagonists and to describe the cases reported to 3 different pharmacovigilance sources. All confirmed cases of demyelinating disease, optic neuritis, and multiple sclerosis (MS) in patients with rheumatic diseases treated with TNF-antagonists were reviewed from 3 different sources: (1) the Spanish Registry of biological therapies in rheumatic diseases (BIOBADASER); (2) the Spanish Pharmacovigilance Database of Adverse Drug Reactions (FEDRA); and (3) a systematic review (PubMed, EMBASE, and the Cochrane Library). In BIOBADASER, the incidence rate per 1000 patients was estimated with a 95% confidence interval (95% CI). In 21,425 patient-years in BIOBADASER, there were 9 patients with confirmed demyelinating disease, 4 with optic neuritis, and 1 with MS. In addition, 22 patients presented polyneuropathies, paresthesias, dysesthesias, facial palsy, or vocal cord paralysis without confirmed demyelination. The incidence rate of demyelinating disease in patients with rheumatic diseases exposed to TNF-antagonists in BIOBADASER was 0.65 per 1000 patient-years (95% CI: 0.39-1.1). The incidence of MS in BIOBADASER was 0.05 (95% CI: 0.01-0.33), while the incidence in the general Spanish population was 0.02 to 0.04 cases per 1000. Compared with BIOBADASER, cases in FEDRA (n = 19) and in the literature (n = 48) tend to be younger, have shorter exposure to TNF-antagonists, and recover after discontinuation of the drug. It is not clear whether TNF antagonists increase the incidence of demyelinating diseases in patients with rheumatic diseases. Differences between cases depending on the pharmacovigilance source could be explained by selective reporting bias outside registries. Copyright © 2011. Published by Elsevier Inc.

  10. Demyelinating disease in patients treated with TNF antagonists in rheumatology: data from BIOBADASER, a pharmacovigilance database, and a systematic review.

    PubMed

    Fernández-Espartero, María Cruz; Pérez-Zafrilla, Beatriz; Naranjo, Antonio; Esteban, Carmen; Ortiz, Ana M; Gómez-Reino, Juan J; Carmona, Loreto

    2011-02-01

    To estimate the rate of demyelinating diseases in patients with rheumatic diseases treated with tumor necrosis factor (TNF) antagonists and to describe the cases reported to 3 different pharmacovigilance sources. All confirmed cases of demyelinating disease, optic neuritis, and multiple sclerosis (MS) in patients with rheumatic diseases treated with TNF-antagonists were reviewed from 3 different sources: (1) the Spanish Registry of biological therapies in rheumatic diseases (BIOBADASER); (2) the Spanish Pharmacovigilance Database of Adverse Drug Reactions (FEDRA); and (3) a systematic review (PubMed, EMBASE, and the Cochrane Library). In BIOBADASER, the incidence rate per 1000 patients was estimated with a 95% confidence interval (95%CI). In 21,425 patient-years in BIOBADASER, there were 9 patients with confirmed demyelinating disease, 4 with optic neuritis, and 1 with MS. In addition, 22 patients presented polyneuropathies, paresthesias, dysesthesias, facial palsy, or vocal cord paralysis without confirmed demyelination. The incidence rate of demyelinating disease in patients with rheumatic diseases exposed to TNF antagonists in BIOBADASER was 0.65 per 1000 patient-years (95%CI: 0.39-1.1). The incidence of MS in BIOBADASER was 0.05 (95%CI: 0.01-0.33), while the incidence in the general Spanish population was 0.02 to 0.04 cases per 1000. Compared with BIOBADASER, cases in FEDRA (n = 19) and in the literature (n = 48) tend to be younger, have shorter exposure to TNF-antagonists, and recover after discontinuation of the drug. It is not clear whether TNF antagonists increase the incidence of demyelinating diseases in patients with rheumatic diseases. Differences between cases depending on the pharmacovigilance source could be explained by selective reporting bias outside registries. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. [Facial diplegia with atypical paresthesia. A variant of Guillain-Barré syndrome].

    PubMed

    Dal Verme, Agustín; Acosta, Paula; Margan, Mercedes; Pagnini, Cecilia; Dellepiane, Eugenia; Peralta, Christian

    2015-01-01

    Guillain-Barré syndrome is an acute demyelinating disease which presents in a classic form with muscular weakness and the lack of reflexes. There are multiple variations and atypical forms of the disease, being facial diplegia with paresthesia one of them. Also, the absence of reflexes in this syndrome is typical but not constant, since 10% of patients present reflexes. We describe a case of atypical presentation with bilateral facial palsy, paresthesia, brisk reflexes and weakness in the lower limbs in a 33 year old woman.

  12. Guillian Barré syndrome--recent advances.

    PubMed

    Vedanarayanan, V V; Chaudhry, V

    2000-09-01

    Guillian Barré Syndrome (GBS) is an acquired disease of the peripheral nerves that is characterized clinically by rapidly progressing paralysis, areflexia, and albumino-cytological dissociation. It affects both genders, involves people of all ages, is reported worldwide, and in the post-polio era, it is the most common cause of an acute generalized paralysis. The clinical features are distinct and a history and an examination generally lead to a high suspicion of the diagnosis that can then be confirmed by supportive laboratory tests and electrodiagnostic studies. This review discusses the recent advances in understanding of the different variants of GBS such as acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), acute motor sensory axonal neuropathy (AMSAN), and the Fisher syndrome. The clinical, electrodiagnostic criteria, immunopathogenesis, and management of GBS and its variants are discussed.

  13. Ultrasonographic nerve enlargement of the median and ulnar nerves and the cervical nerve roots in patients with demyelinating Charcot-Marie-Tooth disease: distinction from patients with chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Sugimoto, Takamichi; Ochi, Kazuhide; Hosomi, Naohisa; Takahashi, Tetsuya; Ueno, Hiroki; Nakamura, Takeshi; Nagano, Yoshito; Maruyama, Hirofumi; Kohriyama, Tatsuo; Matsumoto, Masayasu

    2013-10-01

    Demyelinating Charcot-Marie-Tooth disease (CMT) and chronic inflammatory demyelinating polyneuropathy (CIDP) are both demyelinating polyneuropathies. The differences in nerve enlargement degree and pattern at multiple evaluation sites/levels are not well known. We investigated the differences in nerve enlargement degree and the distribution pattern of nerve enlargement in patients with demyelinating CMT and CIDP, and verified the appropriate combination of sites/levels to differentiate between these diseases. Ten patients (aged 23-84 years, three females) with demyelinating CMT and 16 patients (aged 30-85 years, five females) with CIDP were evaluated in this study. The nerve sizes were measured at 24 predetermined sites/levels from the median and ulnar nerves and the cervical nerve roots (CNR) using ultrasonography. The evaluation sites/levels were classified into three regions: distal, intermediate and cervical. The number of sites/levels that exhibited nerve enlargement (enlargement site number, ESN) in each region was determined from the 24 sites/levels and from the selected eight screening sites/levels, respectively. The cross-sectional areas of the peripheral nerves were markedly larger at all evaluation sites in patients with demyelinating CMT than in patients with CIDP (p < 0.01). However, the nerve sizes of CNR were not significantly different between patients with either disease. When we evaluated ESN of four selected sites for screening from the intermediate region, the sensitivity and specificity to distinguish between demyelinating CMT and CIDP were 0.90 and 0.94, respectively, with the cut-off value set at four. Nerve ultrasonography is useful to detect nerve enlargement and can clarify morphological differences in nerves between patients with demyelinating CMT and CIDP.

  14. The immunotherapy of Guillain-Barré syndrome.

    PubMed

    Restrepo-Jiménez, Paula; Rodríguez, Yhojan; González, Paulina; Chang, Christopher; Gershwin, M Eric; Anaya, Juan-Manuel

    2018-05-08

    Guillain-Barré syndrome is the most common cause of acute flaccid paralysis worldwide. Microorganisms such as Campylobacter jejuni, Cytomegalovirus, Epstein-Barr virus, Mycoplasma pneumoniae, Haemophilus influenzae and Zika virus have been linked to the disease. The most common clinical variants are acute inflammatory demyelinating polyneuropathy and acute motor axonal neuropathy. Plasma exchange and intravenous immunoglobulins are the standard therapy for the disease. Areas covered: research to elucidate the pathophysiology of Guillain-Barré syndrome has led to the development of drugs directed towards new potential therapeutic targets. This review offers a comprehensive view of the current treatment based upon the physiopathology. Expert opinion: patients with Guillain-Barré syndrome need a multidisciplinary approach, limitation to walk unaided and disability score are indicators for treatment as well as the presence of autonomic dysfunction and pain. Admission to intensive care units should be considered for those patients presenting with respiratory failure, bulbar involvement and progression of the disease. Research aimed to deciphering the pathophysiology of the disease, discovering new biomarkers and establishing algorithms of prediction of both the disease and its outcomes is warranted.

  15. Acute-onset chronic inflammatory demyelinating polyneuropathy with focal segmental glomerulosclerosis.

    PubMed

    Quek, Amy May Lin; Soon, Derek; Chan, Yee Cheun; Thamboo, Thomas Paulraj; Yuki, Nobuhiro

    2014-06-15

    Inflammatory neuropathies have been reported to occur in association with nephrotic syndrome. Their underlying immuno-pathogenic mechanisms remain unknown. A 50-year-old woman concurrently presented with acute-onset chronic inflammatory demyelinating polyneuropathy and nephrotic syndrome secondary to focal segmental glomerulosclerosis. Both neuropathy and proteinuria improved after plasma exchange and steroids. Literature review of cases of concurrent inflammatory neuropathies and nephrotic syndrome revealed similar neuro-renal presentations. This neuro-renal condition may be mediated by autoantibodies targeting myelin and podocytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Acute disseminated encephalomyelitis: a case report of effective early immunotherapy

    NASA Astrophysics Data System (ADS)

    Ritarwan, K.; Ramayani, O. R.; Eyanoer, P.

    2018-03-01

    Acute disseminated encephalomyelitis (ADEM) is a monophasic acute non-vasculitic inflammatory demyelinating disorder of the central nervous system characterized by diffuse neurologic signs and symptoms coupled with evidence of multifocal lesions of demyelination on neuroimaging. Despite the long-standing recognition of ADEM as a specific entity, no consensus definition of ADEM had been reached until recently. Historically, different definitions of ADEM have been in published cases of pediatric and adult patients, which varied as to whether events required (1) monofocal or multifocal clinical features, (2) a change in mental status, and (3) a documentation of previous infection or immunization. The treatment has been given to the patient such as supportive therapy and high dose corticosteroids.

  17. Platelet-Derived Growth Factor Promotes Repair of Chronically Demyelinated White Matter

    PubMed Central

    Vana, Adam C.; Flint, Nicole C.; Harwood, Norah E.; Le, Tuan Q.; Fruttiger, Marcus; Armstrong, Regina C.

    2009-01-01

    In multiple sclerosis, remyelination becomes limited after repeated or prolonged episodes of demyelination. To test the effect of platelet-derived growth factor-A (PDGF-A) in recovery from chronic demyelination we induced corpus callosum demyelination using cuprizone treatment in hPDGF-A transgenic (tg) mice with the human PDGF-A gene under control of an astrocyte-specific promoter. After chronic demyelination and removal of cuprizone from the diet, remyelination and oligodendrocyte density improved significantly in hPDGF-A tg mice compared with wild-type mice. In hPDGF-A tg mice, oligodendrocyte progenitor density and proliferation values were increased in the corpus callosum during acute demyelination but not during chronic demyelination or the subsequent recovery period, compared with hPDGF-A tg mice without cuprizone or to treatment-matched wild-type mice. Proliferation within the subventricular zone and subcallosal zone was elevated throughout cuprizone treatment but was not different between hPDGF-A tg and wild-type mice. Importantly, hPDGF-A tg mice had reduced apoptosis in the corpus callosum during the recovery period after chronic demyelination. Therefore, PDGF-A may support oligodendrocyte generation and survival to promote remyelination of chronic lesions. Furthermore, preventing oligodendrocyte apoptosis may be important not only during active demyelination but also for supporting the generation of new oligodendrocytes to remyelinate chronic lesions. PMID:17984680

  18. Effects of aquatic exercises in a rat model of brainstem demyelination with ethidium bromide on the beam walking test.

    PubMed

    Nassar, Cíntia Cristina Souza; Bondan, Eduardo Fernandes; Alouche, Sandra Regina

    2009-09-01

    Multiple sclerosis is a demyelinating disease of the central nervous system associated with varied levels of disability. The impact of early physiotherapeutic interventions in the disease progression is unknown. We used an experimental model of demyelination with the gliotoxic agent ethidium bromide and early aquatic exercises to evaluate the motor performance of the animals. We quantified the number of footsteps and errors during the beam walking test. The demyelinated animals walked fewer steps with a greater number of errors than the control group. The demyelinated animals that performed aquatic exercises presented a better motor performance than those that did not exercise. Therefore aquatic exercising was beneficial to the motor performance of rats in this experimental model of demyelination.

  19. Transcranial Magnetic Stimulation as an Additional Diagnostic Tool in Children with Acute Inflammatory Demyelinating Polyneuropathy

    PubMed Central

    Voitenkov, Voitenkov Vladislav; Andrey, Klimkin; Natalia, Skripchenko; Anastasia, Aksenova

    2017-01-01

    Context: The diagnosis of polyneuropathy may be challenging at the early stages of the disease. Despite electromyography (EMG) efficacy in the establishment of polyneuropathy diagnosis, in some cases, results are dubious and neurophysiologists may implement additional techniques to ensure that conduction is affected. Aims: The aim of the study was to evaluate motor-evoked potential (MEP) characteristics in children with acute inflammatory demyelinating polyneuropathy (AIDP). Settings and Design: The study was conducted at a pediatric research and clinical center for infectious diseases. Subjects and Methods: Twenty healthy children (7–14 years old) without signs of neurological disorders were enrolled as controls. Thirty-seven patients (8–13 years old) with AIDP were enrolled as the main group. EMG and transcranial magnetic stimulation (TMS) were performed on the 3rd–7th days from the onset of the first symptoms. Statistical Analysis Used: Descriptive statistics and Student's t-test were used. Bonferroni method was applied to implement appropriate corrections for multiple comparisons. Results: Significant differences between children with AIDP and controls on latencies of both cortical and lumbar MEPs were registered. Cortical MEP shapes were disperse in 100% of the cases and lumbar MEPs were disperse in 57% of the cases. Conclusions: Diagnostic TMS on the early stage of the AIDP in children may be implemented as the additional tool. The main finding in this population is lengthening of the latency of cortical and lumbar MEPs. Disperse shape of the lumbar MEPs may be used as the early sign of the acute demyelization. PMID:28904571

  20. DTI fiber tracking to differentiate demyelinating diseases from diffuse brain stem glioma.

    PubMed

    Giussani, Carlo; Poliakov, Andrew; Ferri, Raymond T; Plawner, Lauren L; Browd, Samuel R; Shaw, Dennis W W; Filardi, Tanya Z; Hoeppner, Corrine; Geyer, J Russell; Olson, James M; Douglas, James G; Villavicencio, Elisabeth H; Ellenbogen, Richard G; Ojemann, Jeffrey G

    2010-08-01

    Intrinsic diffuse brainstem tumors and demyelinating diseases primarily affecting the brainstem can share common clinical and radiological features, sometimes making the diagnosis difficult especially at the time of first clinical presentation. To explore the potential usefulness of new MRI sequences in particular diffusion tensor imaging fiber tracking in differentiating these two pathological entities, we review a series of brainstem tumors and demyelinating diseases treated at our institution. The clinical history including signs and symptoms and MRI findings of three consecutive demyelinating diseases involving the brainstem that presented with diagnostic uncertainty and three diffuse intrinsic brainstem tumors were reviewed, along with a child with a supratentorial tumor for comparison. Fiber tracking of the pyramidal tracts was performed for each patient using a DTI study at the time of presentation. Additionally Fractional Anisotropy values were calculated for each patient in the pons and the medulla oblongata. Routine MR imaging was unhelpful in differentiating between intrinsic tumor and demyelination. In contrast, retrospective DTI fiber tracking clearly differentiated the pathology showing deflection of the pyramidal tracts posteriorly and laterally in the case of intrinsic brainstem tumors and, in the case of demyelinating disease, poorly represented and truncated fibers. Regionalized FA values were variable and of themselves were not predictive either pathology. DTI fiber tracking of the pyramid tracts in patients with suspected intrinsic brainstem tumor or demyelinating disease presents two clearly different patterns that may help in differentiating between these two pathologies when conventional MRI and clinical data are inconclusive. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Childhood chronic inflammatory demyelinating polyneuropathy: an overview of 10 cases in the modern era.

    PubMed

    Ware, Tyson L; Kornberg, Andrew J; Rodriguez-Casero, M Victoria; Ryan, Monique M

    2014-01-01

    Chronic inflammatory demyelinating polyneuropathy is a rare condition in children. In this article, we report our experience in the management of 10 cases of childhood chronic inflammatory demyelinating polyneuropathy in a single center, in the era of contrast-enhanced magnetic resonance imaging (MRI), genetic microarray, and chronic inflammatory demyelinating polyneuropathy disease activity status. Robust neurophysiologic abnormalities were present in all cases and both MRI and lumbar puncture were useful adjuncts in diagnosis. Genetic microarray is a simple technique useful in excluding the most common hereditary demyelinating neuropathy. Intravenous immunoglobulin was an effective first-line therapy in most cases, with refractory cases responding to corticosteroids and rituximab. We found the chronic inflammatory demyelinating polyneuropathy disease activity status useful for assessing outcome at final follow-up, whereas the modified Rankin score was better for assessing peak motor disability.

  2. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron

    PubMed Central

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-01-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. PMID:24899728

  3. Destruction of paranodal architecture in inflammatory neuropathy with anti-contactin-1 autoantibodies.

    PubMed

    Doppler, Kathrin; Appeltshauser, Luise; Wilhelmi, Kai; Villmann, Carmen; Dib-Hajj, Sulayman D; Waxman, Stephen G; Mäurer, Mathias; Weishaupt, Andreas; Sommer, Claudia

    2015-07-01

    Autoantibodies against paranodal proteins have been described in patients with inflammatory neuropathies, but their association with pathology of nodes of Ranvier is unclear. We describe the clinical phenotype and histopathological changes of paranodal architecture of patients with autoantibodies against contactin-1, identified from a cohort with chronic inflammatory demyelinating polyradiculoneuropathy (n=53) and Guillain-Barré syndrome (n=21). We used ELISA to detect autoantibodies against contactin-1. Specificity of the autoantibodies was confirmed by immunoblot assay, binding to contactin-1-transfected human embryonic kidney cells, binding to paranodes of murine teased fibres and preabsorption experiments. Paranodal pathology was investigated by immunofluorescence labelling of dermal myelinated fibres. High reactivity to contactin-1 by ELISA was found in four patients with chronic inflammatory demyelinating polyradiculoneuropathy and in none of the patients with Guillain-Barré syndrome, which was confirmed by cell binding assays in all four patients. The four patients presented with a typical clinical picture, namely acute onset of disease and severe motor symptoms, with three patients manifesting action tremor. Immunofluorescence-labelling of paranodal proteins of dermal myelinated fibres revealed disruption of paranodal architecture. Semithin sections showed axonal damage but no classical signs of demyelination. We conclude that anti-contactin-1-related neuropathy constitutes a presumably autoantibody-mediated form of inflammatory neuropathy with distinct clinical symptoms and disruption of paranodal architecture as a pathological correlate. Anti-contactin-1-associated neuropathy does not meet morphological criteria of demyelinating neuropathy and therefore, might rather be termed a 'paranodopathy' rather than a subtype of demyelinating inflammatory neuropathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Postmortem Findings in Patient with Guillain-Barré Syndrome and Zika Virus Infection

    PubMed Central

    Torres, José V.; Martines, Roosecelis Brasil; Reagan-Steiner, Sarah; Pérez, George Venero; Rivera, Aidsa; Major, Chelsea; Matos, Desiree; Muñoz-Jordan, Jorge; Shieh, Wun-Ju; Zaki, Sherif R.; Sharp, Tyler M.

    2018-01-01

    Postmortem examination results of a patient with Guillain-Barré syndrome and confirmed Zika virus infection revealed demyelination of the sciatic and cranial IV nerves, providing evidence of the acute demyelinating inflammatory polyneuropathy Guillain-Barré syndrome variant. Lack of evidence of Zika virus in nervous tissue suggests that pathophysiology was antibody mediated without neurotropism. PMID:29261094

  5. Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis.

    PubMed

    Smith, M E; Eller, N L; McFarland, H F; Racke, M K; Raine, C S

    1999-10-01

    A prominent feature of the clinical spectrum of multiple sclerosis (MS) is its high incidence of onset in the third decade of life and the relative rarity of clinical manifestations during childhood and adolescence, features suggestive of age-related restriction of clinical expression. Experimental allergic encephalomyelitis (EAE), a model of central nervous system (CNS) autoimmune demyelination with many similarities to MS, has a uniform rapid onset and a high incidence of clinical and pathological disease in adult (mature) animals. Like MS, EAE is most commonly seen and studied in female adults. In this study, age-related resistance to clinical EAE has been examined with the adoptive transfer model of EAE in SJL mice that received myelin basic protein-sensitized cells from animals 10 days (sucklings) to 12 weeks (young adults) of age. A variable delay before expression of clinical EAE was observed between the different age groups. The preclinical period was longest in the younger (<14 days of age) animals, and shortest in animals 6 to 8 weeks old at time of transfer. Young animals initially resistant to EAE eventually expressed well-developed clinical signs by 6 to 7 weeks of age. This was followed by a remitting, relapsing clinical course. For each age at time of sensitization, increased susceptibility of females compared to males was observed. Examination of the CNS of younger animal groups during the preclinical period showed lesions of acute EAE. Older age groups developed onset of signs coincident with acute CNS lesions. This age-related resistance to clinical EAE in developing mice is reminiscent of an age-related characteristic of MS previously difficult to study in vivo. The associated subclinical CNS pathology and age-related immune functions found in young animals may be relevant to the increasing clinical expression of MS with maturation, and may allow study of factors associated with the known occasional poor correlation of CNS inflammation and demyelination and clinical changes in this disease.

  6. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    PubMed Central

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination. PMID:21705418

  7. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis.

    PubMed

    Zambonin, Jessica L; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M; Turnbull, Doug M; Trapp, Bruce D; Lassmann, Hans; Franklin, Robin J M; Mahad, Don J

    2011-07-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.

  8. Vitamin D status and age of onset of demyelinating disease.

    PubMed

    Brenton, J Nicholas; Koenig, Scott; Goldman, Myla D

    2014-11-01

    To evaluate the prevalence of and associated factors impacting vitamin D insufficiency and deficiency in childhood versus adult-onset demyelinating disease. We conducted a retrospective, cross-sectional, chart-review, cohort study on geographically-similar pediatric, young adult, and adult patients with a diagnosis of demyelinating disease identified at the University of Virginia from 2008 to 2013. Group prevalence of vitamin D insufficiency and deficiency as well as relevant factors associated with vitamin D status was analyzed and compared. We identified 24 childhood-onset (CO), 33 young adult-onset (Y-AO), and 59 adult-onset (AO) cases. There was no difference in the prevalence of vitamin D insufficiency or deficiency between the cohorts. Non-Caucasian race and elevated body mass index were significantly associated with low vitamin D levels, regardless of age of onset. In regression models, race and obesity were independent predictors of vitamin D status. The prevalence of obesity was significantly higher in the childhood-onset cohort (CO=58.5%; Y-AO=31%; AO=34%; p=0.02). Our findings demonstrate no difference in the prevalence of vitamin D insufficiency/deficiency between childhood and adult-onset demyelinating disease, suggesting age at disease onset is irrelevant to vitamin D status in demyelinating disease. Both race and obesity are independent factors associated with vitamin D insufficiency/deficiency, regardless of age of disease onset. Obesity, independent of gender, is significantly higher in children compared to adult patients diagnosed with multiple sclerosis and may have a role in the development of childhood-onset demyelinating disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein.

    PubMed

    Plant, Sheila R; Iocca, Heather A; Wang, Ying; Thrash, J Cameron; O'Connor, Brian P; Arnett, Heather A; Fu, Yang-Xin; Carson, Monica J; Ting, Jenny P-Y

    2007-07-11

    Inflammation mediated by macrophages is increasingly found to play a central role in diseases and disorders that affect a myriad of organs, prominent among these are diseases of the CNS. The neurotoxicant-induced, cuprizone model of demyelination is ideally suited for the analysis of inflammatory events. Demyelination on exposure to cuprizone is accompanied by predictable microglial activation and astrogliosis, and, after cuprizone withdrawal, this activation reproducibly diminishes during remyelination. This study demonstrates enhanced expression of lymphotoxin beta receptor (Lt betaR) during the demyelination phase of this model, and Lt betaR is found in areas enriched with microglial and astroglial cells. Deletion of the Lt betaR gene (Lt betaR-/-) resulted in a significant delay in demyelination but also a slight delay in remyelination. Inhibition of Lt betaR signaling by an Lt betaR-Ig fusion decoy protein successfully delayed demyelination in wild-type mice. Unexpectedly, this Lt betaR-Ig decoy protein dramatically accelerated the rate of remyelination, even after the maximal pathological disease state had been reached. This strongly indicates the beneficial role of Lt betaR-Ig in the delay of demyelination and the acceleration of remyelination. The discrepancy between remyelination rates in these systems could be attributed to developmental abnormalities in the immune systems of Lt betaR-/- mice. These findings bode well for the use of an inhibitory Lt betaR-Ig as a candidate biological therapy in demyelinating disorders, because it is beneficial during both demyelination and remyelination.

  10. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.

    PubMed

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-12-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Rehabilitation of a marathon runner with Guillain-Barré syndrome.

    PubMed

    Fisher, Tara Beth; Stevens, Jennifer E

    2008-12-01

    Guillain-Barré syndrome (GBS) is an acute inflammatory demyelinating polyradiculoneuropathy that affects nerve roots and peripheral nerves leading to motor neuropathy and flaccid paralysis. This case report describes the physical therapy examination, intervention, and outcomes for a marathon runner with GBS. The patient was a 30-year-old male marathon runner who presented with acutely evolving motor and sensory deficits that initially stabilized and then worsened. Both GBS and chronic inflammatory demyelinating polyradiculoneuropathy were considered as diagnoses, and medical treatment included a combination of intravenous administration of immunoglobulins, plasmapheresis, and corticosteroids. During his stay in an acute inpatient rehabilitation facility, the intervention was focused on regaining functional independence and strength with care not to induce fatigue or relapse. After three weeks in an acute inpatient rehabilitation facility, the patient showed marked gains in Functional Independence Measure scores and muscle performance as measured by manual muscle testing.

  12. Coexistence of Guillain-Barré syndrome and Behçet's disease.

    PubMed

    Shugaiv, Erkingul; Kiyat-Atamer, Asli; Tüzün, Erdem; Deymeer, Feza; Oflazer, Piraye; Parman, Yesim; Akman-Demir, Gulsen

    2013-01-01

    Behçet's disease (BD) is a multisystemic, recurrent and inflammatory disorder. Neurological involvement is rare and affects mainly the central nervous system (CNS) in the form of brainstem meningoencephalitis or dural sinus thrombosis. Peripheral neuropathy is usually not observed during the course of BD but some reports have shown electrophysiologic evidence of subclinical neuropathy, mononeuritis multiplex and cranial neuropathy in BD patients. The co-occurrence of Guillain-Barré syndrome (GBS), an acute inflammatory demyelinating neuropathy, with other autoimmune or systemic diseases is rare. We present a case of BD with clinical and electrophysiological diagnosis of GBS. The findings of the patient were discussed with reference to literature.

  13. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination

    PubMed Central

    Hussain, Rashad; Ghoumari, Abdel M.; Bielecki, Bartosz; Steibel, Jérôme; Boehm, Nelly; Liere, Philippe; Macklin, Wendy B.; Kumar, Narender; Habert, René; Mhaouty-Kodja, Sakina; Tronche, François; Sitruk-Ware, Regine

    2013-01-01

    Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic testosterone analogue 7α-methyl-19-nortestosterone, which has been developed for long-term male contraception and androgen replacement therapy in hypogonadal males and does not stimulate prostate growth, also efficiently promoted myelin repair. These data establish the efficacy of androgens as remyelinating agents and qualify the brain androgen receptor as a promising drug target for remyelination therapy, thus providing the preclinical rationale for a novel therapeutic use of androgens in males with multiple sclerosis. PMID:23365095

  14. Diffusion-weighted imaging and demyelinating diseases: new aspects of an old advanced sequence.

    PubMed

    Rueda-Lopes, Fernanda C; Hygino da Cruz, Luiz C; Doring, Thomas M; Gasparetto, Emerson L

    2014-01-01

    The purpose of this article is to discuss classic applications in diffusion-weighted imaging (DWI) in demyelinating disease and progression of DWI in the near future. DWI is an advanced technique used in the follow-up of demyelinating disease patients, focusing on the diagnosis of a new lesion before contrast enhancement. With technical advances, diffusion-tensor imaging; new postprocessing techniques, such as tract-based spatial statistics; new ways of calculating diffusion, such as kurtosis; and new applications for DWI and its spectrum are about to arise.

  15. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury.

    PubMed

    Shi, Hong; Hu, Xiaoming; Leak, Rehana K; Shi, Yejie; An, Chengrui; Suenaga, Jun; Chen, Jun; Gao, Yanqin

    2015-10-01

    Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Acute-onset chronic inflammatory demyelinating polyneuropathy: An electrodiagnostic study.

    PubMed

    Anadani, Mohammad; Katirji, Bashar

    2015-11-01

    Acute-onset chronic inflammatory demyelinating polyneuropathy (A-CIDP) is an increasingly recognized CIDP subtype. Differentiating A-CIDP from Guillain-Barré syndrome (GBS) is challenging but important, because there are different treatment outcomes. We report 3 patients with A-CIDP who were initially diagnosed with severe GBS but were later confirmed to have CIDP based on their clinical course and electrodiagnostic (EDx) studies. We also report on the long-term treatment of these patients and review the literature on EDx studies in this syndrome. Three patients were initially diagnosed with GBS and responded to treatment. However, all 3 had arrest in improvement or deterioration during their rehabilitation phases. EDx studies showed prominent demyelinating changes many months after the initial presentation. All responded very well to immunotherapy. Although several features may suggest the diagnosis of A-CIDP at initial presentation, close follow-up of GBS patients during the recovery phase is also needed for accurate diagnosis. EDx studies may distinguish patients with A-CIDP from GBS patients. © 2015 Wiley Periodicals, Inc.

  17. Myasthenia gravis and chronic inflammatory demyelinating polyneuropathy in the same patient - a case report.

    PubMed

    Quan, Weiwei; Xia, Junhui; Tong, Qiuling; Lin, Jie; Zheng, Xiaolu; Yang, Xuezhi; Xie, Dewei; Weng, Yiyun; Zhang, Xu

    2018-06-01

    To investigate the clinical character, diagnosis and treatment of chronic inflammatory demyelinating polyneuropathy accompanying myasthenia gravis so as to improve the understanding of such diseases. A case of chronic inflammatory demyelinating polyneuropathy combined with myasthenia gravis were analyzed retrospectively with review of the literature. This man was presented with chronic progressive sensory symptoms, flaccid tetraparesis, areflexia and protein-cell dissociation of cerebrospinal fluid. Nerve conduction study was indicative of demyelinating neuropathy. He was suspected as chronic inflammatory demyelinating polyneuropathy and treated with high-dose glucocorticoids. However, his condition worsened. Four months later, he was admitted and was diagnosed as combination of chronic inflammatory demyelinating polyneuropathy and myasthenia gravis. Good clinical results were observed after he was treated with pyridostigmine bromide, prednisone and mycophenolate mofetil. This case warns clinicians to be aware of these two diseases presenting in the same patient, and the possible implications on treatment choices. A common immunological abnormality might exist in this rare association, but it still remains unknown.

  18. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases

    PubMed Central

    Clemente, Diego; Ortega, María Cristina; Melero-Jerez, Carolina; de Castro, Fernando

    2013-01-01

    Oligodendrocyte precursor cells (OPCs) originate in specific areas of the developing central nervous system (CNS). Once generated, they migrate towards their destinations where they differentiate into mature oligodendrocytes. In the adult, 5–8% of all cells in the CNS are OPCs, cells that retain the capacity to proliferate, migrate, and differentiate into oligodendrocytes. Indeed, these endogenous OPCs react to damage in demyelinating diseases, like multiple sclerosis (MS), representing a key element in spontaneous remyelination. In the present work, we review the specific interactions between OPCs and other glial cells (astrocytes, microglia) during CNS development and in the pathological scenario of MS. We focus on: (i) the role of astrocytes in maintaining the homeostasis and spatial distribution of different secreted cues that determine OPC proliferation, migration, and differentiation during CNS development; (ii) the role of microglia and astrocytes in the redistribution of iron, which is crucial for myelin synthesis during CNS development and for myelin repair in MS; (iii) how microglia secrete different molecules, e.g., growth factors, that favor the recruitment of OPCs in acute phases of MS lesions; and (iv) how astrocytes modify the extracellular matrix in MS lesions, affecting the ability of OPCs to attempt spontaneous remyelination. Together, these issues demonstrate how both astroglia and microglia influence OPCs in physiological and pathological situations, reinforcing the concept that both development and neural repair are complex and global phenomena. Understanding the molecular and cellular mechanisms that control OPC survival, proliferation, migration, and differentiation during development, as well as in the mature CNS, may open new opportunities in the search for reparative therapies in demyelinating diseases like MS. PMID:24391545

  19. Acute disseminated encephalomyelitis in dengue viral infection.

    PubMed

    Wan Sulaiman, Wan Aliaa; Inche Mat, Liyana Najwa; Hashim, Hasnur Zaman; Hoo, Fan Kee; Ching, Siew Mooi; Vasudevan, Ramachandran; Mohamed, Mohd Hazmi; Basri, Hamidon

    2017-09-01

    Dengue is the most common arboviral disease affecting many countries worldwide. An RNA virus from the flaviviridae family, dengue has four antigenically distinct serotypes (DEN-1-DEN-4). Neurological involvement in dengue can be classified into dengue encephalopathy immune-mediated syndromes, encephalitis, neuromuscular or dengue muscle dysfunction and neuro-ophthalmic involvement. Acute disseminated encephalomyelitis (ADEM) is an immune mediated acute demyelinating disorder of the central nervous system following recent infection or vaccination. This monophasic illness is characterised by multifocal white matter involvement. Many dengue studies and case reports have linked ADEM with dengue virus infection but the association is still not clear. Therefore, this article is to review and discuss concerning ADEM in dengue as an immune-medicated neurological complication; and the management strategy required based on recent literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cyclic phosphatidic acid treatment suppress cuprizone-induced demyelination and motor dysfunction in mice.

    PubMed

    Yamamoto, Shinji; Gotoh, Mari; Kawamura, Yuuki; Yamashina, Kota; Yagishita, Sosuke; Awaji, Takeo; Tanaka, Motomu; Maruyama, Kei; Murakami-Murofushi, Kimiko; Yoshikawa, Keisuke

    2014-10-15

    Multiple sclerosis is a chronic demyelinating disease of the central nervous system leading to progressive cognitive and motor dysfunction, which is characterized by neuroinflammation, demyelination, astrogliosis, loss of oligodendrocytes, and axonal pathologies. Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. In this study, we investigated the effects of cPA on cuprizone-induced demyelination, which is a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, astrocyte and microglial activation, and motor dysfunction. Simultaneous administration of cPA effectively attenuated cuprizone-induced demyelination, glial activation, and motor dysfunction. These data indicate that cPA may be a useful treatment to reduce the extent of demyelination and the severity of motor dysfunction in multiple sclerosis. cPA is a potential lead compound in the development of drugs for the treatment of this devastating disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Chronic inflammatory demyelinating polyneuropathy in two siblings.

    PubMed Central

    Gabreëls-Festen, A A; Hageman, A T; Gabreëls, F J; Joosten, E M; Renier, W O; Weemaes, C M; ter Laak, H J

    1986-01-01

    A familial occurrence of chronic inflammatory demyelinating polyneuropathy is reported. The diagnostic problems in distinguishing the progressive form of this disease in childhood from hereditary motor and sensory neuropathy types I and III are discussed. Criteria for a definite diagnosis of chronic inflammatory demyelinating polyneuropathy are proposed. Images PMID:3456424

  2. Sensory Guillain-Barré syndrome and related disorders: an attempt at systematization.

    PubMed

    Uncini, Antonino; Yuki, Nobuhiro

    2012-04-01

    The possibility that some patients diagnosed with an acute sensory neuropathy could actually have Guillain-Barré syndrome (GBS) has been repeatedly advanced in the literature, but the number of cases reported is small. The reports have shown different clinical presentations and electrophysiological findings and are variously named, thus generating terminological and nosological confusion. We operatively defined sensory GBS as an acute, monophasic, widespread neuropathy characterized clinically by exclusive sensory symptoms and signs that reach their nadir in a maximum of 6 weeks without related systemic disorders and other diseases or conditions. We reviewed the literature through searches of PubMed from 1980 to March 2011 and our own files. On the basis of the size of fibers involved and the possible site of primary damage, we propose tentatively classifying sensory GBS and related disorders into three subtypes: acute sensory demyelinating polyneuropathy; acute sensory large-fiber axonopathy-ganglionopathy; and acute sensory small-fiber neuropathy-ganglionopathy. Copyright © 2011 Wiley Periodicals, Inc.

  3. Human T-cell lymphotropic virus (HTLV)-associated encephalopathy: an under-recognised cause of acute encephalitis? Case series and literature review.

    PubMed

    Crawshaw, Ania A; Dhasmana, Divya; Jones, Brynmor; Gabriel, Carolyn M; Sturman, Steve; Davies, Nicholas W S; Taylor, Graham P

    2018-04-01

    Human T-cell lymphotropic virus (HTLV)-1-associated myelopathy (HAM) is well described. Clinical features are predominantly consistent with cord pathology, though imaging and autopsy studies also demonstrate brain inflammation. In general, this is subclinical; however, six cases have previously been reported of encephalopathy in HTLV-1-infected patients, without alternative identified aetiology. We describe three further cases of encephalitis in the UK HAM cohort (n = 142), whereas the annual incidence of acute encephalitis in the general population is 0.07-12.6 per 100,000. Clinical features included reduced consciousness, fever/hypothermia, headaches, seizures, and focal neurology. Investigation showed: raised CSF protein; pleocytosis; raised CSF:peripheral blood mononuclear cell HTLV-1 proviral load ratio; and MRI either normal or showing white matter changes in brain and cord. Four of the six previous case reports of encephalopathy in HTLV-infected patients also had HAM. Histopathology, reported in three, showed perivascular predominantly CD8+ lymphocytic infiltrates in the brain. One had cerebral demyelination, and all had cord demyelination. We have reviewed the existing six cases in the literature, together with our three new cases. In all seven with HAM, the spastic paraparesis deteriorated sub-acutely preceding encephalitis. Eight of the nine were female, and four of the seven treated with steroids improved. We propose that HTLV-associated encephalopathy may be part of the spectrum of HTLV-1-induced central nervous system disease.

  4. A high throughput drug screening assay to identify compounds that promote oligodendrocyte differentiation using acutely dissociated and purified oligodendrocyte precursor cells.

    PubMed

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-09-05

    Multiple sclerosis is caused by an autoimmune response resulting in demyelination and neural degeneration. The adult central nervous system has the capacity to remyelinate axons in part through the generation of new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library. We have identified twenty-seven hit compounds which were validated by dose response analysis and the generation of half maximal effective concentration (EC50) values allowed for the ranking of efficacy. The assay identified novel promoters of OL differentiation which we attribute to (1) the incorporation of an OL toxicity pre-screen to allow lowering the concentrations of toxic compounds and (2) the utilization of freshly purified, non-passaged OPCs. These features set our assay apart from other OL differentiation assays used for drug discovery efforts. This acute primary OL-based differentiation assay should be of use to those interested in screening large compound libraries for the identification of drugs for the treatment of MS and other demyelinating diseases.

  5. Vaccinations and multiple sclerosis.

    PubMed

    Gout, O

    2001-04-01

    Two problems must be considered in regard to the relationship between vaccinations and MS: Do vaccinations favour the first attack of MS? Do they increase the short- or long-term risk in patients with known disease? Answers to these questions are difficult due to the paucity of reported cases, our ignorance of the precise frequency of neurological adverse events in vaccines based on prospective studies, and finally by the lack of a well established pathophysiology. In most instances, the role of the vaccine is based on a temporal link between the injection and the onset of neurological disease, and more rarely to a positive reintroduction. Acute disseminated encephalomyelitis (ADEM), a monophasic and multifocal illness of the white and grey matter, has been observed following various viral or bacterial infections as well as vaccine injections for diseases such as pertussis, tetanus and yellow fever. The similarities between ADEM and experimental allergic encephalitis (EAE) are suggestive of an immunological process. In addition to the dramatic presentation of ADEM, more limited white matter involvement, such as optic neuritis or myelitis, has been reported following vaccine injections, and has occasionally been counted as the first attack of MS. In France, 25 million inhabitants, almost half of the population, were vaccinated against hepatitis B (HB) between 1991 and 1999. Several hundred cases of an acute central demyelinating event following HB vaccination were reported to the pharmacovigilance unit, leading to a modification of vaccination policy in the schools and the initiation of several studies designed to examine the possible relationship between the vaccine and the central demyelinating events. The results of these studies failed to establish the causality of the HB vaccine. Nevertheless, molecular mimicry between HB antigen(s) and one or more myelin proteins, or a non-specific activation of autoreactive lymphocytes, could constitute possible pathogenetic mechanisms for these adverse neurological events.

  6. Acute-onset chronic inflammatory demyelinating polyneuropathy in hantavirus and hepatitis B virus coinfection: A case report.

    PubMed

    Lim, Jong Youb; Lim, Young-Ho; Choi, Eun-Hi

    2016-12-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired autoimmune disorder with progressive weakness. Acute-onset CIDP resembles Guillain-Barre syndrome (GBS), a rapidly progressive disorder, and follows a chronic course. To our knowledge, no case of acute-onset CIDP in hantavirus and hepatitis B virus (HBV) coinfection has been reported previously. We report a case of acute-onset CIDP that was initially diagnosed as GBS. A 44-year-old male logger complained of acute quadriplegia and dyspnea. Mechanical ventilation was initiated. He was an HBV carrier with mild elevation of hepatic enzyme, and positive for hantavirus antibody. He was diagnosed with GBS and immunoglobulin therapy was administered. After 8 months, quadriplegia and hypesthesia recurred. Immunoglobulin therapy at this time had no effect, but steroid therapy had some effect. A diagnosis of CIDP was made. After 2 months, severe extremity pain and dyspnea developed again, and steroid pulse therapy was initiated. Besides GBS, acute-onset CIDP can occur with hantavirus and HBV coinfection. Patients with this coinfection in whom GBS has been initially diagnosed should be followed up for a long time, because of the possibility of relapse or deterioration, and acute-onset CIDP should always be considered.

  7. Demyelination of vestibular nerve axons in unilateral Ménière's disease.

    PubMed

    Spencer, Robert F; Sismanis, Aristides; Kilpatrick, Jefferson K; Shaia, Wayne T

    2002-11-01

    We conducted a study to determine whether vestibular nerves in patients with unilateral Ménière's disease whose symptoms are refractory to medical management exhibit neuropathologic changes. We also endeavored to determine whether retrocochlear abnormalities are primary or secondary factors in the disease process. To these ends, we obtained vestibular nerve segments from five patients during retrosigmoid (posterior fossa) neurectomy, immediately fixed them, and processed them for light and electron microscopy. We found that all five segments exhibited moderate to severe demyelination with axonal sparing. Moreover, we noted that reactive astrocytes produced an extensive proliferation of fibrous processes and that the microglia assumed a phagocytic role. We conclude that the possible etiologies of demyelination include viral and/or immune-mediated factors similar to those seen in other demyelinating diseases, such as multiple sclerosis and Guillain-Barré syndrome. Our findings suggest that some forms of Ménière's disease that are refractory to traditional medical management might be the result of retrocochlear pathology that affects the neuroglial portion of the vestibular nerve.

  8. Anti-ganglioside antibodies in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy in Chinese patients.

    PubMed

    Fan, Chenghe; Jin, Haiqiang; Hao, Hongjun; Gao, Feng; Sun, Yongan; Lu, Yuanyuan; Liu, Yuanyuan; Lv, Pu; Cui, Wei; Teng, Yuming; Huang, Yining

    2017-04-01

    In this study we investigated the relationships between anti-ganglioside antibodies and Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP). Samples from 48 Chinese patients diagnosed with GBS and 18 patients diagnosed with CIDP were retrospectively reviewed. In the GBS patients, 62.5% were classified as having acute inflammatory demyelinating polyneuropathy (AIDP), 27.1% were found to have acute motor axonal neuropathy (AMAN), and 10.4% were unclassified. Serum IgG anti-ganglioside antibodies were detected in 46.2% of the AMAN patients and in 6.7% of the AIDP patients (P < 0.05); 5.6% of the 18 CIDP patients were IgG antibody positive, and 27.8% were IgM antibody positive. Facial palsy and sensory impairment were significantly associated with IgM antibodies. These results suggest that IgG anti-GM1 antibodies are associated with AMAN, but not with AIDP, and that IgM antibodies against GM1, GM2, and GM3 are associated with facial nerve palsy. Muscle Nerve 55: 470-475, 2017. © 2016 Wiley Periodicals, Inc.

  9. Treatment strategies for multiple sclerosis: When to start, when to change, when to stop?

    PubMed Central

    Gajofatto, Alberto; Benedetti, Maria Donata

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory condition of the central nervous system determined by a presumed autoimmune process mainly directed against myelin components but also involving axons and neurons. Acute demyelination shows as clinical relapses that may fully or partially resolve, while chronic demyelination and neuroaxonal injury lead to persistent and irreversible neurological symptoms, often progressing over time. Currently approved disease-modifying therapies are immunomodulatory or immunosuppressive drugs that significantly although variably reduce the frequency of attacks of the relapsing forms of the disease. However, they have limited efficacy in preventing the transition to the progressive phase of MS and are of no benefit after it has started. It is therefore likely that the potential advantage of a given treatment is condensed in a relatively limited window of opportunity for each patient, depending on individual characteristics and disease stage, most frequently but not necessarily in the early phase of the disease. In addition, a sizable proportion of patients with MS may have a very mild clinical course not requiring a disease-modifying therapy. Finally, individual response to existing therapies for MS varies significantly across subjects and the risk of serious adverse events remains an issue, particularly for the newest agents. The present review is aimed at critically describing current treatment strategies for MS with a particular focus on the decision of starting, switching and stopping commercially available immunomodulatory and immunosuppressive therapies. PMID:26244148

  10. Monophasic demyelination reduces brain growth in children

    PubMed Central

    Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis

    2017-01-01

    Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515

  11. Monophasic demyelination reduces brain growth in children.

    PubMed

    Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis

    2017-05-02

    To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.

  12. Influence of laser irradiation on demyelination of nervous fibers

    NASA Astrophysics Data System (ADS)

    Melnik, Nataly O.; Plaksij, Yu. S.; Mamilov, Serge A.

    2000-11-01

    Problem demyelinating diseases from actual in modern of neurology. Main disease of this group - multiple sclerosis, which morphological manifestation is the process demyelineation - disintegration of myelin, which covers axial cylinders of nervous filaments. The outcome of such damage is violation of realization of nervous impulses, dissonance of implement and coordination functions. Most typical the feature of a multiple sclerosis is origin of repeated remissions, which compact with indication remyelination. In development of disease the large role is played by modifications of immunological of a reactivity of an organism. The purpose of the title is development of new methods of treatment of a multiple sclerosis because of lasertherapy. For thsi purpose the influence of a laser exposure on demyelination and remyelination processes will be investigated, is investigated pathological fabrics at microscopic and submicroscopic levels. The study of proceses demyelination and remyelination will be conducted on experimental animals (rats), which are sick experimental allergic encephalomyelitis (EAE), that is the most adequate model of a multiple sclerosis. The patients' EAE animals will be subjected to treatment by a laser exposure. For want of it there will be determinate optimum lengths of waves, dozes and modes of laser radiation.

  13. Chronic restraint stress during early Theiler’s virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity

    PubMed Central

    Young, Erin E.; Sieve, Amy N.; Vichaya, Elisabeth G.; Carcoba, Luis M.; Young, Colin R.; Ambrus, Andrew; Storts, Ralph; Welsh, C. Jane R.; Meagher, Mary W.

    2010-01-01

    Theiler’s murine encephalomyelitis virus (TMEV) infection is a well-characterized model of multiple sclerosis (MS). Previous research has shown that chronic restraint stress (RS) during early TMEV infection exacerbates behavioral signs of disease. The present data suggest RS-induced increases in CNS inflammation, demyelination, and axonal degeneration may underlie this exacerbation. In addition, we report that males exhibit greater CNS inflammation and higher numbers of demyelinating lesions while females show greater susceptibility to RS-induced exacerbation. These findings indicate RS during early TMEV infection increases CNS lesion formation during the late phase and suggest the effects of RS are sex-dependent. PMID:20167380

  14. Investigation of human multiple sclerosis lesions using high resolution spectrally unmixed CARS microscopy

    NASA Astrophysics Data System (ADS)

    Poon, Kelvin W.; Brideau, Craig; Teo, Wulin; Schenk, Geert J.; Klaver, Roel; Klauser, Antoine M.; Kawasoe, Jean H.; Geurts, Jeroen J. G.; Stys, Peter K.

    2013-03-01

    The pathology of multiple sclerosis (MS) involves both the gray and white matter regions of the brain and spinal cord. It is characterized by various combinations of demyelination, inflammatory infiltration, axonal degeneration, and later gliosis in chronic lesions. While acute and chronic white matter plaques are well characterized and easily identified, evidence indicates that the CNS of MS patients may be globally altered, with subtle abnormalities found in grossly normal appearing white matter (NAWM) and in diffusely abnormal white matter (DAWM) where histochemical stains and advanced magnetic resonance imaging indicate altered tissue composition. Thus, the prototypical acute inflammatory lesion may merely represent the most obvious manifestation of a chronic widespread involvement of the CNS, which is difficult to examine reliably. The current study deals with the microstructure and biochemistry of demyelination, remyelination and axonal loss in various regions of post-mortem human MS brain, including NAWM, areas of remyelination and more typical acute and chronic lesions. The myelin sheath, neuroglia and perivascular spaces were investigated using a novel Coherent Anti-Stokes Raman Scattering (CARS) microscope with simultaneous Two-Photon Excited Fluorescence (TPEF) imaging. The active CH stretching region between 2800 and 3000 cm-1 was probed to provide chemically specific, high resolution, label-free imaging pertaining to the progression of the disease. CARS data were correlated with TPEF and conventional histochemical and immunohistochemical stains. Our novel CARS microscopy system provides detailed morphological and biochemical information regarding CNS pathology in MS and that may be applicable to a broad range of other human brain and spinal cord disorders.

  15. Central Nervous System Demyelination and Remyelination is Independent from Systemic Cholesterol Level in Theiler's Murine Encephalomyelitis.

    PubMed

    Raddatz, Barbara B; Sun, Wenhui; Brogden, Graham; Sun, Yanyong; Kammeyer, Patricia; Kalkuhl, Arno; Colbatzky, Florian; Deschl, Ulrich; Naim, Hassan Y; Baumgärtner, Wolfgang; Ulrich, Reiner

    2016-01-01

    High dietary fat and/or cholesterol intake is a risk factor for multiple diseases and has been debated for multiple sclerosis. However, cholesterol biosynthesis is a key pathway during myelination and disturbances are described in demyelinating diseases. To address the possible interaction of dyslipidemia and demyelination, cholesterol biosynthesis gene expression, composition of the body's major lipid repositories and Paigen diet-induced, systemic hypercholesterolemia were examined in Theiler's murine encephalomyelitis (TME) using histology, immunohistochemistry, serum clinical chemistry, microarrays and high-performance thin layer chromatography. TME-virus (TMEV)-infected mice showed progressive loss of motor performance and demyelinating leukomyelitis. Gene expression associated with cholesterol biosynthesis was overall down-regulated in the spinal cord of TMEV-infected animals. Spinal cord levels of galactocerebroside and sphingomyelin were reduced on day 196 post TMEV infection. Paigen diet induced serum hypercholesterolemia and hepatic lipidosis. However, high dietary fat and cholesterol intake led to no significant differences in clinical course, inflammatory response, astrocytosis, and the amount of demyelination and remyelination in the spinal cord of TMEV-infected animals. The results suggest that down-regulation of cholesterol biosynthesis is a transcriptional marker for demyelination, quantitative loss of myelin-specific lipids, but not cholesterol occurs late in chronic demyelination, and serum hypercholesterolemia exhibited no significant effect on TMEV infection. © 2015 International Society of Neuropathology.

  16. [Correlation between dental pulp demyelination degree and pain visual analogue scale scores data under acute and chronic pulpitis].

    PubMed

    Korsantiia, N B; Davarashvili, X T; Gogiashvili, L E; Mamaladze, M T; Tsagareli, Z G; Melikadze, E B

    2013-05-01

    The aim of study is the analysis of pulp nerve fibers demyelination degree and its relationship with Visual Analogue Scale (VAS) score that may be measured as objective criteria. Material and methods of study. Step I: electron micrografs of dental pulp simples with special interest of myelin structural changes detected in 3 scores system, obtained from 80 patients, displays in 4 groups: 1) acute and 2) chronic pulpitis without and with accompined systemic deseases, 20 patients in each group. Dental care was realized in Kutaisi N1 Dental clinic. Step II - self-reported VAS used for describing dental pain. All data were performed by SPSS 10,0 version statistics including Spearmen-rank and Mann-Whitny coefficients for examine the validity between pulp demyelination degree and pain intensity in verbal, numbered and box scales. Researched Data were shown that damaged myelin as focal decomposition of membranes and Schwann cells hyperthrophia correspond with acute dental pain intensity as Spearman index reported in VAS numbered Scales, myelin and axoplasm degeneration as part of chronic gangrenous pulpitis disorders are in direct correlation with VAS in verbal, numbered and behavioral Rating Scales. In fact, all morphological and subjective data, including psychomotoric assessment of dental painin pulpitis may be used in dental practice for evaluation of pain syndrome considered personal story.

  17. Seronegative Neuromyelitis Optica: A Case Report of a Hispanic Male

    PubMed Central

    Badri, Nabeel; Teleb, Mohamed; Syed, Saad; Wardi, Miraie; Porres-Aguilar, Mateo; Cruz-Flores, Salvador

    2016-01-01

    Abstract Neuromyelitis optica (NMO) is a rare disease, common in white females and rarely reported in Hispanic males. It is usually associated with recurrent demyelinating spectrum that is autoimmune in nature. The diagnosis is usually confirmed by antibody biomarkers; however, they can be negative and lead to more dilemma in diagnosis. Furthermore, the course of disease and prognosis are different in seronegative as compared to seropositive NMO. Treatment is similar in both subgroups with new approaches under investigation for seronegative NMO patients. We present an interesting case of a 37-year-old Hispanic male who presented with sudden onset of lower extremity weakness, numbness, blurry vision, and urinary retention. Magnetic resonance imaging (MRI) of the thoracic spine showed multiphasic demyelinating process involving the thoracic spinal cord. His brain MRI also revealed changes suggesting optic neuritis. The patient met the criteria for diagnosis of NMO by having optic neuritis and myelitis by imaging studies despite having negative aquaporin-4 antibodies (AQP4-Ab). His condition improved after plasma exchange. NMO can be difficult to distinguish from acute multiple sclerosis in the early stages of the disease. Having AQP4-Ab testing is important for diagnosis with imaging studies; however, negative antibody results cannot exclude the diagnosis, but rather group it in seronegative subtype. Ongoing studies and research suggest that seronegative NMO might have a different pathophysiology, manifestation, and prognosis. PMID:27403130

  18. [Hyponatremia in emergency admissions - often dangerous].

    PubMed

    Fenske, W

    2017-10-01

    Hyponatremia is the most common electrolyte disorder in clinical practice and associated with increased morbidity and mortality, independent of underlying disease. Untreated acute hyponatremia can cause substantial morbidity and mortality as a result of osmotically induced cerebral edema whilst over rapid correction of chronic hyponatremia can cause serious neurologic impairment and death resulting from osmotic demyelination. Still hyponatremia is often neglected and insufficiently addressed, most likely due to limited understanding of its pathophysiological mechanisms. Being familiar with only few basic principles of body fluid regulation may be a worthwhile investment into the clinical career and save patients' lives.

  19. Axonal loss in patients with inflammatory demyelinating polyneuropathy as determined by motor unit number estimation and MUNIX.

    PubMed

    Paramanathan, Sansuthan; Tankisi, Hatice; Andersen, Henning; Fuglsang-Frederiksen, Anders

    2016-01-01

    This study quantifies functioning axons and reinnervation by applying two methods multiple point stimulation (MPS) MUNE, and motor unit number index (MUNIX), in patients with acute- and chronic inflammatory demyelinating polyneuropathy (AIDP, CIDP). Nineteen patients with inflammatory demyelinating polyneuropathy (eleven AIDP and eight CIDP) were prospectively included. MPS MUNE and MUNIX examinations on the thenar muscle group by stimulating the median nerve were applied on all patients. Motor unit size was calculated as single motor unit potential (sMUP) and motor unit size index (MUSIX). The results were compared with twenty healthy subjects. In AIDP patients mean MPS MUNE (106) and MUNIX (80) were lower than control MPS MUNE (329) and MUNIX (215) (p<0.001). In CIDP patients both MPS MUNE (88) and MUNIX (67) were lower than controls (p<0.001). In CIDP patients sMUP (63) and MUSIX (90) were higher than control sMUP (35) and MUSIX (58) (p<0.05 and p<0.01). When AIDP and CIDP groups were combined the sensitivity for MPS MUNE and MUNIX were 89.5% and 68.4%, respectively. Decreased MPS MUNE and MUNIX suggest presence of axonal loss or loss of functioning axons in AIDP and CIDP. Increased motor unit size in CIDP patients indicates compensatory reinnervation. Moreover, both MPS MUNE and MUNIX can discriminate between disease versus non-disease. Estimation of the number and the average size of motor units may have clinical value for the assessment of axonal loss or loss of functioning axons in patients with AIDP and CIDP. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Diagnostic algorithm for relapsing acquired demyelinating syndromes in children.

    PubMed

    Hacohen, Yael; Mankad, Kshitij; Chong, W K; Barkhof, Frederik; Vincent, Angela; Lim, Ming; Wassmer, Evangeline; Ciccarelli, Olga; Hemingway, Cheryl

    2017-07-18

    To establish whether children with relapsing acquired demyelinating syndromes (RDS) and myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) show distinctive clinical and radiologic features and to generate a diagnostic algorithm for the main RDS for clinical use. A panel reviewed the clinical characteristics, MOG-Ab and aquaporin-4 (AQP4) Ab, intrathecal oligoclonal bands, and Epstein-Barr virus serology results of 110 children with RDS. A neuroradiologist blinded to the diagnosis scored the MRI scans. Clinical, radiologic, and serologic tests results were compared. The findings showed that 56.4% of children were diagnosed with multiple sclerosis (MS), 25.4% with neuromyelitis optica spectrum disorder (NMOSD), 12.7% with multiphasic disseminated encephalomyelitis (MDEM), and 5.5% with relapsing optic neuritis (RON). Blinded analysis defined baseline MRI as typical of MS in 93.5% of children with MS. Acute disseminated encephalomyelitis presentation was seen only in the non-MS group. Of NMOSD cases, 30.7% were AQP4-Ab positive. MOG-Ab were found in 83.3% of AQP4-Ab-negative NMOSD, 100% of MDEM, and 33.3% of RON. Children with MOG-Ab were younger, were less likely to present with area postrema syndrome, and had lower disability, longer time to relapse, and more cerebellar peduncle lesions than children with AQP4-Ab NMOSD. A diagnostic algorithm applicable to any episode of CNS demyelination leads to 4 main phenotypes: MS, AQP4-Ab NMOSD, MOG-Ab-associated disease, and antibody-negative RDS. Children with MS and AQP4-Ab NMOSD showed features typical of adult cases. Because MOG-Ab-positive children showed notable and distinctive clinical and MRI features, they were grouped into a unified phenotype (MOG-Ab-associated disease), included in a new diagnostic algorithm. © 2017 American Academy of Neurology.

  1. Subacute sclerosing panencephalitis. Changes on CT scan during acute relapse.

    PubMed

    Modi, G; Campbell, H; Bill, P

    1989-01-01

    A 19-year-old female patient presented in an acute state of akinetic mutism. Serological analysis of serum and cerebrospinal fluid demonstrated the presence of antibodies to measles virus. CT scan carried out during this acute phase of relapse demonstrated white matter enhancement affecting the cortical white matter of the frontal lobes and corpus callosum. These features indicate that active demyelination occurs during acute relapse in subacute sclerosing panencephalitis (SSPE) and suggest that immunotherapy should be considered during this acute phase.

  2. Progressive solitary sclerosis: Gradual motor impairment from a single CNS demyelinating lesion.

    PubMed

    Keegan, B Mark; Kaufmann, Timothy J; Weinshenker, Brian G; Kantarci, Orhun H; Schmalstieg, William F; Paz Soldan, M Mateo; Flanagan, Eoin P

    2016-10-18

    To report patients with progressive motor impairment resulting from an isolated CNS demyelinating lesion in cerebral, brainstem, or spinal cord white matter that we call progressive solitary sclerosis. Thirty patients were identified with (1) progressive motor impairment for over 1 year with a single radiologically identified CNS demyelinating lesion along corticospinal tracts, (2) absence of other demyelinating CNS lesions, and (3) no history of relapses affecting other CNS pathways. Twenty-five were followed prospectively in our multiple sclerosis (MS) clinic and 5 were identified retrospectively from our progressive MS database. Patients were excluded if an alternative etiology for progressive motor impairment was found. Multiple brain and spinal cord MRI were reviewed by a neuroradiologist blinded to the clinical details. The patients' median age was 48.5 years (range 23-71) and 15 (50%) were women. The median follow-up from symptom onset was 100 months (range 15-343 months). All had insidiously progressive upper motor neuron weakness attributable to the solitary demyelinating lesion found on MRI. Clinical presentations were hemiparesis/monoparesis (n = 24), quadriparesis (n = 5), and paraparesis (n = 1). Solitary MRI lesions involved cervical spinal cord (n = 18), cervico-medullary/brainstem region (n = 6), thoracic spinal cord (n = 4), and subcortical white matter (n = 2). CSF abnormalities consistent with MS were found in 13 of 26 (50%). Demyelinating disease was confirmed pathologically in 2 (biopsy, 1; autopsy, 1). Progressive solitary sclerosis results from an isolated CNS demyelinating lesion. Future revisions to MS diagnostic criteria could incorporate this presentation of demyelinating disease. © 2016 American Academy of Neurology.

  3. Serial Magnetization Transfer Imaging in Acute Optic Neuritis

    ERIC Educational Resources Information Center

    Hickman, S. J.; Toosy, A. T.; Jones, S. J.; Altmann, D. R.; Miszkiel, K. A.; MacManus, D. G.; Barker, G. J.; Plant, G. T.; Thompson, A. J.; Miller, D.H.

    2004-01-01

    In serial studies of multiple sclerosis lesions, reductions in magnetization transfer ratio (MTR) are thought to be due to demyelination and axonal loss, with later rises due to remyelination. This study followed serial changes in MTR in acute optic neuritis in combination with clinical and electrophysiological measurements to determine if the MTR…

  4. Role of "Sural Sparing" Pattern (Absent/Abnormal Median and Ulnar with Present Sural SNAP) Compared to Absent/Abnormal Median or Ulnar with Normal Sural SNAP in Acute Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Surpur, Spurthi Sunil; Govindarajan, Raghav

    2017-01-01

    Sural sparing defined as absent/abnormal median sensory nerve action potential (SNAP) amplitude or absent/abnormal ulnar SNAP amplitude with a normal sural SNAP amplitude is thought to be a marker for inflammatory demyelinating polyneuropathies. If sural sparing pattern specifically defined as absent/abnormal median and ulnar SNAP amplitude with normal sural SNAP amplitude (AMUNS) is sensitive and specific when compared with either absent/abnormal median and normal sural (AMNS) or absent/abnormal ulnar and normal sural (AUNS) for acute inflammatory demyelinating polyneuropathy (AIDP), chronic inflammatory demyelinating polyneuropathy (CIDP), select non-diabetic axonopathies (AXPs), and diabetic neuropathies (DNs). Retrospective analysis from 2001 to 2010 on all newly diagnosed AIDP, CIDP, select non-diabetic AXP, and DN. There were 20 AIDP and 23 CIDP. Twenty AXP and 50 DN patients between 2009 and 2010 were included as controls. AMUNS was seen in 65% of AIDP, 39% CIDP compared with 10% of AXP and 6% for DN with sensitivity of 51%, specificity of 92%, whereas the specificity of AMNS/AUNS was 73% and its sensitivity was 58%. If a patient has AMUNS they are >12 times more likely to have AIDP ( p  < 0.001). Sural sparing is highly specific but not sensitive when compared with either AMNS or AUNS in AIDP but does not add to sensitivity or specificity in CIDP.

  5. Prospective comparison of acute motor axonal neuropathy and acute inflammatory demyelinating polyradiculoneuropathy in 140 children with Guillain-Barré syndrome in India.

    PubMed

    Kalita, Jayantee; Kumar, Mritunjai; Misra, Usha K

    2018-05-01

    There have been few reports on subtypes of Guillain-Barré syndrome (GBS) in children. We compared clinical and laboratory findings of acute inflammatory demyelinating polyradiculoneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). One hundred forty children with GBS were included. Based on nerve conduction study (NCS) findings, patients were subclassified as AIDP, AMAN, acute motor sensory axonal neuropathy (AMSAN), and equivocal. Clinically, 72.1% of patients had pure motor, 24.3% motor sensory, and 3.4% Miller Fisher syndrome. Based on NCS, 67.8% of patients had AIDP, 23.6% had AMAN, and 4.3% had AMSAN. By 3 months, 2.1% patients had died, 47.1% had complete recovery, and 24.3% had poor recovery (wheelchair-bound). Children with AMAN had more frequent lower limb weakness (P = 0.02) and a lower probability of complete recovery (P = 0.01) at 3 months than children with AIDP (56% vs. 30%). AIDP is the most common GBS subtype in children. It is characterized by better recovery at 3 months when compared with AMAN. Muscle Nerve 57: 761-765, 2018. © 2017 Wiley Periodicals, Inc.

  6. Apoptosis in the cerebellum of dogs with distemper.

    PubMed

    Moro, L; Martins, A S; Alves, C M; Santos, F G A; Del Puerto, H L; Vasconcelos, A C

    2003-06-01

    Canine distemper virus (CDV) may induce multifocal demyelination in the central nervous system of infected dogs. The pathogenesis of this process is not clear. The present work identifies the presence of apoptotic cells in white and grey matter of dogs'cerebellum, naturally infected with CDV. Fifteen dogs with clinical signs of canine distemper that tested positive for CDV nucleoprotein were used. Brain specimens were processed and embedded in paraffin. Sections 5 microm thick were stained with hematoxylin-eosin and Shorr. Other sections were submitted to TUNEL reaction and to immunohistochemistry for CDV nucleoprotein detection. Acute and chronic demyelinated plaques were observed in the white matter, while apoptosis occurred particularly in the granular layer of grey matter. Apoptosis seems to play an important role in the pathogenesis of canine distemper demyelination.

  7. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells.

    PubMed

    Machado-Santos, Joana; Saji, Etsuji; Tröscher, Anna R; Paunovic, Manuela; Liblau, Roland; Gabriely, Galina; Bien, Christian G; Bauer, Jan; Lassmann, Hans

    2018-06-04

    Multiple sclerosis is an inflammatory demyelinating disease in which active demyelination and neurodegeneration are associated with lymphocyte infiltrates in the brain. However, so far little is known regarding the phenotype and function of these infiltrating lymphocyte populations. In this study, we performed an in-depth phenotypic characterization of T and B cell infiltrates in a large set of multiple sclerosis cases with different disease and lesion stages and compared the findings with those seen in inflammatory, non-inflammatory and normal human controls. In multiple sclerosis lesions, we found a dominance of CD8+ T cells and a prominent contribution of CD20+ B cells in all disease courses and lesion stages, including acute multiple sclerosis cases with very short disease duration, while CD4+ T cells were sparse. A dominance of CD8+ T cells was also seen in other inflammatory controls, such as Rasmussen's encephalitis and viral encephalitis, but the contribution of B cells in these diseases was modest. Phenotypic analysis of the CD8+ T cells suggested that part of the infiltrating cells in active lesions proliferate, show an activated cytotoxic phenotype and are in part destroyed by apoptosis. Further characterization of the remaining cells suggest that CD8+ T cells acquire features of tissue-resident memory cells, which may be focally reactivated in active lesions of acute, relapsing and progressive multiple sclerosis, while B cells, at least in part, gradually transform into plasma cells. The loss of surface molecules involved in the egress of leucocytes from inflamed tissue, such as S1P1 or CCR7, and the upregulation of CD103 expression may be responsible for the compartmentalization of the inflammatory response in established lesions. Similar phenotypic changes of tissue-infiltrating CD8+ T cells were also seen in Rasmussen's encephalitis. Our data underline the potential importance of CD8+ T lymphocytes and B cells in the inflammatory response in established multiple sclerosis lesions. Tissue-resident T and B cells may represent guardians of previous inflammatory brain disease, which can be reactivated and sustain the inflammatory response, when they are re-exposed to their specific antigen.

  8. Autoimmune encephalitis in children: clinical phenomenology, therapeutics, and emerging challenges.

    PubMed

    Dale, Russell C; Gorman, Mark P; Lim, Ming

    2017-06-01

    Auto-antibodies that bind to conformational extracellular epitopes of neuronal receptors or synaptic proteins have provided clinicians with essential biomarkers in acute neurology. This review summarizes the current status and challenges in the field. In children, anti-N-methyl-D-aspartate receptor encephalitis remains the most identifiable autoimmune encephalitis, although many patients have a clinical syndrome of brain inflammation in which no antibodies are identified. Anti-myelin oligodendrocyte glycoprotein antibody associated demyelination is now recognized as a major cause of monophasic and relapsing demyelination, often presenting with encephalopathy. We discuss the importance of auto-antibody detection methodology and the possible influence of intrathecal antibody synthesis on the speed of recovery and response to immune therapy. The current, often pragmatic rather than evidence-based therapeutic pathway will be discussed, highlighting key challenges such as the timing of second-line therapy, monitoring of disease activity, and identifying the patient who is responding poorly to treatment. Although there have been significant developments, future priorities include the need for paediatric-specific consensus definitions for seronegative suspected autoimmune encephalitis, novel tools for monitoring patients with autoimmune encephalitis, consensus treatment recommendations, and neuroprotective strategies.

  9. Comparing the lifetime risks of TNF-alpha inhibitor use to common benchmarks of risk.

    PubMed

    Kaminska, Edi; Patel, Isha; Dabade, Tushar S; Chang, Jongwha; Qureshi, Ayub A; O'Neill, Jenna L; Balkrishnan, Rajesh; Feldman, Steven R

    2013-04-01

    The study aims to illustrate the range of lifetime risks of lymphoma, tuberculosis (TB), and demyelinating diseases with TNF-α inhibitors in psoriasis patients. Previously published data and online resources were used to determine the risk of the TB, demyelinating disease, and lymphoma with and without TNF-α inhibitor treatment. Lifetime risks for heart disease and stroke were collected using a Medline search. All cancer, trauma, and environmental statistics were obtained from the data published by National Cancer Institute, National Safety Council, and the National Oceanic and Atmospheric Administration, respectively. The lifetime risks of TNF-α-inhibitor-linked conditions and comparators are as follows: TNF-α inhibitor-linked conditions: lymphoma with: without TNF-α inhibitors (0.5-4.8%:2.3%), TB with:without TNF-α inhibitors (0-17.1%:0.3%), and demyelinating disease with:without TNF-α inhibitors (0.1-1.7%:0.15%). Comparators: cancer (40.4%), heart disease (36.2%), stroke (18.4%), accidental death (3.0%), motor vehicle death (1.2%), and lightning strike (0.033%). Much of the data on lifetime risks of disease with TNF-α inhibitor were for patients with rheumatoid arthritis and not psoriasis. The risks of lymphoma, demyelinating diseases, and tuberculosis with TNF-α inhibitors are lower than risks patients face on a regular basis. Screening reduces the risk of tuberculosis in patients receiving TNF-α inhibitors.

  10. Electrodiagnostic and clinical aspects of Guillain-Barré syndrome: an analysis of 142 cases.

    PubMed

    Gupta, Deepak; Deepak, Gupta; Nair, Muraleedharan; Muraleedharan, Nair; Baheti, Neeraj N; Sarma, P Sankara; Sarma, Sankara P; Kuruvilla, Abraham; Abraham, Kuruvilla

    2008-12-01

    The incidence of Guillain-Barré syndrome (GBS) and its subtypes varies throughout the world. We present a retrospective analysis of 142 GBS cases, treated at our center, aimed at classifying GBS electrophysiologically, to study the sequential electrophysiological changes in cases with acute inflammatory demyelinating polyradiculoneuropathy (AIDP), and to look for any clinical and cerebrospinal fluid parameters that can also help in distinguishing the subtypes. One hundred twenty-one (85.2%) cases had AIDP, 15 (10.6%) had acute motor axonal neuropathy, and 6 (4.2%) were unclassifiable. Motor conduction blocks and temporal dispersion could be observed from days 3 and 5 onward, respectively. Progression of motor conduction slowing in AIDP was most impressive in the median nerves. Varying affection of deep tendon reflexes, cranial nerves, and cerebrospinal fluid albuminocytological dissociation can also help make a distinction between AIDP and acute motor axonal neuropathy. Sural sparing, a marker of demyelinating neuropathy, is more commonly seen in later than in early stages of AIDP.

  11. Progressive solitary sclerosis

    PubMed Central

    Kaufmann, Timothy J.; Weinshenker, Brian G.; Kantarci, Orhun H.; Schmalstieg, William F.; Paz Soldan, M. Mateo; Flanagan, Eoin P.

    2016-01-01

    Objective: To report patients with progressive motor impairment resulting from an isolated CNS demyelinating lesion in cerebral, brainstem, or spinal cord white matter that we call progressive solitary sclerosis. Methods: Thirty patients were identified with (1) progressive motor impairment for over 1 year with a single radiologically identified CNS demyelinating lesion along corticospinal tracts, (2) absence of other demyelinating CNS lesions, and (3) no history of relapses affecting other CNS pathways. Twenty-five were followed prospectively in our multiple sclerosis (MS) clinic and 5 were identified retrospectively from our progressive MS database. Patients were excluded if an alternative etiology for progressive motor impairment was found. Multiple brain and spinal cord MRI were reviewed by a neuroradiologist blinded to the clinical details. Results: The patients' median age was 48.5 years (range 23–71) and 15 (50%) were women. The median follow-up from symptom onset was 100 months (range 15–343 months). All had insidiously progressive upper motor neuron weakness attributable to the solitary demyelinating lesion found on MRI. Clinical presentations were hemiparesis/monoparesis (n = 24), quadriparesis (n = 5), and paraparesis (n = 1). Solitary MRI lesions involved cervical spinal cord (n = 18), cervico-medullary/brainstem region (n = 6), thoracic spinal cord (n = 4), and subcortical white matter (n = 2). CSF abnormalities consistent with MS were found in 13 of 26 (50%). Demyelinating disease was confirmed pathologically in 2 (biopsy, 1; autopsy, 1). Conclusions: Progressive solitary sclerosis results from an isolated CNS demyelinating lesion. Future revisions to MS diagnostic criteria could incorporate this presentation of demyelinating disease. PMID:27638926

  12. Remyelination after Lysophosphatidyl Choline-Induced Demyelination Is Stimulated by Bone Marrow Stromal Cell-Derived Oligoprogenitor Cell Transplantation.

    PubMed

    Nazm Bojnordi, M; Ghasemi, H H; Akbari, E

    2015-01-01

    Bone marrow stromal cells (BMSCs) are a desirable cell source that may be useful for the treatment of neurodegenerative diseases given their capacity to differentiate into various types of cells. The current study aimed to investigate whether oligoprogenitor cell (OPC)-derived BMSCs have therapeutic benefits in an animal model of local demyelination. BMSCs were transdifferentiated into OPCs using a defined culture medium supplemented with a combination of inducers. The differentiation capacity of the BMSCs was evaluated at the end of the induction phase by assessing the expression levels of the glial-specific markers oligodendrocyte transcription factor 2 and O4 surface antigen. Local demyelination was induced in the corpus callosum of adult female rats via direct injection of lysophosphatidylcholine (LPC) followed by engraftment of BMSC-generated OPCs. The rats were divided into sham control, vehicle control, and cell-transplanted groups. The changes in the extent of demyelination and the robustness of the remyelination event were assessed using Luxol Fast Blue staining and immunohistochemical analysis 1 week after LPC injection and 2 weeks after cell transplantation. Consequently, transplantation of OPCs into the demyelinated corpus callosum model resulted in differentiation of the cells into mature oligodendrocytes that were immunopositive for myelin basic protein. Furthermore, OPC transplantation mitigated demyelination and augmented remyelination relative to controls. These findings suggest that BMSC-derived OPCs can be utilized in therapeutic approaches for the management of demyelination-associated diseases such as multiple sclerosis. © 2015 S. Karger AG, Basel.

  13. Serologic Evidence of Previous Campylobacter jejuni Infection in Patients with the Guillain-Barre Syndrome

    DTIC Science & Technology

    1993-06-15

    chronic inflammatory demyelinating polyneuropathy , and polyneuropathy associated with IgM paraproteinemia. creased the sensitivity but improved the...paraproteine- were employees of or visitors to the Infectious Diseases Divi- ,,i- hronic inflammatory demyelinating polyneuropathy , sion of Vanderbilt... polyneuropathy ," is an inflammatory de- jejuni infection before onset of neurologic symptoms. myelinating disease of peripheral nerves characterized

  14. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant

    PubMed Central

    Binyamin, Orli; Larush, Liraz; Frid, Kati; Keller, Guy; Friedman-Levi, Yael; Ovadia, Haim; Abramsky, Oded; Magdassi, Shlomo; Gabizon, Ruth

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration. PMID:26648720

  15. Decreased number and increased volume with mitochondrial enlargement of cerebellar synaptic terminals in a mouse model of chronic demyelination.

    PubMed

    Nguyen, Huy Bang; Sui, Yang; Thai, Truc Quynh; Ikenaka, Kazuhiro; Oda, Toshiyuki; Ohno, Nobuhiko

    2018-05-23

    Impaired nerve conduction, axonal degeneration, and synaptic alterations contribute to neurological disabilities in inflammatory demyelinating diseases. Cerebellar dysfunction is associated with demyelinating disorders, but the alterations of axon terminals in cerebellar gray matter during chronic demyelination are still unclear. We analyzed the morphological and ultrastructural changes of climbing fiber terminals in a mouse model of hereditary chronic demyelination. Three-dimensional ultrastructural analyses using serial block-face scanning electron microscopy and immunostaining for synaptic markers were performed in a demyelination mouse model caused by extra copies of myelin gene (PLP4e). At 1 month old, many myelinated axons were observed in PLP4e and wild-type mice, but demyelinated axons and axons with abnormally thin myelin were prominent in PLP4e mice at 5 months old. The density of climbing fiber terminals was significantly reduced in PLP4e mice at 5 months old. Reconstruction of climbing fiber terminals revealed that PLP4e climbing fibers had increased varicosity volume and enlarged mitochondria in the varicosities at 5-month-old mice. These results suggest that chronic demyelination is associated with alterations and loss of climbing fiber terminals in the cerebellar cortex, and that synaptic changes may contribute to cerebellar phenotypes observed in hereditary demyelinating disorders.

  16. The US Network of Pediatric Multiple Sclerosis Centers: Development, Progress, and Next Steps.

    PubMed

    Casper, T Charles; Rose, John W; Roalstad, Shelly; Waubant, Emmanuelle; Aaen, Gregory; Belman, Anita; Chitnis, Tanuja; Gorman, Mark; Krupp, Lauren; Lotze, Timothy E; Ness, Jayne; Patterson, Marc; Rodriguez, Moses; Weinstock-Guttman, Bianca; Browning, Brittan; Graves, Jennifer; Tillema, Jan-Mendelt; Benson, Leslie; Harris, Yolanda

    2015-09-01

    Multiple sclerosis and other demyelinating diseases in the pediatric population have received an increasing level of attention by clinicians and researchers. The low incidence of these diseases in children creates a need for the involvement of multiple clinical centers in research efforts. The Network of Pediatric Multiple Sclerosis Centers was created initially in 2006 to improve the diagnosis and care of children with demyelinating diseases. In 2010, the Network shifted its focus to multicenter research while continuing to advance the care of patients. The Network has obtained support from the National Multiple Sclerosis Society, the Guthy-Jackson Charitable Foundation, and the National Institutes of Health. The Network will continue to serve as a platform for conducting impactful research in pediatric demyelinating diseases of the central nervous system. This article provides a description of the history and development, organization, mission, research priorities, current studies, and future plans of the Network. © The Author(s) 2014.

  17. The US Network of Pediatric Multiple Sclerosis Centers: Development, Progress, and Next Steps

    PubMed Central

    Casper, T. Charles; Rose, John W.; Roalstad, Shelly; Waubant, Emmanuelle; Aaen, Gregory; Belman, Anita; Chitnis, Tanuja; Gorman, Mark; Krupp, Lauren; Lotze, Timothy E.; Ness, Jayne; Patterson, Marc; Rodriguez, Moses; Weinstock-Guttman, Bianca; Browning, Brittan; Graves, Jennifer; Tillema, Jan-Mendelt; Benson, Leslie; Harris, Yolanda

    2014-01-01

    Multiple sclerosis and other demyelinating diseases in the pediatric population have received an increasing level of attention by clinicians and researchers. The low incidence of these diseases in children creates a need for the involvement of multiple clinical centers in research efforts. The Network of Pediatric Multiple Sclerosis Centers was created initially in 2006 to improve the diagnosis and care of children with demyelinating diseases. In 2010, the Network shifted its focus to multicenter research while continuing to advance the care of patients. The Network has obtained support from the National Multiple Sclerosis Society, the Guthy-Jackson Charitable Foundation, and the National Institutes of Health. The Network will continue to serve as a platform for conducting impactful research in pediatric demyelinating diseases of the central nervous system. This article provides a description of the history and development, organization, mission, research priorities, current studies, and future plans of the Network. PMID:25270659

  18. Remyelination of central nervous system lesions in experimental genital herpes simplex virus infection.

    PubMed

    Soffer, D; Martin, J R

    1988-08-01

    To study spinal cord remyelination in a model of genital herpes simplex virus type 2 (HSV-2) infection, adult female mice were inoculated by a vaginal route. At intervals up to 6 months after infection, cord tissues were removed and examined by light and electron microscopy and by immunohistochemical methods. As a consequence of acute infection, 60% of mice developed multifocal central nervous system (CNS) demyelinative lesions in the lower thoracic, lumbar, or upper sacral cord. These lesions, already present 10 days after infection, contained naked axons and mononuclear cells, including macrophages. At 2 weeks, while active myelin breakdown was still ongoing, numerous Schwann cells were present in lesions and surrounded denuded axons. At 3 weeks, the earliest remyelination was seen, and was carried out by Schwann cells and to a lesser extent by oligodendrocytes. Remyelination was extensive by 6-10 weeks and was apparently completed after 3 months. Immunocytochemical studies using antisera to myelin proteins showed relatively distinct zones of central and peripheral remyelination in some lesions, whereas remyelination was of mixed type in others. Thus the remyelinative response following experimental HSV-2-induced CNS demyelination begins promptly, proceeds briskly and goes to completion. With a natural route of inoculation and a relatively avirulent strain of this human pathogen, we have produced a model of CNS white matter injury and repair in a high proportion of infected mice that may be useful in understanding mechanisms of human demyelinative disease.

  19. Fibronectin connecting segment-1 peptide inhibits pathogenic leukocyte trafficking and inflammatory demyelination in experimental models of chronic inflammatory demyelinating polyradiculoneuropathy.

    PubMed

    Dong, Chaoling; Greathouse, Kelsey M; Beacham, Rebecca L; Palladino, Steven P; Helton, E Scott; Ubogu, Eroboghene E

    2017-06-01

    The molecular determinants of pathogenic leukocyte migration across the blood-nerve barrier (BNB) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are unknown. Specific disease modifying therapies for CIDP are also lacking. Fibronectin connecting segment-1 (FNCS1), an alternatively spliced fibronectin variant expressed by microvascular endothelial cells at sites of inflammation in vitro and in situ, is a counterligand for leukocyte α 4 integrin (also known as CD49d) implicated in pathogenic leukocyte trafficking in multiple sclerosis and inflammatory bowel disease. We sought to determine the role of FNCS1 in CIDP patient leukocyte trafficking across the BNB in vitro and in severe chronic demyelinating neuritis in vivo using a representative spontaneous murine CIDP model. Peripheral blood mononuclear leukocytes from 7 untreated CIDP patients were independently infused into a cytokine-treated, flow-dependent in vitro BNB model system. Time-lapse digital video microscopy was performed to visualize and quantify leukocyte trafficking, comparing FNCS1 peptide blockade to relevant controls. Fifty 24-week old female B7-2 deficient non-obese diabetic mice with spontaneous autoimmune peripheral polyneuropathy (SAPP) were treated daily with 2mg/kg FNCS1 peptide for 5days via intraperitoneal injection with appropriate controls. Neurobehavioral measures of disease severity, motor nerve electrophysiology assessments and histopathological quantification of inflammation and morphometric assessment of demyelination were performed to determine in vivo efficacy. The biological relevance of FNCS1 and CD49d in CIDP was evaluated by immunohistochemical detection in affected patient sural nerve biopsies. 25μM FNCS1 peptide maximally inhibited CIDP leukocyte trafficking at the human BNB in vitro. FNCS1 peptide treatment resulted in significant improvements in disease severity, motor electrophysiological parameters of demyelination and histological measures of inflammatory demyelination. Microvessels demonstrating FNCS1 expression and CD49d+ leukocytes were seen within the endoneurium of patient nerve biopsies. Taken together, these results imply a role for FNCS1 in pathogenic leukocyte trafficking in CIDP, providing a potential target for therapeutic modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Aggregation of MBP in chronic demyelination

    PubMed Central

    Frid, Kati; Einstein, Ofira; Friedman-Levi, Yael; Binyamin, Orli; Ben-Hur, Tamir; Gabizon, Ruth

    2015-01-01

    Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS. PMID:26273684

  1. Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating disease.

    PubMed

    Yamamoto, Shinji; Yamashina, Kota; Ishikawa, Masaki; Gotoh, Mari; Yagishita, Sosuke; Iwasa, Kensuke; Maruyama, Kei; Murakami-Murofushi, Kimiko; Yoshikawa, Keisuke

    2017-07-21

    Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. We designed, chemically synthesized, and metabolically stabilized derivatives of cPA: 2-carba-cPA (2ccPA), a synthesized compound in which one of the phosphate oxygen molecules is replaced with a methylene group at the sn-2 position. In the present study, we investigated whether 2ccPA exerts protective effects in oligodendrocytes and suppresses pathology in the two most common mouse models of multiple sclerosis. To evaluate whether 2ccPA has potential beneficial effects on the pathology of multiple sclerosis, we investigated the effects of 2ccPA on oligodendrocyte cell death in vitro and administrated 2ccPA to mouse models of experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. We demonstrated that 2ccPA suppressed the CoCl 2 -induced increase in the Bax/Bcl-2 protein expression ratio and phosphorylation levels of p38MAPK and JNK protein. 2ccPA treatment reduced cuprizone-induced demyelination, microglial activation, NLRP3 inflammasome, and motor dysfunction. Furthermore, 2ccPA treatment reduced autoreactive T cells and macrophages, spinal cord injury, and pathological scores in EAE, the autoimmune multiple sclerosis mouse model. We demonstrated that 2ccPA protected oligodendrocytes via suppression of the mitochondrial apoptosis pathway. Also, we found beneficial effects of 2ccPA in the multiperiod of cuprizone-induced demyelination and the pathology of EAE. These data indicate that 2ccPA may be a promising compound for the development of new drugs to treat demyelinating disease and ameliorate the symptoms of multiple sclerosis.

  2. Acute abdominal pain as the only symptom of a thoracic demyelinating lesion in multiple sclerosis.

    PubMed

    Nomura, Shohei; Shimakawa, Shuichi; Kashiwagi, Mitsuru; Tanabe, Takuya; Fukui, Miho; Tamai, Hiroshi

    2015-11-01

    Multiple sclerosis (MS) is a syndrome characterized by complex neurological symptoms resulting from demyelinating lesions in the central nervous system. We report a child with a relapse of MS whose only presenting symptom was severe abdominal pain. Dysfunctional intestinal mobility was assessed by abdominal computed tomography. Findings resembled paralytic ileus resulting from peritonitis. However, the patient demonstrated no other symptoms of peritonitis. A T2-weighted magnetic resonance image revealed a new demyelinating lesion localized to thoracic segments T4-T12. The lesion presumably affected autonomic efferents involved in intestinal mobility. Treatment with a pulse of methylprednisolone reduced both abdominal pain and lesion size. To our knowledge, this is the first reported case of a pediatric MS patient with a demyelinating lesion associated with an autonomic symptom of altered intestinal mobility in the absence of neurological symptoms. This atypical presentation of MS highlights the need for physicians' vigilance when treating this patient population. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Guillain-Barré syndrome presenting with Raynaud's phenomenon: a case report.

    PubMed

    Gunatilake, Sonali Sihindi Chapa; Wimalaratna, Harith

    2014-09-03

    Guillain-Barré syndrome is an immune mediated acute inflammatory polyradiculo-neuropathy involving the peripheral nervous system. Commonest presentation is acute or subacute flaccid ascending paralysis of limbs. Rarely autonomic dysfunction can be the presenting feature of Guillain-Barré syndrome. Raynaud's phenomenon, although had been described in relation to many disease conditions, has not been described in association with Guillain-Barré syndrome up to date. We report the first case of Guillain-Barré syndrome presenting with Raynaud's phenomenon in a 21-year-old previously well boy. New onset Raynaud's phenomenon was experienced followed by acute ascending flaccid paralysis of lower limbs and upper limbs together with palpitations and postural giddiness. Nerve conduction studies showed acute inflammatory demyelinating polyneuropathy with cerebrospinal fluid cyto-protein dissociation. He was treated with intravenous immunoglobulin and showed a satisfactory clinical recovery of muscle weakness, Raynaud's phenomenon and autonomic disturbances. Guillain-Barré syndrome presenting with Raynaud's phenomenon is not being reported in literature previously. Although the underlying mechanism is not fully understood, Raynaud's phenomenon should prompt the physician to consider Guillain-Barré syndrome with a complimentary clinical picture.

  4. Association between demyelinating disease and autoimmune rheumatic disease in a pediatric population.

    PubMed

    Amorim, Ana Luiza M; Cabral, Nadia C; Osaku, Fabiane M; Len, Claudio A; Oliveira, Enedina M L; Terreri, Maria Teresa

    Multiple sclerosis (MS) and neuromyelitis optica (NMO) are demyelinating diseases of the central nervous system. Autoimmunity in patients with demyelinating disease and in their families has been broadly investigated and discussed. Recent studies show a higher incidence of rheumatic autoimmune diseases among adult patients with MS or NMO and their families, but there are no studies in the pediatric population. To evaluate an association of MS and NMO with autoimmune rheumatic diseases in pediatric patients. 22 patients younger than 21 years old with MS or NMO diagnosed before the age of 18 years were evaluated regarding epidemiological data, clinical presentation, association with autoimmune diseases, family history of autoimmune diseases, laboratory findings, imaging studies and presence of auto-antibodies. Among the patients studied, there was a prevalence of females (68.1%). The mean age of symptoms onset was 8 years and 9 months and the mean current age was 16 years and 4 months. Two patients (9%) had a history of associated autoimmune rheumatic disease: one case of juvenile dermatomyositis in a patient with NMO and another of systemic lupus erythematosus in a patient with MS. Three patients (13%) had a family history of autoimmunity in first-degree relatives. Antinuclear antibody was found positive in 80% of patients with NMO and 52% of patients with MS. About 15% of antinuclear antibody-positive patients were diagnosed with rheumatologic autoimmune diseases. Among patients with demyelinating diseases diagnosed in childhood included in this study there was a high frequency of antinuclear antibody positivity but a lower association with rheumatologic autoimmune diseases than that observed in studies conducted in adults. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  5. Chronic inflammatory demyelinating polyneuropathy in children: a report of four patients with variable relapsing courses

    PubMed Central

    Chang, Soo Jin; Lee, Ji Hyun; Kim, Shin Hye; Lee, Joon Soo; Kim, Heung Dong; Kang, Joon Won; Lee, Young Mock

    2015-01-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is a chronically progressive or relapsing symmetric sensorimotor disorder presumed to occur because of immunologic antibody-mediated reactions. To understand the clinical courses of CIDP, we report variable CIDP courses in children with respect to initial presentation, responsiveness to medical treatment, and recurrence interval. Four patients who were diagnosed with acute-onset and relapsing CIDP courses at Severance Children's Hospital, Seoul, Korea, were enrolled in this retrospective study. We diagnosed each patient on the basis of the CIDP diagnostic criteria developed in 2010 by the European Federation of Neurological Societies/Peripheral Nerve Society Guidelines. We present the cases of four pediatric patients diagnosed with CIDP to understand the variable clinical course of the disease in children. Our four patients were all between 8 and 12 years of age. Patients 1 and 2 were diagnosed with acute cerebellar ataxia or Guillain-Barré syndrome as initial symptoms. While patients 1 and 4 were given only intravenous dexamethasone (0.3 mg/kg/day) for 5 days at the first episode, Patients 2 and 3 were given a combination of intravenous immunoglobulin (2 g/kg) and dexamethasone (0.3 mg/kg/day). All patients were maintained with oral prednisolone at 30 mg/day, but their clinical courses were variable in both relapse intervals and severity. We experienced variable clinical courses of CIDP in children with respect to initial presentation, responsiveness to medical treatment, and recurrence interval. PMID:26124851

  6. Chronic inflammatory demyelinating polyneuropathy in children: a report of four patients with variable relapsing courses.

    PubMed

    Chang, Soo Jin; Lee, Ji Hyun; Kim, Shin Hye; Lee, Joon Soo; Kim, Heung Dong; Kang, Joon Won; Lee, Young Mock; Kang, Hoon-Chul

    2015-05-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is a chronically progressive or relapsing symmetric sensorimotor disorder presumed to occur because of immunologic antibody-mediated reactions. To understand the clinical courses of CIDP, we report variable CIDP courses in children with respect to initial presentation, responsiveness to medical treatment, and recurrence interval. Four patients who were diagnosed with acute-onset and relapsing CIDP courses at Severance Children's Hospital, Seoul, Korea, were enrolled in this retrospective study. We diagnosed each patient on the basis of the CIDP diagnostic criteria developed in 2010 by the European Federation of Neurological Societies/Peripheral Nerve Society Guidelines. We present the cases of four pediatric patients diagnosed with CIDP to understand the variable clinical course of the disease in children. Our four patients were all between 8 and 12 years of age. Patients 1 and 2 were diagnosed with acute cerebellar ataxia or Guillain-Barré syndrome as initial symptoms. While patients 1 and 4 were given only intravenous dexamethasone (0.3 mg/kg/day) for 5 days at the first episode, Patients 2 and 3 were given a combination of intravenous immunoglobulin (2 g/kg) and dexamethasone (0.3 mg/kg/day). All patients were maintained with oral prednisolone at 30 mg/day, but their clinical courses were variable in both relapse intervals and severity. We experienced variable clinical courses of CIDP in children with respect to initial presentation, responsiveness to medical treatment, and recurrence interval.

  7. MRI and magnetic resonance angiography findings in patients with multiple sclerosis mimicked by stroke.

    PubMed

    Khedr, Abdullatif Al; Canaple, Sandrine; Monet, Pauline; Godefroy, Olivier; Bugnicourt, Jean-Marc

    2013-08-01

    We report a 45-year-old woman who presented with a first demyelinating event with abnormalities seen on both MRI and magnetic resonance angiography that were highly suggestive of acute ischemic stroke. This report highlights the problem of differential diagnosis of acute neurological symptoms in adult subjects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Progesterone Alleviates Neural Behavioral Deficits and Demyelination with Reduced Degeneration of Oligodendroglial Cells in Cuprizone-Induced Mice

    PubMed Central

    Su, Le; Liu, Yun-Lai; Cai, Qi-Yan; Zhan, Xiao-Li; Xu, Yan; Zhao, Shi-Fu; Yao, Zhong-Xiang

    2013-01-01

    Demyelination occurs widely in neurodegenerative diseases. Progesterone has neuroprotective effects, is known to reduce the clinical scores and the inflammatory response. Progesterone also promotes remyelination in experimental autoimmune encephalomyelitis and cuprizone-induced demyelinating brain. However, it still remains unclear whether progesterone can alleviate neural behavioral deficits and demyelination with degeneration of oligodendroglial cells in cuprizone-induced mice. In this study, mice were fed with 0.2% cuprizone to induce demyelination, and treated with progesterone to test its potential protective effect on neural behavioral deficits, demyelination and degeneration of oligodendroglial cells. Our results showed noticeable alleviation of neural behavioral deficits following progesterone treatment as assessed by changes in average body weight, and activity during the open field and Rota-rod tests when compared with the vehicle treated cuprizone group. Progesterone treatment alleviated demyelination as shown by Luxol fast blue staining, MBP immunohistochemical staining, and electron microscopy. There was an obvious decrease in TUNEL and Caspase-3-positive apoptotic cells, and an increase in the number of oligodendroglial cells staining positive for PDGFRα, Olig2, Sox10 and CC-1 antibody in the brains of cuprizone-induced mice after progesterone administration. These results indicate that progesterone can alleviate neural behavioral deficits and demyelination against oligodendroglial cell degeneration in cuprizone-induced mice. PMID:23359803

  9. Coexistence of Multiple Sclerosis and Brain Tumor: An Uncommon Diagnostic Challenge.

    PubMed

    Abrishamchi, Fatemeh; Khorvash, Fariborz

    2017-01-01

    Nonneoplastic demyelinating processes of the brain with mass effect on magnetic resonance imaging can cause diagnostic difficulties. It requires differential diagnosis between the tumefactive demyelinating lesion and the coexistence of neoplasm. We document the case of 41-year-old woman with clinical and radiological findings suggestive of multiple sclerosis. Additional investigations confirmed the coexistence of astrocytoma. This report emphasizes the importance of considering brain tumors in the differential diagnosis of primary demyelinating disease presenting with a cerebral mass lesion.

  10. A rare presentation of atypical demyelination: tumefactive multiple sclerosis causing Gerstmann’s syndrome

    PubMed Central

    2014-01-01

    Background Tumefactive demyelinating lesions are a rare manifestation of multiple sclerosis (MS). Differential diagnosis of such space occupying lesions may not be straightforward and sometimes necessitate brain biopsy. Impaired cognition is the second most common clinical manifestation of tumefactive MS; however complex cognitive syndromes are unusual. Case presentation We report the case of a 30 year old woman who presented with Gerstmann’s syndrome. MRI revealed a large heterogeneous contrast enhancing lesion in the left cerebral hemisphere. Intravenous corticosteroids did not stop disease progression. A tumour or cerebral lymphoma was suspected, however brain biopsy confirmed inflammatory demyelination. Following diagnosis of tumefactive MS treatment with natalizumab effectively suppressed disease activity. Conclusions The case highlights the need for clinicians, radiologists and surgeons to appreciate the heterogeneous presentation of tumefactive MS. Early brain biopsy facilitates rapid diagnosis and management. Treatment with natalizumab may be useful in cases of tumefactive demyelination where additional evidence supports a diagnosis of relapsing MS. PMID:24694183

  11. Acute inflammatory demyelinating polyradiculoneuropathy in a newborn infant.

    PubMed

    Anastasopoulou, Stavroula; Lindefeldt, Marie; Bartocci, Marco; Wickström, Ronny

    2016-09-01

    Acute inflammatory demyelinating polyneuropathy (AIDP), also known as Guillain-Barré syndrome, is an immune-mediated polyneuropathy usually triggered by infections or vaccinations. In childhood AIDP is commonly described after the first year of life. Here, we present a case of a newborn infant with AIDP manifestation directly after delivery. A newborn girl with a healthy mother, without known exposure to immunomodulating factors, was admitted to the neuropediatric department due to ascending hypotonia, weakness, pain and areflexia in the lower extremities. The clinical presentation, laboratory and neurophysiological studies supported the diagnosis of AIDP. The infant showed first signs of clinical improvement following administration of intravenous immunoglobulin and her recovery was complete at one year. AIDP should be considered as a differential diagnosis in ascending hypotonia also in the neonatal period. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  12. Advancing drug delivery systems for the treatment of multiple sclerosis.

    PubMed

    Tabansky, Inna; Messina, Mark D; Bangeranye, Catherine; Goldstein, Jeffrey; Blitz-Shabbir, Karen M; Machado, Suly; Jeganathan, Venkatesh; Wright, Paul; Najjar, Souhel; Cao, Yonghao; Sands, Warren; Keskin, Derin B; Stern, Joel N H

    2015-12-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. It is characterized by demyelination of neurons and loss of neuronal axons and oligodendrocytes. In MS, auto-reactive T cells and B cells cross the blood-brain barrier (BBB), causing perivenous demyelinating lesions that form multiple discrete inflammatory demyelinated plaques located primarily in the white matter. In chronic MS, cortical demyelination and progressive axonal transections develop. Treatment for MS can be stratified into disease-modifying therapies (DMTs) and symptomatic therapy. DMTs aim to decrease circulating immune cells or to prevent these cells from crossing the BBB and reduce the inflammatory response. There are currently 10 DMTs approved for the relapsing forms of MS; these vary with regard to their efficacy, route and frequency of administration, adverse effects, and toxicity profile. Better drug delivery systems are being developed in order to decrease adverse effects, increase drug efficacy, and increase patient compliance through the direct targeting of pathologic cells. Here, we address the uses and benefits of advanced drug delivery systems, including nanoparticles, microparticles, fusion antibodies, and liposomal formulations. By altering the properties of therapeutic particles and enhancing targeting, breakthrough drug delivery technologies potentially applicable to multiple disease treatments may rapidly emerge.

  13. [Involvement of the peripheral nervous system in systemic connective tissue diseases: report on clinical cases].

    PubMed

    Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew

    2011-01-01

    The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole manifestation of systemic connective tissue disease are particularly problematic requiring a multidimensional approach; their process of diagnosis and treatment is usually long.

  14. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    PubMed

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.

  15. Acute-Onset Severe Occipital Neuralgia Associated With High Cervical Lesion in Patients With Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Hayashi, Yuichi; Koumura, Akihiro; Yamada, Megumi; Kimura, Akio; Shibata, Toshirou; Inuzuka, Takashi

    2017-07-01

    To address occipital neuralgia in patients with neuromyelitis optica spectrum disorder (NMOSD). NMOSD is an inflammatory demyelinating disease that commonly presents with pain; however, headache symptoms have received little attention. We presented three cases of NMOSD in which the patients experienced acute-onset, severe, and steroid-responsive occipital neuralgia. All patients provided consent to use their demographic and imaging data retrospectively. In all three cases, MRI revealed a new high-intensity area in the cervical cord at the C1-C3 level of the spine, which was diminished in two of the three cases after corticosteroid pulse therapy. Our cases support the recognition of NMOSD as a cause of secondary headache. As patients with NMOSD experience severe occipital neuralgia, a relapse should be considered and a cervical MRI should be performed. © 2017 American Headache Society.

  16. Bochum ultrasound score versus clinical and electrophysiological parameters in distinguishing acute-onset chronic from acute inflammatory demyelinating polyneuropathy.

    PubMed

    Kerasnoudis, Antonios; Pitarokoili, Kallia; Behrendt, Volker; Gold, Ralf; Yoon, Min-Suk

    2015-06-01

    The aim of this study was to evaluate whether a nerve ultrasound score (Bochum ultrasound score, BUS), clinical, and electrophysiological parameters could distinguish subacute chronic (CIDP) from acute inflammatory demyelinating polyneuropathy (AIDP). Phase 1: The charts of 35 patients with polyradiculoneuropathy were evaluated retrospectively regarding BUS, clinical, and electrophysiological parameters (A-waves, sural nerve sparing pattern, sensory ratio>1). Phase 2: All parameters were evaluated prospectively in 10 patients with subacute polyradiculoneuropathy. Phase 1: A sum score of ≥2 points in BUS and the presence of sensory symptoms were significantly more frequent in the subacute CIDP group than in the AIDP group (P<0.001).The electrophysiological parameters showed no significant changes between the 2 groups. Phase 2: BUS (83.3%; 100%;), sensory symptoms (100%; 75%), absence of autonomic nervous system dysfunction (83.3%; 75%), or bulbar palsy (83.3%; 50%) showed the best sensitivity and specificity in distinguishing subacute CIDP from AIDP. BUS is a useful diagnostic tool for distinguishing subacute CIDP from AIDP. © 2014 Wiley Periodicals, Inc.

  17. Fibroblast Growth Factor 1 (FGFR1) Modulation Regulates Repair Capacity of Oligodendrocyte Progenitor Cells Following Chronic Demyelination

    PubMed Central

    Zhou, Yong-Xing; Pannu, Ravinder; Le, Tuan Q.; Armstrong, Regina C.

    2011-01-01

    The adult mammalian brain contains multiple populations of endogenous progenitor cell types. However, following CNS trauma or disease, the regenerative capacity of progenitor populations is typically insufficient and may actually be limited by non-permissive or inhibitory signals in the damaged parenchyma. Remyelination is the most effective and simplest regenerative process in the adult CNS yet is still insufficient following repeated or chronic demyelination. Our previous in vitro studies demonstrated that fibroblast growth factor receptor 1 (FGFR1) signaling inhibited oligodendrocyte progenitor (OP) differentiation into mature oligodendrocytes. Therefore, we questioned whether FGFR1 signaling may inhibit the capacity of OP cells to generate oligodendrocytes in a demyelinating disease model and whether genetically reducing FGFR1 signaling in oligodendrocyte lineage cells could enhance the capacity for remyelination. FGFR1 was found to be upregulated in the corpus callosum during cuprizone mediated demyelination and expressed on OP cells just prior to remyelination. Plp/CreERT:Fgfr1fl/flmice were administered tamoxifen to induce conditional Fgfr1 deletion in oligodendrocyte lineage cells. Tamoxifen administration during chronic demyelination resulted in reduced FGFR1 expression in OP cells. OP proliferation and population size were not altered one week after tamoxifen treatment. Tamoxifen was then administered during chronic demyelination and mice were given a six week recovery period without cuprizone in the chow. After the recovery period, OP numbers were reduced and the number of mature oligodendrocytes was increased, indicating an effect of FGFR1 reduction on OP differentiation. Importantly, tamoxifen administration in Plp/CreERT:Fgfr1fl/fl mice significantly promoted remyelination and axon integrity. These results demonstrate a direct effect of FGFR1 signaling in oligodendrocyte lineage cells as inhibiting the repair capacity of OP cells following chronic demyelination in the adult CNS. PMID:21854849

  18. In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, R.; Friedrich, V.L. Jr.; Holmes, K.V.

    1990-09-01

    A demyelinating disease induced in C57B1/6N mice by intracranial injection of a coronavirus (murine hepatitis virus strain A59) is followed by functional recovery and efficient CNS myelin repair. To study the biological properties of the cells involved in this repair process, glial cells were isolated and cultured from spinal cords of these young adult mice during demyelination and remyelination. Using three-color immunofluorescence combined with (3H)thymidine autoradiography, we have analyzed the antigenic phenotype and mitotic potential of individual glial cells. We identified oligodendrocytes with an antibody to galactocerebroside, astrocytes with an antibody to glial fibrillary acidic protein, and oligodendrocyte-type 2 astrocytemore » (O-2A) progenitor cells with the O4 antibody. Cultures from demyelinated tissue differed in several ways from those of age-matched controls: first, the total number of O-2A lineage cells was strikingly increased; second, the O-2A population consisted of a higher proportion of O4-positive astrocytes and cells of mixed oligodendrocyte-astrocyte phenotype; and third, all the cell types within the O-2A lineage showed enhanced proliferation. This proliferation was not further enhanced by adding PDGF, basic fibroblast growth factor (bFGF), or insulin-like growth factor I (IGF-I) to the defined medium. However, bFGF and IGF-I seemed to influence the fate of O-2A lineage cells in cultures of demyelinated tissue. Basic FGF decreased the percentage of cells expressing galactocerebroside. In contrast, IGF-I increased the relative proportion of oligodendrocytes. Thus, O-2A lineage cells from adult mice display greater phenotypic plasticity and enhanced mitotic potential in response to an episode of demyelination. These properties may be linked to the efficient remyelination achieved in this demyelinating disease.« less

  19. TRPA1 deficiency is protective in cuprizone-induced demyelination-A new target against oligodendrocyte apoptosis.

    PubMed

    Sághy, Éva; Sipos, Éva; Ács, Péter; Bölcskei, Kata; Pohóczky, Krisztina; Kemény, Ágnes; Sándor, Zoltán; Szőke, Éva; Sétáló, György; Komoly, Sámuel; Pintér, Erika

    2016-12-01

    Multiple sclerosis is a chronic inflammatory, demyelinating degenerative disease of the central nervous system. Current treatments target pathological immune responses to counteract the inflammatory processes. However, these drugs do not restrain the long-term progression of clinical disability. For this reason, new therapeutic approaches and identification of novel target molecules are needed to prevent demyelination or promote repair mechanisms. Transient Receptor Potential Ankyrin 1 (TRPA1) is a nonselective cation channel with relatively high Ca 2+ permeability. Its pathophysiological role in central nervous system disorders has not been elucidated yet. In the present study, we aimed to assess the distribution of TRPA1 in the mouse brain and reveal its regulatory role in the cuprizone-induced demyelination. This toxin-induced model, characterized by oligodendrocyte apoptosis and subsequent primary demyelination, allows us to investigate the nonimmune aspects of multiple sclerosis. We found that TRPA1 is expressed on astrocytes in the mouse central nervous system. Interestingly, TRPA1 deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. Our data suggest that TRPA1 regulates mitogen-activated protein kinase pathways, as well as transcription factor c-Jun and a proapoptotic Bcl-2 family member (Bak) expression resulting in enhanced oligodendrocyte apoptosis. In conclusion, we propose that TRPA1 receptors enhancing the intracellular Ca 2+ concentration modulate astrocyte functions, and influence the pro or anti-apoptotic pathways in oligodendrocytes. Inhibition of TRPA1 receptors might successfully diminish the degenerative pathology in multiple sclerosis and could be a promising therapeutic target to limit central nervous system damage in demyelinating diseases. GLIA 2016;64:2166-2180. © 2016 Wiley Periodicals, Inc.

  20. Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome

    PubMed Central

    Yadegari, Samira; Nafissi, Shahriar; Kazemi, Neda

    2014-01-01

    Background: Incidence and predominant subtype of Guillain-Barre syndrome (GBS) differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS. Methods: We retrospectively evaluated the medical records and electrodiagnostic study (EDS) of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor sensory axonal neuropathy (AMSAN). The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF) profile were assessed. Results: Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB) was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase. Conclusion: AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding. PMID:25422732

  1. Consensus statement on the treatment of multiple sclerosis by the Spanish Society of Neurology in 2016.

    PubMed

    García Merino, A; Ramón Ara Callizo, J; Fernández Fernández, O; Landete Pascual, L; Moral Torres, E; Rodríguez-Antigüedad Zarrantz, A

    2017-03-01

    With the advent of new disease-modifying drugs, the treatment of multiple sclerosis is becoming increasingly complex. Using consensus statements is therefore advisable. The present consensus statement, which was drawn up by the Spanish Society of Neurology's study group for demyelinating diseases, updates previous consensus statements on the disease. The present study lists the medications currently approved for multiple sclerosis and their official indications, and analyses such treatment-related aspects as activity, early treatment, maintenance, follow-up, treatment failure, changes in medication, and special therapeutic situations. This consensus statement includes treatment recommendations for a wide range of demyelinating diseases, from isolated demyelinating syndromes to the different forms of multiple sclerosis, as well as recommendations for initial therapy and changes in drug medication, and additional comments on induction and combined therapy and practical aspects of the use of these drugs. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE

    PubMed Central

    Radbruch, Helena; Bremer, Daniel; Guenther, Robert; Cseresnyes, Zoltan; Lindquist, Randall; Hauser, Anja E.; Niesner, Raluca

    2016-01-01

    Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET–FLIM, providing a possible mechanism of disease progression in MS. PMID:27014271

  3. Case report: Central nervous system involvement of human graft versus host disease: Report of 7 cases and a review of literature.

    PubMed

    Ruggiu, Mathilde; Cuccuini, Wendy; Mokhtari, Karima; Meignin, Véronique; Peffault de Latour, Régis; Robin, Marie; Fontbrune, Flore Sicre de; Xhaard, Aliénor; Socié, Gérard; Michonneau, David

    2017-10-01

    Central nervous system (CNS) involvement of graft versus host disease (GvHD) is a rare cause of CNS disorders after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Chronic CNS GvHD symptoms are heterogeneous and include cerebrovascular manifestations, demyelinating disease and immune-mediated encephalitis. CNS-Acute GvHD is not formally defined in literature. We report 7 cases of CNS-GvHD among which two had histological-proven disease. We reviewed 32 additional cases of CNS GvHD published in literature since 1990. In this cohort, 34 patients were transplanted for hematologic malignancies, and 5 for non-malignant hematopoiesis disorders. Of these patients, 25 had a history of chronic GvHD and immunosuppressive treatment had been decreased or discontinued in 14 patients before neurological symptoms onset. Median neurological disorder onset was 385 days [7-7320]. Patients had stroke-like episodes (n = 7), lacunar syndromes (n = 3), multiple sclerosis-like presentations (n = 7), acute demyelinating encephalomyelitis-like symptoms (n = 4), encephalitis (n = 14), mass syndrome (n = 1), and 3 had non-specific symptoms. Median neurological symptoms onset was 81.5 days [7-1095] for patients without chronic GVHD history versus 549 days [11-7300] for patients with chronic GVHD (P = 0.001). Patients with early involvement of CNS after allo-HSCT and no chronic GVHD symptoms were more frequently suffering from encephalitis (64% versus 28%, P = 0.07), whereas stroke-like episodes and lacunar symptoms were less frequent (9% versus 36%, P = 0.13). 34 patients with CNS-GvHD were treated with immunosuppressive therapy, including corticosteroids for 31 of them. Other treatments were intravenous immunoglobulin, plasmapheresis, cyclophosphamide, calcineurin inhibitors, mycophenolic acid, methotrexate and etoposide. 27 patients achieved a response: 10 complete responses, 15 partial responses and 2 transient responses. Of 25 patients with sufficient follow-up, 7 were alive and 18 patients deceased after CNS-GvHD diagnosis. CNS-related GvHD is a rare cause of CNS disorders after allo-HSCT and is associated with a poor prognosis.

  4. Gene expression changes in chronic inflammatory demyelinating polyneuropathy skin biopsies.

    PubMed

    Puttini, Stefania; Panaite, Petrica-Adrian; Mermod, Nicolas; Renaud, Susanne; Steck, Andreas J; Kuntzer, Thierry

    2014-05-15

    Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Charcot-Marie-Tooth disease type 2 caused by homozygous MME gene mutation superimposed by chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Fujisawa, Miwako; Sano, Yasuteru; Omoto, Masatoshi; Ogasawara, Jyun-Ichi; Koga, Michiaki; Takashima, Hiroshi; Kanda, Takashi

    2017-09-30

    We report a 59-year-old Japanese male who developed gradually worsening weakness and numbness of distal four extremities since age 50. His parents were first cousins, and blood and cerebral spinal examinations were unremarkable. Homozygous mutation of MME gene was detected and thus he was diagnosed as autosomal-recessive Charcot-Marie-Tooth disease 2T (AR-CMT2T); however, electrophysiological examinations revealed scattered demyelinative changes including elongated terminal latency in several peripheral nerve trunks. Sural nerve biopsy showed endoneurial edema and a lot of thinly myelinated nerve fibers with uneven distribution of remnant myelinated fibers within and between fascicles. Immunoglobulin treatment was initiated considering the possibility of superimposed inflammation and demyelination, and immediate clinical as well as electrophysiological improvements were noted. Our findings indicate that AR-CMT2T caused by MME mutation predisposes to a superimposed inflammatory demyelinating neuropathy. This is the first report which documented the co-existence of CMT2 and chronic inflammatory demyelinating polyneuropathy (CIDP); however, in the peripheral nervous system, neprilysin, a product of MME gene, is more abundant in myelin sheath than in axonal component. The fragility of myelin sheath due to mutated neprilysin may trigger the detrimental immune response against peripheral myelin in this patient.

  6. Myt1L Promotes Differentiation of Oligodendrocyte Precursor Cells and is Necessary for Remyelination After Lysolecithin-Induced Demyelination.

    PubMed

    Shi, Yanqing; Shao, Qi; Li, Zhenghao; Gonzalez, Ginez A; Lu, Fengfeng; Wang, Dan; Pu, Yingyan; Huang, Aijun; Zhao, Chao; He, Cheng; Cao, Li

    2018-04-01

    The differentiation and maturation of oligodendrocyte precursor cells (OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1L (myelin transcription factor 1-like), mainly expressed in neurons, has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1L in neuron/glia antigen 2-positive (NG2 + ) OPCs was significantly higher than that in mature CC1 + oligodendrocytes. In primary cultured OPCs, overexpression of Myt1L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. ChIP assays showed that Myt1L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1L is an essential regulator of OPC differentiation, thereby supporting Myt1L as a potential therapeutic target for demyelinating diseases.

  7. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice

    PubMed Central

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Evercooren, Anne Baron-Van

    2015-01-01

    Induced pluripotent stem cell–derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent–derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin–derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS. PMID:26301815

  8. The Importance of Rare Subtypes in Diagnosis and Treatment of Peripheral Neuropathy: A Review.

    PubMed

    Callaghan, Brian C; Price, Raymond S; Chen, Kevin S; Feldman, Eva L

    2015-12-01

    Peripheral neuropathy is a prevalent condition that usually warrants a thorough history and examination but has limited diagnostic evaluation. However, rare localizations of peripheral neuropathy often require more extensive diagnostic testing and different treatments. To describe rare localizations of peripheral neuropathy, including the appropriate diagnostic evaluation and available treatments. References were identified from PubMed searches conducted on May 29, 2015, with an emphasis on systematic reviews and randomized clinical trials. Articles were also identified through the use of the authors' own files. Search terms included common rare neuropathy localizations and their causes, as well as epidemiology, pathophysiology, diagnosis, and treatment. Diffuse, nonlength-dependent neuropathies, multiple mononeuropathies, polyradiculopathies, plexopathies, and radiculoplexus neuropathies are rare peripheral neuropathy localizations that often require extensive diagnostic testing. Atypical neuropathy features, such as acute/subacute onset, asymmetry, and/or motor predominant signs, are frequently present. The most common diffuse, nonlength-dependent neuropathies are Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and amyotrophic lateral sclerosis. Effective disease-modifying therapies exist for many diffuse, nonlength-dependent neuropathies including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and some paraprotein-associated demyelinating neuropathies. Vasculitic neuropathy (multiple mononeuropathy) also has efficacious treatment options, but definitive evidence of a treatment effect for IgM anti-MAG neuropathy and diabetic amyotrophy (radiculoplexus neuropathy) is lacking. Recognition of rare localizations of peripheral neuropathy is essential given the implications for diagnostic testing and treatment. Electrodiagnostic studies are an important early step in the diagnostic evaluation and provide information on the localization and pathophysiology of nerve injury.

  9. [Chronic inflammatory demyelinating polyneuropathy. Findings in 30 patients].

    PubMed

    Villa, A M; Molina, H; Sanz, O P; Sica, R E

    1999-01-01

    Chronic demyelinating inflammatory polineuropathy (CIDP) is a disease which was recognized several years ago. However, the mechanism underlying its pathogenesis remains poorly understood. Nevertheless, there are some clues which strongly suggest that it constitutes an autoimmune disease. Since 1992 we have studied 30 cases. All them were clinically assessed and submitted to laboratory investigations encompassing nerve conduction studies, sera proteins immunoelectrophoresis, spinal fluid analysis and sural nerve biopsies. Upon clinical examination the usual findings were weakness, muscle atrophy, absence or diminished tendon jerks, paresthesias and hyposthesias. Electrophysiological studies disclosed marked slowing of the nerve conduction velocities, suggesting demyelination. Sera immunoelectrophoresis detected monoclonal gammopathy in 17% of the studied patients, which was not associated with lymphoproliferative illnesses. Of the patients 79% had increased levels of spinal fluid proteins. Seventeen patients gave their consent for performing a sural nerve biopsy; all the samples showed demyelination. In conclusion, we think that CDIP is a disease which can be recognized when the clinical assessment, the nerve conduction studies and the spinal fluid findings suggest the diagnosis. Although nerve biopsy may be strongly supporting, we believe that it has to be performed only if doubts arise from the clinical, electrophysiological or spinal fluid observations. It is worth noting that its early detection may benefit the patient through the administration of the right therapy precluding the eventual sequelae of the disease.

  10. Is distal motor and/or sensory demyelination a distinctive feature of anti-MAG neuropathy?

    PubMed

    Lozeron, Pierre; Ribrag, Vincent; Adams, David; Brisset, Marion; Vignon, Marguerite; Baron, Marine; Malphettes, Marion; Theaudin, Marie; Arnulf, Bertrand; Kubis, Nathalie

    2016-09-01

    To report the frequency of the different patterns of sensory and motor electrophysiological demyelination distribution in patients with anti-MAG neuropathy in comparison with patients with IgM neuropathy without MAG reactivity (IgM-NP). Thirty-five anti-MAG patients at early disease stage (20.1 months) were compared to 23 patients with IgM-NP; 21 CIDP patients and 13 patients with CMT1a neuropathy were used as gold standard neuropathies with multifocal and homogeneous demyelination, respectively. In all groups, standard motor and sensory electrophysiological parameters, terminal latency index and modified F ratio were investigated. Motor electrophysiological demyelination was divided in four profiles: distal, homogeneous, proximal, and proximo-distal. Distal sensory and sensorimotor demyelination were evaluated. Anti-MAG neuropathy is a demyelinating neuropathy in 91 % of cases. In the upper limbs, reduced TLI is more frequent in anti-MAG neuropathy, compared to IgM-NP. But, predominant distal demyelination of the median nerve is encountered in only 43 % of anti-MAG neuropathy and is also common in IgM-NP (35 %). Homogeneous demyelination was the second most frequent pattern (31 %). Concordance of electrophysiological profiles across motor nerves trunks is low and median nerve is the main site of distal motor conduction slowing. Reduced sensory conduction velocities occurs in 14 % of patients without evidence of predominant distal slowing. Simultaneous sensory and motor distal slowing was more common in the median nerve of anti-MAG neuropathy than IgM-NP. Electrophysiological distal motor demyelination and sensory demyelination are not a distinctive feature of anti-MAG reactivity. In anti-MAG neuropathy it is mainly found in the median nerve suggesting a frequent nerve compression at wrist.

  11. Pelizaeus-Merzbacher disease. The Löwenberg-Hill type.

    PubMed

    Bruyn, G W; Weenink, H R; Bots, G T; Teepen, J L; van Wolferen, W J

    1985-01-01

    The clinical and neuropathological findings are reported of two sibs with adult type PMD. Clinical features deviating from the usual pattern included: no psychosis, no measurable dementia, no dwarfism, no microcephaly, no (marked) involuntary movements, but conspicuous generalised muscle atrophy and denervation, impairment of vital and gnostic sensation, thoracolumbar vertebral anomalies, and aplasia of os coccygis. Neuropathological findings were as usual, with additional unusual features: pinhead-size areas of acute myelin-abbau products, involvement of grey in addition to white matter, and upon ultrastructure, the new finding of intra-oligodendroglial fingerprint bodies, both in neuronal satellite and in white matter oligoglia, but not in astrocytes, ganglion cells, or pericytes. This excludes the origin of the stored material in the lysosomes as to derive exclusively from demyelination and would possibly imply PMD to be an oligodendroglial lysosomal storage disease.

  12. Demyelination during tumour necrosis factor antagonist therapy for psoriasis: a case report and review of the literature.

    PubMed

    Mahil, Satveer K; Andrews, Thomasin C; Brierley, Charlotte; Barker, Jonathan N; Smith, Catherine H

    2013-02-01

    Central nervous system (CNS) demyelination in a patient receiving tumour necrosis factor alpha (TNF-α) antagonist therapy in our practice prompted a search of the literature to assess the evidence for a causal relationship between TNF antagonist therapy and demyelination. We summarise clinical data extracted on 65 reported cases of CNS demyelination in patients receiving TNF antagonist therapy and show that the data are consistent with a drug-related aetiology given the temporal relationship between TNF antagonist initiation and symptoms, de-challenge-re-challenge phenomenon and the later age of disease onset compared with sporadic multiple sclerosis. Research on TNF signalling pathways also suggests a plausible causative role of TNF antagonist therapy in demyelination. However to date, controlled trial and pharmacovigilance data do not show an increased risk of demyelination in patients receiving TNF antagonist therapy. These data may be underpowered to exclude such a risk and pooled, collaborative data from multiple registries are warranted. Given the uncertainty in this area, clinicians should adhere to existing clinical guidance advising avoidance of TNF antagonist therapy in patients with a personal or family history of demyelination, and ensure all suitable patients are enrolled in long term safety registries in countries where these are established.

  13. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain

    PubMed Central

    Haider, Lukas; Hametner, Simon; Höftberger, Romana; Bagnato, Francesca; Grabner, Günther; Trattnig, Siegfried; Pfeifenbring, Sabine; Brück, Wolfgang

    2016-01-01

    Abstract Multiple sclerosis is a chronic inflammatory disease with primary demyelination and neurodegeneration in the central nervous system. In our study we analysed demyelination and neurodegeneration in a large series of multiple sclerosis brains and provide a map that displays the frequency of different brain areas to be affected by these processes. Demyelination in the cerebral cortex was related to inflammatory infiltrates in the meninges, which was pronounced in invaginations of the brain surface (sulci) and possibly promoted by low flow of the cerebrospinal fluid in these areas. Focal demyelinated lesions in the white matter occurred at sites with high venous density and additionally accumulated in watershed areas of low arterial blood supply. Two different patterns of neurodegeneration in the cortex were identified: oxidative injury of cortical neurons and retrograde neurodegeneration due to axonal injury in the white matter. While oxidative injury was related to the inflammatory process in the meninges and pronounced in actively demyelinating cortical lesions, retrograde degeneration was mainly related to demyelinated lesions and axonal loss in the white matter. Our data show that accumulation of lesions and neurodegeneration in the multiple sclerosis brain does not affect all brain regions equally and provides the pathological basis for the selection of brain areas for monitoring regional injury and atrophy development in future magnetic resonance imaging studies. PMID:26912645

  14. Acute axonal polyneuropathy following honey-bee sting: a case report.

    PubMed

    Saini, Arushi Gahlot; Sankhyan, Naveen; Suthar, Renu; Singhi, Pratibha

    2014-05-01

    Hymenoptera stings lead to a myriad of neurologic manifestations by the mechanism of immediate or delayed hypersensitivity reactions. The more common form of polyneuropathy associated with these stings is the acute inflammatory demyelinating type. We describe a 6-year-old girl, who developed progressive, symmetrical, ascending weakness within 3 days after a bee sting. Serial nerve conduction studies confirmed acute, motor-predominant axonal polyneuropathy. Use of intravenous immunoglobulin induced halt of progression, prompt stabilization and a gradual recovery. This case highlights that even a single honey-bee sting can result in acute-onset axonal variety of polyneuropathy in children.

  15. Demyelinating polyneuropathy with focally folded myelin sheaths in a family of Miniature Schnauzer dogs.

    PubMed

    Vanhaesebrouck, An E; Couturier, Jérôme; Cauzinille, Laurent; Mizisin, Andrew P; Shelton, G Diane; Granger, Nicolas

    2008-12-15

    A spontaneous demyelinating polyneuropathy in two young Miniature Schnauzer dogs was characterized clinically, electrophysiologically and histopathologically. Both dogs were related and a third dog, belonging to the same family, had similar clinical signs. On presentation, clinical signs were restricted to respiratory dysfunction. Electrophysiological tests showed a dramatic decrease in both motor and sensory nerve conduction velocities. Microscopic examination of peripheral nerve biopsies (light and electron microscopy, teased nerve fibers), showed that this neuropathy was characterized by segmental demyelination and focally folded myelin sheaths. Various clinical syndromes associated with tomacula or focal thickening of the myelin sheath of the peripheral nerves have been described in humans and shown to be caused by gene mutations affecting the myelin proteins, such as the hereditary neuropathy with liability to pressure palsies or the demyelinating forms of Charcot-Marie-Tooth disease. In animals, a tomaculous neuropathy has been reported in cattle and chickens but not in carnivores. Here we report a demyelinating peripheral neuropathy with tomacula in two Miniature Schnauzer dogs.

  16. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination

    PubMed Central

    Yoon, Jane; van Horssen, Jack; Han, May H.; Bollyky, Paul L.; Palmer, Theo D.; Steinman, Lawrence

    2017-01-01

    The small heat shock protein αB-crystallin (CRYAB) has been implicated in multiple sclerosis (MS) pathogenesis. Earlier studies have indicated that CRYAB inhibits inflammation and attenuates clinical disease when administered in the experimental autoimmune encephalomyelitis model of MS. In this study, we evaluated the role of CRYAB in primary demyelinating events. Using the cuprizone model of demyelination, a noninflammatory model that allows the analysis of glial responses in MS, we show that endogenous CRYAB expression is associated with increased severity of demyelination. Moreover, we demonstrate a strong correlation between the expression of CRYAB and the extent of reactive astrogliosis in demyelinating areas and in in vitro assays. In addition, we reveal that CRYAB is differentially phosphorylated in astrocytes in active demyelinating MS lesions, as well as in cuprizone-induced lesions, and that this phosphorylation is required for the reactive astrocyte response associated with demyelination. Furthermore, taking a proteomics approach to identify proteins that are bound by the phosphorylated forms of CRYAB in primary cultured astrocytes, we show that there is clear differential binding of protein targets due to the specific phosphorylation of CRYAB. Subsequent Ingenuity Pathway Analysis of these targets reveals implications for intracellular pathways and biological processes that could be affected by these modifications. Together, these findings demonstrate that astrocytes play a pivotal role in demyelination, making them a potential target for therapeutic intervention, and that phosphorylation of CRYAB is a key factor supporting the pathogenic response of astrocytes to oligodendrocyte injury. PMID:28196893

  17. Multiple sclerosis masquerading as Alzheimer-type dementia: Clinical, radiological and pathological findings.

    PubMed

    Tobin, W O; Popescu, B F; Lowe, V; Pirko, I; Parisi, J E; Kantarci, K; Fields, J A; Bruns, M B; Boeve, B F; Lucchinetti, C F

    2016-04-01

    We report a comprehensive clinical, radiological, neuropsychometric and pathological evaluation of a woman with a clinical diagnosis of AD dementia (ADem), but whose autopsy demonstrated widespread demyelination, without Alzheimer disease (AD) pathology. Initial neuropsychometric evaluation suggested amnestic mild cognitive impairment (aMCI). Serial magnetic resonance images (MRI) images demonstrated the rate of increase in her ventricular volume was comparable to that of 46 subjects with aMCI who progressed to ADem, without accumulating white matter disease. Myelin immunohistochemistry at autopsy demonstrated extensive cortical subpial demyelination. Subpial lesions involved the upper cortical layers, and often extended through the entire width of the cortex. Multiple sclerosis (MS) can cause severe cortical dysfunction and mimic ADem. Cortical demyelination is not well detected by standard imaging modalities and may not be detected on autopsy without myelin immunohistochemistry. © The Author(s), 2015.

  18. Experimental models of demyelination and remyelination.

    PubMed

    Torre-Fuentes, L; Moreno-Jiménez, L; Pytel, V; Matías-Guiu, J A; Gómez-Pinedo, U; Matías-Guiu, J

    2017-08-29

    Experimental animal models constitute a useful tool to deepen our knowledge of central nervous system disorders. In the case of multiple sclerosis, however, there is no such specific model able to provide an overview of the disease; multiple models covering the different pathophysiological features of the disease are therefore necessary. We reviewed the different in vitro and in vivo experimental models used in multiple sclerosis research. Concerning in vitro models, we analysed cell cultures and slice models. As for in vivo models, we examined such models of autoimmunity and inflammation as experimental allergic encephalitis in different animals and virus-induced demyelinating diseases. Furthermore, we analysed models of demyelination and remyelination, including chemical lesions caused by cuprizone, lysolecithin, and ethidium bromide; zebrafish; and transgenic models. Experimental models provide a deeper understanding of the different pathogenic mechanisms involved in multiple sclerosis. Choosing one model or another depends on the specific aims of the study. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Involvement of peripheral III nerve in multiple sclerosis patient: Report of a new case and discussion of the underlying mechanism.

    PubMed

    Shor, Natalia; Amador, Maria Del Mar; Dormont, Didier; Lubetzki, Catherine; Bertrand, Anne

    2017-04-01

    Multiple sclerosis (MS) is a chronic disorder that affects the central nervous system myelin. However, a few radiological cases have documented an involvement of peripheral cranial nerves, within the subarachnoid space, in MS patients. We report the case of a 36-year-old female with a history of relapsing-remitting (RR) MS who consulted for a subacute complete paralysis of the right III nerve. Magnetic resonance imaging (MRI) examination showed enhancement and thickening of the cisternal right III nerve, in continuity with a linear, mesencephalic, acute demyelinating lesion. Radiological involvement of the cisternal part of III nerve has been reported only once in MS patients. Radiological involvement of the cisternal part of V nerve occurs more frequently, in almost 3% of MS patients. In both situations, the presence of a central demyelinating lesion, in continuity with the enhancement of the peripheral nerve, suggests that peripheral nerve damage is a secondary process, rather than a primary target of demyelination.

  20. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin

    PubMed Central

    Boroujerdi, Amin; Welser-Alves, Jennifer V.; Milner, Richard

    2013-01-01

    Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4–7 days post-immunization, but after 14 days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease. PMID:24056042

  1. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin.

    PubMed

    Boroujerdi, Amin; Welser-Alves, Jennifer V; Milner, Richard

    2013-12-01

    Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4-7days post-immunization, but after 14days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease. © 2013.

  2. Multifocal Motor Neuropathy, Multifocal Acquired Demyelinating Sensory and Motor Neuropathy and Other Chronic Acquired Demyelinating Polyneuropathy Variants

    PubMed Central

    Barohn, Richard J.; Katz, Jonathan

    2014-01-01

    Chronic acquired demyelinating neuropathies (CADP) are an important group of immune neuromuscular disorders affecting myelin. These are distinct from chronic inflammatory demyelinating polyneuropathy (CIDP). Classically, CIDP is characterized by proximal and distal weakness, large fiber sensory loss, elevated cerebrospinal fluid (CSF) protein content, demyelinating changes nerve conduction studies or nerve biopsy, and response to immunomodulating treatment. In this chapter we discuss CADP with emphasis on multifocal motor neuropathy (MMN), multifocal acquired demyelinating sensory and motor neuropathy (MADSAM), distal acquired demyelinating symmetric (DADS) neuropathy and conclude with less common variants. While each of these entities has distinctive laboratory and electrodiagnostic features that aid in their diagnosis, clinical characteristics are of paramount importance in diagnosing specific conditions and determining the most appropriate therapies. Unlike CIDP, MMN is typically asymmetric and affects only the motor nerve fibers. MMN is a rare disease that presents chronically, over several years of progression affecting the arms are more commonly than the legs. Men are more likely than women to develop MMN. MADSAM should be suspected in patients who have weakness and loss of sensation in primarily one arm or leg which progresses slowly over several months to years. It is important in patient with multifocal demyelinating clinical presentation to distinguish MMN from MADSAM since corticosteroids are not effective in MMN where the mainstay of therapy is intravenous gammaglobulin (IVIg). DADS can be subdivided into DADS-M (associated woth M-protein) and DADS-I which is idioapthic. While DADS-I patients respond somewhat to immunotherapy, DADS-M patients present with distal predominant sensorimotor demyelinating neuropathy phenotype and are notoriously refractory to immunotherapies regardless of antibodies to myelin-associated glycoprotein (MAG). Our knowledge regarding pathogenesis, diagnosis and management continues to expand, resulting in improved opportunities for identification and treatment. PMID:23642723

  3. Gut commensalism, cytokines, and central nervous system demyelination.

    PubMed

    Telesford, Kiel; Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-08-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination.

  4. [Consensus document on spasticity in patients with multiple sclerosis. Grupo de Enfermedades Desmielinizantes de la Sociedad Española de Neurología].

    PubMed

    Oreja-Guevara, Celia; Montalban, Xavier; de Andrés, Clara; Casanova-Estruch, Bonaventura; Muñoz-García, Delicias; García, Inmaculada; Fernández, Óscar

    2013-10-16

    Multiple sclerosis is a chronic neurological inflammatory demyelinating disease. Specialists involved in the symptomatic treatment of this disease tend to apply heterogeneous diagnostic and treatment criteria. To establish homogeneous criteria for treating spasticity based on available scientific knowledge, facilitating decision-making in regular clinical practice. A group of multiple sclerosis specialists from the Spanish Neurological Society demyelinating diseases working group met to review aspects related to spasticity in this disease and draw up the consensus. After an exhaustive bibliographic search and following a metaplan technique, a number of preliminary recommendations were established to incorporate into the document. Finally, each argument was classified depending on the degree of recommendation according to the SIGN (Scottish Intercollegiate Guidelines Network) system. The resulting text was submitted for review by the demyelinating disease group. An experts' consensus was reached regarding spasticity triggering factors, related symptoms, diagnostic criteria, assessment methods, quality of life and therapeutic management (drug and non-drug) criteria. The recommendations included in this consensus can be a useful tool for improving the quality of life of multiple sclerosis patients, as they enable improved diagnosis and treatment of spasticity.

  5. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain.

    PubMed

    Haider, Lukas; Zrzavy, Tobias; Hametner, Simon; Höftberger, Romana; Bagnato, Francesca; Grabner, Günther; Trattnig, Siegfried; Pfeifenbring, Sabine; Brück, Wolfgang; Lassmann, Hans

    2016-03-01

    Multiple sclerosis is a chronic inflammatory disease with primary demyelination and neurodegeneration in the central nervous system. In our study we analysed demyelination and neurodegeneration in a large series of multiple sclerosis brains and provide a map that displays the frequency of different brain areas to be affected by these processes. Demyelination in the cerebral cortex was related to inflammatory infiltrates in the meninges, which was pronounced in invaginations of the brain surface (sulci) and possibly promoted by low flow of the cerebrospinal fluid in these areas. Focal demyelinated lesions in the white matter occurred at sites with high venous density and additionally accumulated in watershed areas of low arterial blood supply. Two different patterns of neurodegeneration in the cortex were identified: oxidative injury of cortical neurons and retrograde neurodegeneration due to axonal injury in the white matter. While oxidative injury was related to the inflammatory process in the meninges and pronounced in actively demyelinating cortical lesions, retrograde degeneration was mainly related to demyelinated lesions and axonal loss in the white matter. Our data show that accumulation of lesions and neurodegeneration in the multiple sclerosis brain does not affect all brain regions equally and provides the pathological basis for the selection of brain areas for monitoring regional injury and atrophy development in future magnetic resonance imaging studies. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  6. Leptin sustains spontaneous remyelination in the adult central nervous system

    PubMed Central

    Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide

    2017-01-01

    Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609

  7. Adenosine A2A receptor blockade attenuates spatial memory deficit and extent of demyelination areas in lyolecithin-induced demyelination model.

    PubMed

    Akbari, Atefeh; Khalili-Fomeshi, Mohsen; Ashrafpour, Manouchehr; Moghadamnia, Ali Akbar; Ghasemi-Kasman, Maryam

    2018-05-03

    In recent years, inactivation of A 2A adenosine receptors has been emerged as a novel strategy for treatment of several neurodegenerative diseases. Although numerous studies have shown the beneficial effects of A 2A receptors blockade on spatial memory, the impacts of selective adenosine A 2A receptors on memory performance has not yet been examined in the context of demyelination. In the present study, we evaluated the effect of A 2A receptor antagonist SCH58261 on spatial memory and myelination in an experimental model of focal demyelination in rat fimbria. Demyelination was induced by local injection of lysolecithin (LPC) 1% (2 μl) into the hippocampus fimbria. SCH58261 (20 μg/0.5 μl or 40 μg/0.5 μl) was daily injected intracerebroventricularly (i.c.v.) for 10 days post LPC injection. The Morris water maze test was used to assess the spatial learning and memory on day 6 post lesion. Myelin staining and immunostaining against astrocytes/microglia were carried out 10 days post LPC injection. The administration of adenosine A 2A receptor antagonist prevented the spatial memory impairment in LPC receiving animals. Myelin staining revealed that application of SCH58261 reduces the extent of demyelination areas in the fimbria. Furthermore, the level of astrocytes and microglia activation was attenuated following administration of A 2A receptor antagonist. Collectively, the results of this study suggest that A 2A receptor blockade can improve the spatial memory and protect myelin sheath, which might be considered as a novel therapeutic approach for multiple sclerosis disease. Copyright © 2017. Published by Elsevier Inc.

  8. Serial electrophysiological studies in a Guillain-Barré subtype with bilateral facial neuropathy.

    PubMed

    Chan, Yee-Cheun; Therimadasamy, Aravind-Kannan; Sainuddin, Nurul M; Wilder-Smith, Einar; Yuki, Nobuhiro

    2016-02-01

    Bifacial weakness with paraesthesias subtype of Guillain-Barré syndrome (GBS) is thought to be demyelinating in nature but the evolution of serial nerve conduction study (NCS) findings has not been studied. We retrospectively analyzed the changes on serial NCS of patients with bilateral facial neuropathy. We described the clinical features, serial blink reflex, facial nerve and limb NCS of such patients. Five patients fulfilled our study criteria. Patients 1 and 2 were diagnosed clinically to have bilateral Bell's palsy, patients 3 and 4 as bifacial GBS subtype and patient 5 as facial palsy associated with acute HIV infection. In all, the initial neurophysiological tests showed absent blink response and normal facial NCS. Patient 1's repeat tests were normal. Patient 2's repeat blink reflex showed mildly prolonged latency. Repeat blink reflex latency of patients 3, 4 and 5 were in the demyelinating range. Patient 3 also had prolonged facial nerve latency. Patients 3 and 4 had serial limb NCS showing progressively prolonged latency. Serial NCS suggests that the bifacial GBS subtype is demyelinating in nature. This study provides further evidence for a bifacial subtype of GBS with a demyelinating pathophysiology. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Demyelinating Guillain-Barré syndrome recurs more frequently than axonal subtypes.

    PubMed

    Notturno, Francesca; Kokubun, Norito; Sekiguki, Yukari; Nagashima, Takahide; De Lauretis, Angelo; Yuki, Nobuhiro; Kuwabara, Satoshi; Uncini, Antonino

    2016-06-15

    Guillain-Barré syndrome (GBS) is considered a monophasic disorder yet recurrences occur in up to 6% of patients. We retrospectively studied an Italian-Japanese population of 236 GBS and 73 Miller Fisher syndrome (MFS) patients and searched for factors which may be associated with recurrence. A recurrent patient was defined as having at least two episodes that fulfilled the diagnostic criteria for GBS and MFS with an identifiable recovery after each episode and a minimum of 2months between episodes. Preceding Campylobacter jejuni (C. jejuni) infection and antiganglioside antibodies were also assessed. Seven (3%) recurrent GBS and one (1.4%) recurrent MFS patients were identified. In the individual patient the clinical features during episodes were usually similar varying in severity whereas the preceding infection differed. None of the patients had GBS in one episode and MFS in the recurrence or vice versa. Recurrent GBS patients, compared with monophasic GBS, did not have preceding diarrhea at the first episode and considering the electrophysiological subtypes, acute inflammatory demyelinating polyneuropathies recurred more frequently than axonal GBS (6.5% vs 0.9%, p=0.04). In conclusion in a GBS population with a balanced number of demyelinating and axonal subtypes less frequent diarrhea and demyelination at electrophysiology were associated with recurrence. Copyright © 2016. Published by Elsevier B.V.

  10. Impaired plasticity of macrophages in X-linked adrenoleukodystrophy.

    PubMed

    Weinhofer, Isabelle; Zierfuss, Bettina; Hametner, Simon; Wagner, Magdalena; Popitsch, Niko; Machacek, Christian; Bartolini, Barbara; Zlabinger, Gerhard; Ohradanova-Repic, Anna; Stockinger, Hannes; Köhler, Wolfgang; Höftberger, Romana; Regelsberger, Günther; Forss-Petter, Sonja; Lassmann, Hans; Berger, Johannes

    2018-05-30

    X-linked adrenoleukodystrophy is caused by ATP-binding cassette transporter D1 (ABCD1) mutations and manifests by default as slowly progressive spinal cord axonopathy with associated demyelination (adrenomyloneuropathy). In 60% of male cases, however, X-linked adrenoleukodystrophy converts to devastating cerebral inflammation and demyelination (cerebral adrenoleukodystrophy) with infiltrating blood-derived monocytes and macrophages and cytotoxic T cells that can only be stopped by allogeneic haematopoietic stem cell transplantation or gene therapy at an early stage of the disease. Recently, we identified monocytes/macrophages but not T cells to be severely affected metabolically by ABCD1 deficiency. Here we found by whole transcriptome analysis that, although monocytes of patients with X-linked adrenoleukodystrophy have normal capacity for macrophage differentiation and phagocytosis, they are pro-inflammatory skewed also in patients with adrenomyloneuropathy in the absence of cerebral inflammation. Following lipopolysaccharide activation, the ingestion of myelin debris, normally triggering anti-inflammatory polarization, did not fully reverse the pro-inflammatory status of X-linked adrenoleukodystrophy macrophages. Immunohistochemistry on post-mortem cerebral adrenoleukodystrophy lesions reflected the activation pattern by prominent presence of enlarged lipid-laden macrophages strongly positive for the pro-inflammatory marker co-stimulatory molecule CD86. Comparative analyses of lesions with matching macrophage density in cases of cerebral adrenoleukodystrophy and acute multiple sclerosis showed a similar extent of pro-inflammatory activation but a striking reduction of anti-inflammatory mannose receptor (CD206) and haemoglobin-haptoglobin receptor (CD163) expression on cerebral adrenoleukodystrophy macrophages. Accordingly, ABCD1-deficiency leads to an impaired plasticity of macrophages that is reflected in incomplete establishment of anti-inflammatory responses, thus possibly contributing to the devastating rapidly progressive demyelination in cerebral adrenoleukodystrophy that only in rare cases arrests spontaneously. These findings emphasize monocytes/macrophages as crucial therapeutic targets for preventing or stopping myelin destruction in patients with X-linked adrenoleukodystrophy.

  11. Guillain-Barre syndrome associated with peginterferon alfa-2a for chronic hepatitis C: A case report

    PubMed Central

    Niazi, Mumtaz A; Azhar, Ashaur; Tufail, Kashif; Feyssa, Eyob L; Penny, Stephen F; McGregory, Marlene; Araya, Victor; Ortiz, Jorge A

    2010-01-01

    The recommended therapy for chronic hepatitis C (CHC) infection is the combination of a Pegylated interferon and Ribavirin. Almost all such patients on combination therapy experience one or more adverse events during the course of treatment. Significant neurological side effects are rare. A few cases of Bell’s Palsy, chronic inflammatory demyelinating polyneuropathy and even one case of acute demyelinating polyneuropathy with atypical features for Guillain-Barre syndrome (GBS) associated with Interferon therapy have been reported but no report of GBS with typical features has been published. We present a case report of typical GBS associated with Peginterferon alfa-2a and Ribavirin used for treatment of CHC infection. PMID:21160989

  12. Disinhibition of Cathepsin C Caused by Cystatin F Deficiency Aggravates the Demyelination in a Cuprizone Model.

    PubMed

    Liang, Junjie; Li, Ning; Zhang, Yanli; Hou, Changyi; Yang, Xiaohan; Shimizu, Takahiro; Wang, Xiaoyu; Ikenaka, Kazuhiro; Fan, Kai; Ma, Jianmei

    2016-01-01

    Although the precise mechanism underlying initial lesion development in multiple sclerosis (MS) remains unclear, CNS inflammation has long been associated with demyelination, and axonal degeneration. The activation of microglia/macrophages, which serve as innate immune cells in the CNS, is the first reaction to even minor pathologic changes in the CNS and is considered an initial pathogenic event in MS. Microglial activation accompanies a variety of gene expressions, including cystatin F (Cys F), which belongs to the cystatin superfamily and is one of the cathepsin inhibitors. In our previous study we showed that Cys F has a unique expression pattern in microglia/macrophages in the demyelination process. Specifically, the timing of Cys F induction correlated with ongoing demyelination, and the sites of Cys F expression overlapped with areas of remyelination. Cys F induction ceased in chronic demyelination when remyelination capacity was lost, suggesting that Cys F expressed by microglia/macrophages may play an important role in demyelination and/or remyelination. The functional role of Cys F in demyelinating disease of the CNS, however, is unclear. Cys F gene knockout mice were used in the current study to clarify the functional role of Cys F in the demyelination process in a cuprizone-induced demyelination animal model. We demonstrated that absence of the Cys F gene and the resulting disinhibition of cathepsin C (Cat C) aggravates the demyelination, and this finding may be related to the increased expression of the glia-derived chemokine, CXCL2, which may attract inflammatory cells to sites of myelin sheath damage. This effect was reversed by knock down of the Cat C gene. The findings gain further insight to function of Cat C in pathophysiology of MS, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future.

  13. Disinhibition of Cathepsin C Caused by Cystatin F Deficiency Aggravates the Demyelination in a Cuprizone Model

    PubMed Central

    Liang, Junjie; Li, Ning; Zhang, Yanli; Hou, Changyi; Yang, Xiaohan; Shimizu, Takahiro; Wang, Xiaoyu; Ikenaka, Kazuhiro; Fan, Kai; Ma, Jianmei

    2016-01-01

    Although the precise mechanism underlying initial lesion development in multiple sclerosis (MS) remains unclear, CNS inflammation has long been associated with demyelination, and axonal degeneration. The activation of microglia/macrophages, which serve as innate immune cells in the CNS, is the first reaction to even minor pathologic changes in the CNS and is considered an initial pathogenic event in MS. Microglial activation accompanies a variety of gene expressions, including cystatin F (Cys F), which belongs to the cystatin superfamily and is one of the cathepsin inhibitors. In our previous study we showed that Cys F has a unique expression pattern in microglia/macrophages in the demyelination process. Specifically, the timing of Cys F induction correlated with ongoing demyelination, and the sites of Cys F expression overlapped with areas of remyelination. Cys F induction ceased in chronic demyelination when remyelination capacity was lost, suggesting that Cys F expressed by microglia/macrophages may play an important role in demyelination and/or remyelination. The functional role of Cys F in demyelinating disease of the CNS, however, is unclear. Cys F gene knockout mice were used in the current study to clarify the functional role of Cys F in the demyelination process in a cuprizone-induced demyelination animal model. We demonstrated that absence of the Cys F gene and the resulting disinhibition of cathepsin C (Cat C) aggravates the demyelination, and this finding may be related to the increased expression of the glia-derived chemokine, CXCL2, which may attract inflammatory cells to sites of myelin sheath damage. This effect was reversed by knock down of the Cat C gene. The findings gain further insight to function of Cat C in pathophysiology of MS, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future. PMID:28066178

  14. Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance

    PubMed Central

    Zhu, Keying; Sun, Jingxian; Kang, Zheng; Zou, Zaofeng; Wu, Gencheng; Wang, Jun

    2017-01-01

    Promoting remyelination is crucial for patients with demyelinating diseases including multiple sclerosis. However, it is still a circuitous conundrum finding a practical remyelinating therapy. Electroacupuncture (EA), originating from traditional Chinese medicine (TCM), has been widely used to treat CNS diseases all over the world, but the role of EA in demyelinating diseases is barely known. In this study, we examined the remyelinating properties and mechanisms of EA in cuprizone-induced demyelinating model, a CNS demyelinating murine model of multiple sclerosis. By feeding C57BL/6 mice with chow containing 0.2% cuprizone for 5 weeks, we successfully induce demyelination as proved by weight change, beam test, pole test, histomorphology, and Western Blot. EA treatment significantly improves the neurobehavioral performance at week 7 (2 weeks after withdrawing cuprizone chow). RNA-seq and RT-PCR results reveal up-regulated expression of myelin-related genes, and the expression of myelin associated protein (MBP, CNPase, and O4) are also increased after EA treatment, indicating therapeutic effect of EA on cuprizone model. It is widely acknowledged that microglia exert phagocytic effect on degraded myelin debris and clear these detrimental debris, which is a necessary process for subsequent remyelination. We found the remyelinating effect of EA is associated with enhanced clearance of degraded myelin debris as detected by dMBP staining and red oil O staining. Our further studies suggest that more microglia assemble in demyelinating area (corpus callosum) during the process of EA treatment, and cells inside corpus callosum are mostly in a plump, ameboid, and phagocytic shape, quite different from the ramified cells outside corpus callosum. RNA-seq result also unravels that most genes relating to positive regulation of phagocytosis (GO:0050766) are up-regulated, indicating enhanced phagocytic process after EA treatment. During the process of myelin debris clearance, microglia tend to change their phenotype toward M2 phenotype. Thus, we also probed into the phenotype of microglia in our study. Immuno-staining results show increased expression of CD206 and Arg1, and the ratio of CD206/CD16/32 are also higher in EA group. In conclusion, these results demonstrate for the first time that EA enhances myelin debris removal from activated microglia after demyelination, and promotes remyelination. PMID:28119561

  15. Consensus Statement on medication use in multiple sclerosis by the Spanish Society of Neurology's study group for demyelinating diseases.

    PubMed

    García-Merino, A; Fernández, O; Montalbán, X; de Andrés, C; Oreja-Guevara, C; Rodríguez-Antigüedad, A; Arbizu, T

    2013-01-01

    Treatments for multiple sclerosis therapy are rapidly evolving. It is believed that new drugs will be approved in the near future, thereby changing current indications for treatment. In this context, the Spanish Society of Neurology's study group on demyelinating diseases, which evaluates medication use in MS, has decided to draw up a consensus statement on the current indications and guidelines for multiple sclerosis treatment. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  16. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression.

    PubMed

    Ochoa-Repáraz, Javier; Mielcarz, Daniel W; Ditrio, Lauren E; Burroughs, Ashley R; Begum-Haque, Sakhina; Dasgupta, Suryasarathi; Kasper, Dennis L; Kasper, Lloyd H

    2010-10-01

    The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microflora can affect a population of Foxp3(+)T(reg) cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that Bacteroides fragilis producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type B. fragilis maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient B. fragilis restored EAE susceptibility. Enhanced numbers of Foxp3(+)T(reg) cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of B. fragilis. Ex vivo, CD4(+)T cells obtained from mice reconstituted with wild type B. fragilis had significantly enhanced rates of conversion into IL-10-producing Foxp3(+)T(reg) cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular B. fragilis expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis.

  17. Coexistence of multiple sclerosis and ankylosing spondylitis: Report of four cases from Russia and review of the literature.

    PubMed

    Fominykh, Vera; Shevtsova, Tatyana; Arzumanian, Narine; Brylev, Lev

    2017-10-01

    Multiple sclerosis is a chronic demyelinating disorder of the central nervous system. There are many cases of multiple sclerosis - like syndrome and demyelinating disorders in systemic lupus erythematosus, Sjogren disease, Behcet disease and other autoimmune conditions. Coexistence of ankylosing spondylitis and multiple sclerosis usually is rare but in this article we report 4 Russian patients with concomitant multiple sclerosis and ankylosing spondylitis diseases. None of these patients received anti-tumor necrosis factor alpha therapy prior to diagnosis of multiple sclerosis. Pathogenesis, diagnostic and treatment challenges are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Acute optic neuritis

    PubMed Central

    Galetta, Steven L.; Villoslada, Pablo; Levin, Netta; Shindler, Kenneth; Ishikawa, Hiroshi; Parr, Edward; Cadavid, Diego

    2015-01-01

    Idiopathic demyelinating optic neuritis (ON) most commonly presents as acute unilateral vision loss and eye pain and is frequently associated with multiple sclerosis. Although emphasis is often placed on the good recovery of high-contrast visual acuity, persistent deficits are frequently observed in other aspects of vision, including contrast sensitivity, visual field testing, color vision, motion perception, and vision-related quality of life. Persistent and profound structural and functional changes are often revealed by imaging and electrophysiologic techniques, including optical coherence tomography, visual-evoked potentials, and nonconventional MRI. These abnormalities can impair patients' abilities to perform daily activities (e.g., driving, working) so they have important implications for patients' quality of life. In this article, we review the sequelae from ON, including clinical, structural, and functional changes and their interrelationships. The unmet needs in each of these areas are considered and the progress made toward meeting those needs is examined. Finally, we provide an overview of past and present investigational approaches for disease modification in ON. PMID:26236761

  19. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis

    PubMed Central

    Elliott, Christina; Lindner, Maren; Arthur, Ariel; Brennan, Kathryn; Jarius, Sven; Hussey, John; Chan, Andrew; Stroet, Anke; Olsson, Tomas; Willison, Hugh; Barnett, Susan C.; Meinl, Edgar

    2012-01-01

    Pathological and clinical studies implicate antibody-dependent mechanisms in the immunopathogenesis of multiple sclerosis. We tested this hypothesis directly by investigating the ability of patient-derived immunoglobulins to mediate demyelination and axonal injury in vitro. Using a myelinating culture system, we developed a sensitive and reproducible bioassay to detect and quantify these effects and applied this to investigate the pathogenic potential of immunoglobulin G preparations obtained from patients with multiple sclerosis (n = 37), other neurological diseases (n = 10) and healthy control donors (n = 13). This identified complement-dependent demyelinating immunoglobulin G responses in approximately 30% of patients with multiple sclerosis, which in two cases was accompanied by significant complement-dependent antibody mediated axonal loss. No pathogenic immunoglobulin G responses were detected in patients with other neurological disease or healthy controls, indicating that the presence of these demyelinating/axopathic autoantibodies is specific for a subset of patients with multiple sclerosis. Immunofluorescence microscopy revealed immunoglobulin G preparations with demyelinating activity contained antibodies that specifically decorated the surface of myelinating oligodendrocytes and their contiguous myelin sheaths. No other binding was observed indicating that the response is restricted to autoantigens expressed by terminally differentiated myelinating oligodendrocytes. In conclusion, our study identifies axopathic and/or demyelinating autoantibody responses in a subset of patients with multiple sclerosis. This observation underlines the mechanistic heterogeneity of multiple sclerosis and provides a rational explanation why some patients benefit from antibody depleting treatments. PMID:22561643

  20. Recurrent Isolated Sixth Nerve Palsy in Relapsing-Remitting Chronic Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Al-Bustani, Najwa; Weiss, Michael D

    2015-09-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated sensory and motor demyelinating polyneuropathy that typically presents as a relapsing-remitting or progressive disorder. Cranial neuropathies infrequently occur in association with other more typical symptoms of CIDP. We report a case of CIDP with recurrent isolated sixth nerve palsy. Her physical examination showed a right sixth nerve palsy and absent deep tendon reflexes as the only indicator of her disease. Magnetic resonance imaging revealed thickening without enhancement of the trigeminal and sixth cranial nerves. Nerve conduction study (NCS) revealed a sensory and motor demyelinating polyneuropathy with conduction block and temporal dispersion in multiple nerves consistent with CIDP. Cerebrospinal fluid demonstrated albuminic-cytologic dissociation. She had a remarkable response to intravenous immunoglobulin and remains asymptomatic without any additional immunomodulating therapy. Isolated cranial neuropathies can rarely occur as the sole manifestation of relapsing-remitting CIDP. The profound demyelination found on NCS in this case demonstrates that there can be a dramatic discordance between the clinical and electrodiagnostic findings in some patients with this disorder.

  1. Chronic Inflammatory Demyelinating Polyneuropathy Manifesting as Neuropathy With Liability to Pressure Palsies: A Case Report.

    PubMed

    Shah, Akshay; Rison, Richard A; Beydoun, Said R

    2015-12-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is a progressive demyelinating neuropathy, which typically presents with proximal and distal neuropathic symptoms and is typically responsive to immunomodulatory therapies. Many variants have been subsequently described in the literature and have similarly shown to be responsive to immunotherapy. We present a case of a 43-year-old Middle Eastern/Arabic man presenting with symptoms of mixed sensorimotor neuropathy most evident at entrapment sites mimicking hereditary neuropathy with liability to pressure palsies. His electrodiagnostic study revealed features of acquired demyelinating neuropathy and a negative genetic workup. Alternative diagnosis of CIDP was considered in the context of symptomatic disease progression, negative genetic workup, and electrodiagnosis leading to initiation of immunotherapy with intravenous immunoglobulins. His neuropathy responded confirming our diagnosis of an inflammatory demyelinating polyneuropathy. We describe a previously unknown variant of CIDP with phenotypic characteristics of hereditary neuropathy with liability to pressure palsies and its potential for successful treatment with intravenous immunoglobulins. This case illustrates an unusual presentation of CIDP mimicking hereditary neuropathy with liability to pressure palsies.

  2. Guillian-Barré syndrome--a case study.

    PubMed

    Toft, C E

    2002-04-01

    'Acute Guillian-Barré Syndrome is an acute inflammatory demyelinating disease of the peripheral nerves' (Pfister & Bullas 1990) which affects the normal transmission of electrical impulses along these nerves and consequently the function of the organs and tissues which they innervate (Springhouse 1998, Waldock 1995). This disorder can rapidly replace an individual's busy and active lifestyle with one of total dependence, often lasting months (Waldock 1995). It is important, therefore, that nurses understand the pathophysiology of the disease and its effect on the organs and tissue within the body, to enable them to provide a high standard of care for patients suffering from this condition. This discussion of Guillian-Barré Syndrome (GBS) will be in relation to patient (who shall be called Jane Smith for the purpose of this discussion) who was admitted to the Accident and Emergency (A&E) department and diagnosed with GBS (see Box 1 for patient history). Within this discussion GBS will be defined and its pathophysiology explained. The epidemiology and aetiology of the disease will also be highlighted. The majority of the discussion will focus on the physiological effects of GBS on the components of the peripheral nervous system and the appropriate assessment and treatment measures. Finally, the outcomes of the disease will be highlighted. The focus will be on the management of this condition within the A&E department.

  3. Extracellular Acidic pH Inhibits Oligodendrocyte Precursor Viability, Migration, and Differentiation

    PubMed Central

    Jagielska, Anna; Wilhite, Kristen D.; Van Vliet, Krystyn J.

    2013-01-01

    Axon remyelination in the central nervous system requires oligodendrocytes that produce myelin. Failure of this repair process is characteristic of neurodegeneration in demyelinating diseases such as multiple sclerosis, and it remains unclear how the lesion microenvironment contributes to decreased remyelination potential of oligodendrocytes. Here, we show that acidic extracellular pH, which is characteristic of demyelinating lesions, decreases the migration, proliferation, and survival of oligodendrocyte precursor cells (OPCs), and reduces their differentiation into oligodendrocytes. Further, OPCs exhibit directional migration along pH gradients toward acidic pH. These in vitro findings support a possible in vivo scenario whereby pH gradients attract OPCs toward acidic lesions, but resulting reduction in OPC survival and motility in acid decreases progress toward demyelinated axons and is further compounded by decreased differentiation into myelin-producing oligodendrocytes. As these processes are integral to OPC response to nerve demyelination, our results suggest that lesion acidity could contribute to decreased remyelination. PMID:24098762

  4. Viruses and Multiple Sclerosis

    PubMed Central

    Owens, Gregory P.; Gilden, Don; Burgoon, Mark P.; Yu, Xiaoli; Bennett, Jeffrey L.

    2012-01-01

    Multiple sclerosis (MS) is a chronic demyelinating disorder of unknown etiology, possibly caused by a virus or virus-triggered immunopathology. The virus might reactivate after years of latency and lyse oligodendrocytes, as in progressive multifocal leukoencephalopathy, or initiate immunopathological demyelination, as in animals infected with Theiler’s murine encephalomyelitis virus or coronaviruses. The argument for a viral cause of MS is supported by epidemiological analyses and studies of MS in identical twins, indicating that disease is acquired. However, the most important evidence is the presence of bands of oligoclonal IgG (OCBs) in MS brain and CSF that persist throughout the lifetime of the patient. OCBs are found almost exclusively in infectious CNS disorders, and antigenic targets of OCBs represent the agent that causes disease. Here, the authors review past attempts to identify an infectious agent in MS brain cells and discuss the promise of using recombinant antibodies generated from clonally expanded plasma cells in brain and CSF to identify disease-relevant antigens. They show how this strategy has been used successfully to analyze antigen specificity in subacute sclerosing panencephalitis, a chronic encephalitis caused by measles virus, and in neuromyelitis optica, a chronic autoimmune demyelinating disease produced by antibodies directed against the aquaporin-4 water channel. PMID:22130640

  5. [Demyelinating disease and vaccination of the human papillomavirus].

    PubMed

    Álvarez-Soria, M Josefa; Hernández-González, Amalia; Carrasco-García de León, Sira; del Real-Francia, M Ángeles; Gallardo-Alcañiz, M José; López-Gómez, José L

    2011-04-16

    Primary prevention by prophylactic vaccination against the major cause of cervical cancer, the carcinogenic human papillomavirus (HPV) types 16 and 18, is now available worldwide. Postlicensure adverse neurological effects have been described. The studies realized after the license are descriptive and limited by the difficulty to obtain the information, despite most of the statistical indexes show that the adverse effects by the vaccine of the HPV are not upper compared with other vaccines, the substimation must be considered. We describe the cases of four young women that developed demyelinating disease after the vaccination of the HPV, with a rank of time between the administration of the dose and the development of the clinical of seven days to a month, with similar symptoms with the successive doses. We have described six episodes coinciding after the vaccination. Have been described seizures, autoimmune disorders such as Guillain-Barre syndrome, transverse myelitis, or motor neuron disease, probably adverse effects following immunization by HPV vaccine. So we suggest that vaccine may trigger an immunological mechanism leading to demyelinating events, perhaps in predisposed young.

  6. Hyperventilation-induced nystagmus in a large series of vestibular patients.

    PubMed

    Califano, L; Melillo, M G; Vassallo, A; Mazzone, S

    2011-02-01

    The Hyperventilation Test is widely used in the "bed-side examination" of vestibular patients. It can either activate a latent nystagmus in central or peripheral vestibular diseases or it can interact with a spontaneous nystagmus, by reducing it or increasing it. Aims of this study were to determine the incidence, patterns and temporal characteristics of Hyperventilation-induced nystagmus in patients suffering from vestibular diseases, as well as its contribution to the differential diagnosis between vestibular neuritis and neuroma of the 8(th) cranial nerve, and its behaviour in some central vestibular diseases. The present study includes 1202 patients featuring, at vestibular examination, at least one sign of vestibular system disorders or patients diagnosed with a "Migraine-related vertigo" or "Chronic subjective dizziness". The overall incidence of Hyperventilation-induced nystagmus was 21.9%. It was detected more frequently in retrocochlear vestibular diseases rather than in end-organ vestibular diseases: 5.3% in Paroxysmal Positional Vertigo, 37.1% in Menière's disease, 37.6% in compensated vestibular neuritis, 77.2% in acute vestibular neuritis and 91.7% in neuroma of the 8(th) cranial nerve. In acute vestibular neuritis, three HVIN patterns were observed: Paretic pattern: temporary enhancement of the spontaneous nystagmus; Excitatory pattern: temporary inhibition of the spontaneous nystagmus; Strong excitatory pattern: temporary inversion of the spontaneous nystagmus. Excitatory patterns proved to be time-dependent in that they disappeared and were replaced by the paretic pattern over a period of maximum 18 days since the beginning of the disorder. In acoustic neuroma, Hyperventilation-induced nystagmus was frequently observed (91.7%), either in the form of an excitatory pattern (fast phases towards the affected site) or in the form of a paretic pattern (fast phases towards the healthy side). The direction of the nystagmus is only partially related to tumour size, whereas other mechanisms, such as demyelination or a break in nerve fibres, might have an important role in triggering the situation. Hyperventilation-induced nystagmus has frequently been detected in cases of demyelinating diseases and in cerebellar diseases: in multiple sclerosis, hyperventilation inhibits a central type of spontaneous nystagmus or evokes nystagmus in 75% of patients; in cerebellar diseases, hyperventilation evokes or enhances a central spontaneous nystagmus in 72.7% of patients. In conclusion the Hyperventilation Test can provide patterns of oculomotor responses that indicate a diagnostic investigation through cerebral magnetic resonance imaging enhanced by gadolinium, upon suspicion of neuroma of the 8(th) cranial nerve or of a central disease. In our opinion, however, Hyperventilation-induced nystagmus always needs to be viewed within the more general context of a complete examination of the vestibular and acoustic system.

  7. PubMed Central

    CALIFANO, L.; MELILLO, M.G.; VASSALLO, A.; MAZZONE, S.

    2011-01-01

    SUMMARY The Hyperventilation Test is widely used in the "bed-side examination" of vestibular patients. It can either activate a latent nystagmus in central or peripheral vestibular diseases or it can interact with a spontaneous nystagmus, by reducing it or increasing it. Aims of this study were to determine the incidence, patterns and temporal characteristics of Hyperventilation-induced nystagmus in patients suffering from vestibular diseases, as well as its contribution to the differential diagnosis between vestibular neuritis and neuroma of the 8th cranial nerve, and its behaviour in some central vestibular diseases. The present study includes 1202 patients featuring, at vestibular examination, at least one sign of vestibular system disorders or patients diagnosed with a "Migraine-related vertigo" or "Chronic subjective dizziness". The overall incidence of Hyperventilation-induced nystagmus was 21.9%. It was detected more frequently in retrocochlear vestibular diseases rather than in end-organ vestibular diseases: 5.3% in Paroxysmal Positional Vertigo, 37.1% in Menière's disease, 37.6% in compensated vestibular neuritis, 77.2% in acute vestibular neuritis and 91.7% in neuroma of the 8th cranial nerve. In acute vestibular neuritis, three HVIN patterns were observed: Paretic pattern: temporary enhancement of the spontaneous nystagmus; Excitatory pattern: temporary inhibition of the spontaneous nystagmus; Strong excitatory pattern: temporary inversion of the spontaneous nystagmus. Excitatory patterns proved to be time-dependent in that they disappeared and were replaced by the paretic pattern over a period of maximum 18 days since the beginning of the disorder. In acoustic neuroma, Hyperventilation-induced nystagmus was frequently observed (91.7%), either in the form of an excitatory pattern (fast phases towards the affected site) or in the form of a paretic pattern (fast phases towards the healthy side). The direction of the nystagmus is only partially related to tumour size, whereas other mechanisms, such as demyelination or a break in nerve fibres, might have an important role in triggering the situation. Hyperventilation-induced nystagmus has frequently been detected in cases of demyelinating diseases and in cerebellar diseases: in multiple sclerosis, hyperventilation inhibits a central type of spontaneous nystagmus or evokes nystagmus in 75% of patients; in cerebellar diseases, hyperventilation evokes or enhances a central spontaneous nystagmus in 72.7% of patients. In conclusion the Hyperventilation Test can provide patterns of oculomotor responses that indicate a diagnostic investigation through cerebral magnetic resonance imaging enhanced by gadolinium, upon suspicion of neuroma of the 8th cranial nerve or of a central disease. In our opinion, however, Hyperventilation-induced nystagmus always needs to be viewed within the more general context of a complete examination of the vestibular and acoustic system. PMID:21808459

  8. Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy, the JC Virus-Induced Demyelinating Disease of the Human Brain

    PubMed Central

    Ferenczy, Michael W.; Marshall, Leslie J.; Nelson, Christian D. S.; Atwood, Walter J.; Nath, Avindra; Khalili, Kamel

    2012-01-01

    Summary: Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies. PMID:22763635

  9. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination.

    PubMed

    Mason, Jeffrey L; Xuan, Shouhong; Dragatsis, Ioannis; Efstratiadis, Argiris; Goldman, James E

    2003-08-20

    We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.

  10. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy.

    PubMed

    Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els

    2016-05-15

    There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A challenging diagnosis of late-onset tumefactive multiple sclerosis associated to cervicodorsal syringomyelia: doubtful CT, MRI, and bioptic findings: Case report and literature review.

    PubMed

    Conforti, Renata; Capasso, Raffaella; Galasso, Rosario; Cirillo, Mario; Taglialatela, Gemma; Galasso, Luigi

    2016-09-01

    Tumefactive multiple sclerosis (MS) is an unusual variant of demyelinating disease characterized by lesions with pseudotumoral appearance on radiological imaging mimicking other space-occupying lesions, such as neoplasms, infections, and infarction. Especially when the patient's medical history is incompatible with MS, the differential diagnosis between these lesions constitutes a diagnostic challenge often requiring histological investigation. An older age at onset makes distinguishing tumefactive demyelinating lesion (TDL) from tumors even more challenging. We report a case of brain TDL as the initial manifestation of late-onset MS associated with cervico-dorsal syringomyelia. A 66-year-old Caucasian woman with a 15-day history headache was referred to our hospital because of the acute onset of paraphasia. She suffered from noncommunicating syringomyelia associated to basilar impression and she reported a 10-year history of burning dysesthesia of the left side of the chest extended to the internipple line level. Computed tomography (CT) and magnetic resonance imaging (MRI) examinations revealed a left frontal lesion with features suspicious for a tumor. Given the degree of overlap with other pathologic processes, CT and MRI findings failed to provide an unambiguous diagnosis; furthermore, because of the negative cerebrospinal fluid analysis for oligoclonal bands, the absence of other lesions, and the heightened suspicion of neoplasia, the clinicians opted to perform a stereotactic biopsy. Brain specimen analysis did not exclude the possibility of perilesional reactive gliosis and the patient, receiving anitiedemigen therapy, was monthly followed up. In the meanwhile, the second histological opinion of the brain specimen described the absence of pleomorphic glial cells indicating a tumor. These findings were interpreted as destructive inflammatory demyelinating disease and according to the evolution of MRI lesion burden, MS was diagnosed. TDL still remains a problematic entity clinically, radiologically, and sometimes even pathologically. A staged follow-up is necessary, and in our case, it revealed to be the most important attitude to define the nature of the lesion, confirming the classic MS diagnostic criteria of disseminate lesions in time and space. We discuss our findings according to the recent literature.

  12. Hematopoietic Stem Cell Transplantation in Late-Onset Krabbe Disease: No Evidence of Worsening Demyelination and Axonal Loss 4 Years Post-allograft.

    PubMed

    Laule, Cornelia; Vavasour, Irene M; Shahinfard, Elham; Mädler, Burkhard; Zhang, Jing; Li, David K B; MacKay, Alex L; Sirrs, Sandra M

    2018-05-01

    Late-onset adult Krabbe disease is a very rare demyelinating leukodystrophy, affecting less than 1 in a million people. Hematopoietic stem cell transplantation (HSCT) strategies can stop the accumulation of toxic metabolites that damage myelin-producing cells. We used quantitative advanced imaging metrics to longitudinally assess the impact of HSCT on brain abnormalities in adult-onset Krabbe disease. A 42-year-old female with late-onset Krabbe disease and an age/sex-matched healthy control underwent annual 3T MRI (baseline was immediately prior to HSCT for the Krabbe subject). Imaging included conventional scans, myelin water imaging, diffusion tensor imaging, and magnetic resonance spectroscopy. Brain abnormalities far beyond those visible on conventional imaging were detected, suggesting a global pathological process occurs in Krabbe disease with adult-onset etiology, with myelin being more affected than axons, and evidence of wide-spread gliosis. After HSCT, our patient showed clinical stability in all measures, as well as improvement in gait, dysarthria, and pseudobulbar affect at 7.5 years post-transplant. No MRI evidence of worsening demyelination and axonal loss was observed up to 4 years post-allograft. Clinical evidence and stability of advanced MR measures related to myelin and axons supports HSCT as an effective treatment strategy for stopping progression associated with late-onset Krabbe disease. Copyright © 2018 by the American Society of Neuroimaging.

  13. Immunopathological Patterns from EAE and Theiler’s Virus Infection: Is Multiple Sclerosis a Homogenous 1-stage or Heterogenous 2-stage Disease?

    PubMed Central

    Martinez, Nicholas E.; Sato, Fumitaka; Omura, Seiichi; Minagar, Alireza; Alexander, J. Steven; Tsunoda, Ikuo

    2012-01-01

    Multiple sclerosis (MS) is a disease which can present in different clinical courses. The most common form of MS is the relapsing-remitting (RR) course, which in many cases evolves into secondary progressive (SP) disease. Autoimmune models such as experimental autoimmune encephalomyelitis (EAE) have been developed to represent the various clinical forms of MS. These models along with clinico-pathological evidence obtained from MS patients have allowed us to propose ‘1-stage’ and ‘2-stage’ disease theories to explain the transition in the clinical course of MS from RR to SP. Relapses in MS are associated with pro-inflammatory T helper (Th) 1/Th17 immune responses, while remissions are associated with anti-inflammatory Th2/regulatory T (Treg) immune responses. Based on the ‘1-stage disease’ theory, the transition from RR to SP disease occurs when the inflammatory immune response overwhelms the anti-inflammatory immune response. The ‘2-stage disease’ theory proposes that the transition from RR to SP-MS occurs when the Th2 response or some other responses overwhelm the inflammatory response resulting in the sustained production of anti-myelin antibodies, which cause continuing demyelination, neurodegeneration, and axonal loss. The Theiler’s virus model is also a 2-stage disease, where axonal degeneration precedes demyelination during the first stage, followed by inflammatory demyelination during the second stage. PMID:22633747

  14. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space.

    PubMed

    Howell, Owain W; Schulz-Trieglaff, Elena Katharina; Carassiti, Daniele; Gentleman, Steven M; Nicholas, Richard; Roncaroli, Federico; Reynolds, Richard

    2015-10-01

    Multiple sclerosis (MS) is a progressive inflammatory neurological disease affecting myelin, neurons and glia. Demyelination and neurodegeneration of cortical grey matter contribute to a more severe disease, and inflammation of the forebrain meninges associates with pathology of the underlying neocortical grey matter, particularly in deep sulci. We assessed the extent of meningeal inflammation of the cerebellum, another structure with a deeply folded anatomy, to better understand the association between subarachnoid inflammation and grey matter pathology in progressive MS. We examined demyelinating and neuronal pathology in the context of meningeal inflammation in cerebellar tissue blocks from a cohort of 27 progressive MS cases previously characterized on the basis of the absence/presence of lymphoid-like aggregates in the forebrain meninges, in comparison with 11 non-neurological controls. Demyelination and meningeal inflammation of the cerebellum was greatest in those cases previously characterized as harbouring lymphoid-like structures in the forebrain regions. Meningeal inflammation was mild to moderate in cerebellar tissue blocks, and no lymphoid-like structures were seen. Quantification of meningeal macrophages, CD4+, CD8+ T lymphocytes, B cells and plasma cells revealed that the density of meningeal macrophages associated with microglial activation in the grey matter, and the extent of grey matter demyelination correlated with the density of macrophages and plasma cells in the overlying meninges, and activated microglia of the parenchyma. These data suggest that chronic inflammation is widespread throughout the subarachnoid space and contributes to a more severe subpial demyelinating pathology in the cerebellum. © 2014 British Neuropathological Society.

  15. CD8+ T Cells Cause Disability and Axon Loss in a Mouse Model of Multiple Sclerosis

    PubMed Central

    Schmalstieg, William F.; Sauer, Brian M.; Wang, Huan; German, Christopher L.; Windebank, Anthony J.; Rodriguez, Moses; Howe, Charles L.

    2010-01-01

    Background The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice. Methodology/Principal Findings To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters. Conclusions/Significance In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis. PMID:20814579

  16. Generation of Demyelination Models by Targeted Ablation of Oligodendrocytes in the Zebrafish CNS

    PubMed Central

    Chung, Ah-Young; Kim, Pan-Soo; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Kim, Hwan-Ki; Ryu, Jae-Ho; Kim, Cheol-Hee; Choi, June; Seo, Jin-Ho; Park, Hae-Chul

    2013-01-01

    Demyelination is the pathological process by which myelin sheaths are lost from around axons, and is usually caused by a direct insult targeted at the oligodendrocytes in the vertebrate central nervous system (CNS). A demyelinated CNS is usually remyelinated by a population of oligodendrocyte progenitor cells, which are widely distributed throughout the adult CNS. However, myelin disruption and remyelination failure affect the normal function of the nervous system, causing human diseases such as multiple sclerosis. In spite of numerous studies aimed at understanding the remyelination process, many questions still remain unanswered. Therefore, to study remyelination mechanisms in vivo, a demyelination animal model was generated using a transgenic zebrafish system in which oligodendrocytes are conditionally ablated in the larval and adult CNS. In this transgenic system, bacterial nitroreductase enzyme (NTR), which converts the prodrug metronidazole (Mtz) into a cytotoxic DNA cross-linking agent, is expressed in oligodendrocyte lineage cells under the control of the mbp and sox10 promoter. Exposure of transgenic zebrafish to Mtz-containing media resulted in rapid ablation of oligodendrocytes and CNS demyelination within 48 h, but removal of Mtz medium led to efficient remyelination of the demyelinated CNS within 7 days. In addition, the demyelination and remyelination processes could be easily observed in living transgenic zebrafish by detecting the fluorescent protein, mCherry, indicating that this transgenic system can be used as a valuable animal model to study the remyelination process in vivo, and to conduct high-throughput primary screens for new drugs that facilitate remyelination. PMID:23807048

  17. Lamin B1 mediated demyelination: Linking Lamins, Lipids and Leukodystrophies

    PubMed Central

    Padiath, Quasar S.

    2016-01-01

    ABSTRACT Autosomal Dominant Leukodystrophy (ADLD), a fatal adult onset demyelinating disorder, is the only human disease that has been linked to mutations of the nuclear lamina protein, lamin B1, and is primarily caused by duplications of the LMNB1 gene. Why CNS myelin is specifically targeted and the mechanisms underlying ADLD are unclear. Recent work from our group has demonstrated that over expression of lamin B1 in oligodendrocytes, the myelin producing cells in the CNS, resulted in age dependent epigenetic modifications, transcriptional down-regulation of lipogenic gene expression and significant reductions of myelin-enriched lipids. Given the high lipid content of meylin, we hypothesize that lipid loss is one of the primary drivers of the demyelination phenotype. These results can, at least partially, explain the age dependence and cell type specificity in ADLD and are discussed in the context of the existing literature, in an attempt to delineate potential pathways underlying the disease phenotype. PMID:27854160

  18. Axonal loss in the multiple sclerosis spinal cord revisited.

    PubMed

    Petrova, Natalia; Carassiti, Daniele; Altmann, Daniel R; Baker, David; Schmierer, Klaus

    2018-05-01

    Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area, reduced by about 20%, appears to be a poor predictor of axonal density. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  19. Absence of IFNγ Increases Brain Pathology in EAE-susceptible DRB1*0301.DQ8 HLA Transgenic Mice Through Secretion of Pro-inflammatory Cytokine IL-17 and Induction of Pathogenic Monocytes/Microglia into the CNS

    PubMed Central

    Mangalam, Ashutosh; Luo, Ningling; Luckey, David; Papke, Louisa; Hubbard, Alyssa; Wussow, Arika; Smart, Michele; Giri, Shailendra; Rodriguez, Moses; David, Chella

    2014-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) of presumed autoimmune origin. Of all the genetic factors linked with MS, MHC class-II molecules have the strongest association. Generation of HLA class-II transgenic mice has helped to elucidate the role of HLA class-II genes in chronic inflammatory and demyelinating diseases. We have shown that the human HLA-DRB1*0301 gene predisposes to proteolipid protein (PLP)-induced EAE, whereas HLA-DQβ1*0601 (DQ6) was resistant. We also showed that the DQ6 molecule protects from EAE in DRB1*0301.DQ6 double transgenic mice by producing anti-inflammatory interferon gamma (IFNγ). HLA-DQβ1*0302 (DQ8) transgenic mice were also resistant to PLP91-110-induced EAE, but production of pro-inflammatory IL-17 exacerbated disease in DRB1*0301.DQ8 mice. To further confirm the role of IFNγ in protection, we generated DRB1*0301.DQ8 mice lacking IFNγ (DRB1*0301.DQ8.IFNγ−/−). Immunization with PLP91-110 peptide caused atypical EAE in DRB1*0301.DQ8.IFNγ−/− mice characterized by ataxia, spasticity and dystonia, hallmarks of brain-specific disease. Severe brain specific inflammation and demyelination in DRB1*0301.DQ8.IFNγ−/− mice with minimal spinal cord pathology further confirmed brain-specific pathology. Atypical EAE in DRB1*0301.DQ8.IFNγ−/− mice was associated with increased encephalitogenicity of CD4 T cells and their ability to produce higher levels of IL-17 and GM-CSF compared to DRB1*0301.DQ8 mice. Further, areas with demyelination showed increased presence of CD68+ inflammatory cells, suggesting an important role for monocytes/microglia in causing brain pathology. Thus, our study supports a protective role for IFNγ in the demyelination of brain through down regulation of IL-17/GM-CSF and induction of neuro-protective factors in the brain by monocytes/microglial cells. PMID:25339670

  20. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system

    PubMed Central

    Gonzalez, Ginez A.; Hofer, Matthias P.; Syed, Yasir A.; Amaral, Ana I.; Rundle, Jon; Rahman, Saifur; Zhao, Chao; Kotter, Mark R. N.

    2016-01-01

    Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERβ, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models. PMID:27554391

  1. A macrophage response to Mycobacterium leprae phenolic glycolipid initiates nerve damage in leprosy

    PubMed Central

    Madigan, Cressida A.; Cambier, C.J.; Kelly-Scumpia, Kindra M.; Scumpia, Philip O.; Cheng, Tan-Yun; Zailaa, Joseph; Bloom, Barry R.; Moody, D. Branch; Smale, Stephen T.; Sagasti, Alvaro; Modlin, Robert L.; Ramakrishnan, Lalita

    2018-01-01

    SUMMARY Mycobacterium leprae causes leprosy, and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interactions of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia, and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy. PMID:28841420

  2. A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy.

    PubMed

    Madigan, Cressida A; Cambier, C J; Kelly-Scumpia, Kindra M; Scumpia, Philip O; Cheng, Tan-Yun; Zailaa, Joseph; Bloom, Barry R; Moody, D Branch; Smale, Stephen T; Sagasti, Alvaro; Modlin, Robert L; Ramakrishnan, Lalita

    2017-08-24

    Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Treatment of Chronic Inflammatory Demyelinating Polyneuropathy: From Molecular Bases to Practical Considerations

    PubMed Central

    Ripellino, Paolo; Fleetwood, Thomas; Cantello, Roberto; Comi, Cristoforo

    2014-01-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease of the peripheral nervous system, in which both cellular and humoral immune responses are involved. The disease is clinically heterogeneous with some patients displaying pure motor form and others also showing a variable degree of sensory dysfunction; disease evolution may also differ from patient to patient, since monophasic, progressive, and relapsing forms are reported. Underlying such clinical variability there is probably a broad spectrum of molecular dysfunctions that are and will be the target of therapeutic strategies. In this review we first explore the biological bases of current treatments and subsequently we focus on the practical management that must also take into account pharmacoeconomic issues. PMID:24527207

  4. Marek’s disease virus genomics

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) is one of the most oncogenic herpesviruses known and induces a rapid onset T-cell lymphoma and demyelinating disease in chickens. It represents the first of three neoplastic diseases (including hepatocellular carcinoma: hepatitis B virus; and cervical carcinoma: human pap...

  5. Disease status in chronic inflammatory demyelinating polyneuropathy: inter-centre comparative analysis and correlates.

    PubMed

    Rajabally, Y A; Cassereau, J; Robbe, A; Nicolas, G

    2015-11-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) may have variable evolution profiles, which have not been compared between cohorts. The relationship of disease status with motor strength, function and electrophysiology is uncertain. Disease status was studied with a simplified proposed scale in two patient cohorts totalling 72 subjects from Leicester, U.K., and Angers, France. Clinical and electrophysiological records were analysed. Independent ascertainment of disease status in each cohort revealed similar rates of remission (P = 0.23), stable/improving disease (P = 0.34) and unstable/active disease (P = 1). No correlation was ascertained with strength or function. Median nerve compound muscle action potential was the only independent electrophysiological predictor of disease status ascertained (P = 0.046). Disease status distribution may represent an important comparative indicator for management of CIDP cohorts and could be useful for benchmarking service and treatment provision. Degree of upper limb motor axonal loss may represent a useful electrophysiological marker of disease status in CIDP. © 2015 EAN.

  6. Tissue resident macrophages are sufficient for demyelination during peripheral nerve myelin induced experimental autoimmune neuritis?

    PubMed

    Taylor, Jude Matthew

    2017-12-15

    The contribution of resident endoneurial tissue macrophages versus recruited monocyte derived macrophages to demyelination and disease during Experimental Autoimmune Neuritis (EAN) was investigated using passive transfer of peripheral nerve myelin (PNM) specific serum antibodies or adoptive co-transfer of PNM specific T and B cells from EAN donors to leukopenic and normal hosts. Passive transfer of PNM specific serum antibodies or adoptive co-transfer of myelin specific T and B cells into leukopenic recipients resulted in a moderate reduction in nerve conduction block or in the disease severity compared to the normal recipients. This was despite at least a 95% decrease in the number of circulating mononuclear cells during the development of nerve conduction block and disease and a 50% reduction in the number of infiltrating endoneurial macrophages in the nerve lesions of the leukopenic recipients. These observations suggest that during EAN in Lewis rats actively induced by immunization with peripheral nerve myelin, phagocytic macrophages originating from the resident endoneurial population may be sufficient to engage in demyelination initiated by anti-myelin antibodies in this model. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Therapeutic Effect of Steroids in Osmotic Demyelination of Infancy.

    PubMed

    Bansal, Lalit R

    2018-01-01

    An 11-month-old male presented with acute gastroenteritis, seizures, and altered mental status. Laboratory workup revealed serum sodium of 177 mmol/L. Magnetic resonance imaging of the brain showed reduced diffusion in the supratentorial white matter, T2 hyperintensities in the left central pons and midbrain, subacute stroke in the right occipital lobe, and bilateral cerebellar hemorrhagic infarcts. The child was presumed to have hypernatremia-induced central pontine and extrapontine myelinolysis. He received 5 days of high-dose methylprednisolone for persistent encephalopathy and spastic quadriparesis with rapid recovery of his cognitive function and neurological examination. The child remained seizure-free and achieved normal development at 3-month and 2-year follow-ups. Osmotic demyelination of infancy may leave children with a significant neurological deficit. For favorable neurological outcome, early steroids should be considered.

  8. Theiler's virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10.

    PubMed

    Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Ortiz, Sergio; Vela, José M; Guaza, Carmen

    2002-05-24

    Theiler's murine encephalomyelitis virus (TMEV) causes an acute encephalomyelitis followed by a persistent infection of the central nervous system (CNS) resulting in a chronic inflammation and axonal demyelination in susceptible strains of mice. The pathogenesis of TMEV-induced demyelinating disease remains unknown, but infection of brain glial cells is a critical factor for virus persistence in the CNS. In the present study we investigated the effects of the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) on the production of inflammatory mediators, such as prostaglandins, after infection of primary astroglial SJL/J murine cultures with TMEV. This infection resulted in a time-dependent transcription of the gene encoding cyclooxygenase-2 (COX-2) and an increased production of prostaglandin E2 (PGE(2)). Both, IL-4 but mainly, IL-10 (1 and 10 ng/ml) decreased the TMEV-induced expression of COX-2 as well as the synthesis of PGE(2). Interestingly, treatment with IL-10 completely abrogated COX-2 induction. The molecular mechanisms involved in the regulation of COX-2 expression by TMEV are unknown, but the effects of anti-inflammatory cytokines may involve the inhibition of the transcription factor nuclear factor B activity and lead to strategies capable of interrupting the inflammatory cascade triggered by TMEV in brain glial cells.

  9. Assessment of the usefulness of magnetic resonance brain imaging in patients presenting with acute seizures.

    PubMed

    Olszewska, D A; Costello, D J

    2014-12-01

    Magnetic Resonance Imaging (MRI) is increasingly available as a tool for assessment of patients presenting to acute services with seizures. We set out to prospectively determine the usefulness of early MRI brain in a cohort of patients presenting with acute seizures. We examined the MR imaging studies performed in patients admitted solely because of acute seizures to Cork University Hospital over a 12-month period. The main aim of the study was to determine if the MRI established the proximate cause for the patient's recent seizure. We identified 91 patients who underwent MRI brain within 48 h of admission for seizures. Of the 91 studies, 51 were normal (56 %). The remaining 40 studies were abnormal as follows: microvascular disease (usually moderate/severe) (n = 19), post-traumatic gliosis (n = 7), remote symptomatic lesion (n = 6), primary brain tumour (n = 5), venous sinus thrombosis (n = 3), developmental lesion (n = 3), post-surgical gliosis (n = 3) and single cases of demyelination, unilateral hippocampal sclerosis, lobar haemorrhage and metastatic malignant melanoma. Abnormalities in diffusion-weighted sequences that were attributable to prolonged ictal activity were seen in nine patients, all of who had significant ongoing clinical deficits, most commonly delirium. Of the 40 patients with abnormal MRI studies, seven patients had unremarkable CT brain. MR brain imaging revealed the underlying cause for acute seizures in 44 % of patients. CT brain imaging failed to detect the cause of the acute seizures in 19 % of patients in whom subsequent MRI established the cause. This study emphasises the importance of obtaining optimal imaging in people admitted with acute seizures.

  10. Acute Toxic Neuropathy Mimicking Guillain Barre Syndrome

    PubMed Central

    Jalal, Muhammed Jasim Abdul; Fernandez, Shirley Joan; Menon, Murali Krishna

    2015-01-01

    Case: A 30 year old male presented with numbness of palms and soles followed by weakness of upper limbs and lower limbs of 5 days duration, which was ascending and progressive. Three months back he was treated for oral and genital ulcers with oral steroids. His ulcers improved and shifted to indigenous medication. His clinical examination showed polyneuropathy. CSF study did not show albuminocytological dissociation. Nerve conduction study showed demyelinating polyneuropathy. His blood samples and the ayurvedic drug samples were sent for toxicological analysis. Inference: Acute toxic neuropathy - Arsenic PMID:25811007

  11. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    PubMed Central

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  12. Utility of coronal contrast-enhanced fat-suppressed FLAIR in the evaluation of optic neuropathy and atrophy.

    PubMed

    Boegel, Kevin H; Tyan, Andrew E; Iyer, Veena R; Rykken, Jeffrey B; McKinney, Alexander M

    2017-01-01

    Evaluating chronic sequelae of optic neuritis, such as optic neuropathy with or without optic nerve atrophy, can be challenging on whole brain MRI. This study evaluated the utility of dedicated coronal contrast-enhanced fat-suppressed FLAIR (CE-FS-FLAIR) MR imaging to detect optic neuropathy and optic nerve atrophy. Over 4.5 years, a 3 mm coronal CE-FS-FLAIR sequence at 1.5T was added to the routine brain MRIs of 124 consecutive patients, 102 of whom had suspected or known demyelinating disease. Retrospective record reviews confirmed that 28 of these 102 had documented onset of optic neuritis >4 weeks prior to the brain MRI. These 28 were compared to the other 22 ("controls") of the 124 patients who lacked a history of demyelinating disease or visual symptoms. Using coronal CE-FS-FLAIR, two neuroradiologists separately graded each optic nerve (n = 50 patients, 100 total nerves) as either negative, equivocal, or positive for optic neuropathy or atrophy. The scoring was later repeated. The mean time from acute optic neuritis onset to MRI was 4.1 ± 4.6 years (range 34 days-17.4 years). Per individual nerve grading, the range of sensitivity, specificity, and accuracy of coronal CE-FS-FLAIR in detecting optic neuropathy was 71.4-77.1%, 93.8-95.4%, and 85.5-89.0%, respectively, with strong interobserver (k = 0.667 - 0.678, p < 0.0001), and intraobserver (k = 0.706 - 0.763, p < 0.0001) agreement. For optic atrophy, interobserver agreement was moderate (k = 0.437 - 0.484, p < 0.0001), while intraobserver agreement was moderate-strong (k = 0.491 - 0.596, p < 0.0001). Coronal CE-FS-FLAIR is quite specific in detecting optic neuropathy years after the onset of acute optic neuritis, but is less useful in detecting optic nerve atrophy.

  13. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus

    PubMed Central

    Carrillo-Salinas, F. J.; Mestre, L.; Mecha, M.; Feliú, A.; del Campo, R.; Villarrubia, N.; Espejo, C.; Montalbán, X.; Álvarez-Cermeño, J. C.; Villar, L. M.; Guaza, C.

    2017-01-01

    Recent studies have begun to point out the contribution of microbiota to multiple sclerosis (MS) pathogenesis. Theiler’s murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) is a model of progressive MS. Here, we first analyze the effect of intracerebral infection with TMEV on commensal microbiota and secondly, whether the early microbiota depletion influences the immune responses to TMEV on the acute phase (14 dpi) and its impact on the chronic phase (85 dpi). The intracranial inoculation of TMEV was associated with a moderate dysbiosis. The oral administration of antibiotics (ABX) of broad spectrum modified neuroimmune responses to TMEV dampening brain CD4+ and CD8+ T infiltration during the acute phase. The expression of cytokines, chemokines and VP2 capsid protein was enhanced and accompanied by clusters of activated microglia disseminated throughout the brain. Furthermore, ABX treated mice displayed lower levels of CD4+ and CD8+T cells in cervical and mesenteric lymph nodes. Increased mortality to TMEV was observed after ABX cessation at day 28pi. On the chronic phase, mice that survived after ABX withdrawal and recovered microbiota diversity showed subtle changes in brain cell infiltrates, microglia and gene expression of cytokines. Accordingly, the surviving mice of the group ABX-TMEV displayed similar disease severity than TMEV mice. PMID:28290524

  14. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats

    PubMed Central

    Nichols, Nicole L.; Punzo, Antonio M.; Duncan, Ian D.; Mitchell, Gordon S.; Johnson, Rebecca A.

    2012-01-01

    Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor function are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by signficant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14 day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease. PMID:23159317

  15. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    PubMed

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  16. Growth factor treatment of demyelinating disease: at last, a leap into the light.

    PubMed

    Ransohoff, Richard M; Howe, Charles L; Rodriguez, Moses

    2002-11-01

    Researchers seeking treatments for multiple sclerosis (MS) have long dreamed of using neurotrophic factors to enhance remyelination. Previous attempts to apply trophic support for oligodendrocytes in experimental demyelination uniformly produced complicated outcomes that reflected unexpected effects on immune or inflammatory responses and could be interpreted only with caution. Now, two recent publications have demonstrated convincingly that cytokines of the interleukin (IL)-6 superfamily can ameliorate experimental autoimmune encephalomyelitis and promote oligodendrocyte survival, without demonstrable effect on inflammation or immune responses.

  17. Characterization of a new rat model for chronic inflammatory demyelinating polyneuropathies.

    PubMed

    Brun, Susana; Beaino, Wissam; Kremer, Laurent; Taleb, Omar; Mensah-Nyagan, Ayikoe Guy; Lam, Chanh D; Greer, Judith M; de Seze, Jérôme; Trifilieff, Elisabeth

    2015-01-15

    Our objective was to develop a chronic model of EAN which could be used as a tool to test treatment strategies for CIDP. Lewis rats injected with S-palmitoylated P0(180-199) peptide developed a chronic, sometimes relapsing-remitting type of disease. Our model fulfills electrophysiological criteria of demyelination with axonal degeneration, confirmed by immunohistopathology. The late phase of the chronic disease was characterized by accumulation of IL-17(+) cells and macrophages in sciatic nerves and by high serum IL-17 levels. In conclusion, we have developed a reliable and reproducible animal model resembling CIDP that can now be used for translational drug studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Chronic inflammatory demyelinating polyneuropathy-like neuropathy as an initial presentation of Crohn's disease.

    PubMed

    Kim, Suji; Kang, Seok-Jae; Oh, Ki-Wook; Ahn, Byung Kyu; Lee, Hang Lak; Han, Dong Soo; Jang, Kiseok; Kim, Young Seo

    2015-03-28

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare complication of Crohn's disease (CD), and it is uncertain whether it is associated with CD itself or with its treatment. We describe a case of CIDP-like neuropathy as an initial symptom of CD. The neurologic symptoms of the patient which responded partially to intravenous immunoglobulin (IVIG) recovered after resection of the appendiceal CD. A 17-year-old male had experienced three separate attacks of motor weakness and paresthesia of all four extremities over a period of 7 months. The electrophysiologic findings revealed a demyelinating sensory-motor polyneuropathy which was compatible with CIDP. However, repeated intravenous IVIG (2 g/kg) treatment gave only a partial response. Four days after the last discharge, he was diagnosed as appendiceal CD after surgical resection of a periappendiceal abscess. His neurologic symptoms and electrophysiologic findings recovered without any maintenance therapy. CIDP-like neuropathy can be an initial presentation of CD, and recovery of the CIDP symptoms may result from resection of the CD. Clinicians should be aware of the possibility of CD in patients with intractable CIDP symptoms.

  19. Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia.

    PubMed

    Miura, Yumako; Devaux, Jérôme J; Fukami, Yuki; Manso, Constance; Belghazi, Maya; Wong, Anna Hiu Yi; Yuki, Nobuhiro

    2015-06-01

    A Spanish group recently reported that four patients with chronic inflammatory demyelinating polyneuropathy carrying IgG4 autoantibodies against contactin 1 showed aggressive symptom onset and poor response to intravenous immunoglobulin. We aimed to describe the clinical and serological features of Japanese chronic inflammatory demyelinating polyneuropathy patients displaying the anti-contactin 1 antibodies. Thirteen of 533 (2.4%) patients with chronic inflammatory demyelinating polyneuropathy had anti-contactin 1 IgG4 whereas neither patients from disease or normal control subjects did (P = 0.02). Three of 13 (23%) patients showed subacute symptom onset, but all of the patients presented with sensory ataxia. Six of 10 (60%) anti-contactin 1 antibody-positive patients had poor response to intravenous immunoglobulin, whereas 8 of 11 (73%) antibody-positive patients had good response to corticosteroids. Anti-contactin 1 IgG4 antibodies are a possible biomarker to guide treatment option. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Central Nervous System Pathology Progresses Independently of KC and CXCR2 in Globoid-Cell Leukodystrophy

    PubMed Central

    Reddy, Adarsh S.; Patel, Jigisha R.; Vogler, Carole; Klein, Robyn S.; Sands, Mark S.

    2013-01-01

    Globoid-cell Leukodystrophy (GLD; Krabbe’s disease) is a rapidly progressing inherited demyelinating disease caused by a deficiency of the lysosomal enzyme Galactosylceramidase (GALC). Deficiency of GALC leads to altered catabolism of galactosylceramide and the cytotoxic lipid, galactosylsphingosine (psychosine). This leads to a rapidly progressive fatal disease with spasticity, cognitive disability and seizures. The murine model of GLD (Twitcher; GALC−/−) lacks the same enzyme and has similar clinical features. The deficiency of GALC leads to oligodendrocyte death, profound neuroinflammation, and the influx of activated macrophages into the CNS. We showed previously that keratinocyte chemoattractant factor (KC) is highly elevated in the CNS of untreated Twitcher mice and significantly decreases after receiving a relatively effective therapy (bone marrow transplantation combined with gene therapy). The action of KC is mediated through the CXCR2 receptor and is a potent chemoattractant for macrophages and microglia. KC is also involved in oligodendrocyte migration and proliferation. Based on the commonalities between the disease presentation and the functions of KC, we hypothesized that KC and/or CXCR2 contribute to the pathogenesis of GLD. Interestingly, the course of the disease is not significantly altered in KC- or CXCR2-deficient Twitcher mice. There is also no alteration in inflammation or demyelination patterns in these mice. Furthermore, transplantation of CXCR2-deficient bone marrow does not alter the progression of the disease as it does in other models of demyelination. This study highlights the role of multiple redundant cytokines and growth factors in the pathogenesis of GLD. PMID:23755134

  1. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury

    PubMed Central

    Nanescu, Sonia E.

    2017-01-01

    Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase (Gamt) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt-deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination. SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by oligodendrocyte death, including multiple sclerosis. PMID:28069926

  2. [Magnetic Resonance Imaging Conversion Predictors of Clinically Isolated Syndrome to Multiple Sclerosis].

    PubMed

    Peixoto, Sara; Abreu, Pedro

    2016-11-01

    Clinically isolated syndrome may be the first manifestation of multiple sclerosis, a chronic demyelinating disease of the central nervous system, and it is defined by a single clinical episode suggestive of demyelination. However, patients with this syndrome, even with long term follow up, may not develop new symptoms or demyelinating lesions that fulfils multiple sclerosis diagnostic criteria. We reviewed, in clinically isolated syndrome, what are the best magnetic resonance imaging findings that may predict its conversion to multiple sclerosis. A search was made in the PubMed database for papers published between January 2010 and June 2015 using the following terms: 'clinically isolated syndrome', 'cis', 'multiple sclerosis', 'magnetic resonance imaging', 'magnetic resonance' and 'mri'. In this review, the following conventional magnetic resonance imaging abnormalities found in literature were included: lesion load, lesion location, Barkhof's criteria and brain atrophy related features. The non conventional magnetic resonance imaging techniques studied were double inversion recovery, magnetization transfer imaging, spectroscopy and diffusion tensor imaging. The number and location of demyelinating lesions have a clear role in predicting clinically isolated syndrome conversion to multiple sclerosis. On the other hand, more data are needed to confirm the ability to predict this disease development of non conventional techniques and remaining neuroimaging abnormalities. In forthcoming years, in addition to the established predictive value of the above mentioned neuroimaging abnormalities, different clinically isolated syndrome neuroradiological findings may be considered in multiple sclerosis diagnostic criteria and/or change its treatment recommendations.

  3. An Adult Case of Recurrent Guillain-Barré Syndrome with Anti-galactocerebroside Antibodies

    PubMed Central

    Takahashi, Hisashi; Kimura, Tadashi; Yuki, Natsuko; Yoshioka, Akira

    2017-01-01

    A 79-year-old woman with a history of Guillain-Barré syndrome (GBS) developed somnolence and tetraparesis after pneumonia. Based on clinical and laboratory findings, she was diagnosed with complications of acute inflammatory demyelinating polyneuropathy (AIDP) and acute disseminated encephalomyelitis (ADEM). Anti-galactocerebroside (Gal-C) IgG antibodies were detected in her serum. Cases of recurrent GBS in patients who are positive for this antibody are extremely rare. The anti-Gal-C IgG antibodies likely played an important role in the pathogenesis of the AIDP and ADEM. PMID:29093388

  4. Ultrasound of Inherited vs. Acquired Demyelinating Polyneuropathies

    PubMed Central

    Zaidman, Craig M.; Harms, Matthew B.; Pestronk, Alan

    2013-01-01

    Introduction We compared features of nerve enlargement in inherited and acquired demyelinating neuropathies using ultrasound. Methods We measured median and ulnar nerve cross-sectional areas in proximal and distal regions in 128 children and adults with inherited (Charcot-Marie Tooth-1 (CMT-1) (n=35)) and acquired (Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) (n=55), Guillaine-Barre Syndrome (GBS) (n=21) and Multifocal Motor Neuropathy (MMN) (n=17)) demyelinating neuropathies. We classified nerve enlargement by degree and number of regions affected. We defined patterns of nerve enlargement as: none- no enlargement; mild-nerves enlarged but never more than twice normal; regional- nerves normal at at least one region and enlarged more than twice normal at atleast one region; diffuse- nerves enlarged at all four regions with atleast one region more than twice normal size. Results Nerve enlargement was commonly diffuse (89%) and generally more than twice normal size in CMT-1, but not (p<0.001) in acquired disorders which mostly had either no, mild or regional nerve enlargement (CIDP (64%), GBS (95%), and MMN (100%)). In CIDP, subjects treated within three months of disease onset had less nerve enlargement than those treated later. Discussion Ultrasound identified patterns of diffuse nerve enlargement can be used to screen patients suspected of having CMT-1. Normal, mildly, or regionally enlarged nerves in demyelinating polyneuropathy suggests an acquired etiology. Early treatment in CIDP may impede nerve enlargement. PMID:24101129

  5. Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis.

    PubMed

    Markoullis, Kyriaki; Sargiannidou, Irene; Gardner, Christopher; Hadjisavvas, Andreas; Reynolds, Richard; Kleopa, Kleopas A

    2012-07-01

    Gap junctions (GJs) are vital for oligodendrocyte survival and myelination. In order to examine how different stages of inflammatory demyelination affect oligodendrocyte GJs, we studied the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and astrocytic Cx43 in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) induced by recombinant myelin oligodendrocyte glycoprotein. EAE was characterized by remissions and relapses with demyelination and axonal loss. Formation of GJ plaques was quantified in relation to the lesions and in normal appearing white matter (NAWM). During acute EAE at 14 days postimmunization (dpi) both Cx47 and Cx32 GJs were severely reduced within and around lesions but also in the NAWM. Cx47 was localized intracellularly in oligodendrocytes while protein levels remained unchanged, and this redistribution coincided with the loss of Cx43 GJs in astrocytes. Cx47 and Cx32 expression increased during remyelination at 28 dpi but decreased again at 50 dpi in the relapsing phase. Oligodendrocyte GJs remained reduced even in NAWM, despite increased formation of Cx43 GJs toward lesions indicating astrogliosis. EAE induced in Cx32 knockout mice resulted in an exacerbated clinical course with more demyelination and axonal loss compared with wild-type EAE mice of the same backcross, despite similar degree of inflammation, and an overall milder loss of Cx47 and Cx43 GJs. Thus, EAE causes persistent impairment of both intra- and intercellular oligodendrocyte GJs even in the NAWM, which may be an important mechanism of MS progression. Furthermore, GJ deficient myelinated fibers appear more vulnerable to CNS inflammatory demyelination. Copyright © 2012 Wiley Periodicals, Inc.

  6. Acute demyelinating encephalomyelitis due to neural antirabies vaccine.

    PubMed

    Shah, Ira

    2008-01-01

    Rabies is highly endemic in India and seen with dog bites from rabid dogs. In India, nervous tissue vaccine is commonly used as it is inexpensive and freely available despite frequent neurological complications. Neurological complications seen with traditional vaccine are morbid and the medical community should switch over to the cell culture rabies vaccine in spite of the expense to prevent these complications with rabies vaccine.

  7. Hopkins syndrome and phantom hernia: a rare association.

    PubMed

    Elizabeth, K E; Guruprasad, C S; Sindhu, T G

    2011-06-01

    Acute flaccid paralysis (AFP), other than paralytic poliomyelitis, are usually due to demyelination like Guillian Barre syndrome (GBS), transverse myelitis and traumatic neuritis. Poliomyelitis like illness, Hopkins syndrome or Post Asthmatic Amotrophy, associated with bronchial asthma and hyperIgEemia has been reported in literature. We present a two and a half year old child who developed AFP with phantom hernia following an episode of bronchial asthma.

  8. Stimulation-induced Ca(2+) influx at nodes of Ranvier in mouse peripheral motor axons.

    PubMed

    Zhang, Zhongsheng; David, Gavriel

    2016-01-01

    In peripheral myelinated axons of mammalian spinal motor neurons, Ca(2+) influx was thought to occur only in pathological conditions such as ischaemia. Using Ca(2+) imaging in mouse large motor axons, we find that physiological stimulation with trains of action potentials transiently elevates axoplasmic [C(2+)] around nodes of Ranvier. These stimulation-induced [Ca(2+)] elevations require Ca(2+) influx, and are partially reduced by blocking T-type Ca(2+) channels (e.g. mibefradil) and by blocking the Na(+)/Ca(2+) exchanger (NCX), suggesting an important contribution of Ca(2+) influx via reverse-mode NCX activity. Acute disruption of paranodal myelin dramatically increases stimulation-induced [Ca(2+)] elevations around nodes by allowing activation of sub-myelin L-type (nimodipine-sensitive) Ca(2+) channels. The Ca(2+) that enters myelinated motor axons during normal activity is likely to contribute to several signalling pathways; the larger Ca(2+) influx that occurs following demyelination may contribute to the axonal degeneration that occurs in peripheral demyelinating diseases. Activity-dependent Ca(2+) signalling is well established for somata and terminals of mammalian spinal motor neurons, but not for their axons. Imaging of an intra-axonally injected fluorescent [Ca(2+)] indicator revealed that during repetitive action potential stimulation, [Ca(2+)] elevations localized to nodal regions occurred in mouse motor axons from ventral roots, phrenic nerve and intramuscular branches. These [Ca(2+)] elevations (∼ 0.1 μm with stimulation at 50 Hz, 10 s) were blocked by removal of Ca(2+) from the extracellular solution. Effects of pharmacological blockers indicated contributions from both T-type Ca(2+) channels and reverse mode Na(+)/Ca(2+) exchange (NCX). Acute disruption of paranodal myelin (by stretch or lysophosphatidylcholine) increased the stimulation-induced [Ca(2+)] elevations, which now included a prominent contribution from L-type Ca(2+) channels. These results suggest that the peri-nodal axolemma of motor axons includes multiple pathways for stimulation-induced Ca(2+) influx, some active in normally-myelinated axons (T-type channels, NCX), others active only when exposed by myelin disruption (L-type channels). The modest axoplasmic peri-nodal [Ca(2+)] elevations measured in intact motor axons might mediate local responses to axonal activation. The larger [Ca(2+) ] elevations measured after myelin disruption might, over time, contribute to the axonal degeneration observed in peripheral demyelinating neuropathies. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    PubMed Central

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines. This model may both facilitate understanding of the events involved in neuroinflammation and aid in the development of neuroprotective therapies for the treatment of MS and other neurodegenerative diseases. PMID:23431360

  10. Quercetin treatment regulates the Na+,K+-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination.

    PubMed

    Carvalho, Fabiano B; Gutierres, Jessié M; Beckmann, Diego; Santos, Rosmarini P; Thomé, Gustavo R; Baldissarelli, Jucimara; Stefanello, Naiara; Andrades, Amanda; Aiello, Graciane; Ripplinger, Angel; Lucio, Bruna M; Ineu, Rafael; Mazzanti, Alexandre; Morsch, Vera; Schetinger, Maria Rosa; Andrade, Cinthia M

    2018-07-01

    Quercetin is reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet has attracted the attention of the scientific community, resulting in a huge output of in vitro and in vivo (preclinical) studies. Therefore, we hypothesized that quercetin can protect Na + ,K + -ATPase activity in the central nervous system, reestablish the peripheral cholinesterases activities, and reduce oxidative stress during demyelination events in rats. In line with this expectation, our study aims to find out how quercetin acts on the Na + ,K + -ATPase activity in the central nervous system, peripheral cholinesterases, and stress oxidative markers in an experimental model of demyelinating disease. Wistar rats were divided into 4 groups: vehicle, quercetin, ethidium bromide (EB), and EB plus quercetin groups. The animals were treated once a day with vehicle (ethanol 20%) or quercetin 50 mg/kg for 7 (demyelination phase, by gavage) or 21 days (remyelination phase) after EB (0.1%, 10 μL) injection (intrapontine).The encephalon was removed, and the pons, hypothalamus, cerebral cortex, hippocampus, striatum, and cerebellum were dissected to verify the Na + ,K + -ATPase activity. Our results showed that quercetin protected against reduction in Na + ,K + -ATPase in the pons and cerebellum in the demyelination phase, and it increased the activity of this enzyme in the remyelination phase. During the demyelination, quercetin promoted the increase in acetylcholinesterase activity in whole blood and lymphocytes induced by EB, and it reduced the increase in acetylcholinesterase activity in lymphocytes in the remyelination phase. On day 7, EB increased the superoxide dismutase and decreased catalase activities, as well as increased the thiobarbituric acid-reactive substance levels. Taken together, these results indicated that quercetin regulates the Na + ,K + -ATPase activity, affects the alterations of redox state, and participates in the reestablishment of peripheral cholinergic activity during demyelinating and remyelination events. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Early electrophysiological findings in acute inflammatory demyelinating polyradiculoneuropathy variant of Guillain-Barre syndrome in the Pakistani population - a comparison with global data.

    PubMed

    Wali, Ahmad; Kanwar, Dureshahwar; Khan, Safoora A; Khan, Sara

    2017-12-01

    Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) and acute motor axonal neuropathy are the most common variants of Guillian-Barre syndrome documented in the Asian population. However, the variability of early neurophysiologic findings in the Asian population compared to western data has not been documented. Eighty-seven cases of AIDP were retrospectively reviewed for their demographic, clinical, electrophysiological, and laboratory data. Mean age of subjects was 31 ± 8 years with males more commonly affected. Motor symptoms (97%) at presentation predominated. Common early nerve conduction findings included low motor amplitudes (85%), recordable sural sensory responses (85%), and absent H-reflex responses (65%). Prolonged F-latencies were found most commonly in posterior tibial nerves (23%) in the lower limbs and median and ulnar nerves (18%) in the upper limbs. Blink reflex (BR) studies were performed in 57 patients and were abnormal in 80% of those with clinical facial weakness and in 17 of 52 patients (33%) with no clinical cranial nerve signs, suggesting subclinical cranial nerve involvement. Abnormal motor and sensory amplitudes are seen early. Prolonged distal latencies, temporal dispersion/conduction blocks and sural sparing pattern are other common early nerve conduction study findings of AIDP seen in the Pakistani population. There are no significant differences in abnormalities of conduction velocities and delayed reflex responses compared to published data. The BR can help in the early diagnosis of AIDP. © 2017 Peripheral Nerve Society.

  12. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  13. A 3-year-old boy with Guillain-Barré syndrome and encephalitis associated with Mycoplasma pneumoniae infection.

    PubMed

    Hanzawa, Fumie; Fuchigami, Tatsuo; Ishii, Wakako; Nakajima, Sonoko; Kawamura, Yuki; Endo, Ayumi; Arakawa, Chikako; Kohira, Ryutaro; Fujita, Yukihiko; Takahashi, Shori

    2014-02-01

    Mycoplasma pneumoniae is a common cause of respiratory tract illness in children. Among the most common extrapulmonary manifestations are disorders of the central nervous system, including meningitis, meningoencephalitis, cerebellitis, polyneuropathy, acute disseminated encephalomyelitis, and Guillain-Barré syndrome. Guillain-Barré syndrome, also known as acute inflammatory demyelinating polyradiculoneuropathy, is an acute-onset, immune-mediated disorder of the peripheral nervous system. The central nervous system is usually intact in patients with Guillain-Barré syndrome. However, there have been some reports of an association of Guillain-Barré syndrome with central nervous system involvement in children. We report a 3-year-old boy with M. pneumoniae infection associated with Guillain-Barré syndrome and encephalitis. Both serum anti-GM1 ganglioside (IgG and IgM) and anti-galactocerebroside IgG antibodies were detected in our patient: the former in the earlier stage of the disease, and the latter in the later stage. We speculate that anti-GM1 ganglioside was associated more with encephalitis, and anti-galactocerebroside antibody was associated more with GBS in our case. Our patient is the youngest report of Guillain-Barré syndrome with central nervous system involvement, and the first report of a pediatric patient with associated M. pneumoniae infection. Such cases are rarely reported, but highlight the need for awareness of the association of the infection with Guillain-Barré syndrome with central nervous system involvement. Copyright © 2013 Japanese Society of Chemotherapy and The Japanese Association for Infectious Disease. Published by Elsevier Ltd. All rights reserved.

  14. Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content.

    PubMed

    Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M; Zukley, Linda M; Ferrucci, Luigi; Resnick, Susan M; Spencer, Richard G

    2018-04-18

    We investigated brain demyelination in aging, mild cognitive impairment (MCI), and dementia using magnetic resonance imaging of myelin. Brains of young and old controls and old subjects with MCI, Alzheimer's disease, or vascular dementia were scanned using our recently developed myelin water fraction (MWF) mapping technique, which provides greatly improved accuracy over previous comparable methods. Maps of MWF, a direct and specific myelin measure, and relaxation times and magnetization transfer ratio, indirect and nonspecific measures, were constructed. MCI subjects showed decreased MWF compared with old controls. Demyelination was greater in Alzheimer's disease or vascular dementia. As expected, decreased MWF was accompanied by decreased magnetization transfer ratio and increased relaxation times. The young subjects showed greater myelin content than the old subjects. We believe this to be the first demonstration of myelin loss in MCI, Alzheimer's disease, and vascular dementia using a method that provides a quantitative magnetic resonance imaging-based measure of myelin. Our findings add to the emerging evidence that myelination may represent an important biomarker for the pathology of MCI and dementia. This study supports the investigation of the role of myelination in MCI and dementia through use of this quantitative magnetic resonance imaging approach in clinical studies of disease progression, relationship of functional status to myelination status, and therapeutics. Furthermore, mapping MWF may permit myelin to serve as a therapeutic target in clinical trials. Copyright © 2018. Published by Elsevier Inc.

  15. Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination.

    PubMed

    Hoyos, H C; Rinaldi, M; Mendez-Huergo, S P; Marder, M; Rabinovich, G A; Pasquini, J M; Pasquini, L A

    2014-02-01

    Galectin-3 (Gal-3) is a β-galactoside-binding lectin that plays an important role in inflammatory and neurodegenerative diseases. Cuprizone (CPZ)-induced demyelination is characterized by the loss of mature oligodendrocytes (OLG) by apoptosis, myelin sheath degeneration and recruitment of microglia and astrocytes to the lesioned area. We compared CPZ-induced demyelination of 8-week-old Lgals3(-/-) vs WT mice. Lgals3(-/-) mice displayed a similar susceptibility to CPZ-induced demyelination up to the fifth week, as evaluated by MBP immunostaining and electronic microscopy. However, OLG progenitors (OPC) generated in CPZ-treated Lgals3(-/-) mice showed diminished arborization, suggesting decreased ability of these cells to differentiate. Surprisingly, while WT mice experienced spontaneous remyelination in the fifth week of CPZ treatment-even though the CPZ diet was maintained up to sixth week-Lgals3(-/-) mice lacked this capacity and suffered continuous demyelination up to the sixth week, accompanied by pronounced astroglial activation. Moreover, after 2weeks of CPZ treatment, WT and Lgals3(-/-) mice showed lower innate anxiety as compared with respective naive mice, but only CPZ-treated Lgals3(-/-) mice showed decreased locomotor activity and exhibited spatial working memory impairment. Expression of Gal-3 increased during CPZ-induced demyelination in microglia but not in astrocytes. While CPZ-treated WT mice displayed heightened microglial activation associated with ED1 expression and pronounced upregulation of the phagocytic receptor TREM-2b, this effect was not observed in CPZ-treated Lgals3(-/-) mice which, in spite of showing an increased number of microglia, these cells evidenced caspase-3 activation. Our results indicate that Gal-3 is expressed in microglial cells to modulate their phenotype, facilitating the onset of remyelination and OLG differentiation. © 2013.

  16. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    PubMed

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Plasma exchange therapy in steroid-unresponsive relapses in patients with multiple sclerosis.

    PubMed

    Trebst, Corinna; Reising, Ansgar; Kielstein, Jan T; Hafer, Carsten; Stangel, Martin

    2009-01-01

    Plasma exchange (PE) is well established for conditions such as rapid progressive vasculitis associated with autoantibodies against neutrophil cytoplasmic antigens (ANCA), anti-glomerular basement membrane (GBM) antibody disease, or thrombotic thrombocytopenic purpura (TTP). Also, several neurological disorders, such as acute worsening in myasthenia gravis, Guillan-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP), can successfully be treated with PE. Only small case series have previously shown that PE is also effective in relapses in patients with multiple sclerosis (MS). We report our experiences of PE therapy in a series of 20 patients with 21 steroid unresponsive MS relapses. A marked-to-moderate clinical response with clear gain of function in 76% of patients with uni- or bilateral optic neuritis and in 87.5% of patients with relapses other than optic neuritis was observed. PE is an effective and well tolerated therapeutic option for steroid-unresponsive MS relapses.

  18. Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia.

    PubMed

    Saif, Muhammad Wasif; Hopkins, Jon L; Gore, Steven D

    2002-11-01

    Autoimmune paraneoplastic syndromes are commonly encountered in patients with myelodysplastic syndromes (MDS). A review of case reports and small series suggest as many as 10% of MDS patients may experience various autoimmune syndromes. Clinical manifestations of such phenomena may include an acute systemic vasculitic syndrome, skin vasculitis, fever, arthritis, pulmonary infiltrates, peripheral polyneuropathy, inflammatory bowel disease, glomerulonephritis, and even classical connective tissue disorders, such as relapsing polychondritis. On the other hand, asymptomatic immunologic abnormalities have also been reported in these patients. These autoimmune manifestations frequently respond to immunosuppressive agents including steroids and occasional hematologic responses to steroid therapy have also been reported. We report five patients with history of MDS who manifested different spectrums of autoimmune phenomena including: pyoderma gangrenosum (PG), vasculitis, Coombs negative hemolytic anemia, idiopathic thrombocytopenia, and chronic inflammatory demyelinating polyneuropathy (CIDP). We also review the incidence, nature, course and response to therapy of these manifestations and discuss potential pathogenic mechanisms.

  19. 17 β-estradiol Protects Male Mice from Cuprizone-induced Demyelination and Oligodendrocyte Loss

    PubMed Central

    Taylor, Lorelei C; Puranam, Kasturi; Gilmore, Wendy; Ting, Jenny P-Y.; Matsushima, G.K.

    2010-01-01

    In addition to regulating reproductive functions in the brain and periphery, estrogen has trophic and neuroprotective functions in the central nervous system (CNS). Estrogen administration has been demonstrated to provide protection in several animal models of CNS disorders, including stroke, brain injury, epilepsy, Parkinson’s disease, Alzheimer’s disease, age-related cognitive decline and multiple sclerosis. Here, we use a model of toxin-induced oligodendrocyte death which results in demyelination, reactive gliosis, recruitment of oligodendrocyte precursor cells and subsequent remyelination to study the potential benefit of 17β-estradiol (E2) administration in male mice. The results indicate that E2 partially ameliorates loss of oligodendrocytes and demyelination in the corpus callosum. This protection is accompanied by a delay in microglia accumulation as well as reduced mRNA expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα), and insulin-like growth factor-1 (IGF-1). E2 did not significantly alter the accumulation of astrocytes or oligodendrocyte precursor cells, or remyelination. These data obtained from a toxin-induced, T cell-independent model using male mice provide an expanded view of the beneficial effects of estrogen on oligodendrocyte and myelin preservation. PMID:20347981

  20. Cerebrospinal Fluid Cytokine Expression Profile in Multiple Sclerosis and Chronic Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Bonin, Serena; Zanotta, Nunzia; Sartori, Arianna; Bratina, Alessio; Manganotti, Paolo; Trevisan, Giusto; Comar, Manola

    2018-02-01

    Cerebrospinal fluid (CSF) analysis in patients with particular neurologic disorders is a powerful tool to evaluate specific central nervous system inflammatory markers for diagnostic needs, because CSF represents the specific immune micro-environment to the central nervous system. CSF samples from 49 patients with multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP), and non-inflammatory neurologic disorders (NIND) as controls were submitted to protein expression profiles of 47 inflammatory biomarkers by multiplex Luminex bead assay to investigate possible differences in the inflammatory process for MS and CIDP. Our results showed differences in CSF cytokine levels in MS and CIDP; in particular, IL12 (p40) was significantly highly expressed in MS in comparison with CIDP and NIND, while SDF-1α and SCGF-β were significantly highly expressed in CIDP cohort when compared to MS and NIND. IL-9, IL-13, and IL-17 had higher expression levels in NIND if compared with the other groups. Our study showed that, despite some common pathogenic mechanisms, central and peripheral nervous system demyelinating diseases, such as MS and CIDP, differ in some specific inflammatory soluble proteins in CSF, underlining differences in the immune response involved in those autoimmune diseases.

  1. Sarcoid polyneuropathy masquerading as chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Singhal, Neel S; Irodenko, Viktoriya S; Margeta, Marta; Layzer, Robert B

    2015-10-01

    Sarcoid polyneuropathy is a rare and clinically heterogeneous disorder that may be the initial presentation of sarcoidosis. We report the clinical, electrophysiological, and pathological findings of a patient who carried a diagnosis of sensory-predominant chronic inflammatory demyelinating polyneuropathy (CIDP) for over a decade but was ultimately found to have sarcoid polyneuropathy. A 36-year-old man presented with a several-week history of gait difficulty and muscle cramps. He had a diagnosis of CIDP but had not received lasting benefit from steroid-sparing immunosuppressive drugs. Electrodiagnostic studies were consistent with a chronic demyelinating polyradiculoneuropathy with conduction blocks. After he developed systemic symptoms, tissue biopsies revealed granulomatous disease. Symptoms improved with steroid therapy. Sarcoid polyneuropathy presents a diagnostic challenge, but, in patients with atypical neuropathy, characteristic systemic symptoms, or a poor response to standard treatment, nerve and muscle biopsies can help diagnose this treatable disorder. © 2015 Wiley Periodicals, Inc.

  2. Unconventional treatments for chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Rajabally, Yusuf A

    2017-10-01

    This article focuses on the unconventional treatments used in chronic inflammatory demyelinating polyneuropathy (CIDP). First line, evidence-based treatments for CIDP include corticosteroids, immunoglobulins and plasma exchanges. Several unproven treatments are however given in treatment-refractory disease or to reduce requirements in validated therapies for reasons of side effects/practical delivery/cost. Despite methodological issues, IFN-α, azathioprine and methotrexate have not been shown to be useful in randomized controlled trials. Cyclophosphamide, rituximab and, as final resort in highly selected cases, hematopoietic stem cell transplant may be options considered in severely disabled refractory patients. Debatably, azathioprine, methotrexate, cyclosporine and mycophenolate mofetil are still occasionally used, among others, in milder disease. Physical therapy may be of benefit in CIDP but is not systematically considered as an integral part of management strategies. Current literature relating to unconventional therapies in CIDP is reviewed here and the possible avenues that require consideration in severe refractory disease and less disabling forms are discussed.

  3. Aberrant Upregulation of Astroglial Ceramide Potentiates Oligodendrocyte Injury

    PubMed Central

    Kim, SunJa; Steelman, Andrew J.; Zhang, Yumin; Kinney, Hannah C.; Li, Jianrong

    2015-01-01

    Oligodendroglial injury is a pathological hallmark of many human white matter diseases, including multiple sclerosis and periventricular leukomalacia. Critical regulatory mechanisms of oligodendroglia destruction, however, remain incompletely understood. Ceramide, a bioactive sphingolipid pivotal to sphingolipid metabolism pathways, regulates cell death in response to diverse stimuli and has been implicated in neurodegenerative disorders. We report here that ceramide accumulates in reactive astrocytes in active lesions of multiple sclerosis and periventricular leukomalacia, as well as in animal models of demyelination. Serine palmitoyltransferase, the rate-limiting enzyme for ceramide de novo biosynthesis, was consistently upregulated in reactive astrocytes in the cuprizone mouse model of demyelination. Mass spectrometry confirmed the upregulation of specific ceramides during demyelination and revealed a concomitant increase of sphingosine as well as a suppression of sphingosine-1-phosphate, a potent signaling molecule with key roles in cell survival and mitogenesis. Importantly, this altered sphingolipid metabolism during demyelination was restored upon active remyelination. In culture, ceramide acted synergistically with tumor necrosis factor leading to apoptotic death of oligodendroglia in an astrocyte-dependent manner. Taken together, our findings implicate that disturbed sphingolipid pathways in reactive astrocytes may indirectly contribute to oligodendroglial injury in cerebral white matter disorders. PMID:21615590

  4. Zymographic patterns of MMP-2 and MMP-9 in the CSF and cerebellum of dogs with subacute distemper leukoencephalitis.

    PubMed

    Machado, Gisele F; Melo, Guilherme D; Souza, Milena S; Machado, Andressa A; Migliolo, Daniela S; Moraes, Olívia C; Nunes, Cáris M; Ribeiro, Erica S

    2013-07-15

    Distemper leukoencephalitis is a disease caused by the canine distemper virus (CDV) infection. It is a demyelinating disease affecting mainly the white matter of the cerebellum and areas adjacent to the fourth ventricle; the enzymes of the matrix metalloproteinases (MMPs) group, especially MMP-2 and MMP-9 have a key role in the myelin basic protein fragmentation and in demyelination, as well as in leukocyte traffic into the nervous milieu. To evaluate the involvement of MMPs during subacute distemper leukoencephalitis, we measured the levels of MMP-2 and MMP-9 by zymography in the cerebrospinal fluid (CSF) and in the cerebellum of 14 dogs naturally infected with CDV and 10 uninfected dogs. The infected dogs presented high levels of pro-MMP-2 in the CSF and elevated levels of pro-MMP-2 and pro-MMP-9 in the cerebellar tissue. Active MMP-2 was detected in the CSF of some infected dogs. As active MMP-2 and MMP-9 are required for cellular migration across the blood-brain barrier and any interference between MMPs and their inhibitors may result in an amplification of demyelination, this study gives additional support to the involvement of MMPs during subacute distemper leukoencephalitis and suggests that MMP-2 and MMP-9 may take part in the brain inflammatory changes of this disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury.

    PubMed

    Chamberlain, Kelly A; Chapey, Kristen S; Nanescu, Sonia E; Huang, Jeffrey K

    2017-02-08

    Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase ( Gamt ) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt -deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination. SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by oligodendrocyte death, including multiple sclerosis. Copyright © 2017 Chamberlain et al.

  6. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis

    PubMed Central

    Seehusen, Frauke; Al-Azreg, Seham A.; Raddatz, Barbara B.; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease. PMID:27441688

  7. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis.

    PubMed

    Seehusen, Frauke; Al-Azreg, Seham A; Raddatz, Barbara B; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.

  8. Differential expression of ADAMTS-1, -4, -5 and TIMP-3 in rat spinal cord at different stages of acute experimental autoimmune encephalomyelitis.

    PubMed

    Cross, A K; Haddock, G; Surr, J; Plumb, J; Bunning, R A D; Buttle, D J; Woodroofe, M N

    2006-02-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of inflammatory demyelination, a pathological event common to multiple sclerosis (MS). During CNS inflammation there are alterations in the extracellular matrix (ECM). A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS)-1, -4 and -5 are proteases present in the CNS, which are able to cleave the aggregating chondroitin sulphate proteoglycans, aggrecan, phosphacan, neurocan and brevican. It is therefore important to investigate changes in their expression in different stages of EAE induction. We have investigated expression of ADAMTS-1, -4, -5 and tissue inhibitor of metalloproteinase (TIMP)-3, by real-time RT-PCR. We have also examined protein expression of ADAMTS-1, -4 and -5 by western blotting and immunocytochemistry in spinal cord from animals at different stages of disease progression. Our study demonstrated a decrease in ADAMTS-4 mRNA and protein expression. TIMP-3 was decreased at the mRNA level although protein levels were increased in diseased animals compared to controls. Our study identifies changes in ADAMTS expression during the course of CNS inflammation which may contribute to ECM degradation and disease progression.

  9. Symptomatic Therapy and Rehabilitation in Primary Progressive Multiple Sclerosis

    PubMed Central

    Khan, Fary; Amatya, Bhasker; Turner-Stokes, Lynne

    2011-01-01

    Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system and a major cause of chronic neurological disability in young adults. Primary progressive MS (PPMS) constitutes about 10% of cases, and is characterized by a steady decline in function with no acute attacks. The rate of deterioration from disease onset is more rapid than relapsing remitting and secondary progressive MS types. Multiple system involvement at onset and rapid early progression have a worse prognosis. PPMS can cause significant disability and impact on quality of life. Recent studies are biased in favour of relapsing remitting patients as treatment is now available for them and they are more likely to be seen at MS clinics. Since prognosis for PPMS is worse than other types of MS, the focus of rehabilitation is on managing disability and enhancing participation, and application of a “neuropalliative” approach as the disease progresses. This chapter presents the symptomatic treatment and rehabilitation for persons with MS, including PPMS. A multidisciplinary approach optimizes the intermediate and long-term medical, psychological and social outcomes in this population. Restoration and maintenance of functional independence and societal reintegration, and issues relating to quality of life are addressed in rehabilitation processes. PMID:22013521

  10. [Correlation between demyelinating lesions and executive function decline in a sample of Mexican patients with multiple sclerosis].

    PubMed

    Aldrete Cortez, V R; Duriez-Sotelo, E; Carrillo-Mora, P; Pérez-Zuno, J A

    2013-09-01

    Multiple Sclerosis (MS) is characterised by several neurological symptoms including cognitive impairment, which has recently been the subject of considerable study. At present, evidence pointing to a correlation between lesion characteristics and specific cognitive impairment is not conclusive. To investigate the presence of a correlation between the characteristics of demyelinating lesions and performance of basic executive functions in a sample of MS patients. We included 21 adult patients with scores of 0 to 5 on the Kurtzke scale and no exacerbations of the disease in at least 3 months prior to the evaluation date. They completed the Stroop test and the Wisconsin Card Sorting Test (WCST). The location of the lesions was determined using magnetic resonance imaging (MRI) performed by a blinded expert in neuroimaging. Demyelinating lesions were more frequently located in the frontal and occipital lobes. The Stroop test showed that as cognitive demand increased on each of the sections in the test, reaction time and number of errors increased. On the WCST, 33.33% of patients registered as having moderate cognitive impairment. No correlation could be found between demyelinating lesion characteristics (location, size, and number) and patients' scores on the tests. Explanations of the causes of cognitive impairment in MS should examine a variety of biological, psychological, and social factors instead of focusing solely on demyelinating lesions. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  11. Methodological Challenges in Protein Microarray and Immunohistochemistry for the Discovery of Novel Autoantibodies in Paediatric Acute Disseminated Encephalomyelitis

    PubMed Central

    Peschl, Patrick; Ramberger, Melanie; Höftberger, Romana; Jöhrer, Karin; Baumann, Matthias; Rostásy, Kevin; Reindl, Markus

    2017-01-01

    Acute disseminated encephalomyelitis (ADEM) is a rare autoimmune-mediated demyelinating disease affecting mainly children and young adults. Differentiation to multiple sclerosis is not always possible, due to overlapping clinical symptoms and recurrent and multiphasic forms. Until now, immunoglobulins reactive to myelin oligodendrocyte glycoprotein (MOG antibodies) have been found in a subset of patients with ADEM. However, there are still patients lacking autoantibodies, necessitating the identification of new autoantibodies as biomarkers in those patients. Therefore, we aimed to identify novel autoantibody targets in ADEM patients. Sixteen ADEM patients (11 seronegative, 5 seropositive for MOG antibodies) were analysed for potential new biomarkers, using a protein microarray and immunohistochemistry on rat brain tissue to identify antibodies against intracellular and surface neuronal and glial antigens. Nine candidate antigens were identified in the protein microarray analysis in at least two patients per group. Immunohistochemistry on rat brain tissue did not reveal new target antigens. Although no new autoantibody targets could be found here, future studies should aim to identify new biomarkers for therapeutic and prognostic purposes. The microarray analysis and immunohistochemistry methods used here have several limitations, which should be considered in future searches for biomarkers. PMID:28327523

  12. Canine distemper infections, with special reference to South Africa, with a review of the literature.

    PubMed

    Leisewitz, A L; Carter, A; van Vuuren, M; van Blerk, L

    2001-09-01

    Canine distemper virus is a member of the genus Morbillivirus of the family Paramyxoviridae that causes severe disease in dogs and a range of wild mammals. The clinical signs relate essentially to the respiratory, gastrointestinal and central nervous systems. In South Africa, infection with Ehrlichia canis and canine parvovirus may present similarly Many dogs will initially present with a wide range of central nervous system signs without any history of systemic disease. A recent South African study evaluating ante mortem diagnosis highlighted the importance of recognising clinical signs, cerebrospinal fluid IgG titres, serum IgM titres and immunocytochemistry of epithelial tissue. A 2-year retrospective evaluation of cerebrospinal fluid samples collected from dogs presented to the Onderstepoort Veterinary Academic Hospital indicates that distemper infection is common, and this disease should routinely be suspected in cases of diverse neurological disease in dogs. The South African dog population is specifically at high risk for the disease because of the large pool of unvaccinated, reproductively-active dogs that expose the wildlife resources of the country to risk of fatal disease. Outbreaks of disease in dogs continue to occur in developed and developing communities in both vaccinated and unvaccinated dogs worldwide, and have also been described in a wide range of free-ranging wildlife, including seals, dolphins and lions, and in endangered zoo animals. Modified live virus vaccines have contributed markedly to disease control in the dog population but have caused mortality in some wild carnivores. New recombinant vaccines are being developed that will be safe in wild animals. The pathogenesis of CNS demyelination has been compared to various important demyelinating diseases in humans and, amongst other things, relates to down-regulation of the oligodendrocyte gene coding for myelin synthesis and non-immunocyte CNS cell expression of type II major histocompatibility receptors. Early CNS lesions are characterised by demyelination and later lesions by perivascular round cell cuffing. Treatment is supportive.

  13. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases.

    PubMed

    Dubois-Dalcq, Monique; Williams, Anna; Stadelmann, Christine; Stankoff, Bruno; Zalc, Bernard; Lubetzki, Catherine

    2008-07-01

    In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease multiple sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man.

  14. Two Cases of Acute Disseminated Encephalomyelitis Following Vaccination Against Human Papilloma Virus

    PubMed Central

    Sekiguchi, Kenji; Yasui, Naoko; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2016-01-01

    We herein present two cases of acute disseminated encephalomyelitis (ADEM) following vaccination against human papilloma virus (HPV). Case 1 experienced diplopia and developed an unstable gait 14 days after a second vaccination of Cervarix. Brain magnetic resonance imaging (MRI) showed an isolated small, demyelinating lesion in the pontine tegmentum. Case 2 experienced a fever and limb dysesthesia 16 days after a second vaccination of Gardasil. Brain MRI revealed hyperintense lesion in the pons with slight edema on a T2-weighted image. Both cases resolved completely. It is important to accumulate further data on confirmed cases of ADEM temporally associated with HPV vaccination. PMID:27803416

  15. Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model.

    PubMed

    Ferrari, Daniela; Zalfa, Cristina; Nodari, Laura Rota; Gelati, Maurizio; Carlessi, Luigi; Delia, Domenico; Vescovi, Angelo Luigi; De Filippis, Lidia

    2012-04-01

    Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.

  16. Transverse Myelitis

    MedlinePlus

    ... can affect the spinal cord, such as sarcoidosis, systemic lupus erythematosus, Sjogren’s syndrome, mixed connective tissue disease, ... on strategies to repair demyelinated spinal cords, including approaches using cell transplantation. This research may lead to ...

  17. Molecular neurobiology in neurology and psychiatry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandel, E.R.

    1987-01-01

    This book contains 14 selections. Some of the titles are: An Introduction to Ion Channels; Molecular Neurobiology of the Myelinated Nerve Fiber: Ion-Channel Distributions and Their Implications for Demyelinating Diseases; A Molecular Genetic Approach to Huntington's Disease; and Molecular Features of Cell Adhesion Molecules Involved in Neural Development.

  18. CSF free light chain identification of demyelinating disease: comparison with oligoclonal banding and other CSF indexes.

    PubMed

    Gurtner, Kari M; Shosha, Eslam; Bryant, Sandra C; Andreguetto, Bruna D; Murray, David L; Pittock, Sean J; Willrich, Maria Alice V

    2018-02-19

    Cerebrospinal fluid (CSF) used in immunoglobulin gamma (IgG) index testing and oligoclonal bands (OCBs) are common laboratory tests used in the diagnosis of multiple sclerosis. The measurement of CSF free light chains (FLC) could pose as an alternative to the labor-intensive isoelectric-focusing (IEF) gels used for OCBs. A total of 325 residual paired CSF and serum specimens were obtained after physician-ordered OCB IEF testing. CSF kappa (cKFLC) and lambda FLC (cLFLC), albumin and total IgG were measured. Calculations were performed based on combinations of analytes: CSF sum of kappa and lambda ([cKFLC+cLFLC]), kappa-index (K-index) ([cKFLC/sKFLC]/[CSF albumin/serum albumin]), kappa intrathecal fraction (KFLCIF) {([cKFLC/sKFLC]-[0.9358×CSF albumin/serum albumin]^[0.6687×sKFLC]/cKFLC)} and IgG-index ([CSF IgG/CSF albumin]/[serum IgG/serum albumin]). Patients were categorized as: demyelination (n=67), autoimmunity (n=53), non-inflammatory (n=50), inflammation (n=38), degeneration (n=28), peripheral neuropathy (n=24), infection (n=13), cancer (n=11), neuromyelitis optica (n=10) and others (n=31). cKFLC measurement used alone at a cutoff of 0.0611 mg/dL showed >90% agreement to OCBs, similar or better performance than all other calculations, reducing the number of analytes and variables. When cases of demyelinating disease were reviewed, cKFLC measurements showed 86% clinical sensitivity/77% specificity. cKFLC alone demonstrates comparable performance to OCBs along with increased sensitivity for demyelinating diseases. Replacing OCB with cKFLC would alleviate the need for serum and CSF IgG and albumin and calculated conversions. cKFLC can overcome challenges associated with performance, interpretation, and cost of traditional OCBs, reducing costs and maintaining sensitivity and specificity supporting MS diagnosis.

  19. Nerve Excitability Properties in Charcot-Marie-Tooth Disease Type 1A

    ERIC Educational Resources Information Center

    Nodera, Hiroyuki; Bostock, Hugh; Kuwabara, Satoshi; Sakamoto, Takashi; Asanuma, Kotaro; Jia-Ying, Sung; Ogawara, Kazue; Hattori, Naoki; Hirayama, Masaaki; Kaji, Ryuji

    2004-01-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) is commonly considered a prototype of a hereditary demyelinating polyneuropathy. Apart from the myelin involvement, there has been little information on axonal membrane properties in this condition. Taking advantage of the uniform nature of the disease process, we undertook the "in vivo" assessment of…

  20. Guillain-Barré syndrome in Colombia: where do we stand now?

    PubMed

    Mahecha, María P; Ojeda, Ernesto; Vega, Daniel A; Sarmiento-Monroy, Juan C; Anaya, Juan-Manuel

    2017-02-01

    Guillain-Barré syndrome (GBS) is a rapid-onset muscle weakness disease caused by the immune-mediated damage of the peripheral nervous system. Since there is an increase incidence of GBS cases in Latin America, particularly in Colombia, and most of them are currently preceded by Zika virus (ZIKV) infection, we aimed to assess the available evidence of the disease in Colombia through a systematic literature review. Out of 51 screened abstracts, only 16 corresponded to articles that met inclusion criteria, of which 15 were case reports or case series. A total of 796 cases of GBS were reported in the included articles. The majority of patients were males (66.8 %) and younger than 50 years old (94 %). An infectious disease before the onset of GBS was registered in 31 % of patients, with gastrointestinal or respiratory symptoms being the most frequently observed. In those cases in which electrodiagnostic tests were performed, the most common subphenotype was acute inflammatory demyelinating polyneuropathy (17 %). Death was reported in 15 % of patients. Data regarding GBS in Colombia is scant and heterogeneous. Taking into account the burden of the disease and the recent rise of GBS cases associated with ZIKV, a careful patient evaluation and a systematic collection of data are warranted. A form to data gathering is proposed.

  1. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis

    PubMed Central

    Sellebjerg, Finn; Cadavid, Diego; Steiner, Deborah; Villar, Luisa Maria; Reynolds, Richard; Mikol, Daniel

    2016-01-01

    Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing–remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood–brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial. PMID:26788129

  2. Four novel cases of periaxin-related neuropathy and review of the literature.

    PubMed

    Marchesi, C; Milani, M; Morbin, M; Cesani, M; Lauria, G; Scaioli, V; Piccolo, G; Fabrizi, G M; Cavallaro, T; Taroni, F; Pareyson, D

    2010-11-16

    To report 4 cases of autosomal recessive hereditary neuropathy associated with novel mutations in the periaxin gene (PRX) with a review of the literature. Periaxin protein is required for the maintenance of peripheral nerve myelin. Patients with PRX mutations have early-onset autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT4F) or Déjèrine-Sottas neuropathy (DSN). Only 12 different mutations have been described thus far. Case reports and literature review. Four patients from 3 unrelated families (2 siblings and 2 unrelated patients) were affected by an early-onset, slowly progressive demyelinating neuropathy with relevant sensory involvement. All carried novel frameshift or nonsense mutations in the PRX gene. The 2 siblings were compound heterozygotes for 2 PRX null mutations (p.Q547X and p.K808SfsX2), the third patient harbored a homozygous nonsense mutation (p.E682X), and the last patient had a homozygous 2-nt insertion predicting a premature protein truncation (p.S259PfsX55). Electrophysiologic analysis showed a severe slowing of motor nerve conduction velocities (MNCVs, between 3 and 15.3 m/s) with undetectable sensory nerve action potentials (SNAPs). Sural nerve biopsy, performed in 2 patients, demonstrated a severe demyelinating neuropathy and onion bulb formations. Interestingly, we observed some variability of disease severity within the same family. These cases and review of the literature indicate that PRX-related neuropathies have early onset but overall slow progression. Typical features are prominent sensory involvement, often with sensory ataxia; a moderate-to-dramatic reduction of MNCVs and almost invariable absence of SNAPs; and pathologic demyelination with classic onion bulbs, and less commonly myelin folding and basal lamina onion bulbs.

  3. Plasminogen Activator Inhibitor-1 Antagonist TM5484 Attenuates Demyelination and Axonal Degeneration in a Mice Model of Multiple Sclerosis.

    PubMed

    Pelisch, Nicolas; Dan, Takashi; Ichimura, Atsuhiko; Sekiguchi, Hiroki; Vaughan, Douglas E; van Ypersele de Strihou, Charles; Miyata, Toshio

    2015-01-01

    Multiple sclerosis (MS) is characterized by inflammatory demyelination and deposition of fibrinogen in the central nervous system (CNS). Elevated levels of a critical inhibitor of the mammalian fibrinolitic system, plasminogen activator inhibitor 1 (PAI-1) have been demonstrated in human and animal models of MS. In experimental studies that resemble neuroinflammatory disease, PAI-1 deficient mice display preserved neurological structure and function compared to wild type mice, suggesting a link between the fibrinolytic pathway and MS. We previously identified a series of PAI-1 inhibitors on the basis of the 3-dimensional structure of PAI-1 and on virtual screening. These compounds have been reported to provide a number of in vitro and in vivo benefits but none was tested in CNS disease models because of their limited capacity to penetrate the blood-brain barrier (BBB). The existing candidates were therefore optimized to obtain CNS-penetrant compounds. We performed an in vitro screening using a model of BBB and were able to identify a novel, low molecular PAI-1 inhibitor, TM5484, with the highest penetration ratio among all other candidates. Next, we tested the effects on inflammation and demyelination in an experimental allergic encephalomyelitis mice model. Results were compared to either fingolimod or 6α-methylprednisolone. Oral administration of TM5484 from the onset of signs, ameliorates paralysis, attenuated demyelination, and axonal degeneration in the spinal cord of mice. Furthermore, it modulated the expression of brain-derived neurotrophic factor, which plays a protective role in neurons against various pathological insults, and choline acetyltransferase, a marker of neuronal density. Taken together, these results demonstrate the potential benefits of a novel PAI-1 inhibitor, TM5484, in the treatment of MS.

  4. Occipital neuralgia associates with high cervical spinal cord lesions in idiopathic inflammatory demyelinating disease.

    PubMed

    Kissoon, Narayan R; Watson, James C; Boes, Christopher J; Kantarci, Orhun H

    2018-01-01

    Background The association of trigeminal neuralgia with pontine lesions has been well documented in multiple sclerosis, and we tested the hypothesis that occipital neuralgia in multiple sclerosis is associated with high cervical spinal cord lesions. Methods We retrospectively reviewed the records of 29 patients diagnosed with both occipital neuralgia and demyelinating disease by a neurologist from January 2001 to December 2014. We collected data on demographics, clinical findings, presence of C2-3 demyelinating lesions, and treatment responses. Results The patients with both occipital neuralgia and multiple sclerosis were typically female (76%) and had a later onset (age > 40) of occipital neuralgia (72%). Eighteen patients (64%) had the presence of C2-3 lesions and the majority had unilateral symptoms (83%) or episodic pain (78%). All patients with documented sensory loss (3/3) had C2-3 lesions. Most patients with progressive multiple sclerosis (6/8) had C2-3 lesions. Of the eight patients with C2-3 lesions and imaging at onset of occipital neuralgia, five (62.5%) had evidence of active demyelination. None of the patients with progressive multiple sclerosis (3/3) responded to occipital nerve blocks or high dose intravenous steroids, whereas all of the other phenotypes with long term follow-up (eight patients) had good responses. Conclusions A cervical spine MRI should be considered in all patients presenting with occipital neuralgia. In patients with multiple sclerosis, clinical features in occipital neuralgia that were predictive of the presence of a C2-3 lesion were unilateral episodic symptoms, sensory loss, later onset of occipital neuralgia, and progressive multiple sclerosis phenotype. Clinical phenotype predicted response to treatment.

  5. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination

    PubMed Central

    Samanta, Jayshree; Grund, Ethan M.; Silva, Hernandez M.; Lafaille, Juan J.; Fishell, Gord; Salzer, James L.

    2016-01-01

    Summary Enhancing repair of myelin is an important, but still elusive therapeutic goal in many neurological disorders1. In Multiple Sclerosis (MS), an inflammatory demyelinating disease, endogenous remyelination does occur but is frequently insufficient to restore function. Both parenchymal oligodendrocyte progenitor cells (OPCs) and endogenous adult neural stem cells (NSCs) resident within the subventricular zone (SVZ) are known sources of remyelinating cells2. Here, we characterize the contribution to remyelination of a subset of adult NSCs, identified by their expression of Gli1, a transcriptional effector of the Sonic Hedgehog (Shh) pathway. We show that these cells are recruited from the SVZ to populate demyelinated lesions in the forebrain but never enter healthy, white matter tracts. Unexpectedly, recruitment of this pool of NSCs, and their differentiation into oligodendrocytes, is significantly enhanced by genetic or pharmacological inhibition of Gli1. Importantly, complete inhibition of canonical hedgehog signaling was ineffective indicating that Gli1’s role in both augmenting hedgehog signaling and retarding myelination is specialized. Indeed, inhibition of Gli1 improves the functional outcome in a relapsing/remitting model of experimental autoimmune encephalomyelitis (RR-EAE) and is neuroprotective. Thus, endogenous NSCs can be mobilized for the repair of demyelinated lesions by inhibiting Gli1, identifying a new therapeutic avenue for the treatment of demyelinating disorders. PMID:26416758

  6. Suppression of chronic experimental autoimmune neuritis by nasally administered recombinant rat interleukin-6

    PubMed Central

    DERETZI, G; PELIDOU, S-H; ZOU, L-P; QUIDING, C; MIX, E; LEVI, M; WAHREN, B; ZHU, J

    1999-01-01

    Experimental autoimmune neuritis (EAN) is a CD4+ T-cell-mediated demyelinating disease of the peripheral nervous system (PNS) and serves as experimental model for human immune-demyelinating neurophathies, especially the Guillain–Barré syndrome. In this study, we examined the effect of recombinant rat interleukin-6 (rrIL-6) on chronic EAN in Lewis rats induced by immunization with P2 peptide 57-81 and Freund’s complete adjuvant (FCA). Nasal administration of rat rIL-6 (1 μg/rat/day) beginning in the initial phase of EAN as a therapeutic agent, decreased the severity and the duration of clinical EAN. Low-grade inflammation and suppression of regional demyelination within the sciatic nerves were seen in rrIL-6-treated rats. Hyporesponsiveness of lymph node T cells, down-regulation of serum tumour necrosis factor-α (TNF-α) and increased levels of P2-specific immunoglobulin G1 (IgG1) antibodies document that nasal administration of rrIL-6 was effective systemically. However, because of the non-specific nature of the treatment and multiple effects of IL-6, more experience and great caution are needed, before nasal administration of IL-6 can be considered as a treatment of human autoimmune demyelinating neurophathies. PMID:10447716

  7. Stressful life events and the risk of initial central nervous system demyelination.

    PubMed

    Saul, Alice; Ponsonby, Anne-Louise; Lucas, Robyn M; Taylor, Bruce V; Simpson, Steve; Valery, Patricia; Dwyer, Terence; Kilpatrick, Trevor J; Pender, Michael P; van der Mei, Ingrid Af

    2017-06-01

    There is substantial evidence that stress increases multiple sclerosis disease activity, but limited evidence on its association with the onset of multiple sclerosis. To examine the association between stressful life events and risk of first demyelinating event (FDE). This was a multicentre incident case-control study. Cases ( n = 282 with first diagnosis of central nervous system (CNS) demyelination, including n = 216 with 'classic FDE') were aged 18-59 years. Controls without CNS demyelination ( n = 558) were matched to cases on age, sex and study region. Stressful life events were assessed using a questionnaire based on the Social Readjustment Rating Scale. Those who suffered from a serious illness in the previous 12 months were more likely to have an FDE (odds ratio (OR) = 2.35 (1.36, 4.06), p = 0.002), and when we limited our reference group to those who had no stressful life events, the magnitude of effect became stronger (OR = 5.41 (1.80, 16.28)). The total stress number and stress load were not convincingly associated with the risk of an FDE. Cases were more likely to report a serious illness in the previous 12 months, which could suggest that a non-specific illness provides an additional strain to an already predisposed immune system.

  8. CSF myelin basic protein

    MedlinePlus

    ... done to see if myelin is breaking down. Multiple sclerosis is the most common cause for this, but ... tap) References Fabian MT, Krieger SC, Lublin FD. Multiple sclerosis and other inflammatory demyelinating diseases of the central ...

  9. The effect of triiodothyronine on maturation and differentiation of oligodendrocyte progenitor cells during remyelination following induced demyelination in male albino rat.

    PubMed

    El-Tahry, H; Marei, H; Shams, A; El-Shahat, M; Abdelaziz, H; Abd El-Kader, M

    2016-06-01

    Demyelination was induced by two weeks cuprizone treatment. Rats of +ve control and triiodothyronine (T3) then received three subcutaneous injections of either saline or T3 day after day and sacrificed at the end of the third and fifth weeks. Animals in -ve control group received only standard rodent chow. After one week of cuprizone withdrawal the corpus callosum in +ve control and T3 treated rats was still demyelinated as revealed by MBP immunohistochemistry. The assay of PLP gene showed significant increase of T3 treated group compared to both the -ve control and +ve control groups. After three weeks, significant improvement in myelination was detected in T3-treated group compared to +ve control as detected by both MBP immunohistochemistry and electron microscopy. After one week of cuprizone withdrawal, PDGFRα positive cells and gene expression showed significant increase in +ve control and T3-treated groups as compared to -ve control with insignificant difference in between the former two groups. After three weeks of cuprizone withdrawal, PDGFRα positive cells in T3-treated and +ve control groups decreased to the control levels. These results suggest that T3 was effective in improving remyelination when administered during acute phase and might direct progenitor lineage toward oligodendrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Challenges in pediatric chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Haliloğlu, Göknur; Yüksel, Deniz; Temoçin, Cağri Mesut; Topaloğlu, Haluk

    2016-12-01

    Chronic inflammatory demyelinating neuropathy, a treatable immune-mediated disease of the peripheral nervous system is less common in childhood compared to adults. Despite different sets of diagnostic criteria, lack of a reliable biologic marker leads to challenges in diagnosis, follow-up and treatment. Our first aim was to review clinical presentation, course, response to treatment, and prognosis in our childhood patients. We also aimed to document diagnostic and therapeutic pitfalls and challenges at the bedside. Our original cohort consisted of 23 pediatric patients who were referred to us with a clinical diagnosis of chronic inflammatory demyelinating neuropathy. Seven patients reaching to an alternative diagnosis were excluded. In the remaining patients, diagnostic, treatment and follow-up data were compared in typical patients who satisfied both clinical and electrodiagnostic criteria and atypical patients who failed to meet minimal research chronic inflammatory demyelinating neuropathy electrodiagnostic requirements. Eight of 16 patients (50%) met the minimal chronic inflammatory demyelinating neuropathy research diagnostic requirements. There was only a statistically significant difference (p = 0.010) in terms of European Neuromuscular Centre childhood chronic inflammatory diagnostic mandatory clinical criteria between the two groups. Misdiagnosis due to errors in electrophysiological interpretation (100%, n = 8), cerebrospinal fluid cytoalbuminologic dissociation (100%, n = 4 and/or subjective improvement on any immunotherapy modality (80 ± 19.27%)) was frequent. Pediatric CIDP is challenging in terms of diagnostic and therapeutic pitfalls at the bedside. Diagnostic errors due to electrophysiological interpretation, cerebrospinal fluid cytoalbuminologic dissociation, and/or subjective improvement on immunotherapy should be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis.

    PubMed

    Romme Christensen, Jeppe; Börnsen, Lars; Khademi, Mohsen; Olsson, Tomas; Jensen, Poul Erik; Sørensen, Per Soelberg; Sellebjerg, Finn

    2013-06-01

    The mechanism underlying disease progression in progressive multiple sclerosis (MS) is uncertain. Pathological studies found widespread inflammation in progressive MS brains correlating with disease progression and axonal damage. To study cerebrospinal fluid (CSF) biomarkers and clarify whether inflammation and axonal damage are associated in progressive MS. Using enzyme-linked immunosorbent assay (ELISA), we analysed CSF from 40 secondary progressive (SPMS), 21 primary progressive (PPMS), and 36 relapsing-remitting (RRMS) and 20 non-inflammatory neurological disease (NIND) patients. Twenty-two of the SPMS patients participated in an MBP8298 peptide clinical trial and had CSF follow-up after one year. Compared to NIND patients, inflammatory biomarkers osteopontin and matrix metalloproteinase-9 (MMP9) were increased in all MS patients while CXCL13 was increased in RRMS and SPMS patients. Biomarkers of axonal damage (NFL) and demyelination (MBP) were increased in all MS patients. In progressive MS patients CSF levels of osteopontin and CXCL13 correlated with NFL while osteopontin and MMP9 correlated with MBP. MBP8298 treatment did not affect the levels of the biomarkers after one year of treatment. All biomarkers were continuously increased after one year of follow-up except MBP, which decreased. CSF biomarkers of inflammation, axonal damage and demyelination are continuously increased in progressive MS patients and correlate. These findings parallel pathology studies, emphasise a relationship between inflammation, axonal damage and demyelination and support the use of CSF biomarkers in progressive MS clinical trials.

  12. A patient with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and severe hypoganglionosis associated with a novel SOX10 mutation.

    PubMed

    Akutsu, Yuko; Shirai, Kentaro; Takei, Akira; Goto, Yudai; Aoyama, Tomohiro; Watanabe, Akimitu; Imamura, Masatoshi; Enokizono, Takashi; Ohto, Tatsuyuki; Hori, Tetsuo; Suzuki, Keiko; Hayashi, Masaharu; Masumoto, Kouji; Inoue, Ken

    2018-05-01

    In this report, we present the case of a female infant with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease (PCWH) associated with a novel frameshift mutation (c.842dupT) in exon 5, the last exon of SOX10. She had severe hypoganglionosis in the small intestine and entire colon, and suffered from frequent enterocolitis. The persistence of ganglion cells made both the diagnosis and treatment difficult in the neonatal period. She also showed hypopigmentation of the irises, hair and skin, bilateral sensorineural deafness with hypoplastic inner year, severe demyelinating neuropathy with hypotonia, and diffuse brain hypomyelination. The p.Ser282GlnfsTer12 mutation presumably escapes from nonsense-mediated decay and may generate a dominant-negative effect. We suggest that hypoganglionosis can be a variant intestinal manifestation associated with PCWH and that hypoganglionosis and aganglionosis may share the same pathoetiological mechanism mediated by SOX10 mutations. © 2018 Wiley Periodicals, Inc.

  13. Evidence for a prolonged role of alpha 4 integrin throughout active experimental allergic encephalomyelitis.

    PubMed

    Keszthelyi, E; Karlik, S; Hyduk, S; Rice, G P; Gordon, G; Yednock, T; Horner, H

    1996-10-01

    The leukocyte integrin receptor, alpha 4 beta 1, and its endothelial cell ligand, vascular cell adhesion molecule 1, appear to be of critical importance in the leukocyte trafficking that accompanies CNS damage in experimental allergic encephalomyelitis (EAE). In this study, the persistence of the role for alpha 4 beta 1/VCAM-1 in EAE was established by observing antibody-mediated disease reversal up to 1 month following disease onset. Limited treatment with a monoclonal antibody against alpha 4 integrin, GG5/3, resulted in a significant decrease in both clinical and histopathologic signs. This was not observed in isotype control experiments. In the latter phase of progressive disease, widespread demyelination occurred in the animals that did not respond to 6 days of anti-alpha 4 treatment. These results demonstrate an essential role for alpha 4 beta 1 interactions throughout active EAE and illustrate the difference between reversible clinical deficits caused by edema and irreversible deficits associated with demyelination.

  14. Post chicken pox neurological sequelae: Three distinct presentations.

    PubMed

    Paul, Rudrajit; Singhania, Pankaj; Hashmi, Ma; Bandyopadhyay, Ramtanu; Banerjee, Amit Kumar

    2010-07-01

    Varicella zoster infection is known to cause neurological involvement. The infection is usually self-limiting and resolves without sequelae. We present a series of three cases with neurological presentations following chicken pox infection. The first case is a case of meningitis, cerebellitis and polyradiculopathy, the second is a florid case of acute infective demyelinating polyradiculoneuropathy (Guillian-Barré syndrome) in a middle-aged female and the third case is a young man in whom we diagnosed acute transverse myelitis. All these cases presented with distinct neurological diagnoses and the etiology was established on the basis of history and serological tests confirmatory for chicken pox. The cases responded differently to treatment and the patients were left with minimum disability.

  15. Acute Motor-dominant Polyneuropathy as Guillain-Barré Syndrome and Multiple Mononeuropathies in a Patient with Sjögren's Syndrome.

    PubMed

    Tanaka, Kenichiro; Nakayasu, Hiroyuki; Suto, Yutaka; Takahashi, Shotaro; Konishi, Yoshihiro; Nishimura, Hirotake; Ueno, Rino; Kusunoki, Susumu; Nakashima, Kenji

    A patient with xerostomia and xerophthalmia due to Sjögren's syndrome presented with acute motor-dominant polyneuropathy and multiple mononeuropathy with antiganglioside antibodies. Nerve conduction studies and a sural nerve biopsy revealed the neuropathy as a mixture of segmental demyelination and axonal degeneration. Positive results were obtained for several antiganglioside antibodies. Corticosteroid treatment proved effective. The neuropathy was considered to represent a mixture of polyneuropathy as Guillain-Barré syndrome and multiple mononeuropathy via Sjögren's syndrome. We speculate that Guillain-Barré syndrome occurred in the patient and Guillain-Barré syndrome itself activated multiple mononeuropathy via Sjögren's syndrome.

  16. [Acute inflammatory polyradiculoneuropathy and membranous glomerulonephritis following Epbstein-Barr virus primary infection in a 12-year-old girl].

    PubMed

    Meyer, P; Soëte, S; Raynaud, P; Henry, V; Morin, D; Rodière, M; Rivier, F; Roubertie, A

    2010-11-01

    Acute inflammatory polyradiculoneuropathy, or Guillain-Barré syndrome (GBS), is characterized by peripheral nerve demyelination, which leads to rapidly progressive weakness, loss of sensation, and loss of deep tendon reflexes. It is a prototype of postinfectious autoimmune disease, whose pathophysiology is well described in the forms provoked by certain bacteria (molecular mimicry with Campylobacter jejuni), but remains unclear for the forms related to other organisms (cytomegalovirus, Epstein-Barr virus and other herpes group viruses, Mycoplasma pneumoniae). Glomerular lesions can be associated with the neurological symptoms and have also been described after various infections, independently of any signs of polyradiculoneuropathy. We report the observation of a 12-year-old girl who presented with Guillain-Barré syndrome with facial diplegia, ataxia, and intracranial hypertension following Epstein-Barr virus (EBV) primary infection. During the course of the neurological disease, membranous glomerulonephritis (MGN) was diagnosed. The neurological impairment was regressive within 6 months after intravenous immunoglobulin treatment followed by intravenous then oral corticosteroid administration. Viremia remained high more than 6 months after the onset of symptoms. Glomerulopathy progressed independently and finally required immunosuppressant medication with cyclosporine. EBV might be the factor that triggered the autoimmune disorders, as previously reported for systemic lupus erythematosus and multiple sclerosis in children. To the best of our knowledge, this association of 3 conditions (GBS, MGN, and EBV primary infection) has never been reported in the literature. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  17. Systemic Escherichia coli infection does not influence clinical symptoms and neurodegeneration in experimental autoimmune encephalomyelitis.

    PubMed

    Kumar, Prateek; Friebe, Katharina; Schallhorn, Rieka; Moinfar, Zahra; Nau, Roland; Bähr, Mathias; Schütze, Sandra; Hein, Katharina

    2015-06-19

    Systemic infections can influence the course of multiple sclerosis (MS), especially by driving recurrent acute episodes. The question whether the infection enhances tissue damage is of great clinical importance and cannot easily be assessed in clinical trials. Here, we investigated the effects of a systemic infection with Escherichia coli, a Gram-negative bacterium frequently causing urinary tract infections, on the clinical course as well as on neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Rats were immunized with myelin oligodendrocyte glycoprotein (MOG1-125) and challenged intraperitoneally with live E. coli K1 in the preclinical or in the clinical phase of the disease. To ensure the survival of animals, antibiotic treatment with ceftriaxone was initiated 36 h after the infection and continued for 3 consecutive days. Systemic infection with E. coli did not influence the onset of clinical EAE symptoms or disease severity. Analysis of the optic nerve and retinal ganglion cells revealed no significant changes in the extent of inflammatory infiltrates, demyelination and neurodegeneration after E. coli infection. We could not confirm the detrimental effect of lipopolysaccharide-induced systemic inflammation, a model frequently used to mimic the bacterial infection, previously observed in animal models of MS. Our results indicate that the effect of an acute E. coli infection on the course of MS is less pronounced than suspected and underline the need for adequate models to test the role of systemic infections in the pathogenesis of MS.

  18. Guillain-Barré syndrome.

    PubMed

    Esposito, Susanna; Longo, Maria Roberta

    2017-01-01

    The term Guillain-Barré syndrome (GBS), the most frequent cause of acute paralytic neuropathy, covers a number of recognisably distinct variants. The exact cause of GBS is unknown, but 50-70% of cases appear 1-2weeks after a respiratory or gastrointestinal infection, or another immune stimulus that induces an aberrant autoimmune response targeting peripheral nerves and their spinal roots. The interplay between the microbial and host factors that dictate whether and how the immune response shifts towards autoreactivity is still unclear, and nothing is known about the genetic and environmental factors that affect an individual's susceptibility to the disease. All patients with GBS need meticulous monitoring, and can benefit from supportive care and the early start of specific treatment. This review summarises the clinical features and diagnostic criteria of GBS and proposes an algorithm for its management. An analysis of the literature showed that, about one century after it was first described, new information concerning its etiopathogenesis has allowed the development of new treatment strategies that should be started immediately after diagnosis; however, the available therapies are not sufficient in many patients, especially in the presence of the acute inflammatory demyelinating polyneuropathy. New post-infectious forms, such as those caused by Zika virus and enterovirus D68, need to be carefully analysed and, in order to improve patient outcomes, research should continue to aim at identifying new biomarkers of disease severity and better means of avoiding axonal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oxidative stress in a model of toxic demyelination in rat brain: the effect of piracetam and vinpocetine.

    PubMed

    Abdel-Salam, Omar M E; Khadrawy, Yasser A; Salem, Neveen A; Sleem, Amany A

    2011-06-01

    We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.

  20. Genetics Home Reference: autosomal dominant leukodystrophy with autonomic disease

    MedlinePlus

    ... gene provides instructions for making the lamin B1 protein. Lamin B1 is an essential scaffolding ... VE, Casaccia P, Padiath QS. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused ...

  1. Associations between tumor necrosis factor-α gene polymorphisms and the risk of Guillain-Barré syndrome and its subtypes: A systematic review and meta-analysis.

    PubMed

    Liu, Ju; Lian, Zhiyun; Chen, Hongxi; Shi, Ziyan; Feng, Huiru; Du, Qin; Zhang, Qin; Zhou, Hongyu

    2017-12-15

    This meta-analysis aimed to assess the relationship between tumor necrosis factor-α (TNF-α) polymorphisms and Guillain-Barré syndrome (GBS) or its subtypes of acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor-sensory axonal neuropathy (AMSAN). A total of six studies with 1013 cases and 1029 controls were included. Our pooled data indicated that TNF-α 308G/A polymorphism was significantly associated with GBS, AMAN, and AMSAN but not with AIDP; TNF-α 857C/T polymorphism was significantly associated with AMAN but not with GBS or AIDP. Besides, no association was found between TNF-α 238G/A and 863C/A polymorphisms and GBS or its subtypes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inactivation of Protein Tyrosine Phosphatase Receptor Type Z by Pleiotrophin Promotes Remyelination through Activation of Differentiation of Oligodendrocyte Precursor Cells.

    PubMed

    Kuboyama, Kazuya; Fujikawa, Akihiro; Suzuki, Ryoko; Noda, Masaharu

    2015-09-02

    Multiple sclerosis (MS) is a progressive neurological disorder associated with myelin destruction and neurodegeneration. Oligodendrocyte precursor cells (OPCs) present in demyelinated lesions gradually fail to differentiate properly, so remyelination becomes incomplete. Protein tyrosine phosphatase receptor type Z (PTPRZ), one of the most abundant protein tyrosine phosphatases expressed in OPCs, is known to suppress oligodendrocyte differentiation and maintain their precursor cell stage. In the present study, we examined the in vivo mechanisms for remyelination using a cuprizone-induced demyelination model. Ptprz-deficient and wild-type mice both exhibited severe demyelination and axonal damage in the corpus callosum after cuprizone feeding. The similar accumulation of OPCs was observed in the lesioned area in both mice; however, remyelination was significantly accelerated in Ptprz-deficient mice after the removal of cuprizone. After demyelination, the expression of pleiotrophin (PTN), an inhibitory ligand for PTPRZ, was transiently increased in mouse brains, particularly in the neurons involved, suggesting its role in promoting remyelination by inactivating PTPRZ activity. In support of this view, oligodendrocyte differentiation was augmented in a primary culture of oligodendrocyte-lineage cells from wild-type mice in response to PTN. In contrast, these cells from Ptprz-deficient mice showed higher oligodendrocyte differentiation without PTN and differentiation was not enhanced by its addition. We further demonstrated that PTN treatment increased the tyrosine phosphorylation of p190 RhoGAP, a PTPRZ substrate, using an established line of OPCs. Therefore, PTPRZ inactivation in OPCs by PTN, which is secreted from demyelinated axons, may be the mechanism responsible for oligodendrocyte differentiation during reparative remyelination in the CNS. Multiple sclerosis (MS) is an inflammatory disease of the CNS that destroys myelin, the insulation that surrounds axons. Associated damages to oligodendrocytes (the cells that produce myelin) and nerve fibers produce neurological disability. Most patients with MS have an initial relapsing-remitting course for 5-15 years. Remyelination during the early stages of the disease process has been documented; however, the molecular mechanism underlying remyelination has not been understood. Protein tyrosine phosphatase receptor type Z (PTPRZ) is a receptor-like protein tyrosine phosphatase preferentially expressed in the CNS. This study shows that pleiotrophin, an inhibitory ligand for PTPRZ, is transiently expressed and released from demyelinated neurons to inactivate PTPRZ in oligodendrocyte precursor cells present in the lesioned part, thereby allowing their differentiation for remyelination. Copyright © 2015 the authors 0270-6474/15/3512163-10$15.00/0.

  3. Heterogeneity in Oligodendroglia: Is it Relevant to Mouse Models and Human Disease?

    PubMed Central

    Ornelas, Isis M.; McLane, Lauren E.; Saliu, Aminat; Evangelou, Angelina V.; Khandker, Luipa; Wood, Teresa L.

    2016-01-01

    There are many lines of evidence indicating that OPC and oligodendrocyte populations in the CNS are heterogeneous based on their developmental origins as well as from morphological and molecular criteria. Whether these distinctions reflect functional heterogeneity is less clear and has been the subject of considerable debate. Recent findings particularly from knockout mouse models have provided new evidence for regional variations in myelination phenotypes, particularly between brain and spinal cord. These data raise the possibility that oligodendrocytes in these regions have different functional capacities and/or ability to compensate for loss of a specific gene. The goal of this review is to briefly revisit the evidence for oligodendrocyte heterogeneity and then to present data from transgenic and demyelinating mouse models suggesting functional heterogeneity in myelination, demyelination and remyelination in the CNS and finally, to discuss the implications of these findings for human diseases. PMID:27557736

  4. Chronic inflammatory demyelinating polyneuropathy in Waldenström's macroglobulinemia.

    PubMed

    Cassereau, J; Letournel, F; François, S; Dubas, F; Nicolas, G

    2011-04-01

    Waldenström's disease (WD) is frequently associated with a predominantly sensory neuropathy with a progressive course due to the monoclonal IgM activity against Myelin Associated Glycoprotein (MAG). However, neurolymphomatosis or chronic demyelinating inflammatory polyneuropathy (CDIP) may occur in some patients with WD. We report a case of Waldenström's macroglobulinemia in an adult male presenting with cranial nerve palsy and rapidly progressive asymmetric polyneuropathy. Intravenous IgM treatment that provided transient amelioration was followed by a relapse involving tetraparesis. Cerebrospinal fluid analysis, medullar magnetic resonance imaging, and electrophysiological studies led to equivocal findings suggesting the presence of either neurolymphomatosis or CIDP. Finally, sural nerve biopsy results supported the diagnosis of CIDP, which then received appropriate treatment. In patients with WD, the possible occurrence of CIDP should be investigated with a neuromuscular biopsy when other investigations are equivocal since the disease calls for a specific treatment. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease.

    PubMed

    Falah, Nadia; Posey, Jennifer E; Thorson, Willa; Benke, Paul; Tekin, Mustafa; Tarshish, Brocha; Lupski, James R; Harel, Tamar

    2017-04-01

    Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., (2004); AJMGA 127: 149-151], of an individual with 22q duplication and sex-reversal syndrome. The subject's phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain of function rather than dominant negative activity underlies PCWH. © 2017 Wiley Periodicals, Inc.

  6. 22q11.2q13 Duplication Including SOX10 causes Sex-reversal and Peripheral Demyelinating Neuropathy, Central Dysmyelinating Leukodystrophy, Waardenburg Syndrome and Hirschsprung Disease

    PubMed Central

    Falah, Nadia; Posey, Jennifer E.; Thorson, Willa; Benke, Paul; Tekin, Mustafa; Tarshish, Brocha; Lupski, James R; Harel, Tamar

    2017-01-01

    Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., 2004; Ajmga 127: 149–151], of an individual with 22q duplication and sex-reversal syndrome. The subject’s phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain-of-function rather than dominant negative activity underlies PCWH. PMID:28328136

  7. Differential local tissue permissiveness influences the final fate of GPR17‐expressing oligodendrocyte precursors in two distinct models of demyelination

    PubMed Central

    Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide

    2018-01-01

    Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466

  8. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination.

    PubMed

    Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P

    2018-05-01

    Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

  9. Segmental somatosensory-evoked potentials as a diagnostic tool in chronic inflammatory demyelinating polyneuropathies, and other sensory neuropathies.

    PubMed

    Koutlidis, R M; Ayrignac, X; Pradat, P-F; Le Forestier, N; Léger, J-M; Salachas, F; Maisonobe, T; Fournier, E; Viala, K

    2014-09-01

    Somatosensory-evoked potentials with segmental recordings were performed with the aim of distinguishing chronic inflammatory demyelinating polyneuropathy from other sensory neuropathies. Four groups of 20 subjects each corresponded to patients with (1) possible sensory chronic inflammatory demyelinating polyneuropathy, (2) patients with sensory polyneuropathy of unknown origin, (3) patients with amyotrophic lateral sclerosis and (4) normal subjects. The patients selected for this study had preserved sensory potentials on electroneuromyogram and all waves were recordable in evoked potentials. Somatosensory-evoked potentials evaluations were carried out by stimulation of the posterior tibial nerve at the ankle, recording peripheral nerve potential in the popliteal fossa, radicular potential and spinal potential at the L4-L5 and T12 levels, and cortical at C'z, with determination of distal conduction time, proximal and radicular conduction time and central conduction time. In the group of chronic inflammatory demyelinating polyneuropathy, 80% of patients had abnormal conduction in the N8-N22 segment and 95% had abnormal N18-N22 conduction time. In the group of neuropathies, distal conduction was abnormal in most cases, whereas 60% of patients had no proximal abnormality. None of the patients in the group of amyotrophic lateral sclerosis had an abnormal N18-N22 conduction time. Somatosensory-evoked potentials with segmental recording can be used to distinguish between atypical sensory chronic inflammatory demyelinating polyneuropathy and other sensory neuropathies, at the early stage of the disease. Graphical representation of segmental conduction times provides a rapid and accurate visualization of the profile of each patient. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. The antibody rHIgM22 facilitates hippocampal remyelination and ameliorates memory deficits in the cuprizone mouse model of demyelination.

    PubMed

    Cui, Charlene; Wang, Jing; Mullin, Ariana P; Caggiano, Anthony O; Parry, Tom J; Colburn, Raymond W; Pavlopoulos, Elias

    2018-05-15

    Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the CNS. In addition to motor, sensory and visual deficits, MS is also characterized by hippocampal demyelination and memory impairment. We recently demonstrated that a recombinant human-derived monoclonal IgM antibody, which is designated rHIgM22 and currently in clinical development for people with MS, accelerates remyelination of the corpus callosum in the brains of cuprizone-treated mice. Here, we investigated the effects of rHIgM22 in the hippocampus and on hippocampal-dependent learning and memory in the same mouse model of cuprizone-induced demyelination and spontaneous remyelination. The degree of hippocampal myelination of cuprizone-fed mice treated with a single dose of rHIgM22 (10 mg/kg of body weight) was examined immediately after the end of the cuprizone diet as well as at different time points during the recovery period with regular food, and compared with that of cuprizone-fed animals treated with either vehicle or human IgM isotype control antibody. Mice fed only regular food were used as controls. Four or five mice per treatment group were examined for each time point. We demonstrate that treatment with rHIgM22 accelerated remyelination of the demyelinated hippocampus. Using two additional cohorts of mice and eight animals per treatment group for each cohort, we also demonstrate that the enhancing effects of rHIgM22 on hippocampal remyelination were accompanied by improved performance in the Morris water maze and amelioration of the memory deficits induced by cuprizone. These results further confirm the remyelination-promoting capabilities of rHIgM22 and support additional investigation of its therapeutic potential in MS. Copyright © 2018. Published by Elsevier B.V.

  11. Ligation of the Jugular Veins Does Not Result in Brain Inflammation or Demyelination in Mice

    PubMed Central

    Wojtkiewicz, Gregory R.; Pulli, Benjamin; Iwamoto, Yoshiko; Ueno, Takuya; Waterman, Peter; Truelove, Jessica; Oklu, Rahmi; Chen, John W.

    2012-01-01

    An alternative hypothesis has been proposed implicating chronic cerebrospinal venous insufficiency (CCSVI) as a potential cause of multiple sclerosis (MS). We aimed to evaluate the validity of this hypothesis in a controlled animal model. Animal experiments were approved by the institutional animal care committee. The jugular veins in SJL mice were ligated bilaterally (n = 20), and the mice were observed for up to six months after ligation. Sham-operated mice (n = 15) and mice induced with experimental autoimmune encephalomyelitis (n = 8) were used as negative and positive controls, respectively. The animals were evaluated using CT venography and 99mTc-exametazime to assess for structural and hemodynamic changes. Imaging was performed to evaluate for signs of blood-brain barrier (BBB) breakdown and neuroinflammation. Flow cytometry and histopathology were performed to assess inflammatory cell populations and demyelination. There were both structural changes (stenosis, collaterals) in the jugular venous drainage and hemodynamic disturbances in the brain on Tc99m-exametazime scintigraphy (p = 0.024). In the JVL mice, gadolinium MRI and immunofluorescence imaging for barrier molecules did not reveal evidence of BBB breakdown (p = 0.58). Myeloperoxidase, matrix metalloproteinase, and protease molecular imaging did not reveal signs of increased neuroinflammation (all p>0.05). Flow cytometry and histopathology also did not reveal increase in inflammatory cell infiltration or population shifts. No evidence of demyelination was found, and the mice remained without clinical signs. Despite the structural and hemodynamic changes, we did not identify changes in the BBB permeability, neuroinflammation, demyelination, or clinical signs in the JVL group compared to the sham group. Therefore, our murine model does not support CCSVI as a cause of demyelinating diseases such as multiple sclerosis. PMID:22457780

  12. Neuroprotective role of quercetin in locomotor activities and cholinergic neurotransmission in rats experimentally demyelinated with ethidium bromide.

    PubMed

    Beckmann, Diego V; Carvalho, Fabiano B; Mazzanti, Cinthia M; Dos Santos, Rosmarini P; Andrades, Amanda O; Aiello, Graciane; Rippilinger, Angel; Graça, Dominguita L; Abdalla, Fátima H; Oliveira, Lizielle S; Gutierres, Jessié M; Schetinger, Maria Rosa C; Mazzanti, Alexandre

    2014-05-17

    The purpose of this study was to investigate whether the flavonoid quercetin can prevent alterations in the behavioral tests and of cholinergic neurotransmission in rats submitted to the ethidium bromide (EB) experimental demyelination model during events of demyelination and remyelination. Wistar rats were randomly distributed into four groups (20 animals per group): Control (pontine saline injection and treatment with ethanol), Querc (pontine saline injection and treatment with quercetin), EB (pontine 0.1% EB injection and treatment with ethanol), and EB+Querc (pontine 0.1% EB injection and treatment with quercetin). The groups Querc and Querc+EB were treated once daily with quercetin (50mg/kg) diluted in 25% ethanol solution (1ml/kg) and the animals of the control and EB groups were treated once daily with 25% ethanol solution (1ml/kg). Two stages were observed: phase of demyelination (peak on day 7) and phase of remyelination (peak on day 21 post-injection). Behavioral tests (beam walking, foot fault and inclined plane test), acetylcholinesterase (AChE) activity and lipid peroxidation in pons, cerebellum, hippocampus, hypothalamus, striatum and cerebral cortex were measured. The quercetin promoted earlier locomotor recovery, suggesting that there was demyelination prevention or further remyelination velocity as well as it was able to prevent the inhibition of AChE activity and the increase of lipidic peroxidation, suggesting that this compound can protect cholinergic neurotransmission. These results may contribute to a better understanding of the neuroprotective role of quercetin and the importance of an antioxidant diet in humans to provide benefits in neurodegenerative diseases such as MS. Copyright © 2014. Published by Elsevier Inc.

  13. Human papillomavirus vaccine and demyelinating diseases-A systematic review and meta-analysis.

    PubMed

    Mouchet, Julie; Salvo, Francesco; Raschi, Emanuel; Poluzzi, Elisabetta; Antonazzo, Ippazio Cosimo; De Ponti, Fabrizio; Bégaud, Bernard

    2018-06-01

    Approved in 2006, human papillomavirus (HPV) vaccines were initially targeted for girls aged 9-14 years. Although the safety of these vaccines has been monitored through post-licensure surveillance programmes, cases of neurological events have been reported worldwide. The present study aimed to assess the risk of developing demyelination after HPV immunization by meta-analysing risk estimates from pharmacoepidemiologic studies. A systematic review was conducted in Medline, Embase, ISI Web of Science and the Cochrane Library from inception to 10 May 2017, without language restriction. Only observational studies including a control group were retained. Study selection was performed by two independent reviewers with disagreements solved through discussion. This meta-analysis was performed using a generic inverse variance random-effect model. Outcomes of interest included a broad category of central demyelination, multiple sclerosis (MS), optic neuritis (ON), and Guillain-Barré syndrome (GBS), each being considered independently. Heterogeneity was investigated; sensitivity and subgroup analyses were performed when necessary. In parallel, post-licensure safety studies were considered for a qualitative review. This study followed the PRISMA statement and the MOOSE reporting guideline. Of the 2,863 references identified, 11 articles were selected for meta-analysis. No significant association emerged between HPV vaccination and central demyelination, the pooled odds ratio being 0.96 [95% CI 0.77-1.20], with a moderate but non-significant heterogeneity (I 2  = 29%). Similar results were found for MS and ON. Sensitivity analyses did not alter our conclusions. Findings from qualitative review of 14 safety studies concluded in an absence of a relevant signal. Owing to limited data on GBS, no meta-analysis was performed for this outcome. This study strongly supports the absence of association between HPV vaccines and central demyelination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for CNS repair. PMID:26283909

  15. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy

    PubMed Central

    Devaux, Jérôme J.; Miura, Yumako; Fukami, Yuki; Inoue, Takayuki; Manso, Constance; Belghazi, Maya; Sekiguchi, Kenji; Kokubun, Norito; Ichikawa, Hiroo; Wong, Anna Hiu Yi

    2016-01-01

    Objective: We report the clinical and serologic features of Japanese patients with chronic inflammatory demyelinating polyneuropathy (CIDP) displaying anti-neurofascin-155 (NF155) immunoglobulin G4 (IgG4) antibodies. Methods: In sera from 533 patients with CIDP, anti-NF155 IgG4 antibodies were detected by ELISA. Binding of IgG antibodies to central and peripheral nerves was tested. Results: Anti-NF155 IgG4 antibodies were identified in 38 patients (7%) with CIDP, but not in disease controls or normal participants. These patients were younger at onset as compared to 100 anti-NF155–negative patients with CIDP. Twenty-eight patients (74%) presented with sensory ataxia, 16 (42%) showed tremor, 5 (13%) presented with cerebellar ataxia associated with nystagmus, 3 (8%) had demyelinating lesions in the CNS, and 20 of 25 (80%) had poor response to IV immunoglobulin. The clinical features of the antibody-positive patients were statistically more frequent as compared to negative patients with CIDP (n = 100). Anti-NF155 IgG antibodies targeted similarly central and peripheral paranodes. Conclusion: Anti-NF155 IgG4 antibodies were associated with a subgroup of patients with CIDP showing a younger age at onset, ataxia, tremor, CNS demyelination, and a poor response to IV immunoglobulin. The autoantibodies may serve as a biomarker to improve patients' diagnosis and guide treatments. PMID:26843559

  16. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Devaux, Jérôme J; Miura, Yumako; Fukami, Yuki; Inoue, Takayuki; Manso, Constance; Belghazi, Maya; Sekiguchi, Kenji; Kokubun, Norito; Ichikawa, Hiroo; Wong, Anna Hiu Yi; Yuki, Nobuhiro

    2016-03-01

    We report the clinical and serologic features of Japanese patients with chronic inflammatory demyelinating polyneuropathy (CIDP) displaying anti-neurofascin-155 (NF155) immunoglobulin G4 (IgG4) antibodies. In sera from 533 patients with CIDP, anti-NF155 IgG4 antibodies were detected by ELISA. Binding of IgG antibodies to central and peripheral nerves was tested. Anti-NF155 IgG4 antibodies were identified in 38 patients (7%) with CIDP, but not in disease controls or normal participants. These patients were younger at onset as compared to 100 anti-NF155-negative patients with CIDP. Twenty-eight patients (74%) presented with sensory ataxia, 16 (42%) showed tremor, 5 (13%) presented with cerebellar ataxia associated with nystagmus, 3 (8%) had demyelinating lesions in the CNS, and 20 of 25 (80%) had poor response to IV immunoglobulin. The clinical features of the antibody-positive patients were statistically more frequent as compared to negative patients with CIDP (n = 100). Anti-NF155 IgG antibodies targeted similarly central and peripheral paranodes. Anti-NF155 IgG4 antibodies were associated with a subgroup of patients with CIDP showing a younger age at onset, ataxia, tremor, CNS demyelination, and a poor response to IV immunoglobulin. The autoantibodies may serve as a biomarker to improve patients' diagnosis and guide treatments. © 2016 American Academy of Neurology.

  17. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling

    PubMed Central

    Baer, Alexandra S.; Syed, Yasir A.; Kang, Sung Ung; Mitteregger, Dieter; Vig, Raluca; ffrench-Constant, Charles; Franklin, Robin J. M.; Altmann, Friedrich; Lubec, Gert

    2009-01-01

    Failure of oligodendrocyte precursor cell (OPC) differentiation contributes significantly to failed myelin sheath regeneration (remyelination) in chronic demyelinating diseases. Although the reasons for this failure are not completely understood, several lines of evidence point to factors present following demyelination that specifically inhibit differentiation of cells capable of generating remyelinating oligodendrocytes. We have previously demonstrated that myelin debris generated by demyelination inhibits remyelination by inhibiting OPC differentiation and that the inhibitory effects are associated with myelin proteins. In the present study, we narrow down the spectrum of potential protein candidates by proteomic analysis of inhibitory protein fractions prepared by CM and HighQ column chromatography followed by BN/SDS/SDS–PAGE gel separation using Nano-HPLC-ESI-Q-TOF mass spectrometry. We show that the inhibitory effects on OPC differentiation mediated by myelin are regulated by Fyn-RhoA-ROCK signalling as well as by modulation of protein kinase C (PKC) signalling. We demonstrate that pharmacological or siRNA-mediated inhibition of RhoA-ROCK-II and/or PKC signalling can induce OPC differentiation in the presence of myelin. Our results, which provide a mechanistic link between myelin, a mediator of OPC differentiation inhibition associated with demyelinating pathologies and specific signalling pathways amenable to pharmacological manipulation, are therefore of significant potential value for future strategies aimed at enhancing CNS remyelination. PMID:19208690

  18. Cellular sources and targets of IFN-gamma-mediated protection against viral demyelination and neurological deficits.

    PubMed

    Murray, Paul D; McGavern, Dorian B; Pease, Larry R; Rodriguez, Moses

    2002-03-01

    IFN-gamma is an anti-viral and immunomodulatory cytokine critical for resistance to multiple pathogens. Using mice with targeted disruption of the gene for IFN-gamma, we previously demonstrated that this cytokine is critical for resistance to viral persistence and demyelination in the Theiler's virus model of multiple sclerosis. During viral infections, IFN-gamma is produced by natural killer (NK) cells, CD4(+) and CD8(+) T cells; however, the proportions of lymphocyte subsets responding to virus infection influences the contributions to IFN-gamma-mediated protection. To determine the lymphocyte subsets that produce IFN-gamma to maintain resistance, we used adoptive transfer strategies to generate mice with lymphocyte-specific deficiencies in IFN-gamma-production. We demonstrate that IFN-gamma production by both CD4(+) and CD8(+) T cell subsets is critical for resistance to Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination and neurological disease, and that CD4(+) T cells make a greater contribution to IFN-gamma-mediated protection. To determine the cellular targets of IFN-gamma-mediated responses, we used adoptive transfer studies and bone marrow chimerism to generate mice in which either hematopoietic or somatic cells lacked the ability to express IFN-gamma receptor. We demonstrate that IFN-gamma receptor must be present on central nervous system glia, but not bone marrow-derived lymphocytes, in order to maintain resistance to TMEV-induced demyelination.

  19. Cellular sources and targets of IFN-γ-mediated protection against viral demyelination and neurological deficits

    PubMed Central

    Murray, Paul D.; McGavern, Dorian B.; Pease, Larry R.; Rodriguez, Moses

    2017-01-01

    IFN-γ is an anti-viral and immunomodulatory cytokine critical for resistance to multiple pathogens. Using mice with targeted disruption of the gene for IFN-γ, we previously demonstrated that this cytokine is critical for resistance to viral persistence and demyelination in the Theiler’s virus model of multiple sclerosis. During viral infections, IFN-γ is produced by natural killer (NK) cells, CD4+ and CD8+ T cells; however, the proportions of lymphocyte subsets responding to virus infection influences the contributions to IFN-γ-mediated protection. To determine the lymphocyte subsets that produce IFN-γ to maintain resistance, we used adoptive transfer strategies to generate mice with lymphocyte-specific deficiencies in IFN-γ-production. We demonstrate that IFN-γ production by both CD4+ and CD8+ T cell subsets is critical for resistance to Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination and neurological disease, and that CD4+ T cells make a greater contribution to IFN-γ-mediated protection. To determine the cellular targets of IFN-γ-mediated responses, we used adoptive transfer studies and bone marrow chimerism to generate mice in which either hematopoietic or somatic cells lacked the ability to express IFN-γ receptor. We demonstrate that IFN-γ receptor must be present on central nervous system glia, but not bone marrow-derived lymphocytes, in order to maintain resistance to TMEV-induced demyelination. PMID:11857334

  20. Genes Involved in the Balance between Neuronal Survival and Death during Inflammation

    PubMed Central

    Glezer, Isaias; Chernomoretz, Ariel; David, Samuel; Plante, Marie-Michèle; Rivest, Serge

    2007-01-01

    Glucocorticoids are potent regulators of the innate immune response, and alteration in this inhibitory feedback has detrimental consequences for the neural tissue. This study profiled and investigated functionally candidate genes mediating this switch between cell survival and death during an acute inflammatory reaction subsequent to the absence of glucocorticoid signaling. Oligonucleotide microarray analysis revealed that following lipopolysaccharide (LPS) intracerebral administration at striatum level, more modulated genes presented transcription impairment than exacerbation upon glucocorticoid receptor blockage. Among impaired genes we identified ceruloplasmin (Cp), which plays a key role in iron metabolism and is implicated in a neurodegenative disease. Microglial and endothelial induction of Cp is a natural neuroprotective mechanism during inflammation, because Cp-deficient mice exhibited increased iron accumulation and demyelination when exposed to LPS and neurovascular reactivity to pneumococcal meningitis. This study has identified genes that can play a critical role in programming the innate immune response, helping to clarify the mechanisms leading to protection or damage during inflammatory conditions in the CNS. PMID:17375196

  1. The ventilated patient undergoing hydrotherapy: a case study.

    PubMed

    Taylor, Susan

    2003-08-01

    The ascending peripheral neuropathy and paralysis that result from Guillain-Barre Syndrome's (GBS) demyelination of peripheral nerves is a challenge to health professionals; the patient requires support during the acute disease process and during the remyelination recovery period, often lasting months to years. The staff of a major metropolitan teaching hospital's critical care unit (CCU) and physiotherapy departments developed a hydrotherapy treatment programme for a ventilated patient with GBS. Through careful planning and appropriate preparation, it was found that hydrotherapy could successfully and safely be incorporated into a patient's treatment regimen. The benefits included improved range of movement due to the supportive nature of water, anecdotal increased strength, size and movement of remyelinating muscles and a psychological improvement. Although this patient has not recovered from GBS to be independent, hydrotherapy was a valuable part of the treatment regimen and it could be suggested the increase muscle strength lead to improved respiratory function and enabled weaning from ventilation, reducing intensive care length of stay and cost.

  2. Axonal Guillain-Barré syndrome: concepts and controversies.

    PubMed

    Kuwabara, Satoshi; Yuki, Nobuhiro

    2013-12-01

    Acute motor axonal neuropathy (AMAN) is a pure motor axonal subtype of Guillain-Barré syndrome (GBS) that was identified in the late 1990s. In Asia and Central and South America, it is the major subtype of GBS, seen in 30-65% of patients. AMAN progresses more rapidly and has an earlier peak than demyelinating GBS; tendon reflexes are relatively preserved or even exaggerated, and autonomic dysfunction is rare. One of the main causes is molecular mimicry of human gangliosides by Campylobacter jejuni lipo-oligosaccharides. In addition to axonal degeneration, electrophysiology shows rapidly reversible nerve conduction blockade or slowing, presumably due to pathological changes at the nodes or paranodes. Autoantibodies that bind to GM1 or GD1a gangliosides at the nodes of Ranvier activate complement and disrupt sodium-channel clusters and axoglial junctions, which leads to nerve conduction failure and muscle weakness. Improved understanding of the disease mechanism and pathophysiology might lead to new treatment options and improve the outlook for patients with AMAN. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Guillain-Barre syndrome complicating chikungunya virus infection.

    PubMed

    Agarwal, Ayush; Vibha, Deepti; Srivastava, Achal Kumar; Shukla, Garima; Prasad, Kameshwar

    2017-06-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus which presents with symptoms of fever, rash, arthralgia, and occasional neurologic disease. While outbreaks have been earlier reported from India and other parts of the world, the recent outbreak in India witnessed more than 1000 cases. Various systemic and rarely neurological complications have been reported with CHIKV. We report two cases of Guillain-Barré syndrome (GBS) with CHIKV. GBS is a rare neurological complication which may occur after subsidence of fever and constitutional symptoms by several neurotropic viruses. We describe two cases of severe GBS which presented with rapidly progressive flaccid quadriparesis progressing to difficulty in swallowing and breathing. Both required mechanical ventilation and improved partly with plasmapharesis. The cases emphasize on (1) description of the rare complication in a setting of outbreak with CHIKV, (2) acute axonal as well as demyelinating neuropathy may occur with CHIKV, (3) accurate identification of this entity during outbreaks with dengue, both of which are vector borne and may present with similar complications.

  4. Harnessing GPR17 Biology for Treating Demyelinating Disease

    DTIC Science & Technology

    2012-10-01

    100 µg of peptide on each site of immunization. Pertussis toxin (200 ng) was injected on the day of immunization and on day 2 of immunization. The...by immunizing mice with 200 ug of MOG35-55/CFA emulsion. 200 ng of Pertussis toxin was administered on day 0 and day 2. Disease severity was graded

  5. IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  6. Peripheral neuropathy in Tangier disease: A literature review and assessment.

    PubMed

    Mercan, Metin; Yayla, Vildan; Altinay, Serdar; Seyhan, Serhat

    2018-06-01

    Tangier disease (TD) (OMIM#205400) is a rare cause of inherited metabolic neuropathies characterized by marked deficiency of high-density lipoproteins and accumulation of cholesterol esters in various tissue resulting from reverse cholesterol transport deficiency. We report a case of a patient with TD with multifocal demyelinating neuropathy with conduction block who presents with winging scapula, tongue, and asymmetric extremity weakness. We also present a review of all studies published from 1960 to 2017 regarding peripheral neuropathy in TD. Our search identified 54 patients with TD with peripheral neuropathy. Syringomyelia-like neuropathy subtype (52.4%) was more frequent than multifocal sensorial and motor neuropathy subtype (26.2%), focal neuropathy subtype (19.1%), and distal symmetric polyneuropathy subtype (2.4%). Splenomegaly was the most common (40.7%) clinical manifestation in these patients. The pattern of electrodiagnostic abnormalities are: (1) demyelinating abnormalities were more predominant in the upper extremities than in the lower extremities and (2) slowing of motor nerve conduction was more prominent in the intermediate segment than in distal nerve segments. The sural-sparing pattern was present in 34.6% and conduction block was present in 11.5% of the patients. Our literature review and our case showed the clinical spectrum of TD neuropathy is quite wide and that it should be considered in the differential diagnosis of non-uniform demyelinating neuropathies. © 2018 Peripheral Nerve Society.

  7. Disseminated strongyloidiasis in a immunocompromised host.

    PubMed

    Mundkur, Suneel C; Aroor, Shrikiran; Jayashree, K

    2011-12-01

    Strongyloidiasis in an immunocompromised patient has the potential to be life threatening. We describe a boy who was on steroids for acute demyelinating myelitis and receiving antibiotics for E. coli UTI and meningitis. He developed anasarca, malabsorption, malnutrition and left ventricular failure. Duodenal biopsy revealed abundant rhabditiform larvae of Strongyloides stercoralis. The diagnosis went unsuspected and proved fatal. This emphasizes the need to have a high index of suspicion and early intervention for S. stercoralis in immunosuppressed persons who present with refractory gastrointestinal symptoms.

  8. Analysis of anti-ganglioside antibodies by a line immunoassay in patients with chronic-inflammatory demyelinating polyneuropathies (CIDP).

    PubMed

    Klehmet, Juliane; Märschenz, Stefanie; Ruprecht, Klemens; Wunderlich, Benjamin; Büttner, Thomas; Hiemann, Rico; Roggenbuck, Dirk; Meisel, Andreas

    2018-05-24

    Unlike for acute immune-mediated neuropathies (IN), anti-ganglioside autoantibody (aGAAb) testing has been recommended for only a minority of chronic IN yet. Thus, we used a multiplex semi-quantitative line immunoassay (LIA) to search for aGAAb in chronic-inflammatory demyelinating polyneuropathy (CIDP) and its clinical variants. Anti-GAAb to 11 gangliosides and sulfatide (SF) were investigated by LIA in 61 patients with IN (27 typical CIDP, 12 distal-acquired demyelinating polyneuropathy, 6 multifocal-acquired demyelinating sensory/motor polyneuropathy, 10 sensory CIDP, 1 focal CIDP and 5 multifocal-motoric neuropathy), 40 with other neuromuscular disorders (OND) (15 non-immune polyneuropathies, 25 myasthenia gravis), 29 with multiple sclerosis (MS) and 54 healthy controls (HC). In contrast to IgG, positive anti-GAAB IgM against at least one ganglioside/SF was found in 17/61 (27.9%) IN compared to 2/40 (5%) in OND, 2/29 MS (6.9%) and 4/54 (7.4%) in HC (p=0.001). There was a statistically higher prevalence of anti-sulfatide (aSF) IgM in IN compared to OND (p=0.008). Further, aGM1 IgM was more prevalent in IN compared to OND and HC (p=0.009) as well as GD1b in IN compared to HC (p<0.04). The prevalence of aGM1 IgM in CIDP was lower compared to in multifocal motor neuropathy (MMN) (12% vs. 60%, p=0.027). Patients showing aSF, aGM1 and aGM2 IgM were younger compared to aGAAb negatives (p<0.05). Patients with aSF IgM positivity presented more frequently typical CIDP and MMN phenotypes (p<0.05, respectively). The aGAAb LIA revealed an elevated frequency of at least one aGAAb IgM in CIDP/MMN patients. Anti-SF, aGM1 and aGM2 IgM were associated with younger age and anti-SF with IN phenotypes.

  9. Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood-brain barrier integrity.

    PubMed

    Murta, Verónica; Farías, María Isabel; Pitossi, Fernando Juan; Ferrari, Carina Cintia

    2015-01-15

    Peripheral circulating cytokines are involved in immune to brain communication and systemic inflammation is considered a risk factor for flaring up the symptoms in most neurodegenerative diseases. We induced both central inflammatory demyelinating lesion, and systemic inflammation with an interleukin-1β expressing adenovector. The peripheral pro-inflammatory stimulus aggravated the ongoing central lesion independently of the blood-brain barrier (BBB) integrity. This model allows studying the role of specific molecules and cells (neutrophils) from the innate immune system, in the relationship between central and peripheral communication, and on relapsing episodes of demyelinating lesions, along with the role of BBB integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms.

    PubMed

    Ljubisavljevic, Srdjan; Stojanovic, Ivana; Pavlovic, Dusica; Milojkovic, Maja; Vojinovic, Slobodan; Sokolovic, Dusan; Stevanovic, Ivana

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a well-established cell-mediated autoimmune inflammatory disease of the CNS, which has been used as a model of the human demyelinating disease. EAE is characterized by infiltration of the CNS by lymphocytes and mononuclear cells, microglial and astrocytic hypertrophy, and demyelination which cumulatively contribute to clinical expression of the disease. EAE was induced in female Sprague-Dawley rats, 3 months old (300 g ± 20 g), by immunization with myelin basic protein (MBP) in combination with Complete Freund's adjuvant (CFA). The animals were divided into 7 groups: control, EAE, CFA, EAE + aminoguanidine (AG), AG, EAE + N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the level of nitric oxide (NO(·)) production was determined by measuring nitrite and nitrate concentrations in 10% homogenate of cerebellum and spinal cord. Obtained results showed that the level of NO(·) was significantly increased in all examined tissues of the EAE rats compared to the control and CFA groups. Also, AG and NAC treatment decreased the level of NO(·) in all tissues compared to the EAE group. The level of NO(·) is increased significantly in the spinal cord compared to the cerebellum. The clinical course of the EAE was significantly decreased in the EAE groups treated with AG and NAC during the development of the disease compared to EAE group and its correlates with the NO(·) level in cerebellum and spinal cord. The findings of our work suggest that NO(·) and its derivatives play an important role in multiple sclerosis (MS). It may be the best target for new therapies in human demyelinating disease and recommend the new therapeutic approaches based on a decreased level of NO(·) during the course of MS.

  11. Massive nerve root enlargement in chronic inflammatory demyelinating polyneuropathy.

    PubMed Central

    Schady, W; Goulding, P J; Lecky, B R; King, R H; Smith, C M

    1996-01-01

    OBJECTIVE: To report three patients with chronic inflammatory demyelinating polyneuropathy (CIDP) presenting with symptoms suggestive of cervical (one patient) and lumbar root disease. METHODS: Nerve conduction studies, EMG, and nerve biopsy were carried out, having found the nerve roots to be very enlarged on MRI, CT myelography, and at surgery. RESULTS: Clinically, peripheral nerve thickening was slight or absent. Subsequently one patient developed facial nerve hypertrophy. This was mistaken for an inner ear tumour and biopsied, with consequent facial palsy. Neurophysiological tests suggested a demyelinating polyneuropathy. Sural nerve biopsy showed in all cases some loss of myelinated fibres, inflammatory cell infiltration, and a few onion bulbs. Hypertrophic changes were much more prominent on posterior nerve root biopsy in one patient: many fibres were surrounded by several layers of Schwann cell cytoplasm. There was an excellent response to steroids in two patients but not in the third (most advanced) patient, who has benefited only marginally from intravenous immunoglobulin therapy. CONCLUSIONS: MRI of the cauda equina may be a useful adjunct in the diagnosis of CIDP. Images PMID:8971116

  12. Mitochondrial Uncoupler Prodrug of 2,4-Dinitrophenol, MP201, Prevents Neuronal Damage and Preserves Vision in Experimental Optic Neuritis

    PubMed Central

    Khan, Reas S.; Geisler, John G.

    2017-01-01

    The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis. PMID:28680531

  13. Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis

    PubMed Central

    Haider, Lukas

    2015-01-01

    Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Different trigger pathologies have been suggested by the primary cytodegenerative “inside-out” and primary inflammation-driven “outside-in” hypotheses. Recent data indicate that mitochondrial injury and subsequent energy failure are key factors in the induction of demyelination and neurodegeneration. The brain weighs only a few percent of the body mass but accounts for approximately 20% of the total basal oxygen consumption of mitochondria. Oxidative stress induces mitochondrial injury in patients with multiple sclerosis and energy failure in the central nervous system of susceptible individuals. The interconnected mechanisms responsible for free radical production in patients with multiple sclerosis are as follows: (i) inflammation-induced production of free radicals by activated immune cells, (ii) liberation of iron from the myelin sheets during demyelination, and (iii) mitochondrial injury and thus energy failure-related free radical production. In the present review, the different sources of oxidative stress and their relationships to patients with multiple sclerosis considering tissue injury mechanisms and clinical aspects have been discussed. PMID:26106458

  14. Examination of a demyelinated fiber by action-potential-encoded second harmonic generation

    NASA Astrophysics Data System (ADS)

    Chen, Xin-guang; Luo, Zhi-hui; Yang, Hong-qin; Huang, Yi-mei; Xie, Shu-sen

    2012-03-01

    Axonal demyelination is a common phenomenon in the nervous system in human. Conventional measured approaches such as surface recording electrode and diffusion tensor imaging, are hard to fast and accurately determine the demyelinated status of a fiber. In this study, we first presented a mathematical model of nerve fiber demyelination, and it was combined with second harmonic generation(SHG) technique to study the characteristics of action-potential-encoded SHG and analyze the sensitivity of SHG signals responded to membrane potential. And then, we used this approach to fast examine the injured myelin sheaths resulted from demyelination. Each myelin sheath of a fiber was examined simultaneously by this approach. The results showed that fiber demyelination led to observable attenuation of action potential amplitude. The delay of action potential conduction would be markedly observed when the fiber demyelination was more than 80%. Furthermore, the normal and injured myelin sheaths of a myelinated fiber could be distinguished via the changes of SHG signals, which revealed the possibility of SHG technique in the examination of a demyelinated fiber. Our study shows that this approach may have potential application values in clinic.

  15. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    PubMed Central

    Sears-Kraxberger, Ilse; Keirstead, Hans S.

    2013-01-01

    The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS) injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP). Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells. PMID:24319469

  16. Overview and diagnosis of multiple sclerosis.

    PubMed

    Hunter, Samuel F

    2016-06-01

    Multiple sclerosis (MS), a chronic inflammatory disease of unknown etiology, involves an immunemediated attack of the central nervous system (CNS) that produces demyelination and axonal/neuronal damage, resulting in characteristic multifocal lesions apparent on magnetic resonance imaging and a variety of neurologic manifestations. The disease pathology is characterized by multifocal lesions within the CNS, in both the white matter and gray matter, with perivenular inflammatory cell infiltrates, demyelination, axonal transection, neuronal degeneration, and gliosis. MS pathogenesis is complex, as it involves both T- and B-cell mechanisms and is heterogeneous in presentation. Relatively recently, the historical 4 core clinical categories of MS were revised in an effort to improve characterization of the clinical course, better identify where a given patient is positioned in the disease spectrum, and to guide clinical studies. In young and middle-aged adults, MS is one of the most common contributors to neurologic disability, and it exerts detrimental effects on a patient's productivity and health-related quality of life. Typically, patients with MS have a long life span, although healthcare utilization increases over time. As a consequence, the disease places a substantial burden on patients and their caregivers/families, as well as employers, the healthcare system, and society.

  17. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy.

    PubMed

    Cartier, Nathalie; Hacein-Bey-Abina, Salima; Bartholomae, Cynthia C; Bougnères, Pierre; Schmidt, Manfred; Kalle, Christof Von; Fischer, Alain; Cavazzana-Calvo, Marina; Aubourg, Patrick

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a severe genetic demyelinating disease caused by a deficiency in ALD protein, an adenosine triphosphate-binding cassette transporter encoded by the ABCD1 gene. When performed at an early stage of the disease, allogeneic hematopoietic stem cell transplantation (HCT) can arrest the progression of cerebral demyelinating lesions. To overcome the limitations of allogeneic HCT, hematopoietic stem cell (HSC) gene therapy strategy aiming to perform autologous transplantation of lentivirally corrected cells was developed. We demonstrated the preclinical feasibility of HSC gene therapy for ALD based on the correction of CD34+ cells from X-ALD patients using an HIV1-derived lentiviral vector. These results prompted us to initiate an HSC gene therapy trial in two X-ALD patients who had developed progressive cerebral demyelination, were candidates for allogeneic HCT, but had no HLA-matched donors or cord blood. Autologous CD34+ cells were purified from the peripheral blood after G-CSF stimulation, genetically corrected ex vivo with a lentiviral vector encoding wild-type ABCD1 cDNA, and then reinfused into the patients after they had received full myeloablative conditioning. Over 3 years of follow-up, the hematopoiesis remained polyclonal in the two patients treated with 7-14% of granulocytes, monocytes, and T and B lymphocytes expressing the lentivirally encoded ALD protein. There was no evidence of clonal dominance or skewing based on the retrieval of lentiviral insertion repertoire in different hematopoietic lineages by deep sequencing. Cerebral demyelination was arrested 14 and 16months, respectively, in the two treated patients, without further progression up to the last follow-up, a clinical outcome that is comparable to that observed after allogeneic HCT. Longer follow-up of these two treated patients and HSC gene therapy performed in additional ALD patients are however needed to evaluate the safety and efficacy of lentiviral HSC gene therapy in cerebral forms of X-ALD. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The nervous system in genital herpes simplex virus type 2 infections in mice. Lethal panmyelitis or nonlethal demyelinative myelitis or meningitis.

    PubMed

    Martin, J R; Stoner, G L

    1984-11-01

    Female mice were inoculated vaginally with the MS strain of herpes simplex virus type 2, and serially positive vaginal cultures were used to confirm infection. The proportion of mice infected and the mortality rate in infected mice decreased with increasing age. In mice 12 weeks old, clinical, neuropathologic, and virologic criteria defined four patterns of disease. Moribund mice had severe genital lesions, hindleg paralysis, and urinary and fecal retention, and most died during the second week of infection. These mice had a panmyelitis with a decreasing gradient of both viral antigen and lesions extending rostrally from the lumbosacral cord into the brain stem. Lesions were about equally distributed in gray and white matter and were characterized by neuronal loss and axonal demyelination, respectively. By contrast, mice with nonfatal infections had mild or no evident genital lesions and a small proportion had mild hindleg weakness. Of these, some mice had demyelinative lesions, particularly in the lower spinal cord but also at higher cord and brain stem levels, whereas others had leptomeningitis. Both of these groups had sacral sensory root abnormalities. A third group of survivors lacked both sensory root and central nervous system abnormalities. This report defines a broader spectrum of disease patterns following infection by a natural route than has been previously appreciated. It provides the first evidence that nonfatal herpes simplex virus type 2 infection by a peripheral route can produce central nervous system demyelination. It indicates that in aseptic meningitis with this agent, the route of virus spread to the central nervous system is neural and not hematogenous. Finally, the antigenic and pathologic observations presented here complement and confirm the virus isolation data and pathologic findings of others that genital herpes simplex virus type 2 infection causes ascending infection in the peripheral and central nervous system.

  19. Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis

    PubMed Central

    Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420

  20. Wallerian demyelination: chronicle of a cellular cataclysm.

    PubMed

    Tricaud, Nicolas; Park, Hwan Tae

    2017-11-01

    Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.

  1. Disease Modifying Therapy in Multiple Sclerosis

    PubMed Central

    Williams, U. E.; Oparah, S. K.; Philip-Ephraim, E. E.

    2014-01-01

    Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammatory demyelination and axonal degeneration. It is the commonest cause of permanent disability in young adults. Environmental and genetic factors have been suggested in its etiology. Currently available disease modifying drugs are only effective in controlling inflammation but not prevention of neurodegeneration or accumulation of disability. Search for an effective neuroprotective therapy is at the forefront of multiple sclerosis research. PMID:27355035

  2. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8{sup +} T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, B.-S.; Palma, Joann P.; Lyman, Michael A.

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that {beta}{sub 2}M-deficient C57BL/6 mice lacking functional CD8{sup +} T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice ({mu}MT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and thenmore » infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected {mu}MT and control B6 mice, the levels of CD4{sup +} T cells were higher in the CNS of {mu}MT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in {mu}MT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated {mu}MT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8{sup +} T cells.« less

  3. Complete neurologic and cognitive recovery after plasmapheresis in a patient with chronic inflammatory demyelinating polyneuropathy after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Vogl, Ursula; Leitner, Gerda; Dal-Bianco, Assunta; Bojic, Marija; Mitterbauer, Margit; Rabitsch, Werner; Kalhs, Peter; Schulenburg, Axel

    2016-05-01

    Neurologic complications after allogeneic hematopoietic stem cell transplantation (HSCT) are rare but poorly understood. We present a case report of a 57-year-old-male patient who was diagnosed in 2009 with acute myeloid leukemia (AML). He received two standard induction chemotherapies, as well as a following consolidation. Six months later, an allogeneic HSCT was performed. Shortly after HSCT the patient developed progressive polyneuropathy of the lower legs and hypoesthesia. Five months later a severe dementia followed. All images of the brain and spine showed no specific pathologies. High dose corticosteroids and immunoglobulins did not improve the neurologic symptoms. Due to severe worsening of the neuropsychiatric status and the clinical presentation, chronic inflammatory demyelinating polyneuropathy (CIDP) was suspected. Therefore, the patient received ten cycles of plasmapheresis. The patient showed a significant improvement of the neuropsychiatric symptoms and cognitive status. Immune mediated neuropathies after allogeneic HSCT, such as CIDP, have great variability in symptoms and presentation and are challenging to diagnose and treat. Plasmapheresis is a safe and efficient treatment for patients with unclear persisting autoimmune neuropathy after HSCT.

  4. The Syndrome of Delayed Post-Hypoxic Leukoencephalopathy

    PubMed Central

    Shprecher, David; Mehta, Lahar

    2010-01-01

    Delayed post-hypoxic leukoencephalopathy (DPHL) is a demyelinating syndrome characterized by acute onset of neuropsychiatric symptoms days to weeks following apparent recovery from coma after a period of prolonged cerebral hypo-oxygenation. It is diagnosed, after excluding other potential causes of delirium, with a clinical history of carbon monoxide poisoning, narcotic overdose, myocardial infarction, or another global cerebral hypoxic event. The diagnosis can be supported by neuroimaging evidence of diffuse hemispheric demyelination sparing cerebellar and brainstem tracts, or by an elevated cerebrospinal fluid myelin basic protein. Standard or hyperbaric oxygen following CO poisoning may reduce the likelihood of DPHL or other neurologic sequelae. Bed rest and avoidance of stressful procedures for the first 10 days following any prolonged hypoxic event may also lower the risk. Gradual recovery over a 3 to 12 month period is common, but impaired attention or executive function, parkinsonism, or corticospinal tract signs can persist. Stimulants, amantadine or levodopa may be considered for lasting cognitive or parkinsonian symptoms. Anticipation and recognition of DPHL should lead to earlier and more appropriate utilization of health care services. PMID:20166270

  5. Chronic Inflammatory Demyelinating Polyneuropathy

    PubMed Central

    Dimachkie, Mazen M.; Barohn, Richard J.

    2014-01-01

    Opinion statement Chronic Inflammatory polyneuropathies are an important group of neuromuscular disorders that present chronically and progress over more than 8 weeks, being referred to as chronic inflammatory demyelinating polyneuropathy (CIDP). Despite tremendous progress in elucidating disease pathogenesis, the exact triggering event remains unknown. Our knowledge regarding diagnosis and management of CIDP and its variants continues to expand, resulting in improved opportunities for identification and treatment. Most clinical neurologists will be involved in the management of patients with these disorders, and should be familiar with available therapies for CIDP. We review the distinctive clinical, laboratory, and electro-diagnostic features that aid in diagnosis. We emphasize the importance of clinical patterns that define treatment responsiveness and the most appropriate therapies in order to improve prognosis. PMID:23564314

  6. A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity.

    PubMed

    Kassmann, Celia M; Quintes, Susanne; Rietdorf, Jens; Möbius, Wiebke; Sereda, Michael Werner; Nientiedt, Tobias; Saher, Gesine; Baes, Myriam; Nave, Klaus-Armin

    2011-07-21

    Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Multifocal demyelinating motor neuropathy and hamartoma syndrome associated with a de novo PTEN mutation

    PubMed Central

    Bansagi, Boglarka; Phan, Vietxuan; Baker, Mark R.; O'Sullivan, Julia; Jennings, Matthew J.; Whittaker, Roger G.; Müller, Juliane S.; Duff, Jennifer; Griffin, Helen; Miller, James A.L.; Gorman, Grainne S.; Lochmüller, Hanns; Chinnery, Patrick F.; Roos, Andreas; Swan, Laura E.

    2018-01-01

    Objective To describe a patient with a multifocal demyelinating motor neuropathy with onset in childhood and a mutation in phosphatase and tensin homolog (PTEN), a tumor suppressor gene associated with inherited tumor susceptibility conditions, macrocephaly, autism, ataxia, tremor, and epilepsy. Functional implications of this protein have been investigated in Parkinson and Alzheimer diseases. Methods We performed whole-exome sequencing in the patient's genomic DNA validated by Sanger sequencing. Immunoblotting, in vitro enzymatic assay, and label-free shotgun proteomic profiling were performed in the patient's fibroblasts. Results The predominant clinical presentation of the patient was a childhood onset, asymmetric progressive multifocal motor neuropathy. In addition, he presented with macrocephaly, autism spectrum disorder, and skin hamartomas, considered as clinical criteria for PTEN-related hamartoma tumor syndrome. Extensive tumor screening did not detect any malignancies. We detected a novel de novo heterozygous c.269T>C, p.(Phe90Ser) PTEN variant, which was absent in both parents. The pathogenicity of the variant is supported by altered expression of several PTEN-associated proteins involved in tumorigenesis. Moreover, fibroblasts showed a defect in catalytic activity of PTEN against the secondary substrate, phosphatidylinositol 3,4-trisphosphate. In support of our findings, focal hypermyelination leading to peripheral neuropathy has been reported in PTEN-deficient mice. Conclusion We describe a novel phenotype, PTEN-associated multifocal demyelinating motor neuropathy with a skin hamartoma syndrome. A similar mechanism may potentially underlie other forms of Charcot-Marie-Tooth disease with involvement of the phosphatidylinositol pathway. PMID:29720545

  8. Measurement of soluble CD59 in CSF in demyelinating disease: Evidence for an intrathecal source of soluble CD59.

    PubMed

    Zelek, Wioleta M; Watkins, Lewis M; Howell, Owain W; Evans, Rhian; Loveless, Sam; Robertson, Neil P; Beenes, Marijke; Willems, Loek; Brandwijk, Ricardo; Morgan, B Paul

    2018-02-01

    CD59, a broadly expressed glycosylphosphatidylinositol-anchored protein, is the principal cell inhibitor of complement membrane attack on cells. In the demyelinating disorders, multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), elevated complement protein levels, including soluble CD59 (sCD59), were reported in cerebrospinal fluid (CSF). We compared sCD59 levels in CSF and matched plasma in controls and patients with MS, NMOSD and clinically isolated syndrome (CIS) and investigated the source of CSF sCD59 and whether it was microparticle associated. sCD59 was quantified using enzyme-linked immunosorbent assay (ELISA; Hycult; HK374-02). Patient and control CSF was subjected to western blotting to characterise anti-CD59-reactive materials. CD59 was localised by immunostaining and in situ hybridisation. CSF sCD59 levels were double those in plasma (CSF, 30.2 ng/mL; plasma, 16.3 ng/mL). Plasma but not CSF sCD59 levels differentiated MS from NMOSD, MS from CIS and NMOSD/CIS from controls. Elimination of microparticles confirmed that CSF sCD59 was not membrane anchored. CSF levels of sCD59 are not a biomarker of demyelinating diseases. High levels of sCD59 in CSF relative to plasma suggest an intrathecal source; CD59 expression in brain parenchyma was low, but expression was strong on choroid plexus (CP) epithelium, immediately adjacent the CSF, suggesting that this is the likely source.

  9. Amyloid PET in pseudotumoral multiple sclerosis.

    PubMed

    Matías-Guiu, Jordi A; Cabrera-Martín, María Nieves; Cortés-Martínez, Ana; Pytel, Vanesa; Moreno-Ramos, Teresa; Oreja-Guevara, Celia; Carreras, José Luis; Matías-Guiu, Jorge

    2017-07-01

    Pseudotumoral multiple sclerosis is a rare form of demyelinating disease of the central nervous system. Positron emission tomography (PET) using amyloid-tracers has also been suggested as a marker of damage in white matter lesions in multiple sclerosis due to the nonspecific uptake of these tracers in white matter. We present the case of a 59 year-old woman with a pathological-confirmed pseudotumoral multiple sclerosis, who was studied with the amyloid tracer 18 F-florbetaben. The patient had developed word-finding difficulties and right hemianopia twelve years ago. In that time, MRI showed a lesion on the left hemisphere with an infiltrating aspect in frontotemporal lobes. Brain biopsy showed demyelinating areas and inflammation. During the following years, two new clinical relapses occurred. 18 F-florbetaben PET showed lower uptake in the white matter lesion visualized in the CT and MRI images. Decreased tracer uptake was also observed in a larger area of the left hemisphere beyond the lesions observed on MRI or CT. White matter lesion volume on FLAIR was 44.2mL, and tracer uptake change between damaged white matter and normal appearing white matter was - 40.5%. Standardized uptake value was inferior in the pseudotumoral lesion than in the other white matter lesions. We report the findings of amyloid PET in a patient with pseudotumoral multiple sclerosis. This case provides further evidence on the role of amyloid PET in the assessment of white matter and demyelinating diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype

    PubMed Central

    Mathey, Emily K; Park, Susanna B; Hughes, Richard A C; Pollard, John D; Armati, Patricia J; Barnett, Michael H; Taylor, Bruce V; Dyck, P James B; Kiernan, Matthew C; Lin, Cindy S-Y

    2015-01-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to peripheral nerves, the relative contributions of T cell and autoantibody responses remain largely undefined. In animal models of spontaneous inflammatory neuropathy, T cell responses to defined myelin antigens are responsible. In other human inflammatory neuropathies, there is evidence of antibody responses to Schwann cell, compact myelin or nodal antigens. In this review, the roles of the cellular and humoral immune systems in the pathogenesis of CIDP will be discussed. In time, it is anticipated that delineation of clinical phenotypes and the underlying disease mechanisms might help guide diagnostic and individualised treatment strategies for CIDP. PMID:25677463

  11. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.

    PubMed

    Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M

    2007-08-01

    The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.

  12. Neurofascin-155 IGG4 Neuropathy: Pathophysiological Insights, Spectrum of Clinical Severity and Response To treatment.

    PubMed

    Garg, Nidhi; Park, Susanna B; Yiannikas, Con; Vucic, Steve; Howells, James; Noto, Yu-Ichi; Mathey, Emily K; Pollard, John D; Kiernan, Matthew C

    2018-05-01

    Sensorimotor neuropathy associated with IgG4 antibodies to neurofascin-155 (NF155) was recently described. The clinical phenotype is typically associated with young onset, distal weakness, and in some cases, tremor. From a consecutive cohort of 55 patients diagnosed with chronic inflammatory demyelinating polyneuropathy, screening for anti-NF155 antibodies was undertaken. Patients underwent clinical assessment, diagnostic neurophysiology, including peripheral axonal excitability studies and nerve ultrasound. Three of 55 chronic inflammatory demyelinating polyneuropathy patients (5%) tested positive for anti-NF155 IgG4. Patients presenting with more severe disease had higher antibody titers. Ultrasound demonstrated diffuse nerve enlargement. Axonal excitability studies were markedly abnormal, with subsequent mathematical modeling of the results supporting disruption of the paranodal seal. A broad spectrum of disease severity and treatment response may be observed in anti-NF155 neuropathy. Excitability studies support the pathogenic role of anti-NF155 IgG4 antibodies targeting the paranodal region. Muscle Nerve 57: 848-851, 2018. © 2017 Wiley Periodicals, Inc.

  13. Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis.

    PubMed

    Houdebine, Léo; Gallelli, Cristina Anna; Rastelli, Marialetizia; Sampathkumar, Nirmal Kumar; Grenier, Julien

    2017-10-01

    Multiple sclerosis (MS) is a central nervous demyelinating disease characterized by cyclic loss and repair of myelin sheaths associated with chronic inflammation and neuronal loss. This degenerative pathology is accompanied by modified levels of oxysterols (oxidative derivatives of cholesterol, implicated in cholesterol metabolism), highlighted in the brain, blood and cerebrospinal fluid of MS patients. The pathological accumulation of such derivatives is thought to participate in the onset and progression of the disease through their implication in inflammation, oxidative stress, demyelination and neurodegeneration. In this context, physical exercise is envisaged as a complementary resource to ameliorate therapeutic strategies. Indeed, physical activity exerts beneficial effects on neuronal plasticity, decreases inflammation and oxidative stress and improves blood-brain integrity in extents that could be beneficial for brain health. The present review attempts to summarize the available data on the positive effect of physical exercise to highlight possible links between physical activity and modulation of cholesterol/oxysterol homeostasis in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

    PubMed

    Lee, Dhong Hyun; Zandian, Mandana; Kuo, Jane; Mott, Kevin R; Chen, Shuang; Arditi, Moshe; Ghiasi, Homayon

    2017-05-01

    We have established two mouse models of central nervous system (CNS) demyelination that differ from most other available models of multiple sclerosis (MS) in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2) causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT) HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

  15. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice

    PubMed Central

    Lee, Dhong Hyun; Zandian, Mandana; Mott, Kevin R.; Chen, Shuang

    2017-01-01

    We have established two mouse models of central nervous system (CNS) demyelination that differ from most other available models of multiple sclerosis (MS) in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2) causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT) HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice. PMID:28542613

  16. Acute Disseminated Encephalomyelitis: A Gray Distinction.

    PubMed

    Abu Libdeh, Amal; Goodkin, Howard P; Ramirez-Montealegre, Denia; Brenton, J Nicholas

    2017-03-01

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated, inflammatory acquired demyelinating syndrome predominantly affecting the white matter of the central nervous system. We describe a three-year-old boy whose clinical presentation was suspicious for ADEM but whose initial imaging abnormalities were confined to the deep gray matter (without evidence of white matter involvement). His clinical course was fluctuating and repeat imaging one week after presentation demonstrated interval development of characteristic white matter lesions. Treatment with adjunctive intravenous immunoglobulin and high-dose corticosteroids resulted in significant clinical improvement. Isolated deep gray matter involvement can precede the appearance of white matter abnormalities of ADEM, suggesting that repeat imaging is indicated in individuals whose findings are clinically suspicious for ADEM but who lack characteristic imaging findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Simultaneous presentation of acute disseminated encephalomyelitis (ADEM) and systemic lupus erythematosus (SLE) after enteroviral infection: can ADEM present as the first manifestation of SLE?

    PubMed

    Kim, J-M; Son, C-N; Chang, H W; Kim, S-H

    2015-05-01

    Central Nervous System (CNS) involvement of Systemic Lupus Erythematosus (SLE) includes a broad range of neuropsychiatric syndromes. Acute Disseminated Encephalomyelitis (ADEM) is a demyelinating CNS disorder characterized by encephalopathy and multifocal lesions predominantly involving the white matter on brain magnetic resonance imaging. ADEM associated with SLE has been only rarely reported. We report an unusual case of a 17-year-old girl who developed ADEM after enteroviral infection as the first manifestation of SLE. The authors emphasize that the patient's illness was preceded by enteroviral infection and that ADEM occurred before any other symptoms of SLE, which makes this case unique. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Central pontine myelinolysis: a rare presentation secondary to hyperglycaemia.

    PubMed

    Saini, Monica; Mamauag, Marlie Jane; Singh, Rajinder

    2015-04-01

    Central pontine myelinolysis (CPM) is classically described as a demyelinating condition that results from the rapid correction of hyponatraemia. CPM has also been reported to arise from hyperglycaemia in association with concomitant acidosis, hypernatraemia and hyperosmolar syndrome. Herein, we report a rare presentation of CPM, which was purely secondary to hyperosmolar hyperglycaemia. The patient presented with ataxia and pseudobulbar affect, which evolved subacutely over a duration of two weeks. It is important to note that, in addition to acute changes in osmolality, a subacute shift secondary to hyperglycaemia may also lead to CPM.

  19. Spinal MRI Findings of Guillain-Barré Syndrome

    PubMed Central

    Alkan, Ozlem; Yildirim, Tulin; Tokmak, Naime; Tan, Meliha

    2009-01-01

    Guillain-Barré syndrome is a relatively common, acute, and rapidly progressive, inflammatory demyelinating polyneuropathy. The diagnosis is usually established on the basis of symptoms and signs, aided by cerebrospinal fluid findings and electrophysiologic criteria. Previously, radiologic examinations have been used only to rule out other spinal abnormalities. We report a case of systemic lupus erythematosus associated with Guillain-Barré syndrome with marked enhancement of nerve roots of the conus medullaris and cauda equina on MR imaging. These MR observations may help confirm the diagnosis of Guillain-Barré syndrome. PMID:22470650

  20. Guillain-Barré syndrome: 100 years on.

    PubMed

    Créange, A

    2016-12-01

    The Guillain-Barré syndrome is associated with acute polyradiculoneuritis for almost one century. Its spectrum has considerably been enlarged since its first description. It now includes pure motor or sensory syndromes, focal forms, demyelinating and axonal neurophysiological features that characterise excitability dysfunctions, and immunological differentiations. We can hope that this improved classification will facilitate development of treatment innovations for a condition that is still a life-threatening condition with a severe functional prognosis in a significant proportion of cases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord.

    PubMed

    Keirstead, H S; Levine, J M; Blakemore, W F

    1998-02-01

    Elucidation of the response of oligodendrocyte progenitor cell populations to demyelination in the adult central nervous system (CNS) is critical to understanding why remyelination fails in multiple sclerosis. Using the anti-NG2 monoclonal antibody to identify oligodendrocyte progenitor cells, we have documented their response to antibody-induced demyelination in the dorsal column of the adult rat spinal cord. The number of NG2+ cells in the vicinity of demyelinated lesions increased by 72% over the course of 3 days following the onset of demyelination. This increase in NG2+ cell numbers did not reflect a nonspecific staining of reactive cells, as GFAP, OX-42, and Rip antibodies did not co-localise with NG2 + cells in double immunostained tissue sections. NG2 + cells incorporated BrdU 48-72 h following the onset of demyelination. After the onset of remyelination (10-14 days), the number of NG2+ cells decreased to 46% of control levels and remained consistently low for 2 months. When spinal cords were exposed to 40 Grays of x-irradiation prior to demyelination, the number of NG2+ cells decreased to 48% of control levels by 3 days following the onset of demyelination and remained unchanged at 3 weeks. Since 40 Grays of x-irradiation kills dividing cells, these studies illustrate a responsive and nonresponsive NG2+ cell population following demyelination in the adult spinal cord and suggest that the responsive NG2+ cell population does not renew itself.

  2. Epidemiology and Clinical Features of Guillain-Barre Syndrome in Isfahan, Iran.

    PubMed

    Ansari, Behnaz; Basiri, Keivan; Derakhshan, Yeganeh; Kadkhodaei, Farzaneh; Okhovat, Ali Asghar

    2018-01-01

    Guillain-Barre syndrome (GBS) is an immune-mediated peripheral neuropathy. We compared clinical, laboratory characteristics, and disease course of GBS subtypes in a large group of Iranian patients in Isfahan. We collected data from patients who were admitted to Alzahra referral university Hospital, Isfahan, Iran with a diagnosis of GBS. In this population-based cross-sectional research, characteristic of 388 cases with GBS between 2010 and 2015 were studied. The current study recruited 388 patients with GBS including 241 males (62.1%) and 147 females (37.9%) with a mean age of 42.78 ± 21.34. Patients with polyradiculopathy had the highest mean age of 55.12 ± 20.59 years, whereas the least age was seen in acute motor axonal neuropathy (AMAN) with the mean of 36.30 ± 18.71 years. The frequency of GBS witnessed the highest frequency in spring with 113 cases (29.1%) and winter with 101 cases (26%). Patients' electrodiagnostic findings indicated that the highest frequency pertained to AMSAN with 93 cases (24%), whereas the least frequent diagnosis was acute Polyradiculopathy with 8 cases (2.1%). Most of the patients did not have any infections (53.6%) and among patients with infections, AMSAN had the highest frequency (22.9%) and finally, patients with AMSAN and AMAN had a higher length of stay. The study demonstrated incidence, sex distribution, preceding infection, and surgery similar to previous studies. However, our data differs from a study in Tehran that showed acute inflammatory demyelinating polyradiculoneuropathy is more prevalent than other types and we found a seasonal preponderance in cold months, particularly in axonal types.

  3. A nationwide survey of combined central and peripheral demyelination in Japan.

    PubMed

    Ogata, Hidenori; Matsuse, Dai; Yamasaki, Ryo; Kawamura, Nobutoshi; Matsushita, Takuya; Yonekawa, Tomomi; Hirotani, Makoto; Murai, Hiroyuki; Kira, Jun-ichi

    2016-01-01

    To clarify the clinical features of combined central and peripheral demyelination (CCPD) via a nationwide survey. The following characteristics were used to define CCPD: T2 high-signal intensity lesions in the brain, optic nerves or spinal cord on MRI, or abnormalities on visual-evoked potentials; conduction delay, conduction block, temporal dispersion or F-wave abnormalities suggesting demyelinating neuropathy based on nerve conduction studies; exclusion of secondary demyelination. We conducted a nationwide survey in 2012, sending questionnaires to 1332 adult and paediatric neurology institutions in Japan. We collated 40 CCPD cases, including 29 women. Age at onset was 31.7±14.1 years (mean±SD). Sensory disturbance (94.9%), motor weakness (92.5%) and gait disturbance (79.5%) were common. Although cerebrospinal fluid protein levels were increased in 82.5%, oligoclonal IgG bands and elevated IgG indices were detected in 7.4% and 18.5% of cases, respectively. Fifteen of 21 patients (71.4%) had abnormal visual-evoked potentials. Antineurofascin 155 antibodies were positive in 5/11 (45.5%). Corticosteroids, intravenous immunoglobulins and plasmapheresis resulted in an 83.3%, 66.7% and 87.5% improvement, respectively, whereas interferon-β was effective in only 10% of cases. CCPD cases with simultaneous onset of central nervous system (CNS) and peripheral nervous system (PNS) involvement exhibited greater disability, but less recurrence and more frequent extensive cerebral and spinal cord MRI lesions compared to those with temporarily separated onset, whereas optic nerve involvement was more common in the latter. CCPD shows different characteristics from classical demyelinating diseases, and distinctive features exist between cases with simultaneous and temporarily separated onset of CNS and PNS involvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Enhancing Brain Lesions during Acute Optic Neuritis and/or Longitudinally Extensive Transverse Myelitis May Portend a Higher Relapse Rate in Neuromyelitis Optica Spectrum Disorders.

    PubMed

    Orman, G; Wang, K Y; Pekcevik, Y; Thompson, C B; Mealy, M; Levy, M; Izbudak, I

    2017-05-01

    Neuromyelitis optica spectrum disorders are inflammatory demyelinating disorders with optic neuritis and/or longitudinally extensive transverse myelitis episodes. We now know that neuromyelitis optica spectrum disorders are associated with antibodies to aquaporin-4, which are highly concentrated on astrocytic end-feet at the blood-brain barrier. Immune-mediated disruption of the blood-brain barrier may manifest as contrast enhancement on brain MR imaging. We aimed to delineate the extent and frequency of contrast enhancement on brain MR imaging within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and to correlate contrast enhancement with outcome measures. Brain MRIs of patients with neuromyelitis optica spectrum disorders were evaluated for patterns of contrast enhancement (periependymal, cloudlike, leptomeningeal, and so forth). The Fisher exact test was used to evaluate differences between the proportion of contrast enhancement in patients who were seropositive and seronegative for aquaporin-4 antibodies. The Mann-Whitney test was used to compare the annualized relapse rate and disease duration between patients with and without contrast enhancement and with and without seropositivity. Brain MRIs of 77 patients were evaluated; 59 patients (10 males, 49 females) were scanned within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and were included in the analysis. Forty-eight patients were seropositive, 9 were seronegative, and 2 were not tested for aquaporin-4 antibodies. Having brain contrast enhancement of any type during an acute attack was significantly associated with higher annualized relapse rates ( P = .03) and marginally associated with shorter disease duration ( P = .05). Having periependymal contrast enhancement was significantly associated with higher annualized relapse rates ( P = .03). Brain MRIs of patients with neuromyelitis optica spectrum disorders with contrast enhancement during an acute relapse of optic neuritis and/or longitudinally extensive transverse myelitis are associated with increased annual relapse rates. © 2017 by American Journal of Neuroradiology.

  5. Immunology and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach

    PubMed Central

    Ortiz, Genaro G.; Pacheco-Moisés, Fermín P.; Bitzer-Quintero, Oscar K.; Ramírez-Anguiano, Ana C.; Flores-Alvarado, Luis J.; Ramírez-Ramírez, Viridiana; Macias-Islas, Miguel A.; Torres-Sánchez, Erandis D.

    2013-01-01

    Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites, the presence of multiple lesions, generally being more pronounced in the brain stem and spinal cord, the predominantly perivascular location of lesions, the temporal maturation of lesions from inflammation through demyelination, to gliosis and partial remyelination, and the presence of immunoglobulin in the central nervous system and cerebrospinal fluid. Lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Pro-inflammatory cytokines amplify the inflammatory cascade by compromising the BBB, recruiting immune cells from the periphery, and activating resident microglia. inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in the demyelination and free radical-mediated tissue injury in the pathogenesis of MS. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- and nitrogen-free radicals as well as proinflammatory cytokines which contribute to the development and progression of the disease. Inflammation can lead to oxidative stress and vice versa. Thus, oxidative stress and inflammation are involved in a self-perpetuating cycle. PMID:24174971

  6. Beneficial effects of minocycline on cuprizone induced cortical demyelination.

    PubMed

    Skripuletz, Thomas; Miller, Elvira; Moharregh-Khiabani, Darius; Blank, Alexander; Pul, Refik; Gudi, Viktoria; Trebst, Corinna; Stangel, Martin

    2010-09-01

    In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.

  7. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    PubMed

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  8. Transthyretin amyloid polyneuropathies mimicking a demyelinating polyneuropathy.

    PubMed

    Lozeron, Pierre; Mariani, Louise-Laure; Dodet, Pauline; Beaudonnet, Guillemette; Théaudin, Marie; Adam, Clovis; Arnulf, Bertrand; Adams, David

    2018-06-15

    To clearly define transthyretin familial amyloid polyneuropathies (TTR-FAPs) fulfilling definite clinical and electrophysiologic European Federation of Neurological Societies/Peripheral Nerve Society criteria for chronic inflammatory demyelinating polyneuropathy (CIDP). From a cohort of 194 patients with FAP, 13 of 84 patients (15%) of French ancestry had late-onset demyelinating TTR-FAP. We compared clinical presentation and electrophysiology to a cohort with CIDP and POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, and skin changes) syndrome. We assessed nerve histology and the correlation between motor/sensory amplitudes/velocities. Predictors of demyelinating TTR-FAP were identified from clinical and electrophysiologic data. Pain, dysautonomia, small fiber sensory loss above the wrists, upper limb weakness, and absence of ataxia were predictors of demyelinating TTR-FAP ( p < 0.01). The most frequent demyelinating features were prolonged distal motor latency of the median nerve and reduced sensory conduction velocity of the median and ulnar nerves. Motor axonal loss was severe and frequent in the median, ulnar, and tibial nerves ( p < 0.05) in demyelinating FAP. Ulnar nerve motor amplitude <5.4 mV and sural nerve amplitude <3.95 μV were distinguishing characteristics of demyelinating TTR-FAP. Nerve biopsy showed severe axonal loss and occasional segmental demyelination-remyelination. Misleading features of TTR-FAP fulfilling criteria for CIDP are not uncommon in sporadic late-onset TTR-FAP, which highlights the limits of European Federation of Neurological Societies/Peripheral Nerve Society criteria. Specific clinical aspects and marked electrophysiologic axonal loss are red flag symptoms that should alert to this diagnosis and prompt TTR gene sequencing. © 2018 American Academy of Neurology.

  9. Guillain Barre syndrome: the leading cause of acute flaccid paralysis in Hazara division.

    PubMed

    Anis-ur-Rehman; Idris, Muhammad; Elahi, Manzoor; Jamshed; Arif, Adeel

    2007-01-01

    Acute flaccid paralysis (AFP) can be caused by a number of conditions. A common preventable cause is poliomyelitis which is still being reported in Pakistan, Guillain Barre Syndrome (GBS), also known as Acute Inflammatory Demyelinating Polyneuropathy, is another common cause of acute flaccid paralysis. It is important to recognize GBS in childhood as parents consider all acute flaccid paralysis to be due to poliomyelitis. The present study was designed to know the frequency of different causes of acute flaccid paralysis in Hazara division. This is a retrospective analysis of cases of acute flaccid paralysis reported from various districts of Hazara division during the period January 2003 to December 2004. Acute flaccid paralysis was diagnosed clinically through history and clinical examination. The underlying cause of acute flaccid paralysis was investigated by appropriate laboratory tests, such as serum electrolytes, cerebrospinal fluid analysis, electromyogram, nerve conduction study and stool culture for polio virus and other enteroviruses. Diagnosis of Poliomyelitis was confirmed by stool testing for poliovirus. 74 patients presented with AFP during the study period. 36 were male and 38 were female. Guillain Barre syndrome and enteroviral encephalopathy were the two leading causes of acute flaccid paralysis. Majority of the cases were reported from Mansehra district. Children of age groups 12 to 24 months and > 96 months constituted the majority (20% each). Guillian Barre syndrome was the leading cause of acute flaccid paralysis reported from various parts of Hazara division.

  10. Pattern Recognition of the Multiple Sclerosis Syndrome

    PubMed Central

    Stewart, Renee; Healey, Kathleen M.

    2017-01-01

    During recent decades, the autoimmune disease neuromyelitis optica spectrum disorder (NMOSD), once broadly classified under the umbrella of multiple sclerosis (MS), has been extended to include autoimmune inflammatory conditions of the central nervous system (CNS), which are now diagnosable with serum serological tests. These antibody-mediated inflammatory diseases of the CNS share a clinical presentation to MS. A number of practical learning points emerge in this review, which is geared toward the pattern recognition of optic neuritis, transverse myelitis, brainstem/cerebellar and hemispheric tumefactive demyelinating lesion (TDL)-associated MS, aquaporin-4-antibody and myelin oligodendrocyte glycoprotein (MOG)-antibody NMOSD, overlap syndrome, and some yet-to-be-defined/classified demyelinating disease, all unspecifically labeled under MS syndrome. The goal of this review is to increase clinicians’ awareness of the clinical nuances of the autoimmune conditions for MS and NMSOD, and to highlight highly suggestive patterns of clinical, paraclinical or imaging presentations in order to improve differentiation. With overlay in clinical manifestations between MS and NMOSD, magnetic resonance imaging (MRI) of the brain, orbits and spinal cord, serology, and most importantly, high index of suspicion based on pattern recognition, will help lead to the final diagnosis. PMID:29064441

  11. Childhood Multiple Sclerosis: A Review

    ERIC Educational Resources Information Center

    Waldman, Amy; O'Connor, Erin; Tennekoon, Gihan

    2006-01-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) that is increasingly recognized as a disease that affects children. Similar to adult-onset MS, children present with visual and sensory complaints, as well as weakness, spasticity, and ataxia. A lumbar puncture can be helpful in diagnosing MS when…

  12. Astrocytic Adrenoceptors: A Major Drug Target in Neurological and Psychiatric Disorders

    DTIC Science & Technology

    2004-01-01

    phosphorylation was found mainly in microvessels and astrocytes.. B. Dysfunction 1. Multiple Sclerosis, Canine Distemper and EAE In order to initiate the...astrocytes is seen in canine distemper encephalitis, a demyelinating disease in dogs that closely resembles multiple sclerosis and is caused by a virus

  13. Therapeutic plasma exchange in the treatment of neuroimmunologic disorders: review of 50 cases.

    PubMed

    Yücesan, Canan; Arslan, Onder; Arat, Mutlu; Yücemen, Nezih; Ayyildiz, Erol; Ilhan, Osman; Mutluer, Nermin

    2007-02-01

    Therapeutic plasma exchange (TPE) has been used for the treatment of neurologic diseases in which autoimmunity plays a major role. We reviewed the medical records of our patients who had consecutively been treated by TPE between January 1998 and June 2000. Neurological indications included myasthenia gravis (30 patients), multiple sclerosis attack (6 patients with remitting-relapsing course and 3 patients with secondary progressive course), Guillain-Barrè syndrome (6 patients), paraproteinemic neuropathy (2 patients), and chronic inflammatory demyelinating neuropathy (CIDP), transverse myelitis due to systemic lupus erythematosus, acute disseminated encephalomyelitis in one patient each. Continuous flow cell separators were used for TPE. TPE was generally given every other day for all of the patients and one plasma volume was exchanged for each cycle. Although the patients with secondary progressive multiple sclerosis (3 patients) and paraproteinemic neuropathy (2 patients) did not show any improvement after TPE, other patients' targeted neurological deficits were improved by TPE. During the TPE procedures, no patient had any morbidity or mortality, and the complications were mild and manageable such as hypotension, hypocalcemia and mild anemia; three patients had septicemia due to the venous catheter used for TPE. TPE is an effective treatment in neurologic diseases in which autoimmunity plays an important role in pathogenesis, and it is safe when performed in experienced centers.

  14. Finger drop sign-Characteristic pattern of distal weakness in Guillain-Barré Syndrome: A case report and review of the literature.

    PubMed

    Chee, Yong Chuan; Ong, Beng Hooi

    2018-01-01

    Guillain-Barré Syndrome is an acquired acute autoimmune polyradiculoneuropathy that commonly presents with limb weakness and occasional cranial nerve, respiratory and autonomic involvement. Although the classic description of Guillain-Barré Syndrome is that of a demyelinating neuropathy with ascending weakness, predominant bilateral finger drop as presenting feature has rarely been reported. A characteristic pattern of weakness involving the extensor components of the fingers known as "finger drop sign" has been first described to be specific in acute motor axonal neuropathy form of Guillain-Barré Syndrome in the literature. We report a case of acute motor-sensory axonal neuropathy, which showed characteristic pattern of predominant finger extensor weakness, and provide a summary of all reported cases to date. While previous reports suggested that this is a sign that carries good prognosis, our case report suggested otherwise as the patient succumbed to respiratory and autonomic complications. Further studies are needed to evaluate the clinical significance of this peculiar sign.

  15. Disease activity in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Albulaihe, Hana; Alabdali, Majed; Alsulaiman, Abdulla; Abraham, Alon; Breiner, Ari; Barnett, Carolina; Katzberg, Hans D; Lovblom, Leif E; Perkins, Bruce A; Bril, Vera

    2016-10-15

    Evaluation of disease status in patients with chronic inflammatory demyelinating polyneuropathy (CIDP) is often done by a combination of clinical evaluation and electrodiagnostic studies. A CIDP disease activity status (CDAS) was developed to standardize outcomes in CIDP patients. We aimed to determine if the CDAS was concordant with classical evaluation and whether CDAS enables benchmarking of CIDP. We performed a retrospective chart review of 305 CIDP patients and identified 206 patients with >1 visit and applied the CDAS to this cohort. We examined relationships between the CDAS and classical evaluation as to outcomes and compared our cohort to other CIDP cohorts who had CDAS. We found that the CDAS mirrored disease severity as measured by electrophysiology and vibration perception thresholds in that CDAS class 5 had more severe neuropathy. Our results are similar to other cohorts in the middle CDAS strata with the exception of fewer subjects in CDAS 1 and more in CDAS 5. The only demographic factor predicting CDAS 5 in our cohort was age, and the overall treatment response rate using the CDAS classification was 79.3%. CDAS appears to have sufficient face-validity as a grading system to assess disease activity in relation to treatment status. The use of CDAS appears to allow benchmarking of patients with CIDP that may be useful in subject selection for clinical trials and also to highlight differences in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Diabetes insipidus as a rare cause of acute cognitive impairment in multiple sclerosis.

    PubMed

    Tiedje, V; Schlamann, M; Führer, D; Moeller, L C

    2013-10-01

    Multiple sclerosis (MS) is a complex neurodegenerative disease presenting with a diversity of clinical symptoms including palsy and cognitive impairment. We present a 59-year-old woman with a history of secondary progressive MS since 1987, who was referred to our department because of recent onset of confusion and polydipsia. Initial lab tests showed mildly elevated serum sodium levels and low urine osmolality. Under water deprivation, diuresis and low urine osmolality persisted and serum sodium levels rose above 150 mmol/l. Oral desmopressin resulted in normalisation of serum sodium as well as urine osmolarity, confirming a diagnosis of central diabetes insipidus. As drug-induced diabetes could be excluded, pituitary magnetic resonance imaging (MRI) was performed. A demyelinating lesion was detected in the hypothalamus. The patient was started on oral desmopressin treatment (0.2 mg/day). Fluid intake and serum sodium levels have since remained normal. In summary, we report the rare case of a patient presenting with diabetes insipidus due to progressive MS. Diabetes insipidus should be considered in MS patients who develop new onset of polydipsia.

  17. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes.

    PubMed

    Bramlett, Helen M; Dietrich, W Dalton

    2015-12-01

    Traumatic brain injury (TBI) is a significant clinical problem with few therapeutic interventions successfully translated to the clinic. Increased importance on the progressive, long-term consequences of TBI have been emphasized, both in the experimental and clinical literature. Thus, there is a need for a better understanding of the chronic consequences of TBI, with the ultimate goal of developing novel therapeutic interventions to treat the devastating consequences of brain injury. In models of mild, moderate, and severe TBI, histopathological and behavioral studies have emphasized the progressive nature of the initial traumatic insult and the involvement of multiple pathophysiological mechanisms, including sustained injury cascades leading to prolonged motor and cognitive deficits. Recently, the increased incidence in age-dependent neurodegenerative diseases in this patient population has also been emphasized. Pathomechanisms felt to be active in the acute and long-term consequences of TBI include excitotoxicity, apoptosis, inflammatory events, seizures, demyelination, white matter pathology, as well as decreased neurogenesis. The current article will review many of these pathophysiological mechanisms that may be important targets for limiting the chronic consequences of TBI.

  19. Oligodendrocyte Regeneration and CNS Remyelination Require TACE/ADAM17.

    PubMed

    Palazuelos, Javier; Klingener, Michael; Raines, Elaine W; Crawford, Howard C; Aguirre, Adan

    2015-09-02

    The identification of the molecular network that supports oligodendrocyte (OL) regeneration under demyelinating conditions has been a primary goal for regenerative medicine in demyelinating disorders. We recently described an essential function for TACE/ADAM17 in regulating oligodendrogenesis during postnatal myelination, but it is unknown whether this protein also plays a role in OL regeneration and remyelination under demyelinating conditions. By using genetic mouse models to achieve selective gain- or loss-of-function of TACE or EGFR in OL lineage cells in vivo, we found that TACE is critical for EGFR activation in OLs following demyelination, and therefore, for sustaining OL regeneration and CNS remyelination. TACE deficiency in oligodendrocyte progenitor cells following demyelination disturbs OL lineage cell expansion and survival, leading to a delay in the remyelination process. EGFR overexpression in TACE deficient OLs in vivo restores OL development and postnatal CNS myelination, but also OL regeneration and CNS remyelination following demyelination. Our study reveals an essential function of TACE in supporting OL regeneration and CNS remyelination that may contribute to the design of new strategies for therapeutic intervention in demyelinating disorders by promoting oligodendrocyte regeneration and myelin repair. Oligodendrocyte (OL) regeneration has emerged as a promising new approach for the treatment of demyelinating disorders. By using genetic mouse models to selectively delete TACE expression in oligodendrocyte progenitors cells (OPs), we found that TACE/ADAM17 is required for supporting OL regeneration following demyelination. TACE genetic depletion in OPs abrogates EGFR activation in OL lineage cells, and perturbs cell expansion and survival, blunting the process of CNS remyelination. Moreover, EGFR overexpression in TACE-deficient OPs in vivo overcomes the defects in OL development during postnatal development but also OL regeneration during CNS remyelination. Our study identifies TACE as an essential player in OL regeneration that may provide new insights in the development of new strategies for promoting myelin repair in demyelinating disorders. Copyright © 2015 the authors 0270-6474/15/3512241-07$15.00/0.

  20. Multifocal demyelinating motor neuropathy and hamartoma syndrome associated with a de novo PTEN mutation.

    PubMed

    Bansagi, Boglarka; Phan, Vietxuan; Baker, Mark R; O'Sullivan, Julia; Jennings, Matthew J; Whittaker, Roger G; Müller, Juliane S; Duff, Jennifer; Griffin, Helen; Miller, James A L; Gorman, Grainne S; Lochmüller, Hanns; Chinnery, Patrick F; Roos, Andreas; Swan, Laura E; Horvath, Rita

    2018-05-22

    To describe a patient with a multifocal demyelinating motor neuropathy with onset in childhood and a mutation in phosphatase and tensin homolog ( PTEN ), a tumor suppressor gene associated with inherited tumor susceptibility conditions, macrocephaly, autism, ataxia, tremor, and epilepsy. Functional implications of this protein have been investigated in Parkinson and Alzheimer diseases. We performed whole-exome sequencing in the patient's genomic DNA validated by Sanger sequencing. Immunoblotting, in vitro enzymatic assay, and label-free shotgun proteomic profiling were performed in the patient's fibroblasts. The predominant clinical presentation of the patient was a childhood onset, asymmetric progressive multifocal motor neuropathy. In addition, he presented with macrocephaly, autism spectrum disorder, and skin hamartomas, considered as clinical criteria for PTEN-related hamartoma tumor syndrome. Extensive tumor screening did not detect any malignancies. We detected a novel de novo heterozygous c.269T>C, p.(Phe90Ser) PTEN variant, which was absent in both parents. The pathogenicity of the variant is supported by altered expression of several PTEN-associated proteins involved in tumorigenesis. Moreover, fibroblasts showed a defect in catalytic activity of PTEN against the secondary substrate, phosphatidylinositol 3,4-trisphosphate. In support of our findings, focal hypermyelination leading to peripheral neuropathy has been reported in PTEN-deficient mice. We describe a novel phenotype, PTEN-associated multifocal demyelinating motor neuropathy with a skin hamartoma syndrome. A similar mechanism may potentially underlie other forms of Charcot-Marie-Tooth disease with involvement of the phosphatidylinositol pathway. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  1. Is Multiple Sclerosis an Autoimmune Disease?

    PubMed Central

    Wootla, Bharath; Eriguchi, Makoto; Rodriguez, Moses

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with varied clinical presentations and heterogeneous histopathological features. The underlying immunological abnormalities in MS lead to various neurological and autoimmune manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease. There is less evidence that MS is a classical autoimmune disease, even though many authors state this in the description of the disease. We show the evidence that both supports and refutes the autoimmune hypothesis. In addition, we present an alternate hypothesis based on virus infection to explain the pathogenesis of MS. PMID:22666554

  2. Desert hedgehog is a mediator of demyelination in compression neuropathies.

    PubMed

    Jung, James; Frump, Derek; Su, Jared; Wang, Weiping; Mozaffar, Tahseen; Gupta, Ranjan

    2015-09-01

    The secreted protein desert hedgehog (dhh) controls the formation of the nerve perineurium during development and is a key component of Schwann cells that ensures peripheral nerve survival. We postulated that dhh may play a critical role in maintaining myelination and investigated its role in demyelination-induced compression neuropathies by using a post-natal model of a chronic nerve injury in wildtype and dhh(-/-) mice. We evaluated demyelination using electrophysiological, morphological, and molecular approaches. dhh transcripts and protein are down-regulated early after injury in wild-type mice, suggesting an intimate relationship between the hedgehog pathway and demyelination. In dhh(-/-) mice, nerve injury induced more prominent and severe demyelination relative to their wild-type counterparts, suggesting a protective role of dhh. Alterations in nerve fiber characteristics included significant decreases in nerve conduction velocity, increased myelin debris, and substantial decreases in internodal length. Furthermore, in vitro studies showed that dhh blockade via either adenovirus-mediated (shRNA) or pharmacological inhibition both resulted in severe demyelination, which could be rescued by exogenous Dhh. Exogenous Dhh was protective against this demyelination and maintained myelination at baseline levels in a custom in vitro bioreactor to applied biophysical forces to myelinated DRG/Schwann cell co-cultures. Together, these results demonstrate a pivotal role for dhh in maintaining myelination. Furthermore, dhh signaling reveals a potential target for therapeutic intervention to prevent and treat demyelination of peripheral nerves in compression neuropathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Asymmetric type F botulism with cranial nerve demyelination.

    PubMed

    Filozov, Alina; Kattan, Jessica A; Jitendranath, Lavanya; Smith, C Gregory; Lúquez, Carolina; Phan, Quyen N; Fagan, Ryan P

    2012-01-01

    We report a case of type F botulism in a patient with bilateral but asymmetric neurologic deficits. Cranial nerve demyelination was found during autopsy. Bilateral, asymmetric clinical signs, although rare, do not rule out botulism. Demyelination of cranial nerves might be underrecognized during autopsy of botulism patients.

  4. Guillain-Barré Syndrome.

    PubMed

    Wijdicks, Eelco F M; Klein, Christopher J

    2017-03-01

    Guillain-Barré syndrome is an acute inflammatory immune-mediated polyradiculoneuropathy presenting typically with tingling, progressive weakness, and pain. Variants and formes frustes may complicate recognition. The best known variant is the sensory ataxic form of Miller Fisher syndrome, which also affects the oculomotor nerves and the brain stem. Divergent pathologic mechanisms lead to demyelinating, axonal, or mixed demyelinating-axonal damage. In the demyelinating form, yet to be identified antigens are inferred by complement activation, myelin destruction, and macrophage-activated cleanup. In the axonal and Miller Fisher variants, gangliosides (GM1, GD1a, GQ1b) are targeted by immunoglobulins and share antigenic epitopes with some bacterial and viral antigens. Campylobacter jejuni infection is associated with an axonal-onset variant; affected patients commonly experience more rapid deterioration. Many other antecedent infectious agents have been recognized including the most recently identified, Zika virus. Supportive care remains the mainstay of therapy. Plasma exchange or intravenous immunoglobin hastens recovery. Combination immunotherapy is not more effective, and the efficacy of prolonged immunotherapy is unproven. One in 3 patients will have deterioration severe enough to require prolonged intensive care monitoring or mechanical ventilation. Full recovery is often seen; most patients regain ambulation, even in severe cases, but disability remains in up to 10% and perhaps more. Numerous challenges remain including early identification and control of infectious triggers, improved access of modern neurointensive care worldwide, and translating our understanding of pathogenesis into meaningful preventive or assistive therapies. This review provides a historical perspective at the centenary of the first description of the syndrome, insights into its pathogenesis, triage, initial immunotherapy, and management in the intensive care unit. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  5. Visual Hallucinations and Pontine Demyelination in a Child: Possible REM Dissociation?

    PubMed Central

    Vita, Maria Gabriella; Batocchi, Anna Paola; Dittoni, Serena; Losurdo, Anna; Cianfoni, Alessandro; Stefanini, Maria Chiara; Vollono, Catello; Marca, Giacomo Della; Mariotti, Paolo

    2008-01-01

    An 11 year-old-boy acutely developed complex visual and acoustic hallucinations. Hallucinations, consisting of visions of a threatening, evil character of the Harry Potter saga, persisted for 3 days. Neurological and psychiatric examinations were normal. Ictal EEG was negative. MRI documented 3 small areas of hyperintense signal in the brainstem, along the paramedian and lateral portions of pontine tegmentum, one of which showed post-contrast enhancement. These lesions were likely of inflammatory origin, and treatment with immunoglobulins was started. Polysomnography was normal, multiple sleep latency test showed a mean sleep latency of 8 minutes, with one sleep-onset REM period. The pontine tegmentum is responsible for REM sleep regulation, and contains definite “REM-on” and “REM-off” regions. The anatomical distribution of the lesions permits us to hypothesize that hallucinations in this boy were consequent to a transient impairment of REM sleep inhibitory mechanisms, with the appearance of dream-like hallucinations during wake. Citation: Vita MG; Batocchi AP; Dittoni S; Losurdo A; Cianfoni A; Stefanini MC; Vollono C; Della Marca G; Mariotti P. Visual hallucinations and pontine demyelination in a child: possible REM dissociation? J Clin Sleep Med 2008;4(6):588–590. PMID:19110890

  6. Pemetrexed-Induced Nephrogenic Diabetes Insipidus

    PubMed Central

    Fung, Enrica; Anand, Shuchi; Bhalla, Vivek

    2016-01-01

    Pemetrexed is an approved anti-metabolite agent, now widely used for treating locally advanced or metastatic non-squamous, non–small cell lung cancer. Although no electrolyte abnormalities are described in the prescribing information for this drug, several case reports have noted nephrogenic diabetes insipidus with associated acute kidney injury. We present a case of nephrogenic diabetes insipidus without severely reduced kidney function and propose a mechanism for the isolated finding. Severe hypernatremia can lead to encephalopathy and osmotic demyelination, and our report highlights the importance of careful monitoring of electrolytes and kidney function in patients with lung cancer receiving pemetrexed. PMID:27241854

  7. Central pontine myelinolysis: a rare presentation secondary to hyperglycaemia

    PubMed Central

    Saini, Monica; Mamauag, Marlie Jane; Singh, Rajinder

    2015-01-01

    Central pontine myelinolysis (CPM) is classically described as a demyelinating condition that results from the rapid correction of hyponatraemia. CPM has also been reported to arise from hyperglycaemia in association with concomitant acidosis, hypernatraemia and hyperosmolar syndrome. Herein, we report a rare presentation of CPM, which was purely secondary to hyperosmolar hyperglycaemia. The patient presented with ataxia and pseudobulbar affect, which evolved subacutely over a duration of two weeks. It is important to note that, in addition to acute changes in osmolality, a subacute shift secondary to hyperglycaemia may also lead to CPM. PMID:25917480

  8. Central nervous system remyelination in culture--a tool for multiple sclerosis research.

    PubMed

    Zhang, Hui; Jarjour, Andrew A; Boyd, Amanda; Williams, Anna

    2011-07-01

    Multiple sclerosis is a demyelinating disease of the central nervous system which only affects humans. This makes it difficult to study at a molecular level, and to develop and test potential therapies that may change the course of the disease. The development of therapies to promote remyelination in multiple sclerosis is a key research aim, to both aid restoration of electrical impulse conduction in nerves and provide neuroprotection, reducing disability in patients. Testing a remyelination therapy in the many and various in vivo models of multiple sclerosis is expensive in terms of time, animals and money. We report the development and characterisation of an ex vivo slice culture system using mouse brain and spinal cord, allowing investigation of myelination, demyelination and remyelination, which can be used as an initial reliable screen to select the most promising remyelination strategies. We have automated the quantification of myelin to provide a high content and moderately-high-throughput screen for testing therapies for remyelination both by endogenous and exogenous means and as an invaluable way of studying the biology of remyelination. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Central nervous system remyelination in culture — A tool for multiple sclerosis research

    PubMed Central

    Zhang, Hui; Jarjour, Andrew A.; Boyd, Amanda; Williams, Anna

    2011-01-01

    Multiple sclerosis is a demyelinating disease of the central nervous system which only affects humans. This makes it difficult to study at a molecular level, and to develop and test potential therapies that may change the course of the disease. The development of therapies to promote remyelination in multiple sclerosis is a key research aim, to both aid restoration of electrical impulse conduction in nerves and provide neuroprotection, reducing disability in patients. Testing a remyelination therapy in the many and various in vivo models of multiple sclerosis is expensive in terms of time, animals and money. We report the development and characterisation of an ex vivo slice culture system using mouse brain and spinal cord, allowing investigation of myelination, demyelination and remyelination, which can be used as an initial reliable screen to select the most promising remyelination strategies. We have automated the quantification of myelin to provide a high content and moderately-high-throughput screen for testing therapies for remyelination both by endogenous and exogenous means and as an invaluable way of studying the biology of remyelination. PMID:21515259

  10. Toll-like Receptor 2: A Novel Therapeutic Target for Ischemic White Matter Injury and Oligodendrocyte Death

    PubMed Central

    Choi, Jun Young

    2017-01-01

    Despite paramount clinical significance of white matter stroke, there is a paucity of researches on the pathomechanism of ischemic white matter damage and accompanying oligodendrocyte (OL) death. Therefore, a large gap exists between clinical needs and laboratory researches in this disease entity. Recent works have started to elucidate cellular and molecular basis of white matter injury under ischemic stress. In this paper, we briefly introduce white matter stroke from a clinical point of view and review pathophysiology of ischemic white matter injury characterized by OL death and demyelination. We present a series of evidence that Toll-like receptor 2 (TLR2), one of the membranous pattern recognition receptors, plays a cell-autonomous protective role in ischemic OL death and ensuing demyelination. Moreover, we also discuss our recent findings that its endogenous ligand, high-mobility group box 1 (HMGB1), is released from dying OLs and exerts autocrine trophic effects on OLs and myelin sheath under ischemic condition. We propose that modulation of TLR2 and its endogenous ligand HMGB1 can be a novel therapeutic target for ischemic white matter disease. PMID:28912641

  11. Asymmetric Type F Botulism with Cranial Nerve Demyelination

    PubMed Central

    Kattan, Jessica A.; Jitendranath, Lavanya; Smith, C. Gregory; Lúquez, Carolina; Phan, Quyen N.; Fagan, Ryan P.

    2012-01-01

    We report a case of type F botulism in a patient with bilateral but asymmetric neurologic deficits. Cranial nerve demyelination was found during autopsy. Bilateral, asymmetric clinical signs, although rare, do not rule out botulism. Demyelination of cranial nerves might be underrecognized during autopsy of botulism patients. PMID:22257488

  12. Overcoming failure to repair demyelination in EAE: gamma-secretase inhibition of Notch signaling.

    PubMed

    Jurynczyk, Maciej; Jurewicz, Anna; Bielecki, Bartosz; Raine, Cedric S; Selmaj, Krzysztof

    2008-02-15

    In multiple sclerosis (MS), myelin destroyed by the immune attack is not effectively repaired by oligodendrocytes (OLs) and MS foci eventually undergo glial scarring. Although oligodendrocyte precursor cells (OPCs) are normally recruited to the lesion areas, they fail to mature and remyelinate the damaged fibers. Activation of the Notch pathway has been shown to inhibit OPC differentiation and to hamper their ability to produce myelin during CNS development. We have recently shown that inhibition of gamma-secretase within the CNS of SJL/J mice with experimental autoimmune encephalomyelitis (EAE) blocks Notch pathway activation in OLs, promotes remyelination, reduces axonal damage and significantly enhances clinical recovery from the disease. Our results suggest that inhibiting the non-myelin permissive environment maintained by Notch pathways within the mature CNS offers a new strategy for treating autoimmune demyelination, including MS.

  13. Quantitative muscle ultrasound is useful for evaluating secondary axonal degeneration in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Hokkoku, Keiichi; Matsukura, Kiyoshi; Uchida, Yudai; Kuwabara, Midori; Furukawa, Yuichi; Tsukamoto, Hiroshi; Hatanaka, Yuki; Sonoo, Masahiro

    2017-10-01

    In chronic inflammatory demyelinating polyneuropathy (CIDP), exclusion of secondary axonal degeneration is challenging with conventional methods such as nerve conduction study (NCS), needle electromyography, and nerve biopsy. Increased echo intensity (EI) and decreased muscle thickness (MT) identified on muscle ultrasound (MUS) examination represent muscle denervation due to axonal degeneration in neurogenic disorders, suggesting MUS as a new tool to detect secondary axonal degeneration in patients with CIDP. EI and MT of abductor pollicis brevis, abductor digiti minimi, and first dorsal interosseous muscles were measured in 16 CIDP patients. Raw values were converted into z -scores using data from 60 normal controls (NCs). Six of 45 muscles showed abnormally high EI and low MT, suggesting denervation following secondary axonal degeneration. These six muscles belonged to two patients with long disease history, unresponsiveness to treatment, and long interval from onset to initial therapy. There were no significant differences in EI and MT ( p  = .23 and .67, respectively) between the CIDP and NC groups, although NCS results revealed obvious demyelinating abnormalities in all CIDP patients, suggesting the fact that muscle structures will be preserved, and EI and MT will not change unless secondary axonal degeneration occurs in CIDP. MUS is a promising tool for evaluating secondary axonal degeneration in patients with CIDP.

  14. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects.

    PubMed

    Khalaj, Anna J; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K

    2016-06-01

    Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury. Published by Elsevier Ltd.

  15. Nudging Oligodendrocyte Intrinsic Signaling to Remyelinate and Repair: Estrogen Receptor Ligand Effects

    PubMed Central

    Khalaj, Anna J.; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K.

    2017-01-01

    Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous myelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires Erk1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN’s neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as anti-inflammatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury. PMID:26776441

  16. 'Leukodystrophy-like' phenotype in children with myelin oligodendrocyte glycoprotein antibody-associated disease.

    PubMed

    Hacohen, Yael; Rossor, Thomas; Mankad, Kshitij; Chong, Wk 'Kling'; Lux, Andrew; Wassmer, Evangeline; Lim, Ming; Barkhof, Frederik; Ciccarelli, Olga; Hemingway, Cheryl

    2018-04-01

    To review the demographics and clinical and paraclinical parameters of children with myelin oligodendrocyte glycoprotein (MOG) antibody-associated relapsing disease. In this UK-based, multicentre study, 31 children with MOG antibody-associated relapsing disease were studied retrospectively. Of the 31 children studied, 14 presented with acute disseminated encephalomyelitis (ADEM); they were younger (mean 4.1y) than the remainder (mean 8.5y) who presented with optic neuritis and/or transverse myelitis (p<0.001). Similarly, children who had an abnormal brain magnetic resonance imaging (MRI) at onset (n=20) were younger than patients with normal MRI at onset (p=0.001) or at follow-up (p<0.001). 'Leukodystrophy-like' MRI patterns of confluent largely symmetrical lesions was seen during the course of the disease in 7 out of 14 children with a diagnosis of ADEM, and was only seen in children younger than 7 years of age. Their disability after a 3-year follow-up was mild to moderate, and most patients continued to relapse, despite disease-modifying treatments. MOG antibody should be tested in children presenting with relapsing neurological disorders associated with confluent, bilateral white matter changes, and distinct enhancement pattern. Children with MOG antibody-associated disease present with age-related differences in phenotypes, with a severe leukoencephalopathy phenotype in the very young and normal intracranial MRI in the older children. This finding suggests a susceptibility of the very young and myelinating brain to MOG antibody-mediated mechanisms of damage. Myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination manifest with an age-related phenotype. Children with MOG antibody and 'leukodystrophy-like' imaging patterns tend to have poor response to second-line immunotherapy. © 2017 Mac Keith Press.

  17. Clostridium perfringens Epsilon Toxin Causes Selective Death of Mature Oligodendrocytes and Central Nervous System Demyelination.

    PubMed

    Linden, Jennifer R; Ma, Yinghua; Zhao, Baohua; Harris, Jason Michael; Rumah, Kareem Rashid; Schaeren-Wiemers, Nicole; Vartanian, Timothy

    2015-06-16

    Clostridium perfringens epsilon toxin (ε-toxin) is responsible for a devastating multifocal central nervous system (CNS) white matter disease in ruminant animals. The mechanism by which ε-toxin causes white matter damage is poorly understood. In this study, we sought to determine the molecular and cellular mechanisms by which ε-toxin causes pathological changes to white matter. In primary CNS cultures, ε-toxin binds to and kills oligodendrocytes but not astrocytes, microglia, or neurons. In cerebellar organotypic culture, ε-toxin induces demyelination, which occurs in a time- and dose-dependent manner, while preserving neurons, astrocytes, and microglia. ε-Toxin specificity for oligodendrocytes was confirmed using enriched glial culture. Sensitivity to ε-toxin is developmentally regulated, as only mature oligodendrocytes are susceptible to ε-toxin; oligodendrocyte progenitor cells are not. ε-Toxin sensitivity is also dependent on oligodendrocyte expression of the proteolipid myelin and lymphocyte protein (MAL), as MAL-deficient oligodendrocytes are insensitive to ε-toxin. In addition, ε-toxin binding to white matter follows the spatial and temporal pattern of MAL expression. A neutralizing antibody against ε-toxin inhibits oligodendrocyte death and demyelination. This study provides several novel insights into the action of ε-toxin in the CNS. (i) ε-Toxin causes selective oligodendrocyte death while preserving all other neural elements. (ii) ε-Toxin-mediated oligodendrocyte death is a cell autonomous effect. (iii) The effects of ε-toxin on the oligodendrocyte lineage are restricted to mature oligodendrocytes. (iv) Expression of the developmentally regulated proteolipid MAL is required for the cytotoxic effects. (v) The cytotoxic effects of ε-toxin can be abrogated by an ε-toxin neutralizing antibody. Our intestinal tract is host to trillions of microorganisms that play an essential role in health and homeostasis. Disruption of this symbiotic relationship has been implicated in influencing or causing disease in distant organ systems such as the brain. Epsilon toxin (ε-toxin)-carrying Clostridium perfringens strains are responsible for a devastating white matter disease in ruminant animals that shares similar features with human multiple sclerosis. In this report, we define the mechanism by which ε-toxin causes white matter disease. We find that ε-toxin specifically targets the myelin-forming cells of the central nervous system (CNS), oligodendrocytes, leading to cell death. The selectivity of ε-toxin for oligodendrocytes is remarkable, as other cells of the CNS are unaffected. Importantly, ε-toxin-induced oligodendrocyte death results in demyelination and is dependent on expression of myelin and lymphocyte protein (MAL). These results help complete the mechanistic pathway from bacteria to brain by explaining the specific cellular target of ε-toxin within the CNS. Copyright © 2015 Linden et al.

  18. Neuromuscular Diseases Associated with HIV-1 Infection

    PubMed Central

    Robinson-Papp, Jessica; Simpson, David M.

    2010-01-01

    Neuromuscular disorders are common in HIV, occurring at all stages of disease and affecting all parts of the peripheral nervous system. These disorders have diverse etiologies including HIV itself, immune suppression and dysregulation, co-morbid illnesses and infections, and side effects of medications. In this article, we review the following HIV-associated conditions: distal symmetric polyneuropathy, inflammatory demyelinating polyneuropathy, mononeuropathy, mononeuropathy multiplex, autonomic neuropathy, progressive polyradiculopathy due to cytomegalovirus, herpes zoster, myopathy and other rarer disorders. PMID:19771594

  19. Increased occurrence of anti-AQP4 seropositivity and unique HLA Class II associations with neuromyelitis optica (NMO), among Muslim Arabs in Israel.

    PubMed

    Brill, Livnat; Mandel, Micha; Karussis, Dimitrios; Petrou, Panayiota; Miller, Keren; Ben-Hur, Tamir; Karni, Arnon; Paltiel, Ora; Israel, Shoshana; Vaknin-Dembinsky, Adi

    2016-04-15

    Previous studies have revealed different human leukocyte antigen (HLA) associations in multiple sclerosis (MS) and neuromyelitis optica (NMO), further discriminating these two demyelinating pathological conditions. In worldwide analyses, NMO and opticospinal MS are represented at higher proportions among demyelinating conditions in African, East-Asian and Latin American populations. There are currently no data regarding the prevalence of NMO in Middle East Muslims. The population in Israel is diverse in many ways, and includes subpopulations, based on religion and ethnicity; some exhibit genetic homogeneity. In Israel, the incidence of MS is lower in the Muslim population than the Jewish population and Muslims carry different allele frequency distribution of HLA haplotypes. To evaluate the occurrence of anti-AQP4 seropositivity in the Israeli Muslim population among patients with central nervous system (CNS) demyelinating conditions; and to identify the HLA DR and DQ profiles of Muslim Arab Israeli patients with NMO spectrum of diseases (NMOSD). The prevalence of anti-AQP4 seropositivity was analyzed in 342 samples, obtained from patients with various CNS demyelinating conditions and in a validation set of 310 samples. HLA class II alleles (HLA-DRB1 and DQB1) were examined in DNA samples from 35 Israeli Muslim Arabs NMO patients and compared to available data from 74 Israeli Muslim controls. Our data reveal a significantly increased prevalence of anti-AQP4 seropositivity, indicative of NMOSD, in Muslim Arab Israeli patients with initial diagnosis of a CNS demyelinating syndrome. In this population, there was a positive association with the HLA-DRB1*04:04 and HLA-DRB1*10:01 alleles (p=0.03), and a strong negative association with the HLA-DRB1*07 and HLA-DQB1*02:02 alleles (p=0.003, p=0.002). Our findings indicate a possibly increased prevalence of NMOSD in Muslim Arabs in Israel with distinct (positive and negative) HLA associations. Further studies in patients with similar genetic backgrounds worldwide could help to confirm our findings and identify more genetic susceptibility factors for NMO, contributing to our general understanding of the pathogenesis of NMOSD. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

    PubMed

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B

    2013-04-01

    Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model of CNS demyelination. These data support that apoE-mimetic strategy may represent a promising therapy for MS and other demyelination disorders.

  1. Demyelinating diseases in Asia.

    PubMed

    Ochi, Hirofumi; Fujihara, Kazuo

    2016-06-01

    The present review aims to discuss the recent advances in inflammatory demyelinating diseases of the central nervous system in Asia. Prevalence of multiple sclerosis (MS) in Asia is lower than that in Western countries, although it has been increasing recently. Meanwhile, there seems to be no major difference in neuromyelitis optica (NMO) prevalence in various regions or ethnicities. Thus, the ratios of NMO/NMO spectrum disorder (NMOSD) to MS are higher in Asia as compared with Western countries, indicating that the differential diagnosis between NMO/NMOSD and MS is a major challenge in Asia. Although the detection of aquaporin-4 (AQP4)-antibody is critical in distinguishing NMO/NMOSD from MS, some patients with NMO/NMOSD phenotype are seronegative for AQP4-antibody, and a fraction of those patients possess autoantibody against myelin oligodendrocyte glycoprotein. The clinical profile of Asian MS seems to be essentially similar to that in Western MS after careful exclusion of NMO/NMOSD, although some unique genetic and/or environmental factors may modify the disease in Asians. MS prevalence has been low but is increasing in Asia. In contrast, NMO/NMOSD prevalence seems relatively constant in the world. Asian MS is not fundamentally different from Western MS, but some genetic and/or environmental differences may cause some features unique to Asian patients.

  2. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination.

    PubMed

    Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui

    2015-09-02

    Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.

  3. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis.

    PubMed

    McKenzie, Brienne A; Mamik, Manmeet K; Saito, Leina B; Boghozian, Roobina; Monaco, Maria Chiara; Major, Eugene O; Lu, Jian-Qiang; Branton, William G; Power, Christopher

    2018-06-12

    Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS of unknown cause that remains incurable. Inflammasome-associated caspases mediate the maturation and release of the proinflammatory cytokines IL-1β and IL-18 and activate the pore-forming protein gasdermin D (GSDMD). Inflammatory programmed cell death, pyroptosis, was recently shown to be mediated by GSDMD. Here, we report molecular evidence for GSDMD-mediated inflammasome activation and pyroptosis in both myeloid cells (macrophages/microglia) and, unexpectedly, in myelin-forming oligodendrocytes (ODCs) in the CNS of patients with MS and in the MS animal model, experimental autoimmune encephalomyelitis (EAE). We observed inflammasome activation and pyroptosis in human microglia and ODCs in vitro after exposure to inflammatory stimuli and demonstrate caspase-1 inhibition by the small-molecule inhibitor VX-765 in both cell types. GSDMD inhibition by siRNA transduction suppressed pyroptosis in human microglia. VX-765 treatment of EAE animals reduced the expression of inflammasome- and pyroptosis-associated proteins in the CNS, prevented axonal injury, and improved neurobehavioral performance. Thus, GSDMD-mediated pyroptosis in select glia cells is a previously unrecognized mechanism of inflammatory demyelination and represents a unique therapeutic opportunity for mitigating the disease process in MS and other CNS inflammatory diseases.

  4. Disease-specific molecular events in cortical multiple sclerosis lesions

    PubMed Central

    Wimmer, Isabella; Höftberger, Romana; Gerlach, Susanna; Haider, Lukas; Zrzavy, Tobias; Hametner, Simon; Mahad, Don; Binder, Christoph J.; Krumbholz, Markus; Bauer, Jan; Bradl, Monika

    2013-01-01

    Cortical lesions constitute an important part of multiple sclerosis pathology. Although inflammation appears to play a role in their formation, the mechanisms leading to demyelination and neurodegeneration are poorly understood. We aimed to identify some of these mechanisms by combining gene expression studies with neuropathological analysis. In our study, we showed that the combination of inflammation, plaque-like primary demyelination and neurodegeneration in the cortex is specific for multiple sclerosis and is not seen in other chronic inflammatory diseases mediated by CD8-positive T cells (Rasmussen’s encephalitis), B cells (B cell lymphoma) or complex chronic inflammation (tuberculous meningitis, luetic meningitis or chronic purulent meningitis). In addition, we performed genome-wide microarray analysis comparing micro-dissected active cortical multiple sclerosis lesions with those of tuberculous meningitis (inflammatory control), Alzheimer’s disease (neurodegenerative control) and with cortices of age-matched controls. More than 80% of the identified multiple sclerosis-specific genes were related to T cell-mediated inflammation, microglia activation, oxidative injury, DNA damage and repair, remyelination and regenerative processes. Finally, we confirmed by immunohistochemistry that oxidative damage in cortical multiple sclerosis lesions is associated with oligodendrocyte and neuronal injury, the latter also affecting axons and dendrites. Our study provides new insights into the complex mechanisms of neurodegeneration and regeneration in the cortex of patients with multiple sclerosis. PMID:23687122

  5. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination.

    PubMed

    Xiao, Lin; Guo, Dazhi; Hu, Chun; Shen, Weiran; Shan, Lei; Li, Cui; Liu, Xiuyun; Yang, Wenjing; Zhang, Weidong; He, Cheng

    2012-07-01

    Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS). Copyright © 2012 Wiley Periodicals, Inc.

  6. Unusual sensory variant of Guillain-Barré syndrome.

    PubMed

    Semproni, Milena; Gibson, Gillian; Kuyper, Laura; Tam, Penny

    2017-07-14

    We describe a 52-year-old woman presenting with acute onset of severe burning paraesthesia in the hands and feet associated with allodynia and antalgic gait. At the time of admission to hospital no motor weakness was present. A diagnosis of Guillain-Barré syndrome (GBS) was considered when neurophysiological studies were completed showing convincing evidence of demyelination on motor conduction studies and sural sparing on sensory nerve studies. 1 We describe this case as a sensory variant of GBS. Clinical improvement followed treatment with a single course of intravenous immunoglobulin (IVIG). The patient made a complete clinical recovery within 6 months of onset and repeat neurophysiological studies showed marked improvement. We encourage clinicians to consider an atypical variant of GBS in patients presenting with acute sensory complaints. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice.

    PubMed

    Martin, Nellie A; Molnar, Viktor; Szilagyi, Gabor T; Elkjaer, Maria L; Nawrocki, Arkadiusz; Okarmus, Justyna; Wlodarczyk, Agnieszka; Thygesen, Eva K; Palkovits, Miklos; Gallyas, Ferenc; Larsen, Martin R; Lassmann, Hans; Benedikz, Eirikur; Owens, Trevor; Svenningsen, Asa F; Illes, Zsolt

    2018-01-01

    The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination. MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP + oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2 + OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3 + and Iba1 + macrophages/microglia was reduced in the demyelinating corpus callosum of the KO mice. During demyelination, absence of miR-146a reduced inflammatory responses, demyelination, axonal loss, the number of infiltrating macrophages, and increased the number of myelinating oligodendrocytes. The number of OPCs was slightly higher in the WT mice during remyelination, indicating a complex role of miR-146a during in vivo de- and remyelination.

  8. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter.

    PubMed

    Armstrong, Regina C; Le, Tuan Q; Frost, Emma E; Borke, Rosemary C; Vana, Adam C

    2002-10-01

    This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined using two complementary mouse models of experimental demyelination. The murine hepatitis virus strain A59 (MHV-A59) model produces focal areas of spinal cord demyelination with inflammation. The cuprizone neurotoxicant model causes extensive corpus callosum demyelination without a lymphocytic cell response. In both models, FGF2 expression is upregulated in areas of demyelination in wild-type mice. Surprisingly, in both models, oligodendrocyte repopulation of demyelinated white matter was significantly increased in FGF2 -/- mice compared with wild-type mice and even surpassed the oligodendrocyte density of nonlesioned mice. This dramatic result indicated that the absence of FGF2 promoted oligodendrocyte regeneration, possibly by enhancing oligodendrocyte progenitor proliferation and/or differentiation. FGF2 -/- and +/+ mice had similar oligodendrocyte progenitor densities in normal adult CNS, as well as similar progenitor proliferation and accumulation during demyelination. To directly analyze progenitor differentiation, glial cultures from spinal cords of wild-type mice undergoing remyelination after MHV-A59 demyelination were treated for 3 d with either exogenous FGF2 or an FGF2 neutralizing antibody. Elevating FGF2 favored progenitor proliferation, whereas attenuating endogenous FGF2 activity promoted the differentiation of progenitors into oligodendrocytes. These in vitro results are consistent with enhanced progenitor differentiation in FGF2 -/- mice. These studies demonstrate that the FGF2 genotype regulates oligodendrocyte regeneration and that FGF2 appears to inhibit oligodendrocyte lineage differentiation during remyelination.

  9. A review of MRI evaluation of demyelination in cuprizone murine model

    NASA Astrophysics Data System (ADS)

    Krutenkova, E.; Pan, E.; Khodanovich, M.

    2015-11-01

    The cuprizone mouse model of non-autoimmune demyelination reproduces some phenomena of multiple sclerosis and is appropriate for validation and specification of a new method of non-invasive diagnostics. In the review new data which are collected using the new MRI method are compared with one or more conventional MRI tools. Also the paper reviewed the validation of MRI approaches using histological or immunohistochemical methods. Luxol fast blue histological staining and myelin basic protein immunostaining is widespread. To improve the accuracy of non-invasive conventional MRI, multimodal scanning could be applied. The new quantitative MRI method of fast mapping of the macromolecular proton fraction is a reliable biomarker of myelin in the brain and can be used for research of demyelination in animals. To date, a validation of MPF method on the CPZ mouse model of demyelination is not performed, although this method is probably the best way to evaluate demyelination using MRI.

  10. Serial proton MR spectroscopy and diffusion tensor imaging in infantile Balo's concentric sclerosis.

    PubMed

    Dreha-Kulaczewski, Steffi F; Helms, Gunther; Dechent, Peter; Hofer, Sabine; Gärtner, Jutta; Frahm, Jens

    2009-02-01

    Proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) yield different parameters for characterizing the evolution of a demyelinating white matter disease. The purpose was to elucidate biochemical and microstructural changes in Balo's concentric sclerosis lesions and to correlate the findings with the clinical course. Localized short-echo time MRS and DTI were performed over 6 years in a left occipital lesion of a female patient (age at onset 13.8 years) with Balo's concentric sclerosis. A right homonym hemianopsia persisted. Metabolite patterns were in line with initial active demyelination followed by gliosis and partial recovery of neuroaxonal metabolites. Fractional anisotropy and mean diffusivity of tissue water remained severely altered. Fiber tracking confirmed a disruption in the geniculo-calcarine tract as well as involvement of the corpus callosum. MRS and DTI depict complementary parameters, but DTI seems to correlate better with clinical symptoms.

  11. Pyrexia-associated Relapse in Chronic Inflammatory Demyelinating Polyradiculoneuropathy: A Case Report.

    PubMed

    Ueda, Jun; Yoshimura, Hajime; Kohara, Nobuo

    2018-04-27

    Chronic inflammatory demyelinating polyradiculoneuropathy is a relapsing-remitting or chronic progressive demyelinating polyradiculoneuropathy. We report the case of a patient with chronic inflammatory demyelinating polyradiculoneuropathy who experienced relapses on four occasions after experiencing pyrexia and flu-like symptoms. Our patient showed characteristic features, such as relapse after pyrexia and flu-like symptoms, remission after pyretolysis without treatment, and the absence of remarkable improvement in a nerve conduction study in the remission phase. The serum level of tumor necrosis factor-α was elevated in the relapse phase and reduced in the remission phase; thus, the induction of cytokine release by viral infection might have caused the relapses.

  12. Plasma exchanges for severe acute neurological deterioration in patients with IgM anti-myelin-associated glycoprotein (anti-MAG) neuropathy.

    PubMed

    Baron, M; Lozeron, P; Harel, S; Bengoufa, D; Vignon, M; Asli, B; Malphettes, M; Parquet, N; Brignier, A; Fermand, J P; Kubis, N; Arnulf, Bertrand

    2017-06-01

    Monoclonal IgM anti-myelin-associated glycoprotein (MAG) antibody-related peripheral neuropathy (anti-MAG neuropathy) is predominantly a demyelinating sensory neuropathy with ataxia and distal paresthesia. The clinical course of anti-MAG neuropathy is usually slowly progressive making difficult the identification of clear criteria to start a specific treatment. Although no consensus treatment is yet available, a rituximab-based regimen targeting the B-cell clone producing the monoclonal IgM may be proposed, alone or in combination with alkylating agents or purine analogs. However, in some rare cases, an acute and severe neurological deterioration can occur in few days leading to a rapid loss of autonomy. In these cases, a treatment rapidly removing the monoclonal IgM from the circulation might be useful before initiating a specific therapy. We report successful treatment with plasma exchanges (PE) in four patients presenting with acute neurological deterioration. PE allowed a dramatic and rapid neurological improvement in all patients. PE are safe and may be useful at the initial management of these cases of anti-MAG neuropathy.

  13. Differentiating Familial Neuropathies from Guillain-Barré Syndrome.

    PubMed

    Bordini, Brett J; Monrad, Priya

    2017-02-01

    Differentiating Guillain-Barré syndrome (GBS) from inherited neuropathies and other acquired peripheral neuropathies requires understanding the atypical presentations of GBS and its variant forms, as well as historical and physical features suggestive of inherited neuropathies. GBS is typically characterized by the acute onset of ascending flaccid paralysis, areflexia, and dysesthesia secondary to peripheral nerve fiber demyelination. The disorder usually arises following a benign gastrointestinal or respiratory illness, is monophasic, reaches a nadir with several weeks, and responds to immunomodulatory therapy. Inherited neuropathies with onset before adulthood, whose presentation may mimic Guillain-Barré syndrome, are reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Multiple Sclerosis in Malaysia: Demographics, Clinical Features, and Neuroimaging Characteristics

    PubMed Central

    Viswanathan, S.; Rose, N.; Masita, A.; Dhaliwal, J. S.; Puvanarajah, S. D.; Rafia, M. H.; Muda, S.

    2013-01-01

    Background. Multiple sclerosis (MS) is an uncommon disease in multiracial Malaysia. Diagnosing patients with idiopathic inflammatory demyelinating diseases has been greatly aided by the evolution in diagnostic criterion, the identification of new biomarkers, and improved accessibility to neuroimaging in the country. Objectives. To investigate the spectrum of multiple sclerosis in Malaysia. Methods. Retrospective analysis with longitudinal follow-up of patients referred to a single tertiary medical center with neurology services in Malaysia. Results. Out of 245 patients with idiopathic inflammatory demyelinating disease, 104 patients had multiple sclerosis. Female to male ratio was 5 : 1. Mean age at onset was 28.6 ± 9.9 years. The Malays were the predominant racial group affected followed by the Chinese, Indians, and other indigenous groups. Subgroup analysis revealed more Chinese having neuromyelitis optica and its spectrum disorders rather than multiple sclerosis. Positive family history was reported in 5%. Optic neuritis and myelitis were the commonest presentations at onset of disease, and relapsing remitting course was the commonest disease pattern observed. Oligoclonal band positivity was 57.6%. At disease onset, 61.5% and 66.4% fulfilled the 2005 and 2010 McDonald's criteria for dissemination in space. Mean cord lesion length was 1.86 ± 1.65 vertebral segments in the relapsing remitting group as opposed to 6.25 ± 5.18 vertebral segments in patients with neuromyelitis optica and its spectrum disorders. Conclusion. The spectrum of multiple sclerosis in Malaysia has changed over the years. Further advancement in diagnostic criteria will no doubt continue to contribute to the evolution of this disease here. PMID:24455266

  15. Update on clinically isolated syndrome.

    PubMed

    Thouvenot, Éric

    2015-04-01

    Optic neuritis, myelitis and brainstem syndrome accompanied by a symptomatic MRI T2 or FLAIR hyperintensity and T1 hypointensity are highly suggestive of multiple sclerosis (MS) in young adults. They are called "clinically isolated syndrome" (CIS) and correspond to the typical first multiple sclerosis (MS) episode, especially when associated with other asymptomatic demyelinating lesions, without clinical, radiological and immunological sign of differential diagnosis. After a CIS, the delay of apparition of a relapse, which corresponds to the conversion to clinically definite MS (CDMS), varies from several months to more than 10 years (10-15% of cases, generally called benign RRMS). This delay is generally associated with the number and location of demyelinating lesions of the brain and spinal cord and the results of CSF analysis. Several studies comparing different MRI criteria for dissemination in space and dissemination in time of demyelinating lesions, two hallmarks of MS, provided enough substantial data to update diagnostic criteria for MS after a CIS. In the last revision of the McDonald's criteria in 2010, diagnostic criteria were simplified and now the diagnosis can be made by a single initial scan that proves the presence of active asymptomatic lesions (with gadolinium enhancement) and of unenhanced lesions. However, time to conversion remains highly unpredictable for a given patient and CIS can remain isolated, especially for idiopathic unilateral optic neuritis or myelitis. Univariate analyses of clinical, radiological, biological or electrophysiological characteristics of CIS patients in small series identified numerous risk factors of rapid conversion to MS. However, large series of CIS patients analyzing several characteristics of CIS patients and the influence of disease modifying therapies brought important information about the risk of CDMS or RRMS over up to 20 years of follow-up. They confirmed the importance of the initial MRI pattern of demyelinating lesions and of CSF oligoclonal bands. Available treatments of MS (immunomodulators or immunosuppressants) have also shown unequivocal efficacy to slow the conversion to RRMS after a CIS, but they could be unnecessary for patients with benign RRMS. Beyond diagnostic criteria, knowledge of established and potential risk factors of conversion to MS and of disability progression is essential for CIS patients' follow-up and initiation of disease modifying therapies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. In Vivo Imaging of Cortical Inflammation and Subpial Pathology in Multiple Sclerosis by Combined PET and MRI

    DTIC Science & Technology

    2014-09-01

    and Subpial Pathology in Multiple Sclerosis by Combined PET and MRI PRINCIPAL INVESTIGATOR: Dr. Caterina Mainero...studies in multiple sclerosis (MS) suggested that cortical demyelinating lesions, which are hardly detected in vivo on conventional magnetic resonance...disease progression in many MS cases. 15. SUBJECT TERMS Multiple sclerosis ; cortex; cortical sulci; neuroinflammation; microglia; cortical

  17. Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations

    PubMed Central

    Honce, Justin Morris

    2013-01-01

    It is abundantly clear that there is extensive gray matter pathology occurring in multiple sclerosis. While attention to gray matter pathology was initially limited to studies of autopsy specimens and biopsies, the development of new MRI techniques has allowed assessment of gray matter pathology in vivo. Current MRI techniques allow the direct visualization of gray matter demyelinating lesions, the quantification of diffuse damage to normal appearing gray matter, and the direct measurement of gray matter atrophy. Gray matter demyelination (both focal and diffuse) and gray matter atrophy are found in the very earliest stages of multiple sclerosis and are progressive over time. Accumulation of gray matter damage has substantial impact on the lives of multiple sclerosis patients; a growing body of the literature demonstrates correlations between gray matter pathology and various measures of both clinical disability and cognitive impairment. The effect of disease modifying therapies on the rate accumulation of gray matter pathology in MS has been investigated. This review focuses on the neuroimaging of gray matter pathology in MS, the effect of the accumulation of gray matter pathology on clinical and cognitive disability, and the effect of disease-modifying agents on various measures of gray matter damage. PMID:23878736

  18. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology

    PubMed Central

    Chew, Li-Jin; DeBoy, Cynthia A

    2015-01-01

    White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. PMID:26116759

  19. Induction of Oligodendrocyte Differentiation and In Vitro Myelination by Inhibition of Rho-Associated Kinase

    PubMed Central

    Taylor, Christopher; Pereira, Albertina; Seng, Michelle; Tham, Chui-Se; Izrael, Michal; Webb, Michael

    2014-01-01

    In inflammatory demyelinating diseases such as multiple sclerosis (MS), myelin degradation results in loss of axonal function and eventual axonal degeneration. Differentiation of resident oligodendrocyte precursor cells (OPCs) leading to remyelination of denuded axons occurs regularly in early stages of MS but halts as the pathology transitions into progressive MS. Pharmacological potentiation of endogenous OPC maturation and remyelination is now recognized as a promising therapeutic approach for MS. In this study, we analyzed the effects of modulating the Rho-A/Rho-associated kinase (ROCK) signaling pathway, by the use of selective inhibitors of ROCK, on the transformation of OPCs into mature, myelinating oligodendrocytes. Here we demonstrate, with the use of cellular cultures from rodent and human origin, that ROCK inhibition in OPCs results in a significant generation of branches and cell processes in early differentiation stages, followed by accelerated production of myelin protein as an indication of advanced maturation. Furthermore, inhibition of ROCK enhanced myelin formation in cocultures of human OPCs and neurons and remyelination in rat cerebellar tissue explants previously demyelinated with lysolecithin. Our findings indicate that by direct inhibition of this signaling molecule, the OPC differentiation program is activated resulting in morphological and functional cell maturation, myelin formation, and regeneration. Altogether, we show evidence of modulation of the Rho-A/ROCK signaling pathway as a viable target for the induction of remyelination in demyelinating pathologies. PMID:25289646

  20. Anti-Ma2-associated limbic encephalitis with coexisting chronic inflammatory demyelinating polyneuropathy in a patient with non-Hodgkin lymphoma: A case report.

    PubMed

    Ju, Weina; Qi, Baochang; Wang, Xu; Yang, Yu

    2017-10-01

    We report the rare case of a 74-year-old man with anti-Ma2-associated paraneoplastic neurologic syndrome (PNS), and review and analyze the clinical manifestations, diagnosis, and treatment of the disease. The patient presented with a 5-month history of muscle weakness, progressive body aches, and weakness and numbness in both lower extremities. Before his hospitalization, he had experienced cognitive function decline; ptosis, inward gaze, and vertical gaze palsy in the right eye; and occasional visual hallucinations. Brain and spinal cord magnetic resonance imaging (MRI) yielded normal results. Anti-Ma2 antibodies were detected in both serum and cerebrospinal fluid. A 4-hour electroencephalogram showed irregular sharp slow waves and δ waves in the temporal region. Electromyography showed peripheral nerve demyelination. Positron-emission tomography/computed tomography (PET-CT) examination revealed hypermetabolism in the lymph nodes of the whole body. Biopsy of the lymph nodes showed non-Hodgkin lymphoma. A clinical diagnosis of lymphoma and PNS was made. The patient was treated with intravenous dexamethasone (15 mg/day) for 3 days. We have presented a rare case of a PNS involving both the central and peripheral nervous systems. The clinical features of this case indicated anti-Ma2-associated encephalitis and chronic inflammatory demyelinating polyneuropathy. PET-CT played a critical role in enabling early diagnosis and prompt treatment in this case.

  1. Chronic Inflammatory Demyelinating Polyneuropathy (CIDP): An Uncommon Manifestation of Systemic Lupus Erythematosus (SLE)

    PubMed Central

    Abraham, Hrudya; Kuzhively, Jose; Rizvi, Syed W.

    2017-01-01

    Patient: Female, 40 Final Diagnosis: Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) Symptoms: Gait disorder Medication: — Clinical Procedure: — Specialty: Rheumatology Objective: Rare disease Background: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an uncommon manifestation of systemic lupus erythematosus (SLE). We report a case of SLE presenting as CIDP and discuss the diagnosis, management, and prognosis of CIDP. Case Report: A 40-year-old woman with a past medical history of SLE treated with hydroxychloroquine presented with bilateral, progressive, ascending, sensory and motor neuropathy. Physical examination showed weakness and reduced temperature of all extremities, reduced pinprick and vibration sense of the distal extremities, loss of reflexes, and walking with a wide-based unsteady gait. Laboratory investigations showed positive antinuclear antibodies (ANA), anti-(smooth muscle (SM) antibody, anti-RNP antibody, anti-SSA antibody, anti-ds-DNA antibody, and an erythrocyte sedimentation rate (ESR) of 75 mm/hr, low C4, leukopenia, and anemia. Electromyography (EMG) confirmed the diagnosis of CIDP. The patient’s neuropathy and muscle weakness improved on treatment with intravenous immunoglobulin (IVIG) and high-dose steroids. Conclusions: The early clinical diagnosis of CIDP, supported by serological autoantibody profiles associated with SLE, can predict a good response to steroids. Most patients with CIDP are treated successfully with steroids if the diagnosis is made early. IVIG, plasmapheresis, or immunosuppressive therapy should be considered if there is no response to steroids. PMID:28894082

  2. IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity.

    PubMed

    Kocur, Magdalena; Schneider, Reiner; Pulm, Ann-Kathrin; Bauer, Jens; Kropp, Sonja; Gliem, Michael; Ingwersen, Jens; Goebels, Norbert; Alferink, Judith; Prozorovski, Timour; Aktas, Orhan; Scheu, Stefanie

    2015-04-03

    Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris.

  3. Early electrophysiological findings in Fisher-Bickerstaff syndrome.

    PubMed

    Alberti, M A; Povedano, M; Montero, J; Casasnovas, C

    2017-09-06

    The term Fisher-Bickerstaff syndrome (FBS) has been proposed to describe the clinical spectrum encompassing Miller-Fisher syndrome (MFS) and Bickerstaff brainstem encephalitis. The pathophysiology of FBS and the nature of the underlying neuropathy (demyelinating or axonal) are still subject to debate. This study describes the main findings of an early neurophysiological study on 12 patients diagnosed with FBS. Retrospective evaluation of clinical characteristics and electrophysiological findings of 12 patients with FBS seen in our neurology department within 10 days of disease onset. Follow-up electrophysiological studies were also evaluated, where available. The most frequent electrophysiological finding, present in 5 (42%) patients, was reduced sensory nerve action potential (SNAP) amplitude in one or more nerves. Abnormalities were rarely found in motor neurography, with no signs of demyelination. The cranial nerve exam revealed abnormalities in 3 patients (facial neurography and/or blink reflex test). Three patients showed resolution of SNAP amplitude reduction in serial neurophysiological studies, suggesting the presence of reversible sensory nerve conduction block. Results from cranial MRI scans were normal in all patients. An electrophysiological pattern of sensory axonal neuropathy, with no associated signs of demyelination, is an early finding of FBS. Early neurophysiological evaluation and follow-up are essential for diagnosing patients with FBS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis.

    PubMed

    Lin, Wensheng; Lin, Yifeng; Li, Jin; Fenstermaker, Ali G; Way, Sharon W; Clayton, Benjamin; Jamison, Stephanie; Harding, Heather P; Ron, David; Popko, Brian

    2013-04-03

    There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.

  5. Anti-MOG antibody-positive ADEM following infectious mononucleosis due to a primary EBV infection: a case report.

    PubMed

    Nakamura, Yoshitsugu; Nakajima, Hideto; Tani, Hiroki; Hosokawa, Takafumi; Ishida, Shimon; Kimura, Fumiharu; Kaneko, Kimihiko; Takahashi, Toshiyuki; Nakashima, Ichiro

    2017-04-19

    Anti-Myelin oligodendrocyte glycoprotein (MOG) antibodies are detected in various demyelinating diseases, such as pediatric acute disseminated encephalomyelitis (ADEM), recurrent optic neuritis, and aquaporin-4 antibody-seronegative neuromyelitis optica spectrum disorder. We present a patient who developed anti-MOG antibody-positive ADEM following infectious mononucleosis (IM) due to Epstein-Barr virus (EBV) infection. A 36-year-old healthy man developed paresthesia of bilateral lower extremities and urinary retention 8 days after the onset of IM due to primary EBV infection. The MRI revealed the lesions in the cervical spinal cord, the conus medullaris, and the internal capsule. An examination of the cerebrospinal fluid revealed pleocytosis. Cell-based immunoassays revealed positivity for anti-MOG antibody with a titer of 1:1024 and negativity for anti-aquaporin-4 antibody. His symptoms quickly improved after steroid pulse therapy followed by oral betamethasone. Anti-MOG antibody titer at the 6-month follow-up was negative. This case suggests that primary EBV infection would trigger anti-MOG antibody-positive ADEM. Adult ADEM patients can be positive for anti-MOG antibody, the titers of which correlate well with the neurological symptoms.

  6. Osmotic demyelination syndrome associated with hypophosphataemia: 2 cases and a review of literature.

    PubMed

    Turnbull, Jessica; Lumsden, Daniel; Siddiqui, Ata; Lin, Jean-Pierre; Lim, Ming

    2013-04-01

    Central and extrapontine myelinolysis are collectively known as osmotic demyelination syndrome. This encephalopathic illness has been well documented in the adult literature, occurring most commonly in the context of chronic alcoholism, correction of hyponatraemia and liver transplantation. Aetiology and outcome in the paediatric population are less well understood. Two cases of osmotic demyelination syndrome occurring in children with transient severe hypophosphataemia during the course of their illness are presented. Both had very different neurological outcomes, but the changes of central and extrapontine myelinolysis were apparent on neuroimaging. Sixty-one cases in the paediatric literature were then reviewed. We summarize aetiology and outcome in paediatric cases of osmotic demyelination syndrome and postulate a role for hypophosphataemia as a contributing factor in the development of these sometimes devastating conditions. Hypophosphataemia may contribute to the risk of developing osmotic demyelination syndrome in at-risk paediatric patients and further study of this association should be undertaken. ©2012 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.

  7. A review of MRI evaluation of demyelination in cuprizone murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutenkova, E., E-mail: len--k@yandex.ru; Pan, E.; Khodanovich, M., E-mail: khodanovich@mail.tsu.ru

    The cuprizone mouse model of non-autoimmune demyelination reproduces some phenomena of multiple sclerosis and is appropriate for validation and specification of a new method of non-invasive diagnostics. In the review new data which are collected using the new MRI method are compared with one or more conventional MRI tools. Also the paper reviewed the validation of MRI approaches using histological or immunohistochemical methods. Luxol fast blue histological staining and myelin basic protein immunostaining is widespread. To improve the accuracy of non-invasive conventional MRI, multimodal scanning could be applied. The new quantitative MRI method of fast mapping of the macromolecular protonmore » fraction is a reliable biomarker of myelin in the brain and can be used for research of demyelination in animals. To date, a validation of MPF method on the CPZ mouse model of demyelination is not performed, although this method is probably the best way to evaluate demyelination using MRI.« less

  8. Chronic Inflammatory Demyelinating Polyradiculoneuropathy: From Bench to Bedside

    PubMed Central

    Peltier, Amanda C.; Donofrio, Peter D.

    2015-01-01

    Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP) is the most common treatable chronic autoimmune neuropathy. Multiple diagnostic criteria have been established, with the primary goal of identifying neurophysiologic hallmarks of acquired demyelination. Treatment modalities have expanded to include numerous immuno-modulatory therapies, although the best evidence continues to be for corticosteroids, plasma exchange, and intravenous immunoglobulins (IVIg). This review describes the pathology, epidemiology, pathogenesis, diagnosis, and treatment of CIDP. PMID:23117943

  9. Hypothalamic demyelination causing panhypopituitarism.

    PubMed

    Dixon-Douglas, Julia; Burgess, John; Dreyer, Michael

    2018-05-01

    Hypothalamic involvement in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is rare and endocrinopathies involving the hypothalamic-pituitary axis in patients with demyelinating conditions have rarely been reported. We present two cases of MS/NMOSD with associated hypothalamic-pituitary involvement and subsequent hypopituitarism, including the first report of a patient with hypothalamic demyelination causing panhypopituitarism. Differential diagnoses, including alemtuzumab-related and primary pituitary pathology are discussed. © 2018 Royal Australasian College of Physicians.

  10. Diagnosis and treatment of chronic acquired demyelinating polyneuropathies.

    PubMed

    Latov, Norman

    2014-08-01

    Chronic neuropathies are operationally classified as primarily demyelinating or axonal, on the basis of electrodiagnostic or pathological criteria. Demyelinating neuropathies are further classified as hereditary or acquired-this distinction is important, because the acquired neuropathies are immune-mediated and, thus, amenable to treatment. The acquired chronic demyelinating neuropathies include chronic inflammatory demyelinating polyneuropathy (CIDP), neuropathy associated with monoclonal IgM antibodies to myelin-associated glycoprotein (MAG; anti-MAG neuropathy), multifocal motor neuropathy (MMN), and POEMS syndrome. They have characteristic--though overlapping--clinical presentations, are mediated by distinct immune mechanisms, and respond to different therapies. CIDP is the default diagnosis if the neuropathy is demyelinating and no other cause is found. Anti-MAG neuropathy is diagnosed on the basis of the presence of anti-MAG antibodies, MMN is characterized by multifocal weakness and motor conduction blocks, and POEMS syndrome is associated with IgG or IgA λ-type monoclonal gammopathy and osteosclerotic myeloma. The correct diagnosis, however, can be difficult to make in patients with atypical or overlapping presentations, or nondefinitive laboratory studies. First-line treatments include intravenous immunoglobulin (IVIg), corticosteroids or plasmapheresis for CIDP; IVIg for MMN; rituximab for anti-MAG neuropathy; and irradiation or chemotherapy for POEMS syndrome. A correct diagnosis is required for choosing the appropriate treatment, with the aim of preventing progressive neuropathy.

  11. MRI study of the cuprizone-induced mouse model of multiple sclerosis: demyelination is not found after co-treatment with polyprenols (long-chain isoprenoid alcohols)

    NASA Astrophysics Data System (ADS)

    Khodanovich, M.; Glazacheva, V.; Pan, E.; Akulov, A.; Krutenkova, E.; Trusov, V.; Yarnykh, V.

    2016-02-01

    Multiple sclerosis is a neurological disorder with poorly understood pathogenic mechanisms and a lack of effective therapies. Therefore, the search for new MS treatments remains very important. This study was performed on a commonly used cuprizone animal model of multiple sclerosis. It evaluated the effect of a plant-derived substance called Ropren® (containing approximately 95% polyprenols or long-chain isoprenoid alcohols) on cuprizone- induced demyelination. The study was performed on 27 eight-week old male CD-1 mice. To induce demyelination mice were fed 0.5% cuprizone in the standard diet for 10 weeks. Ropren® was administered in one daily intraperitoneal injection (12mg/kg), beginning on the 6th week of the experiment. On the 11th week, the corpus callosum in the brain was evaluated in all animals using magnetic resonance imaging with an 11.7 T animal scanner using T2- weighted sequence. Cuprizone treatment successfully induced the model of demyelination with a significant decrease in the size of the corpus callosum compared with the control group (p<0.01). Mice treated with both cuprizone and Ropren® did not exhibit demyelination in the corpus callosum (p<0.01). This shows the positive effect of polyprenols on cuprizone-induced demyelination in mice.

  12. Neurophysiological aspects of peripheral neuropathies.

    PubMed

    MacKenzie, R A; Skuse, N F; Lethlean, A K

    1976-01-01

    1. Eighty-eight intrafascicular neural recordings were obtained in 10 normal subjects, 5 patients with axonal degeneration and 11 patients with demyelinating neuropathy. 2. Stimulus levels required for perception and fibre activation were higher in neuropathic subjects. Fibres transmitting touch perception had significantly lower conduction velocities in both patient groups, but were very much lower in the group with demyelinating neuropahty than the group with axonal degeneration. Maximum electrical stimulation evoked dispersed fibre responses in the axonal degeneration group and more dispersed, slowly conducting fibre potentials in the demyelinating group. In patients with hypertrophic Charcot-Marie-Tooth disorder, usually only a small group of slowly conducting low amplitude potentials was recorded. 3. Delivery of a train of supramaximal stimuli caused prolongation of latency and dispersion of fibre potentials in all microneurographic recordings. The changes were significantly greater in the axonal neuropathy group than in normals, and recovery was slower. The demyelinating neuropathies showed significantly greater changes than both the normal and the axonal neuropathy groups, and post-tetanic conduction slowing became even more marked after limb temperature was raised. 4. Surface SAP recordings showed normal refractory period in chronic axonal neuropathy but significant latency prolongation occurred in demyelinating neuropathy. 5. It is concluded that both receptor and nerve fibre abnormalities contribute to sensory dysfunction in degenerative and demyelinating neuropathies.

  13. Digestion products of the PH20 hyaluronidase inhibit remyelination.

    PubMed

    Preston, Marnie; Gong, Xi; Su, Weiping; Matsumoto, Steven G; Banine, Fatima; Winkler, Clayton; Foster, Scott; Xing, Rubing; Struve, Jaime; Dean, Justin; Baggenstoss, Bruce; Weigel, Paul H; Montine, Thomas J; Back, Stephen A; Sherman, Larry S

    2013-02-01

    Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation. Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo. OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions. We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions. Copyright © 2012 American Neurological Association.

  14. Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma?

    PubMed

    Hiremath, S B; Muraleedharan, A; Kumar, S; Nagesh, C; Kesavadas, C; Abraham, M; Kapilamoorthy, T R; Thomas, B

    2017-04-01

    Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics ( p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas ( P = .049) from tumefactive demyelinating lesions. DTI metrics ( p : q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas ( P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI metrics and DSC perfusion markedly improved diagnostic accuracy. © 2017 by American Journal of Neuroradiology.

  15. Extracellular Cues Influencing Oligodendrocyte Differentiation and (Re)myelination

    PubMed Central

    Wheeler, Natalie A.; Fuss, Babette

    2016-01-01

    There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, Multiple Sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically ‘dysregulated’ extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed. PMID:27016069

  16. Defining active progressive multiple sclerosis.

    PubMed

    Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie; Nielsen, Jørgen Erik; Vinther-Jensen, Tua; Hjermind, Lena Elisabeth; von Essen, Marina; Ratzer, Rikke Lenhard; Soelberg Sørensen, Per; Romme Christensen, Jeppe

    2017-11-01

    It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.

  17. New aspects of the pathogenesis of canine distemper leukoencephalitis.

    PubMed

    Lempp, Charlotte; Spitzbarth, Ingo; Puff, Christina; Cana, Armend; Kegler, Kristel; Techangamsuwan, Somporn; Baumgärtner, Wolfgang; Seehusen, Frauke

    2014-07-02

    Canine distemper virus (CDV) is a member of the genus morbillivirus, which is known to cause a variety of disorders in dogs including demyelinating leukoencephalitis (CDV-DL). In recent years, substantial progress in understanding the pathogenetic mechanisms of CDV-DL has been made. In vivo and in vitro investigations provided new insights into its pathogenesis with special emphasis on axon-myelin-glia interaction, potential endogenous mechanisms of regeneration, and astroglial plasticity. CDV-DL is characterized by lesions with a variable degree of demyelination and mononuclear inflammation accompanied by a dysregulated orchestration of cytokines as well as matrix metalloproteinases and their inhibitors. Despite decades of research, several new aspects of the neuropathogenesis of CDV-DL have been described only recently. Early axonal damage seems to represent an initial and progressive lesion in CDV-DL, which interestingly precedes demyelination. Axonopathy may, thus, function as a potential trigger for subsequent disturbed axon-myelin-glia interactions. In particular, the detection of early axonal damage suggests that demyelination is at least in part a secondary event in CDV-DL, thus challenging the dogma of CDV as a purely primary demyelinating disease. Another unexpected finding refers to the appearance of p75 neurotrophin (NTR)-positive bipolar cells during CDV-DL. As p75NTR is a prototype marker for immature Schwann cells, this finding suggests that Schwann cell remyelination might represent a so far underestimated endogenous mechanism of regeneration, though this hypothesis still remains to be proven. Although it is well known that astrocytes represent the major target of CDV infection in CDV-DL, the detection of infected vimentin-positive astrocytes in chronic lesions indicates a crucial role of this cell population in nervous distemper. While glial fibrillary acidic protein represents the characteristic intermediate filament of mature astrocytes, expression of vimentin is generally restricted to immature or reactive astrocytes. Thus, vimentin-positive astrocytes might constitute an important cell population for CDV persistence and spread, as well as lesion progression. In vitro models, such as dissociated glial cell cultures, as well as organotypic brain slice cultures have contributed to a better insight into mechanisms of infection and certain morphological and molecular aspects of CDV-DL. Summarized, recent in vivo and in vitro studies revealed remarkable new aspects of nervous distemper. These new perceptions substantially improved our understanding of the pathogenesis of CDV-DL and might represent new starting points to develop novel treatment strategies.

  18. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0389 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury...2015 4. TITLE AND SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  19. Clinical spectrum of Castleman disease-associated neuropathy.

    PubMed

    Naddaf, Elie; Dispenzieri, Angela; Mandrekar, Jay; Mauermann, Michelle L

    2016-12-06

    To define the peripheral neuropathy phenotypes associated with Castleman disease. We conducted a retrospective chart review for patients with biopsy-proven Castleman disease evaluated between January 2003 and December 2014. Patients with associated peripheral neuropathy were identified and divided into 2 groups: those with Castleman disease without POEMS syndrome (CD-PN) and those with Castleman disease with POEMS syndrome (CD-POEMS). We used a cohort of patients with POEMS as controls. Clinical, electrodiagnostic, and laboratory characteristics were collected and compared among patient subgroups. There were 7 patients with CD-PN, 20 with CD-POEMS, and 122 with POEMS. Patients with CD-PN had the mildest neuropathy characterized by predominant sensory symptoms with no pain and mild distal sensory deficits (median Neuropathy Impairment Score of 7 points). Although both patients with CD-POEMS and patients with POEMS had a severe sensory and motor neuropathy, patients with CD-POEMS were less affected (median Neuropathy Impairment Score of 33 and 66 points, respectively). The degree of severity was also reflected on electrodiagnostic testing in which patients with CD-PN demonstrated a mild degree of axonal loss, followed by patients with CD-POEMS and then those with POEMS. Demyelinating features, defined by European Federation of Neurologic Societies/Peripheral Nerve Society criteria, were present in 43% of the CD-PN, 78% of the CD-POEMS, and 86% of the POEMS group. There is a spectrum of demyelinating peripheral neuropathies associated with Castleman disease. CD-PN is sensory predominant and is the mildest phenotype, whereas CD-POEMS is a more severe sensory and motor neuropathy. Compared to the POEMS cohort, those with CD-POEMS neuropathy have a similar but less severe phenotype. Whether these patients respond differently to treatment deserves further study. © 2016 American Academy of Neurology.

  20. Aquaporin-4 in brain and spinal cord oedema.

    PubMed

    Saadoun, S; Papadopoulos, M C

    2010-07-28

    Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Mobilization of Neural Precursors in the Circulating Blood of Patients with Multiple Sclerosis

    DTIC Science & Technology

    2012-07-01

    circulating blood of patients with multiple sclerosis PRINCIPAL INVESTIGATOR: Ernesto R. Bongarzone, Ph.D... multiple sclerosis 5b. GRANT NUMBER W81XWH-09-1-0427 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ernesto R. Bongarzone...NOTES 14. ABSTRACT Relapsing remitting multiple sclerosis (RRMS) is demyelinating disease that affects both men and women and is characterized by

  2. Long-term safety and efficacy of etanercept in the treatment of ankylosing spondylitis

    PubMed Central

    Senabre-Gallego, José Miguel; Santos-Ramírez, Carlos; Santos-Soler, Gregorio; Salas-Heredia, Esteban; Sánchez-Barrioluengo, Mabel; Barber, Xavier; Rosas, José

    2013-01-01

    To date, anti-tumor necrosis factor alfa (anti-TNF-α) therapy is the only alternative to nonsteroidal anti-inflammatory drugs for the treatment of ankylosing spondylitis. Etanercept is a soluble TNF receptor, with a mode of action and pharmacokinetics different to those of antibodies and distinctive efficacy and safety. Etanercept has demonstrated efficacy in the treatment of ankylosing spondylitis, with or without radiographic sacroiliitis, and other manifestations of the disease, including peripheral arthritis, enthesitis, and psoriasis. Etanercept is not efficacious in inflammatory bowel disease, and its efficacy in the treatment of uveitis appears to be lower than that of other anti-TNF drugs. Studies of etanercept confirmed regression of bone edema on magnetic resonance imaging of the spine and sacroiliac joint, but failed to reduce radiographic progression, as do the other anti-TNF drugs. It seems that a proportion of patients remain in disease remission when the etanercept dose is reduced or administration intervals are extended. Etanercept is generally well tolerated with an acceptable safety profile in the treatment of ankylosing spondylitis. The most common adverse effect of etanercept treatment is injection site reactions, which are generally self-limiting. Reactivation of tuberculosis, reactivation of hepatitis B virus infection, congestive heart failure, demyelinating neurologic disorders, hematologic disorders like aplastic anemia and pancytopenia, vasculitis, immunogenicity, and exacerbation or induction of psoriasis are class effects of all the anti-TNF drugs, and have been seen in patients with ankylosing spondylitis. However, etanercept is less likely to induce reactivation of tuberculosis than the other anti-TNF drugs and it has been suggested that etanercept might be less immunogenic, especially in ankylosing spondylitis. Acute uveitis, Crohn’s disease, and sarcoidosis are other adverse events that have been rarely associated with etanercept therapy in patients with ankylosing spondylitis. PMID:24101863

  3. Safety of infliximab in Crohn's disease: a large single-center experience.

    PubMed

    Hamzaoglu, H; Cooper, J; Alsahli, M; Falchuk, K R; Peppercorn, M A; Farrell, R J

    2010-12-01

    The aim of this study was to evaluate the short- and long-term safety experience of infliximab treatment in patients with Crohn's disease (CD) in clinical practice. The medical records of 297 consecutive patients with CD treated with infliximab at the Beth Israel Deaconess Medical Center were reviewed for demographic features and adverse events. The 297 patients received a total of 1794 infusions. Patients received a median of four infusions and had a median follow-up of 14.3 months. Forty-four patients (15%) experienced a serious adverse event, requiring the infusion to be stopped in 33 patients (11%). Acute infusion reactions occurred in 18 patients (6%) including respiratory problems in 10 patients (3%) and an anaphylactoid reaction in 1 patient (0.3%). Serum sickness-like disease occurred in one patient (0.3%) and three patients (1%) developed drug-induced lupus. One patient developed a probable new demyelination disorder. Eight patients (2.7%), all of whom were on concurrent immunosuppressants, developed a serious infection, one resulting in fatal sepsis. Six patients (2%) developed malignancies including two lymphomas and two skin cancers. A total of four (1.3%) deaths were observed (median age 72.5 years); two due to gastrointestinal bleeding, one due to sepsis, and one due to malignancy. While short- and long-term infliximab therapy was generally well tolerated, serious adverse events occurred in 15% of patients including drug-induced lupus, fatal sepsis, and malignancy. Concomitant immunosuppressants were significantly associated with infections and deaths, particularly among elderly patients. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  4. Partial interhemispheric disconnection syndrome (P-IHDS) secondary to Marchiafava-Bignami disease type B (MBD-B).

    PubMed

    Canepa, Carlo; Arias, Lorena

    2016-11-23

    A 53-year-old man with a 35-year history of excessive alcohol intake presents to our neurology department with 4-year history of progressive neurocognitive deterioration and disconnection syndrome. MRI head demonstrates extensive demyelination of the corpus callosum (and of extracallosal sites as well), leading to a diagnosis of Marchiafava-Bignami disease. He was given treatment with vitamin B complex (including folate) and was assessed and managed by psychology, occupational therapy and physiotherapy with initial signs of improvement. 2016 BMJ Publishing Group Ltd.

  5. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system.

    PubMed

    Matsushima, G K; Morell, P

    2001-01-01

    Myelin of the adult CNS is vulnerable to a variety of metabolic, toxic, and autoimmune insults. That remyelination can ensue, following demyelinating insult, has been well demonstrated. Details of the process of remyelination are, however difficult to ascertain since in most experimental models of demyelination/remyelination the severity, localization of lesion site, or time course of the pathophysiology is variable from animal to animal. In contrast, an experimental model in which massive demyelination can be reproducibly induced in large areas of mouse brain is exposure to the copper chelator, cuprizone, in the diet. We review work from several laboratories over the past 3 decades, with emphasis on our own recent studies, which suggest an overall picture of cellular events involved in demyelination/remyelination. When 8 week old C57BL/6 mice are fed 0.2% cuprizone in the diet, mature olidgodendroglia are specifically insulted (cannot fulfill the metabolic demand of support of vast amounts of myelin) and go through apoptosis. This is closely followed by recruitment of microglia and phagoctytosis of myelin. Studies of myelin gene expression, coordinated with morphological studies, indicate that even in the face of continued metabolic challenge, oligodendroglial progenitor cells proliferate and invade demyelinated areas. If the cuprizone challenge is terminated, an almost complete remyelination takes place in a matter of weeks. Communication between different cell types by soluble factors may be inferred. This material is presented in the context of a model compatible with present data -- and which can be tested more rigorously with the cuprizone model. The reproducibility of the model indicates that it may allow for testing of manipulations (e.g. available knockouts or transgenics on the common genetic background, or pharmacological treatments) which may accelerate or repress the process of demyelination and or remyelination.

  6. Different electrophysiological profiles and treatment response in 'typical' and 'atypical' chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Kuwabara, Satoshi; Isose, Sagiri; Mori, Masahiro; Mitsuma, Satsuki; Sawai, Setsu; Beppu, Minako; Sekiguchi, Yukari; Misawa, Sonoko

    2015-10-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is currently classified into 'typical' CIDP and 'atypical' subtypes such as multifocal acquired demyelinating sensory and motor neuropathy (MADSAM). To assess the frequency of CIDP subtypes, and to elucidate clinical and electrophysiological features, and treatment response in each subtype. We reviewed data from 100 consecutive patients fulfilling criteria for CIDP proposed by the European Federation of Neurological Societies and the Peripheral Nerve Society. The Kaplan-Meier curve was used to estimate long-term outcome. Patients were classified as having typical CIDP (60%), MADSAM (34%), demyelinating acquired distal symmetric neuropathy (8%) or pure sensory CIDP (1%). Compared with patients with MADSAM, patients with typical CIDP showed more rapid progression and severe disability, and demyelination predominant in the distal nerve segments. MADSAM was characterised by multifocal demyelination in the nerve trunks. Abnormal median-normal sural sensory responses were more frequently found for typical CIDP (53% vs 13%). Patients with typical CIDP invariably responded to corticosteroids, immunoglobulin or plasmapheresis, whereas patients with MADSAM were more refractory to these treatments. The Kaplan-Meier analyses showed that 64% of patients with typical CIDP and 41% of patients with MADSAM had a clinical remission 5 years later (p=0.02). Among the CIDP spectrum, typical CIDP and MADSAM are the major subtypes, and their pathophysiology appears to be distinct. In typical CIDP, the distal nerve terminals and possibly the nerve roots, where the blood-nerve barrier is anatomically deficient, are preferentially affected, raising the possibility of antibody-mediated demyelination, whereas cellular immunity with breakdown of the barrier may be important in MADSAM neuropathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome.

    PubMed

    Bouchat, Joanna; Couturier, Bruno; Marneffe, Catherine; Gankam-Kengne, Fabrice; Balau, Benoît; De Swert, Kathleen; Brion, Jean-Pierre; Poncelet, Luc; Gilloteaux, Jacques; Nicaise, Charles

    2018-03-01

    The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1β, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS. © 2017 Wiley Periodicals, Inc.

  8. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats

    PubMed Central

    Nout-Lomas, Yvette S.; Wendland, Michael F.; Mukherjee, Pratik; Huie, J. Russell; Hess, Christopher P.; Mabray, Marc C.; Bresnahan, Jacqueline C.; Beattie, Michael S.

    2016-01-01

    Abstract Alterations in magnetic resonance imaging (MRI)–derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury. PMID:26483094

  9. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    PubMed

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. © 2016 Wiley Periodicals, Inc.

  10. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0388 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast- Induced Traumatic Brain Injury...SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  11. GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis.

    PubMed

    Qin, Jing; Sikkema, Arend H; van der Bij, Kristine; de Jonge, Jenny C; Klappe, Karin; Nies, Vera; Jonker, Johan W; Kok, Jan Willem; Hoekstra, Dick; Baron, Wia

    2017-10-11

    Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation. Here, we aim at elucidating whether exogenously added gangliosides (i.e., cell surface lipids with a potential to modulate signaling pathways) could counteract fibronectin-mediated inhibition of OPC maturation. Exclusive exposure of rat oligodendrocytes to GD1a, but not other gangliosides, overcomes aggregated fibronectin-induced inhibition of myelin membrane formation, in vitro , and OPC differentiation in fibronectin aggregate containing cuprizone-induced demyelinated lesions in male mice. GD1a exerts its effect on OPCs by inducing their proliferation and, at a late stage, by modulating OPC maturation. Kinase activity profiling revealed that GD1a activated a protein kinase A (PKA)-dependent signaling pathway and increased phosphorylation of the transcription factor cAMP response element-binding protein. Consistently, the effect of GD1a in restoring myelin membrane formation in the presence of fibronectin aggregates was abolished by the PKA inhibitor H89, whereas the effect of GD1a was mimicked by the PKA activator dibutyryl-cAMP. Together, GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation by activating a PKA-dependent signaling pathway. Given the persistent presence of fibronectin aggregates in MS lesions, ganglioside GD1a might act as a potential novel therapeutic tool to selectively modulate the detrimental signaling environment that precludes remyelination. SIGNIFICANCE STATEMENT As an environmental factor, aggregates of the extracellular matrix protein fibronectin perturb the maturation of oligodendrocyte progenitor cells (OPCs), thereby impeding remyelination, in the demyelinating disease multiple sclerosis (MS). Here we demonstrate that exogenous addition of ganglioside GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation, both in vitro and in vivo , by activating a PKA-dependent signaling pathway. We propose that targeted delivery of GD1a to MS lesions may act as a potential novel molecular tool to boost maturation of resident OPCs to overcome remyelination failure and halt disease progression. Copyright © 2017 the authors 0270-6474/17/379925-14$15.00/0.

  12. Takotsubo cardiomyopathy associated with Miller-Fisher syndrome.

    PubMed

    Gill, Dalvir; Liu, Kan

    2017-07-01

    51-year-old female who presented with progressive paresthesia, numbness of the lower extremities, double vision, and trouble walking. Physical exam was remarkable for areflexia, and ptosis. Her initial EKG showed nonspecific ST segment changes and her Troponin T was elevated to 0.41ng/mL which peaked at 0.66ng/mL. Echocardiogram showed a depressed left ventricular ejection fraction to 35% with severely hypokinetic anterior wall and left ventricular apex was severely hypokinetic. EMG nerve conduction study showed severely decreased conduction velocity and prolonged distal latency in all nerves consistent with demyelinating disease. She was treated with 5days of intravenous immunoglobulin therapy to which she showed significant improvement in strength in her lower extremities. Echocardiogram repeated 4days later showing an improved left ventricular ejection fraction of 55% and no left ventricular wall motion abnormalities. Takotsubo cardiomyopathy is a rare complication of Miller-Fisher syndrome and literature review did not reveal any cases. Miller-Fisher syndrome is an autoimmune process that affects the peripheral nervous system causing autonomic dysfunction which may involve the heart. Due to significant autonomic dysfunction in Miller-Fisher syndrome, it could lead to arrhythmias, blood pressure changes, acute coronary syndrome and myocarditis, Takotsubo cardiomyopathy can be difficult to distinguish. The treatment of Takotsubo cardiomyopathy is supportive with beta-blockers and angiotensin-converting enzyme inhibitors are recommended until left ventricle ejection fraction improvement. Takotsubo cardiomyopathy is a rare complication during the acute phase of Miller-Fisher syndrome and must be distinguished from autonomic dysfunction as both diagnoses have different approaches to treatment. Published by Elsevier Inc.

  13. An unusual case of recurrent Guillain-Barré syndrome with normal cerebrospinal fluid protein levels: a case report.

    PubMed

    Gunatilake, Sonali Sihindi Chapa; Gamlath, Rohitha; Wimalaratna, Harith

    2016-09-05

    Guillain-Barré syndrome is an acquired polyradiculo-neuropathy, often preceded by an antecedent event. It is a monophasic disease but a recurrence rate of 1-6 % is documented in a subset group of patients. Patients with Guillain-Barré syndrome show cerebrospinal fluid albuminocytologic dissociation. Normal cerebrospinal fluid protein levels during both initial and recurrent episodes of Guillain-Barré syndrome is a rare occurrence and has not been described earlier in the literature. Twenty-five-year-old Sri Lankan female with past history of complete recovery following an acute inflammatory demyelinating polyneuropathy (AIDP) variant of Guillain-Barré syndrome 12 years back presented with acute, ascending symmetrical flaccid quadriparasis extending to bulbar muscles, bilateral VII cranial nerves and respiratory compromise needing mechanical ventilation. Nerve conduction study revealed AIDP variant of Guillain-Barré syndrome. Cerebrospinal fluid analysis done after 2 weeks were normal during both episodes without albuminocytologic dissociation. She was treated with intravenous immunoglobulin resulting in a remarkable recovery. Both episodes had a complete clinical recovery in three and four months' time respectively, rather a faster recovery than usually expected. Recurrence of Guillain-Barré syndrome can occur in a subset of patients with Guillain-Barré syndrome even after many years of asymptomatic period. Normal cerebrospinal fluid profile does not exclude Guillain-Barré syndrome and may occur in subsequent recurrences of Guillain-Barré syndrome arising the need for further studies to identify the pathophysiology and the possibility of a different subtype of Guillain-Barré syndrome.

  14. Injectable interferon beta-1b for the treatment of relapsing forms of multiple sclerosis.

    PubMed

    Jankovic, Slobodan M

    2010-01-01

    Multiple sclerosis (MS) is chronic inflammatory and demyelinating disease with either a progressive (10%-15%) or relapsing-remitting (85%-90%) course. The pathological hallmarks of MS are lesions of both white and grey matter in the central nervous system. The onset of the disease is usually around 30 years of age. The patients experience an acute focal neurologic dysfunction which is not characteristic, followed by partial or complete recovery. Acute episodes of neurologic dysfunction with diverse signs and symptoms will then recur throughout the life of a patient, with periods of partial or complete remission and clinical stability in between. Currently, there are several therapeutic options for MS with disease-modifying properties. Immunomodulatory therapy with interferon beta-1b (IFN-β1b) or -1a, glatiramer and natalizumab shows similar efficacy; in a resistant or intolerant patient, the most recently approved therapeutic option is mitoxantrone. IFN-β1b in patients with MS binds to specific receptors on surface of immune cells, changing the expression of several genes and leading to a decrease in quantity of cell-associated adhesion molecules, inhibition of major histocompatibility complex class II expression and reduction in inflammatory cells migration into the central nervous system. After 2 years of treatment, IFN-β1b reduces the risk of development of clinically defined MS from 45% (with placebo) to 28% (with IFN-β1b). It also reduces relapses for 34% (1.31 exacerbations annually with placebo and 0.9 with higher dose of IFN-β1b) and makes 31% more patients relapse-free. In secondary-progressive disease annual rate of progression is 3% lower with IFN-β1b. In recommended doses IFN-β1b causes the following frequent adverse effects: injection site reactions (redness, discoloration, inflammation, pain, necrosis and non-specific reactions), insomnia, influenza-like syndrome, asthenia, headache, myalgia, hypoesthesia, nausea, paresthesia, myasthenia, chills and depression. Efficacy of IFN-β1b in relapsing-remitting MS is higher than that of IFN-β1a, and similar to the efficacy of glatiramer acetate. These facts promote IFN-β1b as one of the most important drugs in the spectrum of immunological therapies for this debilitating disease.

  15. Single nucleotide polymorphisms in multiple sclerosis: disease susceptibility and treatment response biomarkers.

    PubMed

    Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija

    2012-04-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.

  16. Dysregulated MicroRNA Involvement in Multiple Sclerosis by Induction of T Helper 17 Cell Differentiation

    PubMed Central

    Chen, Chen; Zhou, Yifan; Wang, Jingqi; Yan, Yaping; Peng, Lisheng; Qiu, Wei

    2018-01-01

    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Growing evidence has proven that T helper 17 (Th17) cells are one of the regulators of neuroinflammation mechanisms in MS disease. Researchers have demonstrated that some microRNAs (miRNAs) are associated with disease activity and duration, even with different MS patterns. miRNAs regulate CD4+ T cells to differentiate toward various T cell subtypes including Th17 cells. In this review, we discuss the possible mechanisms of miRNAs in MS pathophysiology by regulating CD4+ T cell differentiation into Th17 cells, and potential miRNA targets for current disease-modifying treatments.

  17. Decreased electrical excitability of peripheral nerves in demyelinating polyneuropathies.

    PubMed Central

    Meulstee, J; Darbas, A; van Doorn, P A; van Briemen, L; van der Meché, F G

    1997-01-01

    Not recognising the presence of decreased excitability may give rise to a seemingly low compound muscle action potential, which may lead erroneously to the conclusion of conduction block. To quantify decreased electrical excitability, stimulation-response curves and the current needed to achieve 90% of the maximal compound muscle action potential amplitude, i90, were obtained in 17 healthy controls, eight patients with Guillain-Barre syndrome, 14 with chronic inflammatory demyelinating polyneuropathy, and 10 with hereditary motor sensory neuropathy type I. Decreased electrical excitability was found in patients with chronic inflammatory demyelinating polyneuropathy and hereditary motor sensory neuropathy type I, by contrast with patients with Guillain-Barré syndrome. Recognising decreased excitability prevents the false assertion of conduction block and has electrodiagnostic importance for the differential diagnosis of demyelinating polyneuropathies. PMID:9120460

  18. New Approaches to the Diagnosis, Clinical Course, and Goals of Therapy in Multiple Sclerosis and Related Disorders.

    PubMed

    Krieger, Stephen C

    2016-06-01

    The diagnosis, categorization, and treatment of multiple sclerosis (MS) and other demyelinating diseases have shifted over the past decade, and many of the fundamental principles of MS pathogenesis and clinical course are being rewritten. Fundamental issues include selecting the right disease-modifying therapy for someone with active disease and how, or even if, patients with purely progressive MS should be treated. This article provides an overview and introduction to the current thinking in MS diagnosis and therapy with an emphasis on the data-driven and proactive approach that has come to define the current state of the art.

  19. Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis

    PubMed Central

    Amadio, Susanna; Parisi, Chiara; Piras, Eleonora; Fabbrizio, Paola; Apolloni, Savina; Montilli, Cinzia; Luchetti, Sabina; Ruggieri, Serena; Gasperini, Claudio; Laghi-Pasini, Franco; Battistini, Luca; Volonté, Cinzia

    2017-01-01

    Multiple sclerosis (MS) is characterized by macrophage accumulation and inflammatory infiltrates into the CNS contributing to demyelination. Because purinergic P2X7 receptor (P2X7R) is known to be abundantly expressed on cells of the hematopoietic lineage and of the nervous system, we further investigated its phenotypic expression in MS and experimental autoimmune encephalomyelitis conditions. By quantitative reverse transcription polymerase chain reaction and flow cytometry, we analyzed the P2X7R expression in human mononuclear cells of peripheral blood from stable and acute relapsing-remitting MS phases. Human monocytes were also challenged in vitro with pro-inflammatory stimuli such as the lipopolysaccharide, or the P2X7R preferential agonist 2′(3′)-O-(4 Benzoylbenzoyl)adenosine 5′-triphosphate, before evaluating P2X7R protein expression. Finally, by immunohistochemistry and immunofluorescence confocal analysis, we investigated the P2X7R expression in frontal cortex from secondary progressive MS cases. We demonstrated that P2X7R is present and inhibited on peripheral monocytes isolated from MS donors during the acute phase of the disease, moreover it is down-regulated in human monocytes after pro-inflammatory stimulation in vitro. P2X7R is instead up-regulated on astrocytes in the parenchyma of frontal cortex from secondary progressive MS patients, concomitantly with monocyte chemoattractant protein-1 chemokine, while totally absent from microglia/macrophages or oligodendrocytes, despite the occurrence of inflammatory conditions. Our results suggest that inhibition of P2X7R on monocytes and up-regulation in astrocytes might contribute to sustain inflammatory mechanisms in MS. By acquiring further knowledge about P2X7R dynamics and identifying P2X7R as a potential marker for the disease, we expect to gain insights into the molecular pathways of MS. PMID:29187851

  20. On the horizon: possible neuroprotective role for glatiramer acetate.

    PubMed

    Kreitman, Rivka Riven; Blanchette, François

    2004-06-01

    Inflammation and neurodegeneration characterize the pathogenesis of multiple sclerosis (MS). Slow axonal degeneration, rather than acute inflammation, is considered the cause of chronic disability in MS. The signs of acute axonal damage and loss have been shown to occur early in the lesion development of patients with chronic MS and often correlate with demyelination and inflammation. While immune activity in the central nervous system has traditionally been considered to be a detrimental event in MS, recent studies have found that autoimmune T cells may play an important role in protecting neurons from the ongoing spreading damage. Neuroprotection in MS is a new and evolving concept, and many questions remain with regard to potential targets for therapeutic intervention. Preliminary studies, both in animals and in humans, have suggested that glatiramer acetate (GA) may confer neuroprotective activity in addition to bystander suppression. Additional research is needed to determine if these promising neuroprotective effects correlated with the long-term effect of GA in MS.

  1. Anti-Ma2–associated limbic encephalitis with coexisting chronic inflammatory demyelinating polyneuropathy in a patient with non-Hodgkin lymphoma

    PubMed Central

    Ju, Weina; Qi, Baochang; Wang, Xu; Yang, Yu

    2017-01-01

    Abstract Rationale: We report the rare case of a 74-year-old man with anti-Ma2–associated paraneoplastic neurologic syndrome (PNS), and review and analyze the clinical manifestations, diagnosis, and treatment of the disease. Patient concerns: The patient presented with a 5-month history of muscle weakness, progressive body aches, and weakness and numbness in both lower extremities. Before his hospitalization, he had experienced cognitive function decline; ptosis, inward gaze, and vertical gaze palsy in the right eye; and occasional visual hallucinations. Brain and spinal cord magnetic resonance imaging (MRI) yielded normal results. Anti-Ma2 antibodies were detected in both serum and cerebrospinal fluid. A 4-hour electroencephalogram showed irregular sharp slow waves and δ waves in the temporal region. Electromyography showed peripheral nerve demyelination. Positron-emission tomography/computed tomography (PET-CT) examination revealed hypermetabolism in the lymph nodes of the whole body. Biopsy of the lymph nodes showed non-Hodgkin lymphoma. Diagnosis: A clinical diagnosis of lymphoma and PNS was made. Interventions: The patient was treated with intravenous dexamethasone (15 mg/day) for 3 days. Lessons: We have presented a rare case of a PNS involving both the central and peripheral nervous systems. The clinical features of this case indicated anti-Ma2–associated encephalitis and chronic inflammatory demyelinating polyneuropathy. PET-CT played a critical role in enabling early diagnosis and prompt treatment in this case. PMID:28984777

  2. Genetics of the Charcot-Marie-Tooth disease in the Spanish Gypsy population: the hereditary motor and sensory neuropathy-Russe in depth.

    PubMed

    Sevilla, T; Martínez-Rubio, D; Márquez, C; Paradas, C; Colomer, J; Jaijo, T; Millán, J M; Palau, F; Espinós, C

    2013-06-01

    Four private mutations responsible for three forms demyelinating of Charcot-Marie-Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN-Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN-Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN-Russe (25%) and HMSN-Lom (17.86%). The relevant frequency of HMSN-Russe has allowed us to investigate in depth the genetics and the associated clinical symptoms of this CMT form. HMSN-Russe probands share the same haplotype confirming that the HK1 g.9712G>C is a founder mutation, which arrived in Spain around the end of the 18th century. The clinical picture of HMSN-Russe is a progressive CMT disorder leading to severe weakness of the lower limbs and prominent distal sensory loss. Motor nerve conduction velocity was in the demyelinating or intermediate range. © 2012 John Wiley & Sons A/S.

  3. The physical anthropometry, lifestyle habits and blood pressure of people presenting with a first clinical demyelinating event compared to controls: the Ausimmune study.

    PubMed

    Ponsonby, Anne-Louise; Lucas, Robyn M; Dear, Keith; van der Mei, Ingrid; Taylor, Bruce; Chapman, Caron; Coulthard, Alan; Dwyer, Terence; Kilpatrick, Trevor J; McMichael, Anthony J; Pender, Michael P; Valery, Patricia C; Williams, David

    2013-11-01

    Lifestyle factors prior to a first clinical demyelinating event (FCD), a disorder often preceding the development of clinically definite multiple sclerosis (MS), have not previously been examined in detail. Past tobacco smoking has been consistently associated with MS. This was a multicentre incident case-control study. Cases (n = 282) were aged 18-59 years with an FCD and resident within one of four Australian centres (from latitudes 27°S to 43°S), from 1 November 2003 to 31 December 2006. Controls (n = 558) were matched to cases on age, sex and study region, without CNS demyelination. Exposures measured included current and past tobacco and marijuana, alcohol and beverage use, physical activity patterns, blood pressure and physical anthropometry. A history of smoking ever was associated with FCD risk (AOR 1.89 (95%CL 1.82, 3.52)). Marijuana use was not associated with FCD risk after adjusting for confounders such as smoking ever but the estimates were imprecise because of a low prevalence of use. Alcohol consumption was common and not associated with FCD risk. No case-control differences in blood pressure or physical anthropometry were observed. Past tobacco smoking was positively associated with a risk of FCD but most other lifestyle factors were not. Prevention efforts against type 2 diabetes and cardiovascular disease by increasing physical activity and reducing obesity are unlikely to alter MS incidence, and more targeted campaigns will be required.

  4. Phenotypical features of two patients diagnosed with PHARC syndrome and carriers of a new homozygous mutation in the ABHD12 gene.

    PubMed

    Frasquet, Marina; Lupo, Vincenzo; Chumillas, María José; Vázquez-Costa, Juan Francisco; Espinós, Carmen; Sevilla, Teresa

    2018-04-15

    PHARC (Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa and Cataracts) (MIM# 612674) is an autosomal recessive neurodegenerative disease caused by mutations in the ABHD12 gene. We evaluated two Spanish siblings affected with pes cavus, sensorimotor neuropathy, hearing loss, retinitis pigmentosa and juvenile cataracts in whom the genetic test of ABHD12 revealed a novel homozygous frameshift mutation, c.211_223del (p.Arg71Tyrfs*26). The earliest clinical manifestation in these patients was a demyelinating neuropathy manifested with a Charcot-Marie-Tooth phenotype over three decades. Progressive hearing loss, cataracts and retinitis pigmentosa appeared after the age of 30. We herein describe the complete clinical picture of these two patients, and focus particularly on neuropathy characteristics. This study supports the fact that although PHARC is rare, its phenotype is very characteristic and we should include its study in patients affected with demyelinating polyneuropathy, hearing loss and retinopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Nocebo in chronic inflammatory demyelinating polyneuropathy; a systematic review and meta-analysis of placebo-controlled clinical trials.

    PubMed

    Zis, Panagiotis; Hadjivassiliou, Marios; Sarrigiannis, Ptolemaios G; Jenkins, Thomas M; Mitsikostas, Dimos-Dimitrios

    2018-05-15

    Nocebo is very prevalent among neurological disorders, resulting in low adherence and treatment outcome. We sought to examine the adverse events (AE) following placebo administration in placebo-controlled randomized clinical trials (RCTs) for chronic inflammatory demyelinating polyneuropathy (CIDP). After a systematic literature search for RCTs for CIDP pharmacotherapy treatments, we assessed the number of AE in the placebo groups and the number discontinuations because of placebo intolerance. Our literature search strategy revealed 82 papers. Data were extracted from three RCTs fulfilling our inclusion criteria. Approximately two in five placebo-treated patients (42.0%) reported at least one AE and approximately one in fifty placebo-treated patients discontinued placebo treatment because of AEs (2.1%). All patients participating in the CIDP trials reported similar AEs independently of the study arm they belonged. Compared to other neurological diseases the nocebo effect in CIDP is significantly smaller. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    PubMed

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  7. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice.

    PubMed

    D'Antonio, Maurizio; Musner, Nicolò; Scapin, Cristina; Ungaro, Daniela; Del Carro, Ubaldo; Ron, David; Feltri, M Laura; Wrabetz, Lawrence

    2013-04-08

    P0 glycoprotein is an abundant product of terminal differentiation in myelinating Schwann cells. The mutant P0S63del causes Charcot-Marie-Tooth 1B neuropathy in humans, and a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum of Schwann cells, where it promotes unfolded protein stress and elicits an unfolded protein response (UPR) associated with translational attenuation. Ablation of Chop, a UPR mediator, from S63del mice completely rescues their motor deficit and reduces active demyelination by half. Here, we show that Gadd34 is a detrimental effector of CHOP that reactivates translation too aggressively in myelinating Schwann cells. Genetic or pharmacological limitation of Gadd34 function moderates translational reactivation, improves myelination in S63del nerves, and reduces accumulation of P0S63del in the ER. Resetting translational homeostasis may provide a therapeutic strategy in tissues impaired by misfolded proteins that are synthesized during terminal differentiation.

  8. In Vivo and In Vitro Models of Demyelinating Disease: Endogenous Factors Influencing Demyelinating Disease Caused by Mouse Hepatitis Virus in Rats and Mice

    PubMed Central

    Sorensen, O.; Dugre, R.; Percy, D.; Dales, S.

    1982-01-01

    Intracerebral inoculation of JHM virus (JHMV), the neuropathic strain of mouse hepatitis virus, into Wistar Furth, Wistar Lewis, and Fischer 344 rats at various ages indicated that Wistar Furth rats are more susceptible to the virus than are the other strains. Fischer 344 and Wistar Lewis rats were more resistant to inoculation at 2 and 5 days of age and completely resistant by 10 days of age. In contrast, Wistar Furth rats which were very susceptible at both 2 and 5 days of age remained susceptible until 21 days of age. Intracerebral challenge of an F1 cross between Wistar Furth and Wistar Lewis rats at 10 days of age indicated that resistance to JHMV infection is dominant. Cyclophosphamide treatment 28 days after intracerebral inoculation exacerbated an inapparent infection, leading to paralysis in eight of nine and death in six of nine Wistar Furth test rats. In such immunosuppressed animals, grey- and white-matter lesions were noted throughout the central nervous system, in contrast to the purely demyelinating lesions noted previously. Since rats, unlike mice, were not susceptible to disease after intracerebral injection with the serorelated viscerotropic strain MHV-3, we wished to extend our understanding of the neurological disease process elicited by the two viruses in rodents. For this reason, various mouse strains, including some with recognized immunodeficiencies, were challenged by different routes of inoculation. Intraperitoneal infection of nude and beige mice with JHMV indicated that lack of natural killer cell functions does not markedly enhance the susceptibility to virus, whereas T-cell activity appears to be essential for resisting infection. JHMV and MHV-3 replication in peritoneal macrophages from highly resistant A/J mice was reduced in comparison with that noted in macrophages from susceptible C57BL6/J mice. An initial intraperitoneal inoculation of JHMV was able to protect C57BL6/J mice against fatal intracerebral challenge within 3 days, whereas A/J mice remained susceptible beyond day 3. The protective effect did not appear to result from increased levels of circulating interferon, preceded elevation in serum JHMV-neutralizing antibody titers, and persisted for at least several weeks after intraperitoneal inoculation. Based on the combined studies described here and on previous work by us and others, it appears that the factors influencing the outcome of coronavirus disease in rodents are age at inoculation, route of challenge, genetic constitution of the virus and host, and competence of the immune system, particularly cellular immunity involving T-cells. Images PMID:6290393

  9. Clinical spectrum of Castleman disease–associated neuropathy

    PubMed Central

    Naddaf, Elie; Dispenzieri, Angela; Mandrekar, Jay

    2016-01-01

    Objective: To define the peripheral neuropathy phenotypes associated with Castleman disease. Methods: We conducted a retrospective chart review for patients with biopsy-proven Castleman disease evaluated between January 2003 and December 2014. Patients with associated peripheral neuropathy were identified and divided into 2 groups: those with Castleman disease without POEMS syndrome (CD-PN) and those with Castleman disease with POEMS syndrome (CD-POEMS). We used a cohort of patients with POEMS as controls. Clinical, electrodiagnostic, and laboratory characteristics were collected and compared among patient subgroups. Results: There were 7 patients with CD-PN, 20 with CD-POEMS, and 122 with POEMS. Patients with CD-PN had the mildest neuropathy characterized by predominant sensory symptoms with no pain and mild distal sensory deficits (median Neuropathy Impairment Score of 7 points). Although both patients with CD-POEMS and patients with POEMS had a severe sensory and motor neuropathy, patients with CD-POEMS were less affected (median Neuropathy Impairment Score of 33 and 66 points, respectively). The degree of severity was also reflected on electrodiagnostic testing in which patients with CD-PN demonstrated a mild degree of axonal loss, followed by patients with CD-POEMS and then those with POEMS. Demyelinating features, defined by European Federation of Neurologic Societies/Peripheral Nerve Society criteria, were present in 43% of the CD-PN, 78% of the CD-POEMS, and 86% of the POEMS group. Conclusion: There is a spectrum of demyelinating peripheral neuropathies associated with Castleman disease. CD-PN is sensory predominant and is the mildest phenotype, whereas CD-POEMS is a more severe sensory and motor neuropathy. Compared to the POEMS cohort, those with CD-POEMS neuropathy have a similar but less severe phenotype. Whether these patients respond differently to treatment deserves further study. PMID:27807187

  10. Protecting retinal ganglion cells.

    PubMed

    Khatib, T Z; Martin, K R

    2017-02-01

    Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials.

  11. AhR-deficiency as a cause of demyelinating disease and inflammation.

    PubMed

    Juricek, Ludmila; Carcaud, Julie; Pelhaitre, Alice; Riday, Thorfinn T; Chevallier, Aline; Lanzini, Justine; Auzeil, Nicolas; Laprévote, Olivier; Dumont, Florent; Jacques, Sebastien; Letourneur, Frank; Massaad, Charbel; Agulhon, Cendra; Barouki, Robert; Beraneck, Mathieu; Coumoul, Xavier

    2017-08-29

    The Aryl hydrocarbon Receptor(AhR) is among the most important receptors which bind pollutants; however it also regulates signaling pathways independently of such exposure. We previously demonstrated that AhR is expressed during development of the central nervous system(CNS) and that its deletion leads to the occurrence of a congenital nystagmus. Objectives of the present study are to decipher the origin of these deficits, and to identify the role of the AhR in the development of the CNS. We show that the AhR-knockout phenotype develops during early infancy together with deficits in visual-information-processing which are associated with an altered optic nerve myelin sheath, which exhibits modifications in its lipid composition and in the expression of myelin-associated-glycoprotein(MAG), a cell adhesion molecule involved in myelin-maintenance and glia-axon interaction. In addition, we show that the expression of pro-inflammatory cytokines is increased in the impaired optic nerve and confirm that inflammation is causally related with an AhR-dependent decreased expression of MAG. Overall, our findings demonstrate the role of the AhR as a physiological regulator of myelination and inflammatory processes in the developing CNS. It identifies a mechanism by which environmental pollutants might influence CNS myelination and suggest AhR as a relevant drug target for demyelinating diseases.

  12. Evolving Identification of Blood Cells Associated with Clinically Isolated Syndrome: Importance of Time since Clinical Presentation and Diagnostic MRI

    PubMed Central

    Trend, Stephanie; Jones, Anderson P.; Geldenhuys, Sian; Byrne, Scott N.; Fabis-Pedrini, Marzena J.; Nolan, David; Booth, David R.; Carroll, William M.; Lucas, Robyn M.; Kermode, Allan G.; Hart, Prue H.

    2017-01-01

    It is not clear how the profile of immune cells in peripheral blood differs between patients with clinically isolated syndrome (CIS) and healthy controls (HC). This study aimed to identify a CIS peripheral blood signature that may provide clues for potential immunomodulatory approaches early in disease. Peripheral blood mononuclear cells (PBMCs) were collected from 18 people with CIS, 19 HC and 13 individuals with other demyelinating conditions (ODC) including multiple sclerosis (MS). Individuals with CIS separated into two groups, namely those with early (≤14 days post-diagnostic magnetic resonance imaging (MRI); n = 6) and late (≥27 days; n = 12) blood sampling. Transitional B cells were increased in the blood of CIS patients independently of when blood was taken. However, there were two time-dependent effects found in the late CIS group relative to HC, including decreased CD56bright NK cells, which correlated significantly with time since MRI, and increased CD141+ myeloid dendritic cell (mDC2) frequencies. Higher CD1c+ B cells and lower non-classical monocyte frequencies were characteristic of more recent demyelinating disease activity (ODC and early CIS). Analysing cell populations by time since symptoms (subjective) and diagnostic MRI (objective) may contribute to understanding CIS. PMID:28617321

  13. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis.

    PubMed

    Koch, Marcus W; Zabad, Rana; Giuliani, Fabrizio; Hader, Walter; Lewkonia, Ray; Metz, Luanne; Wee Yong, V

    2015-11-15

    Microglial activation is thought to be a key pathophysiological mechanism underlying disease activity in all forms of MS. Hydroxychloroquine (HCQ) is an antimalarial drug with immunomodulatory properties that is widely used in the treatment of rheumatological diseases. In this series of experiments, we explore the effect of HCQ on human microglial activation in vitro and on the development of experimental autoimmune encephalitis (EAE) in vivo. We activated human microglia with lipopolysaccharide (LPS), and measured concentrations of several pro- and anti-inflammatory cytokines in untreated and HCQ pretreated cultures. We investigated the effect of HCQ pretreatment at two doses on the development of EAE and spinal cord histology. HCQ pretreatment reduced the production of pro-inflammatory (TNF-alpha, IL-6, and IL-12) and anti-inflammatory (IL-10 and IL-1 receptor antagonist) cytokines in LPS-stimulated human microglia. HCQ pretreatment delayed the onset of EAE, and reduced the number of Iba-1 positive microglia/macrophages and signs of demyelination in the spinal cords of HCQ treated animals. HCQ treatment reduces the activation of human microglia in vitro, delays the onset of EAE, and decreases the representation of activated macrophages/microglia and demyelination in the spinal cord of treated mice. HCQ is a plausible candidate for further clinical studies in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society - first revision.

    PubMed

    Van den Bergh, P Y K; Hadden, R D M; Bouche, P; Cornblath, D R; Hahn, A; Illa, I; Koski, C L; Léger, J-M; Nobile-Orazio, E; Pollard, J; Sommer, C; van Doorn, P A; van Schaik, I N

    2010-03-01

    Consensus guidelines on the definition, investigation, and treatment of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) have been previously published in European Journal of Neurology and Journal of the Peripheral Nervous System. To revise these guidelines. Disease experts, including a representative of patients, considered references retrieved from MEDLINE and Cochrane Systematic Reviews published between August 2004 and July 2009 and prepared statements that were agreed in an iterative fashion. The Task Force agreed on Good Practice Points to define clinical and electrophysiological diagnostic criteria for CIDP with or without concomitant diseases and investigations to be considered. The principal treatment recommendations were: (i) intravenous immunoglobulin (IVIg) (Recommendation Level A) or corticosteroids (Recommendation Level C) should be considered in sensory and motor CIDP; (ii) IVIg should be considered as the initial treatment in pure motor CIDP (Good Practice Point); (iii) if IVIg and corticosteroids are ineffective, plasma exchange (PE) should be considered (Recommendation Level A); (iv) if the response is inadequate or the maintenance doses of the initial treatment are high, combination treatments or adding an immunosuppressant or immunomodulatory drug should be considered (Good Practice Point); (v) symptomatic treatment and multidisciplinary management should be considered (Good Practice Point).

  15. Evolving Identification of Blood Cells Associated with Clinically Isolated Syndrome: Importance of Time since Clinical Presentation and Diagnostic MRI.

    PubMed

    Trend, Stephanie; Jones, Anderson P; Geldenhuys, Sian; Byrne, Scott N; Fabis-Pedrini, Marzena J; Nolan, David; Booth, David R; Carroll, William M; Lucas, Robyn M; Kermode, Allan G; Hart, Prue H

    2017-06-15

    It is not clear how the profile of immune cells in peripheral blood differs between patients with clinically isolated syndrome (CIS) and healthy controls (HC). This study aimed to identify a CIS peripheral blood signature that may provide clues for potential immunomodulatory approaches early in disease. Peripheral blood mononuclear cells (PBMCs) were collected from 18 people with CIS, 19 HC and 13 individuals with other demyelinating conditions (ODC) including multiple sclerosis (MS). Individuals with CIS separated into two groups, namely those with early (≤14 days post-diagnostic magnetic resonance imaging (MRI); n = 6) and late (≥27 days; n = 12) blood sampling. Transitional B cells were increased in the blood of CIS patients independently of when blood was taken. However, there were two time-dependent effects found in the late CIS group relative to HC, including decreased CD56bright NK cells, which correlated significantly with time since MRI, and increased CD141+ myeloid dendritic cell (mDC2) frequencies. Higher CD1c+ B cells and lower non-classical monocyte frequencies were characteristic of more recent demyelinating disease activity (ODC and early CIS). Analysing cell populations by time since symptoms (subjective) and diagnostic MRI (objective) may contribute to understanding CIS.

  16. Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss.

    PubMed

    Görtz, A L; Peferoen, L A N; Gerritsen, W H; van Noort, J M; Bugiani, M; Amor, S

    2018-06-01

    X-linked adrenoleukodystrophy (X-ALD) is a genetic white matter disorder in which demyelination occurs due to accumulation of very long-chain fatty acids. Inflammation in the brain white matter is a hallmark of the pathology of cerebral X-ALD, but the underlying pathogenic mechanisms are still largely unknown. In other inflammatory demyelinating disorders, such as multiple sclerosis, the expression of heat shock proteins (HSPs) in combination with interferon-γ (IFN-γ) has been suggested to play a prominent role in the initiation of demyelination and inflammation. We therefore investigated these pathways in X-ALD lesions. By immunohistochemistry, we examined the expression of small HSPs (HSPB1, HSPB5, HSPB6, HSPB8) and higher molecular weight HSPs (HSPA, HSPD1), and the expression of elements of the IFN-γ pathway on autopsy material of five patients with X-ALD. The expression of the larger HSPs, HSPA and HSPD1, as well as small HSPs is increased in X-ALD lesions compared with normal-appearing white matter. Such upregulation can already be detected before demyelination and inflammation occur, and it is predominant in astrocytes. The IFN-γ pathway does not seem to play a leading role in the observed inflammation. The finding that astrocytes show signs of cellular stress before demyelination suggests that they play a major role early in the pathogenesis of cerebral X-ALD, and may therefore be involved in the initiation of inflammation and demyelination. © 2017 British Neuropathological Society.

  17. Effects of particulate matter exposure on multiple sclerosis hospital admission in Lombardy region, Italy

    PubMed Central

    Laura, Angelici; Mirko, Piola; Tommaso, Cavalleri; Giorgia, Randi; Francesca, Cortini; Roberto, Bergamaschi; Andrea, Baccarelli A; Alberto, Bertazzi Pier; Cecilia, Pesatori Angela; Valentina, Bollati

    2016-01-01

    Background Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system, characterized by recurrent relapses of inflammation that cause mild to severe disability. Exposure to airborne particulate matter (PM) has been associated with acute increases in systemic inflammatory responses and neuroinflammation. In the present study, we hypothesize that exposure to PM < 10 µm in diameter (PM10) might increase the occurrence of MS-related hospitalizations. Methods We obtained daily concentrations of PM10 from 53 monitoring sites covering the study area and we identified 8287 MS-related hospitalization through hospital admission-discharge records of the Lombardy region, Italy, between 2001 and 2009. We used a Poisson regression analysis to investigate the association between exposure to PM10 and risk of hospitalization. Results A higher RR of hospital admission for MS relapse was associated with exposure to PM10 at different time intervals. The maximum effect of PM10 on MS hospitalization was found for exposure between days 0 and 7: Hospital admission for MS increased 42% (95%CI 1.39–1.45) on the days preceded by one week with PM10 levels in the highest quartile. The p-value for trend across quartiles was < 0.001. Conclusions These data support the hypothesis that air pollution may have a role in determining MS occurrence and relapses. Our findings could open new avenues for determining the pathogenic mechanisms of MS and potentially be applied to other autoimmune diseases. PMID:26624240

  18. Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.

    PubMed

    Santiago González, Diara A; Cheli, Veronica T; Zamora, Norma N; Lama, Tenzing N; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2017-10-18

    Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2 KO ). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2 KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2 KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2 KO OPCs were identified by a Cre reporter, we establish that Cav1.2 KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca 2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca 2+ channel for OPC maturation during the remyelination of the adult brain. SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca 2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To determine whether voltage Ca 2+ entry is involved in oligodendrocyte differentiation and remyelination, we used a conditional knockout mouse for VGCCs in OPCs. Our results indicate that VGCCs can modulate oligodendrocyte maturation in the demyelinated brain and suggest that voltage-gated Ca 2+ influx in OPCs is critical for remyelination. These findings could lead to novel approaches for obtaining a better understanding of the factors that control OPC maturation in order to stimulate this pool of progenitors to replace myelin in demyelinating diseases. Copyright © 2017 the authors 0270-6474/17/3710038-14$15.00/0.

  19. Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders.

    PubMed

    Hinson, Shannon R; Lennon, Vanda A; Pittock, Sean J

    2016-01-01

    Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving group of central nervous system (CNS)-inflammatory autoimmune demyelinating diseases unified by a pathogenic autoantibody specific for the aquaporin-4 (AQP4) water channel. It was historically misdiagnosed as multiple sclerosis (MS), which lacks a distinguishing biomarker. The discovery of AQP4-IgG moved the focus of CNS demyelinating disease research from emphasis on the oligodendrocyte and myelin to the astrocyte. NMO is recognized today as a relapsing disease, extending beyond the optic nerves and spinal cord to include brain (especially in children) and skeletal muscle. Brain magnetic resonance imaging abnormalities, identifiable in 60% of patients at the second attack, are consistent with MS in 10% of cases. NMOSD-typical lesions (another 10%) occur in AQP4-enriched regions: circumventricular organs (causing intractable nausea and vomiting) and the diencephalon (causing sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Advances in understanding the immunobiology of AQP4 autoimmunity have necessitated continuing revision of NMOSD clinical diagnostic criteria. Assays that selectively detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 are promising prognostically. When referring to AQP4 autoimmunity, we suggest substituting the term "autoimmune aquaporin-4 channelopathy" for the term "NMO spectrum disorders." Randomized clinical trials are currently assessing the efficacy and safety of newer immunotherapies. Increasing therapeutic options based on understanding the molecular pathogenesis is anticipated to improve the outcome for patients with AQP4 channelopathy. © 2016 Elsevier B.V. All rights reserved.

  20. Early-life hygiene-related factors affect risk of central nervous system demyelination and asthma differentially

    PubMed Central

    Hughes, A-M; Lucas, R M; McMichael, A J; Dwyer, T; Pender, M P; Mei, I; Taylor, B V; Valery, P; Chapman, C; Coulthard, A; Dear, K; Kilpatrick, T J; Williams, D; Ponsonby, A-L

    2013-01-01

    The increasing prevalence of immune-related diseases, including multiple sclerosis, may be partly explained by reduced microbial burden during childhood. Within a multi-centre case–control study population, we examined: (i) the co-morbid immune diseases profile of adults with a first clinical diagnosis of central nervous system demyelination (FCD) and (ii) sibship structure in relation to an autoimmune (FCD) and an allergic (asthma) disease. FCD cases (n = 282) were aged 18–59 years; controls (n = 558) were matched on age, sex and region. Measures include: history of doctor-diagnosed asthma; sibling profile (number; dates of birth); and regular childcare attendance. FCD cases did not differ from controls with regard to personal or family history of allergy, but had a greater likelihood of chronic fatigue syndrome [odds ratio (OR) = 3·11; 95% confidence interval (CI) 1·11, 8·71]. Having any younger siblings showed reduced odds of FCD (OR = 0·68; 95% CI: 0·49, 0·95) but not asthma (OR = 1·47; 95% CI: 0·91, 2·38). In contrast, an increasing number of older siblings was associated with reduced risk of asthma (P trend = 0·04) but not FCD (P trend = 0·66). Allergies were not over-represented among people presenting with FCD. Sibship characteristics influence both FCD and asthma risk but the underlying mechanisms differ, possibly due to the timing of the putative ‘sibling effect’. PMID:23600835

  1. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination.

    PubMed

    Palumbo, S; Toscano, C D; Parente, L; Weigert, R; Bosetti, F

    2011-07-01

    Phospholipases A(2) (PLA(2)) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of pro-inflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA(2) enzymes and the terminal prostagland in levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for 6 weeks to allow spontaneous remyelination. We found that after 4-6 weeks of cuprizone, sPLA(2)(V) and cPLA(2), but not iPLA(2)(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA(2)(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE(2), PGD(2), PGI(2) and TXB(2) were also increased during demyelination. During remyelination, none of the PLA(2) isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE(2), PGI(2) and PGD(2) levels returned to normal, whereas TXB(2) was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA(2)(V) is the major isoform contributing to AA release. Published by Elsevier Ltd.

  2. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination

    PubMed Central

    Palumbo, S.; Toscano, C.D.; Parente, L.; Weigert, R.; Bosetti, F.

    2011-01-01

    Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of proinflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA2 enzymes and the terminal prostaglandin levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for six weeks to allow spontaneous remyelination. We found that after 4–6 weeks of cuprizone, sPLA2(V) and cPLA2, but not iPLA2(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA2(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE2, PGD2, PGI2 and TXB2 were also increased during demyelination. During remyelination, none of the PLA2 isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE2, PGI2, and PGD2 levels returned to normal, whereas TXB2 was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA2(V) is the major isoform contributing to AA release. PMID:21530210

  3. Meningitis-retention syndrome. An unrecognized clinical condition.

    PubMed

    Sakakibara, Ryuji; Uchiyama, Tomoyuki; Liu, Zhi; Yamamoto, Tatsuya; Ito, Takashi; Uzawa, Akiyuki; Suenaga, Tadahiro; Kanai, Kazuaki; Awa, Yusuke; Sugiyama, Yoshiki; Hattori, Takamichi

    2005-12-01

    A combination of acute urinary retention and aseptic meningitis has not been well known. This combination can be referred to as meningitis-retention syndrome (MRS), when accompanied by no other abnormalities. To describe the results of a uro-neurological assessment in our patients with MRS. In three patients (two men, one woman; age, 34-68 years), we performed urodynamic studies and relevant imaging and neurophysiological tests, in addition to cerebrospinal fluid (CSF) examination. All three patients developed acute urinary retention along with headache, fever and stiff neck. None had obvious neurological abnormalities, other than a slightly brisk reflex in the lower extremities. One had previously experienced generalized erythematous eruptions, but none had pain, hypalgesia or skin eruptions in the sacral dermatomes suggestive of Elsberg syndrome (infectious sacral polyradiculitis; mostly genital herpes). Brain/spinal/lumbar plexus MRI scans and nerve conduction studies were normal. CSF examination showed mild mononuclear pleocytosis, increased protein content, and normal to mildly decreased glucose content in all patients; increased myelin basic protein suggestive of central nervous system demyelination in one; and increased viral titers in none. Urodynamic study revealed, during the voiding phase, an underactive detrusor in all patients and an unrelaxing sphincter in one. These clinical manifestations were ameliorated within 3 weeks. We reported three cases of MRS, a peculiar syndrome that could be regarded as a mild variant of acute disseminated encephalomyelitis (ADEM). Urinary retention might reflect acute shock phase of this disorder. Although MRS has a benign and self-remitting course, management of the acute urinary retention is necessary.

  4. Autosomal recessive Charcot-Marie-Tooth neuropathy.

    PubMed

    Espinós, Carmen; Calpena, Eduardo; Martínez-Rubio, Dolores; Lupo, Vincenzo

    2012-01-01

    Charcot-Marie-Tooth (CMT) disease, a hereditary motor and sensory neuropathy that comprises a complex group of more than 50 diseases, is the most common inherited neuropathy. CMT is generally divided into demyelinating forms, axonal forms and intermediate forms. CMT is also characterized by a wide genetic heterogeneity with 29 genes and more than 30 loci involved. The most common pattern of inheritance is autosomal dominant (AD), although autosomal recessive (AR) forms are more frequent in Mediterranean countries. In this chapter we give an overview of the associated genes, mechanisms and epidemiology of AR-CMT forms and their associated phenotypes.

  5. High resolution neurography of the lumbosacral plexus on 3T magneteic resonance imaging.

    PubMed

    Cejas, C; Escobar, I; Serra, M; Barroso, F

    2015-01-01

    Magnetic resonance neurography is a technique that complements clinical and electrophysiological study of the peripheral nerves and brachial and lumbosacral plexuses. Numerous focal processes (inflammatory, traumatic, primary tumors, secondary tumors) and diffuse processes (diabetic polyneuropathy, chronic idiopathic demyelinating polyneuropathy due to amyloidosis or Charcot-Marie-Tooth disease) can involve the lumbosacral plexus. This article reviews the anatomy of the lumbosacral plexus, describes the technique for neurography of the plexus at our institution, and shows the diverse diseases that affect it. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  6. Distal acquired demyelinating symmetric polyneuropathy progressing to classic chronic inflammatory demyelinating polyneuropathy and response to fludarabine and cyclophosphamide.

    PubMed

    Leitch, Megan M; Sherman, William H; Brannagan, Thomas H

    2013-02-01

    Distal acquired demyelinating symmetric polyneuropathy (DADS) is proposed as a distinct entity from classic chronic inflammatory demyelinating polyneuropathy (CIDP). We report a 58-year-old woman with DADS that progressed to a severe case of classic CIDP. She had distal numbness and paresthesias, minimal distal weakness and impaired vibratory sensation. She had anti-MAG antibodies, negative Western blot, and lacked a monoclonal gammopathy. There were prolonged distal motor latencies. She remained stable for 6 years until developing proximal and distal weakness. Nerve conduction studies showed multiple conduction blocks. She developed quadriparesis despite first-line treatment for CIDP. She was started on cyclophosphamide and fludarabine. Twenty-five months after receiving chemotherapy, she had only mild signs of neuropathy off all immunotherapy. DADS may progress to classic CIDP and is unlikely to be a separate disorder. Fludarabine and cyclophosphamide may be effective for refractory CIDP. Copyright © 2012 Wiley Periodicals, Inc.

  7. Chronic inflammatory demyelinating polyneuropathy associated with primary biliary cirrhosis.

    PubMed

    Murata, Ken-ya; Ishiguchi, Hiroshi; Ando, Ryuki; Miwa, Hideto; Kondo, Tomoyoshi

    2013-12-01

    We report a patient with chronic inflammatory demyelinating polyneuropathy associated with primary biliary cirrhosis (PBC). Except for minimal biochemical abnormalities, clinical symptoms of PBC were not observed, and we diagnosed our patient with asymptomatic PBC from the results of a liver biopsy. Although the patient noticed little muscle weakness, an electrophysiological study demonstrated slow conduction velocities and prolonged distal latencies, with definite conduction blocks in the median, ulnar, and tibial nerves. The disturbed sensory pattern was asymmetrical, and sensory nerve action potentials were not evoked. From these observations, we diagnosed this patient with chronic inflammatory demyelinating polyneuropathy. Neuropathy associated with PBC is very rare. We must differentiate demyelinating neuropathy with PBC in patients with asymmetrical sensory dominant neuropathy with high immunoglobulin M titers, and investigate for the presence of anti-mitochondrial antibodies to rule out a complication of asymptomatic PBC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effects of insulin-like growth factor 1 on pathologic processes in the cuprizone model of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Fedorishin, D.; Sorokina, I.; Tolstikova, T.; Akulov, A.; Glazacheva, V.; Nemirovich-Danchenko, N.; Khodanovich, M.; Yarnykh, V.

    2017-08-01

    The study aims to evaluate the effect of insulin-like growth factor 1 (IGF-1) on the demyelination and astrogliosis using the cuprizone murine model. Demyelination was induced in 14 adult male mice by 0.3% cuprizone in drinking water. Five animals from the cuprizone-treated group received subcutaneous injections of IGF-1. Seven animals were used as a control group. The extent of demyelination was evaluated as a decrease in the size of the corpus callosum on T2-weighted images that were received using an 11.7T animal MRI scanner. Brain sections were immunohistochemically stained for glial fibrillary acidic protein (GFAP), a marker of astrocytes. It was revealed that the cuprizone caused extensive demyelination and astroglyosis. IGF-1 treatment restored the size of the corpus callosum and the number of astrocytes in the corpus callosum and the anterior commissure to the control level.

  9. Multifocal sensory demyelinating neuropathy: Report of a case.

    PubMed

    Oh, Shin J

    2017-10-01

    Multifocal sensory demyelinating neuropathy has not been adequately reported in the literature. A 42-year-old man with numbness of the left hand for 3 years and of the right hand for 6 months had a pure multifocal sensory neuropathy involving both hands, most prominently affecting 2-point discrimination, number writing, and object recognition of the left hand. Near-nerve needle sensory and mixed nerve conduction studies were performed on the left ulnar nerve. Studies of the left ulnar nerve documented a demyelinating neuropathy characterized by temporal dispersion and marked decrease in the amplitudes of the sensory and mixed compound nerve potentials in the above-elbow-axilla segment. With intravenous immunoglobulin treatment, there was improvement in his neuropathic condition. In this study I describe a case of multifocal sensory demyelinating neuropathy as a counterpart of multifocal motor neuropathy. Muscle Nerve 56: 825-828, 2017. © 2016 Wiley Periodicals, Inc.

  10. Delayed posthypoxic demyelination. Association with arylsulfatase A deficiency and lactic acidosis on proton MR spectroscopy.

    PubMed

    Gottfried, J A; Mayer, S A; Shungu, D C; Chang, Y; Duyn, J H

    1997-11-01

    Delayed demyelination is a rare and poorly understood complication of hypoxic brain injury. A previous case report has suggested an association with mild-to-moderate deficiency of arylsulfatase A. We describe a 36-year-old man who recovered completely from an episode of hypoxia related to drug overdose, and 2 weeks later progressed from a confusional state to deep coma. MRI showed diffuse white matter signal changes, and brain biopsy demonstrated a noninflammatory demyelinating process. Proton magnetic resonance spectroscopy revealed elevated choline and lactate and reduced N-acetyl aspartate signal in the affected white matter, consistent with demyelination and a shift to anaerobic metabolism. Arylsulfatase A activity from peripheral leukocytes was approximately 50% of normal, consistent with a "pseudodeficiency" phenotype. These findings confirm the hypothesis that relative arylsulfatase A deficiency predisposes susceptible individuals to delayed posthypoxic leukoencephalopathy and implicates lactic acidosis in the pathogenesis of this disorder.

  11. Acute polyradiculoneuritis in Sarajevo during the war.

    PubMed

    Delilović-Vranić, Jasminka; Dautović-Krkić, Sajma

    2006-02-01

    Acute polyradiuloneuritis is acute inflammatory demyelinizing polyneuropathy, with still unknown cause, and which main pathophysiological disorder is degeneration of axons which affects peripheral nerves. Most frequently it occurs as acute, several days or weeks after viral, respiratory or gastrointestinal infections. Survival rate is in the world between 95-98% of cases. The goal of the research is to determine by retrospective study number of cases of acute polyradiculoneuritis during the war in the Sarajevo under the siege and their outcome. In this paper we have analyzed total number of acute polyradiculoneuritis cases within the period since April 1992 until April 1996, when the city of Sarajevo was completely under siege. Diagnostic criteria's besides anamnesis was detailed neurological exam, blood tests, analysis of the cerebrospinal liquor, EMG, ECG and cardiac tests. Within the above mentioned period there was 17 cases of polyradiculoneuritis, 13 male and 4 females, age between 14-65 years. Motor weakness and parestesias was most dominant in clinical image. Number of cases increased during the years and it was greatest during 1995. Previous infections were noted in 6 cases, and 5 of those respiratory, and one case of gastrointestinal. Proteinorahia in liquor was found among 10 cases (4 during first and 6 during the second week of illness). Pathological EMG was found in 8 cases. Milder form of illness had 4 patients, while 13 patients had more severe form. In total 7 patients survived, 2 of them without consequences, 3 with milder and 2 with more severe consequences while in 10 cases there was a lethal outcome.

  12. New Aspects of the Pathogenesis of Canine Distemper Leukoencephalitis

    PubMed Central

    Lempp, Charlotte; Spitzbarth, Ingo; Puff, Christina; Cana, Armend; Kegler, Kristel; Techangamsuwan, Somporn; Baumgärtner, Wolfgang; Seehusen, Frauke

    2014-01-01

    Canine distemper virus (CDV) is a member of the genus morbillivirus, which is known to cause a variety of disorders in dogs including demyelinating leukoencephalitis (CDV-DL). In recent years, substantial progress in understanding the pathogenetic mechanisms of CDV-DL has been made. In vivo and in vitro investigations provided new insights into its pathogenesis with special emphasis on axon-myelin-glia interaction, potential endogenous mechanisms of regeneration, and astroglial plasticity. CDV-DL is characterized by lesions with a variable degree of demyelination and mononuclear inflammation accompanied by a dysregulated orchestration of cytokines as well as matrix metalloproteinases and their inhibitors. Despite decades of research, several new aspects of the neuropathogenesis of CDV-DL have been described only recently. Early axonal damage seems to represent an initial and progressive lesion in CDV-DL, which interestingly precedes demyelination. Axonopathy may, thus, function as a potential trigger for subsequent disturbed axon-myelin-glia interactions. In particular, the detection of early axonal damage suggests that demyelination is at least in part a secondary event in CDV-DL, thus challenging the dogma of CDV as a purely primary demyelinating disease. Another unexpected finding refers to the appearance of p75 neurotrophin (NTR)-positive bipolar cells during CDV-DL. As p75NTR is a prototype marker for immature Schwann cells, this finding suggests that Schwann cell remyelination might represent a so far underestimated endogenous mechanism of regeneration, though this hypothesis still remains to be proven. Although it is well known that astrocytes represent the major target of CDV infection in CDV-DL, the detection of infected vimentin-positive astrocytes in chronic lesions indicates a crucial role of this cell population in nervous distemper. While glial fibrillary acidic protein represents the characteristic intermediate filament of mature astrocytes, expression of vimentin is generally restricted to immature or reactive astrocytes. Thus, vimentin-positive astrocytes might constitute an important cell population for CDV persistence and spread, as well as lesion progression. In vitro models, such as dissociated glial cell cultures, as well as organotypic brain slice cultures have contributed to a better insight into mechanisms of infection and certain morphological and molecular aspects of CDV-DL. Summarized, recent in vivo and in vitro studies revealed remarkable new aspects of nervous distemper. These new perceptions substantially improved our understanding of the pathogenesis of CDV-DL and might represent new starting points to develop novel treatment strategies. PMID:24992230

  13. The formation of inflammatory demyelinated lesions in cerebral white matter

    PubMed Central

    Maggi, Pietro; Cummings Macri, Sheila M.; Gaitán, María I.; Leibovitch, Emily; Wholer, Jillian E; Knight, Heather L.; Ellis, Mary; Wu, Tianxia; Silva, Afonso C.; Massacesi, Luca; Jacobson, Steven; Westmoreland, Susan; Reich, Daniel S.

    2016-01-01

    Objective Vascular permeability and inflammatory demyelination are intimately linked in the brain, but what is their temporal relationship? We aimed to determine the radiological correlates of the earliest tissue changes accompanying demyelination in a primate model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) in the common marmoset. Methods At 7 tesla MRI, T1 maps, proton density and T2-weighted images were acquired before and after EAE induction in 5 marmosets (every other week before lesions appeared, weekly thereafter). From scans before and after intravenous injection of contrast material, we measured the evolution of lesional blood-brain-barrier (BBB) permeability, comparing in vivo MRI to postmortem tissue examination. Results On average, BBB permeability increased 3.5 fold (p<0.0001) over the 4 weeks prior to lesion appearance. Permeability gradually decreased after lesion appearance, with attendant changes in the distribution of inflammatory cells (predominantly macrophages and microglia) and demyelination. On tissue analysis, we also identified small perivascular foci of microglia and T cells without blood-derived macrophages or demyelination. These foci had no visible MRI correlates, though permeability within the foci, but not outside, increased in the weeks before the animals died (p<0.0001). Interpretation This study provides compelling evidence that in marmoset EAE, which forms lesions strongly resembling those of MS, early changes in vascular permeability are associated with perivascular inflammatory cuffing and parenchymal microglial activation but precede the arrival of blood-derived monocytes that accompany demyelination. Prospective detection of transient permeability changes could afford an opportunity for early intervention to forestall tissue damage in newly forming lesions. PMID:25088017

  14. The formation of inflammatory demyelinated lesions in cerebral white matter.

    PubMed

    Maggi, Pietro; Macri, Sheila M Cummings; Gaitán, María I; Leibovitch, Emily; Wholer, Jillian E; Knight, Heather L; Ellis, Mary; Wu, Tianxia; Silva, Afonso C; Massacesi, Luca; Jacobson, Steven; Westmoreland, Susan; Reich, Daniel S

    2014-10-01

    Vascular permeability and inflammatory demyelination are intimately linked in the brain, but what is their temporal relationship? We aimed to determine the radiological correlates of the earliest tissue changes accompanying demyelination in a primate model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) in the common marmoset. By 7T magnetic resonance imaging (MRI), T1 maps, proton density, and T2-weighted images were acquired before and after EAE induction in 5 marmosets (every other week before lesions appeared, weekly thereafter). From scans before and after intravenous injection of contrast material, we measured the evolution of lesional blood-brain barrier (BBB) permeability, comparing in vivo MRI to postmortem tissue examination. On average, BBB permeability increased 3.5-fold (p < 0.0001) over the 4 weeks prior to lesion appearance. Permeability gradually decreased after lesion appearance, with attendant changes in the distribution of inflammatory cells (predominantly macrophages and microglia) and demyelination. On tissue analysis, we also identified small perivascular foci of microglia and T cells without blood-derived macrophages or demyelination. These foci had no visible MRI correlates, although permeability within the foci, but not outside, increased in the weeks before the animals died (p < 0.0001). This study provides compelling evidence that in marmoset EAE, which forms lesions strongly resembling those of MS, early changes in vascular permeability are associated with perivascular inflammatory cuffing and parenchymal microglial activation but precede the arrival of blood-derived monocytes that accompany demyelination. Prospective detection of transient permeability changes could afford an opportunity for early intervention to forestall tissue damage in newly forming lesions. © 2014 American Neurological Association.

  15. Protecting retinal ganglion cells

    PubMed Central

    Khatib, T Z; Martin, K R

    2017-01-01

    Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials. PMID:28085136

  16. The Effect of Age on the Susceptibility and Severity of Demyelination

    DTIC Science & Technology

    2015-10-01

    Animal facilities (completed) Task 2d- Breed the offspring and ascertain that the transgenic trait is present – (completed) Task 3e... transgenic mouse the consequence was that these mice became sicker much quicker than a cohort of mice with normal levels of neurofascin. Therefore we...disease. In addition we challenged transgenic mice that had greatly diminished amounts of the molecule which links myelin to the axon (neurofascin) to

  17. Autoimmune neuropathies associated to rheumatic diseases.

    PubMed

    Martinez, Alberto R M; Faber, Ingrid; Nucci, Anamarli; Appenzeller, Simone; França, Marcondes C

    2017-04-01

    Systemic manifestations are frequent in autoimmune rheumatic diseases and include peripheral nervous system damage. Neuron cell body, axons and myelin sheath may all be affected in this context. This involvement results in severe and sometimes disabling symptoms. Sensory, motor and autonomic features may be present in different patterns that emerge as peculiar clinical pictures. Prompt recognition of these neuropathies is pivotal to guide treatment and reduce the risks of long term disability. In this review, we aim to describe the main immune-mediated neuropathies associated to rheumatic diseases: sensory neuronopathies, multiple mononeuropathies and chronic inflammatory demyelinating polyradiculoneuropathy, with an emphasis on clinical features and therapeutic options. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [The role of metalloprotease in pathogenesis of nervous system diseases].

    PubMed

    Mirowska, D; Członkowska, A

    2001-01-01

    Matrix Metalloproteases (MMPs) comprise a big family of proteolytic enzymes secreted into extracellular matrix and involved in remodelling of many tissues. The MMPs' activity is regulated on many levels. It is also determined by specific inhibitors known as tissue inhibitors of metalloproteases (TIMPs). Several studies revealed that MMPs have a role not only in physiological processes but also in pathophysiology of nervous system diseases, such as multiplex sclerosis, Guillan-Barré syndrome and strokes. Concerning demyelination MMPs are responsible for degradation of myelin components and facilitation of immune cells migration into inflammatory sites by degrading vascular basement membrane. We still investigate substances with positive clinical effect on the nervous system diseases due to MMPs inactivation.

  19. [Current description of multiple sclerosis].

    PubMed

    Río, Jordi; Montalbán, Xavier

    2014-12-01

    Multiple sclerosis is a multifocal demyelinating disease leading to progressive neurodegeneration caused by an autoimmune response in genetically predisposed individuals. In the last few years, the knowledge and management of this disease has been revolutionized by a series of findings. The present article reviews pathological features of the disease, in which cortical involvement is increasingly implicated, and aspects related to novel pathogenic mechanisms, such as the role of the microbiota in the genesis of multiple sclerosis, as well as recent contributions from the fields of epidemiology and genetics. Also reviewed are the latest diagnostic criteria, which currently allow a much earlier diagnosis, with clear therapeutic implications. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  20. Zika virus outbreak in New Caledonia and Guillain-Barré syndrome: a case-control study.

    PubMed

    Simon, Olivier; Acket, Blandine; Forfait, Carole; Girault, Dominique; Gourinat, Ann-Claire; Millon, Pauline; Daures, Maguy; Vanhomwegen, Jessica; Billot, Segolene; Biron, Antoine; Hoinard, Damien; Descloux, Elodie; Guyon, David; Manuguerra, Jean Claude; Laumond, Sylvie; Molko, Nicolas; Dupont-Rouzeyrol, Myrielle

    2018-06-01

    Zika virus (ZIKV) infection has been associated with neurologic disorders including Guillain-Barré syndrome (GBS). In New Caledonia during the ZIKV outbreak (2014-2015), case-control and retrospective studies have been performed to assess the link between ZIKV and GBS. Among the 15 cases included, 33% had evidence of a recent ZIKV infection compared to only 3.3% in the 30 controls involved. All patients were Melanesian, had facial diplegia and similar neurophysiological pattern consistent with acute inflammatory demyelinating polyneuropathy, and recovered well. Furthermore, during the peak of ZIKV transmission, we observed a number of GBS cases higher than the calculated upper limit, emphasizing the fact that ZIKV is now a major trigger of GBS.

Top